
User Manual for STABLE 5.1
Signal Filtering Module 1.1

matlab Version

Abstract

This manual gives information about the STABLE library, which computes basic quantities for univari-
ate stable distributions: densities, cumulative distribution functions, quantiles, and simulation. Statistical
routines are given for fitting stable distributions to data and assessing the fit. Utility routines give in-
formation about the program and perform related calculations. Quick spline approximations of the basic
functions are provided. Densities, cumulative distribution functions and simulation for discrete/quantized
stable distributions are described.

The multivariate module gives functions to compute bivariate stable densities, simulate stable random
vectors, and fit bivariate stable data. In the radially symmetric case, the amplitude densities, cumulative
distribution functions, quantiles are computed for dimension up to 100.

The signal filtering module includes functions to compute non-linear filters for signals with heavy tailed
noise. Specifically, a novel stable filter based on stably distributed noise is implemented.

c©2002-2009 by Robust Analysis, Inc.
6618 Allegheny Avenue

Takoma Park, MD 20912-4616 USA
phone and fax: 301.891.8484

www.RobustAnalysis.com
Revised 9 July 2009 (processed July 11, 2009)

1

STABLE User Manual 2

Contents
1 Univariate Stable Introduction 5

2 Univariate Stable Functions 5
2.1 Basic functions . 5

2.1.1 Stable densities . 5
2.1.2 Stable distribution functions . 6
2.1.3 Stable quantiles . 6
2.1.4 Simulate stable random variates . 6
2.1.5 Stable hazard function . 6
2.1.6 Derivative of stable densities . 6
2.1.7 Second derivative of stable densities . 7
2.1.8 Stable score/nonlinear function . 7

2.2 Statistical functions . 7
2.2.1 Estimating stable parameters . 7
2.2.2 Maximum likelihood estimation . 7
2.2.3 Maximum likelihood estimation with restricted parameters 7
2.2.4 Maximum likelihood estimation with search control 8
2.2.5 Quantile based estimation . 8
2.2.6 Empirical characteristic function estimation . 8
2.2.7 Fractional moment estimation . 8
2.2.8 Log absolute moment estimation . 8
2.2.9 Quantile based estimation, version 2 . 8
2.2.10 U statistic based estimation . 9
2.2.11 Confidence intervals for ML estimation . 9
2.2.12 Information matrix for stable parameters . 9
2.2.13 Log-likelihood computation . 9
2.2.14 Chi-squared goodness-of-fit test . 9
2.2.15 Kolmogorov-Smirnov goodness-of-fit test . 9
2.2.16 Likelihood ratio test . 10
2.2.17 Stable regression . 10
2.2.18 Stable regression: profile likelihood parameter confidence intervals 11

2.3 Informational/utility functions . 11
2.3.1 Version information . 11
2.3.2 Modes of stable distributions . 12
2.3.3 Set internal tolerance . 12
2.3.4 Get internal tolerance . 12
2.3.5 Convert between parameterizations . 12
2.3.6 Omega function . 13

2.4 Series approximations to basic distribution functions . 13
2.4.1 Series approximation of stable pdf around the origin 13
2.4.2 Series approximation of stable cdf around the origin 13
2.4.3 Series approximation of stable pdf at the tail . 13
2.4.4 Series approximation of stable cdf at the tail . 13

2.5 Faster approximations to basic functions . 14
2.5.1 Quick stable density computation . 14
2.5.2 Quick stable cumulative computation . 14
2.5.3 Quick stable log pdf computation . 14
2.5.4 Quick stable quantile computation . 14
2.5.5 Quick stable hazard function computation . 14
2.5.6 Quick stable likelihood computation . 14
2.5.7 Quick stable score/nonlinear function . 15

2.6 Discrete stable distributions . 15

STABLE User Manual 3

2.6.1 Discrete stable density . 15
2.6.2 Quick discrete stable density . 15
2.6.3 Discrete stable cumulative distribution function . 15
2.6.4 Quick discrete stable cumulative distribution function 15
2.6.5 Simulate discrete stable random variates . 16
2.6.6 Simulate discrete stable random variates with specified saturation probability 16
2.6.7 Find scale γ to have a specified saturation probability for a discrete stable distribution 16
2.6.8 Discrete maximum likelihood estimation . 16

3 Multivariate Stable Introduction 17

4 Multivariate Stable Functions 18
4.1 Define multivariate stable distribution . 18

4.1.1 Independent components . 19
4.1.2 Isotropic stable . 19
4.1.3 Elliptical stable . 19
4.1.4 Discrete spectral measure . 19
4.1.5 Discrete spectral measure in 2 dimensions . 20
4.1.6 Undefine a stable distribution . 20

4.2 Basic functions . 20
4.2.1 Density function . 20
4.2.2 Cumulative function . 20
4.2.3 Cumulative function (Monte Carlo) . 21
4.2.4 Multivariate simulation . 21
4.2.5 Find a rectangle with probability at least p . 21

4.3 Statistical functions . 21
4.3.1 Estimate a discrete spectral measure - fit a stable distribution to bivariate data 21
4.3.2 Estimate parameter functions . 21
4.3.3 Fit an elliptical stable distribution to multivariate data 22

4.4 Amplitude distribution . 22
4.4.1 Amplitude cumulative distribution function . 22
4.4.2 Amplitude density . 22
4.4.3 Amplitude quantiles . 22
4.4.4 Simulate amplitude distribution . 22
4.4.5 Fit amplitude data . 22
4.4.6 Amplitude score function . 23

4.5 Faster approximations to multivariate routines . 23
4.5.1 Quick log-likelihood for bivariate isotropic case . 23
4.5.2 Quick amplitude density in bivariate case . 23

4.6 Bivariate discrete stable distribution . 23
4.6.1 Discrete bivariate density . 24

4.7 Multivariate informational/utility functions . 24
4.7.1 Information about a distribution . 24
4.7.2 Compute projection parameter functions . 24
4.7.3 Multivariate convert parameterization . 24

5 Signal Filtering Introduction 25
5.1 The filter information structure . 26

6 Signal Filtering Functions 27
6.1 Filter functions . 27

6.1.1 Stable Signal filtering . 27
6.1.2 Mean filter . 28
6.1.3 Median filter . 28
6.1.4 Myriad filter . 28

STABLE User Manual 4

6.1.5 Selection filter . 29
6.1.6 Stable filter . 29

6.2 Cost functions . 29
6.2.1 Cost function vectorized . 29
6.2.2 Cost function at a single point . 29

7 Error/return codes 30

References 32

Index 32

STABLE User Manual 5

1 Univariate Stable Introduction
Stable distributions are a class of probability distributions that generalize the normal distribution. Stable
distributions are a four parameter family: α is the tail index, or index of stability, and is in the range 0 <
α ≤ 2, β is a skewness parameter and is in the range −1 ≤ β ≤ 1, γ is a scale parameter and must
be positive, and δ is a location parameter, an arbitrary real number. There are numerous meanings for these
parameters. We will focus on two here, which we call the 0-parameterization and the 1-parameterization. The
STABLE programs use a variable param to specify which of these parameterizations to use. If you are only
concerned with symmetric stable distributions, the two parameterizations are identical. For non-symmetric
stable distributions, we recommend using the 0-parameterization for most statistical problems, and only using
the 1-parameterization in special cases, e. g. the one sided distributions when α < 1 and β = ±1.

Since there are no formulas for the density and distribution function of a general stable law, they are
described in terms of their characteristic function (Fourier transform). A random variable X is S(α, β, γ, δ; 0)
if it has characteristic function

E exp(iuX) =
{

exp
(−γα|u|α [

1 + iβ(tan πα
2)(sign u)(|γu|1−α − 1)

]
+ iδu

)
α 6= 1

exp
(−γ|u| [1 + iβ 2

π (sign u) ln(γ|u|)] + iδu
)

α = 1.
(1)

A random variable X is S(α, β, γ, δ; 1) if it has characteristic function

E exp(iuX) =
{

exp
(−γα|u|α [

1− iβ(tan πα
2)(sign u)

]
+ iδu

)
α 6= 1

exp
(−γ|u| [1 + iβ 2

π (signu) ln |u|] + iδu
)

α = 1.
(2)

Note that if β = 0, then these two parameterizations are identical, it is only when β 6= 0 that the asymmetry
term (the imaginary factor involving tan πα

2 or 2
π) becomes relevant. More information on parameterizations

and about stable distributions in general can be found at http://academic2.american.edu/
∼jpnolan, which has a draft of the first chapter of Nolan (2010).

The next section gives a description of the different functions in STABLE.

2 Univariate Stable Functions
Interfaced STABLE functions require input variables, and return the results of the computations. The interface
computes the lengths of all arrays, specifies default values for some of the variables in some case, and handles
return codes and results.

The parameters of the stable distribution must be specified. In matlab, the 4 stable parameters
are passed in a vector theta=(alpha,beta,gamma,delta): the index of stability alpha must be
specified; if fewer than four values are supplied, the omited values are replaced with defaults (0 for skewness
beta, 1 for scale gamma and 0 for location delta).

The STABLE interface prints an error message when an error occurs. If an error occurs, execution is
aborted; if a warning occurs, execution continues.

There is basic help information built into the interfaces. In matlab, type help before the command, e.g.
help stablepdf, to get the function definition.

The STABLE library is not reentrant; on a single computer, only one user should be using the library at
once.

The user should be aware that these routines attempt to calculate quantities related to stable distributions
with high accuracy. Nevertheless, there are times when the accuracy is limited. If α is small, the pdf and cdf
have very abrupt changes and are hard to calculate. When some quantity is small, e.g. the cdf of the light
tail of a totally skewed stable distribution, the routines may only be accurate to approximately ten decimal
places.

The remainder of this section is a description of the functions in the STABLE library.

2.1 Basic functions
2.1.1 Stable densities

matlab function: stablepdf(x,theta,param)

STABLE User Manual 6

This function computes stable density functions (pdf): yi = f(xi) = f(xi|α, β, γ, δ;param), i =
1, . . . , n. The algorithm is described in Nolan (1997).

2.1.2 Stable distribution functions

matlab function: stablecdf(x,theta,param)

This function computes stable cumulative distribution functions (cdf): yi = F (xi) = F (xi|α, β, γ, δ;param),
i = 1, . . . , n. The algorithm is described in Nolan (1997).

2.1.3 Stable quantiles

matlab function: stableinv(p,theta,param)

This function computes stable quantiles, the inverse of the cdf: xi = F−1(pi), i = 1, . . . , n. The
quantiles are found by numerically inverting the cdf.

Note that extreme upper tail quantiles may be hard to find because of subtractive cancelation: in double
precision arithmetic 1 − p and 1 are indistinguishable for small p (less than approximately10−15), STABLE
will (correctly) return F−1(1 − p) = F−1(1) = +∞ for most values of α and β. You can get better
accuracy on the lower tails, where there is no subtractive cancelation: use the reflection property F (x|α, β) =
1− F (−x|α,−β).

Also note that the accuracy of the inversion is determined by two internal tolerances. (See Section 2.3.3.)
(1) tolerance 10 is used to limit how low a quantile can be searched for. The default value is p = 10−10:
quantiles below p will be set to the left endpoint of the support of the distribution, which may be −∞.
Likewise, quantiles above 1− p will be set to the right endpoint of the support of the distribution, which may
be +∞. (2) tolerance 2 is the relative error used when searching for the quantile. The search tries to get full
precision, but if it can’t, it will stop when the relative error is less than tolerance 2.

2.1.4 Simulate stable random variates

matlab function: stablernd(n,theta,param)

This function simulates n stable random variates: x1, x2, . . . , xn with parameters (α, β, γ, δ) in parame-
terization param. It is based on Chambers et al. (1976).

2.1.5 Stable hazard function

matlab function: stablehazard(x,theta,param)

This function computes the hazard function for a stable distribution: hi = f(xi)/(1 − F (xi)), i =
1, . . . , n.

2.1.6 Derivative of stable densities

matlab function: stablepdfderiv(x,theta,param)

This function computes the derivative of stable density functions: yi = f ′(xi) = f ′(xi|α, β, γ, δ;param),
i = 1, . . . , n.

STABLE User Manual 7

2.1.7 Second derivative of stable densities

matlab function: stablepdfsecondderiv(x,theta,param)

This function computes the second derivative of stable density functions: yi = f ′′(xi) = f ′′(xi|α, β, γ, δ;param),
i = 1, . . . , n.

2.1.8 Stable score/nonlinear function

matlab function: stablenonlinfn(x,theta,param)

This function computes the score or nonlinear function for a stable distribution: g(x) = −f ′(x)/f(x) =
−(d/dx) ln f(x). The routine uses stablepdf to evaluate f(x) and numerically evaluates the derivative
f ′(x). Warning: this routine will give unpredictable results when β = ±1. The problems occur where
f(x) = 0 is small; in this region calculations of both f(x) and f ′(x) are of limited accuracy and their ratio
can be very unreliable.

2.2 Statistical functions
2.2.1 Estimating stable parameters

matlab function: stablefit(x,method,param)

Estimate stable parameters from the data in x1, . . . , xn, using method as described in the following
table. This routine calls one of the functions described below to do the actual estimation.

method value algorithm notes
1 maximum likelihood α ≥ 0.4
2 quantile α ≥ 0.1
3 empirical characteristic function α ≥ 0.1
4 fractional moment α ≥ 0.4 , β = 0, uses power p = 0.2
5 log absolute moment β = δ = 0
6 modified quantile α ≥ 0.4
7 U statistic method β = δ = 0

Note that the fractional moment and log absolute moment methods do not work when there are zeros in the
data set.

2.2.2 Maximum likelihood estimation

matlab function: stablefitmle(x,param)

Estimate the stable parameters for the data in x1, . . . , xn, in parameterization param using maximum
likelihood estimation. The likelihood is numerically evaluated and maximized using an optimization routine.
This program and the numerical computation of confidence intervals below are described in Nolan (2001).
For speed reasons, the quick log likelihood routine is used to approximate the likelihood; this is where the
restriction α ≥ 0.4 comes from.

2.2.3 Maximum likelihood estimation with restricted parameters

matlab function: stablefitmlerestricted(x,theta,param,restriction)

This is a modified version of maximum likelihood estimation, where some parameters can be estimated
while the others are restricted to a fixed value. The function receives theta = {alpha, beta, gamma, delta} and
if restriction[i] = 1, then theta[i] is fixed.

STABLE User Manual 8

2.2.4 Maximum likelihood estimation with search control

matlab function: not implemented in matlab

This is maximum likelihood estimation with greater control over the search and ranges for the parameters.
It is used internally.

2.2.5 Quantile based estimation

matlab function: stablefitquant(x,param)

Estimate stable parameters for the data in x, using the quantile based on the method of McCulloch (1986).
It sometimes has problems when α is small, say α < 1/2, and the data is highly skewed. Try the modified
version below in such cases.

2.2.6 Empirical characteristic function estimation

matlab function: stablefitecf(x,gamma0,delta0,param)

Estimate stable parameters for the data in x using the empirical characteristic function based method
of Koutrovelis-Kogon-Williams, described in Kogon and Williams (1998). An initial estimate of the scale
gamma0 and the location delta0 are needed to get accurate results. We recommend using the quantile
based estimates of these parameters as input to this routine.

2.2.7 Fractional moment estimation

matlab function: no direct interface, use stablefit with method=4

Estimate stable parameters for the data in x, using the fractional moment estimator as in Nikias and Shao
(1995). This routine only works in the symmetric case, it will always return β = 0 and δ = 0. In this case the
0-parameterization coincides with the 1-parameterization, so there is no need to specify parameterization. p
is the fractional moment power used. A reasonable default value is p = 0.2; take p < α/2 to get reasonable
results.

This method does not work if there are zeros in the data set - negative sample moments do not exist.
Remove zero values (and possibly values close to 0) from the data set if you want to use this method.

2.2.8 Log absolute moment estimation

matlab function: no direct interface, use stablefit with method=5

Estimate stable parameters for the data in x, using the log absolute moment method as in Nikias and Shao
(1995). This routine only works in the symmetric case, it will always return β = 0 and δ = 0. In this case the
0-parameterization coincides with the 1-parameterization, so there is no need to specify parameterization.

The log absolute moment method does not work when there are zeros in the data set, because log |x| is
undefined when x is 0. Remove zero values (and possibly values close to 0) from the data set if you want to
use this method.

2.2.9 Quantile based estimation, version 2

matlab function: no direct interface, use stablefit with method=6

Estimate stable parameters for the data in x, using a modified quantile method of Nolan (2010). It should
work for any values of the parameters, but some extreme values are inaccurate.

STABLE User Manual 9

2.2.10 U statistic based estimation

matlab function: no direct interface, use stablefit with method=7

Estimate stable parameters for the data in x, using the method of Fan (2006). It only works for the
symmetric case.

2.2.11 Confidence intervals for ML estimation

matlab function: stablefitmleci(theta,n,z)

This routine finds confidence intervals for maximum likelihood estimators of all four stable parame-
ters. The routine returns a vector sigtheta of half widths of the confidence interval for each param-
eter. These values depend on the confidence level you are seeking, specified by z, and the size of the
sample n. The z value is the standard critical value from a normal distribution, i.e. use z = 1.96 for a
95% confidence interval. For example, the point estimate of α is theta[1], and the confidence inter-
val is theta[1]±sigtheta[1]. For β, the confidence interval is theta[2]±sigtheta[2], for
γ, the confidence interval is theta[3]±sigtheta[3], For δ, the confidence interval is theta[4] ±
sigtheta[4]. These values do not make sense when a parameter is at the boundary of the parameter
space, e.g. α = 2 or β = ±1.

These values are numerically approximated using a grid of numerically computed values in Nolan (2001).
The values have limited accuracy, especially when α ≤ 1.

2.2.12 Information matrix for stable parameters

matlab function: stablemleinfomatrix(theta)

Returns the 4 × 4 information matrix for maximum likelihood estimation of the stable parameters for
parameter values theta. This is done in the continuous 0-parameterization. These are approximate values,
interpolated from a grid of numerically computed values in Nolan (2001) for α ≥ 0.5. The values have
limited accuracy, especially when α ≤ 1.

2.2.13 Log-likelihood computation

matlab function: stableloglik(x,theta,param)

Compute the log-likelihood of the data, assuming an underlying stable distribution with the specified
parameters.

2.2.14 Chi-squared goodness-of-fit test

matlab function: stablechisq(x,theta,nclasses,param)

Compute chi-squared goodness-of-fit statistic for the data in x1, . . . , xn using nclass equally probable
classes/bins.

2.2.15 Kolmogorov-Smirnov goodness-of-fit test

matlab function: stableksgof(x,theta,method,param)

This function computes the Kolmogorov-Smirnov two-sided test statistic:

D = sup
−∞<x<∞

|F (x)− F̂ (x)|,

STABLE User Manual 10

where F (·) is the stable cdf with parameters α = theta[1], β = theta[2], γ = theta[3],
δ = theta[4] and F̂ (·) is the sample cdf of the data in x. Use method=0 for quick computations
(stableqkcdf is used to compute cdf), use method=1 for slower computations (stablecdf is used to
compute cdf). The routine returns the observed value of D and an estimate of the tail probability P (D > d),
i.e. the significance level of the test. This tail probability is calculated using Stephen’s approximation to the
limiting distribution, e.g. (n1/2 + 0.12 + 0.11n−1/2)D is close to the limiting Smirnov distribution. This is
close to n1/2D for large n, and a better approximation on the tails for small n. Note, this calculation is not
very accurate if the tail probability is large, but these cases aren’t of much interest in a goodness-of-fit test.
(If you don’t like this approximation, the function returns D, and you can compute your own tail probability.)
WARNING: the computation of the significance level is based on the assumption that the parameter values
theta=(α, β, γ, δ) were chosen independently of the data. If the parameters were estimated from the data,
then this tail probability will be an overestimate of the significance level.

2.2.16 Likelihood ratio test

matlab function: stablelrt(x,alphabnds,betabnds)

This function computes the likelihood ratio L0/L1, where L0 is the maximum likelihood of the data x
under the assumption that x is an i.i.d. sample from a stable distribution with α and β restricted to the range
abnd[1] ≤ α ≤ abnd[2] and bbnd[1] ≤ β ≤ bbnd[2], and L1 is the maximum likelihood of the
data under an unrestricted stable model. The function computes the maximum likelihood using the quick
approximation to stable likelihoods, so is limited to α in the range [0.4,2].

The vector results will contain the results of the computations:

results[1] = ratio of the likelihoods
results[2] = -2*log(ratio of likelihoods)
results[3] = log likelihood of the data for the restricted H0
results[4] = log likelihood of the data for the unrestricted H1
results[5] = estimated value of alpha under H0
results[6] = estimated value of beta under H0
results[7] = estimated value of gamma under H0
results[8] = estimated value of delta under H0
results[9] = estimated value of alpha without assuming H0
results[10] = estimated value of beta without assuming H0
results[11] = estimated value of gamma without assuming H0
results[12] = estimated value of delta without assuming H0

Note that under the standard assumptions, results[2] converges to a chi-squared distribution with
d.f. = (# free parameters in H1 parameter space - # free parameters in H0 parameter space) as the sample size
tends to ∞.

For example, to compute the likelihood ratio test for the null hypothesis H0: data comes from a normal
distribution vs H1: data comes from stable distribution, use abnd=(2,2) and bbnd=(0,0), in which case
results[2] will have 2 d.f. To test H0: data comes from a symmetric stable distribution vs H1: data
comes from a general stable distribution, use abnd=(0.4,2) and bbnd=(0,0), in which case results[2]
will have 3 d.f.

2.2.17 Stable regression

matlab function: stableregression(x,y,trimprob,symmetric)

Computes regression coefficients b1, b2, . . . , bk for the problem

yi = b1xi,1 + b2xi,2 + · · ·+ bkxi,k + ei, i = 1, . . . , n

STABLE User Manual 11

where the error term ei has a stable distribution. In matrix form, the equation is y = Xb + e. The algorithm
is described in Nolan and Ojeda (2006).

y is a vector of length n of observed responses. x is a n × k matrix, with the columns of x representing
the variables and the rows representing the different observations. NOTE: if you want an intercept term, you
must include a column of ones in the x matrix. Typically one sets the first column of x to ones, and then b1

is the intercept.
trimprob is a vector of length 2, e.g. (0.1,0.9), which gives the lower and upper quantiles for the

trimmed regression. (Trimmed regression trims off extreme values and then performs ordinary least squares
regression. The resulting coefficients are used to get an initial estimate of the stable regression coefficients.)
symmetric can be used to force the fitting program to assume symmetry in the error terms ei.

The interfaced versions of this function returns a structure with different fields.

• b is the vector of coefficients

• binit is the initial vector of coefficients from the trimmed regression

• alpha,beta,gamma,delta are the stable parameters estimated from the residuals. They can be
regarded as nuisance parameters if you only care about the coefficients. Note that all parameters are in
the 0-parameterization. You can convert to another representation using the convert parameterization
function in Section 2.3.5.

Note that in the non-Gaussian stable case, some of the traditional assumptions in regression are no longer
true. In particular, it is NOT always the case that Eei = 0. First, if α ≤ 1, the heavy tails will mean that Eei

is undefined. Second, in the non-symmetric case, β 6= 0, even if α > 1, we do not require Eei = 0. Instead,
we set delta so that the mode of ei is zero. The reason for this is to make the regression line go through the
center of the data points.

2.2.18 Stable regression: profile likelihood parameter confidence intervals

matlab function: not implemented in matlab

Compute confidence intervals for regression parameters. This function uses profile likelihood for the
specific data set to compute confidence intervals for each parameter, including the stable parameters α, β and
γ as well as the regression coefficients b1, . . . , bk. It is assumed that the user has already called the regression
routine:

fit <- stable.regression(x,y,trimprob)
stable.regression.profile.likelihood(fit,x,y)

There are two optional arguments: p.value to specify the significance level (default p.value=0.05 gives
95% confidence intervals), and show.plots is a Boolean used to determine if plots of the profile likeli-
hoods are shown for each parameter.

2.3 Informational/utility functions
2.3.1 Version information

matlab function: stableversion

This functions returns information of the version of STABLE that is being used. The values are:

vinfo[1]= major version number
vinfo[2]= minor version number
vinfo[3]= modification number
vinfo[4]= year of release
vinfo[5]= month of release

STABLE User Manual 12

vinfo[6]= day of release
vinfo[7]= internal serial number

For example, the values “4 0 2 2005 9 15 123” mean that you are using version 4.0.2 of STABLE, which
was released on 2005/9/15, with serial number 123.

nv is the length of the integer array vinfo. If nv is more than 7, other information may be filled into
the vinfo array.

2.3.2 Modes of stable distributions

matlab function: stablemode(theta,param)

Returns the mode of a S(α = theta[1], β = theta[2], γ = theta[3], δ = theta[4];param)
distribution. If β 6= 0, the mode is determined by a numerical search of the pdf.

2.3.3 Set internal tolerance

matlab function: stablesettolerance(inum,value)

Sets the value of an internal variable that is used during computations. You change these values at your
own risk: computation times can become very long and some choices of the parameters can cause infinite
loops.

inum meaning
-1 enable internal warning messages (Warning: this will not

work when used from R, Mathematica or matlab.)
0 relative error for pdf numerical integration
1 relative error for cdf numerical integration
2 relative error for quantile search
3 alpha and beta rounding
4 x tolerance near zeta
5 exponential cutoff
6 peak/strim location tolerance
7 stabletrim tolerance
8 minimum alpha
9 minimum xtol

10 threshold for quantile search
11 x tolerance

2.3.4 Get internal tolerance

matlab function: stablegettolerance(inum)

Returns the value of the internal settings, see the preceding function for the meanings of each variable.

2.3.5 Convert between parameterizations

matlab function: stableconvert(iparam,thetai,jparam)

Convert from the parameters given in theta given in the param-parameterization to the parameters
thetanew given in the newparam-parameterization. Currently param and newparam are restricted to
the values 0,1,2 and 3.

STABLE User Manual 13

2.3.6 Omega function

matlab function: stableomega(u, theta, param)

Compute the function ω(ui|α, β; k), i = 1, . . . , n where

ω(u|α, β; 0) =
{ |u|α [

1 + iβ(tan πα
2)(sign u)(|u|1−α − 1)

]
α 6= 1

|u| [1 + iβ 2
π (signu) ln |u|] α = 1,

(3)

ω(u|α, β; 1) =
{ |u|α [

1− iβ(tan πα
2)(sign u)

]
α 6= 1

|u| [1 + iβ 2
π (signu) ln |u|] α = 1.

These functions are from the characteristic functions of standardized univariate stable distributions: if Z ∼
S (α, β, 1, 0; k), then E exp(iuZ) = exp(−ω(u|α, β; k)). As before, k = 0 or k = 1 correspond to two
different parameterization. The function returns two vectors containing the real and imaginary parts of
ω(u|α, β; k)

2.4 Series approximations to basic distribution functions
These functions use the Bergstrom series for stable densities and cdfs, which are only defined for α 6= 1.

2.4.1 Series approximation of stable pdf around the origin

matlab function: stablepdfseriesorigin(x,nterms,theta,param)

Computes the stable probability distribution function using a series approximation with nterms in it.
This function is best used to calculate the density near the origin in the 1-parameterization. The series is not
defined for α = 1. Note that nterms=1 corresponds to a constant term, nterms=2 corresponds to a linear
term, etc.

2.4.2 Series approximation of stable cdf around the origin

matlab function: stablecdfseriesorigin(x,nterms,theta,param)

Computes the stable cumulative distribution function using a series expansion with nterms in it. This
function is best used to calculate the cdf near the origin in the 1-parameterization. The series is not defined
for α = 1. Note that nterms=1 corresponds to a constant term, nterms=2 corresponds to a linear term,
etc.

2.4.3 Series approximation of stable pdf at the tail

matlab function: stablepdfseriestail(x,nterms,theta,param)

Computes the stable probability distribution function using a series approximation with nterms in it.
This function is best used to calculate points on the tail of a distribution. The series is defined only for x > 0.
(For x < 0, replace x by −x and β by −β. The series is not defined for α = 1.

2.4.4 Series approximation of stable cdf at the tail

matlab function: stablecdfseriestail(x,nterms,theta,param)

Computes the stable cumulative distribution function using a series approximation with nterms in it.
This function is best used to calculate points on the tail of a distribution. The series is defined only for x > 0.
(For x < 0, replace x by −x and β by −β. The series is not defined for α = 1.

STABLE User Manual 14

2.5 Faster approximations to basic functions
The functions described in preceding sections are accurate, but can take a long time to compute. For evalu-
ating a single pdf or cdf at a single set of parameter values, they are fine. However, when the functions must
be evaluated many times, the previous routines are slow. For example, when estimating stable parameters by
maximum likelihood estimation, the likelihood is evaluated at each data point for a large number of parameter
values during the numerical search for the point where the likelihood is maximized. In these cases, speed is
more desirable than great accuracy.

The functions described below are approximations to the functions above, and are based on pre-computed
values using those basic functions. They are designed to evaluate the quantity of interest at many x values
for fixed values of α and β. Each routine has a setup time, and if you change α or β, that setup code must be
rerun. It can be slower to run these routines than the basic routines above if you only want to calculate the
quantity at a few x values. These routines work for 0.2 ≤ α ≤ 2 and all −1 ≤ β ≤ 1.

2.5.1 Quick stable density computation

matlab function: stableqkpdf(x,theta,param)

Call is identical to Section 2.1.1, results are approximately the same.

2.5.2 Quick stable cumulative computation

matlab function: stableqkcdf(x,theta,param)

Call is identical to Section 2.1.2, results are approximately the same.

2.5.3 Quick stable log pdf computation

matlab function: stableqkclogpdf(x,theta,param)

Approximates log(pdf) for stable distributions. Results are approximately the same as log(f(x)).

2.5.4 Quick stable quantile computation

matlab function: stableqkinv(p,theta,param)

Call is identical to Section 2.1.3, but much faster. Note the comments in that section about extreme upper
quantiles.

2.5.5 Quick stable hazard function computation

matlab function: stableqkhazard(x,theta,param)

Call is identical to Section 2.1.5.

2.5.6 Quick stable likelihood computation

matlab function: stableqkloglik(x,theta,param)

Call is identical to Section 2.2.13.

STABLE User Manual 15

2.5.7 Quick stable score/nonlinear function

matlab function: stableqknonlinfn(x,theta,method,param)

This function approximates the score or nonlinear function for a stable distribution: g(x) = −f ′(x)/f(x) =
−(d/dx) ln f(x). The algorithm used depends on the value of method. When method=1, stableqkpdf
is used to compute f(x) and in the numerical evaluation of f ′(x). When method=2, stablescorefn is
used to compute g(x) on a grid, then a spline is fit to those values. The resulting spline is used to approxi-
mate g(x). If n is large, this is noticeably faster than either stablescorefn or method=1 above. When
method=3, a rational function approximation is used to approximate g(x). This is the fastest method, but
the accuracy depends on the values of alpha and beta. If alpha is between 1 and 1.9 and beta is near
0, the approximation is good.

2.6 Discrete stable distributions
Given a stable distribution X ∼ S(α, β, γ, δ;param) and a pair of cutoff values a < b, the random variable

Y = integer part of max(a, min(X, b))

is a discrete stable distribution. These distribution arise in signal processing where a continuous quantity
is quantized/digitized and limited accuracy is kept. It is assumed that the cutoff values are integers. The
saturation probability is P (X < a − 1/2) + P (X > b + 1/2), and is a measure of how much of the
distribution is lost by truncating at the cutoff values. In the routines below, the cutoff is specified by a vector
of length 2: cutoff=(a, b). In this section X will always refer to the continuous stable distribution, while
Y will always refer to a discrete/quantized/integer valued distribution.

In the internal routines, the x values are integers. The matlab/R/Mathematica interfaces use double pre-
cision values.

2.6.1 Discrete stable density

matlab function: stablepdfdiscrete(x,theta,cutoff,param)

Calculates fi = P (Y = xi), i = 1, . . . , n.

2.6.2 Quick discrete stable density

matlab function: stableqkpdfdiscrete(x,theta,cutoff,param)

Calculates fi = P (Y = xi), i = 1, . . . , n. Faster than above, less accurate.

2.6.3 Discrete stable cumulative distribution function

matlab function: stablecdfdiscrete(x,theta,cutoff,param)

Calculates Fi = P (Y ≤ xi), i = 1, . . . , n.

2.6.4 Quick discrete stable cumulative distribution function

matlab function: stableqkcdfdiscrete(x,theta,cutoff,param)

Calculates Fi = P (Y ≤ xi), i = 1, . . . , n. Faster than above, less accurate.

STABLE User Manual 16

2.6.5 Simulate discrete stable random variates

matlab function: stablernddiscrete(n,theta,cutoff,param)

Simulates discrete stable random variates with the specified parameters and cutoffs.

2.6.6 Simulate discrete stable random variates with specified saturation probability

matlab function: stablernddiscrete2(n,theta,cutoff,psaturation,param)

Simulates discrete stable random variates, where the scale is computed internally to make the saturation
probability=psaturation. Note that in cases where the stable parameters are passed individually, gamma
is NOT used. In the cases where the vector theta is used, the value of γ =theta[3] is ignored. The
following function is used to compute γ, then the previous function is called to generate the values.

2.6.7 Find scale γ to have a specified saturation probability for a discrete stable distribution

matlab function: stablediscretefindgamma(theta,cutoff,psaturation,param)

Given α, β, δ and cutoff= (a, b), the scale γ is computed to get the requested saturation probability,
e.g. psaturation=P (X < a− 1/2) + P (X > b + 1/2).

2.6.8 Discrete maximum likelihood estimation

matlab function: stablefitdmle(x,cutoff,method,param)

Estimate the stable parameters for the discrete stable data in x1, . . . , xn, in parameterization param
using maximum likelihood estimation. The likelihood is numerically evaluated and maximized using an
optimization routine. When method=1, stablepdfdiscrete is used to calculate likelihood, when
method=2, symmetry is assumed (β = 0) and a faster method is used to compute the likelihood.

STABLE User Manual 17

3 Multivariate Stable Introduction
To specify a multivariate stable distribution X = (X1, X2, . . . , Xd)T in d dimensions requires an index of
stability α ∈ (0, 2], a finite Borel measure Λ on the unit sphere S = {s ∈ Rd : |s| = 1} and a shift vector
δ ∈ Rd. The measure Λ is called the spectral measure of the distribution. The joint characteristic function of
X ∼ S (α, Λ, δ; k) is given by:

E exp(i < u,X >) = exp
(
−

∫

S
ωk(< u, s > |α, 1; k)Λ(ds) + i < u, δ >

)
,

where ω(u|α, β; k) is defined in (3). As in one dimension, the 1-parameterization is more common in theo-
retical research, while the 0-parameterization is better suited to computation and statistical problems. Here
and below, < u,X >= uXT = u1X1 + · · · + udXd is the inner product. Symmetric stable distribu-
tions are defined by the condition X d= − X, which is equivalent to Λ being a symmetric measure on S,
i.e. Λ(A) = Λ(−A) for any Borel subset A ⊂ S. As in the univariate case, in the symmetric case the
0=parameterization and the 1-parameterization coincide.

The general case is beyond current computational capabilities, but several special cases: isotropic (radially
symmetric), elliptical, independent components and discrete spectral measure are computationally accessible.

isotropic The spectral measure is continuous and uniform, leading to isotropic/radial symmetry for the dis-
tribution. The characteristic function is

E exp(i < u,X >) = exp (−γα
0 |u|α + i < u, δ >) . (4)

elliptical The characteristic function is

E exp(i < u,X >) = exp
(
−(uT Ru)(α/2) + i < u, δ >

)
(5)

where R is a positive definite matrix. (R = γ2
0I is equivalent to the isotropic case above.)

independent components If components are independent with Xj ∼ S (α, βj , γj , δj ; k), then the charac-
teristic function is

E exp(i < u,X >) = exp


−

d∑

j=1

ω(uj |α, βj ; k)γα
j + i < u, δ >


 (6)

This is a special case of the discrete spectral measure below: the spectral mass is concentrated on the
points where the coordinates axes intersect the unit sphere.

discrete When the spectral measure is discrete with mass λj at sj ∈ S, j = 1, . . . , m the characteristic
function is

E exp(i < u,X >) = exp


−

m∑

j=1

ω(< u, sj > |α, 1; k)λj + i < u, δ >


 (7)

This discrete class is dense in the class of all stable distributions: any finite spectral measure Λ
can be approximated by a discrete measure, see Byczkowski et al. (1993). Below is a plot of the
density surface of a bivariate stable density with three point masses, each of weight 1 at locations
(cos(π/3), sin(π/3)), (-1,0), and (cos(5π/3), sin(5π/3))

STABLE User Manual 18

-3
-2

-1
 0

1
2

3

X
-3

-2

-1

 0
1

2
3

Y

 0
0.

01
0.

02
0.

03
0.

04
0.

05
Z

density surface
 triangle, alpha=1.3

xx

xx

-3 -2 -1 0 1 2 3
-3

-2
-1

0
1

2
3

0.01

0.01

0.01

0.02

0.03
0.04

contours of density surface

4 Multivariate Stable Functions
Since the specification of a multivariate stable distribution is somewhat cumbersome, a different approach
from the univariate case is taken in these routines. Two steps are needed to work with a multivariate stable
distribution. First, the distribution is specified by calling a function to define the distribution. Second, call a
separate functions to compute densities, cumulatives, simulate, etc.

The programs for working with multivariate stable distributions are less well developed and generally
limited to 2 dimensions. At the current time, when dimension is greater than 2, you can: (a) simulate using
mvstablernd, (b) calculate the pdf using mvstablepdf if the components are independent OR the spectral mea-
sure has exactly d point masses, (c) calculate the cdf using mvstablecdf if the components are independent,
or (d) calculate the cdf using mvstablecdfMC by Monte Carlo estimation for any type of distribution.

The accuracy of the pdf and cdf calculations are limited. In all cases, X is a column vector, this is
important to remember when you specify x for calculating, say, a pdf.

4.1 Define multivariate stable distribution
The interfaced versions of STABLE have the ability to work with multiple distributions. When a multivariate
stable distribution is defined, a ‘distribution descriptor’ is returned. That descriptor must be used when
computing quantities for that distribution. Note: The descriptor should not be changed by a user. The
descriptor may change between calls, and contents may vary in future versions of STABLE.

There are different functions used to define each of the different types of distributions that STABLE can
work with. They are described below.

A simple matlab example that defines two distributions and works with them is:

% Define two bivariate stable distributions: one isotropic and

STABLE User Manual 19

% one with indep. components
dist1 = mvstableisotropic(1.3, 2, 1, [0 0]);
dist2 = mvstableindep(1.3, [0 0], [1 1], [0 0], 0);

% compute the pdf for both distributions:
x = [0 0 1 1; 0 1 0 1];
y1 = mvstablepdf(dist1,x);
y2 = mvstablepdf(dist2,x);

% simulate from both distributions
z1 = mvstablernd(dist1,10000);
z2 = mvstablernd(dist2,10000);

4.1.1 Independent components

matlab function: mvstableindep(alpha,beta,gamma,delta,param)

Define a multivariate stable distribution with independent components with characteristic function (6).
beta, gamma and delta should be vectors of length d= the dimension of the distribution.

4.1.2 Isotropic stable

matlab function: mvstableisotropic(alpha,d,gamma0,delta, iparam)

Define a multivariate isotropic stable distribution with characteristic function (4). d is the dimension of
the distribution, gamma0 is the scale parameter, delta is the location vector.

4.1.3 Elliptical stable

matlab function: mvstableelliptical(alpha, R, delta, iparam)

Define a multivariate elliptically contoured/sub-Gaussian stable distribution with characteristic function
(5). The dimension of the distribution is determined from the size of R, a positive definite d×d shape matrix,
and delta is the location vector.

4.1.4 Discrete spectral measure

matlab function: mvstablediscspecmeas(alpha,s,lambda,beta,delta,param)

Define a multivariate stable distribution with discrete spectral measure having characteristic function
(7). s should be a d × nlambda matrix specifying the location of the point masses as columns, lambda
should be a row vector of length nlambda containing the weights. beta should be a row vector of length
nlambda specifying the skewness at each point mass. delta is the shift as a column vector. param is the
parameterization, must be 0 or 1.

The spectral measure is defined by putting mass lambda[j]*(1+beta[j])/2 at sj and mass lambda[j]*(1-
beta[j])/2 at −sj . Setting all beta equal to 1 gives the standard definition of a spectral measure, with mass
lambda[j] at s[j]. Setting all beta equal to 0 guarantees that the distribution is symmetric, putting
weight lambda[j]/2 at ±sj . If any element of beta is not 0, the distribution is assumed to be nonsymmet-
ric. (It is possible to manually make a spectral measure symmetric with nonzero beta by defining antipodal
points and weights and values of beta that balance correctly. However, STABLE does not detect this.) Some
parts of STABLE are significantly faster and more accurate in the symmetric case, e.g. density calculations
and simulations.

STABLE User Manual 20

4.1.5 Discrete spectral measure in 2 dimensions

matlab function: mvstablediscspecmeas2d(alpha,angle,lambda,beta,delta,param)

Define a bivariate stable distribution with discrete spectral measure. This is a special case of the previous
function. In two dimensions the locations of the point masses can be specified by angles: angle[j] gives the
angle (in radians) of the location of sj = (cos(angle[j]), sin(angle[j])).

There are several special cases that are handled differently internally:

• When angle and lambda are of length 2, densities can be calculated in terms of univariate densities.

• The special case of the previous one is when angle=(0, π/2). This corresponds to a distribution with
independent components. Both density and cdf are calculated in terms of products of univariate density
and cdf respectively.

• If all elements of beta are 0, the distribution is symmetric. Cumulative distribution function calcula-
tions only work in the symmetric case (though Monte Carlo based cdf estimation works for any case
you can simulate, including skewed.)

4.1.6 Undefine a stable distribution

matlab function: mvstableundefine(dist)

Clears the definition of the stable distribution dist.

4.2 Basic functions
4.2.1 Density function

matlab function: mvstablepdf(dist,x)

Computes the density f(x) for stable distribution dist at each value in x. Note: this routine as-
sumes that the density exists. The density will not exist in the discrete spectral measure case if the mass is
concentrated on a proper subspace of the domain.

In the independent case, the program computes the pdf as a product of univariate stable pdfs. There is
one other case that can be evaluated in terms of univariate pdfs: if the spectral measure is discrete AND the
number of point masses is equal the dimension of the problem.

Otherwise, only 2-dimensional computations can be done. The symmetric case uses the method in
Abdul-Hamid and Nolan (1998), the nonsymmetric case uses the method in Nolan and Rajput (1995). The
symmetric case is faster and more accurate than the nonsymmetric case. Both routines are accurate near the
center of the distribution, and have limited accuracy near the tails.

4.2.2 Cumulative function

matlab function: mvstablecdf(dist,a,b)

This function approximates P (a ≤ X ≤ b). If the components are independent, it computes this by
taking the product of the corresponding univariate probabilities.

In the symmetric two-dimensional case, the probability is evaluated by numerically integrating the (nu-
merically computed) 2-dimensional density f(x). Due to the limited precision in the numerical calculation of
the density, and the approximate nature of the integration of this density, this routine gives only a few digits
of accuracy. To find the probability of an unbounded regions, it is best to truncate the region using the routine
in Section 4.2.5 to find a bounded rectangle containing most of the probability.

Use the function in Section 4.2.3 to approximate in 2-dimensional nonsymmetric case or in higher di-
mensions.

STABLE User Manual 21

4.2.3 Cumulative function (Monte Carlo)

matlab function: mvstablecdfMC(dist,a,b,n)

This function approximates P (a ≤ X ≤ b) by simulating n indepedent random vectors with the same
distribution as X and counting how many are in the interval [a,b]. It works for any distribution and dimension
that can be simulated.

4.2.4 Multivariate simulation

matlab function: mvstablernd(dist,n)

Simulate n stable random vectors from the stable distribution dist. This works for any distribution that
can be defined in dimensions d ≥ 2.

4.2.5 Find a rectangle with probability at least p

matlab function: mvstablefindrectangle(dist,p)

Find a number r so that the rectangle A = A(r) = [−r, r] × [−r, r] has P (X ∈ A) ≥ p, where X is a
bivariate stable distribution defined by dist. This is used for technical calculations, e.g. in approximating
the probability of unbounded regions. The method uses univariate projections and will generally give an
overestimate of r. The method is less accurate for small p or if the distribution is not centered or highly
skewed, it gets more accurate if p is close to 1 and the distribution is centered and symmetric.

If p is not too close to 1, one can get a better value of r by making repeated calls to the multivariate cdf
function with rectangles of the form A(r) and search for a value of r that makes P (X ∈ A(r)) close to p.
That procedure involves bivariate numerical integration will take much longer than this function.

4.3 Statistical functions
4.3.1 Estimate a discrete spectral measure - fit a stable distribution to bivariate data

matlab function: mvstablefit(x,nspectral,method1d,method2d,param)

x contains the data values, nspectral is the number of points in the estimated spectral measure (must
be divisible by 4), method1d is the method to use for estimating univariate stable parameters internally (see
Section 2.2.1 for codes; only used if method2d=1), method2d is the method to use in estimating bivari-
ate distribution. Use method2d=1 for Rachev-Xin-Cheng method, method2d=2 for projection method,
method2d=3 for empirical characteristic function method. The methods are described in Nolan et al.
(2001), see Nolan and Panorska (1997) for some discussion of suggested values and diagnostics. Suggest
using nspectral=40, method1d=3, method2d=2, param=1.

The function returns a list/structure that contains information about the fit, which is always done as
a discrete spectral measure. The fields in the fit are: the estimated value of α, the estimated shift/location
vector δ, angle which is a uniform grid from 0 to 2π of length nspectral, and lambda for the estimated
weights at each position.

4.3.2 Estimate parameter functions

matlab function: mvstablefitparfn2d(x,angle,method1d,param)

Estimate the parameter functions for the bivariate data in x. The data is projected in each direction given
by angle and the parameters are estimated in the param parameterization. method1d is the univariate
method used to estimate the parameters (see Section 2.2.1 for codes).

The result is a matrix of dimension length(x)×5. The columns of the result are (1) for the angle, (2) for
the estimate of α, (3) for the estimate of β, (4) for the estimate of γ, (5) for the estimate of δ at that angle.

STABLE User Manual 22

4.3.3 Fit an elliptical stable distribution to multivariate data

matlab function: mvstablefitelliptical(x,method1d)

x contains the data values, method1d is the method to use for estimating univariate stable parameters
internally (see Section 2.2.1 for codes).

The function returns a list/structure that contains information about the fit. The fields in the fit are: the
estimated value of α, the estimated shift/location vector δ, and R for the estimated shape matrix.

4.4 Amplitude distribution
For d-dimensional random vector X, the univariate quantity R = |X| is called the amplitude of X. When X
is isotropic, the radial symmetry allows one to reduce the dimension of the problem to a univariate problem.
The following routines compute the cdf, pdf, quantiles, simulate and estimate for amplitudes of isotropic
stable random vectors. Since these are univariate quantities, and it is required that the distribution is isotropic,
one does NOT have to define the isotropic distribution separately. Because of computational delicacy, these
routines are limited to dimension d ≤ 100.

4.4.1 Amplitude cumulative distribution function

matlab function: mvstableamplitudecdf(r,alpha,gamma0,dim)

Compute the cdf of the amplitude distribution: FR(r) = P (R ≤ r) for R = |X|, where X is an d di-
mensional isotropic stable random vector with characteristic function E exp(i < u,X >) = exp(−γα

0 |u|α).
Current implementation works for α ∈ [0.8, 2]. There seems to be a relative error of approximately 3% for
large r.

4.4.2 Amplitude density

matlab function: mvstableamplitudepdf(r,alpha,gamma0,dim)

Compute the density fR(r) where R is described above. Current implementation works for α ∈ [0.8, 2].
There seems to be a relative error of approximately 3% for large r.

4.4.3 Amplitude quantiles

matlab function: mvstableamplitudeinv(p,alpha,gamma0,dim)

Compute the quantiles of the amplitude R described above. Current implementation works for α ∈
[0.8, 2].

4.4.4 Simulate amplitude distribution

matlab function: mvstableamplitudernd(nr,alpha,gamma0,dim)

Simulate n i.i.d. values of the amplitude distribution R as described above. Current implementation
works for α ∈ (0.2, 2].

4.4.5 Fit amplitude data

matlab function: mvstablefitamplitude(r,dim,method)

Estimate the parameters α and γ0 for amplitude data. r contains the (univariate) amplitude data values, d
is the dimension of the underlying distribution that the amplitude data comes from, method is the method to

STABLE User Manual 23

use for estimating. This initial implementation allows only method=5, which uses method of moments on
the log of the amplitude data. Other methods are planned for the future. The function returns the estimated
value of α and γ0.

4.4.6 Amplitude score function

matlab function: mvstableamplitudescore(r,alpha,gamma0,d)

Compute the score function of the amplitude: g(r) = −f ′(r)/f(r), where f(r) = fR(r|α, γ0, d) is the
amplitude pdf defined above. Current implementation works for α ∈ [0.8, 2], d ≤ 98. There seems to be a
relative error of approximately 3% for large r.

4.5 Faster approximations to multivariate routines
There are a limited number of functions for quickly calculating multivariate functions in the 2-dimensional
isotropic case. Such a distribution is specified by the index of stability α, the scale γ0, and the location
δ = (δ1, δ2). Because the description is simple, these functions use those arguments directly and do not use
a distribution descriptor.

4.5.1 Quick log-likelihood for bivariate isotropic case

matlab function: mvstableqkloglikisotropic2d(x,alpha,gamma0,delta)

Compute the log likelihood of the bivariate isotropic stable data in x with stable index alpha, scale
gamma0, and location vector delta. An internal approximation is used to compute the single value

`(α, γ0, δ|x1, . . . ,xn) = log
n∏

i=1

fX(xi|α, γ0, δ).

This function is designed to compute the log likelihood for a fixed α many times. In this case, it is much
faster than trying to compute the right hand side above using the bivariate pdf routine in Section 4.2.1. It is
also more accurate than that routine, especially on the tails. The program initially computes an approximation
that depends on α; if α changes, the approximation must be recomputed and it will be slower.

4.5.2 Quick amplitude density in bivariate case

matlab function: mvstableqkamplitudepdf2d(r,alpha,gamma0)

Compute the amplitude function fR(r|α, γ0, d = 2) for a 2-dimensional isotropic stable vector . For large
n, it is much faster than the function in Section 4.4.2.

4.6 Bivariate discrete stable distribution
A bivariate discrete stable distribution is defined by digitizing and truncating a continuous bivariate stable
distribution X = (X1, X2)T : discrete Y = (Y1, Y2)T has components

Yi = integer part of max(a,min(Xi, b)),

where cutoff=(a, b) are the upper and lower cutoff values. Note that the same cutoff is used for both
components of X. These distributions arise in signal processing where a bivariate continuous quantity is
quantized/digitized and limited accuracy is kept. It is assumed that the cutoff values are integers. The satura-
tion probability is psat = P (X1 < a− 1/2) + P (X1 > b + 1/2) + P (X2 < a− 1/2) + P (X2 > b + 1/2),
and is a measure of how much of the distribution is lost by truncating at the cutoff values.

In the internal routines, the x values are integers. The R, Mathematica and matlab interfaces store these
integer values in double precision numbers.

STABLE User Manual 24

4.6.1 Discrete bivariate density

matlab function: mvstablepdfdiscrete2d(dist,x,cutoff,eps,method)

Compute the pdf of a discrete bivariate stable distribution. x should be a 2 × n matrix of integer values,
cutoff is a vector of length 2 with upper and lower cutoff values for the truncation. The typical value for
cutoff is (-128,127); both components of (X1, X2) are truncated at the same value. The function returns a
vector p of length n with

pi = P (Y = xi) = P (Y1 = x1i, Y2 = x2i).

Note that eps is the attempted accuracy for each probability pi, not for the total error. The probabilities
are computed using the bivariate cdf function above and thus only works for symmetric stable two dimen-
sional distributions. It’s accuracy is limited: it is likely that when all possible values of x are used,

∑
i pi

will be slightly different from 1. The current implementation is slow. The method variable is unused at the
current time; it will be used for faster approximations in future implementations.

4.7 Multivariate informational/utility functions
4.7.1 Information about a distribution

matlab function: mvstableinfodist

Returns information about distribution dist. Useful for checking that definition.

4.7.2 Compute projection parameter functions

matlab function: mvstableparfn2d(dist,angle)

Compute the exact parameter functions for a bivariate stable distribution. For direction t ∈ R2, (X, tj) is
univariate stable with parameters (α, β(t), γ(t), δ(t)). This function computes the parameter functions β(·),
γ(·) and δ(·) at the values t = (cosangle[j], sinangle[j]). Angles in angle are given in radians.

4.7.3 Multivariate convert parameterization

matlab function: mvstableconvert(dist,newparam)

Converts between multivariate stable parameterizations. newparam must be 0 or 1. In the interfaced
versions of STABLE, the input distribution dist is converted to the new parameterization, and a new distri-
bution descriptor is returned.

STABLE User Manual 25

5 Signal Filtering Introduction
The standard additive noise model for a signal is

st = xt + nt, t = 1, 2, 3, . . . (8)

Here the xt are some signal we are interested in, and the nt are noise terms that corrupt the signal. This noise
can be caused by natural events like lightening, sea clutter in naval radar systems, animal sounds (snapping
shrimp) underwater, or man made sources like electro-mechanical noise in urban environments. The goal is
to recover the unknown signal xt as well as possible. This is done by computing an estimate ŝt using a sliding
window of the data, centered at t.

The traditional linear filter uses a window of width m to compute an estimate for each window: ŝt =
θ̂LINEAR(st−k1 , st−k1+1, . . . , st+k2), where k1 = bm/2c, k2 = m− k1 and

θ̂LINEAR(s1, . . . , sm) := (s1 + s2 + · · ·+ sm)/m. (9)

The well established theory of linear filter shows this is optimal when α = 2, but experience shows that the
linear filter can be severely degraded when α < 2. As is well known in the statistics literature, extreme values
of the noise terms nt can have a large effect on the sample mean. This is illustrated in Figure 1

Models built on a stable distribution yield a non-linear filtering technique that is optimal for the case when
the noise terms are stable. These filters are also robust, working well with other heavy tailed distributions.
Let ρ(x) = − log f(x) be the negative of the log density, and define a cost function

C(θ; s1, . . . , sm) = Cunweighted(θ; s1, . . . , sm) =
m∑

i=1

ρ(si − θ) (10)

We define the stable filter to be the value of θ that minimizes the cost: ŝt = θ̂STABLE(st−k1 , st−k1+1, . . . , st+k2),
where

θ̂STABLE(s1, . . . , sm) = arg min
θ

C(θ; s1, s2, . . . , sm). (11)

Since ρ(x) = − log f(x), the minimum of the cost function is exactly the maximum likelihood estimate of
the location parameter θ. Note that in the Gaussian α = 2 case, ρ(x) = −x2/2, and the minimum can be
found explicitly; it is simply θ̂LINEAR. For 0 < α < 2, the filters are nonlinear with no closed formula, and
the minimum in (11) must be found numerically.

There are several generalizations of the filter that are given by modifying the cost function (10). The
simplest extension is to allow non-negative weights wi:

Cweighted(θ; s1, . . . , sm) =
m∑

i=1

ρ(wi(si − θ)) (12)

In detection problems, one looks for a known pattern x1, . . . , xn in the signal, which is contaminated by
stable noise:

st = θxt + nt, t = 1, 2, 3, . . .

The null case corresponds to θ = 0 (no signal), the case where a signal is present corresponds to θ 6= 0.
There are two ways to implement this. The first is to allow signed weights as in Arce (2005). This is an
approximation to a matched filter, using cost function

Csigned(θ; s1, . . . , sm) =
m∑

i=1

ρ(|xi|((sign xi)si − θ)) =
m∑

i=1

ρ(xisi − |xi|θ). (13)

The second way is a true stable matched filter, with cost function

Cmatched(θ; s1, . . . , sm) =
m∑

i=1

ρ(si − θxi). (14)

STABLE User Manual 26

0 2000 4000 6000 8000 10000

−1
00

−5
0

0
50

10
0

x(t)

0 4000 8000

−2
0

−1
0

0
10

20

linear filter

0 4000 8000

−2
0

−1
0

0
10

20

stable filter

Figure 1: Signal filtering with symmetric stable noise, α = 1.3, γ = 2, n = 10000 samples, and window
width m = 50. The large graph shows a sinusoidal signal with simulated noise, the smaller plots show the
output of a linear filter and a (unweighted) stable filter. Note the difference in the scales for the input and the
output.

The θ̂ obtained by minimizing (14) gives an estimate of the strength of the original pattern in the signal.
The STABLE Signal Filtering module implements these filters, making it possible to optimally deal with

heavy tailed noise. The implementation of these filters involves numerous computational difficulties. The
difficulty of computing the relevant cost function is resolved by the functions in the STABLE univariate
module. A second problem is nonconvexity: if α 6= 2, the ρ(x) function above is not convex, so the cost
function is not convex. In particular, there can be multiple local minima of the cost function, and a reliable
filter should find the global min. Finally, filters should be fast. While we cannot match the speed of a simple
linear filter, stable filters provided by the STABLE program makes it possible to use non-linear filters in
practical problems for the first time.

The STABLE Signal Filtering routines also implement the linear filter, myriad filter, selection filter, and
the median filter. More information on non-linear filters can be found in Arce (2005), Nunez et al. (2008),
Nolan (2008), Pitas and Venetsanopoulos (1990), and Astola and Kuosmanen (1997).

5.1 The filter information structure
When a stable filter is used, numerous pieces on information must be supplied. The STABLE routine uses
a structure called filterinfo to define all the parameters of the filter. Not all of these are required for
every filter. Most users will use BASIC mode with a minimum number of parameters. Expert users can use
ADVANCED mode, but must be careful about specifying all the needed parameters. What values are needed
are specified in the individual function definitions below.

The following are the fields of filterinfo:

• type : The type of filter chosen. It can be ‘MEAN FILTER’, ‘MEDIAN FILTER’, ‘MYRIAD FILTER’,

STABLE User Manual 27

‘SELECTION FILTER’ or ‘STABLE FILTER’.

• mode : ‘BASIC’ filter mode or ‘ADVANCED’ filter mode. In the BASIC mode, only required param-
eters are needed and defaults are used for the others. In ADVANCED mode, the caller must specify all
parameters needed by the filter requested.

• rhofn : Rho function to use in cost function calculations. It can be ‘RHO STABLELOGLIK’ (slow-
est), ‘RHO STABLEQKLOGLIK’ (medium speed) or ‘RHO STABLEQKLOGPDFGRID LINEAR’
(fastest).

• costfn : Form of the cost function. It can be ‘COST UNWEIGHTED’, ‘COST NONNEG WEIGHTED’,
‘COST SIGNED WEIGHTED’ or ‘COST MATCHED’. These corresponds to equations (10), (12),
(13), and (14), respectively.

• searchmethod : Search/minimization method to use. It can be ‘FIXEDPOINTSEARCH I’, ‘FIXED-
POINTSEARCH II’, ‘BRANCHANDBOUND LIP’ or ‘BRANCHANDBOUND LOC BND’.

• queuesize : Length of queue in Branch and Bound search.

• iternum : Number of iterations.

• param : Parameterization of stable distribution. If beta is not zero, param must be 2. Recall that
the 2 parameterization is centered at the mode of the stable density.

• alpha : Alpha in the stable distribution.

• beta : Beta in the stable distribution.

• gamma : Gamma in the stable distribution.

• xtol : Tolerance as stopping criteria of searchmethod.

• lipconst : Lipschitz constant for Branch and Bound Lipschitz.

• init : Theta initialization criteria. It can be ‘USER DEFINED’ or ‘FIXED’.

• stop : Stopping criteria in the adaptive filter. It can be ‘VARY’ or ‘FIXED’.

• x0 : initial point for search

6 Signal Filtering Functions

6.1 Filter functions
6.1.1 Stable Signal filtering

matlab function: stablesigfilter(data, padding, weights, filterinfo)

Implement a sliding window operation over a 1-dimensional signal. STABLESIGFILTER passes a win-
dow over the input data selecting successive windows. On each window, the filtering operation defined in
filterinfo is performed.

The vectors data contains the observed data points s1, . . . , sn and weights contains the weights. The
parameter padding defines how the end extremes of the input data are treated. Several extension modes
are possible and represent different ways of handling the problem of border distortion in the analysis. In any
case, floor((n− 1)/2) samples are appended to the signal at beginning and ceil((n− 1)/2) at the end. These
modes are:

• ‘ZERO PADDING’ : Adds zeros at the signal extremes.

STABLE User Manual 28

• ‘CONSTANT PADDING’ : The first sample value and the last value are repeated at the beginning and
at the end, respectively.

• ‘SYMMETRIC PADDING’ : Symmetric replication at both ends (padding is a reversed image of data
at that endpoint).

• ‘PERIOD PADDING’ : Periodic extension at both ends (padding comes from other end of data).

• ‘UNFILTERED PADDING’ : Leave unfiltered the first floor((n−1)/2) samples and the last ceil((n−
1)/2) samples. Thus, the filter output for the unfiltered samples are the corresponding input samples.

The type of filtering done and it’s associated parameters are specified in the structure filterinfo. All
filters require two fields:

The type field must be filled in with one of the following: ‘MEAN FILTER’, ‘MEDIAN FILTER’,
‘MYRIAD FILTER’, ‘SELECTION FILTER’ or ‘STABLE FILTER’.

For the myriad, selection or stable filter, other fields must be specified as described in the respective
section below. The functions below each take a single window and compute a single value as the output of
the filter for that window.

6.1.2 Mean filter

matlab function: meanfilter(s,w)

Calculates the weighted mean of a set of n samples Si where each sample is weighted by Si. The mean
of the set of samples is

∑n
i=1 wi si.

6.1.3 Median filter

matlab function: medianfilter(s,w)

Calculates the weighted median of a vector of samples s. The output of the weighted median for nonneg-
ative integer weights wi is given by:

MEDIAN(s1, s2, · · · , sn; w1, w2, · · · , wn) = MEDIAN{s1 ¦ w1, s2 ¦ w2, · · · , sn ¦ wn},

where ¦ represents the repetition operator, i.e. repeat value si wi times.
A generalization is too allow non-integer weights, and sign-coupling is used in order to allow negative

weights. This process can be described as a multiplication between the sign of the weight sign(wi) and the
corresponding sample si. The output of this function is then represented as:

MEDIAN(s1, s2, · · · , sn; w1, w2, · · · , wn) = arg min
β

n∑

i=1

|wi| · |sign(wi) · si − β|

6.1.4 Myriad filter

matlab function: myriadfilter(s,w,tuningparam)

Computes the myriad of a set of N samples S = si with weights W = wi. The myriad filter is a stable
filter for the Cauchy case: α = 1, β = 0, γ =tuningparam, param=0. See Arce (2005) for more
information.

STABLE User Manual 29

6.1.5 Selection filter

matlab function: selectionfilter(s,w,filterinfo)

Computes the so-called selection M-filter. The selection filter outputs the input sample with the low-
est cost function. The following parameters of the structure filterinfo are expected: alpha, beta,
gamma, param, rhofn, and costfn. If costfn is not ‘COST UNWEIGHTED’, then the weights must
be specified.

6.1.6 Stable filter

matlab function: stablefilter(s,w,filterinfo)

Computes the stable filter of a set of nwin samples si with weights wi. If mode is BASIC, the following
parameters of the structure filterinfo are expected: costfn, alpha, beta, gamma, and param. If
costfn is not ‘COST UNWEIGHTED’, then the weights must be specified. searchmethod is set to
‘BRANCHANDBOUND LOC BND’, and other values are set to default values.

If mode is ADVANCED, the following parameters of the structure filterinfo are expected: costfn,
rhofn, alpha, beta, gamma, param, and searchmethod. If costfn is not ‘COST UNWEIGHTED’,
then the weights must be specified. Depending on the value of searchmethod, the following fields are
required in filterinfo:

• If searchmethod=‘FIXEDPOINTSEARCH I’, then set iternum. This method uses a fixed point
search routine initialized at the output of the selection filter (the most likely data point).

• If searchmethod=‘FIXEDPOINTSEARCH II’, then set iternum. This method uses a fixed point
algorithm with multiple initialization points. Precisely, the fixed point search is run starting at each
sample value.

• If searchmethod=‘BRANCHANDBOUND LIP’, then set xtol, queuesize, lipconst. This
method uses a branch and bound minimization routine based on Lipschitz bound for the function ρ(x).

• If searchmethod=‘BRANCHANDBOUND LOC BND’, then set xtol, x0 and queuesize.
This method uses a branch and bound minimization routine based on a local bound.

6.2 Cost functions
6.2.1 Cost function vectorized

matlab function: stablecostfn(x,s,w,rhofn,costfn,theta,param)

Computes the general cost function for a vector of x values. s and w are as in the cost function for-
mula. costfn determines which one of equations (10), (12), (13), and (14) is used, and param is the
parameterization. rhofn determines how ρ(x) is evaluated, theta = [α, β, γ, δ] are the stable parameters.

6.2.2 Cost function at a single point

matlab function: not implemented in matlab

Computes the general cost function at a single x value. Used internally.

STABLE User Manual 30

7 Error/return codes
An error is unrecoverable and stops execution. For example, if you ask to compute the density of a stable
parameter with α = 3, you will get a return code of 1 and your function will stop. In contrast, a warning
is informational and is usually not serious. It alerts you to the fact that the results of a calculation may have
some inaccuracy. For example, stable densities have radical changes of the tail behavior when α = 2 or
β = ±1, and the computations have small inaccuracies in them. In practical terms this usually means little,
as the difference between an α = 1.99 stable distribution and an α = 2 stable distribution in an statistical
problem is likely to be unobservable in practice.

In matlab, you can turn error and warning messages off with: warning off all. The warning mes-
sages can be enable again with the command: warning on all. See the section on the warning com-
mand in matlab help for more information.

Return codes for STABLE program are given in the tables below. Univariate routines return error codes
in the range 1-99, multivariate routines return error codes in the range 100-199.

code type meaning
0 No error
1 error Invalid input parameter
2 error alpha parameter outside of tabulated values in QKSTABLE
3 error Too many data points for internal array
4 error Error computing the likelihood, e.g. pdf=0
5 warning Possible approx. error while using QKSTABLE for alpha or beta near boundary
6 warning Possible error in confidence intervals because parameter is near boundary
7 warning alpha and/or beta rounded to a special value, adjust tol(4)
8 warning alpha is at lower bound for search, may not have found best value for alpha
9 error Too many bins (distinct possible values) in sdiscretemle

10 error beta must be 0 to use this function
11 error beta near +1 or -1 does not work in this function
12 error sinc error in sfitfracmoment
13 error Internal error in sfitlogabs
14 error Data value near zero in sfitfracmoment or sfitlogabs
15 error Error in subroutine
16 error Internal error while computing derivatives
17 error f(a) and f(b) have the same signs
18 error Too many function evaluations
19 error Not enough memory
20 error X zero value
21 error Internal error in quickstable
30 error Two parameterization is required in skewed case

Table 1: Univariate error codes

Warning code 7 can arise in several ways. The purpose of this warning is to avoid numerical problems in
internal calculations that can occur near the boundary in the parameter space or to use special cases to increase
speed, but to let the user know that something nonstandard is being done. In the following discussion, let ε =
the value of tolerance(4). The default value is ε = 0.01. (You can change the value of tolerance(4) by using
the function stablesettolerance above, and query it’s value by using function stablegettolerance. The default
value was picked in an ad hoc way; you can make it smaller, even 0, if you wish to calculate certain quantities
in one of the cases below. But be aware that numerical errors may arise.) Special cases where warning code
7 occur are:

1. α near 2: if α ∈ (2− ε, 2), then α is set to 2 and β is set to 0.

2. Near α = 1 but not Cauchy: if |α− 1| < ε and |β| ≥ ε, then α is set to 1 and β is left unchanged. This
is to avoid computations involving β tan(πα/2), which blows up as α → 1 if β 6= 0.

3. Near Cauchy case: if |α− 1| < ε and |β| < ε, then α is set to 1 and β is set to 0.

4. Near Lévy case: if |α− 1/2| < ε and |β− 1| < ε, then α is set to 1/2 and β is set to 1; if |α− 1/2| < ε
and |β + 1| < ε, then α is set to 1/2 and β is set to -1.

STABLE User Manual 31

code type meaning
101 error Invalid input parameter
102 warning Accuracy warning, alpha < 1
103 warning vmax exceeded in mvstablepdf
104 error Too many points in spectral measure
105 error nspectral must be divisible by 4
106 error This parameterization is not allowed in this function
107 error Too few uniform(0,1) input values for simulation
108 error Distribution not defined
109 error mvstablecdf not implemented for nonsymmetric case
110 error Matrix is not positive definite
111 error alpha must be at least 0.8
112 error Definition error
113 error Dimension is greater than the max allowed
115 error Spline error
150 error Not enough memory
151 error Error in a subroutine

Table 2: Multivariate error codes

The signal filtering module returns error codes in the range 1000-2000.

code type meaning
1100 error Too few input parameters
1101 error Too many input parameters
1110 error Undefined padding
1111 error Undefined filter
1112 error Undefined rho function
1113 error Undefined minimization method
1114 error Full queue
1116 error Skewed data needs parameterization 2
1117 error Undefined cost function
1118 error Negative weight
1119 error Buffer too small
1120 error Dimension error
1121 error Undefined initialization method
1130 error Invalid input argument
1140 error Method parameter undefined
1150 error Insufficient memory
1160 error Memory violation
1170 error Error in subroutine
1180 error SAR model not defined
1999 error Other kind of error

Table 3: Signal filtering error codes

STABLE User Manual 32

References
Abdul-Hamid, H. and J. P. Nolan (1998). Multivariate stable densities as functions of one dimensional

projections. J. Multivar. Anal. 67, 80–89.

Arce, G. R. (2005). Nonlinear Signal Processing. Wiley, NY.

Astola, J. and P. Kuosmanen (1997). Fundamentals of Nonlinear Digital Filtering. ARC Press.

Byczkowski, T., J. P. Nolan, and B. Rajput (1993). Approximation of multidimensional stable densities. J.
Multivar. Anal. 46, 13–31.

Chambers, J., C. Mallows, and B. Stuck (1976). A method for simulating stable random variables. Journal
of the American Statistical Association 71(354), 340–344.

Fan, Z. (2006). Parameter estimation of stable distributions. Communications in Statistics. Theory and
Methods 35, 245–256.

Kogon, S. and D. Williams (1998). Characteristic function based estimation of stable parameters. In R.
Adler, R. Feldman, and M. Taqqu (Eds.), A Practical Guide to Heavy Tailed Data pp. 311-338. Boston,
MA: Birkhäuser.

McCulloch, J. H. (1986). Simple consistent estimators of stable distribution parameters. Communications in
Statistics. Simulation and Computation 15, 1109–1136.

Nikias, C. L. and M. Shao (1995). Signal Processing with Alpha-Stable Distributions and Applications. New
York: Wiley.

Nolan, J. P. (1997). Numerical calculation of stable densities and distribution functions. Commun. Statist.
-Stochastic Models 13, 759–774.

Nolan, J. P. (2001). Maximum likelihood estimation of stable parameters. In O. E. Barndorff-Nielsen,
T. Mikosch, and S. I. Resnick (Eds.), Lévy Processes: Theory and Applications. Boston: Birkhäuser.

Nolan, J. P. (2008, July). Advances in nonlinear signal processing for heavy tailed noise. Intl. Workshop in
Applied Probability 2008.

Nolan, J. P. (2010). Stable Distributions - Models for Heavy Tailed Data. Boston: Birkhäuser. In progress,
Chapter 1 online at academic2.american.edu/∼jpnolan.

Nolan, J. P. and D. Ojeda (2006). Linear regression with general stable errors. Preprint.

Nolan, J. P., A. Panorska, and J. H. McCulloch (2001). Estimation of stable spectral measures. Mathematical
and Computer Modelling 34, 1113–1122.

Nolan, J. P. and A. K. Panorska (1997). Data analysis for heavy tailed multivariate samples. Comm. in Stat.
- Stochastic Models 13, 687–702.

Nolan, J. P. and B. Rajput (1995). Calculation of multidimensional stable densities. Commun. Statist. -
Simula. 24, 551–556.

Nunez, R. C., J. G. Gonzalez, G. R. Arce, and J. P. Nolan (2008). Fast and accurate computation of the
myriad filter via branch-and-bound search. IEEE Transactions on Signal Processing 56, 3340–3346.

Pitas, I. and A. Venetsanopoulos (1990). Nonlinear Digital Filters. Princtiples and Applications. Kluwer
Academic Publishers.

Index
matlab functions, 8, 9, 11, 29

meanfilter, 28
medianfilter, 28
mvstableamplitudecdf, 22
mvstableamplitudeinv, 22
mvstableamplitudepdf, 22
mvstableamplitudernd, 22
mvstableamplitudescore, 23
mvstablecdf, 20
mvstablecdfMC, 21
mvstableconvert, 24
mvstablediscspecmeas, 19
mvstablediscspecmeas2d, 20
mvstableelliptical, 19
mvstablefindrectangle, 21
mvstablefit, 21
mvstablefitamplitude, 22
mvstablefitelliptical, 22
mvstablefitparfn2d, 21
mvstableindep, 19
mvstableinfo, 24
mvstableisotropic, 19
mvstableparfn2d, 24
mvstablepdf, 20
mvstablepdfdiscrete2d, 24
mvstableqkamplitudepdf2d, 23
mvstableqkloglikisotropic2d, 23
mvstablernd, 21
mvstableundefine, 20
myriadfilter, 28
selectionfilter, 29
stablecdf, 6
stablecdfdiscrete, 15
stablecdfseriesorigin, 13
stablecdfseriestail, 13
stablechisq, 9
stableconvert, 12
stablecostfn, 29
stablediscretefindgamma, 16
stablefilter, 29
stablefit, 7
stablefitdmle, 16
stablefitecf, 8
stablefitmle, 7
stablefitmleci, 9
stablefitmlerestricted, 7
stablefitquant, 8
stablegettolerance, 12
stablehazard, 6
stableinv, 6
stableksgof, 9

stableloglik, 9
stablelrt, 10
stablemleinfomatrix, 9
stablemode, 12
stablenonlinfn, 7
stableomega, 13
stablepdf, 5
stablepdfderiv, 6
stablepdfdiscrete, 15
stablepdfsecondderiv, 7
stablepdfseriesorigin, 13
stablepdfseriestail, 13
stableqkcdf, 14
stableqkcdfdiscrete, 15
stableqkclogpdf, 14
stableqkhazard, 14
stableqkinv, 14
stableqkloglik, 14
stableqknonlinfn, 15
stableqkpdf, 14
stableqkpdfdiscrete, 15
stableregression, 10
stablernd, 6
stablernddiscrete, 16
stablernddiscrete2, 16
stablesettolerance, 12
stablesigfilter, 27
stableversion, 11

33

