

ZY1000 User’s Guide

www.ultsol.com 2

This ZY1000 User’s Guide documents release 2.0 (March 2012).

Copyright © 2010-2011 Zylin AS, 2012 Ultimate Solutions, Inc.

A limited license is granted to ZY1000 owners to read and print this
document for the purpose of learning to use the ZY1000 product.

www.ultsol.com 3

Table of Contents
1. Before you start ... 6
2. ZY1000 setup .. 7

2.1. Offline application ... 7
2.2. How to upgrade ZY1000 firmware ... 7
2.3. Contacting Ultimate Solutions .. 8

2.3.1. Step to produce report ... 8
2.4. Advanced ZY1000 diagnostics .. 8

2.4.1. Enabling logging to serial port .. 9
2.4.2. Disabling current target configuration .. 9
2.4.3. Advanced bootloader options.. 9
2.4.4. Configuration parameters.. 10

3. Performance profiling ... 11
4. Small scale production .. 12

4.1. Writing a production scripts.. 12
4.2. Autonomous ZY1000 production operation ... 14

5. ZY1000 remote power cycling.. 15
6. Remote RS232 forwarding.. 16

6.1. Advanced COM redirection .. 16
7. Remote online support .. 17

7.1. Granting Ultimate Solutions access to target .. 17
7.2. A few words about security... 17
7.3. ZY1000 firmware support... 17
7.4. Hooking up the target.. 17
7.5. Advanced Ultimate Solutions Online support topics .. 17

7.5.1. Set up SSH tunnel ... 17
7.5.2. Using ZY1000 as an OpenOCD interface... 18

8. GDB GUI – Eclipse Zylin Embedded CDT Plugin 19
9. JTAG cable pinout .. 20

9.1. Adaptive clocking RTCK / RCLK.. 20
10. Field deployment... 21

10.1. Power over Ethernet .. 21
11. Schematics for ZY1000 JTAG stage... 22

11.1. Schematics and board layout... 22
11.2. Building custom cables ... 22

12. Troubleshooting .. 24
12.1. Problems with stating a CDT debug session... 24
12.2. GDB init sequence .. 25
12.3. Speeding up GDB load.. 26
12.4. GDB low level debugging... 26
12.5. GDB embedded versus PC application debugging ... 27
12.6. Target configuration script .. 27
12.7. That pesky init sequence ... 28

13. Security on the ZY1000 .. 29
14. Telnet and SSH access to the ZY1000 .. 30
15. Linux startup script of the ZY1000 ... 31
16. Accessing Windows file share from the ZY1000 ... 32

www.ultsol.com 4

17. Building OpenOCD for the ZY1000... 33
18. Building other applications that run on the ZY1000... 34
19. ZY1000 FPGA source code licensing... 35
20. Building the ZY1000 Linux distribution... 36
21. JTAG over TCP / IP .. 37

21.1. Protocol ... 37
21.2. JTAG over TCP / IP registers ... 38
21.3. Clocking data in / out .. 41
21.4. State moves ... 41
21.5. Clocking out / in data .. 41
21.6. JTAG _move sample... 42
21.7. JTAG _move write .. 42
21.8. TAP state numbering... 43
21.9. Sample code .. 43

22. Remote access to the ZY1000... 44
22.1. Secure remote access... 44
22.2. Accessing the ZY1000 remotely ... 44

23. UrJTAG on the ZY1000.. 45
23.1. Example of programming an FPGA with an SVF file from ZY1000............... 45

23.1.1. urjtag.txt file .. 45
23.1.2. Output from telnet session... 45

23.2. Example of programming an FPGA with an SVF file from a PC..................... 46
23.2.1. Output.. 46
23.2.2. urjtag.txt command file ... 46

24. Using the ZY1000 for remote development and maintenance.................................. 47
24.1. Traversal of NAT, DMZ’s and firewalls... 47
24.2. Untrained staff at remote site .. 47
24.3. Crashes in the field after a long period of operation ... 47
24.4. Field versus lab behavior... 47
24.5. Supporting early adopters.. 47
24.6. Adding networking capability to legacy products... 47
24.7. Remote serial port access .. 47
24.8. Power cycling capability ... 48
24.9. Semi-hosting.. 48
24.10. Logging ... 48
24.11. Adding web interface capability to application... 48
24.12. Additional storage for target ... 48
24.13. Adding Linux capability to legacy targets .. 48

25. Translating configuration script syntax to the ZY1000 .. 49
26. Fast production CFI programming trick.. 50

www.ultsol.com 5

About
The ZY1000 is a product of Ultimate Solutions, Inc. It offers a standalone hardware
debugger solution where no drivers or software is needed on the developer’s PC. An
important part of the ZY1000 solution is the OpenOCD library which, essentially, provides
the support for the target hardware.

www.ultsol.com 6

1. Before you start
Congratulations on the purchase of your new ZY1000!

There are some important sources of information for setting up and using your
ZY1000:

 The Quick Start Guide. The ZY1000 ships with a printed Quick Start manual that
helps you set up the ZY1000. The manual in PDF format is also available at the
following address: http://www.ultsol.com/pdfs/ZY1000_Quick_Start_Guide.pdf

 This manual.

 The ZY1000 web interface. Take a moment to navigate through the ZY1000 menus
to have a look at the key features and explanations on how to use them. For
example, you’ll find a way to display the RS-232 output from your target in your
web browser! In the web interface you’ll find help text and links to manuals in the
Documentation column on the right.

 Contact Ultimate Solutions if you have any questions. We’ll be happy to answer
your questions and offer guidance.

Ultimate Solutions, Inc.

10 Clever Drive

Tewksbury, MA 01876 USA

 Phone: 978.455.3383

Email: info@ultsol.com

http://www.ultsol.com

www.ultsol.com 7

2. ZY1000 setup
By default the ZY1000 is configured to use DHCP, but you can also set a fixed IP
address via a serial cable terminal program or via the web interface. The ZY1000 will
broadcast its presence every two seconds for the first minute after boot (UDP port
4950). This can be used to find the IP address of the ZY1000.

The simplest way to discover the IP address, is to simply run the applet from the ZY1000
Support Page:

http://www.ultsol.com/index.php/component/content/article/8/216-zylin-zy1000-sprt

This applet will need to listen to your LAN and determine the IP address. To do so, you
will have to grant access to the applet on this page.

2.1. Offline application
You can also download an application and run it on your own computer.

Download http://www.ultsol.com/ZY1000/discover.jar and run it from the command
prompt and then power cycle the ZY1000. You can then see that the ZY1000 is on IP
address 10.0.0.69. Note that the ZY1000 stops broadcasting after 60 seconds. The
discover.jar works on all operating systems with Java installed.

2.2. How to upgrade ZY1000 firmware
1. Download the firmware file which is suffixed with ‘.phi’. The latest firmware can be

found at http://www.ultsol.com/index.php/component/content/article/8/217-zylin-
zy1000-firmware

2. Connect your web browser to the ZY1000 web server on the ZY1000 debugger.
3. Go to the Setup ZY1000->ZY1000 Firmware page.
4. Press ‘Browse’ and find the firmware file you just downloaded in Step 1.
5. Press ‘Upload’ to upload the firmware.
6. Wait approximately 30 seconds for the new firmware to be programmed and the

ZY1000 to reboot.

www.ultsol.com 8

2.3. Contacting Ultimate Solutions
The ZY1000 has a support request menu that will help you put together a complete report
that you can copy and paste into an email to support@ultsol.com. This report will aid us in
helping you resolve any issues that you may be having.

2.3.1. Step to produce report
We recommend the following steps to produce the best possible information for us to assist
you.

1. (Optional). Add a “debug_level 3” to the top of your target configuration script.
This will produce a more verbose log.

2. Reload the config script / reboot the ZY1000 to start with a clean log.
3. Perform steps to reproduce the problem.
4. Enter Setup ZY1000->Support Request menu and fill it out.
5. Copy and paste the report and email it to support@ultsol.com with any relevant

attachments.

2.4. Advanced ZY1000 diagnostics
The ZY1000 settings are stored on a flash filesystem under /config/settings. Restoring
factory settings basically deletes the /config/settings directory tree. From telnet, you can

www.ultsol.com 9

create, delete, and list files in /config/settings. Type “help ls/rm/append_file/trunk” for
more information.

2.4.1. Enabling logging to serial port
You can enable logging output to the serial port from the bootloader. This should be used as
a last resort diagnostic option if the web interface should be unavailable to download a log.
Use the bootloader to enable logging by setting /config/settings/logserial to a value of 1.

Press <i> to set static IP address
Press <enter> to start Ymodem upload of firmware
Press <space> for advanced help
Press <F> format flash
Press <E> to start Ymodem upload of firmware to a specified file name
Press <Y> to start single shot update of bootloader
Press <P> set parameter
Press <D> show parameter
Press <S> to select the application to launch
Press <T> to run the ramtest application
Enter file name: /config/settings/logserial
Enter parameter: 1

2.4.2. Disabling current target configuration
It is possible to write startup scripts in TCL that do not terminate (accidentally or
purposely). This will make the web interface unavailable to correct the problem. Use the
bootloader to disable the startup configuration by setting /config/settings/openocd.cfg to an
empty value.

Press <i> to set static IP address
Press <enter> to start Ymodem upload of firmware
Press <space> for advanced help
Press <F> format flash
Press <E> to start Ymodem upload of firmware to a specified file name
Press <Y> to start single shot update of bootloader
Press <P> set parameter
Press <D> show parameter
Press <S> to select the application to launch
Press <T> to run the ramtest application
Enter file name: /config/settings/opeoncd.cfg
Enter parameter: dummy

2.4.3. Advanced bootloader options
The bootloader can be used to perform a number of operations that are normally performed
from the web interface. Each command is available via a keypress, e.g., <p>. When
entering a text string, you can press backspace to delete a character and control-c, if you
want to abort input entry and reboot the ZY1000.

 <i> - To set the static IP address
Here you can configure the IP address, mask, and gateway. The format is
address, mask, and gateway (optional): (x.x.x.x,y.y.y.y[,z.z.z.z]).

www.ultsol.com 10

 <enter> - To start Ymodem to upload firmware.
If you are unable to upload a new firmware file via the web interface, you
can use Ymodem to upload the firmware file.

 <space> - Lists help for the advanced option.

 <F> - Formats the /config flash drive.

This will remove the firmware and all the ZY1000 settings. The MAC
address and bootloader are in another area of flash separate from /config.
After you have formatted /config you must upload a firmware file using
Ymodem.

 <Y> - To update the bootloader.

It is possible, but not advised unless absolutely necessary to update the
bootloader from Ymode. The MAC address is also erased at the same time
the bootloader is upgraded. Once the bootloader has finished uploading, the
MAC address must be set.

 <P> - Set parameter.

This command allows one to write a file to the /config filesystem. One will
be prompted for the filename, followed by the contents of the file. ZY1000
parameters are normally stored in the directory: /config/settings. Each file in
the directory contains the setting(s) for a particular parameter and the name
of the file is the name of the setting.

 <S> - Not used with the ZY1000.

 <T> - Not used with the ZY1000.

 <E> - Not used with the ZY1000.

2.4.4. Configuration parameters
Restoring the factory settings, recursively deletes all the files in the directory
/config/settings. This directory contains all the ZY1000 parameters. The following is brief
list of some of the directories and files found in the directory /config/settings.

 /config/settings/xxxx - The ZY1000 configuration parameters are stored in
individual text files.

 /config/settings/logserial – Setting the contexts of this file to 1, will cause detailed
dump of the log file to be written to the serial port. It is useful if logs cannot be
downloaded using the ZY1000 web interface.

 /config/ip – Contains the static IP address in the format ip, mask, gateway:
(x.x.x.x,y.y.y.y.z.z.z.z)

 /config/settings/openocd.cfg – Contains the TCL commands that are executed upon
startup. Typically, this file contains a single line: script target/xxx.cfg”. The string
‘xxx’ corresponds a particular configuration file. By leaving this file empty or
containing a syntax error will disable the current active target configuration.

 /config/target – This directory contains the modified versions of target configuration
scripts. The originals are stored in /rom/target. If a target configuration script exists
in /config/targar, it is loaded instead of the one found in /rom/target. By deleting the
files in the directory /config/target will effectively restore the directory /rom/target.

www.ultsol.com 11

3. Performance profiling
When optimizing an application for performance, it is crucial to know where the CPU
spends most of it’s time. If an operation that takes 80% of the time is improved by 50%, it
yields a 40% improvement in performance. Whereas if an operation that takes 5% of the
time is improved by 90%, it yields a 4.5% performance improvement.

What the ZY1000 offers is an easy way to make a quick measurement, which is useful to
ensure that the optimizations are at least focusing on the right part of the code. No changes
in the binary are necessary. To perform a measurement, navigate to the Profiling page. Here
you will upload your ELF-format binary file and choose how many seconds you want to
same the program counter for. The program counter is sampled by halting and resuming the
CPU. When the sampling period is complete, the result is displayed in the web browser.

The process is not entirely benign as the CPU is halted and resumed throughout the process.
There are methods that will allow you to sample many more program counter samplings.
The advantage of this approach is that it works on all CPU’s allow you to get a better
understanding of where in the code the CPU cycles are being spent.

www.ultsol.com 12

4. Small scale production

The ZY1000 offers various methods to support small scale production, e.g., 10s to 100s of
units. In a production scenario there are usually a few common operations:

 Enter or generate serial numbers, e.g., MAC addresses

 Program application(s) to flash

 Run a short quality test, e.g., go or no-go test.

4.1. Writing a production scripts
Writing a production script is relatively straight forward. An example below is shown how
to implement the three required TCL procedures in the configuration.

proc production_info {} {
 return "Serial number is official MAC number. Format XXXXXXXXXXXX"
}

There is no return value from this procedure. If it is
successful it does not throw an exception

Progress messages are output via puts
proc production {firmwarefile serialnumber} {

 if {[string length $serialnumber]!=12} {
 echo "Invalid serial number"
 return
 }

www.ultsol.com 13

 echo "Power cycling target"
 power off
 sleep 3000
 power on
 sleep 1000

 reset init
 flash write_image erase $firmwarefile 0x1000000 bin
 verify_image $firmwarefile 0x1000000 bin

 # Big endian... weee!!!!
 echo "Setting MAC number to $serialnumber

 flash fillw [expr 0x1030000-0x8] "0x[string range $serialnumber 2 3] \
 [string range $serialnumber 0 1]0000” 1

 flash fillw [expr 0x1030000-0x4] "0x[string range $serialnumber 10 11] \
 [string range $serialnumber 4 5]” 1
 echo "Production successful"
}

proc production_test {} {
 power on
 sleep 1000
 target_request debugmsgs enable
 reset run
 sleep 25000
 target_request debugmsgs disable
 return "See IP address above..."
}

www.ultsol.com 14

4.2. Autonomous ZY1000 production operation
The ZY1000 is normally attached to a computer, but perhaps it would be better to just
require only the ZY1000. The ZY1000 can support autonomous operation by writing a
configuration script along the following lines:

 Add a handler that executes upon detecting the target power. This handler runs the
production or main-line sequence.

 Once the production sequence is complete, this script uses the LED’s on the
ZY1000 to indicate either failure or success.

There are approximately 20M bytes of flash available to store the target image on the
ZY1000. The “Power” light on the ZY1000 can be controlled from the script. By
convention, flashing quickly indicates an error, where as slowly flashing indicates
successful completion. The “Target” LED can also be repurposed. Slow flashing indicates
an operation in progress, the LED being off indicates no target power, and being on
indicates power detected.

www.ultsol.com 15

5. ZY1000 remote power cycling

The ZY1000 has the ability to remotely power cycle the target. This is done by means of a
built-in low voltage, low power capable relay that can be controlled via the web interface, a
GDB init sequence, or telnet. For example in GDB, one could do the following:

echo Turn target power on
monitor power on
echo Turn target power off
monitor power off

No soldering is required to set this up. The quickest way to do this is remove the DC barrel
connector from a wall mount power supply. After the connector has been removed, strip the
wires and attaché the wires on the green Phoenix connector on the ZY1000. Additional
Phoenix connectors are available at most major electronic parts supplies.

www.ultsol.com 16

6. Remote RS232 forwarding
The ZY1000 has a serial port that can be used to access the ZY1000 bootloader, as well as
to set the static IP address. However, it can also be used to forward a target’s serial port
data over TCP/IP. This type of situation is commonly called COM port redirection (see:
http://en.wikipedia.org/wiki/COM_port_redirector for more information).

To connect to your target, you will need a null modem cable and the appropriate gender
changer for your COM port. To get started, connect the cables and navigate to the ZY1000
UART forwarding web page:

6.1. Advanced COM redirection
A more advanced scenario is to build an open-source COM redirector for ZY1000 Linux
and install a virtual COM Windows device driver.

www.ultsol.com 17

7. Remote online support
The simplest way to grant Ultimate Solutions full access to your ZY1000 and the target for
support purposes is to use the Online Support menu. By granting Ultimate Solutions full
support access to your ZY1000 and target, Ultimate Solutions will be able to assist you
more effectively. There are of course security considerations with doing this. More
information about this topic is available in the advanced section.

In cases where the ZY1000 does not have a working configuration script or there is a
problem with the ZY1000’s support for a particular target, this method will allow Ultimate
Solutions to examine the problem and discover what the cause is with a minimum amount
of effort and without having someone from Ultimate Solutions on-site.

7.1. Granting Ultimate Solutions access to target
Another method to grant Ultimate Solutions access, and by fair the easiest is to use port
forwarding over ssh. The customer will create a secure tunnel from Ultimate Solutions’
server to the ZY1000 unit.

7.2. A few words about security
Like most embedded devices the ZY1000 is not designed to be exposed to the Internet
directly. Furthermore, the ZY1000 does not even pretend to by secure in any way, e.g., it
doesn’t even require authentication for access! The ZY1000 is intended to be placed on a
‘friendly’ LAN without any authentication, authorization, or other security measures.

If you want to give Ultimate Solutions access to a ZY1000 and your company has a
restrictive security policy, then the best option is to place the ZY1000 outside the company
firewall together with a computer that can dial into the Ultimate Solutions support server.
The Ultimate Solutions support server provides ssh access to an ssh ‘jail’ where the only
possible operations are port forwarding for the ZY1000 and termination of the session.

7.3. ZY1000 firmware support
This feature is only present in the ZY1000 firmware 1.67 or newer.

7.4. Hooking up the target
The first step is to connect up to the target. Ideally, the power relay and serial port
forwarding should be set up.

7.5. Advanced Ultimate Solutions Online support topics

7.5.1. Set up SSH tunnel
You can connect the ZY1000 unit to Ultimate Solutions support server via ssh reverse port
forwarding. If you have ssh installed on your system, you can issue the following command
line. The advantage of using ssh instead of the Java applet in the ZY1000 is improved
performance and robustness. Under Windows, ssh is provided in the following packages:
PuTTY, MinGW, msysgit, and ssh in Cygwin to name a few.

www.ultsol.com 18

If you want to use PuTTY, then replace the string “ssh” with PuTTY in the follow
command line. The following example uses a ZY1000 with the IP address of 10.0.0.167.

 ssh -p 45729 -l support support.zylin.com -R 7777:10.0.0.167:7777
-R 7778:10.0.0.167:80 -R 7779:10.0.0.167:23 -R 7780:10.0.0.167:3333
-R 7781:10.0.0.167:1234 -R 7782:10.0.0.167:69 -R 7783:10.0.0.167:70
-R 7784:10.0.0.167:5555 -R 7785:10.0.0.167:22 -R 7786:10.0.0.167:9999

The login and password for this connection are “support” and “support”, respectively. The
ZY1000 will display the command line to use on the “Support / Online support ssh” web
page.

7.5.2. Using ZY1000 as an OpenOCD interface
The ZY1000 supports a proprietary JTAG over TCP/IP protocol. Ultimate Solutions uses
this to build and run OpenOCD on a development PC system. From the development PC,
OpenOCD communicates over TCP/IP using this proprietary protocol. To build and run
OpenOCD to communicate directly with the ZY1000 use the following configuration line
prior to building OpenOCD:

./configure --enable-zy1000 --enable-maintainer-mode
make
sudo make install
openocd -f zy1000server.cfg

In the file zy1000server.cfg, the IP address 10.0.0.138 should be replaced with the IP
address of the ZY1000 unit you are using.

interface ZY1000
zy1000_server 10.0.0.138

www.ultsol.com 19

8. GDB GUI – Eclipse
GDB itself does not have a GUI. However, Ultimate Solutions offers LinuxScope-JTD, a
debugger for the Eclipse IDE. Please click below for more information:

http://www.ultsol.com/index.php/products/cross-compiler-debuggers/36-ultimate-solutions-
linuxscope-jtd-jtag-target-debugger-

www.ultsol.com 20

9. JTAG cable pinout
The ZY1000 is built with an ARM-MULTI JTAG 20-pin connector. There are many
different physical JTAG connectors. Some have more pins than the ARM 20-pin connector,
others have less. In either case, it is possible to connect the ZY1000 to a target that has an
ARM JTAG connection that doesn’t have 20 pins. By knowing the pin out of the target’s
JTAG connector and the ZY1000’s JTAG connector, one can connect the pins using
individual wires or a custom cable.

9.1. Adaptive clocking RTCK / RCLK
The ZY1000 supports adaptive clocks, also known as, RTCK or RCLK. By using the
commands ‘jtag khz 0’, ‘jtag rclk N’, where N is a fallback frequency, one can enable the
adaptive clocking feature. There are some situations where one can change ‘jtag rclk N’ to
‘jtag khz N’ and see improved performance or more robust behavior. The JTAG 20 cable
that comes packaged with the ZY1000 is sufficient for just about any target the supports
adaptive clocking. Adaptive clocking can be useful for targets that start with an RC
oscillator and switch to a PLL at some point during the target processor’s initialization.

As an alternative to adaptive clock, you should consider using the ‘reset-start’ and ‘reset-
init events. With the ‘reset-start’ event, one can set the jtag khz to a low value that will
work with RC oscillators. Then after setting up the PLL in ‘reset-init’, you can use jtag khz
to set a higher clock rate. From a performance point of view, adaptive clocking generally
yields lower rates than is possible then by setting jtag khz in the ‘reset-start’ or ‘reset-init’
events.

While adaptive clocking sounds great in theory, i.e., automatically getting the correct JTAG
clock frequency, is not necessarily a cure-all. Complications arise when the JTAG interface
is implemented in a way that is ‘tamper-proof’ against reverse engineering or in a situation
where the JTAG pins can be turned into GPIO pins. Unless you have to use adaptive
clocking with variable frequencies, you may want to consider using a fixed frequency.

www.ultsol.com 21

10. Field deployment
The ZY1000 is intended to be used in the field as well as at the developer’s desk. Here the
advantages of Ethernet connectivity and the ZY1000’s ability to run the Linux OS become
more apparent.

A typical example would be the remote debugging of the target. Here the power relay can
be useful to power cycle the target. Note that the power relay is short-circuited when the
ZY1000 is powered off. Combined with the ZY1000’s JTAG interface ability to act as
‘disconnected’ when the ZY1000 is powered off, makes it more practical to leave the
ZY1000 inside the housing of deployed hardware.

Beyond providing Ethernet connectivity, the ZY1000 also supports scripting capabilities or
even running customer Linux applications. The connectivity from the developer PC to the
ZY1000 can be bi-directional when using Linux. The ZY1000 can either connect to a
server, e.g., via ssh, or the developer PC can connect to the ZY1000. The advantage of the
ZY1000 connecting to a server would typically be to traverse firewalls or NAT’s.

10.1. Power over Ethernet
The ZY1000 can be used with a Power over Ethner or PoE. There are many supplies of
these types of splitters. These PoE splitters can be used to power the ZY1000 and possibly
the target as well. The ZY1000 requires up to 5W and uses a barrel connector, center
positive, 2.1/5.5mm, between 8 and 40 V.

In the following figure a PoE splitter from Phiphong (http://www.phihongusa.com/) is
shown.

www.ultsol.com 22

11. Schematics for ZY1000 JTAG stage

11.1. Schematics and board layout
In the event you need schematics for the ZY1000 JTAG stage and/or how the top and
bottom of the PCB board are laid out, please contact Ultimate Solutions.

11.2. Building custom cables
Given that there is no physical JTAG standard connectors for evaluation kits, let alone
space constrained application PCB’s, developers will often have to create their own custom
cables. As one might expect, everybody seems to solve this problem in a different manner
depending on experience, tools, and materials they happen to have on hand or can easily
acquire.

One solution frequently used requires no soldering and can be used by embedded software
engineers with a little bit of hardware experience, and are comfortable with using pre-
crimped cables. This particular solution works well for 0.1” connectors. For smaller
connectors, soldering is usually required.

The supplier of pre-crimped cables and connectors is Pololu (http://www.pololu.com). As
seen in the figure below, the set of pre-crimped cables allows developers to easily create,
e.g., an ARM JTAG 20-ping connector to a Texas Instrument 14-pin connector. It’s just a
matter of swapping a few color-coded wires.

www.ultsol.com 23

When creating a custom ARM JTAG 20-pin connector to target cable, keep in mind that the
ZY1000 only uses GND, TRST, SRST, TMS, TDI, TDO, TCLK, and RCLK. The target
may or may not use all of the signals.

www.ultsol.com 24

12. Troubleshooting
The following gives some tips and tricks for using the ZY1000 and GDB.

12.1. Problems with starting a CDT debug session
If CDT debugging works on the first try, GREAT! Embedded debugging can be quite
complete with its own set of unique quirks that have to be understood and dealt with for
each setup. Unfortunately, no two setups are exactly alike. First, CDT is the wrong place to
try to debug the GDB and hardware debugger setup. It is not yield intuitive and detailed
feedback in response to each careful step in setting up a debugging environment for
embedded systems.

The sequence below is just a suggestion on how to debug. There are, of course, many other
ways to do so. Only by advancing to the next level, when each level of problems are solved,
can you get better feedback on the problem(s) you might be encountering.

 First, check the cables and voltages. Many times it’s a simple case of mis-wiring.

 Check the schematic for how the reset (TRST and SRST) are wired. Also read the
datasheet for the CPU. Often, SRST and TRST are wire together, i.e.,
srts_pulls_trst). TRST will reset the debugger circuitry and result in problems such
as it being impossible to putting the CPU into the halted state. Note that TRST and
SRST can be tied together on the PCB, but also inside the CPU proper. This can be
by design, e.g., to implement copyright protection schemes.

 Start by using the ZY1000 telnet. This stage involves the command line version of
GDB. If you are having trouble figuring out what is going on, set “debup_level 3” in
your ZY1000 configuration script and go over the debugging messages in the low.

 Issue a “reset run”. This command should be able to enumerate the JTAG toolchain.

 Issue a “reset init”. This will reset and halt the target. This should be followed by
run commands to initialize the target, i.e., to setup the memory map and / or
required peripherals. If you only reset and halt the target, i.e., “reset halt”, you will
probably not be able to issue a GDB load or program the flash.

 Verify that you can read memory (see the OpenOCD command: mdw) and modify
memory (see the OpenOCD command: rdw). If you have working area etup in your
configuration script, make sure to veify that you can read and write to the working
memory after a ‘reset init’.

 If necessary, test the flash. This can be accomplished by issuing a “reset init”,
followed by a “flash erase” and filling the flash with data, using “flash write image”
or “flash fill”. Typing “help flash” in OpenOCD will also provide additional
information.

 If you have flash configured, you can program flash by issuing a GDB “load”
command, provided that the address of the .elf image is identical to the flash chip. If
you have an .elf image that is copied form flash to RAM upon startup, you’ll need to
add an offset to the GDB load command. Typing “help load” in GDB will also
provide some additional information.

www.ultsol.com 25

 At this point you have successfully setup the execution environment using the GDB
command line version.

 From hereon, you can set breakpoints and begin execution of the target. GDB will
use the hardware breakpoints for the memory regions set up as ‘read-only’. Typing
“info mem” at the command problem will provide some additional information.

 If you have not setup the flash regions in your “reset init” script, then GDB will use
software breakpoints by default, which will fail for flash regions. The solution in
this situation is to add a “gdb_override_breakpoint” command in your “reset init”
script to force hardware breakpoints.

 At this point you should try to single step from the GDB command line.

 Next try setting a breakpoint and issuing the “continue” command and verify that
the CPU halts as expected at the breakpoint address.

 At this point you have demonstrated enough of the connectivity and functionality
that you can attempt to setup a debugging session with the Embedded CDT.

12.2. GDB init sequence
If you have a working ZY1000 “reset init” sequence, then the following GDB script should
be quite straightforward. It is generally better to keep your GDB initialization script terse
and leave configuration within the ZY1000 configuration script.

Connect to ZY1000

By design ZY1000 will not interact with the target upon connect.
This is in order to e.g. support connecting to powered down or
unresponsive targets. The GDB protocol requires reading the
CPU registers upon connect and leaving the CPU in the halted state.

Here ZY1000 uses two white lies: even if GDB is halted, the
target could be running, halted, powered down, etc. Instead of
returning the value of the registers upon connect, dummy values
are returned. The "stepi" below will sync up GDB to the target
state.
target remote 10.0.0.69:3333
reset target and run initialisation script.
all commands to ZY1000 are prefixed with "monitor".
monitor reset init
load application into RAM

If the target configuration script has been set up with flash
and the address of the image is in flash, then ZY1000 will program
the application into flash, erasing any data in the sectors
where the application is to be programmed.
load
set program counter to start of application.
We use ZY1000 to do this because it is more robust
than trying to do so with GDB. GDB can often get
confused when trying to evaluate stack frames outside
C code.

www.ultsol.com 26

monitor reg pc 0x20000000
To sync things up, we step a single instruction. The ZY1000
knows not to single step immediately after a GDB connect.
stepi

A question that might occur to you: What belongs in the “reset init” script and what bellows
in the GDB initialization script? The answer to this is to a degree a matter of preference.
Perhaps one thing to keep in mind is that scripts executing on the ZY1000 will execute
faster than a long sequence of monitor commands.

12.3. Speeding up GDB load
The best way to speed up GDB load is to setup a working area memory. When issuing
“reset init”, you’ll also receive some warning if you, for example, haven’t enabled the ARM
7/9 fast memory access.

12.4. GDB low level debugging
When debugging low-level or early startup code, it might be a good idea NOT to use a
graphical GDB GUI like Embedded CDT until you have stepped into the execution of the C
source code.

If you use the command line version of GDB, you have a much more precise control over
what commands are sent to the target. A GUI can to be helpful when starting to read
variables on the stack. When debugging code that is setting up the stack, then obviously that
is the last thing you would want.

www.ultsol.com 27

12.5. GDB embedded versus PC application debugging
There are some important differences to keep in mind when debugging embedded
applications using GDB versus debugging PC applications.

For embedded, GDB does not launch the application, nor does GDB necessarily even load
the application. GDB attaches to the target. The target can be in any state: powered down,
running, or halted. Upon attaching to the target, GDB will issue a halt command, which
may or may not succeed, after which GDB will enter the halted state.

 Caution #1: Even if GDB is halted, that does not mean that the target is halted. You
can use the GDB “monitor” commands to, for example, reset the target into the
halted state.

 Caution #2: You should be somewhat skeptical of the CPU register contents GDB
reports immediately after attaching to the target since GDB may be out of sync with
the target. Use the “monitor reg XX”, where XX is the register number, to read the
actual value of the register. The command “monitor reg XX” will return an error
message if the target is in the running state or otherwisde unresponsive.

For an application running out of flash, you would typically specify the executable on the
GDB command line and the executable would only be used by GDB to read out symbols.
The actual application would be programmed in flash by a JTAG debugger beforehand or
the ZY1000 can also redirect the GDB “load” command to a flash programming command
(including erasing any existing application).

The difference between loading symbols and loading applications is illustrated by the GDB
“load” versus “symbol” command. The former loads the application AND symbols,
whereas, the latter only loads the symbols. It is possible to load multiple symbol files into
GDB at the same time, e.g., using a bootloader with the application.

12.6. Target configuration script
Before you can use the ZY1000 to debug your board or program flash, you need a target
configuration script. The purpose of the target configuration script is to specify to the
ZY1000 what target is connected and how to setup a minimal configuration for that target

www.ultsol.com 28

that will enable uploading code to the program flash, uploading code to RAM, and debug
the target.

To get a target script correct can be anything from trivial to quite difficult. This is because
there can be a high level of necessary complexity to setting up the target. The good news is
that once done, you’ll probably never have to touch that script again.

The ZY1000 package provides a large lot of target configuration scripts that can be selected
from a drop-down menu. You should start with a target script that closely resembles what
you need and modify it to suit your purposes.

12.7. That pesky init sequence
If you don’t know how to write an initialization sequence for your target, then there are a
couple of resources that you can resort to:

 Do you have the source code (machine code possibly) to set up the target? If so, you
can try translating the machine code to an initialization sequence. Most often this
will distill down to a dozen or so “mww” commands in the reset event sequence. If
this can be done easily, then it probably the preferable means of doing things.

 Do you have an application binary that sets up the RAM that you can program to
flash? If you are able to program that application to flash, then you can use the
“resume” and “halt” commands in your reset initialization sequence. This will let
the CPU run for a short time, enough to set up RAM. Afterwards, you should be
able to upload RAM using, e.g., GDB “load”. Note that making a minimal reset
initialization scrip that sets up flash can be A LOT easier than setting up the RAM.

 Read the datasheets. If you read through the datasheets you should be find all the
information required to setup your target. It may not be obvious, but it’s probably
there. This can be quite a time consuming process and it is fairly likely that someone
has done this for you.

 A bit more esoteric approach. If you have the internal memory for your CPU, then
you may be able to use the binaries of an application to set things up. The early
startup code for an application is almost certainly position independent. This should
allow you to load the beginning of the application into internal RAM and execute
the first few instructions. You’ll have to do a bit of manual disassembly to
determine how much of the beginning of the application you’ll need.

www.ultsol.com 29

13. Security on the ZY1000
WARNING: The ZY1000 product is inherently insecure. It indiscriminately allows access
via the LAN and the ZY1000 application runs as the root user. It is on the far end of the
convenience end of the security versus convenience spectrum. This warned, if you do need
to access the ZY1000 remotely and you know what you are doing, there are some
recommended options. The ZY1000 ships with the ssh server enabled. By exposing only the
ssh port and using a secure password, the communication to and from the ZY1000 unit will
be secured.

www.ultsol.com 30

14. Telnet and SSH access to the ZY1000
The ZY1000 has unsecured telnet enabled on port 9999 by default. To set the password of
the ZY1000, log on via unsecured telnet and set the root password. Note that the ZY1000
ships without a root password set, so the only option to set the password is either via the
serial console and telnet.

Afterwards you can use ssh or scp to copy files to and from the ZY1000.

Afterwards you can use ssh and scp to copy files to/from
ZY1000.

jim"titan:~$ telnet 10.0.0.69 9999
Trying 10.0.0.69...
Connected to
10.0.0.69. Escape
character is ’^]’.

BusyBox v1.16.2 (2010-10-04 09:24:27 CEST) hush - the humble shell
Enter ’help’ for a list of built-in commands.

root:/> passwd root
Changing password for
root New password:
Retype password:
passwd: warning: can’t lock ’/etc/passwd’: Invalid argument
Password for root changed by
root root:/> exit
Connection closed by foreign host.
jim"titan:~$ ssh -l root 10.0.0.69
The authenticity of host ’10.0.0.69 (10.0.0.69)’ can’t be established.
RSA key fingerprint is
ef:91:63:54:20:ac:3b:c6:33:e5:fe:bc:1b:25:10:66. Are you sure you want
to continue connecting (yes/no)? yes
Warning: Permanently added ’10.0.0.69’ (RSA) to the list of known
hosts. root"10.0.0.69’s password:
ZY1000 Debugger

For further information check:
http://www.ultsol.com

BusyBox v1.16.2 (2010-10-04 09:24:27 CEST) hush - the humble shell
Enter ’help’ for a list of built-in

commands. root:~>

www.ultsol.com 31

15. Linux startup script of the ZY1000
The ZY1000 runs Busybox (http://www.busybox.net). If you need to add commands
to the startup, you can add them to the end of the file: /etc/rc. For example, you can mount a
file share upon startup by adding it to /etc/rc.

The ZY1000 has the “vi” editor installed. This is a text editor you will find pretty much on
any Unix or Linux system. Initially, it can be a bit daunting to first use, basic “vi” text
editing skills will come in handy when working with Linux systems.

www.ultsol.com 32

16. Accessing Windows file share from the ZY1000
The ZY1000 Linux distribution ships with CFIS enabled. You can mount a Windows share
on the ZY1000 with the following commands:

mkdir -p /mnt/win ;
mountpoint -q /mnt/win ||
mount -t cifs //server-name/share-name /mnt/win \\

-o username=shareuser,password=sharepassword

More information about Windows (CIFS) shares and the available options to mount cifs can
be found by Google’ing “man mount cifs”.

www.ultsol.com 33

17. Building OpenOCD for the ZY1000
While the easiest way to upgrade the ZY1000 is to download the latest firmware from
Ultimate Solutions, some users may want to build OpenOCD for the ZY1000 themselves.
One advantage of the ZY1000 running Linux, is that building OpenOCD for the ZY1000 is
straight-forward once the Altera Nios Linux development system is set up. Simply get the
latest version of OpenOCD from the git repository and build it. Afterwards, you can copy it
to the ZY1000 using whatever means you are comfortable with, e.g., scp, ftp, or NFS.

The following is the command sequence that should be used when building the ZY1000 for
the Nios Linux platform.

cd openocd
sh bootstrap
./openocd/configure --enable-ioutil --enable-zy1000 \\
--host=nios2-linux-gnu --enable-zy1000-master --prefix=/opt/zy1000 \\
--enable-maintainer-mode
make -s DESTDIR=/tmp/result install

Copy the resulting files in /tmp/result to /opt on the ZY1000 unit.

www.ultsol.com 34

18. Building other applications that run on the ZY1000
If you want to build other Linux applications to run on the ZY1000 and those applications
are autotools, this is relatively straightforward once you have build Nios Linux locally. For
example, it can be useful to run gdb on the ZY1000 to do debugging without having GDB
installed on the development machine. In this situation, CFLAGS and LDFLAGS are used
to point to the include and library files of Nios Linux.

The following describes the building of gdb for the ZY1000.

../gdb-7.2/configure --prefix=/opt --host=nios2-linux-gnu \\
--target=arm-eabi \\
CFLAGS="-I/home/oyvind/nios2-linux/uClinux-dist/staging/usr/include/ \\
-g -O2" \\
LDFLAGS="-L/home/jim/nios2-linux/uClinux-dist/staging/usr/lib"
make -s DESTDIR=/tmp/result install
nios2-linux-gnu-strip /tmp/result/opt/bin/arm-eabi-gdb
scp /tmp/result/opt/bin/arm-eabi-gdb root"10.0.0.69:/opt/zy1000/bin
telnet 10.0.0.69 9999
root:/> /opt/zy1000/bin/arm-eabi-gdb
GNU gdb (GDB) 7.2
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=nios2-linux-gnu --target=arm-eabi".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb) monitor reset init
jtag_speed 1876 => JTAG clk=31 kHz
31 kHz
...

www.ultsol.com 35

19. ZY1000 FPGA source code licensing
The ZY1000 FPGA code is copyright by Zylin and Ultimate Solutions, Inc. It also contains
intellectual property from Altera Corp. Contact Ultimate Solutions for licensing options of
the FPGA source code and access to the PCB schematics if you are interested in developing
some other product based upon the ZY1000 hardware.

www.ultsol.com 36

20. Building the ZY1000 Linux distribution
WARNING! If you do decide to start building and installing another version of Nios Linux
than what ships with the ZY1000, you could erase the bootloader with the ZY1000 flash if
you are not careful. If you happen to have an Altera USB Blaster, you can contact Ultimate
Solutions for recovery instructions.

The ZY1000 uses the Nios Linux distribution. The uClinux-dist and linux-2.6 for’s are
available at http://sopc.et.ntust.edu.tw. The ZY1000 source code is published to the
zy1000/master branch of the uClinux-dist and linux-2.6 repository. You can read more
about Nios Linux at http://www.nioswiki.com/linux.

www.ultsol.com 37

21. JTAG over TCP / IP
What the JTAG over TCP/IP protocol essentially does is to peek and poke the FPGA’s
hardware accelerated JTAG module. The performance in this case relies on the client
queueing a large number of pokes and peeks, without waiting for the result. Operations that
are performance critical can often be implemented efficiently in this manner. Downloading
large amounts of data to a target is usually implemented by running a small application that
listens on the DCC (debug communications channel) and then writes the data to flash or
RAM. This can be implemented as an open loop algorithm with possibly a verification after
the data has been downloaded and processed.

21.1. Protocol
Connect the JTAG over TCP/IP protocol server on port 7777 of the ZY1000 unit. Send a
32-bit little-endian command word, followed by any arguments as 32-bit little-endian words
and the result, if any, is returned as a 32-bit little-endian integer. The upper 8 bits of the
command word is the actual command.

Command Command sequence Description
POKE FPGA register offset | 0x00000000,

then 32-bit value to poke.
Pokes the FPGA register a t ’off-
set’ with 32-bit data.

PEEK FPGA register offset | 0x08000000 Returns value of FPGA register as
32-bit little-endian

SLEEP 0x01000000,
then microseconds to sleep.

Introducing pauses must happen
on the ZY1000.

WAITIDLE 0x02000000 Tells the FPGA to wait for the fifo
to clear

Sleeping on the client is not robust to introduce a pause, as there is no way to know when
the received commands are processed. Also sending pokes and a short sleep in open loop is
fast.

www.ultsol.com 38

21.2. JTAG over TCP / IP registers

Offset Type Name Description

0x0008 Write JTAG move Bit[31:16] Not used

Bit[15] must be 0
Bit[14:8] nbr of cycles
Bit[7:4] repeat state
Bit[3:0] end state
JTAG move steps:
1 Go to ’repeat state’ and run ’nbr of cycles’
clock cycles
2 Go to ’end state’
Note! FPGA will handle fifo full events, there
is no need to check fifo full flag before writing
to jtag move register
Only stable states can be used in the
JTAG move register.

0x000c Read/
Write

JTAG data Bit[31:0] Jtag data register
Wait until fifo empty high before reading

0x0010 Read JTAG status Bit[31:11] Not used Bit[10] Error occurred
(RCLK - return clock timeout)
Bit[9] Fifo full
Bit[8] Fifo empty
Bit[7] TARGET VOLTAGE DROPOUT Tar-
get voltage dropout bit. Set whenever target
voltage is low or have been low after last sam-
ple/hold
Bit[6] SRST ASSERTED
Set whenever SRST is active or have been active
after last sample/hold
Bit[5:0] Not used

www.ultsol.com 39

0x0010 Write JTAG control set Writing a ’1’ will set the bit in that position
Writing a ’0’ have no effect
Bit[31:10] Not used
Bit[9] Reserved
Bit[8] RCLK - return clock mode
Bit[7] Sample and clear TAR-
GET VOLTAGE DROPOUT
Bit[6] Sample and clear SRST ASSERTED
Bit[5] Not used
Bit[4] Power LED on - default on.
Bit[3] Disconnect power to target
Bit[2] Switch supply voltage to VCC
Bit[1] Drive nTRST low (reset TAP)
Bit[0] Enable drive nSRST low (reset CPU)

0x0014 Write JTAG control clear Writing a ’1’ will clear the bit in that position
Writing a ’0’ have no effect
Bit[31:11] Not used
Bit[10] Clear error register
Bit[9] Not used
Bit[8] RCLK - return clock disable
Bit[7:5] Not used
Bit[4] Power LED off
Bit[3] Connect power to target
Bit[2] switch supply voltage to VTref
Bit[1] Drive nTRST high (TAP not reset)
Bit[0] Disable drive nSRST low (CPU not reset)
This will 3-state nSRST output

0x001c Write JTAG clk Bit[31:16] Not used
Bit[15:0] clock div
Jtag clock frequency is cpu clk (60 MHz) divided
by the value in jtag clk register. Valid values:
even numbers from 2 to 65534.

0x0020 Write JTAG state write Bit[31:4] Not used
Bit[3:0] internal tap controller state
Make sure that event fifo is empty before manual
moves of internal tap state machine. Note: Only
valid for stable end states

www.ultsol.com 40

0x0028 Write JTAG man write Bit[31:4] Not used
Bit[3] mode (0=jtag, 1=swd)
Bit[2] swd oe n (0=drive tms/swdio, 1=tri-
state)
Bit[1] tdi
Bit[0] tms / swdio (output)
Each access will result in one cycle of tck =
rising and one falling edge. Tdi, tms will be
given the values from register, on falling edge.
For jtag mode, Tdo will be shifted into jtag data
register on negative tck flank as with a jtag move
access. For swd mode, swdio will be shifted into
jtag data register on negative tcl flank. Will

stall cpu until read for another access.

www.ultsol.com 41

21.3. Clocking data in / out
A bit is ready to be clocked in or out as soon as the shift TAP state is entered, i.e., a bit is
clocked in or out when leaving the shift state as well as when staying in the shift state. Each
shift-to-shift transition results in one falling edge and in one rising edge of the JTAG clock.
Note that read data will be aligned from most significant byte if the data is shorter than 32-
bits.

21.4. State moves
Navigating between stable JTAG states can either be done by the hardware or manually.
When the hardware performs the state moves, via JTAG _move, each state move will take
seven (7) clock cycles except for the shift states. Navigating between stable JTAG states
manually can be necessary when the target hardware has specific requirements on the path
taken through the state machine (a dubious use of the JTAG protocol) to operate correctly.
Using JTAG _move is generally faster as the ZY1000 CPU will be able to run in parallel to
the JTAG master hardware.

21.5. Clocking out / in data
The ZY1000 JTAG hardware can clock out data very efficiently as the JTAG hardware
allows the CPU to fill the JTAG master command FIFO in an open loop. The ZY1000 CPU
will stall when the JTAG master FIFO is full.

To place a clock in or out operation in the FIFO, first write the data to be written (LSB is
clocked out first, MSB is clocked in first) to JTAG_data, then write the command to
JTAG_MOVE:

1. Write to JTAG_data

2. Write to JTAG_move. This will put a request in the FIFO, the ZY1000 will stall
when the FIFO is full. Not that the final resting state can not be a shift state as this
would commit the JTAG master hardware to clock out or in one more but when
leaving the shift state.

To read the data clocked in:

1. Wait for FIFO empty using the WAITIDLE command. It is possible to implement
polling as well, but this will be orders of magnitude slower.

2. Read JTAG_data

A subtle point about the JTAG state machine definition is that the data is clocked in or out
when leaving the shift state, so one has to be careful not to end up in the shift state when
data is clocked out.

The number of cycles, ‘nbr_of_cycles’, in JTAG_move merits a bit more explanation:

 nbr_of_cycles == 0: Go to end_staate (no tck cycle afterwards). If already in
end_state, no action.

 nbr_of_cycles == 1. Go to repeat_state (no cycle) go to end_state.

 nbr_of_cycles == 2. Go to repeat_state (one cycle) go to end_state.

www.ultsol.com 42

 ‘nbr_of_cycles == n. Go to repeat state (n – 1 cycle) go to end_state.

When going to end_state, one tck-cycle will be executed regardless if end_state and repeat
state is equal.

21.6. JTAG _move sample
The following sequence will reset the TAP, set a 4-bit IR to IDCODE and get a 32-bit result
from DR. Note that the transitions between states take seven (7) cycles. If you want to do
this in the minimum number of cycles, as opposed to as quickly as possible, you could use
the manual path move mode. The JTAG master hardware uses a few more cycles, but runs
in parallel to the ZY1000 CPU so throughput is better.

Here ZY1000 register base = 0x08000000
Reset TAP controller, clock out more than 5
TMS=1 poke 0x08000008 0x700
Navigate to IR set a 4 bit value=5, navigate to shift-DR
poke 0x0800000c 0x5
poke 0x08000008 0x4b3
Clock in 32 bit of data, go to run-test-idle
state poke 0x08000008 0x2038
Things are so slow, we don’t have to wait for FIFO to
empty peek 0x0800000c

21.7. JTAG _move write

Sometimes it is necessary to manually navigate a path through the JTAG state machine.
This can be necessary when some TAP uses side effects of specific paths (dubious practice)
to set or clear flags for instance.

To do a manual path move:

1. Issue WAITIDLE

2. Write to JTAG_man_write as many times a necessary

3. Write to JTAG_state_write to tell the JTAG controller what the end state is. By
design the JTAG controller makes no assumptions about the end state here as this
can be used in non-JTAG scenarios such as switching from JTAG to SWD.

www.ultsol.com 43

21.8. TAP state numbering
‘0’ Test Logic Reset *
‘1’ select dr scan
‘2’ capture dr
‘3’ Shift-DR *
‘4’ Exit 1-dr
‘5’ Pause-DR *
‘6’ exit2-dr
‘7’ update dr
‘8’ Run-Test/Idle
‘9’ select-ir-scan
‘a’ capture-ir
‘b’ Shift-IR
‘c’ exit1-ir
‘d’ Pause-IR *
‘e’ exit2-ir
‘f’ update-ir

* = stable end states

21.9. Sample code
OpenOCD uses the ZY1000’s JTAG over TCP/IP protocol, so there is example code inside
the file: src/jtag/zy1000/zy1000.c. This file is copyrighted by Zylin AS and Ultimate
Solutions, Inc. Contact Ultimate Solutions for a license to include this file in a non-GPL
application. A license to use the file as an example to write your own code is hereby
granted.

www.ultsol.com 44

22. Remote access to the ZY1000

22.1. Secure remote access
If you need to access your ZY1000 remotely in a secure manner, it is recommended that you
set up an ssh server or dial into the ZY1000 via ssh. The ZY1000 can run an ssh server in
the case where it runs the Linux version of its’ firmware. The follow table is a list of ports,
defined locally, that are mapped to the ZY1000 ports.

Local port Remote port Description
7777 7777 JTAG over TCP/IP
7778 80 Web interface
7779 23 Telnet
7780 3333 GDB server
7781 1234 Resets ZY1000 upon receiving a connect
7782 69 tftp server
7783 70 internal - tftp profile
7784 5555 serial port forwarding
7784 22 ssh port - used when ZY1000 runs Linux

22.2. Accessing the ZY1000 remotely
Once you have setup the necessary configuration, you can access the ZY1000 by accessing
ports on your local machine. To test the configuration, you can access the GUI interface by
using the following URL: http://localhost.:7778.

www.ultsol.com 45

23. UrJTAG on the ZY1000
The ZY1000 can be used with UrJTAG. UrJTAG is an open source JTAG tool that is
oriented towards boundary scan and low level SVF programming and programming. Typical
tasks would be to measure and manipulate the pads of a BGA package or program an SVF
file into an FPGA or CPLD.

UrJTAG can be run either on your development PC or on the ZY10000. The advantage of
running it on the ZY1000 is that you do not need to install UrJTAG on your development
PC. However, running UrJTAG on your development PC will yield significantly faster
operation for cases where the CPU processing power is a factor. For example, SVF parsing
is slower on the ZY1000. An advantage of the ZY1000 is that is has a TCP/IP interface and
therefore requires no drivers to be installed.

23.1. Example of programming an FPGA with an SVF file from ZY1000
1. Copy any bsdl files you need to e.g. /bsdl on the ZY1000 via e.g. ftp.

2. Copy the urjtag.txt file below to on ZY1000 and test.svf file to e.g. "/"

3. Telnet into the ZY1000 (telnet 10.0.0.167 9999) and run the command below to
program the SVF into the FPGA.

HOME=/tmp /opt/zy1000/bin/jtag -n urjtag.txt

23.1.1. urjtag.txt file

You may need to upload bsdl files for your
part, e.g. to /bsdl via ftp
bsdl path /bsdl
cable ZY1000 server=127.0.0.1
pod reset=0
detect
get signal IO_A7
scan
svf /test.svf stop progress ref_freq=1000000

23.1.2. Output from telnet session

Initializing Zylin ZY1000 JTAG probe
IR length: 6
Chain length: 1
Device Id: 00000010011000011000000010010011 (0x02618093) Filename:
 /bsdl/xc3s200an_ft256.bsd

IO_A7 = 1
IO_E2: 0 > 1
Parsing 43030/43035 (99%)
Scanned device output matched expected TDO values.

www.ultsol.com 46

23.2. Example of programming an FPGA with an SVF file from a PC
Here, some extra bsdl files from Linux are placed into the “bsdl” folder on the developer’s
PC, relative to the current working directory.

To program an SVF file, run the following UrJTAG command:

jtag -n urjtag.txt

23.2.1. Output

Initializing Zylin ZY1000 JTAG probe
IR length: 6
Chain length: 1
Device Id: 00000010011000011000000010010011 (0x02618093) Filename:
 bsdl/xc3s200an_ft256.bsd

IO_A7 = 1
Parsing 43030/43035 (99%)

23.2.2. urjtag.txt command file

bsdl path bsdl
cable ZY1000
server=10.0.0.167 pod
reset=0
detect
get signal
IO_A7 scan
svf ../XilinxArmJtagOnly/McsJtag.svf stop progress ref_freq=100000

www.ultsol.com 47

24. Using the ZY1000 for remote development and
maintenance

As the ZY1000 has a standalone and Ethernet networking capability, it can be especially
effective in solving remote development and maintenance issues. This chapter briefly
describes some of the problems and their solution with the ZY1000.

24.1. Traversal of NAT, DMZ’s and firewalls
The ZY1000 can run Linux. Therefore, it can dial into a server. NAT and firewalls often
allow outgoing, but not incoming connections. When a company’s policies are restrictive, it
may be necessary to place the ZY1000 in a DMZ (demilitarized zone) where no connections
with the inside LAN and outlying outgoing connections are possible.

24.2. Untrained staff at remote site
When staff at a remote site is untrained, they will be able to navigate to the ZY1000 web
menus an click “connect” on the ZY1000 support menu. Staff at the “other end” that needs
access to the ZY1000 remotely can then, similarly, navigate to a Ultimate Solutions web
page that allows connecting to the ZY1000.

24.3. Crashes in the field after a long period of operation
If a problem arises after a long period in the field, then with a ZY1000 at the remote site,
you will be able to inspect the problem by possibly dumping memory, and / or logs.

24.4. Field versus lab behavior
Developers will, of course, address all problems that can be addressed in the development
lab first and then what remains are problems in the field. These problems can be crashes,
performance issues, and / or interoperability issues with other equipment.

24.5. Supporting early adopters
Products may have to be shipped before they are ready. With a ZY1000, early adopters of
the product can be effectively supported.

24.6. Adding networking capability to legacy products
Legacy products may need some networking capability. This can be implemented by using
semi-hosting where the ZY1000 handles networking and the target has a few small functions
to talk to the ZY1000. The application can thus be network-enabled without requiring a re-
spin of the PCB and in some cases, without even modifying the application.

24.7. Remote serial port access
Many applications have a serial port. This serial port can be forwarded over TCP/IP using
the ZY1000, thus implementing a powerful “serial port extender” when combined with the
ZY1000 running Linux.

www.ultsol.com 48

24.8. Power cycling capability
The ZY1000’s relay can be used to power cycle remote equipment. This is not limited to the
ZY1000’s target, but could be any low-voltage powered hardware. For more information
about the relays used in the ZY1000, refer to the following web page:
https://www.elfaelektronikk.no/elfa3~no_en/elfa/init.do?item=37-209-
01&toc=0

24.9. Semi-hosting
Semi-hosting is a capability where the target can access the file system and network of the
ZY1000, this adding networking, storage and Linux capability to a target which does not
have this capability itself.

24.10. Logging
The application can store logging information to the ZY1000 and the log then stored on the
ZY1000, can then be accessed remotely.

24.11. Adding web interface capability to application
Some applications may need a web interface for early periods of their life or only for a few
of the deployed targets. A web interface can be implemented on the ZY1000 running Linux.
The web interface and the applications talks via semi-hosting.

24.12. Additional storage for target
If an application needs additional storage, then the ZY1000 and semi-hosting can implement
this storage without adding the overhead to the full production series of the application
target.

24.13. Adding Linux capability to legacy targets
If a target needs Linux to perform certain tasks, then the ZY1000 can implement the Linux
of legacy targets and communication between the ZY1000 and the target is a simple semi-
hosting protocols.

www.ultsol.com 49

25. Translating configuration script syntax to the
ZY1000

The ZY1000 configuration script syntax may not match that of a configuration script that
you have for your hardware. Although there are many proprietary syntaxes out there, the
ZY1000 offers a straightforward capability to write small pieces of script that will greatly
simplify the target configuration translation process.

Some helper proc’s to translate BDI syntax to ZY1000 speak

Note that Tcl only supports ’#’ as a prefix to the
beginning of a statement. If you want to have a comment
at the end of a line, use ’;’ to start a new statement and then a comment

Change:

WM32 0x53FC0000 0x00000040 ; enable ipu

to:

WM32 0x53FC0000 0x00000040 ;# enable ipu

#Example:
WM32 0x53FC0000 0x00000040 ; enable ipu
proc WM32 {address val} {

mww [string tolower $address] [string tolower $val]
}

Example:
WM8 0x80000033 0xDA ; dummy write only address matter
proc WM8 {address val} {

mwb [string tolower $address] [string tolower $val]
}

Example:
WREG CPSR 0x000000D3
proc WREG {regname val} {

reg [string tolower $regname] [string tolower $val]
}

Example:
WCP15 0x0001 0x00050078 ; CP15 control register
proc WCP15 {regs value} {

arm mcr 15 [expr ($regs>>12)&0x7] [expr ($regs>>0)&0xf] \
[expr ($regs>>4)&0xf] [expr ($regs>>8)&0x7] $value

}

www.ultsol.com 50

26. Fast production CFI programming trick
CFI flashes can be quite slow to erase and program. A 16M byte CFI flash could have erase
and write performance of a theoretical maximum of approximately 200 to 100K bytes per
second. For an erase and write cycle, this yields a best case performance of 1 (1 / (200 + 1)
/ 100) = 66K bytes per second. For a 16M byte flash file this would yield a best case
production time of approximately four (4) minutes. The ZY1000 will regularly be able to
reach 50% or better of the maximum theoretical performance.

However, there is a trick that will allow you to reach better performance. The ZY1000 can
upload at approximately 1M byte per second to RAM running at 16MHz JTAG frequency
in about 20 seconds for 16M byte flash image. This small image could be an application
that erase, writes, and verifies the CFI flash.

The following describes the required steps:

1. Connect the ZY1000 to the target hardware.

2. The ZY1000 detects that the hardware is connected, resets the target, and uploads an
application to RAM and stars the application.

3. The ZY1000 or the application gives an indication that it is running.

4. Disconnect the ZY1000, but leave the target powered on.

5. Connect the ZY1000 to the next target.

6. Once the target is done, erase, program, verify, and self-test, it flashes a LED or
gives some other type of indication. Alternately, the board can be connected to a
second ZY1000 that performs the verify.

This yields an effective programming throughput of 1M byte per second, which is a 10x
improvement on CFI’s theoretical maximum.

