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DemocRitus University of Thrace EDIF to EDIF translator (DRUID) is a tool that 
converts the EDIF format netlist produced by Leonardo or DIVINER to an equivalent 
EDIF format netlist compatible with the next tool in the tool chain. Even though the 
output of the synthesis tools and the input of the LUT-mapping tools are in the same 
format, there are differences in their generic libraries. Some cells are identical in 
functionality but with different names and port names, while other cells present in one 
tools library are absent in the others, and then they may have to be decomposed to 
gates. These conversions among other necessary functions compose the functionality 
of DRUID. 

DRUID is a tool that was developed in order to integrate the output of a synthesis 
tool (DIVINER or Leonardo Spectrum) with the rest of the tool flow. The input file that is 
processed by DRUID is an EDIF format netlist file and the output file that is produced is 
also an EDIF file, compatible with the rest of the tool flow. It is based on the generic 
output EDIF file produced by Leonardo Spectrum, because of the extensive use of this 
commercial synthesis tool. However, DRUID can appropriately modify any EDIF file of 
version 2 0 0 [6] with only minor changes. 

DRUID serves a threefold purpose: i) it modifies the names of the libraries, cells (in 
EDIF format all structures are called cells) etc, found in the input EDIF file, ii) it 
simplifies the structure of the EDIF file in order to make it compatible to our tool flow 
and iii) and it constructs, in the simplest way possible, the cells and generated modules 
that are included in the input EDIF file and are not found in the libraries of the following 
tools. This modification is necessary because the tools that follow DRUID in the 
proposed design flow can handle structures of limited complexity. 

Without DRUID, the hardware architectures that could be processed by the 
proposed flow would be the ones specified in structural level by using only the following 
basic components: inverter, AND, OR and XOR gates of 8 inputs maximum, a 2-input 
multiplexer, a latch, and a D flip-flop without set or reset signals. Moreover, signal 
vectors would not be supported. Obviously, DRUID is necessary in order to implement 
real-life applications on the proposed fine-grain platform. 

 

1. Running DRUID 
To invoke DRUID, type at the command line: 
 
druid [input EDIF file] [output EDIF file] {-use_ff} 
 
the –use_ff switch  is used only when the input circuit contains set-reset flip-flops. 
 
Druid can also be executed using the GUI of the MEANDER design framework, 

which is available through the URL http://vlsi.ee.duth.gr/amdrel. 
 

2. Function of DRUID 
To minimize the complexity of a hardware structure the algorithm of DRUID looks for 

certain keywords in the input EDIF file and uses them as parameters for deciding which 
parts of the new EDIF file will remain the same as in the old EDIF file, which parts will 
be modified and how and which parts of EDIF code will be added. These keywords 
represent certain tasks for DRUID.  

Before these tasks are presented the basic structure of an EDIF file must be briefly 
explained. First of all an EDIF file is composed of a number of cells that describe the 
implemented architecture. Each cell has input and output ports, instances of standard 
cells (available in the libraries that are included) and of other cells that are included in 
the same EDIF file, and structures that are called nets, which describe the nets that 
connect the cells. 



There are three kinds of cells. The primitive cells, like various logic gates and flip-
flops, which are the less significant in hierarchy and are used like instances of more 
complex cells. These cells are contained in a certain library (called PRIMLIB, for the 
proposed tool flow, and library PRIMITIVES for Leonardo Spectrum) that is included in 
the EDIF file if a primitive cell is needed. The format of such a cell is the following: 

 
  (cell OR2 (cellType GENERIC) 
   (view INTERFACE  (viewType NETLIST) 
    (interface  
     (port p0 (direction INPUT)) 
     (port p1 (direction INPUT)) 
     (port out (direction OUTPUT)))))    
    
It is obvious that each cell is characterized by its name (i.e. OR2) and the name of 

the view (i.e. INTERFACE) along with the inputs and the outputs of the cells (i.e. p0, p1 
and out respectively). 

The second kind of cell is the one generated by a certain algorithm. For example a 
module that adds two numbers can be generated from an algorithm according to the 
wordlength of the two summands. Leonardo Spectrum uses a library called 
OPERATORS when such a cell is used. The format of such a cell is the following: 

 
  (cell add_3u_3u_3u_0_0 (cellType GENERIC) 
   (property (rename a0 "$GENERIC") (string "add")) 
   (property (rename a1 "$size") (string "3")) 
   (property (rename a2 "$signed") (string "false")) 
   (view INTERFACE  (viewType NETLIST) 
    (interface  
     (port cin (direction INPUT)) 
     (port (array (rename a "a(2:0)") 3 )(direction INPUT)) 
     (port (array (rename b "b(2:0)") 3 )(direction INPUT)) 
     (port (array (rename d "d(2:0)") 3 )(direction OUTPUT)) 
     (port cout (direction OUTPUT))))) 
 
Each cell is characterized by its name (i.e. add_3u_3u_3u_0_0) and the name of the 

view (i.e. INTERFACE) along with the inputs and the outputs of the cells (i.e. cin, a(2:0) 
and cout respectively). The name of the cell declares its operation (i.e. addition) and 
the bitwidth of the operands (i.e. 3 bits). DRUID has a different way of declaring these 
cells that will be presented later. 

The third kind of cells is the most common in an EDIF file. Each cell describes the 
architecture of a module. The name of the cell, the name of the view, the inputs and the 
outputs of the module are declared at the top of the cell: 
 
   (cell gates_b (cellType GENERIC) 
     (view rtl  (viewType NETLIST) 
     (interface  
       (port in0 (direction INPUT)) 
       (port in1 (direction INPUT)) 
       (port output1 (direction OUTPUT)) 
       (port output2 (direction OUTPUT))) 
     (contents  
       (instance ix1 (viewRef INTERFACE  (cellRef OR2 (libraryRef PRIMITIVES )))) 
       (instance ix3 (viewRef INTERFACE  (cellRef XOR2 (libraryRef PRIMITIVES )))) 
       (instance pules_a_1 (viewRef rtl  (cellRef pules_a ))) 
       (instance pules_a_2 (viewRef rtl  (cellRef pules_a ))) 
      (net a_1  
        (joined  
         (portRef in0 ) 
         (portRef p1 (instanceRef ix1 )) 
         (portRef in0 (instanceRef pules_a_1 )))) 
      (net a_2  



        (joined  
         (portRef out (instanceRef ix1 )) 
         (portRef in1 (instanceRef pules_a_2 )))) … 
 

The cell is formed by using instances of cells of all three types described above. 
Each instance is declared as it is pictured in the previous example. Its name (i.e. ix1) is 
declared first and then is declared the view and the cell name that this instance depicts 
(i.e. INTERFACE and OR2). The library that includes this specific cell is declared last 
(i.e. PRIMITIVES). 

The input and output ports of these instances are connected by a number of nets. 
Two nets are shown in the previous example. The name of the net is declared in the 
beginning, i.e. a_1 and b_1, and after this is declared the connections of the ports. 
These connections are between the ports of the instances, the inputs of the cell and 
the inputs of the instances and the outputs of the cell and the outputs of the instances. 

In order to conclude this brief description of the EDIF format, it must be mentioned 
that all the cells that are used in an EDIF file must be declared in a library. The first 
type of cells is declared in library PRIMITIVES (Leonardo Spectrum) or PRIMLIB 
(DRUID). The second type of cells is declared in library PRIMITIVES (Leonardo 
Spectrum) and USER_LIB (DRUID). The third type of cells is declared in library WORK 
(Leonardo Spectrum) or USER_LIB (DRUID). Practically, all the information about the 
structure of the implemented circuit is found in library WORK (Leonardo Spectrum) and 
USER_LIB (DRUID) and the other libraries are used in order to declare the 
components (cells) that are used.       

A short description of the different tasks that DRUID has to perform in order to 
obtain an EDIF file of the same functionality and the appropriate form that is compatible 
to the recommended tool flow follow. 

      
Cell and library naming 

The first keyword that DRUID looks for is the name of the EDIF file that is going to 
be altered. It is found twice in the input file. The first position that it is found is at the top 
of the file and it names the whole EDIF file. This name is altered to the word “netlist”. 
The second position names the most significant cell, in hierarchy, of the EDIF file. 
Thus, the name of this cell is changed into the word “TOP” and the view name of this 
cell is altered to the word “netlist”. 

In this step of the process the names of the libraries that are found in the EDIF file 
are altered. Library PRIMITIVES is renamed as PRIMLIB and library WORK as 
USER_LIB.   

 
Signal vectors 

Similar to most VHDL structures, EDIF structures make use of signal vectors. In 
EDIF format the signal vectors are declared as ports (either as input or as output) of 
certain cells. The following example shows such a declaration: 

 
(port (array (rename output3 "output4(8:0)") 9 )(direction OUTPUT))  
 
The word array declares that this port is a signal vector. The specific port is 

renamed to “output3” (the word after “rename” statement) from “output4” and it is 
comprised of 9 single signals, which are named from 8 to 0. The most significant signal 
is the one that is enumerated as 0 and the less significant one is the eighth signal. 
When these vectors are used inside the cell, at its nets, each signal is named as 
“member output3 x”, where x is a number between 0 and 8.   

These declarations, unfortunately, were not compatible with the tool flow. DRUID’s 
task was to unfold these vectors to single signals. Thus the previous declaration for the 
signal vector is converted to the following: 

 
(port output3_0  (direction OUTPUT))  



(port output3_1  (direction OUTPUT)) 
… 
(port output3_8  (direction OUTPUT)) 
 
The declaration of a single signal that belongs to a signal vector is altered from 

“member output3 x” to member output3_x. The function of “rename” that renames the 
port is removed because it is also not compatible to the rest of the flow. 

The rename function is used to rename except from signal vectors (ports in the form 
of array), single signals (one dimension ports), and instances of cells and nets of cells. 
In all of these occasions DRUID has to perform the renaming. Each occasion is 
explained with a respective example that shows how DRUID will alter a declaration that 
invokes the rename function:        
 
(port (rename p2 "in[0]") (direction INPUT)) =>(port p2  (direction 
INPUT)) 

 
(instance (rename i0 "reg_q(7)") (viewRef INTERFACE (cellRef DFF 
(libraryRef PRIMITIVES)))) =>(instance i0 (viewRef INTERFACE (cellRef 
DFF (libraryRef PRIMITIVES)))) 

 
(net (rename n0 "d(7)")... => (net n0 ... 

 
Logic gates and D-flip-flops 

The complete tool flow is designed in order to implement a hardware structure on a 
fine-grain reconfigurable hardware. This structure should be described by using a 
number of basic components (cells) or if it is described in a more complex mode, 
DRUID has to convert it to a structure that incorporates only the available basic 
components. These components are included in library PRIMLIB in the AMDREL tool 
flow, and library PRIMITIVES in Leonardo Spectrum. However, the problem is that our 
tool flow cannot support all these basic components that library PRIMITIVES supports. 
PRIMLIB includes the following cells: inverter, AND, OR and XOR gates of 8 inputs 
maximum, a 2-input multiplexer, a latch, and a D flip-flop without set or reset signals. 

Except these gates that are included in PRIMLIB there are three more logic gates; 
NAND, NOR and XNOR. When any of these three gates is found in an EDIF file, it is 
declared at the top of the file in library PRIMITIVES. DRUID creates these three gates 
by using an AND, OR, XOR gate respectively and inverting their output. The EDIF code 
that DRUID adds is placed in library USER_LIB of the output EDIF file and substitutes 
the function of the three gates that are not part of PRIMLIB. The code that is added for 
a NAND gate is presented here.  

 
  (cell nand_gate (cellType GENERIC) 
   (view rtl_nand_gate  (viewType NETLIST) 
    (interface  
     (port in0 (direction INPUT)) 
     (port in1 (direction INPUT)) 
     (port out (direction OUTPUT))) 
    (contents  
     (instance inv_nand2_duth (viewRef INTERFACE  (cellRef INV 
(libraryRef PRIMLIB )))) 
     (instance and2_nand2_duth (viewRef INTERFACE  (cellRef AND2 
(libraryRef PRIMLIB )))) 
     (net in0_and2_nand2_duth  
      (joined  
       (portRef in0 ) 
       (portRef in0 (instanceRef and2_nand2_duth )))) 
     (net in1_and2_nand2_duth  
      (joined  
       (portRef in1 ) 



       (portRef in1 (instanceRef and2_nand2_duth ))))        
     (net out_and2_nand2_duth  
      (joined  
       (portRef out (instanceRef and2_nand2_duth )) 
       (portRef in (instanceRef inv_nand2_duth )))) 
      (net output_and2_nand2_duth  
       (joined  
        (portRef out ) 
        (portRef out (instanceRef inv_nand2_duth ))))))) 

 
For the other two gates similar code is added.           
As it was mentioned previously, the tool flow cannot support a structure that utilizes 

D flip-flops, with set, reset or enable inputs. This drawback is partially overcome by 
using a simple D flip-flop along with the appropriate combinational logic that substitutes 
these signals. Fig. 1 depicts the circuit that DRUID uses when it comes along a D flip-
flop with set and reset and Fig. 2 shows the corresponding circuit for a D flip-flop that 
besides these two abilities it can register a new input if only it is enabled by a certain 
bit.  

Each of these capabilities is using a separate signal and all three signals are 
synchronized with the clock signal. When the set signal is set to ‘1’ the output of the 
flip-flop is also set to ‘1’ (in the next clock cycle). Similarly, when the reset signal is set 
to ‘1’ the output of the flip-flop is set to ‘0’. The third signal (en) when is set to ‘1’ allows 
the flip-flop to register a new value if and only if the set and reset signals are set both to 
‘0’. If en is set to ‘0’ then the output of the D flip-flop reappears in its input through the 
input 0 of the multiplexer.              
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Fig. 1 The circuit used to replace a D-f/f with set and reset and its equivalent block 
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Fig. 2 The circuit used to replace a D-f/f with set, reset and enable, and its equivalent block 



 
Synthesizers like Leonardo Spectrum that do not have simple flip-flops use D flip-

flops with set and reset instead which are deactivated when they are not needed. 
DRUID gives the choice to the designer to decide if there simple D flip-flops (with no 
set/reset inputs, available in PRIMLIB) will be used, or the equivalent circuits that were 
described previously.  

 
Logic gates of more than two inputs 

DRUID searches a certain library declaration in the EDIF file (i.e. library 
OPERATORS of the EDIF file that Leonardo Spectrum gives) for certain cells. These 
cells, as it was explained before, declare only their name, their function, their 
wordlength and their ports. Therefore, each time that DRUID comes across a different 
cell in this library, it collects this information and activates a certain algorithm in order to 
generate and add the architecture of this cell (in EDIF format) to the output EDIF file in 
library USER_LIB. For each of the algorithms that are used to generate the cells that 
DRUID finds in the library OPERATORS declaration of the input EDIF file, their 
dependence on the wordlength of the required cell will be underlined.  

In all the cells that are presented to unsigned arithmetic is assumed. In the case of 
signed numbers DRUID’s operation would be more or less the same.  

An example of the procedure described above is:  
 
  (cell or_5u_5u (cellType GENERIC) 
   (property (rename a120 "$GENERIC") (string "or")) 
   (property (rename a121 "$size") (string "5")) 
   (property (rename a122 "$signed") (string "false")) 
   (view INTERFACE  (viewType NETLIST) 
    (interface 
     (port (array (rename a "a<4:0>") 5 )(direction INPUT)) 
     (port d (direction OUTPUT))))) 
 
The cells of this type describe gates of more than two inputs. This example refers to 

an OR gate (property (rename a120 "$GENERIC") (string "or")), named or_5u_5u, 
of five inputs (property (rename a121 "$size") (string "5")), and for unsigned signals 
(property (rename a122 "$signed") (string "false")). For the rest of the gates this 
form is exactly the same.  

After the detection of the function of the cell, DRUID has to erase this cell from the 
library and add the equivalent structure to library USER_LIB of the EDIF file. The 
structure that has to be added in the case of the OR gate of multiple inputs is very 
simple. For an OR gate of two inputs it uses a simple OR gate and for every other input 
DRUID uses one more OR gate, which has as inputs, the output of the previous OR 
gate and the extra input that is added. Except from this structure, the OR component 
has to be included in library PRIMLIB in order to be declared its use.  

Fig. 3 pictures an OR gate of five inputs and its equivalent circuit. The first two 
inputs are connected to the first OR gate, the third input to the second OR gate etc. If 
an AND or a XOR gate of multiple inputs is needed the process will be exactly the 
same with the exception that an AND and an XOR gate will be used respectively.  
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Fig. 3: An OR gate of five inputs and the equivalent gate symbol 
 

Similarly the NAND, NOR and XNOR gates are substituted by exactly the same 
method by AND, OR and XOR gates with the exception that their outputs are 
connected to an inverter.  

 
Magnitude comparators 

In this task the procedure that is followed is exactly the same as previously. The 
cells under search have more or less the same function. They compare the values of 
two signals in order to determine either the equality or inequality between them, or 
which of them is greater. The type of cell that DRUID searches for, in the library 
OPERATORS declaration, is the following: 

 
  (cell eq_4u_4u (cellType GENERIC) 
   (property (rename a12 "$GENERIC") (string "eq")) 
   (property (rename a13 "$size") (string "4")) 
   (property (rename a14 "$signed") (string "false")) 
   (view INTERFACE  (viewType NETLIST) 
    (interface  
     (port (array (rename a "a(3:0)") 4 )(direction INPUT)) 
     (port (array (rename b "b(3:0)") 4 )(direction INPUT)) 
     (port d (direction OUTPUT)))))    
 
The cell that in this EDIF code detects the equality (property (rename a12 

"$GENERIC") (string "eq")) between two (a(3:0), b(3:0)) of two unsigned numbers 
(property (rename a14 "$signed") (string "false")) of wordlength 4 (property 
(rename a13 "$size") (string "4")). If it was needed to check their inequality the 
properties of the cell would have as “string” the initials “ne”. Also the initials “gt” would 
appear for checking if b is greater than a and the “ge” when b is greater or equal to a. 
When b is less than a or b is less or equal to a then the initials “lt” and “le” must be 
used. 

First we must describe the algorithm for the cell that checks the equality of a and b. 
It is based on a simple logical equation: )...( n21 xxxNOTd ++=  (1), where )( iii bax ⊕= , 

n21i ,...,,= , n = the wordlength of a and b. It is obvious that an XOR gate is used for 
each bit of a and b. If the two signal vectors have at least one signal with different 
value, the corresponding XOR gate will output a high value. High value is the control 
value of an OR gate and therefore an equality will invert that high value to low value. 
So, output d will take a high value if and only if ALL the corresponding signals will have 
the same values. 

Fig. 4 shows the circuit that performs the equality comparison between two signal 
vectors of wordlength 5. Each time that the wordlength of the input signal vectors is 
increased, another OR and XOR gates are added to the structure. The same circuit is 
used for the inequality except that the output of the OR gates is not inverted.           
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Fig. 4: Equality check between two signal vectors of wordlength 5 
 
The algorithm for the cell that checks if the value of b is less or equal to a (b ≤ a) is 

based on a simple logical equation: 
)...()()...(...)( 11

'
1111

'
11

' yyybayyybaybad nnnnnnnnn ••+••••++••+•= −−−− (2), 
where )( iii baNOTy ⊕= , ni ,...,2,1= , n = the wordlength of a and b.  

Fig. 5 shows the circuit that checks if the value of signal vector b is less than or 
equal to the value of a and if one of the two conditions is true it sets its output to high 
value.   
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Fig. 5: The circuit that checks the condition b ≤ a 
 
The same procedure is taking place when the condition b ≥ a must be used. The 

only difference is that input a will take the place of input b. When the equality in both 
conditions is not needed then the last operand of equation (2) will not be used. The 
circuit of figure 5 is the same in this occasion with only difference. The gates in figure 5 
marked with letter “e”, are not used.  

 
Adders, subtracters and incrementers 

This task searches for cells of similar operation. An adder, a subtracter, a module 
that performs both operations, an incrementer by one and a decrementer by one. All 
these modules are based on a full-adder and a half-adder. The structures of the two 



components are shown in Fig. 6 and Fig. 7 respectively. In this report both components 
are represented by their equivalent block even though DRUID implements them with 
the use of logic gates.     
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Fig. 6: The structure of a full-adder and the equivalent block 
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Fig. 7: The structure of a half-adder and the equivalent block 
 
The adder that DRUID instantiates is a ripple-carry adder. It is formed by using a 

full-adder for each signal of the signal vector. The subtractor is similarly generated by 
using a ripple-carry adder. The operand that is going to be subtracted is in 2’s 
complement representation. Thus the one input of each full-adder is inverted and the 
cin input of the first full-adder is set to high value. 

In order to combine these two operations in one module the architecture pictured of 
Fig. 8 is used. The input signal mode controls the operation of this adder-subtracter 
module. When set low the module performs an addition and when it is set high it 
performs a subtraction. The wordlength of the signal vectors determine the number of 
the full-adders and XOR gates that are required. 
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Fig. 8: The structure of an adder-subtracter module 
 

The incrementer is a circuit that adds ‘1’ to the value of the input. Its structure is 
similar to a ripple-carry adder but instead of using full-adders it is created out of half-
adders. One input of the half-adder is connected to the input of the incrementer and the 
other is connected to the cout output of the previous half-adder. One input of the first 
half-adder is connected to the cin signal of the incrementer and if that signal is set high, 



the input value is incremented by one.  
A decrementer by one performs the inverse procedure. One is subtracted from the 

input value. The structure of the decrementer is similar to the one of a ripple-carry 
adder. Although, the fact that one input of each full-adder is always assigned a high 
value simplifies the structure of each full-adder. The first full-adder is substituted by a 
half-adder that receives as input the first signal of the input vector and the inverted cin 
signal of the module. Thus, the input value is decremented by one when cin is set low. 
The structure of this simplified full-adder is shown in Fig. 9.      
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Fig. 9: The structure of the simplified full-adder 
 

Multipliers 
The architecture that is used for the multiplier is the array multiplier of Fig. 10. This 

architecture is an array of five kinds of elements: an AND gate, a full-adder, a half-
adder, an AND gate connected to a half-adder and an AND gate connected to a full-
adder. The size of the array is determined by the wordlength of the multiplicands. If the 
wordlength of the input signal vector is n then the array of the multiplier has n +1 rows 
and n columns.  

In the case of the multiplier the cell that is declared in library OPERATORS has the 
following form: 

 
  (cell mult_10u_10u_10u (cellType GENERIC) 
   (property (rename a0 "$GENERIC") (string "mult")) 
   (property (rename a1 "$size") (string "10")) 
   (property (rename a2 "$signed") (string "false")) 
   (view INTERFACE  (viewType NETLIST) 
    (interface  
     (port (array (rename a "a(9:0)") 10 )(direction INPUT)) 
     (port (array (rename b "b(9:0)") 10 )(direction INPUT)) 
     (port (array (rename d "d(9:0)") 10 )(direction OUTPUT))))) 
 
This cell corresponds to a 5 × 5 multiplier. However, in its declaration the signals of 

the input signal vectors are ten instead of five. Practically, if five of them are unused, 
Leonardo Spectrum sets them to low value. In the other hand DRUID erases these 
redundant signals.     
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Fig. 10: A 4 × 4 array multiplier 

 
Multiplexers 

The selection between a number of signals is made by two functions. One 
corresponding to a n-input multiplexer and the select function. 

The structure of the multiplexer is shown in Fig. 11. It is comprised of n-1 2-input 
multiplexers and a decoder. A multiplexer input is selected when the corresponding 
select signal of the 2-input multiplexer is set high and the select signals of the rest of 
the 2-input multiplexers are set low. The individual multiplexer select signals are 
controlled by a 3-to-8 decoder shown in Fig. 12 and its truth table in Table 1. For n 
input signals, the required control signals are ⎡ ⎤nw 2log= . Thus, the decoder is a w-to-n 
decoder. 

For w = 2, a single row of n AND gates comprises the decoder, and for every 
additional select bit another row of n AND gates is required. Each last row AND output 
constitutes a select signal for each 2-input multiplexer. The only exception is for the two 
first AND gates that control the first two inputs of the multiplexer. This is due to the fact 



that both them two use the same 2-input multiplexer. That is why it is used an AND 
gate more and the inverter. 

The cell that declares the multiplexer in the input EDIF file includes the declaration 
of two input ports (a and b). Both are signal vectors of wordlenth n. However, as shown 
above, only w signals of the input port b are actually used. Therefore, DRUID erases 
the rest of the signals that are redundant to multiplexer logic when producing the output 
EDIF file, instead of connecting them to ground as Leonardo does. 

 

select

...

...

...

DECODER

x(1)
x(2)

x(n-1)
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a(1)
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Fig. 11: A n-input multiplexer 
 

 
b(3) b(2) b(1) x(1) x(2) X(3) x(4) x(5) X(6) x(7) x(8) 

0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 
0 1 1 0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 1 0 0 0 
1 0 1 0 0 0 0 0 1 0 0 
1 1 0 0 0 0 0 0 0 1 0 
1 1 1 0 0 0 0 0 0 0 1 

 

Table 1: The truth table of the 3-to-8 decoder 
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Fig. 12: The structure of a 3-to88 decoder 

 
The operation of the select function is described by the truth table of Table 2. The 

output of “select” cell is the b(i) input when the a(i) input is set low and all other a inputs 
are set low. This module can be easily constructed by AND and OR gates as shown in 
Fig. 13. 

 
 

a(n) a(n-11) … a(i) … a(2) a(1) d 
1 0 0 0 0 0 0 b(n) 
0 1 0 0 0 0 0 b(n-1) 
0 0 1 0 0 0 0 … 
0 0 0 1 0 0 0 b(i) 
0 0 0 0 1 0 0 … 
0 0 0 0 0 1 0 b(2) 
0 0 0 0 0 0 1 b(1) 

 

Table 2: The truth table of the n-input “select” module 
 
 
 
 
 



...

b(1)

d

b(2)

b(n-1)

b(n)

a(1) a(2) a(n-1) a(n)

b(3)

a(3)

b(n-3)

a(n-3)

...

   

Fig. 13: The structure of the n-input “select” module 

 
Various alterations 

Finally, there are a number of alterations that are needed to produce an EDIF file 
fully compatible to the next tool in the AMDREL tool flow. These are mostly limited to 
the renaming of instances, ports etc, erasing unneeded declarations and other changes 
of minor complexity. The most important one is copying each cell that is found in library 
OPERATORS of the input EDIF file to the library USER_LIB of the output EDIF file.  

 
Example 

A small example of DRUID’s operation is described in this paragraph. Two 2-bit 
signal vectors are added and their sum is registered before it is connected to the 
output. This circuit is described by the following VHDL code:   

 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_unsigned.ALL; 
 
ENTITY example_for_DRUID IS    
    PORT( in0,in1: in std_logic_vector(1 downto 0); 
          clk: in std_logic; 
          output: out std_logic_vector(2 downto 0)); 
END example_for_DRUID; 
 
ARCHITECTURE rtl OF example_for_DRUID IS 
 
SIGNAL sum: std_logic_vector(2 downto 0); 
 
BEGIN 
sum<= '0' & in0 + in1;                                          
 
register_1: PROCESS(clk)  
     BEGIN 
  IF clk'event and clk='1' THEN 
   output<= sum; 
  END IF; 
            END PROCESS register_1; 
END rtl;    
 

The VHDL code was synthesized using Leonardo Spectrum. The EDIF output of the 
synthesizer follows. The parts/words that are in italics are used or changed by DRUID. 
Each operation to an italicized part is denoted by an arrow (  ) and a number.     

 
(edif example_for_DRUID  (1a)  
 
 (edifVersion 2 0 0)     (2) 
 (edifLevel 0) 



 (keywordMap (keywordLevel 0)) 
 (status  
  (written  
   (timestamp 2004 02 07 19 12 33) 
   (program "LeonardoSpectrum Level 3" (version "v2001_1d.45")) 
   (author "Exemplar Logic Inc"))) 
 
 (external PRIMITIVES     (1b) 
 
  (edifLevel 0) 
  (technology (numberDefinition )) 
  (cell FALSE (cellType GENERIC) 
   (view INTERFACE  (viewType NETLIST) 
    (interface  
     (port out (direction OUTPUT))))) 
 
  (cell DFFRS (cellType GENERIC)    (3) 
   (view INTERFACE  (viewType NETLIST) 
    (interface  
     (port set (direction INPUT)) 
     (port reset (direction INPUT)) 
     (port in (direction INPUT)) 
     (port clk (direction INPUT)) 
     (port out (direction OUTPUT))))) 
 
 ) 
 (library OPERATORS   (4) 
  (edifLevel 0) 
  (technology (numberDefinition )) 
 
  (cell add_2u_2u_2u_0 (cellType GENERIC)     (5a) 
   (property (rename a0 "$GENERIC") (string "add"))   (5b)  
   (property (rename a1 "$size") (string "2"))        (5c) 
   (property (rename a2 "$signed") (string "false"))  (5d) 
   (view INTERFACE  (viewType NETLIST) 
    (interface  
     (port cin (direction INPUT)) 
     (port (array (rename a "a(1:0)") 2 )(direction INPUT)) 
     (port (array (rename b "b(1:0)") 2 )(direction INPUT)) 
     (port (array (rename d "d(1:0)") 2 )(direction OUTPUT)) 
     (port cout (direction OUTPUT)))))) 
 
 (library work    (1c) 
  
  (edifLevel 0) 
  (technology (numberDefinition )) 
                                   (6) 
  (cell example_for_DRUID (cellType GENERIC)  (1d) 
   (view rtl  (viewType NETLIST)              (1e) 

 
    (interface  
     (port (array (rename in0 "in0(1:0)") 2 )(direction INPUT))  (7a) 
     (port (array (rename in1 "in1(1:0)") 2 )(direction INPUT))  (7b) 
 
     (port clk (direction INPUT)) 
     (port (array (rename output "output(2:0)") 3 )(direction OUTPUT))  (7c) 
 
    ) 
    (contents  
                                                                        (8)    
     (instance ix1 (viewRef INTERFACE  (cellRef FALSE (libraryRef PRIMITIVES )))) 
     (instance (rename i0 "reg_output(2)") (viewRef INTERFACE  (cellRef DFFRS 

(libraryRef PRIMITIVES )))) 
     (instance (rename i1 "reg_output(1)") (viewRef INTERFACE  (cellRef DFFRS 

(libraryRef PRIMITIVES )))) 
     (instance (rename i2 "reg_output(0)") (viewRef INTERFACE  (cellRef DFFRS 

(libraryRef PRIMITIVES )))) 
     (instance modgen_add_0 (viewRef INTERFACE  (cellRef add_2u_2u_2u_0 (libraryRef 

OPERATORS )))) 
 
                                                 (9) 
 
     (net (rename n0 "in0(1)")  
      (joined  
       (portRef (member in0 0)) 
       (portRef (member a 0)(instanceRef modgen_add_0 )))) 



     (net (rename n1 "in0(0)")  
      (joined  
       (portRef (member in0 1)) 
       (portRef (member a 1)(instanceRef modgen_add_0 )))) 
     (net (rename n2 "in1(1)")  
      (joined  
       (portRef (member in1 0)) 
       (portRef (member b 0)(instanceRef modgen_add_0 )))) 
     (net (rename n3 "in1(0)")  
      (joined  
       (portRef (member in1 1)) 
       (portRef (member b 1)(instanceRef modgen_add_0 )))) 
     (net clk  
      (joined  
       (portRef clk ) 
       (portRef clk (instanceRef i0 )) 
       (portRef clk (instanceRef i1 )) 
       (portRef clk (instanceRef i2 )))) 
     (net (rename n4 "output(2)")  
      (joined  
       (portRef (member output 0)) 
       (portRef out (instanceRef i0 )))) 
     (net (rename n5 "output(1)")  
      (joined  
       (portRef (member output 1)) 
       (portRef out (instanceRef i1 )))) 
     (net (rename n6 "output(0)")  
      (joined  
       (portRef (member output 2)) 
       (portRef out (instanceRef i2 )))) 
     (net (rename n7 "sum(1)")  
      (joined  
       (portRef (member d 0)(instanceRef modgen_add_0 )) 
       (portRef in (instanceRef i1 )))) 
     (net (rename n8 "sum(0)")  
      (joined  
       (portRef (member d 1)(instanceRef modgen_add_0 )) 
       (portRef in (instanceRef i2 )))) 
     (net GND  
      (joined                                
       (portRef out (instanceRef ix1 ))   (10) 
       (portRef set (instanceRef i0 )) 
       (portRef reset (instanceRef i0 )) 
       (portRef set (instanceRef i1 )) 
       (portRef reset (instanceRef i1 )) 
       (portRef set (instanceRef i2 )) 
       (portRef reset (instanceRef i2 )) 
       (portRef cin (instanceRef modgen_add_0 )))) 
     (net (rename n9 "sum(2)")  
      (joined  
       (portRef cout (instanceRef modgen_add_0 )) 
       (portRef in (instanceRef i0 )))))))) 
(design example_for_DRUID (cellRef example_for_DRUID (libraryRef work )))) (11) 
 
Arrows (1a, 1b, 1c, 1d and 1e) show the appropriate changes in the italicized names 

that are going to be made according to the cell and library naming described above. 
The signal vector changes are performed to 7a, 7b and 7c that indicate which signal 
arrays are unfolded to simple signals and 9 shows the point where renaming will take 
place and are going to be changed the signals whose name appears after the word 
“member”. Function “rename” will also partially affect 7a, 7b, 7c and 8. 

Once cell DFFRS (3) is found after the declaration of library PRIMITIVES (1b), 
DRUID can either add at (6) the equivalent circuit named “DFF_SETRESET” or remove 
the set and reset signals. In either case cell DFFRS at (3) will be replaced by cell DFF. 
In this case, the second choice is preferable because these two signals are 
deactivated. Thus, they are erased from the cell GND at (10). It must be noted that 
because the substitution of cell DFFRS by cell DFF will also happen at (8).  

Once DRUID comes across library OPERATORS (point 4) the cell which is named 
“add_2u_2u_2u_0” (at point 5a), it becomes evident from (5b) that this cell describes 
an adder of two 2-bit signals (5c) that represent unsigned numbers (5d). Then in 
position (6) DRUID is going to add the architecture of an adder named “adder_gen_2”. 



The name “add_2u_2u_2u_0” will be substituted by the name of the new cell (8).  
The signature of the input EDIF file (2) is also altered, and the last line of the file 

deleted (11). 
The output EDIF file is shown below. The changed parts are in italics and the arrows 

are still in place in order to facilitate the comparison of the two EDIF files. The only 
remark is that three more cells are added to library PRIMLIB (1b) because cell 
“adder_gen_2” is used. 

 
(edif netlist    (1a) 
 
 (edifVersion 2 0 0)   (2) 
 (edifLevel 0)  
 (keywordMap (keywordLevel 0))  
 (status  
  (written  
  (timeStamp 1977 07 12 00 15 00)  
  (program" DRUID - DemocRitus University edIf to eDif converter" (version"   v2.1"))  
  (author" VLSI Design and Testing Laboratory - Democritus University of Thrace - 
HELLAS")))  

 
 (external PRIMLIB  (1b) 
 
  (edifLevel 0)  
  (technology (numberDefinition))  
 
  (cell XOR3 (cellType GENERIC)  
   (view INTERFACE (viewType NETLIST)  
    (interface  
     (port out (direction OUTPUT))  
     (port in2 (direction INPUT))  
     (port in1 (direction INPUT))  
     (port in0 (direction INPUT)))))  
  (cell AND2 (cellType GENERIC)  
   (view INTERFACE (viewType NETLIST)  
    (interface  
     (port in0 (direction INPUT))  
     (port in1 (direction INPUT))  
     (port out (direction OUTPUT)))))  
  (cell OR3 (cellType GENERIC)  
   (view INTERFACE (viewType NETLIST)  
    (interface  
     (port out (direction OUTPUT))  
     (port in2 (direction INPUT))  
     (port in1 (direction INPUT))  
     (port in0 (direction INPUT)))))  
 
  (cell FALSE (cellType GENERIC)  
   (view INTERFACE (viewType NETLIST)  
    (interface  
     (port out (direction OUTPUT)))))  
 
  (cell DFF (cellType GENERIC)   (3) 
   (view INTERFACE (viewType NETLIST)  
    (interface  
     (port in (direction INPUT))  
     (port clk (direction INPUT))  
     (port out (direction OUTPUT)))))  
 )  
 (library OPERATORS  (4) 
   (edifLevel 0)  
   (technology (numberDefinition))  
 )  
 (library USER_LIB  (1c)  
 
  (edifLevel 0)  
  (technology  
  (numberDefinition)  
 
  (simulationInfo  
  (logicValue H (booleanMap (true)))  
  (logicValue L (booleanMap (false))))) 
                                      (6) 
  (cell adder_gen_2 (cellType GENERIC)  



   (view rtl_adder (viewType NETLIST)  
    (interface  
     (port cin (direction INPUT))  
     (port a_0 (direction INPUT))  
     (port a_1 (direction INPUT))  
     (port b_0 (direction INPUT))  
     (port b_1 (direction INPUT))  
     (port d_0 (direction OUTPUT))  
     (port d_1 (direction OUTPUT))  
     (port cout (direction OUTPUT)))  
    (contents  
     (instance and2_0_adder_2_1 (viewRef INTERFACE (cellRef AND2 (libraryRef 

PRIMLIB))))  
     (instance and2_0_adder_2_2 (viewRef INTERFACE (cellRef AND2 (libraryRef 

PRIMLIB))))  
     (instance and2_0_adder_2_3 (viewRef INTERFACE (cellRef AND2 (libraryRef 

PRIMLIB))))  
     (instance or3_0_adder_2 (viewRef INTERFACE (cellRef OR3 (libraryRef PRIMLIB))))  
     (instance xor3_0_adder_2 (viewRef INTERFACE (cellRef XOR3 (libraryRef 

PRIMLIB))))  
     (instance and2_1_adder_2_1 (viewRef INTERFACE (cellRef AND2 (libraryRef 

PRIMLIB))))  
     (instance and2_1_adder_2_2 (viewRef INTERFACE (cellRef AND2 (libraryRef 

PRIMLIB))))  
     (instance and2_1_adder_2_3 (viewRef INTERFACE (cellRef AND2 (libraryRef 

PRIMLIB))))  
     (instance or3_1_adder_2 (viewRef INTERFACE (cellRef OR3 (libraryRef PRIMLIB))))  
     (instance xor3_1_adder_2 (viewRef INTERFACE (cellRef XOR3 (libraryRef 

PRIMLIB))))  
     (net cin_adder_gen_2  
      (joined  
       (portRef cin)  
       (portRef in1 (instanceRef and2_0_adder_2_2))  
       (portRef in1 (instanceRef and2_0_adder_2_3))  
       (portRef in2 (instanceRef xor3_0_adder_2))))  
     (net a_0_adder_gen_2  
      (joined  
       (portRef a_1)  
       (portRef in0 (instanceRef and2_0_adder_2_1))  
       (portRef in0 (instanceRef and2_0_adder_2_2))  
       (portRef in0 (instanceRef xor3_0_adder_2))))  
     (net a_1_adder_gen_2  
      (joined  
       (portRef a_0)  
       (portRef in0 (instanceRef and2_1_adder_2_1))  
       (portRef in0 (instanceRef and2_1_adder_2_2))  
       (portRef in0 (instanceRef xor3_1_adder_2))))  
     (net b_0_adder_gen_2  
      (joined  
       (portRef b_1)  
       (portRef in1 (instanceRef and2_0_adder_2_1))  
       (portRef in0 (instanceRef and2_0_adder_2_3))  
       (portRef in1 (instanceRef xor3_0_adder_2))))  
     (net b_1_adder_gen_2  
      (joined  
       (portRef b_0)  
       (portRef in1 (instanceRef and2_1_adder_2_1))  
       (portRef in0 (instanceRef and2_1_adder_2_3))  
       (portRef in1 (instanceRef xor3_1_adder_2))))  
     (net d_0_adder_gen_2  
      (joined  
       (portRef d_1)  
       (portRef out (instanceRef xor3_0_adder_2))))  
     (net d_1_adder_gen_2  
      (joined  
       (portRef d_0)  
       (portRef out (instanceRef xor3_1_adder_2))))  
     (net intern_a0_adder_gen_2  
      (joined  
       (portRef out (instanceRef and2_0_adder_2_1))  
       (portRef in0 (instanceRef or3_0_adder_2))))  
     (net intern_b0_adder_gen_2  
      (joined  
       (portRef out (instanceRef and2_0_adder_2_2))  
       (portRef in1 (instanceRef or3_0_adder_2))))  
     (net intern_c0_adder_gen_2  
      (joined  



       (portRef out (instanceRef and2_0_adder_2_3))  
       (portRef in2 (instanceRef or3_0_adder_2))))  
     (net intern_a1_adder_gen_2  
      (joined  
       (portRef out (instanceRef and2_1_adder_2_1))  
       (portRef in0 (instanceRef or3_1_adder_2))))  
     (net intern_b1_adder_gen_2  
      (joined  
       (portRef out (instanceRef and2_1_adder_2_2))  
       (portRef in1 (instanceRef or3_1_adder_2))))  
     (net intern_c1_adder_gen_2  
      (joined  
       (portRef out (instanceRef and2_1_adder_2_3))  
       (portRef in2 (instanceRef or3_1_adder_2))))  
     (net intern_carry_0_adder_gen_2  
      (joined  
       (portRef out (instanceRef or3_0_adder_2))  
       (portRef in1 (instanceRef and2_1_adder_2_2))  
       (portRef in1 (instanceRef and2_1_adder_2_3))  
       (portRef in2 (instanceRef xor3_1_adder_2))))  
     (net cout_adder_gen_2  
      (joined  
       (portRef cout)  
       (portRef out (instanceRef or3_1_adder_2)))))))  
 
 
 (cell TOP (cellType GENERIC)      (1d) 
  (view netlist (viewType NETLIST)  (1e) 
   
   (interface  
    (port in0_0 (direction INPUT))  (7a) 
    (port in0_1 (direction INPUT))  
    (port in1_0 (direction INPUT))     (b) 
    (port in1_1 (direction INPUT))  
    (port clk (direction INPUT))  
    (port output_0 (direction OUTPUT))  (7c) 
    (port output_1 (direction OUTPUT))  
    (port output_2 (direction OUTPUT))  
 
    )  
    (contents  
                                                                        (8)    
     (instance ix1 (viewRef INTERFACE (cellRef FALSE (libraryRef PRIMLIB))))  
     (instance i0 (viewRef INTERFACE (cellRef DFF (libraryRef PRIMLIB))))  
     (instance i1 (viewRef INTERFACE (cellRef DFF (libraryRef PRIMLIB))))  
     (instance i2 (viewRef INTERFACE (cellRef DFF (libraryRef PRIMLIB))))  
     (instance modgen_add_0 (viewRef rtl_adder (cellRef adder_gen_2 (libraryRef 

USER_LIB))))  
                                                 (9) 
     (net n0  
      (joined  
       (portRef in0_0)  
       (portRef a_0 (instanceRef modgen_add_0))))  
     (net n1  
      (joined  
       (portRef in0_1)  
       (portRef a_1 (instanceRef modgen_add_0))))  
     (net n2  
      (joined  
        (portRef in1_0)  
        (portRef b_0 (instanceRef modgen_add_0))))  
     (net n3  
      (joined  
       (portRef in1_1)  
       (portRef b_1 (instanceRef modgen_add_0))))  
     (net clk  
      (joined  
       (portRef clk)  
       (portRef clk (instanceRef i0))  
       (portRef clk (instanceRef i1))  
       (portRef clk (instanceRef i2))))  
     (net n4  
      (joined  
       (portRef output_0)  
       (portRef out (instanceRef i0))))  
     (net n5  



      (joined  
       (portRef output_1)  
       (portRef out (instanceRef i1))))  
     (net n6  
      (joined  
       (portRef output_2)  
       (portRef out (instanceRef i2))))  
     (net n7  
      (joined  
       (portRef d_0 (instanceRef modgen_add_0))  
       (portRef in (instanceRef i1))))  
     (net n8  
      (joined  
       (portRef d_1 (instanceRef modgen_add_0))  
       (portRef in (instanceRef i2))))  
     (net GND  
      (joined  
       (portRef out (instanceRef ix1))  (10)  
       (portRef cin (instanceRef modgen_add_0))))  
     (net n9  
      (joined  
       (portRef cout (instanceRef modgen_add_0))  
       (portRef in (instanceRef i0))))))))  
                                     (11) 

 
Future work 

Alternative modules can be used for substituting the adder cell that is instantiated in 
the input EDIF file such as carry-lookahead adders. Additionally, DRUID can be 
modified to support EDIF files created by other synthesis tools. 

 
 

INPUT EDIF format generic netlist (LEONARDO type) 
OUTPUT EDIF format generic netlist (E2FMT compatible) 
LIMITATIONS Other generic EDIF format netlists not currently 

supported 
 


