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Defining a Catalog of Unique K-mers 
 
Defining a catalog of unique k-mers requires 7 individual steps. In practice, we utilize a 
size of k=30 for consistency with previous studies (Sudmant et al., 2010; Alkan et al., 
2009). An example of the command lines for each of the following steps can be found in 
the QuicK-mer User Manual v1.0 Section 9.  
  
1. List all unique 30-mers All 30-mers in the reference genome are enumerated with 

Jellyfish by setting k-mer size equal to 30 and using the reference genome FASTA 
sequence as the input. A k-mer and its reverse complement are considered equal 
(Jellyfish option –C). The 30-mers with a count of 1 are exported into text format. 

 
2. Determine unique 30-mer locations Unique 30-mers are mapped to the genome 

reference using mrsFAST (Hach et al., 2010) with an edit distance setting of 0. This 
step serves to map the location of each unique 30-mer and is used in the following 
steps for region overlapping and exclusion. 

 
3. Enumerate highly repetitive 15-mers The same procedure for Step 1 is repeated for 

the reference assembly except now k is set equal to 15 and all 15-mers with counts ≥ 
1,000 are exported. 
 

4. Determine repetitive 15-mer locations and filter 30-mers Step 2 is repeated with the 
15-mers determined in Step 3. Here, each k-mer will have multiple genome locations. 
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Finally, locations of the 15 and 30-mers are merged together, and all 30-mers (from 
Step 2) that overlap with the high frequency 15-mer track are removed from 
subsequent analyses. 

 
5. Remove highly similar 30-mers The 30-mers that pass Step 4 are mapped onto the 

reference genome using mrsFAST with an edit distance of 2. All 30-mers with ≥ 100 
mapped positions are removed. Note that mrsFAST only considers substitutions.  

 
6. Remove highly similar 30-mers, considering indels The k-mers that pass Step 5 are 

mapped again using mrFAST with an edit distance of 2. All 30-mers with ≥ 100 
mapped positions are removed. The mrsFAST search is performed prior to mrFAST 
due to the speed advantage of mrsFAST only considering mismatches. Steps 5 and 6 
serve to reduce the chances of matching k-mers with sequencing errors into 
unintended locations. 

 
7. Combine final k-mer catalog The final list of highly unique 30-mers is sorted based 

on chromosome location and output in BED format. This output file will then be used 
by QuicK-mer and for the generation of required axillary files. 

 

QuicK-mer Core Pipeline 
Depth Counting and GC Correction 
The QuicK-mer core program is written in C++ and Object Pascal and wrapped with 
Python for control flow. The control flow consists of calling Jellyfish-2  (Marçais and 
Kingsford, 2011) for building the 30-mer hash library followed by the k-mer query step. 
At the beginning of the query step, two axillary binary files are preloaded and memory 
space for count values is allocated. QuicK-mer then interrogates the Jellyfish hash library 
with the sorted 30-mer list, storing each raw count value in memory. The core program 
verifies each 30-mer’s status as a normalization control and, if indicated, the 400 bp GC-
content value is fetched from the associated binary file and incorporated into the GC bias 
curve. Once the process is finished, the core program builds the GC curve based on the 
average counts obtained from each GC percentage bin and uses the lowess smoothing 
algorithm to generate a correction curve. The targeted average depth is calculated using a 
weighted average based on GC content of 25~75%. A 0.3x minimum and 3x maximum 
correction factor is also enforced to reduce over-correcting extreme GC regions due to a 
lack of representative k-mers. The GC bias curve is output in a text format and, along 
with correction curve, is represented in a PNG image (S-Fig 2). Lastly, the correction 
factor is applied to each k-mer count value based on its GC content and the resulting GC-
corrected k-mer counts are output in a binary format. 
 
Due to different GC biases within sequencing libraries and across flow cell lanes (S-Fig 
3), the user is encouraged to apply QuicK-mer GC normalization separately for each 
sequencing lane. Resulting GC-corrected k-mer counts can then be merged together for 
each sample using the CorDepthCombine command. 
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Normalization Step 
 
Another program in the QuicK-mer package (kmer2window) converts counts to copy-
number estimates. The normalization program loads the same binary control region file 
then, using the corrected depth for the control 30-mers, calculates a scaling factor based 
on an assumed copy number of two for these regions. Normalization is performed in 
windows of equal number of k-mers (default = 500 k-mers per window, but is adjustable 
by the user). The median k-mer count for each window is used for the normalization, and 
only windows where all k-mers are in the defined control intervals are used in subsequent 
steps. The resulting normalization is then applied to all windows. Please see the QuicK-
mer User Manual for detailed examples and commands. 

Supplementary Results 
 
For comparison, we reanalyzed dataset from the 1000 Genome Project and other sources 
using QuicK-mer and compared the estimated copy number profiles with supplementary 
data from the Sudmant et al., 2010 paper. The major dataset was downloaded from 1000 
Genome Project Pilot, Phase 1 and Phase 3 studies (Abecasis et al., 2010, 2012; Auton et 
al., 2015). Sequencing files were individually run through the QuicK-mer pipeline and 
GC corrections were performed for each sequencing lane. Corrected data is combined 
and normalized into copy number estimates. Table 1 contains the details of samples used 
in this study. 
 
Supplementary Figures 5 – 14 correspond to the genome regions depicted in S52, S60 – 
S71 of Sudmant et al., 2010. Regions shown in these figures match with the CNV 
identified in the original paper and demonstrate the accuracy of QuicK-mer. 
 

Sample Name Data Source Mean 30-mer Depth in Control 

NA12156 1000 Genome Phase 3 4.40 

NA12878 1000 Genome Phase 1, Pilot 1/2 7.23 

NA18507 Bentley et al., Nature 2008 23.05 

NA18508 Bentley et al., Nature 2008 7.30 

NA18517 1000 Genome Phase 3 3.82 

NA18555 1000 Genome Phase 3 4.09 

NA18956 1000 Genome Phase 3 3.63 

NA19129 1000 Genome Phase 1, Pilot 1/2 0.87 

NA19240 SRX574476, SRX582073 13.26 

 
Supplementary Table 1. Samples used in this study 
The mean depth is calculated based on the median depth obtained from windows of 500 
30-mers fully overlapping with defined control regions.  
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Supplementary Figures 
 

 
 
 
Supplementary Figure 1. Unique 30-mer Workflow 
The above workflow illustrates the procedure used to obtain unique 30-mers from a 
reference genome assembly. Software used in each step are color-coded and detailed in 
the legend on the right. 
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Supplementary Figure 2. GC Correction and Bias 
The majority of sequencing coverage bias is related to local GC content. The blue curve 
indicates the average depth for the 30-mers with the same GC content in 400bp 
surrounding the center of each k-mer location, rounded in steps of 0.25%. The red curve 
is the lowess smoothed correction factor, targeted for the average depth indicated by the 
dashed line. A 3x max correction value is enforced. The GC curve represents QuicK-mer 
run from WGS experiment SRX734522. 
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Supplementary Figure 3. GC Bias across sequencing lanes 
GC bias can vary between sequencing libraries due to PCR amplification bias. The bias 
can also be found between sequencing lanes for some PCR-free libraries. Plotted data 
corresponds to ERX002358 from CAST/EiJ mouse WGS data.  
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Supplementary Figure 4. Wall time statistics 
To assess the efficiency of QuicK-mer, we randomly sampled subsets of reads from 
HG02799, which was sequenced to a depth of 17x. The selected fractions were 
individually analyzed using 35GB memory and 4 cores during library construction and 2 
cores during querying on an empty compute node with 4 Xeon E7 4850 2GHz processors 
and 1TB of total memory. Wall clock-time statistics indicate a constant time cost for the 
querying step once the average sequencing depth exceeds 1x. The nature of counting 
predefined k-mers also means the memory usage is unlikely to be affected by the 
sequencing depth. The library building time is linearly correlated with the input read 
counts. 
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Supplementary Figure 5 
Genome browser screenshot that details two overlapping deletions found in several 
individuals and match with S60 in Sudmant et al., 2010. 
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Supplementary Figure 6 
Genome browser screenshot that illustrates deletions detected in 5 individuals and a 
hemizygous deletion in NA18517. This figure corresponds to S61 in Sudmant et al., 
2010. 
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Supplementary Figure 7 
Hemizygous deletion of the PSG gene cluster at 19q13.31 in NA18956 within the 
highlighted region. This figure corresponds to S62 in Sudmant et al., 2010. 
 
 

	
  



	
   11	
  

 
Supplementary Figure 8 
Deletion of the 3’ regions of ANKRD36B in NA12156 and NA12878, which matches the 
prediction in S63 in Sudmant et al., 2010.  
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Supplementary Figure 9 
This figure corresponds to S66 in Sudmant et al., 2010 and illustrates a deletion of a 
defensin gene (observed in NA12878). 
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Supplementary Figure 10 
This figure corresponds to S67 in Sudmant et al., 2010. Here, a deletion of chemokine 
ligand genes (see RefSeq gene IDs in top track) is observed in NA12156 and NA12878. 
 

	
  



	
   14	
  

 
Supplementary Figure 11 
This figure corresponds to S68 in Sudmant et al., 2010. The center window overlaps with 
an assembly gap and the actual copy number is invalid. An adjacent duplication is 
observed in all samples shown. NA19240 also exhibits duplication in the olfactory 
receptor gene clusters (see RefSeq gene IDs in top track).  
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Supplementary Figure 12 
This figure corresponds to S69 in Sudmant et al., 2010 and displays segmental 
duplications in the17q21.31 MAPT region. 
 
 

 
Supplementary Figure 13 
This figure corresponds to S70 in Sudmant et al., 2010 and illustrates several gene 
deletions at 15q11.2 in NA18507. 
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Supplementary Figure 14 
This figure corresponds to S71 in Sudmant et al., 2010 and shows copy number variation 
at the RHD and RHCE genes. NA18507 and NA12878 each have one copy of RHD 
deleted.  
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QuicK-mer v1.0 User Manual 
 

Commands in 4 - 6 assume you start in the root directory of QuicK-mer. 
 
1. Prerequisites 

Before using the QuicK-mer CNV pipeline, here is a list of programs required: 
1) Jellyfish 2 
2) Python 2.7 
3) matplotlib 1.1.0 or later 
4) samtools (only necessary if input file is in BAM format) 

 
2. What is QuicK-mer? 

QuicK-mer is an efficient, paralog-sensitive CNV estimation pipeline based around 
Jellyfish-2. It counts the occurrences of each predefined k-mer inside Illumina 
sequencing data and normalizes to correct copy number based on pre-defined control 
regions. QuicK-mer supports both FASTQ and BAM format as input. 
 

3. Download QuicK-mer 
QuicK-mer is distributed as a source package on github. Grab QuicK-mer using the 
following command: 
 
git clone https://github.com/KiddLab/QuicK-mer.git 

 
4. Compile 

There are 3 required executables written in a compiled language to increase pipeline 
efficiency. Pre-compiled binaries are included in the distribution. If an OS/CPU not 
supported by the existing distributed binary is used, the programs should be compiled 
by the user. 
1) KmerCor 

This is the core program for GC bias estimation and depth normalization in 
QuicK-mer. To compile use the below command: 
 
cd kmer/ 
fpc -O KmerCor.lpr 
 

2) kmer2window 
This program is used to convert depth data into copy number in a bedGraph 
format based on predefined window sizes and control regions. Each window 
contains a fixed number of k-mers. Note that the last window at the end of each 
chromosome may contain fewer.  
 
cd kmer/ 
g++ -O -o kmer2window kmer2window.cpp 
 

3) CorDepthCombine 
The CorDepthCombine program is used to merge each GC-corrected sequencing 
library (or sequencing lane) from the same sample together. Each sequencing 
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library (or lane) usually contains distinctive GC bias patterns and should be run 
through QuicK-mer separately. 
 
cd kmer/ 
fpc -O CorDepthCombine.lpr 

 
5. Installation 

QuicK-mer does not need to be installed, all you need to do is add the application 
folders to your path directory.  
 

QuicK-mer/ 
QuicK-mer/kmer/ 
 

To do so in unix-like systems, open your .bashrc file in the home directory using a text 
editor or with vi. Add the following line:  
 

PATH=$PATH: path_before_Quick-mer/QuicK-mer/:path_before_Quick-mer /QuicK-mer/kmer/ 
Then execute using: 

 source .bashrc. 
 

6. Premade 30-mer lists available for download 
The following genomes have unique 30-mer catalogs ready for download 
(http://kiddlabshare.umms.med.umich.edu/public-data/QuicK-mer/Ref/): 
1) mm10 
2) hg19 
3) panTro4 
4) canFam3.1 
 

7. Description of supporting files 
Once extracted, each folder contains six files to support the QuicK-mer pipeline. 
Using hg19 as an example, below is a list of the six files. 
 
hg19_kmer.bed 
k30_hg19_GC.bin 
k30_hg19_CN2.bin 
hg19_50_window.bed 
hg19_500_window.bed 
hg19_uniq.bc 
 
hg19_kmer.bed is the predefined 30-mer list in bed format. It contains the location of 
each 30-mer and its sequence in the last column. k30_hg19_GC.bin 
is the GC content of the surrounding 400bp with the 30-mer in the center. 
k30_hg19_CN2.bin records a true/false flag with each byte per 30-mer indicating if the 30-
mer is excluded from control region. Hence, 0x00 30-mers are used for building the 
GC bias curve. hg19_50_window.bed and hg19_500_window.bed are the window files in 50 or 
500 30-mers per bin used for track displaying and smoothing. User can easily 
redefine the window in section 9. Finally, hg19_uniq.bc is the bloom counter for 
Jellyfish-2 which will speed up the QuicK-mer counting process and reduce I/O load. 
 

8. Working Example 
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Here we use an example using public data from the NCBI short read archive to 
demonstrate QuicK-mer usage. Here we assume you are in your working directory. 
1) Download NA19240 sequencing file from SRA. 

 
wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByRun/sra/SRR/SRR136/SRR1364052/SRR1364052.sra 
 
fastq-dump -O SRR1364052 --split-files --gzip SRR1364052.sra 
 

2) Download hg19 30-mer reference 
We premade the 30-mer list for hg19 reference genome. 
 
wget http://kiddlabshare.umms.med.umich.edu/public-data/QuicK-mer/Ref/hg19.tar.gz 
 
tar xzfv hg19.tar.gz 
 

3) Running the QuicK-mer 
Add the following command to a job submission script and request 2 CPU cores 
with 35GB of total memory.  
 
cd SRR1364052/ 
 
start_kmer_pipeline.py 19485_ATGTCA_L007\*.fastq.gz –o 19485_ATGTCA_L007 hg19/ 
 
This process usually takes 6 hours. Once done, QuicK-mer will generate 3 files 
under the SRR1364052/ directory: 
 
19485_ATGTCA_L007_result.bin 
19485_ATGTCA_L007.txt 
19485_ATGTCA_L007.PNG 
 
The text file and PNG image record the GC-depth bias in the control region. The 
binary file 19485_ATGTCA_L007_result.bin contains all the GC-corrected depths for all 
30-mers. 
 

4) Merge data 
To merge multiple GC-corrected depth files, move all the *_result.bin files into a 
directory and execute the following command from that directory: 
 
ls *_result.bin > sample_name.txt 
CorDepthCombine –l sample_name.txt 

 
The result sample_name_merged.bin will contain the merged depth data for the files 
specified in sample_name.txt text file.  
 

5) Integrate browser track 
Finally, the user needs to convert the depth file into the bedGraph format based on 
predefined or user-defined windows. 
 
kmer2window 19485_ATGTCA_L007_result.bin ../hg19/k30_hg19_CN2.bin 
../hg19/hg19_500_window.bed > 19485_copy_number.bedGraph 
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The hg19_500_window.bed is a file specifying the genome location and number of k-
mers in each window. The file 19485_ATGTCA_L007_result.bin can be substituted with 
the merged binary file sample_name_merged.bin when dealing with samples from 
multiple libraries.  
 
This file can be further indexed and compressed into UCSC bigwig format and 
displayed using the UCSC genome browser. 
 

9. Custom k-mer list 
The user can define the k-mer list for any genome besides the premade ones listed in 
Step 6. The list of k-mers should have the following tab-delimited format: 
 
chr1    10454   10484   chr1-10455      CTAACCCTAACCCTCGCGGTACCCTCAGCC 
chr1    10455   10485   chr1-10456      CGGCTGAGGGTACCGCGAGGGTTAGGGTTA 
chr1    10456   10486   chr1-10457      AACCCTAACCCTCGCGGTACCCTCAGCCGG 
chr1    10457   10487   chr1-10458      ACCCTAACCCTCGCGGTACCCTCAGCCGGC 
chr1    10458   10488   chr1-10459      CCCTAACCCTCGCGGTACCCTCAGCCGGCC 
chr1    10459   10489   chr1-10460      CCTAACCCTCGCGGTACCCTCAGCCGGCCC 
 
The first three columns define the genomic location of k-mer with the fifth column 
defines the k-mer sequence. The file must be in tab-delimited format and sorted based 
on genomic location.  
 

10. Generate supporting files for custom k-mer list approach 
Once a custom k-mer list is given, user could easily create the 3 essential axillary files 
using the built in command line tools. Below, we use the hg19 30-mer list as a 
starting point to create the axillary files. 
1) Bloom Counter 

The bloom counter double counts each k-mer in the list and then feeds it into the 
Jellyfish-2 for bloom counter generation. Essentially, this step marks predefined 
k-mers as “high frequency” during the actual counting process. This will reduce 
I/O when building the k-mer database. 
 
cd hg19/ 
make-fasta-from-kmer.py hg19_kmer.bed | jellyfish-2 bc -C -m 30 -s 3G -t 16 -o kmer/ hg19_uniq.bc 
/dev/fd/0 
 

2) GC content 
To generate GC content binary file, you’ll need the reference genome files in 
FASTA format with sequence layout as 50bp per line.  
 
cd hg19/ 
generate_GC_bin.py hg19_kmer.bed genomes/hg19/fasta/ k30_hg19_GC.bin 
 

3) Window segments 
Use the following command to make the window file for an existing k-mer list. 
The first argument “50” indicates 50 k-mers per window. The user can increase 
this value in order to trade finer resolution for minimization of the signal-to-noise 
ratio.  
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make_window_kmer.py 50 hg19_kmer.bed > hg19_50_window.bed 

 
 


