
End-User License Agreement

Memory BIST
Training Workbook

 Software Version 8.2004_1

February 2004

Copyright  Mentor Graphics Corporation 1999 - 2004.
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original
recipient of this document may duplicate this document in whole or in part for internal business purposes
only, provided that this entire notice appears in all copies. In duplicating any part of this document, the

recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the
proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed
entirely at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Table of Contents

Table of Contents
About This Training Workbook..ix

Introduction..ix
Audience ...x

Primary Audience...x
Secondary Audience...x

Course Timeline...xi
Course Overview ..xii
Prerequisite Knowledge...xiii
Acronyms Used in This Workbook ...xiii
Customer Support Information ..xiv

Module 1
 Memory BIST Concepts ...1-1

Objectives ..1-1
Embedded Memories ...1-2
Typical Architecture with Embedded Memories...1-4
Types of Memories ..1-5
Types of Testing ..1-7
Functional Testing ...1-8
Direct Access Testing ..1-9
Memory BIST Testing...1-10
When Should You Use Memory BIST? ..1-11
Advantages of Adding BIST ...1-13
Disadvantages of Adding BIST ...1-14
Inserting BIST Circuitry ..1-16
Memory Testing and Fault Types..1-17
Stuck-at Faults ...1-19
Stuck-at Faults ..1-20
Transition Faults ..1-21
Transition Faults (Continued) ...1-22
Coupling Faults..1-23
Neighborhood Pattern Sensitive Faults ...1-26
Testing for Cell Array Faults ..1-28
Memory BIST Algorithms...1-30
Memory BIST Training Workbook, V8.2002_1 iii
 March 2002

Table of Contents (cont.)

Table of Contents
Comparing the Algorithms ..1-31
March C+ (March 2) ...1-33

Module 2
 Generating a Memory BIST ...2-1

Objectives ..2-1
Typical Memory BIST Flow ...2-2
MBISTArchitect Inputs and Outputs...2-4
Graphical User Interface..2-6
MBISTArchitect GUI Overview ...2-7
Role of the Test Bench ..2-8
Memory BIST Documentation ..2-9
Module 2 Lab Exercises ..2-10
Module 2: Lab Exercises ...2-11
Getting Started ...2-11

Software Versions ...2-11
Training Files ..2-12
Installing the Training Data Files..2-12
Exercise 1: Creating a Basic Memory BIST Collar 2-14
Exercise 2: Verifying the BIST Circuitry ... 2-20

Module 3
Common BIST Variations ...3-1

Objectives ..3-1
Configuring Memory BIST Circuitry ..3-2
Support for Multi-port Memories ..3-5
Generate a Comparator Functional Test ..3-6
Inserting BIST for Multiple Memories..3-8
MBISTArchitect Controller Options ...3-10
How the BIST Controller Works ...3-11
Read/Write Operations on Synchronous Memories ..3-12
Full-Speed Overview ...3-14
Full-speed design with pipeline circuitry ..3-16
Pipelining Read/Write Operations ...3-17
Memory BIST Training Workbook, V8.2002_1iv
 March 2002

Table of Contents (cont.)

Table of Contents
Performing Sequential Memory Tests ...3-19
Adding Diagnostics ...3-21

Clock Synchronization ..3-23
Compressor vs. Comparator ..3-25
BIST using a Compressor ..3-27
Adding Pipeline Registers ...3-29
Specifying Non-controlled Memory Ports...3-32
Specifying Parameters for Memory Clock Signals ...3-34
Bypassing Memory in Scan Mode...3-35

Synthesis Driver File ..3-38
Design Compiler Clock Constraints ..3-40
Mux-Embedded Memory Support ...3-41
Module 3 Lab Exercises ..3-43
Module 3: Lab Exercises ...3-44

Exercise 3: Changing the BIST Algorithm ... 3-45
Exercise 4: Changing the Data Background ... 3-49
Exercise 5: Inserting BIST for Multiple Memories 3-51
Exercise 6: Adding BIST with a Compressor ... 3-57
Exercise 7: Running BIST at Full-Speed .. 3-61
Extra Credit ...3-65
Test Your Knowledge ...3-66
Lab Summary ..3-66
Exercise 8: Adding BIST for Bidirectional Memories 3-67
Exercise 9: Adding BIST for ROMs... 3-68

Module 4
Memory BIST-In-Place ..4-1

Objectives ..4-1
Memory BIST-In-Place Flow ..4-2
Memory BIST-In-Place Flow Overview ...4-3
Creating BIST Structures...4-5
Model Creation ..4-6
Memory Model Example ...4-7
Creating BIST Structures Invocation...4-8
Basic Command Flow..4-9
Memory BIST Training Workbook, V8.2002_1 v
 March 2002

Table of Contents (cont.)

Table of Contents
Creating BIST Structures Results ..4-10
Example of RTL BIST Logic ..4-11
Example WGL File..4-12
Core Test Description File (CTDF)...4-14
Connecting BIST Structures ..4-17
Connecting BIST Structures Invocation..4-18
Example Command Flow (Setup) ...4-19
Example Continued (Setup)...4-20
Example Command Flow (Synthesis) ...4-21
Connecting BIST Structures Results ...4-22
Connecting BIST Structures Dofile...4-23
Example CTAF File...4-24
Example RTL Phase Decoder..4-25
Integrating BIST Patterns ..4-26
Integrating BIST Patterns Invocation ..4-27
 Integrating BIST Patterns Commands ..4-28
Continued Example (Integration) ..4-29
Integrating BIST Patterns Dofile ...4-30
Integrating BIST Patterns Results ...4-31
Verification ..4-32
I/O Pads ...4-33
Global Signal Connections ..4-34
BSDArchitect/ Memory BIST-In-Place Integration ..4-35
Module 4: Lab Exercises ...4-37

Exercise 10: Setting Up MBISTArchitect Outputs 4-38
Exercise 11: Inserting BIST Controllers using Memory BIST-In-Place 4-42
Exercise 12: Translating BIST Patterns to the SoC Level 4-45
Exercise 13: Full Flow Exercise ... 4-47

Module 5
Memory Modeling for
MBISTArchitect ...5-1

Objectives ..5-1
A Memory Model: ...5-2
 Memory Model Syntax ...5-3
Memory BIST Training Workbook, V8.2002_1vi
 March 2002

Table of Contents (cont.)

Table of Contents
Memory Model Editor ...5-4
Loading Library Files and Models ..5-5
Defining Inputs/Outputs ..5-7
The Dont_touch Keyword ...5-9
Understanding Clocking Schemes ...5-10
Clock Connections...5-12
No Memory Clock ...5-14
A Gated Memory Clock...5-15
A Non-Gated Memory Clock ..5-16
An Inverted BIST Clock..5-17
Test Clock..5-18
Control Retention Test Delay ..5-19
Memory Ports ..5-20
Defining Memory Ports ...5-21
Port Definition Example 1 ...5-22
Port Definition Example 2 ...5-23
Read/Write Cycle Syntax ..5-24
The Read Cycle..5-25
The Write Cycle...5-26
Interpreting Data Sheets ..5-27
A Synchronous RAM Example ...5-28
Interpreting the Read Cycle Timing ..5-31
Defining the Read Cycle..5-32
Interpreting the Write Cycle Timing ...5-34
Defining the Write Cycle...5-35
Defining Constant Values..5-37
Logical to Physical Mapping ...5-39
The Effect of Physical Topology...5-40
Allowing for Physical Topology ...5-41
The Checkerboard Algorithm ..5-42
Descrambling Functions ..5-44
Validating a Memory Model ...5-46
User Defined Algorithm ..5-47
Troubleshooting a Memory Model ..5-49
Troubleshooting Example: March2 ...5-50
Memory BIST Training Workbook, V8.2002_1 vii
 March 2002

Table of Contents (cont.)

Table of Contents
Module 5 Lab Exercises ..5-51
Module 5: Lab Exercises ...5-52

Exercise 14: Modifying a Template to Match Your Memory Specifications ... 5-
53
Exercise 15: Reviewing a User Defined Algorithm...................................... 5-62
Exercise 16: Running a User Defined Algorithm File 5-66
Memory BIST Training Workbook, V8.2002_1viii
 March 2002

About This Training Workbook

Introduction
This course is designed to be a one-day, self-paced training class. The student will
use this workbook and run exercises to become familiar with memory Built-In-
Self-Test (BIST) concepts. The following are the top level course goals:

• The student will understand the Memory BIST design processes

• The student will gain experience with Mentor Graphics MBISTArchitect
and Memory BIST-In-Place tools

• The student will understand how to find information and problem-solve
typical design issues

If taken in its entirety, this training course is intended to introduce design
engineers to the V8.2002_1 version of the Mentor Graphics MBISTArchitect and
Memory BIST-In-Place tools.
Memory BIST Training Workbook, V8.2002_1 ix
 March 2002

About This Training Workbook

t is

rts
y be

 and

cally
es
heir
rience
Audience

Primary Audience

The target student profile is the Electronic Design Engineer using synthesis tools
to develop synchronous digital designs. It is assumed that students will be using
MBISTArchitect, and optionally, Memory BIST-In-Place tools. This type of
student will comprise about 80% of the course attendees and will have the
following characteristics:

• They have some limited familiarity with DFT terminology and concepts.

• They are interested in learning how to add memory BIST to their designs.

• As they work with these DFT tools, these engineers want to know “wha
this tool doing to my design” (or my design flow) and “how do I control
what the tool is doing to my design?”

• These engineers want to know how to analyze the tool-generated repo
and modify the tool setup constraints to achieve the test goals that ma
imposed on them by their organization.

• These engineers want to be well grounded in the basic tool process flow
be able to respond appropriately when the tools report “problems.”

Secondary Audience

About 20% of the students will be “test engineers.” These engineers are typi
members of a manufacturing test group or an internal CAD group that provid
support for design engineers. Test engineers are typically well grounded in t
understanding of DFT terms and concepts, but may not have had much expe
with DFT tools.
Memory BIST Training Workbook, V8.2002_1x
 March 2002

About This Training Workbook
Course Timeline

9:30

11:00

5:00

8:30

Configuring Memory BIST Circuitry

Memory BIST Concepts

Creating MBIST Library Models

1:00

12:00

LAB 2: Verifying the BIST Circuitry

LAB 3: Changing the BIST Algorithm

LAB 4: Changing the Data Background

LAB 5: Inserting BIST for Multiple Memories

LAB 6: Adding BIST with a Compressor

LAB 8: Adding BIST for Bidirectional Memories

LAB 9: Adding BIST for ROMs

LAB 1: Creating a Basic Memory BIST Collar

3:45

Memory BIST-In-Place

LAB 10: Setting Up MBIST Architect Outputs

LAB 11: Inserting BIST Controllers using MBIST-In-Place

LAB 12: Translating BIST Patterns

LAB 7: Full-Speed Exercise

LAB 14: Modifying a Library Model Template

LAB 15: Reviewing a User Defined Algorithm

LAB 16: Running a User Defined Algorithm

Lunch

2:30

3:00

LAB 13: Full Flow
Memory BIST Training Workbook, V8.2002_1 xi
 March 2002

About This Training Workbook
Course Overview
The course is divided into the following five parts:

Module 1 Memory BIST Concepts

The first module introduces various types of memories, memory BIST concepts,
memory testing and fault types.

Module 2 Generating a Memory BIST

This module introduces you to the typical memory BIST flow, inputs and outputs
to MBISTArchitect, and the role of the test bench. It also introduces you to the
MBISTArchitect graphical user interface (GUI) and user documentation for
memory BIST tools. The lab exercises will give you practice generating a BIST
collar and verifying the circuit.

Module 3 Common BIST Variations

This module highlights a variety of options you can use to customize the memory
BIST circuitry to your design. The lab exercises cover tasks you may use when
adding memory BIST to your design such as inserting BIST for multiple
memories or adding BIST when you have a compressor, ROM, or bidirectional
memories. A number of lab exercises are included here to give you a variety of
choices. Generally, you will not be expected to complete them all.

Module 4 Memory BIST-In-Place

This module gives you a basic understanding of how to create, connect, and
integrate BIST structures using the Mentor Graphics Memory BIST-In-Place tool.
The lab exercises at the end of this module will give you experience in running
through the process flow of Memory BIST-In-Place.

Module 5 Memory Modeling for MBISTArchitect

This module explains how memory devices are modeled inside MBISTArchitect.
The lab exercises are designed to give you practice creating a memory model in
case your company does not already have the model you are looking for. It also
Memory BIST Training Workbook, V8.2002_1xii
 March 2002

About This Training Workbook

ol

introduces you to the Mentor Graphics User Defined Algorithm function that
can be used to generate your own March-type algorithms.

Prerequisite Knowledge
Prerequisite knowledge in DFT fundamentals is required. The purpose of
requiring prerequisites is to (1) reduce “learning overload” which can happen
early in the course and (2) help the students move quickly toward learning to
concepts and best practices for getting results.

Generic DFT concepts and terminology can be learned from sources outside
Mentor Graphics.

Acronyms Used in This Workbook
The following is an alphabetical list of the acronyms used in this workbook:

ASIC - Application Specific Integrated Circuit
ATE - Automatic Test Equipment
ATPG - Automatic Test Pattern Generation
AVI - ASIC Vector Interfaces
BIST - Built-In Self-Test
BSDL - Boundary Scan Design Language
CTAF - Core Test Access File
CTDL - Core Test Description Language
CUT - Circuit Under Test
DFT - Design-for-Test
DRC - Design Rules Checking
DUT - Device Under Test
GUI - Graphical User Interface
HDL - Hardware Description Language
JTAG - Joint Test Action Group
LFSR - Linear Feedback Shift Register
LSB - Least Significant Bit
MCM - Multi-Chip Module
MISR - Multiple Input Signature Register
Memory BIST Training Workbook, V8.2002_1 xiii
 March 2002

About This Training Workbook
MSB - Most Significant Bit
PRPG - Pseudo-Random Pattern Generator
RTL - Register Transfer Level
SCOAP - Sandia Controllability Observability Analysis Program
SFP - Single Fault Propagation
TAP - Test Access Port
TCK - Test Clock
TDI - Test Data Input
TDO - Test Data Output
TMS - Test Mode Select
TRST - Test Reset
WDB - Waveform Data Base

Customer Support Information
Additional help is available from Mentor Graphics Customer Support using the
following phone numbers, email address, and internet site:

DirectConnect (M-F: 6am-5:30pm,
PST)

1-800-547-4303

SupportCenter Fax 1-800-684-1795

SupportNet-Email support_net@mentor.com

SupportNet-Web site http://www.mentor.com/supportnet

Mentor DFT Web site http://www.mentor.com/dft
Memory BIST Training Workbook, V8.2002_1xiv
 March 2002

Module 1
 Memory BIST Concepts

When you complete this module, you should have a basic understanding of
memory testing and memory BIST concepts.

Objectives
Upon completion of this module, you will be able to:

• List when and why to use Memory BIST (MBIST)

• List the basic advantages and disadvantages of Memory BIST

• Describe some of the common fault types associated with memory testing

• List the common algorithms used by MBISTArchitect to test memories
Memory BIST Training Workbook, 8.2002_1 1-1
 March 2002

Memory BIST Concepts

sign.

ll of
ssic
onal
Embedded Memories

Most of today’s designs contain embedded memories. Here are some common
side effects of using embedded memories in chips today:

• Memory can consume a large design portion and result in high defect
rates
In many designs today, memories may take up a large portion of the de
See “Typical Architecture with Embedded Memories” on page 1-4 for more
information on architecture and test options.

• Embedded memories can be difficult to exercise efficiently with
functional or other types of testing.
Large, complex circuits often contain difficult-to-test portions of logic.
Even the most testable designs, if large, can require extensive test
generation time, tester pattern memory, and tester application times—a
which are expensive, yet necessary, to adequately test devices in a cla
test scenario. Memory BIST solves the problems associated with functi

1-2 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Embedded Memories

♦ Memory Built-In-Self-Test (MBIST) has been used successfully
for years to solve the test issues for embedded memories.

♦ Most of today’s designs contain embedded
memories—features associated with memories:

● Memory can consume a large design portion

● Memories are dense, resulting in high defect rates

● Embedded memory quality is critical to whole chip quality

● Memories can have high operating speeds

● Embedded memories can be difficult to exercise efficiently
with functional testing
Memory BIST Training Workbook, 8.2002_11-2
 March 2002

Memory BIST Concepts

 we’ll
e

tible
ed to
he
testing, see “Advantages of Adding BIST” on page 1-13 for an overview of
memory BIST advantages.

• Typical ATE testing may not adequately test memories.
The bullets in these slides describe features of memories. In Lesson 3,
talk about how a memory can fail and what kinds of patterns need to b
used to test them well.

• Memories can have high operating speeds
Memories of all sorts, but especially high speed memories, are suscep
to speed-related defects. To ensure high quality memory tests, you ne
test for these sorts of defects by running at-speed memory tests. See t
“Full-Speed Overview” on page 3-14 for information on using
MBISTArchitect to test memory at full access speed.
Memory BIST Training Workbook, 8.2002_1 1-3
 March 2002

Memory BIST Concepts

test
t
Typical Architecture with Embedded
Memories

This slide shows a typical architecture of a design with embedded memories.
Logic takes up 60% of the silicon while memories consume 40%. In order to
ensure high quality, you need to thoroughly test these memories. For example, if
your test coverage is 99%, but you don’t test your memories the whole chip
coverage is much lower and your finished products will be susceptible to tes
escapes due to the untested memories.

1-3 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Typical Architecture with Embedded Memories
Memory BIST Training Workbook, 8.2002_11-4
 March 2002

Memory BIST Concepts
Types of Memories

The memories listed in the slide above are common, your memory BIST circuit
will be different depending upon the model selected. In general, SRAM and
ROMs commonly use memory BIST to solve the test problems.

• General Memory Types
Memories can have different depths and widths, be synchronous and
asynchronous, or be multi-port.

• SRAM
The most commonly used in our industry is an ASIC type of flow. We do
most of our work in this tutorial on variations of an SRAM.

• DRAM
A DRAM is not as common as an SRAM, a special process is sometimes
required to accommodate DRAMs.

1-4 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Types of Memories

♦ General Memory types
● Different depth and width
● Synchronous and asynchronous
● Multi-port

♦ SRAM
♦ DRAM
♦ EPROM & EEPROM

(Flash)
♦ ROM
Memory BIST Training Workbook, 8.2002_1 1-5
 March 2002

Memory BIST Concepts

irly

rated

t
n
• EPROM and EEPROM
(Flash)
EPROM and EEPROM are also known as “Flash” memory. Flash is fa
common but is usually not fully functionally tested because of the
extremely long access times. Specialized memory BIST could be gene
but is not commonly done.

• ROM
ROM memories are very common and generally use a slightly differen
implementation for memory BIST. We’ll talk about BIST architectures i
Lesson 3.
Memory BIST Training Workbook, 8.2002_11-6
 March 2002

Memory BIST Concepts
Types of Testing

There are several common testing techniques used to test memories.

1-5 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Types of Testing

♦ Functional testing

♦ Direct access testing

♦ Memory BIST
Memory BIST Training Workbook, 8.2002_1 1-7
 March 2002

Memory BIST Concepts

est

ries
sting
ult,
Functional Testing

Large, complex circuits often contain difficult-to-test portions of logic. Large
designs require extensive test generation time, tester pattern memory, and tester
application times—all of which are expensive, yet necessary, to adequately t
devices in a classic test scenario.

Previously, ATPG functional testing was the only way to test embedded
memories.Because memory faults differ from random logic faults and memo
reside within larger designs, ATPG does not provide an adequate memory te
solution. Functional testing is inadequate because pattern generation is diffic
verification is time-consuming and it is difficult to determine quality.

1-6 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Functional Testing

♦ Pattern generation can be very difficult

♦ Verification can be time consuming

♦ Determining quality is difficult and time consuming

♦ Reduces amount of external test data to store

♦ No functional impacts
Memory BIST Training Workbook, 8.2002_11-8
 March 2002

Memory BIST Concepts
Direct Access Testing

Another method of testing memories is direct access testing. This method is
usually feasible only if you only have one or two memories and can be accessed
off of a bus that is already routed at the top level of the chip. Direct access testing
may require special hardware or ATE memory testing equipment. It also requires
mux input and output access directly to pins. In addition, pattern generation and
verification is still a problem with this method of testing.

1-7 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Direct Access Testing

♦ Must Mux inputs and outputs to chip pins

♦ Pattern generation may be difficult (pattern conversion is
easy)

♦ Extensive ATE memory required or memory test hardware

♦ Routing and timing issues can arise
Memory BIST Training Workbook, 8.2002_1 1-9
 March 2002

Memory BIST Concepts
Memory BIST Testing

Memory BIST testing addresses memory testing problems. Memory BIST adds a
layer of test circuitry around the memory. This circuitry becomes the interface
between the high-level system and the memory. This interface minimizes the
controllability and observability challenges of testing embedded memories. And
the built-in, finite-state machine that provides the test stimulus for the memory
greatly reduces the need for an external test set for memory testing.

BIST provides a memory test solution without sacrificing test quality. In many
cases, BIST structures can eliminate or minimize the need for external test pattern
generation (and thus, tester pattern memory) and tester application time. In
addition, a designer can exercise BIST circuitry within a design, running tests at
speed due to the proximity of the BIST circuitry to the memory under test. A
designer can also run a memory BIST process from within higher levels of the
design. See “Advantages of Adding BIST” on page 1-13 for more detailed
information on the advantages of using memory BIST.

1-8 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory BIST Testing

♦ Simplifies pattern generation

♦ High quality guaranteed by algorithmic patterns

♦ Minimal impact to timing and area
Memory BIST Training Workbook, 8.2002_11-10
 March 2002

Memory BIST Concepts
When Should You Use Memory BIST?

You should use Memory BIST (MBIST):

• Medium to Large embedded memories
You should definitely use memory BIST testing on medium-to-large
memories. Very small memories must be considered on a case by case
basis. On very small arrays, the controller may be larger than the array.
Small memories can also be added to an existing MBIST controller so very
minimal impact is observed. Alternative solutions such as MacroTest might
be a better solution.

• Memories which are contained within Intellectual Property (IP) that
will be reused
 MBIST is a very important part of the reusability and portability of IP.
Once the test circuitry is built in, it can be reused and rerun wherever the IP
is placed, with no additional work. You only need to ensure that the
memory BIST operation on the IP is properly controlled at the chip-level.

1-9 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

When Should You Use Memory BIST?

♦ User should use Memory BIST:

● On medium to large embedded memories

● On memories that are contained within Intellectual Property
 (IP) that will be reused

● On memories that should be tested at speed

● On devices with multiple embedded memories

● On devices that are time-to-market critical

● On devices that run on ATEs with limited capability

● On SOCs where testing and verification will be difficult
Memory BIST Training Workbook, 8.2002_1 1-11
 March 2002

Memory BIST Concepts

rent
rrays
the
d.

f
 by

d
pler

.

• Memories that should be tested at speed
Ideally, you should test memories at the same rate or a rate greater than they
will be used in the application. Additional types of memory faults will be
found if the memory is exercised at full speed. MBISTArchitect has a full
speed option that lets you test the memories at full speed, see the “Full-
Speed Overview” on page 3-14 for more information.

• On devices with multiple embedded memories
Memory BIST controllers can be shared across multiple arrays of diffe
sizes with little incremental area increases. This is practical when the a
are in relatively close proximity to each other. If arrays are far apart in
chip layout, care must be taken not to have excessive routing overhea

• On devices that are time-to-market critical
Pattern generation and conversion is significantly easier with the use o
memory BIST. Verification of the manufacturing patterns is streamlined
the use of an automated tool.

• On devices that run on ATEs with limited capability
BIST can reduce the memory, timing, and control signals an ATE woul
need to test a memory. This may allow the device to be tested on a sim
and cheaper tester.

• On SOCs where testing and verification will be difficult
Verification and test generation are the two largest challenges of SOCs
Therefore, Memory BIST improves time-to-market and first pass silicon
success.
Memory BIST Training Workbook, 8.2002_11-12
 March 2002

Memory BIST Concepts
Advantages of Adding BIST

Self-testing provides a number of benefits. First, placing the test circuitry on the
chip itself reduces external tester time and expense. Second, it minimizes the
difficulty of testing embedded circuitry by providing system-level control signals
that run and report status of the test operation. Third, because the circuitry itself
generates test stimulus, this eliminates or reduces expensive test pattern
generation time. Likewise, it eliminates or reduces the amount of required external
test data storage.

Additionally, designs with BIST facilitate hierarchical test capabilities.
Hierarchical BIST lends itself to test at the model, block, design, and system
levels. For example, a memory BIST controller embedded in an IC can be used to
test off-the-shelf memories that are external to the chip.

BIST blends both the design and test disciplines. Merging test into the design
process far earlier in the flow reduces the product development cycle.

1-10 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Advantages of Adding BIST

♦ Enables Intellectual Property (IP) reuse

♦ Reduces the routing of signals needed at the chip level

♦ Reduces test application time and simplifies pattern
generation

♦ Reduces amount of test data to store

♦ Facilitates hierarchical test capabilities -- lets you easily test
at model, block, design, and system levels

♦ Merges test and design, reducing development time

♦ BIST controller can be shared across memories
Memory BIST Training Workbook, 8.2002_1 1-13
 March 2002

Memory BIST Concepts

esn’t

.
Disadvantages of Adding BIST

Disadvantages of adding BIST include:

• Small area increase
The area increase caused by adding BIST is small and depends on what
features you select for your BIST controller and the word and address size
of the array. Typically, a controller can range from 400 gates for a simple
implementation, to 1500 gates for an implementation that uses many
options and several algorithms.

• Adds Mux delay to memory data path
This multiplexor delay depends on the technology you are using. Typically,
this is in the range of 200ps. This may be a problem if your designer do
have that much margin built into his or her design.

• Not as flexible as direct access testing
There are many types of tests and algorithms to use for memory BIST

1-11 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Disadvantages of Adding BIST

♦ Small area increase

♦ Adds Mux delay to memory data path

♦ Not as flexible as direct access testing

♦ Small routing and timing impact
Memory BIST Training Workbook, 8.2002_11-14
 March 2002

Memory BIST Concepts

ey
u can
sible

 to
However, these tests are being “hard-wired” into the controller. After th
are designed in, they cannot be changed. If you have direct access, yo
change your test pattern supplied by the tester and rerun. It is also pos
to design a re-configurable controller but this takes additional work and
overhead.

• Small routing and timing impact
This is usually the reason most designers or managers initially might
question the use of memory BIST. However, the routing and timing
changes required by MBIST are almost always so small they are
insignificant. With 5 or 6 layer metal processes and mux delays of 100
200ps, you can probably justify the use of memory BIST.
Memory BIST Training Workbook, 8.2002_1 1-15
 March 2002

Memory BIST Concepts
Inserting BIST Circuitry

A built-in self-test (BIST) solution can alleviate many of these classic problems
by embedding the pattern generator within the silicon. This approach can be
automated using MBISTArchitect, which creates the RTL description in either
Verilog or VHDL, that tests the memory without external stimulus or access.

1-12 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Inserting BIST Circuitry

Pattern Generator

BIST Controller

Response Analyzer

Memory

Start

Fail?

System System

MUX

I0

I1

Ctrl
Memory BIST Training Workbook, 8.2002_11-16
 March 2002

Memory BIST Concepts
Memory Testing and Fault Types

1-13 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory Testing and Fault Types
♦ Faults can be found in:

● Address decoder logic

● Read/write control logic

● Memory cell array

Mem ory

Column DecoderAddress Register

R
o

w
 D

ec
o

d
e

r

Sen se A mplif iers

Refresh Logic

Write D river

Data Reg isters

BIST Circuitry

Cell
Array

Address
Decoder Read /Write

Contro l Circuitry
Memory BIST Training Workbook, 8.2002_1 1-17
 March 2002

Memory BIST Concepts

 that
,

e fault
Memory Testing and Fault Types

Memories fail in a number of different ways. The three main parts—address
decoder logic, memory cell array, and read/write logic—can each have flaws
cause the device to fail. Memory testing, while similar to random logic testing
focuses on testing for these memory-specific failures.

The basic types of memory faults include stuck-at, transition, coupling, and
neighborhood pattern sensitive. The next several slides discuss each of thes
types in more detail.

1-15 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory Testing and Fault Types (Continued)

♦ Faults include:

● stuck-at

● transition

● coupling

● neighborhood pattern sensitive
Memory BIST Training Workbook, 8.2002_11-18
 March 2002

Memory BIST Concepts
Stuck-at Faults

1-16 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Stuck-at Faults

♦ Applies to Control signals and memory cells

● Behavior: Value stuck at either 0 or 1 indefinitely (signal/cells
acts as though tied to power or ground)

VDD

Tied to powerTied to ground
Memory BIST Training Workbook, 8.2002_1 1-19
 March 2002

Memory BIST Concepts
Stuck-at Faults

A memory fails if one of its control signals or memory cells remains stuck at a
particular value. Stuck-at faults model this behavior, where a signal or cell
appears to be indefinitely tied to power (stuck-at-1) or ground (stuck-at-0).

1-17 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Stuck-at Faults (Continued)

S
0

w0

S
1

w 1
w 1

w0
Good Cell State Diagram

Cell Stuck-at-0

S
0

w0

w 1

Cell Stuck-at-1

S
1

w0

w 1
Memory BIST Training Workbook, 8.2002_11-20
 March 2002

Memory BIST Concepts
Transition Faults

1-18 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Transition Faults

♦ Applies to: Signal or cell

♦ Behavior: Signal or cell cannot transition from
 0 to 1 or 1 to 0

1

0

1

0

Memory BIST Training Workbook, 8.2002_1 1-21
 March 2002

Memory BIST Concepts

etect

 0,
 the
Transition Faults (Continued)

A memory fails if one of its control signals or memory cells cannot make the
transition from either 0 to 1 or 1 to 0. The inability to change from 0 to 1 is called
an up transition fault. The inability to change from a 1 to a 0 is called a down
transition fault.

As the example shows, a cell may behave normally when a test writes and then
reads a 1 value. And it may even transition properly from 1 to 0. However, when
undergoing a 0->1 transition, the cell could remain at the 0 state—exhibiting
stuck-at-0 behavior from this point on. However, a stuck-at-0 test might not d
this fault if the cell was at the 1 state originally.

Thus, to ensure the cell can transition normally, a test must write a 1, write a
and then read the cell contents, as well as write a 0, write a 1, and then read
cell contents.

1-19 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Transition Faults (Continued)

S
0

w0

S
1

w 1
w 1

w0
Good Cell State Diagram

Cell with 0->1 (up) Transition Fault

S
0

w0

w 1

S
1

w 1
w0
Memory BIST Training Workbook, 8.2002_11-22
 March 2002

Memory BIST Concepts
Coupling Faults

1 -2 0 • M B IS T A rch itec t: M B IS T C on cep ts C op y righ t © 2 00 2 M ento r G ra ph ics C orpo ra tion

C o u p lin g F a u lts

♦ A p p lie s to : M e m o ry c e lls

♦ B e h a v io r: A w rite o p e ra tio n c h a n g in g o n e c e ll’s v a lu e
in flu e n c e s a n o th e r c e ll’s v a lu e .

● S e v e ra l ty p e s :

– In v e rs io n (C F in) – T ra n s it io n in o n e c e ll c a u s e s in v e rs io n o f a n o th e r
c e ll ’s v a lu e

A A ’

C e ll_ n

C C ’

 c h a n g e
C e ll_ m

 c h a n g e
Memory BIST Training Workbook, 8.2002_1 1-23
 March 2002

Memory BIST Concepts

ll’s
ition

ell’s

ists
alue
Coupling Faults (Continued)

Memories fail when memory cells do not attain the proper state.This can happen
in a number of different ways. In one case, a write operation in one cell can
influence the value in another cell. Coupling faults model this behavior.

Coupling faults fall into several categories: inversion, idempotent, bridging, and
state.

Inversion coupling faults, commonly referred to as CFins, occur when one ce
transition causes inversion of another cell’s value. For example, a 0->1 trans
in cell i causes the value in cell j to go from 0 to 1.

Idempotent coupling faults, commonly referred to as CFids, occur when one c
transition forces a particular value onto another cell. For example, a 0->1
transition in cell i causes the value of cell j to be 0.

Bridge coupling faults, abbreviated as BFs, occur when a short, or bridge, ex
between two or more cells or signals. Instead of transition operation, a logic v

1-21 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Coupling Faults (Continued)

♦ Idempotent (CFid) - Transition in one cell forces a particular
value on another cell

♦ Bridging (BF) - Short, or bridge between two cells

♦ State (SCF) - A certain state on one cell forces a value onto
another cell

Cell_n
change

Cell_m
change

A B’ C’C
Memory BIST Training Workbook, 8.2002_11-24
 March 2002

Memory BIST Concepts
triggers the faulty behavior. Bridging faults fall into either the AND bridging fault
(ABF) or OR bridging fault (OBF) subcategories. ABFs exhibit AND gate
behavior: that is, the bridge has a 1 value only when all the connected cells or
signals have a 1 value. OBFs exhibit OR gate behavior: that is, the bridge has a 1
value when any of the connected cells or signals have a 1 value.

State coupling faults, abbreviated as SCFs, occur when a certain state in one cell
causes another specific state in another cell. For example, a 0 value in cell i causes
a 1 value in cell j.
Memory BIST Training Workbook, 8.2002_1 1-25
 March 2002

Memory BIST Concepts
Neighborhood Pattern Sensitive Faults

1-22 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Neighborhood Pattern Sensitive Faults

♦ Applies to: Memory cells

♦ Behavior: A set of values or a transition of values in multiple
cells influences the value of another cell.
Memory BIST Training Workbook, 8.2002_11-26
 March 2002

Memory BIST Concepts
Neighborhood Pattern Sensitive Faults

Another way in which memory cells can fail involves a write operation on a group
of surrounding cells affecting the values of one or more neighboring cells.
Neighborhood pattern sensitive faults model this behavior. Neighborhood pattern
sensitive faults break down into three categories: active, passive, and static.

An active fault occurs when, given a certain pattern of neighboring cells, one cell
value change causes another cell value to change. A passive fault occurs when a
certain pattern of neighboring cells cause one cell value to remain fixed.

A static fault occurs when a certain pattern of neighboring cells forces another cell
to a certain state.

Because of the complexity and vast number of ways in which these faults can
occur, testing for neighborhood pattern sensitive faults remains a very difficult
task.

1-23 • M BISTA rch itect: M BIST C oncepts C opyright © 2002 M entor G raph ics C orpora tion

N eighborhood P attern Sensitive Fau lts (C ontinued)

♦ Three types:

● A ctive – D uring a certa in pattern in ne ighboring ce lls , one ce ll
change causes ano ther ce ll to change va lue.

● Passive – C erta in pattern in ne i ghboring ce lls cau ses a ce ll to
rem ain fixed (appear s tuck-at).

● Static – C erta in pa ttern in ne ighboring ce lls fo r ces a ce ll to a
certa in s ta te.
Memory BIST Training Workbook, 8.2002_1 1-27
 March 2002

Memory BIST Concepts
Testing for Cell Array Faults

To detect stuck-at faults, you must place the value opposite the stuck-at fault at the
fault location. To detect all stuck-at-1 faults, you must place 0s at all fault
locations. To detect all stuck-at-0 faults, you must place 1s at all fault locations.

In order to detect all transition faults in the memory array, a test must transition
each cell from 0->1 and then immediately read it. The test must then repeat this
process for the 1->0 transition.

Coupling faults involve cells affecting adjacent cells. Thus, to sensitize and detect
coupling faults, you must perform a write operation on one cell (j) and later read
cell (i). The write/read operation performed in ascending order assumes coupling
of a memory cell to any number of cells with lower addresses. Likewise, the
write/read operation performed in descending order assumes coupling of a
memory cell to any of the cells with higher addresses.

Neighborhood pattern sensitive faults are complex and require a variety of
different methods for detection. While currently available, test algorithms for

1-24 • M BISTArchitect: M BIST C oncepts Copyright © 2002 M entor G raphics Corporation

Testing for Cell Array Faults

● Stuck-at faults:

– Require writing 0’s in a ll cells , reading all cells , w riting 1’s in a ll cells ,
and reading again.

● Transition faults:

– Require writing (1->0) and im m ediately reading 0’s at each address,
and repeating the process for w riting (0->1) and reading 1’s.

● Coupling faults:

– Require scanning (w riting/reading) all m em ory cells in ascending
order follow ed by scanning all m em ory cells in descending order.

● Neighborhood pattern sensitive faults:

– Difficult to detect and require different procedures for different types
of these faults.
Memory BIST Training Workbook, 8.2002_11-28
 March 2002

Memory BIST Concepts
neighborhood pattern sensitive fault detection require much area overhead and
produce very long test sets. Some test algorithms, in conjunction with manual
circuit manipulation, can produce test sets for this fault type. However, currently
no commercially-available tool alone does an adequate testing job for this
memory fault type.
Memory BIST Training Workbook, 8.2002_1 1-29
 March 2002

Memory BIST Concepts
Memory BIST Algorithms

The test industry has generated many different algorithms for memory testing.
The following list gives a brief description of some of the more popular ones:

• March A and March B
The March A and March B algorithms cover some linked faults, such as
idempotent linked faults, transition faults linked with idempotent coupling
faults, and inverting faults coupled with idempotent coupling faults.

• March C+ (March2) Default Algorithm)
The next few slides discuss the March C+ default algorithm.

• Other Algorithms
Other common algorithms include: March C, March C-, March3, Column
March, Unique Address, Checkerboard, ROM Test, the Port Interaction
Test, and the User Defined Algorithm. For more detailed information on
these algorithms, see Chapter 3 in the Built-In Self-Test Process Guide.

1-25 • M BISTArchitect: M BIST Concepts Copyright © 2002 M entor Graphics Corporation

Mem ory BIST Algorithm s

♦ Num erous m em ory BIST algorithm s exist

● The m ore popular m em ory BIST algorithm s include:

– M arch A and M arch B

– M arch C, March C-, M arch C+, March3, and
Colum n March

– Unique Address

– Checkerboard

– ROM Tests

– Port Interactive Test

– User Defined Algorithm ™
Memory BIST Training Workbook, 8.2002_11-30
 March 2002

Memory BIST Concepts

ions

tions
hat it
n, the

t
s in

:
lls in
Comparing the Algorithms

This slide provides a comparison of several algorithms that ran on a 1 Megabit
RAM. Notice that some of the algorithms required a large amount of time for test
completion. This is due to the nature of the algorithm—the number of operat
(complexity) required for testing.

For example, the March C- algorithm has a complexity of 10n, where n is the
number of locations in the memory. That is, if you count the number of opera
(see the slide depicting the algorithm operations for March C-), you can see t
requires 10 operations at each location to complete its test. In this compariso
March C- algorithm took 1.0 seconds to complete testing of a 1 M RAM.

While more robust in its fault detection, the GALPAT algorithm, on the other
hand, has an order n2complexity. A walking target cell and revisiting of this targe
cell after each read greatly increases this algorithm’s complexity. This result
the following equation that describes the complexity of the GALPAT algorithm
2(2N + 2n2), where N is the number of address lines and n is the number of ce
the memory. Because of its complexity, in this comparison, the GALPAT

1-26 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Comparing the Algorithms

Testing at 10Mhz
*not supported in MBISTArchitect

Algorithm Fault Coverage Test Time on
1M RAM

March C- Detects address, stuck-at, transition,
coupling, and unlinked coupling

1.0 seconds

March C+
(default)

Detects all March C- faults and some
dynamic faults such as address
decoder delay faults

1.3 seconds

MATS* Detects address and stuck-at faults 0.42 seconds

Unique
Address

Detects stuck-at and address faults 0.50 seconds

Checkerboard Locates stuck-at and memory leakage
(refresh) faults

0.52 seconds

Walking 0/1* Locates stuck-at, address, transition,
and coupling faults

2.5 days

GALPAT* Locates address, stuck-at, transition,
coupling, and write recovery faults

5.1 days
Memory BIST Training Workbook, 8.2002_1 1-31
 March 2002

Memory BIST Concepts
algorithm would take 5.1 days to complete testing of a 1 M RAM. The MATS
algorithm is a modification of the Algorithm Test Sequence (ATS). MATS
provides the shortest march test for unlinked stuck-at faults, it detected address
and stuck-at faults in .42 seconds.

Evaluating the Tradeoffs

Selecting one or more algorithms for your BIST design depends on the type of
memory you are testing, your test goals, your overall test strategy, and the advice
you may receive from in-house memory-test experts or ASIC vendors.

As you can see, as the size of the target memory grows, the complexity of the
algorithm plays a very big role in the required test execution time. So, you need to
consider the trade-off between robust fault coverage and test execution time when
determining which algorithms to use.
Memory BIST Training Workbook, 8.2002_11-32
 March 2002

Memory BIST Concepts
March C+ (March 2)

1-27 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

March C+ (March 2)

♦ Default Algorithm for MBISTArchitect

♦ Adds extra read to each stage of march

♦ Extra read operation immediately after write operation lets you
test at-speed

♦ Algorithm comprised of 14 operations (14n):

Write 0s (to initialize)

Read 0s, Write 1s, Read 1s

Read 1s, Write 0s, Read 0s

Read 0s, Write 1s, Read 1s

Read 1s, Write 0s, Read 0s

Extra Read s
to detect

“at sp eed” fau lts

Read 0s
Memory BIST Training Workbook, 8.2002_1 1-33
 March 2002

Memory BIST Concepts

m

n
f the
se
r all
March C+ (March 2)

MBISTArchitect uses this algorithm by default if you don’t specify an algorith
and refers to this algorithm as “March 2”.

The March C+ algorithm modifies the original March C algorithm by adding a
extra read operation after each stage of the march plus another at the end o
final stage. While increasing the algorithm from 10n (of March C-) to 14n, the
extra reads allows additional fault detection, most notably stuck-open faults fo
types of RAM.

1-28 • MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

March C+ (March 2) Continued

♦ Detects the same faults as March C, PLUS some stuck-open
faults, and some timing faults if you test at-speed (due to the
read immediately after the write)

♦ MBISTArchitect refers to March C+ as “March 2”
Memory BIST Training Workbook, 8.2002_11-34
 March 2002

Module 2
 Generating a Memory BIST

When you complete this module, you should have a basic understanding of
memory testing inputs and outputs, how to launch MBISTArchitect, and how to
access documentation for MBISTArchitect. The accompanying lab exercises give
you hands-on experience generating and verifying a BIST collar for a simple
memory device.

Objectives
Upon completion of this module, you will be able to:

• Describe what a typical Memory BIST flow might look like

• List inputs and outputs to MBISTArchitect

• Show how to start MBISTArchitect in GUI mode

• Describe how to locate and use the documentation resources available
through Mentor Graphics for MBISTArchitect
Memory BIST Training Workbook, 8.2002_1 2-1
 March 2002

Generating a Memory BIST
Typical Memory BIST Flow

Here a typical Memory BIST flow. It contains all the basic steps that are used in
an ASIC type flow.

• Step 1 – Generate RTL or VHDL type code
Memory BIST RTL code is inserted at this stage. It can be generated by
hand. But why would you generate the code manually when you can use
tools like MBISTArchitect to generate it for you? You can also add a
boundary scan (IEEE 1149.1), sometimes called JTAG, at this time.
Boundary scan is a very common method to control test modes such as
memory BIST and scan testing. We will talk about this more in Lesson 5.

• Step 2 – Logic Synthesis
Tools like Synopsys’ Design Compiler, Cadence’ Ambit, or Mentor
Graphics’ Leonardo can handle this step, which turns RTL into a
technology specific gate level netlist.

2-2 MBISTArchitect:Generating a Memory BIST
Copyright © 2002 Mentor Graphics Corporation

Typical Memory BIST flow

RTL Generation

Logic Synthesis

Add internal scan
(Optional)

Place & Route

Boundary Scan
(optional)

Memory BIST

Run Diagnostics
(optional)

Gate level
Netlist

Timing Closure

Pattern Generation
Memory BIST Training Workbook, 8.2002_12-2
 March 2002

Generating a Memory BIST
• Step 3 – Adding Internal Scan
Memory BIST is not dependent on having a scan design. You can have
memory BIST in a scan design or in a non-scan design. In Lesson 5, we will
talk further on how to interface scan and memory BIST.

• Step 4 – Place and Route
Many tools can be used to generate a physical layout database. This
generates a GDSII database that is needed to continue the physical flow.

• Step 5 – Timing Closure
Static and Dynamic timing analysis tools can be used to verify timing. An
SDF file can be generated and used in a Verilog-based simulation to check
for additional timing issues.

• Step 6 – Pattern Generation
Patterns can be generated at any time but should be verified with back-
annotated timing information. Memory BIST patterns can be generated
using the testbench generated during the RTL generation.

• Step 7 – Diagnostics and Debug
Diagnostics and debug might be required if a part fails on the ATE tester.
Memory BIST generated with debugging options included can make this
stage possible. We’ll also talk about this in Lesson 3.
Memory BIST Training Workbook, 8.2002_1 2-3
 March 2002

Generating a Memory BIST

gnals
s a

t of

ks.

ller
ur
MBISTArchitect Inputs and Outputs

The only input to MBISTArchitect is one or more “abstract” memory models.
These memory models reside in ASCII text files. The model describes the si
on the memory ports and the read/write protocol. These models only serve a
core around which MBISTArchitect builds an RTL BIST collar. The memory
model itself does not become part of the final design output.

The MBISTArchitect Control Panel gives you a graphic means to setup and
generate the memory BIST circuitry. As shown in the slide, the output is a se
three HDL files:

1. A memory BIST Controller (ram4x4_bist.v). This file includes the finite
state machine, the pattern generator, the comparator and memory bloc

2. A Connection Model (ram4x4_bist_con.v). This is basically a set of ports
and wires. It provides a means for connecting the memory BIST Contro
to the memory simulation model and serves as the main interface to yo
design.

2-3 MBISTArchitect:Generating a Memory BIST
Copyright © 2002 Mentor Graphics Corporation

MBISTArchitect Inputs and Outputs
Memory BIST Training Workbook, 8.2002_12-4
 March 2002

Generating a Memory BIST
3. Test Bench (ram4x4_tb.v) You can use this test bench to verify the proper
working of the memory BIST generated circuit before you include the
circuit in your design.

You or your ASIC vendor must supply the memory simulation model. In this case,
assume that your simulation model file is named ram4x4.v.
Memory BIST Training Workbook, 8.2002_1 2-5
 March 2002

Generating a Memory BIST
Graphical User Interface

DFT products use two similar graphical user interfaces (GUI): one for BIST
products and one for ATPG products. The BIST graphical user interface supports
MBISTArchitect, LBISTArchitect, BIST Controller Synthesis, BIST-In-Place,
and BSDArchitect.

The slide shows a representation of the GUI elements that are common to both
user interfaces. Notice that the graphical user interfaces consist of two windows:
the Command Line window and the Control Panel window.

2-4 MBISTArchitect:Generating a Memory BIST
Copyright © 2002 Mentor Graphics Corporation

Graphical User Interface

♦ All DFT tools use a similar Graphical User Interface (GUI)
♦ When you invoke a tool, it opens:

● The Command line window
● The Control Panel windows
Memory BIST Training Workbook, 8.2002_12-6
 March 2002

Generating a Memory BIST
MBISTArchitect GUI Overview

The MBISTArchitect GUI provides the following:

• Buttons used for common tasks such as loading memory models, setting the
report environment, and obtaining help.

• Command history, command messaging and a command line for entering
commands manually.

• A graphical wave form model editor.

To launch MBISTArchitect in the GUI mode, type:

shell > mbistarchitect

You will be using the tool in the GUI mode in the first exercise.

2-5 MBISTArchitect:Generating a Memory BIST
Copyright © 2002 Mentor Graphics Corporation

MBISTArchitect GUI Overview
Memory BIST Training Workbook, 8.2002_1 2-7
 March 2002

Generating a Memory BIST
Role of the Test Bench

The testbench instantiates and provides stimulus to the connected memory BIST
model. A high value on the tst_done signal indicates the BIST test has
successfully completed. The fail_h signal value goes high the first time the BIST
controller encounters a miscompare.

2-6 MBISTArchitect:Generating a Memory BIST
Copyright © 2002 Mentor Graphics Corporation

Role of the Test Bench

MB IS T Circuitry
n

n

comp

C
om

pa
ra

to
rA

lg
or

ith
m

-B
as

ed
P

at
te

rn
 G

en
er

at
o

r 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

RA M1

di
wen

sys_addr

don

di
wen

rst

clk

hold_l

test_h

sys_addr

tst_done

fa il_h

Test Bench
Memory BIST Training Workbook, 8.2002_12-8
 March 2002

Generating a Memory BIST

T-

nd

on.
Memory BIST Documentation

Use the following documentation for information on BIST concepts and how to
use the MBISTArchitect and Memory BIST-In-Place tools:

• MBISTArchitect Reference Manual—This guide provides reference
information for the Mentor Graphics’ MBISTArchitect and Memory BIS
In-Place tools. Information contained in this manual includes tool
capabilities, a reference for all tool commands, modeling information, a
sample tool outputs.

• Built-In-Self-Test Process Guide—This guide contains process-oriented
information on MBISTArchitect and Memory BIST-In-Place, as well as
other Mentor Graphics Design-for-Test (DFT) tools. Use this manual to
become familiar with Memory BIST concepts and tool functionality.

Click the Help and Turn on Query Help buttons to obtain online information and
links to this documentation. You will need a PDF viewer to view documentati

2-7 MBISTArchitect:Generating a Memory BIST
Copyright © 2002 Mentor Graphics Corporation

Memory BIST Documentation

♦ You can obtain online help and view Memory BIST
documentation using a PDF viewer

♦ Refer to these guides:

● MBISTArchitect Reference Manual

● Built-In-Self-Test Process Guide
Memory BIST Training Workbook, 8.2002_1 2-9
 March 2002

Generating a Memory BIST
Module 2 Lab Exercises

• Setting Up the Training Data

• Creating a Basic Memory BIST Collar
 (20 minutes)

• Verifying the BIST Circuitry
 (20 minutes)
Memory BIST Training Workbook, 8.2002_12-10
 March 2002

Generating a Memory BIST

le

will
ou

ith
run
2Generating a Memory BIST

Module 2: Lab Exercises
In this lab, you will use the MBISTArchitect tool to create a memory BIST collar
and verify the BIST circuitry. The goal of each exercise is as follows:

Exercise 1: Creating a Basic Memory BIST Collar—You will create a basic BIST
collar for a simple 4x4 RAM model, then save the BIST circuit as a Verilog fi
set.

Exercise 2: Verifying the BIST Circuitry—You will use ModelSim to verify the
memory BIST circuit using an MBISTArchitect-generated test bench.

Getting Started
This section lists the software versions and versions of the training data you
need. It also provides instructions on how to install the training data so that y
can run the labs.

Software Versions

This version of the training data and materials (V8.2002_1) should be used w
the V8.2002_1 release of all BIST products to ensure that the lab exercises
successfully:

Note

These exercises should take approximately 40 minutes.

MBISTArchitect
Memory BIST-In-Place
Acrobat Reader
ModelSim

v8.2002_1
v8.2002_1
v4.0 (install from MGC CD)
EE/Plus 5.5f or newer, including both VHDL
and Verilog libraries
Memory BIST Training Workbook, V8.2002_1 2-11
March 2002

Generating a Memory BIST

re

re to

ME

ust
g

st 20
nd
Training Files

Training files have been provided for this course. Use the files in this directory to
access the training data:

• mbist896nwp—This is the data you need to use to run the exercises.

Installing the Training Data Files

The data for the lab exercises consists of circuit(s), library parts, and userwa
(called dofiles). Because you will modify some of the data during the lab
exercises, you need to have your own local copy. Use the following procedu
make a local copy of the lab exercise data:

1. Make sure that your $MCG_HOME shell variable is set to a MGC_HO
tree that contains the 8.2002_1 version of the MBISTArchitect and
Memory
BIST-In-Place software.

2. The design data for the lab exercises is named mbist896nwp. It is located in
the directory named:

$MGC_HOME/shared/training/mbist896nwp

Before you can perform the lab exercises, this training data directory m
be installed in your Mentor Graphics tree. To check whether the trainin
data is installed, list the contents of the $MGC_HOME/shared/training
directory by issuing the following operating system command:

/bin/ls $MGC_HOME/shared/training

If mbist896nwp does not appear in the displayed list, then either you or
your system administrator must install the training package.

3. Before attempting to copy the training directory, ensure you have at lea
MB of disk space. The uncompressed tar file is approximately 10 MB a
the design data is about 10 MB.
Memory BIST Training Workbook, V8.2002_12-12
March 2002

Generating a Memory BIST
4. Copy the training package data from the MGC_Home tree to the training
directory on your workstation. Specify the pathname where you want your
local copy. The pathname that you specify in this step is referred to as
your_path.

Copy from: $MGC_HOME/shared/training/mbist896nwp
Copy to: your_path/training/mbistnwp

5. Include $MGC_HOME/bin in your $PATH variable.

6. Ensure that acroread (Acrobat Reader) is also included in your $PATH
variable.

7. Define an environment variable named MBISTNWP that points to the full
pathname where you copied mbistnwp. For example, in a C shell enter:

$ setenv MBISTNWP <dir_path>/mbistnwp

8. Each lab directory, such as lab1 or lab2, contains a results subdirectory.
You may need to change the permissions of these directories to allow write
access.
Memory BIST Training Workbook, V8.2002_1 2-13
March 2002

Generating a Memory BIST
Exercise 1: Creating a Basic Memory BIST Collar

This exercise should take approximately 20 minutes to complete.

1. Change to the following working directory:

shell> cd $MBISTNWP/mbist1/ram4x4/design

2. List the design files you will be using in this exercise.

shell> ls -l ram*

The ram4x4.atpg file is a library file contains a single 4x4 RAM model.
The ram4x4.v file is the corresponding Verilog simulation model.

3. Change to the ram4x4/results directory.

shell> cd ../results

You will work and save your results in this directory.

4. Invoke MBISTArchitect.

shell> mbistarchitect

This step invokes the MBISTArchitect graphical user interface (GUI). You
will be using various aspects of the GUI to create your memory BIST
model.

5. Click on the Memory block in the Control Panel graphic pane.

This starts the process to load the ram4x4 model.

a. Click on the Browse button, then navigate to the
$MBISTNWP/mbist1/ram4x4/design directory.

b. Double click on the ram4x4.atpg file, then click Load.

The ram4x4 now appears in the Available Models list.

c. Select the ram4x4 model, then click Add.
Memory BIST Training Workbook, V8.2002_12-14
March 2002

Generating a Memory BIST
 This adds the model to the memory models for BIST insertion.

d. Click OK.

6. From the command line, report on the models in the library.

MBISTA> report library models

The tool should respond:

// Error: Command ’report library models’ is unknown

This is not the proper command name.

7. Use the help command to display the available application commands.

MBISTA> help

The tool displays a list of commands similar to those shown on the next page.
Memory BIST Training Workbook, V8.2002_1 2-15
March 2002

Generating a Memory BIST
ADD VErilog Include ADD VHdl Library
ADD VHdl Use ALIas
DELete ALgorithms DELete DAta Backgrounds
DELete DIagnostic Monitor DELete MBist Algorithms
DELete MEmory Models DELete VErilog Include
DELete VHdl Library DELete VHdl Use
DOFile EXIt
HELp HIStory
LOAd ALgorithms LOAd LIbrary
REPort ALgorithm Steps REPort ALgorithms
REPort BIst REPort DAta Backgrounds
REPort DIagnostic Monitor REPort ENvironment
REPort MBist Algorithms REPort MEmory Models
REPort VErilog Include REPort VErsion Data
REPort VHdl Library REPort VHdl Use
RESet STate RUN
SAVe BIst SAVe HIstory
SET BIstinplace SET COmmand Editing
SET COmparator Test SET COntroller Debug
SET COntroller Hold SET DOfile Abort
SET FIle Compression SET GZip Options
SET MEssage Handling SET SCan Logic
SET SYnthesis Environment SET VHdl Configurations
SETup CLock Period SETup COmparator Failflag
SETup COntroller Clock SETup COntroller Naming
SETup COntroller Pipeline SETup COntroller Reset
SETup DIagnostic Clock SETup FIle Naming
SETup MBist Algorithms SETup MBist COMpressor
SETup MBist Patterns SETup MEmory Access
SETup MEmory Clock SETup MEmory Test
SETup MUx Location SETup OBservation Scheme
SETup REtention Cycles SYStem

The command you want to use is REPort MEmory Models.

1. Get the command usage for Report Memory Models.

MBISTA> help report memory models

The tool should display the following usage:
Usage: REPort MEmory Models [-Library | -Model <model_name>]

You want to see the models in the library, so use the -Library switch.
Memory BIST Training Workbook, V8.2002_12-16
March 2002

Generating a Memory BIST
2. Report on the library models.

MBISTA> report memory models -library

Or, if you want to use minimal typing:

MBISTA> rep me m -l

The tool displays information on the single model, ram4x4, as follows:

Available Memory Models:
Name Vendor Technology
--
ram4x4 sample sample1

This is the memory model around which you want to generate BIST
circuitry.

3. From the command line interface, report more information on the current
memory model by issuing the following command:

MBISTA> report memory models -model ram4x4

The tool should display the following:

 Model ram4x4
 data_out DO3, DO2, DO1, DO0;
 data_in DI3, DI2, DI1, DI0;
 address A1, A0;
 write_enable WEN low;

Vendor: sample
Technology: sample1
Version: 1.0
Additional info: 4x4 RAM, ports = 1rw
Number of Words: 4

This RAM has one read/write port and contains four words. It has four data
input bits, two address bits, and four data output bits.

4. Click Run.

 Default BIST circuitry is added to this model.
Memory BIST Training Workbook, V8.2002_1 2-17
March 2002

Generating a Memory BIST
5. Click Report BIST

The tool should display the following information:

Generated BIST structures:

Name Type
--
ram4x4_bist Memory Bist

MBISTArchitect generates ram4x4_bist, which is the memory BIST
controller for the ram4x4 model.

6. Click Save BIST...

Verify that the ram4x4_bist.v model will be saved to the
$MBISTNWP/mbist2/ram4x4/results directory, then click OK. The tool
responds by telling you the models it is saving, as such:

Saving MBIST Data:
 Saved ram4x4_bist.v
 Saved ram4x4_bist_con.v
 Saved ram4x4_tb.v

7. Click View Saved Design Files

This action brings up the File Viewer window which allows you to view the
contents of each of the output files. MBISTArchitect generated the
following three Verilog files for the ram4x4 model:

• ram4x4_bist.v - an HDL model that contains the ram4x4 BIST controller.

Examine the top-level signals coming out of and going into the BIST
controller. Scroll down through the file and notice that the default BIST
circuitry includes a comparator.

• ram4x4_bist_con.v - this HDL model simply instantiates both
ram4x4_bist and ram4x4 and connects them up by default. The ports of
this model represent the external interface of the memory BIST collar.
Memory BIST Training Workbook, V8.2002_12-18
March 2002

Generating a Memory BIST

e
Examine the top-level signals coming out of this connection model.
Notice that the system signals (sys_) replace the previous memory input
ports and the memory signals (Con-Test) are newly created wires that
connect the controller to the memory inputs. Notice also that the
memory data outputs have a “_O” extension.

There are also three new BIST inputs; clk and rst_l drive the new BIST
state machine. test_h is a level-sensitive signal that tells the BIST
controller to run the test.

tst_done tells your design that the test is finished and has run
successfully;

fail_h tells your design that the memory test has failed.

• ram4x4_tb.v - the testbench for the ram4x4_bist_con.v model.

Examine the top-level signals coming out of this model. Examine th
testing that the testbench performs on the ram4x4_bist_con.v model.

8. Exit the tool.

MBISTA> exit
Memory BIST Training Workbook, V8.2002_1 2-19
March 2002

Generating a Memory BIST

n
 that
ndow,
Exercise 2: Verifying the BIST Circuitry

This exercise should take approximately 20 minutes to complete.

In this exercise, you will use the MBISTArchitect-generated testbench to verify
the memory BIST circuitry that you created in the last exercise.

1. Ensure that you are still working in the
$MBISTNWP/mbist1/ram4x4/results directory.

2. Set up a work directory.

shell> $MGC_HOME/bin/vlib work

3. Compile the memory simulation model, all BIST models, and the
testbench.

shell> $MGC_HOME/bin/vlog ../design/ram4x4.v \
 ram4x4_bist.v ram4x4_bist_con.v ram4x4_tb.v

4. Simulate the test driver.

a. Invoke the ModelSim simulator and load the testbench model.

shell> $MGC_HOME/bin/vsim ram4x4_tb

b. Set up the lists by running the following dofile:

VSIM 1> do ../design/vsim_setup.do

This dofile sets the parameters for the simulation to stop—either
tst_done or fail_h going high. It also sets up a List window so you ca
examine the pertinent signals. If necessary, expand the list window
appears so you can see all the signals. You can also use a wave wi
if you choose.

c. Run the simulation until it is finished.

VSIM 2> run -all
Memory BIST Training Workbook, V8.2002_12-20
March 2002

Generating a Memory BIST
d. Run a little more to capture the complete pattern for the tst_done
signal.

VSIM 3> run 50

e. Write the displayed list to a file.

VSIM 4> write list trace.log.m2

f. Quit the simulation.

VSIM 5> quit

5. Examine the saved list file. Use whatever editor you prefer to view the
trace.log.m2 file you saved.

As you scroll through this file, notice the following things:

• The signals that comprise the columns in this file include (from left to
right, fail_h, tst_done, the address, the write enable, the data input
values, and the data output values).

• The first 650ns of the testbench tests some system signals.

• The March2 algorithm begins at time 1450ns. Remember that the write
enable is active low, and the address changes only when the write
enable is not active (that is, only when the write enable is high). So at
time 1450ns, the address is set to 0, the write enable is inactive, and the
data on inputs is set to 0. At time 1550ns, the write enable goes low,
capturing the input data and writing it to address space 0. At time
1650ns, the write enable again goes inactive, so the address can change
to space 1. Thus, the time from 1450ns to 1650ns initializes address
space 0 to all 0s, and prepares to initialize the next address space to 0.

• From 1650ns to 2150ns, the March2 algorithm continues to initialize
address spaces 1, 2, and 3. This completes the first step in the March2
algorithm: Write 0s to initialize.

• At time 2250ns, with the address set back to space 0, the algorithm
reads 0, writes 1, and reads 1. The address space increases to 1, and the
Memory BIST Training Workbook, V8.2002_1 2-21
March 2002

Generating a Memory BIST
algorithm then reads 0, writes 1, and reads 1. This process repeats for
addresses 2 and 3.

• At time 4650ns, with the address set back to space 0, the algorithm
reads 1, writes 0, and reads 0. This repeats for addresses 1, 2, and 3.

• At time 7050ns, the algorithm begins the test in reverse address order,
reading 0s, writing 1s, and reading 1s.

• At time 9450ns, the algorithm again performs the test in reverse address
order, this time reading 1s, writing 0s, and reading 0s.

• At time 12750ns, the tst_done flag goes high indicating the BIST
testing is complete.

• fail_h remains low throughout the entire simulation.
Memory BIST Training Workbook, V8.2002_12-22
March 2002

Module 3
Common BIST Variations

When you complete this module, you should have a basic understanding of how to
configure memory BIST circuitry, use one BIST controller for multiple memories,
add diagnostics, add pipeline registers, use compressors and comparators, use
clock constraints, and run MBISTArchitect at full-speed.

Objectives
Upon completion of this module, you will be able to:

• Insert BIST for multiple memories

• Add BIST with a compressor

• Add BIST for bidirectional memories

• Add BIST for ROMs

• Perform a full-speed BIST test
Memory BIST Training Workbook, 8.2002_1 3-1
 March 2002

Common BIST Variations
Configuring Memory BIST Circuitry

3-2 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Configuring Memory BIST Circuitry

♦ Add to and/or change the BIST algorithms

● Use one BIST controller for multiple memories

● Use a compressor instead of a comparator

– Add more system-level BIST control signals

♦ Use one BIST controller for multiple memories

● Decreases BIST hardware

– Memories must be compatible, event sequences must be the same
Memory BIST Training Workbook, 8.2002_13-2
 March 2002

Common BIST Variations
Configuring Memory BIST Circuitry

The MBISTArchitect tool provides a common default BIST architecture,
however, this default circuitry may not meet all your testing requirements. Thus,
MBISTArchitect lets you customize the circuitry it generates in a number of ways.

You can add to or change the default algorithms. For example, if you are adding
BIST circuitry to a multiple-port memory model, you may not want to execute the
March C+ test on every write port. You may instead want to use the Unique
Address algorithm to test just the address and control circuitry for all but the first
port.

Another common variation includes using a single BIST controller for multiple
memory models. You can add a BIST collar around an individual model or you
can create a single BIST controller that controls and tests a number of different
compatible memory models.

3-3 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Configuring Memory BIST Circuitry (Continued)

♦ Use a compressor instead of a comparator

● Allows ROM testing

● Reduces diagnostic capability

● Decreases interconnections
Memory BIST Training Workbook, 8.2002_1 3-3
 March 2002

Common BIST Variations
One common variation includes using a compressor for signature analysis instead
of a built-in comparator for direct memory output comparison. You also have less
capability to diagnose what failure occurred.

You can add a system-level hold signal that can stop the testing process. You can
also define multiple input busses connecting to the memory model to provide
further system control.
Memory BIST Training Workbook, 8.2002_13-4
 March 2002

Common BIST Variations
Support for Multi-port Memories

The MBISTArchitect tool supports testing of multi-port memories. Using this
functionality, you can apply different algorithms to each port to reduce test
application time. The tool honors the read and write constraints for multiple ports
which it uses to handle restrictions on simultaneous read-port access.

3-4 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Support for Multi-port Memories

♦ MBISTArchitect provides the following features for multi-port
memories

● Applies different algorithms to each port

– Reduces test application time

♦ Generates a port interaction test

● Produces higher quality tests

♦ Handles restrictions on simultaneous port access

● Honors read and write constraints for multiple ports
Memory BIST Training Workbook, 8.2002_1 3-5
 March 2002

Common BIST Variations

inite
test.

 flag.

ays

and
est
Generate a Comparator Functional Test

The MBISTArchitect tool provides the ability to test the comparator before
running the BIST. This is achieved by adding three states to the controller’s f
state machine that inject faulty data into the memory at the beginning of the
The two states are comp_test_write and comp_test_read_fail.

The comparator test first uses the comp_test_write state to write known data
(background 1) to address zero of all the memories. Then, comp_test_read
performs a read/compare expecting a mismatch which should raise the fail_h
Next, comp_test_read performs a second read/compare expecting a match,
thereby resetting the fail_h flag. When you enable the comparator test, it alw
precedes all other tests.

To generate the comparator test, use the Setup Observation Scheme comm
with the -Compare switch. To test the comparator, use the Set Comparator T
command with the -on switch as follows:

3-5 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Generate a Comparator Functional Test
♦ From controller’s finite state machine

♦ Add two states

● comp_test_write

● comp_test_read_fail and comp_test_read_pass

– Generate Using:

MBIST> setup observation scheme -compare
set comparator test -on

♦ Use with other options

● Example: Repeat comparator test for each memory prior to any
other tests to test the fail flag of each memory independently

MBIST> setup memory test - sequential
set comparator test -on
setup comparator failflag -separate
Memory BIST Training Workbook, 8.2002_13-6
 March 2002

Common BIST Variations

f”.

ion

t

 to the
setup observation scheme -compare
set comparator test -on

 The default of the comparator upon invocation of the MBISTArchitect is “-Of

Additionally, you can use other MBISTArchitect command options in conjunct
with these commands. For example, you can enable the comparator test in
combination with the Setup Memory Test command’s sequential memory tes
(-Sequential) and the comparator fail flag option as shown here:

setup memory test - sequential
setup comparator failflag -separate

In this case, the controller repeats the comparator test for each memory prior
application of any other tests. Thus, testing the fail flag of each memory
independently.
Memory BIST Training Workbook, 8.2002_1 3-7
 March 2002

Common BIST Variations
Inserting BIST for Multiple Memories

3-6 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Inserting BIST for Multiple Memories
♦ MBISTArchitect can generate BIST circuitry that tests multiple

memory models

♦ You can load multiple memory models with the Add Memory
Model command

♦ MBISTArchitect runs test in parallel
Memory BIST Training Workbook, 8.2002_13-8
 March 2002

Common BIST Variations

are

 all
Inserting BIST for Multiple Memories
(Continued)

You can create a single BIST controller that runs BIST on multiple memory
models. This can only occur with compatible memory models—those that sh
the same vendor and technology and have compatible read and write cycle
definitions.

You can specify multiple memories using one or more Add Memory Models
commands. MBISTArchitect generates BIST circuitry that runs the testing on
memories in parallel.

In this case, the default names become <first_model_added>_multi.v,
<first_model_added>_multi_con.v, and <first_model_added>_tb.v.

3-7 M BISTArchitect:C om m on B IST Variations
C opyright © 2002 M entor Graphics C orporation

Inserting B IST for M ultiple M em ories (Continued)

Exam ple

A
lg

or
ith

m
-B

a
se

d
BIST Circu itry

n

ad dr

d i
wen

rst
c lk

h ol d_ l
te st_h

di

ad d r

w en

co mp

P
a

tte
rn

 G
e

n
er

a
to

r

C
o

m
pa

ra
to

r

ad dr

di

w en

te st_ d on e

fail_flag_0

M em o ry
 M ode l

RAM 4 X4_0

M em ory
 M od el

R AM 4X4_1

n
n

n

fa il_ fla g_ 1
Memory BIST Training Workbook, 8.2002_1 3-9
 March 2002

Common BIST Variations
MBISTArchitect Controller Options

MBISTArchitect contains options that let the designer or tester determine how
they want to test the memory and how fast the MBIST controller performs
memory testing. Using MBISTArchitect options, the designer can match the
memory BIST controller speed and hardware required to their own unique needs.

Designers and testers can use MBISTArchitect to test embedded memories at
varying speeds. From using the system default with built-in delay cycles, all the
way up to using the full-speed option to exercise and test the memory at system
cycle speeds, as well as performing timing and stress tests on embedded
memories.

See “How the BIST Controller Works” on page 3-11 for information on how the
BIST controller typically works. See “Full-Speed Overview” on page 3-14 for an
overview of MBISTArchitect full-speed implementation.

3-8 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

BIST Controller Options

♦ The BIST controller performs two primary functions while
testing memories under test:

● It provides the test stimulus

● It checks the response

♦ MBISTArchitect contains options that let you determine how
to test the memory and how fast the MBIST controller
performs memory testing
Memory BIST Training Workbook, 8.2002_13-10
 March 2002

Common BIST Variations

ing
How the BIST Controller Works

In a typical design with memory BIST, the BIST controller performs two primary
functions to the memories under test: 1) it provides the test stimulus, 2) it checks
the response. The slide shows that there is one memory tested by one BIST
controller. In reality, the BIST controller is much smaller than the memories.

The BIST controller itself is a finite-state machine. The clock controlling its state
transitions can be from either an internal clock generator or an external source. To
avoid clock synchronization problems during the BIST operation, normally the
same clock source controls both the BIST controller and the memories it tests. In
this example, we assume all memories are synchronous memories.

See “Read/Write Operations on Synchronous Memories” on page 3-12 for
information on how MBISTArchitect performs read/write operations on
synchronous memory. See “Pipelining Read/Write Operations” on page 3-17 for
information on how MBISTArchitect performs read/write operations when us
the full-speed option.

3-9 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

FAIL

MEMORY

COMP

LOGIC
LOGIC

F

S

M

Compare Capture

Reference Data

C
O
N
T
R
O
L

D
A
T
A

A
D
D
R
E
S
S

Typical Memory BIST Controller
Memory BIST Training Workbook, 8.2002_1 3-11
 March 2002

Common BIST Variations
Read/Write Operations on Synchronous
Memories

To properly perform read or write operations for synchronous memories, the BIST
controller must first generate read/write setup signals before the memory clock is
active. For simplicity, the examples presented in this section assume:

• all read/write setup signals are synchronous signals

• all memories and the BIST controller are activated at rising edge

Since the BIST controller and its memories use the same clock, a typical
read/write operation requires two clock cycles. During the first clock cycle, the
BIST controller generates all the necessary read/write setup signals for the
memories under test. During the second clock cycle, a read/write operation occurs
at the edge of memory clock. This is called data latency in single clock memory
BIST operation.

3-10 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Typical Read/Write Operations

WRITE OPERATION

CLOCK
CYCLE 1

CLOCK
CYCLE 2

CLOCK

ADDR/CNTRL/
DATA

SETUP

WRITE WRITE

READ OPERATION

CLOCK
CYCLE 1

OF READ 1

CLOCK
CYCLE 2

OF READ 1

CLOCK
CYCLE 3

OF READ 1

CLOCK

ADDR/CNTRL SETUP

MEMORY
OUTPUT READ

COMPARE
CIRCUITRY

COMPARE

CIRCUIT
 OUTPUT

FAIL/PASS

SETUP
Memory BIST Training Workbook, 8.2002_13-12
 March 2002

Common BIST Variations
In addition, memory BIST controllers typically use comparators to verify the data
read out from the memories. Since memory outputs are not ready until the edge of
the second clock, the result of the comparator will be captured at the third clock
cycle. Therefore, a BIST controller requires:

• three clock cycles to perform a complete read operation

• two clock cycles to finish a write operation

Typically, a memory BIST controller requires six cycles to do two consecutive
read operations and four cycles to do two consecutive write operations. Likewise,
it requires five cycles to do one read operation followed by one write operation.
Memory BIST Training Workbook, 8.2002_1 3-13
 March 2002

Common BIST Variations
Full-Speed Overview

Because memories are getting larger and denser, design and test engineers need to
ensure higher memory test quality to ensure overall chip quality. Besides static
functional tests, timing and stress tests are necessary to detect system operation
problems. At-speed BIST operation generally means BIST operation is capable of
exercising the memories at system clock frequency. However, at-speed operation
is not sufficient to detect all timing faults. Even if a BIST controller design is
operated in system clock frequency, its data latency prevents testing whether the
memory can change the address and read out different data from different
addresses at every cycle. Without this limitation, the BIST operation may not
ensure adequate memory quality.

MBISTArchitect has a feature called Full-Speed BIST operation. Full-speed is
used to enhance a single clock memory BIST controller so that it can launch a
read or write operation on each active clock edge, thus enabling timing and stress
testing as part of the BIST operation. Besides improved test quality, full-speed
BIST operation significantly reduces test time. For example, typical consecutive

3-11 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Full-Speed Approach

• BIST controller running at system speed

• Memory exercised at system speed

• Timing stress testing
Memory BIST Training Workbook, 8.2002_13-14
 March 2002

Common BIST Variations
read/write operations require 5 clock cycles which can be done in 2 clock cycles
with full-speed BIST operation.

The MBISTArchitect full-speed functionality provides maximum memory BIST
controller speed and test performance. Running full-speed at system clock speed
tests the memory at the full-speed the system will run.

Full-speed testing reduces testing times. Full-speed can locate defects that will not
be detected at slower speeds, thus providing increased fault detection. Full-speed
provides the additional benefit of testing whether a memory can change an
address and read data from different addresses at every cycle. It enables timing
and stress testing as part of the BIST operation because it can launch a read/write
operation on each active clock edge.
Memory BIST Training Workbook, 8.2002_1 3-15
 March 2002

Common BIST Variations
Full-speed design with pipeline circuitry

The slide shows a Full-Speed pipelined BIST Controller.

Since there is data latency in memory BIST controllers, the BIST controller must
be pipelined to enable full-speed read/write operation. The pipeline is used to
temporally separate the needed action at each cycle of read/write operations. With
pipelining, you can model the memory as only taking one clock cycle and then use
the pipelining to tear the comparison out of the first cycle and the capture of the
comparison result, which happens at the end of the pipeline.

3-12 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

MEMORY

LOGIC
LOGIC

F

S

M

Compare Capture

Reference Data

C
O
N
T
R
O
L

D
A
T
A

A
D
D
R
E
S
S

Pipelined BIST Controller

FAIL

COMP

stage1

stage2

stage1
Memory BIST Training Workbook, 8.2002_13-16
 March 2002

Common BIST Variations

y
vation.
or read
de the
ising

l.

e
Pipelining Read/Write Operations

The slide shows the pipelined design for full-speed memory BIST operation.

A 3-stage pipeline can be used to compress the three cycle read operation into
single cycle read. In this case, the first stage does the read setup—which ma
include read address change, read enable activation, and output enable acti
The second stage activates the read clock and provides the reference data f
data output comparison. The third stage captures the comparison result. Insi
BIST controllers, all signals needed for read operation are generated at the r
edge of the same clock. The following pipelines are also needed:

• A pipeline register to create one-cycle delay at the memory clock signa

• A pipeline register to create one-cycle delay at the reference data to th
comparator.

3-13 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Full-Speed Pipelined Read/Write Operations

READ / W RITE OPERATION

CLOCK
CYCLE 1

CLOCK
CYCLE 2

CLOCK
CYCLE 3

CLOCK

ADDR/CNTRL/
DATA

SETUP
READ 1

MEMORY
OUTPUT

READ 1

COMPARE
CIRCUITRY

COMPARE
READ 1

CIRCUIT
 OUTPUT

SETUP
WRITE 1

SETUP
READ 2

SETUP
READ 3

SETUP
W RITE 2

READ 2 READ 3

COMPARE
READ 2

COMPARE
READ 3

PASS/FAIL
READ 1

PASS/FAIL
READ 2

W RITE WRITE 1

CLOCK
CYCLE 4

CLOCK
CYCLE 5
Memory BIST Training Workbook, 8.2002_1 3-17
 March 2002

Common BIST Variations
• A full-speed BIST controller needs a pipeline register to create two-cycle
delay at the capture signal that activates the capturing the results of the
comparator.

In addition, a 2-state pipeline can compress the two cycle write operation shown
earlier, into a single cycle write. The first stage does the write setup which may
include write address change, write data change, and write enable activation. The
second stage activates the write clock. Similarly, inside the BIST controllers, all
signals needed for write operation are generated at the rising edge of the same
clock. Here, only the memory clock needs to be delayed one cycle to achieve full-
speed operation. As explained earlier, a memory clock is repeated every cycle, the
pipeline register to create one-cycle memory clock delay is not needed.

As part of this module, you can perform a Full-Speed exercise to see the results of
full-speed testing. See “Running BIST at Full-Speed” on page 3-61.
Memory BIST Training Workbook, 8.2002_13-18
 March 2002

Common BIST Variations

e
tial
Performing Sequential Memory Tests

MBISTArchitect creates a controller that by default tests multiple memories
concurrently. You can specify that the controller test each of these memories
sequentially by using the following command option:

setup memory test -sequential

The -Sequential contiguous switch causes the controller to apply all the test
algorithms to all the ports of a memory before proceeding to the next memory
(this is the system default). Using the -Sequential interleaved switch instructs the
MBISTArchitect tool to interleave algorithm steps between memories.

Since the controller tests the memories independently of one another during
sequential memory testing, the memory’s read/write cycles need no longer b
compatible. However, the current MBISTArchitect implementation of sequen
memory test does not have this capability.

3-14 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Performing Sequential Memory Tests
● Apply all test algorithms to all ports of a memory before

proceeding to the next memory

– MBIST> setup memory test -sequential [Interleaved | Contiguous]

● Multiple Memories Sequential Memory Test

● Generate individual fail flags

– MBIST> setup comparator failflag -separate

● Identifies which memory has failed
Memory BIST Training Workbook, 8.2002_1 3-19
 March 2002

Common BIST Variations
Additionally, you can generate individual fail flags for multiple memories by
using the Setup Memory Test and Setup Comparator Failflag commands as
follows:

setup memory test -sequential
setup comparator failflag -separate

This specifies separate fail flags for multiple memory tests. This is especially
useful in identifying which memory has failed when you specify the sequential
memory test option (-Sequential). The default is Common; output a single fail bit
regardless of the number of memories.
Memory BIST Training Workbook, 8.2002_13-20
 March 2002

Common BIST Variations
Adding Diagnostics

3-15 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Adding Diagnostics
♦ Extracts failing data for fault diagnosis process

♦ Data scanned out through a serial pin

♦ Diagnostics contained within the BIST logic

♦ Two modes of operation
Memory BIST Training Workbook, 8.2002_1 3-21
 March 2002

Common BIST Variations
Adding Diagnostics (Continued)

MBISTArchitect can give the BIST controller the ability to download the failing
data on every occurrence of a miscompare. And, the failing data can be scanned
out with a minimal impact on silicon area and routing overhead. You can switch
on a diagnostic clock and a diagnostic clock pin named diag_clock is added to the
controller pin list. The diag_clock pin is toggled at half BIST clock during the test
bench. The BIST controller operates in one of two modes controlled by debugz.
The modes and operation of the fail_h and scan_out ports is as follows:

Normal Mode (debugz = ‘0’) When debugz is set to ‘0’, the BIST controller
performs the default test. In this mode, the scan_out port is set to ‘0’, as no fail
data is downloaded. The fail_h port is asserted on the first failure and remains
high for the remainder of the test.

3-16 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Adding Diagnostics (Continued)

Example

BIST

n
n

n
n addrsys_di

sys_wen

rst_l

clk

hold_l

test_h

disys_addr

wen

 do_0n

n
n addr

di

wen

 do_1n

debugz

Controller

Memory
Model

RAM4X4

fail

test_done

scan_out

Status of Test Behavior of scan_out fail_h Behavior

No Miscompare Logic ‘0’ Logic ‘0’

M iscompare Logic ‘1’ for two clock cycles Logic ‘1’
Detected Scan out failing data (MSB to LSB) Logic ‘1’

Scan out failing address (MSB to LSB) Logic ‘1’
Scan out controller state Logic ‘1’

Logic ‘0’ for one clock cycle Logic ‘1’

debugz = ‘0’ - stop on first fail

debugz = ‘1’ - scan out failing data

Memory
Model

RAM4X4
Memory BIST Training Workbook, 8.2002_13-22
 March 2002

Common BIST Variations

as
. At
he

e
ical

the
s.
e

s
Debug Mode (debugz = ‘1’) When debugz is set to ‘1’, the diagnostic mode is
enabled. In this mode, a miscompare will suspend the operation of the BIST
controller, and the failing data will be serially scanned out of the controller
through scan_out (see the table on the opposite page). Once the failing data h
been scanned out, the BIST controller resumes the test and resets fail_h to 0
the end of the test, fail_h is asserted to 1 if there has been any failing data. T
scan out operation will repeat on every occurrence of a miscompare.

In order to synthesize the diagnostic functionality into the BIST controller, the
following conditions must be met.

1. The BIST controller must use a comparator for verification.

2. Only algorithms supporting the comparator can be used. These includ
march1, march2, march3, unique address, checkerboard, and topolog
checkerboard.

3. The hold_l signal must be added to the BIST controller.

The diagnostics capability is added by using these commands:

setup controller hold -on | -off
setup controller debug -on | -off
set comparator test -on | -off
set comparator failflag {-Common | -SEparate} {-SInglefail | -Multifail}

You can also set a slow clock to scan out diagnostic data. The cycle time of
diagnostic clock is two times slower than a BIST clock with a default of 200n
Use the Setup Diagnostic Clock -Diag_clock command in conjunction with th
Setup Controller Naming -Diag_clk diag_clk command to set up a diagnostic
clock.

setup diagnostic clock diag_clock
setup controller naming -diag_clk diag_clk

Clock Synchronization

There are two clock domains for the diagnostic process in the Memory BIST
controller. One clock controls the diagnostic clock domain that scans out
diagnostic data to the Automatic Test Equipment (ATE). This clock domain i
Memory BIST Training Workbook, 8.2002_1 3-23
 March 2002

Common BIST Variations
usually relatively slow. A second clock domain is run by the bist clock that
operates everything except the diagnostic data scan-out and operates at a faster
clock speed. In default operation, MBISTArchitect operates with these clocks in a
non-synchronized relationship. When you turn synchronization on, these clocks
become synchronized by passing information between the domains. For more
information, see the “Synchronization between BIST Clock and Diagnostic
Clock” section in Chapter 3 of the Built-In-Self-Test Process Guide.
Memory BIST Training Workbook, 8.2002_13-24
 March 2002

Common BIST Variations
Compressor vs. Comparator

In Memory BIST, the output response analysis is performed either by means of a
comparator or a compressor.

A comparator provides some unique benefits such as diagnostic capability at the
expense of higher area overhead. Since comparator width is the same as the
memory data width, this area overhead increases for wide memories.

However, a comparator has the capability of stopping on the first fail or in the case
of debug mode, stopping on every failure and scanning out the data. These
features result in good diagnostic capability by providing precise information
about failure location.

A compressor, on the other hand, entails relatively less area overhead.
Compressor width can be different than that of the memory data width. Output
from a memory wider than a compressor has to be fed to the compressor through a
properly designed XOR tree.

3-17 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Compressor versus Comparator
♦ Most people use a comparator because:

● It stops on the first fail

● You can add diagnosis capabilities to the BIST controller

♦ Some people use compressors because:

● A ROM test requires it
Memory BIST Training Workbook, 8.2002_1 3-25
 March 2002

Common BIST Variations
Since the contents of a ROM are predetermined and cannot be changed by the
BIST controller, the expected reference data for a comparator would have to be
provided through the duplication of ROM contents. In general, this results in a
large area overhead and is unacceptable. Thus, using a compressor for analyzing
the ROMs output response is the only viable alternative.

Compressors cannot provide good diagnostic capability since their contents, in
general, are checked only at the end of a test. Precise identification of the fault
location based on the final content of a compressor is a difficult task.

Compressors can be placed immediately at the output of a memory, or in case of
an embedded memory, can be placed downstream. Placing the compressor
downstream tests the logic between memory outputs and compressor. However,
diagnostic capability will be further worsened since a fault now can be either in
the memory or in the intervening logic.

The MBISTArchitect tool has configurations that use a compressor (MISR) to
capture the output of the memory under test. You use the Setup MBist
Compressor command to define compressor parameters.

Use Setup MBist Compressor -scan to scan out the final signature and compare
it with the tester. Use Setup MBist Compressor -localcomparator to generate a
signature comparator in the memory BIST collar (locally).
Memory BIST Training Workbook, 8.2002_13-26
 March 2002

Common BIST Variations
BIST using a Compressor

Within an MBISTArchitect session, you can generate either a BIST controller
with a comparator or a compressor configuration. If you specify a compressor
configuration, MBISTArchitect generates a separate HDL model for each
compressor(s).

Before you can tell MBISTArchitect to generate a compressor configuration, you
must specify that the controller should use a compressor.

For example, the following set of commands generates the compressor shown:

shell> $MGC_HOME/bin/mbistarchitect -library dft.lib

3-18 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

BIST Using a Compressor

1

0

1

0

sys_address n

test_address n

test_read_enable

read_enable

test_capture

tclk

trst_l

1 0

misr_data_out

fail_h

misr_scan_out

BIST
Controller Memory

MISR

Memory Block

test_h

rst_l

clk sys_clk

data_out

si

m isr_hold-l

se

tst_done

m

l

n

m

ROM
Memory BIST Training Workbook, 8.2002_1 3-27
 March 2002

Common BIST Variations
MBIST> add memory model ram4x4 ram8x8 ram8x8
MBIST> set controller hold -on
MBIST> setup observation scheme -compress
MBIST> setup mbist compressor -hold [-localcomparator]
MBIST> run
MBIST> save bist
MBIST> exit
Memory BIST Training Workbook, 8.2002_13-28
 March 2002

Common BIST Variations
Adding Pipeline Registers

3-19 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Adding Pipeline Registers
♦ Specify number of input and output stages

♦ Pipeline registers are separate modules in the BIST controller
file

♦ Testbench accounts for pipeline stages

● Example Request:

MBIST> setup controller pipeline -depth
input_depth 2 output_depth 3
Memory BIST Training Workbook, 8.2002_1 3-29
 March 2002

Common BIST Variations

hen
With

Adding Pipeline Registers (Continued)

In some designs, pipeline registers are inserted along the address/data lines to
synchronize the data flow activity between the memory and a system-level device.
MBISTArchitect can model this pre-determined pipeline delay by allowing you to
insert pipeline registers into the generated connection model.

The Setup Controller Pipeline command specifies the controller pipeline register
settings, the number of pipeline registers to be placed between the controller and
the memory, the position of the comparator in the pipeline, and the number of
pipeline delay stages to be placed between memory and the comparator. For
different configurations you can also specify the respective pipeline stages for the
memory address input, data input, control input, and/or output pipelines. Refer to
the “Setup Controller Pipeline” command section of the MBISTArchitect
Reference Manual for information on specific switches.

Pipelining is useful for several situations, such as when timing is critical or w
you want to control where MBISTArchitect samples and compares the data.
this command and its options, you can manage time delays and meet timing

3-20 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Adding Pipeline Registers (Continued)

Memory
 Model

A
lg

or
ith

m
-B

as
ed

BIST Controller

m

addr

sys_wen
rst_ l

clk
hold_ l

test_h

do

sys_addr

clk

P
at

te
rn

 G
en

er
at

o
r

tst_done

n

Input
Pipelines

Output
P ipeline Registers

R
egiste

r

R
egiste

r

0

1

ctl*

ct l* = might include
wen, cen, or oen

test_di

sys_di

m

m

Memory BIST Training Workbook, 8.2002_13-30
 March 2002

Common BIST Variations

ich

 in the
e
ta
constraints. By specifying the comparator’s position, you can control from wh
pipeline stage you want to take data for comparison.

For example, by entering the following setup command, MBISTArchitect will
generate two input and three output pipeline registers:

setup controller pipeline -depth input_depth 2 output_depth 3

In this case, MBISTArchitect creates the registers as separate instantiations
connection model and modifies the controller timing to account for the pipelin
delay. Notice that pipeline registers can only be added to the address and da
paths and not to any other control signals.

Adding pipeline registers is also used in full-speed testing, see “Full-Speed
Overview” on page 3-14 for more information.
Memory BIST Training Workbook, 8.2002_1 3-31
 March 2002

Common BIST Variations
Specifying Non-controlled Memory Ports

3-21 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Specifying Non-controlled Memory Ports

♦ Memory ports not to be controlled by BIST Controller

♦ Default assertion state is high

● Test bench holds the signal at the value opposite its assert state

♦ Default direction is input

● Except for “data_out” and “data_inout”

♦ Define in Library Model’s bist_definition section
Memory BIST Training Workbook, 8.2002_13-32
 March 2002

Common BIST Variations
Specifying Non-controlled Memory Ports

You can use a clause on the bist_definition section of the MBISTArchitect
memory model to specify which ports on the memory should not be controlled by
the BIST Controller. The default assertion state is high and the default direction is
input except for “data_out” and “data_inout.”

3-22 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Specifying Non-controlled Memory Ports (Continued)

♦ Library Model’s bist_definition section

...
bist_definition (
 ...
 dont_touch port_name assert_state direction;
 ...
) // end BIST definition

● port_name = pin or bus to be left untouched.

● assert state = “high” (default) or “low”

● direction = “input” or “output”
Memory BIST Training Workbook, 8.2002_1 3-33
 March 2002

Common BIST Variations
Specifying Parameters for Memory
Clock Signals

 The following commands support clock gate control:

SETup MEmory Clock {-System | -Control | {-Test {Noinvert | Invert}}

The -Control switch specifies that the memory clock should be gated. The default
is -System. When the -Control switch is used, the test mode clock is connected to
the clock control signals created by the BIST controller.

The -Test Noinvert switch lets you specify whether the controller is synchronous
with the rising edge or falling edge (inverted) of the clock. The default is to not
invert.

3-23 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Specifying Parameters for Memory Clock Signals

♦ Memory Clock Signal Gate Parameters

● Clock Gating On

– Generate multiplexer in path of clock signal

– MBIST> setup memory clock -control

● Clock Gating Off (Default)

– Use the system clock for BIST testing

– MBIST> setup memory clock -system

♦ Synchronize Controller with Memory Clock

● Synchronous with Clock’s Rising Edge (Default)

– MBIST> setup memory clock -test noinvert

● Synchronous with Clock’s Falling Edge (inverted)

– MBIST> setup memory clock -test invert
Memory BIST Training Workbook, 8.2002_13-34
 March 2002

Common BIST Variations
Bypassing Memory in Scan Mode

Use these commands:

SET SCan Logic [-Addr_observe integer] [-Data_observe integer]
 [-NoScan | -Scan] [-Control | -NOControl] [-CNtrl_observe integer]

Where:

• -Addr_Observe: Number of cells to observe address

• -Data_Observe: Number of cells to observe data

• -Scan: Generate scan cells and scan chain (not default)

• -Control: Multiplex bypass cell outputs onto memory cell outputs

• -NOControl: Do not multiplex bypass cell outputs onto memory cell
outputs

3-24 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Bypassing Memory in Scan Mode
♦ Propagates fault efforts around memories

♦ Allows high fault coverage for scan and logic BIST designs
with embedded memories

a 1

a 0

d i0 M em o ry
 M o d el

(ra m4 X4)d i2

d i1

d i3

w e n

do 0

do 2

do 1

do 3

B IST
 Co n tro lle r

d o0

d o2

d o1

d o3

b p_ c lk
te st_ mo de

ra m 4X4 _ by pa ss

ra m 4X4 _ blo ck

bis t_ co n

No n -S can
ce lls

C on tr ol
MU X s
Memory BIST Training Workbook, 8.2002_1 3-35
 March 2002

Common BIST Variations
Bypassing Memory in Scan Mode
(Continued)

You can direct MBISTArchitect to configure scan logic to bypass the memory
during scan mode. This is done by XORing all the address lines and all the data
input lines to generate a specified number of compressed signals. Each of these
compressed signals are captured in scan or non-scan cells. These cells are clocked
using a new signal line named bp_clk. If you choose to specify scan cells,
MBISTArchitect generates three additional signal lines: scan_enable, scan_in,
and scan_out.

The default -Control option is provided to multiplex the scan/non-scan cell output
to the memory data output. This is helpful in testing logic on the output side of the
memory during scan test. MBISTArchitect inserts one multiplexer for each data
output. It connects one input of the multiplexer to memory data output and the
other input to the newly inserted scan/non-scan cells. The multiplexer is
controlled by the test_mode signal.

3-25 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Bypassing Memory in Scan Mode (Continued)
♦ Commands used:

● SET SCan Logic [-Addr_observe integer] [-Data_observe integer]
 [-NOScan | -Scan] [-Control | -NOControl]

 [-CNtrl_observe integer]

– -Addr_observe : Number of cells to observe address

– -Data_observe : Number of cells to observe data

– -Scan : Generate scan cells and scan chain (not default)

– -Control : Multiplex bypass cell outputs onto memory cell
 outputs

– -NOControl : Do not multiplex bypass cell outputs onto
 memory cell outputs
Memory BIST Training Workbook, 8.2002_13-36
 March 2002

Common BIST Variations

 the
s and

an
t lines
 of
t
are

d data
ver

y,
The bypass logic created by this command is placed in a hierarchical block called
memory_name_bypass. Also, a new level of hierarchy called
memory_name_block is created if it doesn’t already exist. This
memory_name_block is created or modified to contain both the memory and
memory_name_bypass blocks. The description of the memory_name_bypas
memory_name_block are in the same file as the BIST Controller.

To help with testing the logic that surrounds your memory design,
MBISTArchitect allows you to add memory bypass circuitry using the Set Sc
Logic command. This bypass circuitry compresses the address and data inpu
through XOR logic and either scan or non-scan cells into a specified number
output signals. By using the command’s default -Control switch, these outpu
signals are multiplexed with the memory data output lines. The multiplexers
controlled by test_mode. When test_mode is asserted high for testing the
surrounding logic, the memory is bypassed and the compressed address an
input signals are presented to the data output lines. This allows you control o
the downstream logic during testing.

For a detailed description of the MBISTArchitect memory bypass functionalit
refer to the Set Scan Logic command description in the MBISTArchitect
Reference Manual.
Memory BIST Training Workbook, 8.2002_1 3-37
 March 2002

Common BIST Variations

sign

lt

 file
Synthesis Driver File

MBISTArchitect can write a basic synthesis script, targeted for Synopsys’ De
Compiler tools.You can use this script as a template for synthesizing and
optimizing the BIST models MBISTArchitect produces.

While you can change the model’s name using Setup File Naming, by defau
MBISTArchitect names this model <design>_dcscript (for Synopsys Design
Compiler).

The Design Compiler can save the BIST controller and BIST block in a single
for Verilog. For VHDL, the BIST controller and BIST block can be saved to
separate files.

3-26 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Synthesis Driver File
♦ MBISTArchitect can produce a basic synthesis script:

● For Synopsys environments

● Named <design>_dcscript for Synopsys Design Compiler (by
default)

● That you can use as a template or example of a basic
synthesis/optimization run
Memory BIST Training Workbook, 8.2002_13-38
 March 2002

Common BIST Variations
An example is shown below:

/* --
// File Type: Logic Synthesis Script File
// Date Created: Wed Feb 6 21:02:00 2002
// Tool Version: v8.9_6.02 Wed Feb 6 15:31:55 PST 2002
// --
*/

sh mkdir work
define_design_lib work -path "./work"
read -format verilog top_after.v

current_design cti_sab
uniquify
compile
write -format verilog -hierarchy -output "cti_sab_gate.v"

current_design ram4x4_multi_bist
uniquify
compile
write -format verilog -hierarchy -output
"ram4x4_multi_bist_gate.v"

current_design ram4x4_multi_bist_ram4x4_block_0
uniquify
compile
write -format verilog -hierarchy -output
"ram4x4_multi_bist_ram4x4_block_0_gate.v"

current_design ram4x4_multi_bist_ram4x4_block_1
uniquify
compile
write -format verilog -hierarchy -output
"ram4x4_multi_bist_ram4x4_block_1_gate.v"

current_design ram4x4_multi_bist_ram4x4_block_2
uniquify
compile
write -format verilog -hierarchy -output
"ram4x4_multi_bist_ram4x4_block_2_gate.v"
exit
Memory BIST Training Workbook, 8.2002_1 3-39
 March 2002

Common BIST Variations

lt
Design Compiler Clock Constraints

The MBISTArchitect Design Compiler script has been modified to let you define
clock constraints. This script uses the currently defined clock width and add clock
constraints for the BIST controller clock and any other memory model defined
clock signals, where clock gating is disabled.

capture and write the output values of the memory itself. You specify this
information using the Setup Mbist Patterns command.

While you can change the model’s name using Setup File Naming, by defau
MBISTArchitect names this output <design>_bist.pat.

3-27 MBISTArchitect:Comm on BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Design Com piler Clock Constraints
♦ MBISTArchitect lets you define clock constraints within the

Synopsis Design Compiler script

● Example:

Clock_Period=100
create_clock-period CLOCK_PERIOD RCLK
set dont_touch_network RCLK
create_clock-period CLOCK_PERIOD BIST_CLK
set dont_touch_network BIST_CLK
Memory BIST Training Workbook, 8.2002_13-40
 March 2002

Common BIST Variations
Mux-Embedded Memory Support

MBISTArchitect supports mux-embedded memory structures. It is often to your
advantage to design control muxes within memory blocks to reduce overhead and
timing penalty. The tool uses the inserted mux to select test or system signals and
support by-pass logic signals inside of the memory block. You can design the data
output to either separate system and test pins or to a single output for both signals.

Library Enhancement

To support the mux-embedded memory structure, a library format is used to
specify which signals are paired. The following are mux-embedded memory
support signals that are used in this library format:

port_type sys_name:test_name width active_state

A BIST-mode signal is used to select either BIST signals or system signals. This
signal is necessary and is used as follows:.

3-28 MBISTArchitect:Common BIST Variations
Copyright © 2002 Mentor Graphics Corporation

Mux-Embedded Memory Support

♦ MBISTArchitect supports mux-embedded memory structures

● The tool uses the inserted muxes within memory blocks to
reduce overhead and timing penalties

0

1

0

1

0

1

sys_address n

test_address n

sys_data_in m

test_data_in m

test_wri te_enable

sys_write_enable

BIST
Controller Memory

Memory Block

test_h

rst_l

clk

sys_clk

data_out

tst_done

m

n

m

fai l_h

test_h
Memory BIST Training Workbook, 8.2002_1 3-41
 March 2002

Common BIST Variations

bist_mode name active_state

To support embedded bypass logic inside of mux-embedded memories, the
following signals should be used:

ATPG_mode, scan_clk, scan_enable, scan_in, and scan_out.
atpg_mode name active_state

For information on Mux-Embedded Memory Support limitations and examples of
the mux-embedded memory support library format, see the “Mux-Embedded
Memory Support” section in Appendix A of the MBISTArchitect Reference
Manual.
Memory BIST Training Workbook, 8.2002_13-42
 March 2002

Common BIST Variations
Module 3 Lab Exercises

• Changing the BIST Algorithm
 (20 minutes)

• Changing the Data Background
 (20 minutes)

• Inserting BIST for Multiple Memories
 (15 minutes)

• Adding BIST with a Compressor

• Implementing Full-Speed BIST
 (20 minutes)

• Adding BIST for Bidirectional Memories
 (10 minutes)

• Adding BIST for ROMs
 (30 minutes)
Memory BIST Training Workbook, 8.2002_1 3-43
 March 2002

 2

ta

e

e full

.

utes.
3Common BIST Variations

Module 3: Lab Exercises
You may be able to increase test coverage and reduce area by taking the time to
configure the BIST circuitry to your design. The following exercises will give you
a start at customizing BIST for different design configurations that you may
encounter. You may choose to do all exercises or only those that fit your design
needs.

Exercise 3: Changing the BIST Algorithm—In this exercise, you will generate a
new memory BIST collar that uses the March 1 rather than the default March
algorithm to reduce test time.

Exercise 4: Changing the Data Background—In this exercise, you will improve
the test coverage of the March 1 BIST Controller by adding three different da
pattern backgrounds.

Exercise 5: Inserting BIST for Multiple Memories —In this exercise, you will
save area and overhead by sharing a BIST controller for multiple memories.

Exercise 6: Adding BIST with a Compressor — In this exercise, you will add a
Compressor instead of a Comparator. A Compressor may be used to improv
area-overhead or optimize routing.

Exercise 7: Running BIST at Full-Speed—In this exercise, you run BIST at “full-
speed” meaning it will run at the system clock speed to test the memory at th
speed at which the system will run.

Exercise 8: Adding BIST for Bidirectional Memories—In this exercise, you add
BIST for bidirectional memories.

Exercise 9: Adding BIST for ROMs—In this exercise, you add BIST for ROMs
A ROM requires the use of a compressor.

Note

These exercises should take approximately 1 hour and 20 min
Memory BIST Training Workbook, V8.2002_1 3-44
March 2002

Common BIST Variations
Exercise 3: Changing the BIST Algorithm

This exercise should take approximately 20 minutes to complete.

Selecting one or more algorithms for your BIST design depends on the type of
memory you are testing, your test goals, your overall test strategy, and the advice
you may receive from in-house memory-test experts and ASIC vendors.

The March 2 (March C+) algorithm is the MBISTArchitect default because it is so
commonly used and accepted.

In this exercise, you will direct MBISTArchitect to use the March 1 algorithm
when you generate a BIST collar for the ram4x4 memory. Remember that you can
add new algorithms as well as change algorithms. You will gain experience
adding algorithms in later exercises.

Do the following:

1. Verify that you are in the $MBISTNWP/mbist1/ram4x4/results directory.

2. Invoke MBISTArchitect while loading the library at invocation.

shell> mbistarchitect -lib ../design/ram4x4.atpg

3. Add the ram4x4 model to the list of memory models for BIST insertion.

4. Select the Controller block to access the Setup Mbist Controller dialog
box.

5. Select the Test Algorithms tab, select March 1, then click OK.

6. Click Run to add default BIST circuitry to this model.

7. Save the default outputs by clicking Save BIST. After verifying the format
and destination directory, click OK.

MBISTArchitect prompts you with the following question:

One or more of the output files already exist. Do you
want to overwrite them?
Memory BIST Training Workbook, V8.2002_1 3-45
March 2002

Common BIST Variations
Click No in the Question dialog box, then Cancel the Save Bist Results
dialog box.

In Exercise 1, you saved outputs with the same default filenames. Instead of
replacing these files, you can give them custom names.

8. Click on the Output Files Names button in the Control Panel Window. In
the Setup Output File Naming dialog box, change the filenames to the
following, then click OK:

Old Filename New Filename
ram4x4_bist.v ram4x4_m1_bist.v
ram4x4_bist_con.v ram4x4_m1_bist_con.v
ram4x4_tb.v ram4x4_m1_tb.v

9. Click Save BIST.

10. From the Command Line, list the generated outputs:

MBISTA> system ls ram*

The System command lets you issue an operating system command. The ls
command shows the contents of the working directory. You should see:

 ram4x4_bist.v ram4x4_m1_bist.v ram4x4_m1_tb.v
 ram4x4_bist_con.v ram4x4_m1_bist_con.v ram4x4_tb.v

MBISTArchitect generated three new Verilog models for the ram4x4
model:

• ram4x4_m1_bist.v - a model that contains just the ram4x4 BIST control
circuitry,

• ram4x4_m1_bist_con.v - the connection model that connects the BIST
controller to the ram4x4 simulation model, and

• ram4x4_m1_tb.v - the testbench that instantiates and tests the
ram4x4_m1_bist_con.v model.

11. Click View Saved Design Files.
Memory BIST Training Workbook, V8.2002_13-46
March 2002

Common BIST Variations
MBISTArchitect generated three Verilog models for the ram4x4 model:

Look at ram4x4_m1_bist.v. This model is very much the same as
ram4x4_bist.v, except for the March 1/March 2 algorithm differences. Both
algorithms perform the basic March test, with March1 eliminating the
RWR operation to reduce the algorithm from 14n to 10n.

12. Exit the tool.

13. Compile the outputs.

a. Set up a new work directory for the March1 test models.

shell> $MGC_HOME/bin/vlib work_m1

b. Compile the memory simulation model, all BIST models, and the
testbench.

shell> $MGC_HOME/bin/vlog -work work_m1 \
../design/ram4x4.v ram4x4_m1_bist.v \
ram4x4_m1_bist_con.v ram4x4_m1_tb.v

14. Simulate the BIST circuitry

a. Invoke the ModelSim simulator and load the ram4X4 testbench.

shell> $MGC_HOME/bin/vsim -lib work_m1 ram4x4_tb

b. Set up the lists by running the following dofiles:

VSIM 2> do ../design/vsim_setup.do

c. Run the simulation until it is finished.

VSIM 3> run -all

d. Run a little more to capture the complete pattern for the tst_done signal.

VSIM 4> run 50

e. Write the displayed list to a file.

VSIM 5> write list trace.log.m1
Memory BIST Training Workbook, V8.2002_1 3-47
March 2002

Common BIST Variations
f. Quit the simulation.

VSIM 6> quit

Examine the saved list file.
Memory BIST Training Workbook, V8.2002_13-48
March 2002

Common BIST Variations

 0s
t

.

ch 2
ord

 1111.
nd
 the
,
Exercise 4: Changing the Data Background

This exercise should take approximately 20 minutes to complete.

This exercise repeats the steps you performed in the last exercise—with one
exception. In this exercise, instead of having the March 2 test write words of
and 1s, you will tell MBISTArchitect to create a March2 pattern generator tha
uses 1010, 0010, and 0100 as the data backgrounds.

1. Ensure you are in the $MBISTNWP/mbist1/ram4x4/results directory.

2. Invoke MBISTArchitect.

3. Load the ram4x4.atpg library from the ../design directory, (but do not add
the model to the memory list).

4. Add the ram4x4 model to the list of memory models for BIST insertion

MBISTA> add me m ram4x4

5. Change the data background for the March 2 algorithm.

MBISTA> add data backgrounds 1010 0010 0100

Because you specified three patterns, MBISTArchitect applies the Mar
algorithm three times. In the first March 2 test, the algorithm uses the w
value 1010 instead of 0000 and then uses the inverse, 0101, instead of
In the second March 2 test, the algorithm uses 0010 instead of 0000, a
then uses the inverse, 1101, instead of 1111. In the third March 2 test,
algorithm uses 0100 instead of 0000, and then uses the inverse, 1011
instead of 1111.

6. Generate the BIST circuitry for this memory model.

MBISTA> run

7. Set up file naming.

MBISTA> setup file naming -bist_model ram4x4_m1db_bist.v -connected \
 ram4x4_m1db_bist_con.v -test_bench ram4x4_m1db_tb.v

8. Save the output files with the customized names.
Memory BIST Training Workbook, V8.2002_1 3-49
March 2002

Common BIST Variations
MBISTA> save bist -script

Because you specified the -Script switch, MBISTArchitect saves a
synthesis script file named ram4x4_bist.v_dcscript in addition to the
regular outputs.

9. Exit the tool.

MBISTA> exit

10. Compile the outputs and simulate the testbench. Create a new work
directory called work_m2db for the compilation and simulation results.
You can use the ../design/vsim_setup_db.do file to setup the simulation.
Name the trace file trace.log.m2db. If you need assistance with this
process, refer back to Exercise 2: Verifying the BIST Circuitry.

11. Observe from the List Window that the background patterns you specified
are written to and read from the memory.

12. Exit the simulator.
Memory BIST Training Workbook, V8.2002_13-50
March 2002

Common BIST Variations

be
her

 for
Exercise 5: Inserting BIST for Multiple Memories

This exercise should take approximately 15 minutes to complete.

This exercise explores several additional features of MBISTArchitect. First, it
creates a single BIST controller for two memories: an 8x4 RAM and a 4x4 RAM.
Second, the BIST controller applies the March 2 algorithm to the first write port
and the “unique address” algorithm to the second write port. Third,
MBISTArchitect produces the BIST controller in VHDL format.

Now that you have become more acquainted with the GUI features, you will
able to utilize the command line to take advantage of minimum typing and ot
features.

1. Change directories.

shell> cd $MBISTNWP/mbist2/multi_ram_dwp/results

This is where you will do your work and save your results.

2. Invoke MBISTArchitect.

shell> mbistarchitect

3. Load the appropriate libraries (you can load only one library at a time):

MBISTA>load library ../design/ram4x4.atpg
MBISTA>loa li ../design/ram8x4.atpg

4. Add both the ram4x4 and ram8x4 models to the list of memory models
BIST insertion:

MBISTA> add me m ram4x4 ram8x4

5. Add the “Unique Address” algorithm to port 2.

MBISTA> add mbist algorithm 2 unique
Memory BIST Training Workbook, V8.2002_1 3-51
March 2002

Common BIST Variations

.

 to
rt 2

6. Add default BIST circuitry to this model.

MBISTA> run

7. Save default VHDL-format outputs with the default names.

MBISTA> save bist -vhdl

Note that when you generate a BIST controller for multiple memories,
MBISTArchitect names the saved outputs <first_memory>_multi_bist.vhd,
<first_memory>_multi_bist_con.vhd, and <first_memory>_multi_tb.vhd,
by default. In this case, you added ram4x4 first with the Add Memory
Models command, so “ram4x4” becomes the prefix for each saved file

8. Examine the generated outputs using the View Saved Design Files button
in the Control Panel window.

9. Exit the tool.

MBISTA> exit

10. Compile the outputs and simulate the testbench.

a. Set up a work directory for the March2/Unique test models.

shell> $MGC_HOME/bin/vlib work

b. Compile the core logic, all BIST models, and the testbench.

Note

The BIST controller automatically applies the March 2 algorithm
port 1. This command adds the unique address algorithm to po
(the second port of the ram8x4 memory), replacing the default
March 2 algorithm for this specified port only.

If you issued the Add Mbist Algorithms command Add MBIST
Algorithms command again for port 2, the BIST controller would
apply both specified algorithms to port 2.
Memory BIST Training Workbook, V8.2002_13-52
March 2002

Common BIST Variations
shell> $MGC_HOME/bin/vlog ../design/ram4x4.v \
 ../design/ram8x4.v

shell> $MGC_HOME/bin/vcom -explicit \
 ram4x4_multi_bist.vhd ram4x4_multi_bist_con.vhd \

ram4x4_multi_tb.vhd

a. Invoke the ModelSim simulator and load the testbench model.

shell> $MGC_HOME/bin/vsim ram4x4_multi_tb

b. Set up the lists by running the following dofile:

VSIM 1> do ../design/vsim_setup.do

c. Run the simulation until it is finished.

VSIM 2> run -all

d. Run a little more to capture the complete pattern for the tst_done signal.

VSIM 3> run 50

e. Write the displayed list to a file.

VSIM 4> write list trace.log.m2.un

f. Quit the simulation.

VSIM 5> quit

Examine the saved list file.

The BIST controller runs testing on the RAM4x4 and RAM8x4 memories in
parallel, first running the March 2 algorithm on port 1 of each memory, followed
by running the Unique Address algorithm on port 2 of RAM8x4.

Note

You use vlog for compiling Verilog (the original memory models)
and vcom for compiling VHDL (the MBISTArchitect-generated
outputs). In this exercise, you perform mixed Verilog/VHDL
simulation using ModelSim after compiling the models.
Memory BIST Training Workbook, V8.2002_1 3-53
March 2002

Common BIST Variations
The Unique Address algorithm places the address value in the address
location. For example, the algorithm places address value 0000 in location
0, address value 0001 in location 1, address value 0010 in location 2, and so
on. If the address and data widths do not match, the algorithm concatenates
the MSB values of the address and places them as the LSB of the data word,
to pad the data word to the appropriate size.

In this exercise, the address bus has three bits while the data width has four.
So the algorithm pads the data word by duplicating the most significant
address bit as the least significant data word bit to increase the word size to
four bits. For example, in this case the algorithm places the value 0000 at
location 0, 0010 at location 1, 0100 at location 2,..., 1011 at location 5, and
so on. Note that you see the data values in reverse bit order (LSB->MSB)
during simulation.

Table 3-1 provides a breakdown of the testbench simulation, and thus, the
memory BIST controller operation.

Note

At this time, the descending March test performs the
read/write/read operation in the order 0,3,2,1 (for RAM4x4) or
0,7,6,5,4,3,2,1 (for RAM8x4).

Table 3-1. March2 and Unique Address Simulation Activity

Time (ns) RAM4x4
Activity/Address

RAM8x4
Activity/Address

Algorithm
Operation

BEGIN BIST LOGIC TESTING (Initialize for the BIST controller)

0-2975 Write0 / 0
Read0 / 0

Write0 / 0
Read0 / 0

Test for the system
path

BEGIN MARCH 2 TESTING OF RAM4X4 AND RAM8X4 PORT 1

3050-3750
3750-4550

Write0 / 0->3
Hold WEN off

Write0 / 0->3
Write0 / 4->7
Hold WEN B off

Initialize for March
2 Test
Memory BIST Training Workbook, V8.2002_13-54
March 2002

Common BIST Variations
4650-6850

7050-9250

Read0,Write1,Read1/
0->3
Hold WEN off

Read0,Write1,Read1/
0->3
Read0,Write1,Read1/
4->7
Hold WEN B off

▲
Read0
Write1
Read1

9450-11650

11850-14050

Read1,Write0,Read0/
0->3
Hold WEN off

Read1,Write0,Read0/
0->3
Read1,Write0,Read0/
4->7
Hold WEN B off

▲
Read1
Write0
Read0

14550-16450

16650-18850

Hold WEN off

Read0,Write1,Read1/
3->0

Read0,Write1,Read1/
7->4
Read0,Write1,Read1/
3->0
Hold WEN B off

▼
Read0
Write1
Read1

19050-21250

21450-23650

Hold WEN off

Read1,Write0,Read0/
3->0

Read1,Write0,Read0/
7->4
Read1,Write0,Read0/
3->0
Hold WEN B off

▼
Read1
Write0
Read0

23685-25250 Read0 / 3->0
Read0 / 3->0

Read0 / 7->4
Read0 / 3->0
Hold WEN B off

▼
Read0

BEGIN UNIQUE ADDRESS TESTING OF RAM8X4 PORT 2

25550-26950 Hold WEN off Hold WENA off
0->7

▲
Write address value
to address location

27050-28550 Hold WEN off Hold WENA off
0->7

▲
Read value from
address location

28650-30050 Hold WEN off Hold WENA off
0->7

▲
Write1 to all
address locations

Table 3-1. March2 and Unique Address Simulation Activity

Time (ns) RAM4x4
Activity/Address

RAM8x4
Activity/Address

Algorithm
Operation
Memory BIST Training Workbook, V8.2002_1 3-55
March 2002

Common BIST Variations
30250-31750 Hold WEN off Hold WENA off
7->0

▲
Write inverse
address value to
address location

31850-33250 Hold WEN off Hold WENA off ▲
Read value from
address locations

Table 3-1. March2 and Unique Address Simulation Activity

Time (ns) RAM4x4
Activity/Address

RAM8x4
Activity/Address

Algorithm
Operation
Memory BIST Training Workbook, V8.2002_13-56
March 2002

Common BIST Variations

 and

.

r as

ssor
Exercise 6: Adding BIST with a Compressor

This exercise should take approximately 40 minutes to complete.

This exercise demonstrates how to generate BIST circuitry that uses a compressor
instead of a comparator. Since you have invoked MBISTArchitect and generated
BIST circuitry several times in previous exercises, this exercise does not provide
as much detail as the previous exercises. If you need assistance, refer to
Exercise 1: Creating a Basic Memory BIST Collar.

This exercise again uses the RAM4x4 model—for the sake of both simplicity
comparison to the architectures generated by earlier exercises.

1. Change to the $MBISTNWP/mbist2/ram4x4/results directory.

2. Invoke MBISTArchitect, loading the ram4x4.atpg library
(../design/ram4x4.atpg) at invocation.

3. Add the ram4x4 model to the list of memory models for BIST insertion

4. Specify that the BIST controller should not include a comparator in the
architecture.

MBISTA> setup observation scheme -compress

The -Compress switch tells MBISTArchitect not to include a comparato
part of the controller. In this case, you want to use a compressor for
signature analysis, instead of a comparator. You will set up the compre
parameters in the next step.

5. Set up the compressor parameters.

MBISTA> setup mbist compressor -low 32

This specifies for MBISTArchitect to generate a compressor model
associated with RAM4x4 with a MISR length of 32 bits.

Due to character conflicts, the minimum typing for Setup Mbist
Compressor is “set mb com” and the minimum typing for Setup Mbist
Controller is “set mb con”.
Memory BIST Training Workbook, V8.2002_1 3-57
March 2002

Common BIST Variations
6. Run the BIST circuitry generation process.

7. Set up output file naming.

You already generated default outputs in a previous exercise. Because you
do not want MBISTArchitect to overwrite these models, you should give
the models generated in this exercise unique names.

MBISTA> setup file naming -bist_model ram4x4_nocompare_bist.v \
-connected ram4x4_nocompare_bist_con.v \
-test_bench ram4x4_nocompare_tb.v

8. Save the default outputs, with the customized names, in Verilog format.

MBISTA> save bist -r

9. List the generated outputs.

MBISTA> system ls *.v

Because of the compressor model, this time when you saved
MBISTArchitect generated FOUR new Verilog models for the ram4x4
model. These models include:

• Compressor_lib.v - the compressor-only model.

• ram4x4_nocompare_bist.v - a model that contains just the ram4x4
BIST control circuitry.

• ram4x4_nocompare_bist_con.v - the connection model for the
controller and the RAM collar.

• ram4x4_nocompare_tb.v - the testbench that instantiates and tests the
ram4x4_nocompare_bist_con.v model.

10. Reset the state of MBISTArchitect and make some changes within the
session.

Assume you examined the files and decided you want to implement a
hold_l signal. This signal lets you pause BIST testing with a low value on
the hold_l signal, retaining the state of the BIST test process. When the
hold_l signal returns to a high state, the BIST test continues. The hold_l
Memory BIST Training Workbook, V8.2002_13-58
March 2002

Common BIST Variations
signal, among other purposes, enables you to perform data retention testing.
If you pause testing between a write and a read, the read performed after
testing should display the expected values from the write operation. If not,
the memory could have a data retention problem.

Next, assume you decide to generate a synthesis script for the
MBISTArchitect outputs as well as a file capturing the BIST-generated
inputs to the RAM4x4 memory. You can do this within the current session
by resetting the state and running the additional commands as follows:

reset state
add me m ram4x4
report memory models
set obs s -compress
set con h -on
set mb com -low 32 -hold
setup file naming -bist ram4x4_nocompare_bist.v -con \

ram4x4_nocompare_bist_con.v -t ram4x4_nocompare_tb.v \
 -script ram4x4_nocompare_synth.script

run
save bist -scr -r

Hint: Instead of entering these commands interactively, run the
../design/nocomp.do dofile.

11. Examine the generated outputs.

First look at ram4x4_nocompare_bist.v. Notice that this model contains
two signals that the previous models did not: test_capture_0 and hold_l.

You should also notice that the connection file,
ram4x4_nocompare_bist_con.v, instantiates the BIST controller and the
RAM collar.

12. Exit MBISTArchitect.

13. Compile the outputs and run the simulation using the following script.
Verify that the final signature is 8482e23a.

shell> runsim

Answer “No” to the question about finishing.
Memory BIST Training Workbook, V8.2002_1 3-59
March 2002

Common BIST Variations

t
14. Examine the synthesis template script generated.

The synthesis file, ram4x4_nocompare_synth.script, in your results
directory provides a template script for compiling and synthesizing the
BIST controller model in the Design Compiler environment.

15. If you have time, and want to explore more of the available algorithms for
the compressor architecture, repeat this exercise specifying one of the other
algorithms—such as Diagonal or Checkerboard—instead of the defaul
March 2 algorithm.
Memory BIST Training Workbook, V8.2002_13-60
March 2002

Common BIST Variations
Exercise 7: Running BIST at Full-Speed

This exercise will take approximately 20 minutes.We will generate BIST circuitry
using the default values for MBISTArchitect with the exception of adding the
library and BIST changes required to run at full speed.

FULL SPEED is defined as clocking with back to back read/write cycles.

1. Change to the following working directory:

shell> cd $MBISTNWP/full_speed/design

2. List the design files you will be using in this exercise:

shell> ls -ltr *

3. Change directories to the full_speed/results directory:

cd ../results

4. Invoke MBISTArchitect:

shell> mbistarchitect

5. Click on the Memory block in the Control Panel graphic pane. This will
start the process to load the “Full speed” memory model.

a. Click on the Browse button, then navigate to ../design directory.

b. Double click the lab13.atpg file. A list of files displays, click on
Full_speed.atpg, then click Load. The Full_speed model now appears
in the available Models list.

c. Select the Full_speed model, then click Add.

d. Click OK.

You’ve just added the memory model for BIST insertion.

6. Click on the Controller block in the Control Panel graphic pane.
Memory BIST Training Workbook, V8.2002_1 3-61
March 2002

Common BIST Variations

s
Now you can modify the specific settings to enable the generation of
the FULL SPEED memory BIST controller.You should now see the
“Setup Mbist Controller” panel.

a. Select the Controller Options tab at the top right of the “Setup MBIST
Controller” panel.

b. Make sure that the System Clock is selected in the Type of Memory
Clock.

c. Select the Setup Pipelining... button at the bottom left of the “Setup
MBIST Controller” panel.

You should now see the “Setup Pipeline Staging” panel come up.

i. Select Pipeline Stages

ii. Select Add Pipeline Controller Registers of Different Depths

a. Set #Input Stages = 0

b. Set #Output Stages = 2

iii. Set Position of the Comparator = 1

iv. Select Placement of Delay Stages

a. Select No Delay Set

v. Click OK in “Setup Pipeline Staging.” The following figure display
the settings for this dialog box.
Memory BIST Training Workbook, V8.2002_13-62
March 2002

Common BIST Variations

d. Click OK in the “Setup Mbist Controller” panel.

7. Click Run in the Control Panel. This will generate the BIST circuitry.

8. Click Save BIST and click OK. This will generate the BIST circuitry and
add to the BIST model.
Memory BIST Training Workbook, V8.2002_1 3-63
March 2002

Common BIST Variations
9. Click View Saved Design Files.

Next, look at the files you just generated. You should see three new
files.(Full_speed_bist.v, Full_speed_bist_con.v, Full_speed_tb.v). Look at
the *_bist.v file and try to identify the new pipeline registers.

10. What makes the memory model different in AT Speed vs. FULL Speed?
Look at the memory models and compare them.

a. Open up another shell window:

shell> cd $MBISTNWP/mbist/full_speed/design

b. Use your text editor to chose and view the library file.

shell> vi lab13.atpg

You will see two RAM model definitions in this library file. The first is
called At_speed and the second is called Full_speed.

Try and identify all the differences between these two models.

11. Next, we will verify the BIST logic works properly. Use the BIST
Controller you just generated with the Verilog model of the memory and
resimulate to see if everything works.

a. Open up another shell window

shell> cd $MBISTNWP/mbist/full_speed/results
shell> runsim

b. A window displays with the message “Are you sure you want to
finish?” Click No.
Memory BIST Training Workbook, V8.2002_13-64
March 2002

Common BIST Variations
c. Review the wave - default window pane.

Separated by time cursors are 3 cycles of interest for the first back-to-
back RWR operation for address 0.

Extra Credit

To do additional speed comparisons go through steps 1 - 11 again but
this time select the At_speed model in steps 5b and 5c. Skip step 6.

READ WRITE READ
Memory BIST Training Workbook, V8.2002_1 3-65
March 2002

Common BIST Variations
• Compare the verilog of the *_bist.v files. What are the differences and
why?

• Compare the Verilog expected data and the number of cycles in the 2
testbench file. What are the differences and why?

Test Your Knowledge

• Why do you need pipelining stages to test your memory at Full-Speed?

• What two things do you need to change to accomplish Full-Speed
Memory BIST?

• What are the advantages and disadvantages of doing Full-Speed
memory BIST?

Lab Summary

You should now be able to take a memory that can perform back-to-back
read/write cycle and generate a memory BIST circuit to do Full Speed testing of
that memory.
Memory BIST Training Workbook, V8.2002_13-66
March 2002

Common BIST Variations

n.

e
Exercise 8: Adding BIST for Bidirectional Memories

This exercise should take approximately 10 minutes to complete.

This exercise demonstrates BIST insertion for a RAM with a bidirectional data
bus. In this exercise, you will duplicate the default run you performed in another
exercise, then examine the generated outputs to understand the circuitry that
MBISTArchitect creates.

1. Change to the $MBISTNWP/mbist2/bram4x4/design directory.

2. Examine the model defined in bram4x4.atpg. Notice the data_inout
statement declaration for the bidirectional data bus “dio”.

3. Change to the ../results directory.

4. Invoke MBISTArchitect.

5. Load the ../design/bram4x4.atpg library.

6. Add the bram4x4 model to the list of memory models for BIST insertio

7. Add default BIST circuitry to this model.

8. Save the default outputs, with the default names.

9. Exit the tool.

10. Compile the outputs and the memory model (../designs/bram4x4.v) then
simulate the testbench. Create a new work directory called work for the
compilation and simulation results. You can use the ../design/vsim_setup.do
file to setup the simulation and format the transcript. Name the trace fil
trace.log. If you need assistance with this process, refer back to
Exercise 2: Verifying the BIST Circuitry.
Memory BIST Training Workbook, V8.2002_1 3-67
March 2002

Common BIST Variations
Exercise 9: Adding BIST for ROMs

This exercise should take approximately 30 minutes to complete.

In this exercise, you will use a dofile to add BIST circuitry to test a ROM. This
exercise uses a ROM64x16 model.

1. Change to the $MBISTNWP/mbist2/rom64x16/results directory.

2. Look at the following dofile:

shell> more ../design/rom64x16.do

The contents should appear as follows:

load library ../design/rom64x16.lib
add memory models rom64x16
set obs s -compress
set mb com -low 32
run
report bist
save bist -r
exit

This dofile sets up for ROM BIST circuitry generation, runs the insertion,
and saves the default outputs with the default names to the current
directory.

The ROM BIST insertion process is very automated. MBISTArchitect
recognizes memory models without defined write cycles as ROMs. When
you add a ROM model during a session, MBISTArchitect automatically
sets the algorithm type to ROM. An architecture with a compressor, not a
comparator, supports ROM testing. Thus, you must specify that the BIST
controller not contain a comparator. You then additionally specify for
MBISTArchitect to generate a compressor using the Setup Mbist
Compressor command.

3. Invoke MBISTArchitect without the GUI using a dofile:

 shell> mbistarchitect -dofile ../design/rom64x16.do \
-nogui
Memory BIST Training Workbook, V8.2002_13-68
March 2002

Common BIST Variations
4. Examine each of the generated files in the current (rom64x16/results)
directory.

 rom64x16_bist.v rom64x16_bist_con.v
 Compressor_lib.v rom64x16_tb.v

5. Run the simulation using the following script and examine the results.

shell> runsim

Answer “No” to the question about finishing.
Memory BIST Training Workbook, V8.2002_1 3-69
March 2002

Common BIST Variations
Memory BIST Training Workbook, V8.2002_13-70
March 2002

Module 4
Memory BIST-In-Place

This module will give you a basic understanding of how to create, connect, and
integrate BIST structures using the Memory BIST-In-Place tool. The lab exercises
at the end of this module will give you experience in running through the process
flow of Memory BIST-In-Place.

Objectives
Upon completion of this module, you will be able to:

• Define the Memory BIST-In-Place flow

• Launch the Memory BIST-In-Place tool

• Define the files used in the tool to create BIST structures
Memory BIST Training Workbook, V8.2002_1 4-1
March 2002

Memory BIST-In-Place
Memory BIST-In-Place Flow

Memory BIST-In-Place automates the insertion of Memory BIST structures for
embedded memory test in a System-on-a-Chip (SoC) design. This includes:

• the insertion of BIST collars around the original embedded memories

• the connection of memories to the inserted BIST controller(s)

• the synthesis of access structures in order for BIST controllers to be
accessed from the SoC periphery

• pattern translation

The BIST controllers and memory collars are generated from the standalone
Mentor Graphics Memory BIST tool, MBISTArchitect.

4-2 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Memory BIST-In-Place Flow

Logic Synthesis

Test Access
Description

Gate-Level
Netlist, Library

C
O

R
E

 I
N

T
E

G
R

A
T

O
R

DRC

RTL Synthesis
Phase

IN
T

E
G

R
A

T
IO

N
 P

H
A

S
E

SoC MBIST

 SoC Netlist

MBIST Vector

CTDL for MBIST
Controllers

MBISTArchitect

MBIST Controller
BIST collars

(Library models)

MBIST Vectors
(WGL)

Patterns (WGL

Translation

 or Verilog)
Memory BIST Training Workbook, V8.2002_14-2
March 2002

Memory BIST-In-Place
Memory BIST-In-Place Flow Overview

• Create BIST structures
Invoke the MBISTArchitect tool to generate RTL, BIST logic, a Verilog
test bench, and WGL and Core Test Description Files.

• RTL Simulation
Run the Mentor Graphics ModelSim tool to simulate the design. You can
also run a gate-level simulation later in the process.

• Connect BIST structures
Run Memory BIST-In-Place in the Synthesis mode to connect BIST
structures and output a bisted design, RTL access logic, and Core Test
Access Files.

• Synthesis
Run the bisted design through a synthesis tool.

4-3 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Memory BIST-In-Place Flow Overview

Create BIST
Structures

Connect BIST
Structures

Integrate BIST
Patterns

BIST Generator

input: MBISTA library

output: RTL BIST logic, Verilog TB, WGL, CTDF

BIST Insertion and Stitching

input: Verilog design, library, WGL, RTL BIST
logic, CTDF

output: BISTed design, RTL access logic, CTAF

DRC and Pattern Conversion

input: Gate level Verilog design, ATPG library,
CTDF, CTAF

output: Design level pattern (WGL/Verilog)

RTL Simulation

Gate-Level
Simulation

Synthesis
Memory BIST Training Workbook, V8.2002_1 4-3
March 2002

Memory BIST-In-Place
• Integrate BIST patterns
Run Memory BIST-In-Place in the Integration mode to perform a design
rules check and to generate patterns.

• Gate-Level Simulation
Run the Mentor Graphics ModelSim tool to simulate the design.
Memory BIST Training Workbook, V8.2002_14-4
March 2002

Memory BIST-In-Place
Creating BIST Structures

NOTES:

4-4 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures

♦ Uses MBISTArchitect
♦ Requires Memory BIST models for input
♦ Creates RTL BIST models

● BIST controller
● BIST collar
Memory BIST Training Workbook, V8.2002_1 4-5
March 2002

Memory BIST-In-Place
Model Creation

NOTES:

4-5 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Model Creation

♦ Model description includes:
● Pin interface
● Read/write cycle description

♦ You can create models:
● Manually, using basic syntax
● Graphically, with the

MBISTArchitect Model Editor
Memory BIST Training Workbook, V8.2002_14-6
March 2002

Memory BIST-In-Place
Memory Model Example

NOTES:

4-6 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Memory Model Example

model ram4x4 (DO3, DO2, DO1, DO0, A1, A0, WEN, DI3, DI2, DI1, DI0)
(
 bist_definition (
 data_out d_o(DO3, DO2, DO1, DO0);
 data_in di(DI3, DI2, DI1, DI0);
 address addr(A1, A0);
 write_enable WEN low;

 min_address = 0;
 max_address = 3;
 data_size = 4;

 read_write_port(
 read_cycle(
 change addr;
 wait;
 expect d_o move;
)
 write_cycle(
 change addr;
 change di;
 wait;
 assert WEN;
 wait;
)
)
)
)

Pin Interface
Description

Port and Control
Signals Description

Optional information

Read and Write
Cycle Description
Memory BIST Training Workbook, V8.2002_1 4-7
March 2002

Memory BIST-In-Place
Creating BIST Structures Invocation

NOTES:

4-7 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Invocation

♦ MBISTArchitect point tool invocation
● $ mbistarchitect -library lib_name -nogui

♦ BIST-in-Place GUI invocation
● $ bistinplace
● Click on “Create BIST Structures”

step in the Task Flow Manager
Memory BIST Training Workbook, V8.2002_14-8
March 2002

Memory BIST-In-Place
Basic Command Flow

NOTES:

4-8 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Basic Command Flow

♦ Load Library <library name>
♦ Add Memory Model <model name…>
♦ Add Mbist Algorithm <port#> <algorithm>
♦ Set Bistinplace -on
♦ Run
♦ Save Bist
♦ Exit
Memory BIST Training Workbook, V8.2002_1 4-9
March 2002

Memory BIST-In-Place
Creating BIST Structures Results

NOTES:

4-9 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Results

♦ RTL BIST logic (ramname_bist.v)
● BIST logic
● Adds specparams to convey the info of connections between

RAM and BIST to MBIP

♦ WGL file (ramname_bist.wgl)
● Used for pattern conversion in MBIP pattern integration step

♦ CTDF (ramname_bist.v.ctdf)
● Defines procedures to get in test mode and isolation mode
Memory BIST Training Workbook, V8.2002_14-10
March 2002

Memory BIST-In-Place
Example of RTL BIST Logic

NOTES:

4-10 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Example RTL BIST Logic

module ram8x4_multi_bist

specify

 specparam cti_cell_type$ram8x4_multi_bist =
“mbist_controller”;

 specparam bist_cycles$ram8x4_multi_bist =
"466"

 specparam cti_connect$Test_addra_0 =
"ram8x4_block_0/Test_addra_0";

 specparam cti_connect$Test_DO3_3 =
"ram8x4_multi_bist_ram4x4_block_3/DO3_3";

 specparam cti_pin_type$test_h = "test_h";

 specparam cti_pin_type$clk = "clk";

 specparam cti_pin_type$rst_l = "rst_l";

 specparam cti_cell_type$ram8x4_block_0 =
"mbist_memory:ram8x4_multi_bist";

endspecify

BIST Controller Name

BIST Controller
& Collar Connection

BIST Control
Signal Names

BIST Cycles

BIST Collar Name
Memory BIST Training Workbook, V8.2002_1 4-11
March 2002

Memory BIST-In-Place
Example WGL File

NOTES:

4-11 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Example WGL File

waveform ram8x4_multi_bist

 signal

 test_h : input initialp[N];

 clk : input initialp[N];

 rst_l : input initialp[N];

 tst_done : output;

 fail_h : output;

end;

timeplate TP0 period 400ns

pattern bist_control (test_h, clk, rst_l, tst_done, fail_h)

Test Pin Interface

Timeplate definition

Pin Order List
Memory BIST Training Workbook, V8.2002_14-12
March 2002

Memory BIST-In-Place
Example WGL File (Continued)

NOTES:

4-12 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Creating BIST Structures
Example WGL File

BIST Initialization
Pattern

BIST Test Pattern

vector(+, TP0) := [1 1 1 X X];
vector(+, TP0) := [1 1 0 X X];

 loop 450
 vector(+, TP0) := [1 1 1 0 0];
 end

 loop 16
 vector(+, TP0) := [1 1 1 X 0];
 end
 vector(+, TP0) := [1 1 1 1 0];
 end
end
Memory BIST Training Workbook, V8.2002_1 4-13
March 2002

Memory BIST-In-Place
Core Test Description File (CTDF)

NOTES:

4-13 • M em ory B IST Tra ining W orkbook: M BIST In-P lace C opyright © 2002 M entor Graph ics C orpora tion

C reating B IST S tructures

C ore Test Description File (C TDF)
core ram8x4_multi_bist =

 output Test_addr_3[1:0];

 output Test_WEN_3;

 output tst_done;

 output fail_h;

 input
Test_da_o3_0,Test_da_o2_0,Test_da_o1_0,Test_da_o0_0;

 input test_h;

 input clk;

 input rst_l;

 clock clk;

 clock_lo rst_l;

end;

Input & O utput
Memory BIST Training Workbook, V8.2002_14-14
March 2002

Memory BIST-In-Place
Core Test Description File (Continued)

NOTES:

4-14 • M em ory B IS T T ra in ing W orkbook: M BIS T In-P lace C opyright © 2002 M entor G raphics C orporation

C reating B IST S tructures

C ore Test D escrip tion F ile (C TD F)
core ram8x4_multi_bist =

 procedure core_isolate =

core ram8x4_multi_bist;

timeplate tp1;

cycle =

hold clk 0;

hold test_h 1;

expect tst_done 0;

expect fail_h 0;

end;

end;

P rocedure to
p lace B IST
C ontro lle r in
Iso la tion
M ode
Memory BIST Training Workbook, V8.2002_1 4-15
March 2002

Memory BIST-In-Place
Core Test Description File (Continued)

NOTES:

4-15 • M em ory B IS T T ra in ing W orkbook: M BIS T In-P lace C opyright © 2002 M entor G raphics C orporation

C reating B IST S tructures

C ore Test D escrip tion F ile (C TD F)
core ram8x4_multi_bist =

procedure core_test run_bist =

core ram8x4_multi_bist;

timeplate tp1;

probe tst_done, fail_h, clk, rst_l;

pattern_file ram8x4_multi_bist.wgl;

cycle =

hold test_h 1;

end;

end;

P rocedure to p lace
B IST C ontro lle r in to
Test M ode

P ins to be m onito red
during B IST tes t

Test pattern file nam e
Memory BIST Training Workbook, V8.2002_14-16
March 2002

Memory BIST-In-Place
Connecting BIST Structures

NOTES:

4-16 • M em ory B IST T raining W orkbook: M BIST In-P lace C opyright © 2002 M entor G raph ics C orporation

C onnecting B IST S tructures

♦ U ses M em ory B IST-In-P lace Synthesis m ode
♦ R equires

● R TL or gate-level design (VHD L or Verilog)
● VH DL or Verilog library
● B IST design objects created earlier in flow
● C TDF created earlier in flow

♦ Inserts/connects B IST structures w ith in h ierarchy and to
chip-level I/O
Memory BIST Training Workbook, V8.2002_1 4-17
March 2002

Memory BIST-In-Place
Connecting BIST Structures Invocation

NOTES:

4-17 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Connecting BIST Structures
Invocation

♦ Can invoke with GUI or as command line only tool
● $ bistinplace design_name -verilog -lverilog

verilog_library_name -synthesis -gui|nogui
Memory BIST Training Workbook, V8.2002_14-18
March 2002

Memory BIST-In-Place
Example Command Flow (Setup)

NOTES:

4-18 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Connecting BIST Structures
Example Command Flow (Setup)

♦ Load RTL bist logic
● load design object ramname_bist.v

♦ Load CTDF file
● load core description file ramname_bist.v.ctdf

♦ Define clocks
● add clock 0 clock_name
Memory BIST Training Workbook, V8.2002_1 4-19
March 2002

Memory BIST-In-Place
Example Continued (Setup)

NOTES:

4-19 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Connecting BIST Structures
Example Continued (Setup)

♦ Specify BIST controller location and RAM/RAM collar
correspondence

● add mbist controller <bist_controller_pathname>
<bist_controller_module_name> <memory_path_name>
-Collar <memory_collar_module_name>

♦ Switch to synthesis mode
● set system mode synthesis
Memory BIST Training Workbook, V8.2002_14-20
March 2002

Memory BIST-In-Place
Example Command Flow (Synthesis)

NOTES:

4-20 • M em ory B IST Tra in ing W orkbook: M BIST In-P lace C opyright © 2002 M entor Graphics C orpora tion

♦ R un
● insert access logic

♦ W rite out R TL access log ic and phase decoder
● save design file_nam e -rep lace

♦ W rite out C TA F file
● save core access file_nam e -rep lace

♦ W rite d river files for D esign C om piler and M em ory B IST-In -
P lace integration m ode

● save d river files -logic_synthesis file_nam e -in tegration
file_nam e

♦ Exit
● exit

C onnecting B IS T S tructures
Exam ple C om m and Flow (Synthesis)
Memory BIST Training Workbook, V8.2002_1 4-21
March 2002

Memory BIST-In-Place
Connecting BIST Structures Results

NOTES:

4-21 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Connecting BIST Structures
Results

♦ Core Test Access File (CTAF)
● Contains mapping information

between BIST controller and design pins
● Recommended file naming:

– <design_name>.ctaf or .access

♦ RTL access logic and
phase decoder

♦ Driver files for
downstream tools

● Design compiler synthesis script
● MBIP integration mode

Connect BIST
Structures

CTAF

Access
Logic

Synthesis
Driver

Int.
Mode
Dofile
Memory BIST Training Workbook, V8.2002_14-22
March 2002

Memory BIST-In-Place
Connecting BIST Structures Dofile

NOTES:

4-22 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

load design objects ram8x4_bist.v

add mbist controller mbistc ram8x4_bist
/U1/mem_a -collar ram8x4_block_0

load core description ram8x4_bist.v.ctdf

set system mode synthesis

insert access logic

save design core1_rtl.v -replace

save access file core1_rtl.access -replace

save driver files -logic_synthesis dc.do

-bsda bsda.do -replace

exit

Connecting BIST Structures
Example Dofile
Memory BIST Training Workbook, V8.2002_1 4-23
March 2002

Memory BIST-In-Place
Example CTAF File

NOTES:

4-23 • M em ory BIST Training W orkbook: M BIST In-Place C opyright © 2002 M entor Graphics C orporation

core_instance /core_b/mbistc =

 core ram8x4_multi_bist;

 map clk = clkp , rst_l = rstp ,
 tst_done = c1_ap;

 map fail_h = c1_bp;

end;

 procedure core_access =

 timeplate gen_tp2 ;

 core_instance /core_b/mbistc ;

 cycle =

 force clkp 0 ;

 force core_addr_0 1 ;

 force core_addr_1 0 ;

 force cti_core_test_mode 1 ;

 force rstp 1 ;

 end;

BIST C ontro ller Nam e

BIST Contro ller to
C hip P in M apping

Procedure to
Activate a
Test Path

T im eplate nam e

BIST Contro ller
Instance N am e

Connecting B IST Structures
Exam ple CTAF File
Memory BIST Training Workbook, V8.2002_14-24
March 2002

Memory BIST-In-Place
Example RTL Phase Decoder

NOTES:

4-24 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Connecting BIST Structures
Example RTL Phase Decoder

module mbip_decoder
assign core_addr_en[0]= core_addr_0;
assign core_addr_en[1]= core_addr_1;
always @ (core_addr_en)
begin : cnt_shf
 case (core_addr_en)
 2’b00:
 begin
 core_select_0 = 1’b1;
 core_select_1 = 1’b0;
 core_select_2 = 1’b0;
 end
 2’b10:
 begin
 core_select_0 = 1’b0;
 core_select_1 = 1’b1;
 core_select_2 = 1’b0;
 end
 endcase
end
endmodule

Core_address signal
chooses which BIST
controller is tested

Core_address “00”
assigned to isolate
all BIST controllers

Core_address “10”
assigned to activate
BIST controller #1
Memory BIST Training Workbook, V8.2002_1 4-25
March 2002

Memory BIST-In-Place
Integrating BIST Patterns

NOTES:

4-25 • Memory BIST Training W orkbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Integrating BIST Patterns

♦ Uses Memory BIST-In-Place Integration mode
♦ Requires

● Gate-level netlist
● ATPG library

♦ Creates design level test vector running the BIST process
● Verilog and WGL
Memory BIST Training Workbook, V8.2002_14-26
March 2002

Memory BIST-In-Place
Integrating BIST Patterns Invocation

NOTES:

4-26 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ Can invoke with GUI or as command line only tool
● $ bistinplace design_name -verilog -library atpg_library_name

-integration

Integrating BIST Patterns
Invocation
Memory BIST Training Workbook, V8.2002_1 4-27
March 2002

Memory BIST-In-Place
 Integrating BIST Patterns Commands

NOTES:

4-27 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ Load CTDF file
● load core description ramname_bist.v.ctdf

♦ Load CTAF file
● load core access design_name.ctaf

♦ Define clocks
● add clocks 0 clock_name

♦ Switch to integration mode
● set system mode integration

Integrating BIST Patterns
Example Command Flow (Setup)
Memory BIST Training Workbook, V8.2002_14-28
March 2002

Memory BIST-In-Place
Continued Example (Integration)

NOTES:

4-28 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ Specify BIST controller name(s) for pattern conversion
● add pattern translation -all

♦ Run
● run

♦ Write out chip-level test patterns
● save pattern file_name [-verilog|-wgl] -replace

Integrating BIST Patterns
Continued Example (Integration)
Memory BIST Training Workbook, V8.2002_1 4-29
March 2002

Memory BIST-In-Place
Integrating BIST Patterns Dofile

NOTES:

4-29 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

load core description ram8x4_bist.v.ctdf

load core access my_design.ctaf

add clocks 0 clock_clk1

add clocks 1 reset_rst0

set system mode integration

add pattern translation -all

run

save patterns my_pats -verilog -replace

save patterns my_pats.wgl -wgl -replace

exit

Integrating BIST Patterns
Example Dofile
Memory BIST Training Workbook, V8.2002_14-30
March 2002

Memory BIST-In-Place
Integrating BIST Patterns Results

NOTES:

4-30 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ Verilog pattern for simulation
♦ WGL pattern for tester

Integrating BIST Patterns
Results
Memory BIST Training Workbook, V8.2002_1 4-31
March 2002

Memory BIST-In-Place
Verification

NOTES:

4-31 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ You can run simulation to
verify at two different points
in BIST-in-Place flow

● After BIST creation
● After pattern integration

♦ Labs cover verification

Create BIST
Structures

Connect BIST
Structures

Integrate BIST
Patterns

RTL Simulation

Gate-Level
Simulation

Synthesis

Issues/Caveats
Verification
Memory BIST Training Workbook, V8.2002_14-32
March 2002

Memory BIST-In-Place
I/O Pads

NOTES:

4-32 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ Designs with I/O pads attributes need to be added in Verilog
library

module iopad1 (pad, cin, i, oen) ;
 inout pad;
 output cin;
 input i, oen;
 bufif0 U1 (pad,i,oen);
 buf U2 (cin,pad);
 specify
 specparam cti_cell_type$iopad1 = “io_pad_bidi” ;
 specparam cti_pin_type$pad = "io_pin" ;
 specparam cti_pin_type$cin = "data_in" ;
 specparam cti_pin_type$i = "data_out" ;
 specparam cti_pin_type$oen = "output_enable_n" ;
 //specparam cti_pin_type$oen = "output_enable";
 //if enable is active high.
 endspecify
endmodule

Issues/Caveats
I/O Pads
Memory BIST Training Workbook, V8.2002_1 4-33
March 2002

Memory BIST-In-Place
Global Signal Connections

NOTES:

4-33 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ MBISTArchitect lets you make a connection for bypass
logic

♦ Use the Set Global Pin command to specify the global pins for pin types
clock _bypass and control_bypass

♦ For example, use this command in MBIP synthesis mode:
● SET Global Pin -clock _bypass U1/port1
● SET Global Pin -control_bypass U2/ port2

Global Signal Connections

Bypass block

Memory collar

Design

U2

U1

Port1

Port2

Bp_clk

Test_mode
Memory BIST Training Workbook, V8.2002_14-34
March 2002

Memory BIST-In-Place
BSDArchitect/ Memory BIST-In-Place
Integration

NOTES:

4-34 • Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

♦ Memory BIST-In-Place creates a BSDA dofile
♦ BSDA reserves an instruction register and creates a data register for

memory BIST
♦ BSDA uses the information in the dofile to run memory BIST
♦ Example dofile:
save driver file -bsda bsda.do -inst mbist -reg mbist_reg -op 0011

add external register mbist_reg 2
add bscan instr mbist -reg mbist_reg -code 0011
add port connection clk buf TCK
add port connection cti_core_test_mode buf mbist
add port connection rst_l mbist nand update_dr
add nontop port core_addr_0 core_addr_1
set testbench para -tck 200
set external_register interface mbist_reg \
-capture out1 out2 -update core_addr_0 acore_addr_1
set mbist interface -instr mbist -shift_in 10 10 \
-shift_out xx 10 -cycle 0 156
run
save bscan -r

BSDArchitect / Memory BIST-In-Place Integration
Memory BIST Training Workbook, V8.2002_1 4-35
March 2002

Memory BIST-In-Place
Memory BIST Training Workbook, V8.2002_14-36
March 2002

 with

 to

n
4Memory BIST-In-Place

Module 4: Lab Exercises
The following exercises take you through the Memory BIST-In-Place process
flow illustrated in this lesson.

Exercise 10: Setting Up MBISTArchitect Outputs —You will create a memory
BIST structure using MBISTArchitect, then generate the files needed for use
Memory BIST-In-Place.

Exercise 11: Inserting BIST Controllers using Memory BIST-In-Place —You
will insert the BIST controller and synthesize the design.

Exercise 12: Translating BIST Patterns to the SoC Level —As the final step in
the Memory BIST-In-Place process flow, you will translate the BIST patterns
the chip-level.

Exercise 13: Full Flow Exercise —You will run through the entire process agai
using a different design. To make things faster, you will run through various
scripts which take you through the process.
Memory BIST Training Workbook, V8.2002_1 4-37
March 2002

Memory BIST-In-Place
Exercise 10: Setting Up MBISTArchitect Outputs

The purpose of this exercise is to use MBISTArchitect to create the output files
needed by Memory BIST-In-Place. You will generate a BIST structure for a
design, mbip.v, that has three 4x4 RAMs and one 8x4 RAM.

Now that you are familiar with the MBISTArchitect GUI and its command line
interface, we will invoke MBISTArchitect through Memory BIST-In-Place. The
Memory BIST-In-Place GUI provides a task flow manager that makes creating
BIST structures easier. For every command that the flow guide executes, do the
following:

1. Change to the $MBISTNWP/mbist4/ram8x4 directory.

2. Invoke Memory BIST-In-Place

shell> $MGC_HOME/bin/bistinplace

3. From the GUI, click on Create BIST Structures.

The BIST Structures Creating Flow Guide opens to the first step.
Memory BIST Training Workbook, V8.2002_14-38
March 2002

Memory BIST-In-Place
4. Load the mbist.lib design library. Click Click Here to Set Up... to set up
the Load Libraries information. In the new window, select the mbist.lib
library and click Load. Close this window.

5. Click Next >>> to move to the Add Memories step, then set up the Add
Memories information as shown. You will be adding one 8x4 RAM and
three 4x4 RAMs for BIST insertion. This shares multiple RAMs with one
BIST controller.

6. Continue to the next step in the flow guide. Since you will be using the
default algorithm setting, there is no need to set up any information for this
step.

7. Continue to the next step in the flow guide. You are now at the Specify
Controller Options step. For this exercise, you will create multiplexers

1. Select

2. Click

3. Select

4. Click 3 times

5. Click
Memory BIST Training Workbook, V8.2002_1 4-39
March 2002

Memory BIST-In-Place
outside of the controller, in the BIST collar block, and create the necessary
output files for use with Memory BIST-In-Place.

8. From this point on, you will want to use the default settings. Click
Next >>> until you get to the Generate BIST Logic step.

9. Click Next >>> to run the BIST circuitry generation process.

10. Click Next >>> until you get to the Save Results step. Set this up to
generate BIST-In-Place files, then click OK.

11. Click Next >>> twice and Close Flow Guide.

12. From the MBISTArchitect command line window, list the generated
outputs.

MBISTA> system ls ram8x4*

1. Select

2. Deselect

3. Click
Memory BIST Training Workbook, V8.2002_14-40
March 2002

Memory BIST-In-Place

IST

ST
Because you specified for the tool to save Memory BIST-In-Place
information, MBISTArchitect generated a total of FIVE files. These files
include:

• ram8x4_multi_bist.v — The RTL-level BIST logic.

• ram8x4_multi_bist_con.v — The connection model for the controller
and the RAM collar.

• ram8x4_multi_tb.v — The testbench that instantiates and tests the B
model.

• ram8x4_multi_bist.v.ctdf — The CTDF file.

• ram8x4_multi_bist.wgl — The WGL pattern file.

13. Examine the generated outputs.

14. Exit MBISTArchitect.

15. Exit Memory BIST-In-Place.

16. Compile the model outputs and simulate the testbench to verify the BI
structure using the given script.

shell> runmsim

Answer “No” to the question about finishing.
Memory BIST Training Workbook, V8.2002_1 4-41
March 2002

Memory BIST-In-Place
Exercise 11: Inserting BIST Controllers using Memory
BIST-In-Place

In this exercise, you will be continuing through the design flow of Memory
BIST-In-Place, building on the data created in the previous exercise. This exercise
steps you through the process of inserting BIST controllers on the RTL level.

1. Ensure that you are still in the $MBISTNWP/mbist4/ram8x4 directory.

2. Invoke Memory BIST-In-Place in synthesis mode.

shell> $MGC_HOME/bin/bistinplace MBIP.v \
-verilog -lverilog vlib -synthesis -nogui

Memory BIST-In-Place has two modes upon which you can invoke the
tool: synthesis and integration. Here we invoked in synthesis mode in order
to replace a RAM with the BISTed RAM generated in the previous
exercise. This mode also creates access logic to a BIST controller and a
connection to an SoC. All outputs in this mode are at the RTL level.

The -lverilog switch specifies the Verilog RAM library used in the design
file.

3. Load the BISTed RAM information.

SETUP> load design objects ram8x4_multi_bist.v

4. Schedule the insertion of the BIST controller into the SoC design. Actual
insertion does not take place until you transition the tool into the Synthesis
mode.

SETUP> add mbist controller core_b/mbistc ram8x4_multi_bist \
mem_a -c ram8x4_multi_bist_ram8x4_block_0 \
core_b/mem_b -c ram8x4_multi_bist_ram4x4_block_1 \
core_c/mem_c -c ram8x4_multi_bist_ram4x4_block_2 \
core_c/core_e/mem_d -c ram8x4_multi_bist_ram4x4_block_3

This command places the BIST controller in /core_b/mbistc.

You can also run the add_mbist.do dofile to keep from having to type the
whole thing.
Memory BIST Training Workbook, V8.2002_14-42
March 2002

Memory BIST-In-Place
5. Load the core test description file.

SETUP> load core description ram8x4_multi_bist.v.ctdf

This file contains information on how to test and isolate a BIST controller.

6. Switch to Synthesis mode.

SETUP> set system mode synthesis

7. Insert access logic.

BISTINPLACE> insert access logic

The Insert Access Logic command initiates all the actions specified during
the setup mode. These include:

• Replacement of memories by the BIST collar equivalents.

• Connection of the BIST collars to the BIST controllers.

• Insertion of the MUXes to provide access to the BIST controller from
SOC pins.

• Insertion of logic to provide isolation conditions for the BIST
controller.

8. Save the results.

a. Save the RTL level access logic to core1_rtl.v and modified SoC netlist
to BIP_cti.v

BISTINPLACE> save design core1_rtl.v -all -replace

b. Save the CTAF file which includes information on how to access the
BIST controller from the SoC level.

BISTINPLACE> save access file core1_rtl.access -replace

c. Save the script files necessary for downstream tools.

BISTINPLACE> save driver files -logic_synthesis dc.do -include \
MBIP_cti.v -integration int.do -replace
Memory BIST Training Workbook, V8.2002_1 4-43
March 2002

Memory BIST-In-Place

el

s
ere,
The scripts saved are as follows:

• dc.do — Design Compiler script for the RTL access logic.

• -include BIP_cti.v — Inserts an include statement in the SoC lev
netlist with the names of the synthesis-generated files.

• int.do — Script file for Memory BIST-In-Place integration mode.

9. Exit the tool.

10. At this point, you will synthesize the RTL design using a logic synthesi
tool such as Design Compiler. Since we cannot run Design Compiler h
examine the runDC and dc.do scripts provided in this directory.
Memory BIST Training Workbook, V8.2002_14-44
March 2002

Memory BIST-In-Place

the
les

e
rns
rs to

Exercise 12: Translating BIST Patterns to the SoC
Level

In this exercise, you will be continuing through the design flow of Memory
BIST-In-Place, building on the data created in the previous exercise. This exercise
steps you through the process of translating the BIST patterns to the SoC level.

1. Ensure that you are still in the $MBISTNWP/mbist4/ram8x4 directory.

2. Examine the dofile int.do. It should look something like this:

load core description ram8x4_multi_bist.v.ctdf
load core access core1_rtl.access
add clock 0 clkp
add clock 1 rstp
set gate report error
set gate level design
set drc hand c2 ignore
set system mode int
report cores
add pattern translation -all
run
save patterns mapped.v -verilog -replace
save patterns mapped.wgl -wgl -replace
exit -d

The first step is to load in the core test description file
(ram8x4_multi_bist.v.ctdf), which describes how to get in to test mode and
isolation mode of the BIST controller, and core access file
(core1_rtl.access), which describes the procedure for accessing the BIST
controller for test purposes.

After defining the design’s clocks (clock=clkp and reset=rstp), you set
system mode to cti or integration mode. This initiates a set of design ru
checks. Then you tell the tool to translate all patterns (Note: If you hav
multiple memories and/or multiple controllers, you could translate patte
for only a subset of these), and then run, which creates chip-level vecto
control the BIST operation. You then save patterns in both Verilog (for
simulation/verification) and WGL (for test program) formats.
Memory BIST Training Workbook, V8.2002_1 4-45
March 2002

Memory BIST-In-Place

ent
3. Invoke Memory BIST-In-Place in integration mode. You will be invoking
on the dofile you created in the previous exercises.

shell> $MGC_HOME/bin/bistinplace MBIP_cti.v -verilog \
-lib atpglib -integration -dof int.do -nogui

4. Scroll back through the transcript to see the results of the steps described
previously.

5. Verify the chip-level BIST test patterns.

This step performs a final simulation of the chip-level BIST operation,
simulating them to ensure there are no mismatches.

shell> runfinalsim

Answer “No” to the question about finishing. You should see the comm
“No error between simulated and expected patterns.”
Memory BIST Training Workbook, V8.2002_14-46
March 2002

Memory BIST-In-Place

ea.
Exercise 13: Full Flow Exercise

This exercise follows the same process flow as the previous exercises, but gives
you the opportunity to work on a different design. This exercise demonstrates the
use of MBISTArchitect for generating BISTed memory models. In addition, this
exercise takes you through the process of inserting BISTed memories and
connecting the BIST circuitry at the chip-level with Memory BIST-in-Place (an
option to MBISTArchitect). This exercise goes through the entire chip-level
memory BIST process.

1. Change to the $MBISTNWP/mbist4/picdram/data directory.

2. Invoke MBISTArchitect.

First you will invoke MBISTArchitect to generate a BIST structure for a
RAM called picdram in the design design_noscan.v.

shell> $MGC_HOME/bin/mbistarchitect

3. Load a design library and add memories.

Click on the Memory models block in the MBISTArchitect Control panel.

The MBISTArchitect library is located in ../libs/ram.atpg. Click the
Browse… button to find and select the appropriate library. Navigate up one
level and into the libs directory. Select the ram.atpg library, click OK in the
File Browser dialog and then click Load. You should see two models
appear in the Available Models field.

The next step is to Add Memories. This means you are choosing the
memory models you want to BIST from the library that you just loaded.

Select picdram from “Available Models” and click >> Add >>. You should
see this model description listed under “Added Models.” If you click on
picdram, you can view model information in the “Model Information” ar

Click OK to close the Setup Memory Models dialog box.
Memory BIST Training Workbook, V8.2002_1 4-47
March 2002

Memory BIST-In-Place
4. Specify algorithms.

Click on the line between the Controller and RAM blocks in the Control
Panel. Here you can see the list of all available algorithms the tool supports.
The March2 algorithm, which is the default (shown on the Controller
block), is the algorithm we’ll be using in this lab. It is already selected by
default, so you can just Cancel out of this dialog.

5. Specify controller options.

You have a lot of flexibility in setting up the Memory controller. Click on
the Controller block in the Control panel to see these options.

In this case, we want to put multiplexors under the Memory collar block (as
opposed to putting them in the controller block), since there is only one
memory being BISTed. Therefore, unselect the option to create a
configuration that has Multiplexors Located Inside Controller.

We also want to turn clock gating off so make sure you unselect the option
Clock Gating (the system clock is used for the memory).

Also, we want to insert BIST-in-place in the design, so check the option for
BIST-in-Place information. Click OK when you are finished.

6. Generate BIST logic.

We are now ready to perform a Memory BIST generation. You need only
click the Run button to generate the BIST logic. Notice how the
compressor block disappears from the Control Panel. That is because we
did not choose to use a compressor, but instead are using a comparator to
determine whether the memory passes the BIST process.

7. Save the results.

The last step is to save all results. Click on the Save BIST… button. When
the Save BIST Results dialog appears, check all the boxes to select all the
options. Then click OK .
Memory BIST Training Workbook, V8.2002_14-48
March 2002

Memory BIST-In-Place

now
ith

esis

ed.
The tool writes out a total of six files, which you can see in the transcript
area:

• piccdram_bist.v — BIST Model

• picdram_bist_con.v — Connected Model (RAM collar and BIST
controller)

• picdram_tb.v — Test bench

• picdram_bist.v_dcscript — DC synthesis script

• picdram_bist.v.ctdf — CTDF file

• picdram_bist.wgl — WGL format pattern file

8. Exit MBISTArchitect.

You have just created BIST structures for your memory model - so you
have a “BISTed” memory. In other words, you have a memory model w
a BIST collar, a BIST controller to control the BIST operation for this
memory, as well as other files (testbench, core test definition, DC synth
script, and WGL pattern file) that will be used downstream.

You are now ready to insert these BIST structures into the chip-level
design. For this process we will run a series of scripts.

9. Verify the operation of the BISTed model.

You are now going to run a simulation of the RTL BIST model you creat
To do this, execute the following command:

shell> runsim1

Answer “No” to the question about finishing.

This script compiles the BIST design objects and runs the generated
testbench on the model.
Memory BIST Training Workbook, V8.2002_1 4-49
March 2002

Memory BIST-In-Place
Notice the march2 algorithm as its shown in the Wave window. Expand the
Wave window. You can Zoom > Zoom Full to see the whole BIST
process, or zoom into various parts by clicking your middle mouse button
and drawing a box around a particular area. You may also need to expand
the leftmost area where the signals are displayed to see their full names.

Basically what you are seeing is the test clock (clk), the reset signal (rst_l),
the test signal (test_h), the test_done signal (tst_done), the fail flag (fail_h),
followed by the clock, address, we, din, and dout of the memory model.
Notice the read/write operations and the address incrementing up and down
the address space, as occurs during the march test. The tst_done signal goes
high when the BIST operation completes.

Use File > Quit from the ModelSim EE window to close Modelsim, and
this time enter Yes, that you want to quit.

10. Run BIST-in-Place synthesis.

The next step is to insert the BISTed memory and controller into the design.
We will do this via a script that runs the Memory BIST-in-Place tool in
synthesis mode. The end result is that we will have an RTL design that
includes the inserted memory model with BIST collar, BIST controller,
access logic, phase decoder, and all the appropriate connections. To
perform this operation, execute the following command:

shell> runsyn

Scroll up through the transcript of BISTINPLACE. The main steps that
were performed include copying the original design, inserting the
controller, connecting the controller to the memory, and replacing the
memory with the BISTed memory. The tool then creates access logic to the
chip-level, mapping the controller I/O to chip-level pins. The tool then
saves the design (mbip_rtl.v) and access file (mbip.access).

The design file (mbip_rtl.v) now needs to undergo synthesis, as the next
phase of BIST-in-place, integration mode, requires a gate-level design.
Integration mode also uses the access file (mbip.access) as described in the
next step.
Memory BIST Training Workbook, V8.2002_14-50
March 2002

Memory BIST-In-Place
11. Run BIST-in-Place integration

In a normal design flow, you would synthesize the RTL design created
during BIST-in-Place synthesis (mbip_rtl.v) to gates. However, due to time
constraints, we will use a design that has already been synthesized.
Therefore, the final step is to perform rules checking on the gate-level
design to ensure safe testing when the access path is sensitized and then
create chip-level patterns to initiate the memory BIST operation. This is all
done in the integration phase of BIST-in-Place.

To view the steps the tool will perform, view the integration script, runint.
It should look as follows:

$MGC_HOME/bin/bistinplace design_noscan_cti.v -verilog \
-lib ../libs/atpglib -int -nogui <<!!

load core description picdram_bist.v.ctdf
load core access mbip.access1
add cl 0 ramclk1
add cl 1 clk2
set sys m cti
add pattern translation -all
run
save pattern mapped.v -verilog -r
save pattern mapped.wgl -wgl -r
!!

The first step is to invoke BIST-in-Place on the synthesized Verilog design
(design_noscan_cti.v). You then load in the core test description file
(picdram_bist.v.ctdf), which describes how to get in to test mode and
isolation mode of the BIST controller, and core access file (mbip.access1),
which describes the procedure for accessing the BIST controller for test
purposes.

After defining the design’s clocks (clock=ramclk1 and reset=clk2), you set
the system mode to cti or integration mode. This initiates a set of design
rules checks. Then you tell the tool to translate all patterns (Note: If you
have multiple memories and/or multiple controllers, you could translate
patterns for only a subset of these), and then run, which creates chip-level
vectors to control the BIST operation. You then save patterns in both
Verilog (for simulation/verification) and WGL (for test program) formats.
Memory BIST Training Workbook, V8.2002_1 4-51
March 2002

Memory BIST-In-Place

ed
To run the integration process, execute the script:

shell> runint

12. Verify the chip-level BIST test patterns.

This step performs a final simulation of the chip-level BIST operation,
simulating them to ensure there are no mismatches.

To perform this checking, execute the following command:

shell> runsim2

You should see the comment “No error between simulated and expect
patterns.”
Memory BIST Training Workbook, V8.2002_14-52
March 2002

Module 5
Memory Modeling for

MBISTArchitect

This module gives you a basic understanding of how to create, load and verify
MBISTArchitect memory models. The lab exercises at the end of this module also
give you experience creating, verifying and troubleshooting a variety of memory
model types.

Objectives
Upon completion of this module, you will be able to:

• Define inputs and outputs.

• Understand clocking schemes.

• Understand memory models.

• Understand troubleshooting procedures.
Memory BIST Training Workbook, 8.2002_1 5-1
 March 2002

Memory Modeling for MBISTArchitect
A Memory Model:

The MBISTArchitect tool uses an abstract data model that defines the memory
ports and read/write protocol of each port. This model adds its own constructs to
support BIST insertion. The memory model is the only input to MBISTArchitect.
See the next slide for an example of a memory model and a description of memory
model syntax.

You can add or change memory models using the Memory Model Editor in the
MBISTArchitect Control Panel. See “Memory Model Editor” on page 5-4 for a
sample of the Memory Model Editor.

3-2 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

A Memory Model:

♦ Is an abstract data model that defines the memory ports and
the read/write protocol of each port

♦ Is the only “design” input to MBISTArchitect
♦ Is not a simulation model

♦ Uses a basic DFT library model description
♦ Adds its own constructs to support BIST insertion
♦ Ignores the constructs it does not need
Memory BIST Training Workbook, 8.2002_15-2
 March 2002

Memory Modeling for MBISTArchitect

ry

his

. An

 name
DL

te
 Memory Model Syntax

The MBISTArchitect tool shares the library format used by the DFT/ATPG tools
FastScan, FlexTest, and DFTAdvisor. You need only to add the special
“bist_definition” section if you have an existing memory model in the DFT libra
format. MBISTArchitect does not use the gate-level simulation primitive
information found in the primitive construct. The other DFT/ATPG tools use t
information, but MBISTArchitect simply ignores it.

The term “pin” in this context refers to the individual inputs and outputs of the
memory at the cell boundary. A pin can be defined as a scalar bit or an array
array represents a bus and is sometimes referred to as a “wide pin”. The pin
must exactly match the port names specified in the associated Verilog or VH
simulation model (both in name and case).

See “Loading Library Files and Models” on page 5-5 for instructions on how to
load the library file, add a memory model, and run MBISTArchitect to genera
memory BIST logic.

3-3 • M BISTArchitect: C om m on B IST Variations C opyrigh t © 2002 M entor G raph ics C orporation

M em ory M odel Syntax

Input/O utput D efin itions

M em ory Identification

M em ory S ize In form ation

R ead and W rite C ycles

model model_name(list_of_pins)(
 bist_definition (

 address <name> (list_of_pins);
 data_in <name> (list_of_pins);
 data_out <name> (list_of_pins);
 data_inout <name> (list_of_pins);
 clock <pin> <active_state>;
 write_enable <pin> <active_state>;
 read_enable <pin> <active_state>;
 output_enable <pin> <active_state>;
 chip_enable <pin> <active_state>;
 control <pin> <active_state>;
 dont_touch <name> <active_state> <dir>;

 tech = <tech_name>;
 vendor = <vendor_name>;
 ve rs ion = “number” ;
 message = “message_ tex t ” ;
 address_s ize = <number> ;
 m in_address = < lowes t add ress> ;
 max_address = <h ighest address>;
 da ta_s i ze = <da ta_bus_b i t s> ;
 addr_ inc = <number>
 w r i t e_por t (
 wr i t e_cyc le (. . .))
 r ead_port (
 read_cyc le (. . .))
) / / end b i s t_de f in i t i on
) / / end mode l desc r ip t i on
Memory BIST Training Workbook, 8.2002_1 5-3
 March 2002

Memory Modeling for MBISTArchitect
Memory Model Editor

You can add or change memory models using the Memory Model Editor in the
MBISTArchitect Control Panel. For more information on how to use the Memory
Model Editor, refer to “Using the Memory Model Editor” in Chapter 3 of the
MBISTArchitect Reference Manual.

3-4 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Memory Model Editor
Memory BIST Training Workbook, 8.2002_15-4
 March 2002

Memory Modeling for MBISTArchitect
Loading Library Files and Models

Follow these steps to invoke, set up, and run the MBISTArchitect tool using the
minimum set of commands needed to generate memory BIST logic.

1. Invoke MBISTArchitect.

To invoke MBISTArchitect, enter the following command at the shell:

shell> $MGC_HOME/bin/mbistarchitect

2. Load a Library.

After tool invocation, you must load a DFT library that contains the
memory model(s) for which to add BIST logic. To load a DFT library
interactively during the session, enter:

MBISTA> load library dft.lib

3-5 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Loading Library Files and Models

♦ Follow these steps to run MBISTArchitect, load libraries
add memories, and generate :

♦ Launch MBISTArchitect
♦ Load a library
♦ Add a model
♦ Run MBISTArchitect
♦ Save the output and exit
Memory BIST Training Workbook, 8.2002_1 5-5
 March 2002

Memory Modeling for MBISTArchitect
Where dft.lib is the name of the library. You can also load a library at
invocation by using the -Lib switch.

3. Add a Memory Model.

The next step is to add a memory model from the loaded library to the BIST
configuration. For example:

MBISTA> add memory models ram4x4

Where ram4x4 is the name of the memory model for which you want to add
BIST logic.

4. Run MBISTArchitect.

After you have loaded a library and added a memory model, you can run
MBISTArchitect to generate default BIST logic:

MBISTA> run

5. Save the Output.

MBISTArchitect saves files in Verilog (default) or VHDL format. After
memory BIST generation, you need to save the output:

MBISTA> save bist

6. To end an MBISTArchitect session, enter:

MBISTA> exit
Memory BIST Training Workbook, 8.2002_15-6
 March 2002

Memory Modeling for MBISTArchitect
Defining Inputs/Outputs

Defining Buses You should define the address and data buses in the same manner
as the simulation model for the memory. If a bus in your simulation model is
declared as an array, then declare the same bus in your memory model header as
an array. Consider the following memory model header segment:

model ram4x4 (A, DI, DO, WEN)
(bist_definition (
 address A (array = 1:0;);
 data_in DI (array = 3:0;);
 data_out DO (array = 3:0);
 ...

When MBISTArchitect reads this model, it assumes the address and data ports on
the HDL model are declared as arrays and will use the STD_LOGIC_VECTOR as
the data type when generating the matching bus in the BIST controller. You can
change the signal type to STD_CLOGIC_VECTOR to specify it at the end of each
statement.

3 -6 • M B IS T A rc h ite c t: C o m m o n B IS T V a r ia tio n s C o p y r ig h t © 2 0 0 2 M e n to r G ra p h ic s C o rp o ra tio n

D e fin in g In p u ts /O u tp u ts

A d d r e s s

d a t a _ i n
d a t a _ o u t
d a t a _ i n o u t

C l o c k

w r i t e _ e n a b l e
r e a d _ e n a b l e
o u t p u t _ e n a b l e
c h i p _ e n a b l e

c o n t r o l

d o n t _ t o u c h

A d d re s s b u s

D a ta in p u t b u s
D a ta o u tp u t b u s
D a ta b u s (b id ire c tio n a l)

M e m o ry c lo c k (s)

C o n tro l s ig n a ls

A d d it io n a l c o n tro l s ig n a ls if re s e rv e d
k e y w o rd s in s u ff ic ie n t

P in s th a t a re n o t c o n tro lle d o r
o b s e rv e d b y th e B IS T c o n tro lle r
Memory BIST Training Workbook, 8.2002_1 5-7
 March 2002

Memory Modeling for MBISTArchitect

d to
ust

i-
Now consider the following memory model header segment:

model ram4x4 (DO3, DO2, DO1, DO0, A1, A0, WEN, DI3, DI2, DI1,
DI0)
(bist_definition (
 data_out d_o(DO3, DO2, DO1, DO0);
 data_in di(DI3, DI2, DI1, DI0);
 address addr(A1, A0);
 ...

Each bus element in the model header is declared as an individual scalar bit, the
same as the simulation model. Notice that the bist_definition segment allows you
to collect the individual bit under a single bus name and the ordering is
significant. MBISTArchitect assumes that the bit order is from most significant
(MSB) to least significant (LSB). MBISTArchitect uses this pin ordering when it
connects the BIST controller to the RAM model. Thus, mismatches between the
specified library pin ordering and the HDL model pin ordering can result in an
improperly-connected BIST controller.

Memory Clocks You can define one or more memory clocks for synchronous
memories.

Control Signals The active state can be either high (default) or low. During the
read and write cycles, control signals always remain at the value opposite this
state except when explicitly asserted. The following example declares an active
low write enable named “wrt”:

write_enable wrt low;

If the control signal operates a bidirectional data bus, the active state require
control tri-state buffers for the data bus follows the signal’s active state. You m
specify either tri_l or tri_h to define this tri-state output buffer control state.
When you define a model with a bidirectional data bus, you must specify a tr
state output control state for at least one of the defined control signals.
Memory BIST Training Workbook, 8.2002_15-8
 March 2002

Memory Modeling for MBISTArchitect

he
The Dont_touch Keyword

The dont_touch keyword allows you to specify pins that have no need to be
controlled by the BIST controller. The syntax for specifying dont_touch ports is as
follows:

dont_touch pin_name assert_state direction;

The assert state is either high (default) or low and defines the pin’s active state.
Dont_touch pins always remain at the value opposite their assert state. The
direction is either input or output.

The default is input for all vector types except “data_out” and “data_inout.” T
following example declares two dont_touch ports — an active low input port
named “clr” and an active high output port named “refcntso”:

dont_touch clr low;
dont_touch refcntso out;

3 -7 • M B IS T A rc h ite c t: C o m m o n B IS T V a ria tio n s C o p yr ig h t © 2 0 0 2 M e n to r G ra p h ics C o rp o ra tio n

T h e D o n t_ to u c h K e y w o rd

♦ M e m o ry p in s n o t c o n n e c te d to th e B IS T c o n tro lle r
● E x a m p le s : s u p p ly p in s , s ta tu s o u tp u t p in s

oectramramvdd

dout

test_done

fail_h

addr

data

wen

B IS T

clk

S ta te

M a c h ine

test_clk

sys_addr

sys_din

sys_wen

sys_rst_l

sys_hold_l

sys_test_h

R A M
A sy n c h ro n o u s
Memory BIST Training Workbook, 8.2002_1 5-9
 March 2002

Memory Modeling for MBISTArchitect

s

the
sserted

lk)
 or

Understanding Clocking Schemes

The Primary Goal

Your job in creating a memory model is to define a read and write cycle that meets
the minimum timing constraints as specified by the manufacturer, but at the same
time runs at the fastest test speed. Introducing just one extra test clock cycle in a
read operation, for example, can increase the total test time for a March2
algorithm by 50%.

There are different clocks that you need to reference when defining the read and
write cycles for a memory model. This discussion refers to the “BIST clock” a
the primary input clock to the BIST controller. This clock is named “clk” by
default and is used to advance the BIST state machine to the next state. As
state machine enters each state, memory control signals are asserted or de-a
and memory bus values can be changed. The term “memory clock” (mem_c
refers to the clock input to a synchronous memory. A memory can have one
more clock inputs. Asynchronous memories don’t have a clock input. During
testing, a “test clock” is also generated as described next.

3-8 • M B ISTA rch itect: C om m on B IS T Varia tions C opyright © 2002 M entor G raph ics C orpora tion

U nderstand ing C lock ing S chem es

♦ A synch ron ous M em ory
● N o m em ory c lock input
● A change in inputs s tarts a read or w rite cyc le

♦ G ated M em ory C lock
● In system m ode, the m em ory c lock connects th rough a m ux to

the system c lock
● In test m ode, the m em ory c lock connects to a contro ller-

re la ted c lock signal

♦ N o n-G ated M em ory C lock
● M em ory c lock (m em _clk) connects to the system m em ory

clock
Memory BIST Training Workbook, 8.2002_15-10
 March 2002

Memory Modeling for MBISTArchitect

l

ry.

this

tting

 the

 drive
re
ften

ock.
Understanding Clocking Schemes

• Non-Gated (also referred to as System)—During test (and during actua
system use), the memory clock is driven by a system clock.

• Gated —There is a MUX (gate) attached to the clock input of the memo
During system use, the MUX is set so the memory clock is driven by a
system clock. During test mode, the MUX is set so that the memory is
driven by a BIST related clock. There are three important variations of
described in the following clocking diagrams.

The key advantage of the Non-Gated approach is that it greatly simplifies ge
clock timing correct for normal system use. Depending on the clock-tree
generation process and the severity of the minimal skew requirements, using
Non-Gated approach can be almost mandatory. It is the default mode.

The major disadvantage to this approach is that the tester must be set up to
the system clock input and the bist clock input with the same signal. There a
potential skew issues with this due to tester limitations. However, these are o
mitigated by the tester clock being much slower than the expected system cl

3-9 • M B ISTA rch itec t: C om m on B IS T V aria tions C opyright © 2002 M entor G raph ics C orpora tion

U nderstand ing C lock ing S chem es (C ontinued)

M e m

System Clock

BIST Clo ck
Re lated S ig na l

B IST C loc k

1

0

C trl
Te st_ h

G ated C lock
N on-G ated C lock

MemCtrl

System Clock

B IS T C lo ck

System

During test, ATE drives
BIST_clock and Sys_clock
pins with the same
“Signal”

M B IS TA rchitect has a varie ty o f c lock connection op tions. U se
these com m ands to contro l the clock connection :
Setup Memory Clock [-System|-Test[Noinvert|Invert]|-Control]
Set controller clock [-positive|-negative]
Memory BIST Training Workbook, 8.2002_1 5-11
 March 2002

Memory Modeling for MBISTArchitect
Clock Connections

3-10 • M BIS TA rch itec t: C om m on B IS T V aria tions C opyr ight © 2002 M entor G raph ics C orp ora tion

C lock C onnection

Ctr l

G ated C lo ck

1

0

Ctr l

System Clock

B IST C lo c k

Ctr l

M e m

T est [no invert]

Te s t_ h

B IST C lo c k

Ctr l

G a ted C lock

B IST C lo c k

1
0

Ctr l

System Clock

B IST C lo c k

C tr l

M e m

Test Invert

Te st_h

M B IS TA rch itect has a varie ty o f c lock connection o p tions. U se
these com m ands to contro l the c lock conn ection :
Setup Memory Clock [-System|-Test[Noinvert|Invert]|-Control]
Set controller clock [-positive|-negative]

3 -1 1 • M B IS T A rc h ite c t: C o m m o n B IS T V a ria tio n s C o p yr ig h t © 2 0 0 2 M e n to r G ra p h ic s C o rp o ra tio n

C lo c k C o n n e c tio n (C o n tin u e d)

B IS T C lo c k

C tr l

C o n tro lle r

B IS T C lo c k

C tr l

System Clock

B IS T C lo c k

C tr l

M e m

T e s t_ h
Logic

N o te : F as t es t p os s ib le c lock ou t of c tr l is 1 /2 ra te o f th e B IS T c lo c k o r ev e n
s low er

M B IS T A rc h itec t h a s a v a rie ty o f c lo c k co n n e c tio n o p tio n s . U s e
th e s e c o m m a n d s to c o n tro l th e c lo c k c o n n e c tio n :
Setup Memory Clock [-System|-Test[Noinvert|Invert]|-Control]
Set controller clock [-positive|-negative]
Memory BIST Training Workbook, 8.2002_15-12
 March 2002

Memory Modeling for MBISTArchitect
When Memory clocking is set to anything other than -System, there will be a
MUX instantiated which will select between a system clock and a BIST-related
signal. This MUX will be very obvious when you use commands that place MUX
related RTL in the collar. Otherwise, it may be buried in the BIST controller RTL.

• When the SETup MEmory Clocking -Test command is specified, the BIST
clock will be sent to the BIST controller and directly to the MUX.

• When the SETup MEmory Clocking -Test INVERT command is specified,
the BIST clock will be routed to the BIST controller. It will be passed
through an inverter and then routed to the MUX.

• When the SETup MEMory Clocking -Controller command is specified, the
BIST controller will use internal logic to drive a signal that is to act as the
clock.That signal will be routed to the MUX. The BIST controller itself is a
synchronous, single-phase clock, design. So, it cannot change the state of
this clock signal any faster than once per BIST clock. So, the clock it
generates cannot be any faster than one-half the speed of the BIST clock
(one clock for going high, one-clock for going low). Depending on the
operation needed, the BIST controller may keep the output clock constant
for several BIST clock cycles. Often, this is to calculate and set up
conditions for a rising clock edge on the memory.

There is a separate command: SET COntroller Clock [-positive | negative] that can
be used in conjunction with the clock connection command to deal with memories
that lock their inputs on falling edges rather than rising edges. Also, the two
commands can be used to effect half-cycle phase shift which can overcome timing
violation issues. This is discussed later in this workbook.
Memory BIST Training Workbook, 8.2002_1 5-13
 March 2002

Memory Modeling for MBISTArchitect

re of
n the

w
on
n
No Memory Clock

Asynchronous memories don’t have a clock input, so a change in one or mo
the inputs starts a read or write cycle. In this write cycle example, a change o
addr address bus starts the write cycle. After a minimum settling time, the wen
write enable signal goes active low which causes the memory to latch the ne
address. Sometime before the wen signal goes inactive high, new data is placed
the din bus and allowed to settle. When wen goes inactive high, the data is writte
to memory and the write cycle ends.

3-11 • M B IS TArch itect: C om m on B IST Varia tions C opyright © 2002 M entor G raph ics C orpora tion

N o M em ory C lock

dout

test_done

fail_h

addr

din

wen

BIS T

clk

Sta te

M achine

test_clk

addr

din

wen

rst_l

hold_l

test_h

R A M
Asynchronous

♦ A syn ch ron ous m em ory
♦ test_c lk drives the B IS T s ta te m achin e

test_clk

addr

d in

w en

W rite C ycle

Latch
A ddress

C hange
Inputs

W rite
Input D a ta
Memory BIST Training Workbook, 8.2002_15-14
 March 2002

Memory Modeling for MBISTArchitect
A Gated Memory Clock

If the memory model is synchronous, the default is -system. Notice in the
illustration that a reference clock called test_clk drives the BIST state machine.
When test_h goes active, the multiplexor prevents the sys_clk from reaching the
memory and the BIST state machine drives the mem_clk input. The BIST
controller drives this clock input as it would any other control signal. Notice that
the mem_clk frequency is half the test_clk frequency (at best), and that the
controller has total control over the memory clock.

3-12 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

A Gated Memory Clock

While under test, mem_clk is driven by the BIST controller.
Set Memory Clock -control

test_clk

addr

data

wen

rst_l

hold_l

test_h

BIST

clk

State

Machine

sys_mem_clk

Data_o

test_done

fail_h

addr

data

wen

mem_clk

RAM
Synchronous

mem_clk

addr

din

wen

test_clk

Latch
Address

Change
Inputs

Write
Input Data

Write Cycle
Memory BIST Training Workbook, 8.2002_1 5-15
 March 2002

Memory Modeling for MBISTArchitect

se,

me
for
eme
ting
A Non-Gated Memory Clock

If your design environment doesn’t permit a gated clock, MBISTArchitect can
generate a BIST controller without one, as shown in the illustration. In this ca
the source for the test_clk is also tied to the mem_clk and they are both the sa
frequency and in phase (assuming no skew). Assuming that you must allow
minimum setup and hold times, the total test time for this non-gated clock sch
is about the same as the gated clock scheme (four test clock cycles). By shif
the two clocks out of phase, it is possible to cut this write cycle time in half.

3-1 3 • M BIS T Arch itec t: C om m o n B IST V aria tions C opyright © 2002 M entor G raph ics C orpora tion

A N on-G ated M em ory C lock

N on-gated m em _clk is in p hase w ith test_c lk
Setup Memory Clock -System (default)

m em _clk

ad dr

d in

w en

test_clk

Latch
A ddress

C hange
In puts

W rite
Input D ata

W rite C ycle

N ew A ddress

Va lid D a ta

test_clk

BIS T

clk

Sta te

M achine

dout

test_done

fail_h

addr

din

wen

mem_clk

R A M
Synchronousaddr

data

wen

rst_l

hold_l

test_h
Memory BIST Training Workbook, 8.2002_15-16
 March 2002

Memory Modeling for MBISTArchitect
An Inverted BIST Clock

You can use a setup command in MBISTArchitect to tell the BIST state machine
to respond to the falling edge of the clock. In this case, the falling edge of the
clock input to the state machine causes the memory input buses and control lines
to change. One half cycle later, the rising edge of the clock input to the
synchronous memory captures the input data. This scheme reduces the write cycle
from four cycles to two, and thus cuts the write cycle test time in half.

3-14 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

An Inverted BIST Clock

Non-gated mem_clk is 180 out of phase with test_clk
Setup Memory Clock -Test invert

mem_clk

addr

din

wen

test_clk

New Address

Valid Data

Write Cycle

Latch
Address

Change
Inputs

W rite
Input Data

test_clk

BIST

clk

State

Machine

dout

test_done

fail_h

addr

din

wen

mem_clk

RAM

Synchronousaddr

data

wen

rst_l

hold_l

test_h

sys_mem_clk

Invert of
Test_clk
Memory BIST Training Workbook, 8.2002_1 5-17
 March 2002

Memory Modeling for MBISTArchitect
Test Clock

When using the test clock scheme, the memory clock connects to a mux. In
system mode, the clock is driven from the system memory clock. In test mode, the
clock is driven from a signal generated by the BIST controller. This signal is a
reassignment of the BIST controller clock. The generated RTL will be modified
for the controller assigned test clock scheme to include the controller assignment
of the clock and the clock mux.

Two types of test clock connection are supported, -noinvert and -invert.

3-15 • M B ISTA rch itect: C om m on B IST V aria tions C opyright © 2002 M entor G raph ics C orpora tion

A Test C lock

M em ory c lock is connected to a m ux. In test m ode, the clock is
driven from a s ignal generated by the B IST contro ller.
Setup Memory Clock -Test

Test C lock

M e mC tr l M emC trl

-invert -noinvert
Memory BIST Training Workbook, 8.2002_15-18
 March 2002

Memory Modeling for MBISTArchitect
Control Retention Test Delay

MBISTArchitect lets you control the delay value used in the WGL and simulation
test bench when waiting to assert the resume signal. This is used to continue the
BIST session following a retention test synchronization delay.

You can specify the delay value, as a multiple of the number of controller clock
cycles. The default value is 100 cycles. The report environment reports the delay
value.

The diagnostics capability is added by using the Setup Retention Cycles command
followed by a value defining the delay in cycles. For example, to set a delay value
of 50 cycles, enter:

setup retention cycles 50

3-16 • M BISTA rch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orpora tion

C ontrol R etention Test D elay

W rite cycle

R AM 1

(B ist contro ller 1)

R AM 2

(B ist contro ller2)

start_retention_h

test_resum e

R etention tim e R ead/w rite cycle Retention tim e R ead cycle

tst_done

R

R

W

W

Memory BIST Training Workbook, 8.2002_1 5-19
 March 2002

Memory Modeling for MBISTArchitect
Memory Ports

A memory component can have any number of read ports, write ports, or
read/write ports. The memory model syntax can match the port scheme of any
memory component.

3-17 • M BISTA rch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orpora tion

M em ory Ports

♦ M em ory ports define their read and w rite capability
● C an have any num ber of read ports, w rite ports or read/w rite

ports

A_addr
A_din
A_w en

B _dout
B_ren

B_addrR ead
P ort

W rite
P ort

W rite port
W rite operation on ly

R ead port
R ead operation on ly

1read, 1 w rite

A_addr
A_din
A_w en

B_dout
Read/W rite
Port

Read/W rite
Port

B_addr
B_din
B_w en

A _dout

2 read/w rite

R ead/W rite port

Both read and w rite
operations
Memory BIST Training Workbook, 8.2002_15-20
 March 2002

Memory Modeling for MBISTArchitect
Defining Memory Ports

Each unique port requires its own port definition and the definitions are not
explicitly labeled. MBISTArchitect identifies a port by the signals controlled
within the read/write cycles. Only the write port is identified as a port for the add
mbist algorithm command.

The first port that is defined within the bist_definition is referred to as port #1 and
the MBISTArchitect Model Editor will enter a comment identifying it as such.
The second port defined in the model will be referred to as port #2, and so on.

3-18 • M BISTA rch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orpora tion

D efin ing M em ory Ports

w rite_port (
 w rite_cyc le (
 … …
)
)

read_po rt (
 read_cyc le (
 … …
)
)

read_w rite_port (
 read_cyc le (
 … …
)
 w rite_cyc le (
 … …
)
)

♦ W rite Port
● C ontains w rite cycle only

♦ R ead Port
● C ontains read cycle only

♦ R ead/W rite Port
● C ontains both a read cycle and w rite

cycle

♦ Each unique port requires its ow n port defin ition

♦ Port defin itions are not explic itly labeled

♦ M B ISTA rchitect identifies a port by the signals
contro lled w ith in the read /w rite cycles
Memory BIST Training Workbook, 8.2002_1 5-21
 March 2002

Memory Modeling for MBISTArchitect
Port Definition Example 1

NOTES:

3-19 • M B ISTA rch itect: C om m on B IST V aria tions C opyright © 2002 M entor G raph ics C orpora tion

P ort D efin ition Exam ple 1

♦ E xam ple : 1 read , 1 w rite m em ory

A _addr
A _d in
A _w en

B _d out
B _ren

B _addrR ead
Port

W rite
P ort

1read, 1 w rite

w rite_port (
 w rite_cycle (
 change A_addr;
 change A_din;
 wait;
 assert A_wen;
 wait;
)
)

read_port (
 read_cycle (
 change B_addr;
 wait;
 assert B_ren;
 wait;
 expect B_dout;
 wait;
)
)

Memory BIST Training Workbook, 8.2002_15-22
 March 2002

Memory Modeling for MBISTArchitect
Port Definition Example 2

NOTES:

3-20 • M B ISTA rch itect: C om m on B IST V aria tions C opyright © 2002 M entor G raph ics C orpora tion

P ort D efin ition Exam ple 2

♦ E xam ple : 2 read /w rite m em ory

read_w rite_port (
 read _cycle (
 change A_addr;
 wait;
 expect A_dout;
 wait;
)
 w rite_cycle (
 change A_addr;
 change A_din;
 wait;
 assert A_wen;
 wait;
)
)
read_w rite_port (
 read _cycle (
 change B_addr;
 wait;
 expect B_dout;
 wait;
)
 w rite_cycle (
 change B_addr;
 change B_din;
 wait;
 assert B_wen;
 wait;
)
)

A _addr
A _din
A _w en

B _do ut
R ead/W rite
P ort

R ead/W rite
P ort

B _addr
B _din
B _w en

A_d out

2 read/w rite
Memory BIST Training Workbook, 8.2002_1 5-23
 March 2002

Memory Modeling for MBISTArchitect
Read/Write Cycle Syntax

You use event statements to describe the action of the inputs and outputs during a
read and write cycle. You use the change statement to assign the next scheduled
value on the address bus and data buses.

You use the assert statement to force a control signal to its active state during that
test clock cycle. The control signal returns to its inactive state on the leading edge
of the next test clock cycle, unless asserted again with another assert statement.

The expect statement tells the BIST controller that the data on the specified bus is
valid, starting with the leading edge of that test clock cycle. This tells the BIST
controller that it can read the data for use with the comparator or MISR.

Inserting a wait statement is like inserting the leading edge of the next test clock
cycle (the clock that drives the BIST state machine). Any signals described in the
change, assert, or expect statements that follow the wait statement become active
or are valid on the leading edge of that clock cycle.

3-21 • M BISTA rch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orpora tion

read_write_port (
 read_cycle (
 change A_addr;
 wait;
 expect A_dout (move);
 wait;

)
 write_cycle (
 change A_addr;
 change A_din;
 wait;
 assert A_wen;
 wait;

)
)

R ead/W rite C ycle Syntax

change: assign next schedu led va lue
 on address and data buses

assert: fo rce contro l s igna l to its
 active sta te fo r one cycle

expect: read the expected va lue on
 ou tput data bus
 (strobe the com parator/M ISR)

 w a it: advance one c lock cyc le
 subsequent opera tions occur
 one clock cycle later
Memory BIST Training Workbook, 8.2002_15-24
 March 2002

Memory Modeling for MBISTArchitect
The Read Cycle

A read or write cycle often starts with a memory input becoming active, such as an
address bus or a chip enable line. This change occurs on the rising edge of the
clock that is advancing the state of the BIST controller. You can also think of a
wait statement as a rising edge of the reference clock and a read or write cycle as
starting with an implied wait statement, even though the wait statement is not
explicitly written into the model. You should place an explicit wait statement at
the end of a read or write cycle to mark the end of the cycle.

In this example, the change in address marks the beginning of an asynchronous
read cycle. After a specified period, the data appears on the output data bus. You
can assume that this period is less than one test clock cycle. The next wait
statement marks the next clock edge and the expect statement following that tells
MBISTArchitect that the data is valid and it is okay to measure the output at that
clock edge.

3-22 • M BISTA rch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orpora tion

do
n’

t c
ar

e

The R ead C ycle

read_cycle (
 im plied c lock edge (w ait)

change A_addr;
w ait;
expect A_dout (m ove);

 w ait;
)

test_clk

A_addr

A _dout

Tpd addr-dout M easure
A_dout
Memory BIST Training Workbook, 8.2002_1 5-25
 March 2002

Memory Modeling for MBISTArchitect
The Write Cycle

In this asynchronous write cycle, the change in address occurs on the rising edge
of the test_clk and marks the beginning of an asynchronous write cycle. The new
input data is also changed at this time, although typically, the change could occur
later in the cycle without violating the timing constraints. The next wait statement
marks the next rising edge of the test_clk. A_wen goes active low, which latches
the address into the memory. On the next clock edge (wait statement), A_wen is
released because it is not explicitly activated in the memory model. This action
writes the data to memory and ends the write cycle.

An expect statement can include an optional move modifier that specifies when
an event executes. The move modifier means that the MBISTArchitect tool can
move this event to a later clock cycle when optimizing the BIST structure. The
move option usually applies to data outputs. The MBISTArchitect tool uses the
move option only when it is trying to optimize circuitry while combining read and
write cycles together to form read/write/read cycles or other large cycles.

3-23 • M BISTA rchitect: C om m on B IST Varia tions C opyright © 2002 M entor G raph ics C orpora tion

The W rite C ycle

w rite_cycle (
 im plied c lock edge (wa it)

change A_addr;
change A_din;
w ait;
assert A_w en;
w ait;

)

do
n’

t c
ar

e

test_clk

A _addr

A _din

A _w en
Memory BIST Training Workbook, 8.2002_15-26
 March 2002

Memory Modeling for MBISTArchitect
Interpreting Data Sheets

NOTES:

3-24 • M B IS TA rchitect: C om m on B IS T Varia tions C opyright © 2002 M entor G raph ics C orporation

In terpreting D atasheets

♦ R ead and W rite cycles can be determ ined from datasheets
♦ D ependen t tim ing constra in ts are hand led w ith “w a it”

s ta tem ents
● Setup and hold constraints
● Sequential behavio r
Memory BIST Training Workbook, 8.2002_1 5-27
 March 2002

Memory Modeling for MBISTArchitect
A Synchronous RAM Example

NOTES:

3-25 • M BISTArchitect: C om m on B IST Variations C opyright © 2002 M entor G raphics C orporation

A Synchronous R A M Exam ple

c s b

va lida ddr

m em _ clk

oe b

rw b

va lid

21

3

65

87

1 11 0

1 29

dout

1 csb se tu p
2 csb h old
3 prech arge
4 me m_clk a ct ive

5 a dd r setu p
6 a dd r ho ld
7 rw b setu p
8 rw b ho ld

9 o eb tri -> active
1 0 rea d a ccess
1 1 o eb act ive -> tr i
1 2 rea d d ea ccess

4

dout

addr

d in

rw b

oeb

csb

m em _clk

1 read/w rite - synchronous R A M

R ead cycle tim ing diagram
Memory BIST Training Workbook, 8.2002_15-28
 March 2002

Memory Modeling for MBISTArchitect
A Synchronous RAM Example

NOTES:

3-26 • M BISTArchitect: C om m on B IST V ariations C opyright © 2002 M entor G raphics C orpora tion

A Synchronous RA M Exam ple (Continued)

W rite cycle tim ing diagram

c s b

va lida ddr

m em _ clk

oe b

rw b

d in

41

65

87

1 09

1 21 3

1 41 1

va lid
2

3

din

dout

1 d in se tup
2 d in h ol d
3 csb se tup
4 csb h o ld
5 p re cha rg e

6 m em _clk a ctive
7 a d dr se tup
8 a d dr h ol d
9 r wb se tup
1 0 r wb h old

11 oe b tri -> a ctive
12 oe b a ctive -> tri
13 re ad acce ss
14 re ad de acce ss

dout

addr

d in

rw b

oeb

csb

m em _clk
Memory BIST Training Workbook, 8.2002_1 5-29
 March 2002

Memory Modeling for MBISTArchitect
A Synchronous RAM Example

NOTES:

3-27 • M BISTArchitect: C om m on B IST Variations C opyright © 2002 M entor Graphics C orpora tion

A Synchronous R A M Exam ple (C ontinued)

m odel ram _1rw (addr, d in, rwb, oeb, csb, m em _clk,
dout)(
 b ist_defin ition (

 address addr (array = 4:0;);
 data_in d in (array = 3:0;);
 data_out dout (array = 3:0;);
 output_enable oeb low ;
 w rite_enable rwb low ;
 chip_enable csb low ;
 clock m em _clk h igh;

 tech = “technology_1”;
 vendor = “acm e_silicon”;
 version = “1.0”;
 m essage = “Synchronous SRAM , 1rw ”;
 address_size = 5;
 m in_address = 0;
 m ax_address = 31;
 data_size = 4;

♦ Input/O utput D efin itions

dout

addr

d in

rw b

oeb

csb

m em _clk
Memory BIST Training Workbook, 8.2002_15-30
 March 2002

Memory Modeling for MBISTArchitect
Interpreting the Read Cycle Timing

NOTES:

3-28 • M BISTArch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orporation

Interpreting the Read Cycle T im ing

c s b

va lida ddr

m em _ clk

oe b

rw b

va lid

21

3

65

87

1 11 0

1 29

dout

1 csb se tu p
2 csb h old
3 pr ech ar ge
4 me m_cl k a ctive

5 a dd r setu p
6 a dd r ho ld
7 rw b setu p
8 rw b ho ld

9 o eb tri -> active
1 0 r ea d a ccess
1 1 o eb active -> tr i
1 2 r ea d d ea ccess

4

R ead cycle tim ing d iagram

♦ R ead cycle is synchronized
by m em _clock ris ing edge

♦ Look for dependencies
● csb setup before m em _clk
● addr setup before m em _clk
● Tpd oeb to dout
● Tpd m em _clk to dout
● csb hold after m em _clk
● addr hold after m em _clk
● rw b setup and hold???

– N o - rw b is inactive

♦ N o other dependencies
Memory BIST Training Workbook, 8.2002_1 5-31
 March 2002

Memory Modeling for MBISTArchitect
Defining the Read Cycle

NOTES:

3-29 • M B IS TA rch itect: C om m on B IST Variations C opyright © 2002 M entor G raphics C orpora tion

do
n’

t c
ar

e

test_clock

addr

dout

rw b

oeb

csb

♦ R ead dependencies
● csb setup before m em _clk
● addr setup before m em _clk
● Tpd oeb to dout
● rw b rem ains inactive
● Tpd m em _clk to dout
● csb hold a fter m em _clk

D efin ing the R ead C ycle

Strobe d_out

Set memory clock
Set controller clock
Memory BIST Training Workbook, 8.2002_15-32
 March 2002

Memory Modeling for MBISTArchitect
Defining the Read Cycle

NOTES:

3-30 • M BISTArch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orporation

do
n’

t c
ar

e

Defining the Read Cycle (Continued)

Strobe d_out

read_cycle (
change addr;
assert csb;
assert oeb;
wait;
assert csb;
assert oeb;
wait;
expect dout;

 wait;
)

test_clock

addr

dout

rw b

oeb

csb
Memory BIST Training Workbook, 8.2002_1 5-33
 March 2002

Memory Modeling for MBISTArchitect
Interpreting the Write Cycle Timing

NOTES:

3-31 • M BISTArchitect: Com mon BIST Variations Copyright © 2002 Mentor Graphics Corporation

c sb

va lida ddr

m em _ clk

oeb

rw b

d in

41

65

87

1 09

1 21 3

1 41 1

va lid
2

3

din

dout

1 d in se tup
2 d in hold
3 csb se tup
4 csb ho ld
5 pre cha rge

6 m em _clk active
7 a d dr se tup
8 a d dr hold
9 rwb se tup
1 0 rwb h old

11 oeb tri - > a ctive
12 oeb active -> tri
13 read acce ss
14 read de access

Interpreting the W rite Cycle Tim ing

W rite cycle tim ing diagram

♦ W rite cycle is synchronized
by m em _clock rising edge

♦ Look for dependencies
● csb setup before mem _clk
● addr setup before mem _clk
● rwb setup before mem _clk
● Tpd m em_clk to data valid
● csb hold after mem _clk
● addr hold after m em_clk
● rwb hold after mem _clk
● oeb setup and hold?

– No - oeb is for observe only
– oeb can be asserted

♦ No other dependencies
Memory BIST Training Workbook, 8.2002_15-34
 March 2002

Memory Modeling for MBISTArchitect
Defining the Write Cycle

NOTES:

3-32 • M B IS TArch itect: C om m on B IST Varia tions C opyright © 2002 M entor G raph ics C orporation

do
n’

t c
ar

e

test_clock

addr

d in

rw b

oeb

csb

♦ W rite dependencies
● csb setup before m em _clk
● addr setup before m em _clk
● din setup before m em _clk
● rw b setup before m em _clk
● Tpd oeb to dout
● Tpd m em _clk to data valid
● csb hold after m em _clk
● addr hold after m em _clk
● rw b hold after m em _clk

D efin ing the W rite C ycle
Memory BIST Training Workbook, 8.2002_1 5-35
 March 2002

Memory Modeling for MBISTArchitect
Defining the Write Cycle

NOTES:

3-3 3 • M BIST A rch itec t: C om m on B IS T V aria tio ns C opyr ight © 20 02 M entor G raph ics C orpora tion

do
n’

t c
ar

e

D efin ing the W rite C ycle (C ontinued)

w rite_cyc le (
change add r;

 change d in ;
assert csb;

 assert rw b;
assert oeb ;
w a it;
assert m em _clk ;
assert csb;

 assert rw b
assert oeb ;
w a it;

)

test_c lock

ad dr

d in

rw b

oeb

csb
Memory BIST Training Workbook, 8.2002_15-36
 March 2002

Memory Modeling for MBISTArchitect
Defining Constant Values

NOTES:

3-34 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Defining Constant Values

♦ Some signals can be held constant during both read and write
cycles

● For example, output enable, chip enable

♦ These signals can be redefined in the memory model
● Redefine the active state to be the inactive state
● Remove the assert statements from the read and write cycles

Original Description
bist_definition (

 address addr (array = 4:0;);
 data_in din (array = 3:0;);
 data_out dout (array = 3:0;);
 output_enable oeb low;
 write_enable rwb low;
 chip_enable csb low;
 clock mem_clk high;

Modified Description
bist_definition (

 address addr (array = 4:0;);
 data_in din (array = 3:0;);
 data_out dout (array = 3:0;);
 output_enable oeb HIGH;
 write_enable rwb low;
 chip_enable csb HIGH;
 clock mem_clk high;
Memory BIST Training Workbook, 8.2002_1 5-37
 March 2002

Memory Modeling for MBISTArchitect
Defining Constant Values

NOTES:

3-35 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Defining Constant Values (Continued)

write_cycle (
change addr;

 change din;
 assert rwb;

wait;
assert mem_clk;

 assert rwb
wait;

)

read_cycle (
change addr;
wait;
assert mem_clk;
wait;
expect dout;

 wait;
)

♦ Modified read and write cycles
Memory BIST Training Workbook, 8.2002_15-38
 March 2002

Memory Modeling for MBISTArchitect
Logical to Physical Mapping

Externally, the memory illustrated may appear to consist of sixteen 4-bit words.
The internal physical layout of a memory is organized in a two-dimensional
matrix, in this case a common word per row configuration. Memory designers use
different physical configurations in an effort to reduce cell space, reduce power
consumption, increase yield (by including spare rows and columns), and
accommodate mapping to standard chip pin assignments. In this example, there
are four words per row.

3-36 • M BISTArch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orporation

Logical to Physical M apping

0 1 2 3 3 2 1 0 0 1 2 3 3 2 1 0

0

15

0 1 2 3

♦ Exam ple : 64-b it R A M
● 16 w ords, 4 b its per w ord
● 16 physical co lum ns by 4 physical row s
● 4 w ords per row

Logical A ddressing

Physical A ddressing

12
8
4
0

15
11
7
3

Memory BIST Training Workbook, 8.2002_1 5-39
 March 2002

Memory Modeling for MBISTArchitect

t.
ells
The Effect of Physical Topology

A checkerboard algorithm detects stuck-at-faults and shorts between adjacent
cells by writing alternating 1’s and O’s to cells as viewed from a logical layou
When the physical layout differs, the inversion of the bits between adjacent c
doesn’t always happen, as shown in the illustration.

3-37 • M B IS TA rchitect: C om m on B IS T Varia tions C opyright © 2002 M entor G raph ics C orporation

The E ffect of P hysical Topology

0 1 2 3 3 2 1 0 0 1 2 3 3 2 1 0

♦ A pply checkerboard algorithm
● Shou ld ensure inversion betw een every b it

12

0 1 0 1

0 1 0 1

1 0 1 01 0 1 0 0 1 0 1

0 1 0 10 1 0 1
1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 00 1 0 1
1 0 1 01 0 1 0

0 1 0 10 1 0 1
Address

N o invers ions

P hysica l topo logy com prom ises algorithm e ffec tiveness

Data
bits

8

4

0

15

7

3

11
Memory BIST Training Workbook, 8.2002_15-40
 March 2002

Memory Modeling for MBISTArchitect
Allowing for Physical Topology

NOTES:

3-38 • M BISTArchitect: C om m on B IST V ariations C opyright © 2002 M entor G raphics C orpora tion

A llow ing for Physical Topology

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

1 0 1 0
1 0 1 0

1 0 1 0
1 0 1 0

0 1 0 1

0 1 0 1

0 1 0 1
0 1 0 1

0 1 0 1

0 1 0 1
0 1 0 1

0 1 0 1

D ata
bits

1 0 1 0

1 0 1 0
1 0 1 0

1 0 1 0
0 1 0 1

1 0 1 0
0 1 0 1

0 1 0 10 1 0 1

1 0 1 0

1 0 1 01 0 1 0

12

Address 8

4

0

15

7

3

11

♦ Solution
● Adjust the data pattern to fit the physical topology
● Data inverted at addresses 1, 3 , 4 , 6 , 9 , 11, 12, 14
Memory BIST Training Workbook, 8.2002_1 5-41
 March 2002

Memory Modeling for MBISTArchitect
The Checkerboard Algorithm

The Checkerboard algorithm reads the physical topology information from the
memory model and adjusts the output patterns to create the proper checkerboard
pattern among physically adjacent cells. When you are creating the memory
model, you must include the physical topology information by placing the
following lines within the memory model bist_definition. Often this information
is not found in a standard memory data book and you must request it from the
manufacturer. top_column=<value> tells the algorithm the number of words per
row. The <value> can be any integer greater than 0. The algorithm uses this value
to ensure that the first word of each row is different than the first word of the
previous row, thus creating a checkerboard pattern. top_word=<value> tells if
multiplexers in the column address decoder. A multiplexer is used to select
between the bits of two words that are interleaved. If this is the case, then writing
all 1’s to one word and all 0’s to the other creates a checkerboard pattern. 1
indicates there are multiplexers, 0 indicates there are not.

3-39 • M B IS TArch itect: C om m on B IS T V aria tions C opyright © 2002 M entor G raph ics C orpora tion

The C heckerboard A lgorithm

♦ Supports bas ic “co lum ns per row ” arch itec tu res
♦ L ib rary keyw ords define topo logy

● top_colum n = num ber colum ns (w ords) per row
● top_w ord defines m uxing on address decoder

♦ Selec t a lgo rithm w ith the fo llow ing com m and :
● A dd M bist A lgorithm s C heckerboard

top_co lum n = 4;
top_w ord = 0 ;
Memory BIST Training Workbook, 8.2002_15-42
 March 2002

Memory Modeling for MBISTArchitect
You must use the Setup Observation Scheme -Compare command when you
use the Checkerboard algorithm to compare algorithms. In addition, multiple
memories of different topologies can share the same controller. It is only
necessary that each memory model contain its own top_column and top_word
statements.
Memory BIST Training Workbook, 8.2002_1 5-43
 March 2002

Memory Modeling for MBISTArchitect

ternal
st

e
s not
r.

four

t

e order
Descrambling Functions

If your memory uses a scheme that “translates” an external address to an in
address or translates the input data in some way for internal storage, you mu
describe this translation to the Topchecker algorithm. Otherwise, an accurat
checkerboard pattern cannot be generated. Usually this kind of information i
found in a standard data book and you must request it from the manufacture

The address subsection defines the descrambling for the address bus and the
data_in subsection defines the descrambling for the data input bus. For each
address/data line of the memory there must be a line in the corresponding
subsection. For example, if the width of the address bus is 4, there must be
lines in the address subsection of the descrambling definition section of the
memory model. Similarly, if the width of the data bus is 8, there must be eigh
lines in the data section of the descrambling definition section of the memory
model. The names of the descrambled address/data lines are arbitrary but th
of the statements in each section is important.

3-40 • M B IS TArch itect: C om m on B IS T V aria tions C opyright © 2002 M entor G raph ics C orpora tion

D escram bling Functions

descram bling_defin ition (
 data_ in (
 data0_desc = da ta0 XO R ((addr3 A N D (N O T addr0) O R (addr0 A N D (N O T addr3));
 data1_desc = da ta0 XO R ((addr3 A N D (N O T addr0) O R (addr0 A N D (N O T addr3));
 data2_desc = data0 XO R ((addr3 A N D (N O T addr0) O R (addr0 A N D (N O T addr3));
 data3_desc = data0 XO R ((addr3 A N D (N O T addr0) O R (addr0 A N D (N O T addr3));)
)

♦ D escram bling provides m ost flex ib le topo log ical m app ing
● U sed for m ore com plex topo log ical m apping
● D efines w here data is inverted
● A ddresses can also be descram bled
● M ust use “S etup M ux loca tion -con tro ller”
Memory BIST Training Workbook, 8.2002_15-44
 March 2002

Memory Modeling for MBISTArchitect
The first statement corresponds to the LSB and the last to the MSB. The supported
Boolean operators are BUF, INV, AND, NAND, OR, NOR, XOR, XNOR.
Finally, you must define BOTH address and data_in subsections, regardless of
whether or not scrambling information exists for both.
Memory BIST Training Workbook, 8.2002_1 5-45
 March 2002

Memory Modeling for MBISTArchitect
Validating a Memory Model

NOTES:

3-41 • M BISTArch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orporation

Validating a M em ory M odel

♦ Validation is perform ed

♦ M em ory m odel errors
w ill result in incorrect
B IST contro ller

Create m odel

Run
M B ISTArchitect

Com pile & run
testbench
sim ulation

Pass/
Fail?

Exam ine sim ulation
waveform s and
locate prob lem

Success

Correct
problem
Memory BIST Training Workbook, 8.2002_15-46
 March 2002

Memory Modeling for MBISTArchitect
User Defined Algorithm

Prior to inclusion of the Mentor Graphics User Defined Algorithm function, all
of the test algorithms available in the MBISTArchitect tool were precoded into the
tool. Adding a new algorithm required engineering work at the factory to support
the new algorithm. The User Defined Algorithm functionality removes the pre-
coded test algorithms and replaces them with algorithm definitions, loaded from
files, which you can modify prior to BIST generation. All of the algorithms pre-
configured as part of the MBISTArchitect tool, except the comparator test and
port interaction tests, are defined within the software using this facility.

You can use User Defined Algorithms to define a class of simple March-type
algorithms. This capability lets you define algorithms that perform a single
memory access operation or more complex activity formed from read and write
operations, at each address of a range of memory addresses.

3-42 • M BISTArch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orporation

User Defined A lgorithm ™

♦ You can define your M arch-type algorithm
♦ N ot supported in User D efined A lgorithm function:

● Access to m ultiple ports at the sam e tim e
● Non-M arch type algorithm s (such as G alpat)
● Exam ple of UD A:

1.W rite a ll 0 except base ce ll

2.Read first ce ll

3.Read base cell

4. Repeat 2-3 for all ce lls
 0 0 0 1 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0
Memory BIST Training Workbook, 8.2002_1 5-47
 March 2002

Memory Modeling for MBISTArchitect
When the memory BIST kernel is active, you can use User Defined Algorithm
commands to load algorithms into the tool and change the set of available
algorithms. The UDA algorithms use the UDA language that follows a Verilog-
like style. Algorithms are composed of these parts:

• Tests

• Repetitions

• Steps

Use these commands when working with User Defined Algorithms: Load
Algorithms, Delete Algorithms, and Report Algorithms.

User Defined Algorithm Exercises are available at the end of this module so that
you can get experience using this MBISTArchitect feature.
Memory BIST Training Workbook, 8.2002_15-48
 March 2002

Memory Modeling for MBISTArchitect
Troubleshooting a Memory Model

NOTES:

3-43 • M BISTArch itect: C om m on B IST Variations C opyright © 2002 M entor G raph ics C orporation

Troubleshooting a M em ory M odel

♦ Three m ajor causes of m ism atches
♦ Incorrect m em ory m odel description

● R e-exam ine datasheet and m em ory m odel

♦ A dditional M B ISTA rchitect com m ands required
● Som e m em ories w ill require som e setup in

M BISTArchitect

♦ Incorrect sim ulation m odel or inaccurate datasheet
● In tended behavior correct, but still getting problem s
Memory BIST Training Workbook, 8.2002_1 5-49
 March 2002

Memory Modeling for MBISTArchitect
Troubleshooting Example: March2

NOTES:

3-44 • MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Troubleshooting Example: March2

▲ (Wr0), ▲ (R0, Wr1, R1), ▲ (R1, W r0, R0), ▼ (R0, Wr1, R1), ▼ (R1, Wr0, R0)

♦ Is data being written correctly during ▲ (Wr0)?
● Yes : write operation is correct
● No : problem with write operation

♦ Is data being read correctly on R0 of ▲(R0,W1,R1)?
● Yes : read operation is correct
● No : problem with read operation

♦ Is data being read correctly on R1 of ▲(R0,W1,R1)?
● Yes : read, write, and rwr operation is correct
● No : problem optimizing read and write cycles to rwr

♦ Does incorrect behavior apply to all addresses?
● Yes : problem is not address dependent
● No : there may be a problem interfacing last ▲ (W0)

and first ▲(R0,W1,R1) operations
Memory BIST Training Workbook, 8.2002_15-50
 March 2002

Memory Modeling for MBISTArchitect
Module 5 Lab Exercises

• Using the Model Editor
 (20 minutes)

• Reviewing a User Defined Algorithm
 (20 minutes)

• Running a User Defined Algorithm File
 (20 minutes)
Memory BIST Training Workbook, 8.2002_1 5-51
 March 2002

he

5Memory Modeling for MBISTArchitect

Module 5: Lab Exercises
The following exercises introduce you to the Model Editor and User Defined
Algorithms.

Exercise 14: Modifying a Template to Match Your Memory Specifications —
You will use the model editor to make a working copy of a template, modify t
template, and save the model.

Exercise 15: Reviewing a User Defined Algorithm —You will review a User
Defined Algorithm (UDA) that has been modified to change the March1
algorithm.

Exercise 16: Running a User Defined Algorithm File—You will run the User
Defined Algorithm reviewed in the previous exercise and simulate a memory
model which uses the algorithm.
Memory BIST Training Workbook, V8.2002_1 5-52
March 2002

Memory Modeling for MBISTArchitect

, you

,
Exercise 14: Modifying a Template to Match Your
Memory Specifications

The purpose of this exercise is to give you step-by-step instruction on how to use
the Model Editor. You will invoke the Model Editor, make a working copy of a
template that comes close to the RAM model you need, modify the working copy
to conform to the specifications of your particular RAM, then save the model.
Before you begin, you should be aware of the following characteristics of the
Model Editor:

• The Model Editor works on the principle of “Correct-by-Construction
(CBC)”. It will only read and write a complete and syntactically-correct
model file.

• The Model Editor works on selected objects. Therefore, in most cases
must first select an object before you modify or replace that object.

• The Model Editor allows you to save to multiple models to one file.
Therefore, during a save operation, only a model with exactly the same
name is overwritten in that file. If you save a model by a different name
that model will be appended to the existing models in the file.
Memory BIST Training Workbook, V8.2002_1 5-53
March 2002

Memory Modeling for MBISTArchitect
Becoming Familiar with your RAM Input/Output Specifications

1. Examine the following model information:

Make a Working Copy of a Similar Template

1. Move to the mbist3 directory.

shell> cd $MBISTNWP/mbist3/ram4X16/results

2. Invoke MBIST Architect:

shell> mbistarchitect

RAM4x16

Technology: Newest

1-Port Asynchronous RAM with 4 words by 16 bits

Version: 1.00
Date: 4/29/96

Inputs/Outputs

q15:0 - data outputs (tri-state).

oe - Output Enable - active low.

wrt - Write control line. A high state enables writing, a low state enables reading.

a1:0 - Address lines.

d15:0 - Data inputs.

Miscellaneous Info: Input and Output buses are defined as wide-pins (arrays) on
the simulation model.
Memory BIST Training Workbook, V8.2002_15-54
March 2002

Memory Modeling for MBISTArchitect
3. Click the Model Editor button, then follow the directions below to select a
template:

4. Change the model name to MY_RAM4X16_bussed.

5. Click Save Model..., then do the following.

1. Click

2. Select

3. Click

2. Click

1. Enter

3. Click
Memory BIST Training Workbook, V8.2002_1 5-55
March 2002

Memory Modeling for MBISTArchitect
The File Viewer window should appear with the template displayed. At this
point, only the model name has changed.

BEST PRACTICE: Keep the File Viewer window open and off to the side, so
you can examine the updated status of the file after you execute each Save
Model... command.

Edit the Miscellaneous Information

1. Bring the Model Editor window to the front, then click on Change Above
Information.

2. Change the Data Width to 16.

3. Change the Message Text to read “4X16 RAM”.

4. Click OK.

Edit the Read Cycle Definition

1. Examine the following vendor timing diagram:

a1:0

q7:0

oe

Read Cycle Timing Diagram

Trc

Toh

hi-Z

Toz Toe

data not valid

Taa

Trc - read cycle time - minimum 6.0ns
Taa - address access time - maximum 6.0ns
Toh - output hold time from address change - minimum 3.7ns
Toz - output disable time - maximum 0.9ns
Toe - output enable time - minimum 1.0ns

valid data previous read valid data

Read Cycle Description - An address change initiates the read sequence. Data from
the previous read is valid for a minimum of 3.7ns. Output data for the new address is valid
6.0ns after the address change. If the output_enable goes inactive low, output data
remains valid for.9ns, then goes to hi-Z. Output data is valid 1.0ns after output_enable
goes active high.
Memory BIST Training Workbook, V8.2002_15-56
March 2002

Memory Modeling for MBISTArchitect

is
 the
It is helpful to draw a simplified event-driven diagram that uses the test
clock as a reference. For this first exercise, you can use the following
diagram:

2. Verify that the Read Cycle for Port #1 is selected for editing. If not, select
“1 Read/Write (Read)”, then click Edit the Selected Cycle.

3. Click Define Cycle Pins, then select the Address definition on the right
side of the form.

4. Change the Name from “addr” to “a”, click >> Add >>, then click Change
Selected.

5. Select the Data_OUT definition, then change the name from “do” to “q”
and change the bus width to “15:0”, click >> Add >>, then click Change
Selected.

6. Add an Output_Enable signal called oe. Since you will not be testing th
signal, define it as active low even though it is active high. This causes

a1:0

q7:0

Simplified Read Cycle Diagram

data not validvalid data previous address valid data

Assumptions:
1. An address change occurs on the rising edge of the test clock.
2. The test clock will not violate setup and hold times.
3. New data will be valid after one test clock cycle
4.Output_enable will not be tested by the BIST circuitry.

Test
Clock
Memory BIST Training Workbook, V8.2002_1 5-57
March 2002

Memory Modeling for MBISTArchitect

gnal
hin
st

e
BIST controller to hold it in what it thinks is the inactive state (high), when
in fact it is the active state (for example, output always enabled).

7. End the Cycle Pin editing by clicking OK.

8. Look at the Cycle Editor timing diagram. The output data should be valid
one test clock cycle after a valid address change, so click on the “q” si
line where shown in Step 1 below. Also, the read cycle is complete wit
two test clock cycles, so you should shorten the Read Cycle by one te
clock cycle, as shown in Step 2 below:

Edit the Write Cycle Definition

In the following sequence, you will learn how to Import a signal definition from
the Read Cycle to the Write Cycle.

Note

In the Write Cycle editing session that follows, you will define th
write_enable “wrt” signal as active “high”. You can assume this
signal is low during the read cycle, therefore you don’t have to
define it as part of the read- cycle protocol.

1. Click

2. Click
Memory BIST Training Workbook, V8.2002_15-58
March 2002

Memory Modeling for MBISTArchitect
1. Examine the following Write Cycle timing diagram

The simplified event-driven diagram below uses the test clock as a
reference:

we going high (true) initiates the Write sequence.

a1:0

di7:0

Taw

we

Tasw

Twp

Tdw Tdh

Write Cycle Timing Diagram

Twc

Twc - write cycle time - minimum 5.5ns
Taw - address valid to end of write - minimum 5.5ns
Tasw - Address setup to we high - minimum 2.6ns
Twp - write minimum pulse - maximum 2.9ns
Tdw - data valid to end of write - minimum 3.7ns

valid data to write

Write Cycle Description - With the address stable, Write Enable (we) initiates
the write sequence. The address is latched into memory on the rising edge of we.

Tdh - data hold time - minimum 3.7ns

valid write address

Data on the data input bus is written into memory on the falling edge of we.

a1:0

d7:0

Simplified Write Cycle Diagram

Assumptions:
1. Address and data changes on the rising edge of the test clock.
2. The test clock will not violate setup and hold times.
3. Address is latched on the rising edge of wrt (next test clock cycle).
4. Input data is written into memory on the falling edge of wrt (next test clock cycle).

Test
Clock

wrt

5. Output_enable will not be tested by the BIST circuitry.

valid data

valid address

latch address

read data
Memory BIST Training Workbook, V8.2002_1 5-59
March 2002

Memory Modeling for MBISTArchitect

k

ewer

2. Select “1 Read/Write (Write)” in the Model Editor window, then click
Edit the Selected Cycle.

3. Click Define Cycle Pins, select the Address definition, then click Import
Pin...

4. Select the Address definition, click OK , click >> Add >>, then click
Change Selected.

5. Select the Data_IN definition. Change the name from “di” to “d”, change
the bus width to “15:0”, then >> Add >> the input to the Write Cycle
definition.

6. Change the Write_Enable input to an active high “wrt” signal, then clic
OK.

7. Look at the Cycle Editor timing diagram and make it conform to the
illustration below:

8. End the Modeling Editing session by clicking on Save Model..., then click
OK.

9. Examine the updated status of the Read and Write Cycle in the File Vi
window. Verify that it corresponds with your understanding of what the
syntax should be.
Memory BIST Training Workbook, V8.2002_15-60
March 2002

Memory Modeling for MBISTArchitect
Summary

In this exercise, you modified a template to match the specifications of your
particular RAM model. You changed the model name, changed the bus width
specification, then modified the read cycle protocol. You then imported the read
cycle specification to modify the write cycle protocol. You are now ready to
invoke MBISTArchitect on this model and create a bist collar for it.
Memory BIST Training Workbook, V8.2002_1 5-61
March 2002

Memory Modeling for MBISTArchitect
Exercise 15: Reviewing a User Defined Algorithm

MBISTArchitect contains a User Defined Algorithm (UDA) feature that lets you
create your own algorithms. The UDA functionality removes the pre-coded test
algorithms and replaces them with algorithm definitions contained in files, which
you can modify prior to BIST generation. You would typically create a user
defined algorithm if you wanted to modify one of the memory test algorithms.

In this exercise, we will show you an example of a user defined algorithm. The
next exercise shows you how to load a dofile that references this algorithm and to
run the dofile in MBISTArchitect.

Reviewing an Algorithm File

1. Move to the mbist3/uda/design directory.

shell> cd $MBISTNWP/mbist3/uda/design

2. The file named marchA.dsc is an algorithm file that has been created to
modify the existing March 1 algorithm. Use your favorite text editor or vi to
open this file.

3. This file contains the following sections:

• Definition

• Steps

• Algorithm repetition

The Definition section contains the test name, a summary of the test, and size.
This is followed by an algorithm definition that defines the actions to be taken in
the algorithm. In this example, it defines the read and write operations performed
during the up and down memory test.
Memory BIST Training Workbook, V8.2002_15-62
March 2002

Memory Modeling for MBISTArchitect
Definition Section

The Steps section declares the basic activity across the address space of the
memory ports. The step includes the following:

• addr
The address clause defines what happens to the address register during the
step of the algorithm.

• data
A string that defines what data values will be used by the operation applied
at each address visited by the algorithm step.

• operation
A string that defines the activity, such as a read or write, that is performed
at each address visited by the algorithm step.

marchA

Summary:
 test example for a marching algorithm named marchA

Size: Copyright (C) Mentor Graphics Corporation 1999 All Rights
Reserved

10n

Algorithm:
 up - write 0
 up - read 0, write 1
 up - read 1, write 0
 down - read 0, write 1
 down - read 1, write 0
 down - read 0
Memory BIST Training Workbook, V8.2002_1 5-63
March 2002

Memory Modeling for MBISTArchitect
Steps Section

The Repetition section defines the action that will be taken in the algorithm. It
includes the following:

• seed
A string that specifies a common default value to be used by all the steps in
the repetition.

• keywords and steps
The begin and end keywords surround the body of the repetition
declaration, which is a sequence of step references.

step wSeedUp;
 addr min, max, up, 1;
 data seed;
 operation w;

step rwInvSeedUp;
 addr min, max, up, 1;
 data invSeed;
 operation rw;

step rwSeedUp;
 addr min, max, up, 1;
 data seed;
 operation rw;

step rwInvSeedDown;
 addr min, max, down, 1;
 data invSeed;
 operation rw;

step rwSeedDown;
 addr min, max, down, 1;
 data seed;
 operation rw;

step rSeedDown;
 addr min, max, down, 1;
 data seed;
 operation r;
Memory BIST Training Workbook, V8.2002_15-64
March 2002

Memory Modeling for MBISTArchitect
Repetition Section

Once you have finished reviewing the sample algorithm, close the text editor. In
the next exercise, you will load a dofile that references the MarchA algorithm and
run the dofile in MBISTArchitect.

repetition marchA;
 seed 0;
begin
 step wSeedUp;
 step rwInvSeedUp;
 step rwSeedUp;
 step rwInvSeedDown;
 step rwSeedDown;
 step rSeedDown;
end

test marchA;
 repetition marchA;
Memory BIST Training Workbook, V8.2002_1 5-65
March 2002

Memory Modeling for MBISTArchitect
Exercise 16: Running a User Defined Algorithm File

In this exercise, you will review a dofile that loads the user defined algorithm
reviewed in Exercise 15: Reviewing a User Defined Algorithm. You will also run
the dofile in MBISTArchitect and synthesize the design.

Running an Algorithm Dofile

1. Move to the mbist3/uda/design directory.

shell> cd $MBISTNWP/mbist3/uda/design

2. Use your favorite text editor or vi to open the ram4x4.do file. This file
contains commands required to load the design, memory model and the
MarchA algorithm.

ram4x4.do sample

3. Once you have finished reviewing the sample algorithm, close the text
editor.

4. You are now ready to run MBISTArchitect and load this dofile. Change to
the results directory.

shell> cd $MBISTNWP/mbist3/uda/results

Type the following command to launch MBISTArchitect and run the dofile:

shell > mbistarchitect -nogui -dofile ../design/ram4x4.do

loa li ../design/ram4x4.atpg
add me m ram4x4
load algorithm marchA.dsc
add mbis alg 1 marchA
run
save bist -replace
exit
Memory BIST Training Workbook, V8.2002_15-66
March 2002

Memory Modeling for MBISTArchitect
MBISTArchitect will load the design, memory models, and MarchA
algorithm. It will create BIST circuitry and create the following files, it will
also save these files and exit the tool:

ram4x4_bist.v
ram4x4_bist_con.v
ram4x4_tb.v

Verifying the BIST Circuitry

Next, you will use the MBISTArchitect-generated testbench to verify the memory
BIST circuitry created by running the dofile.

1. Ensure that you are still working in the $MBISTNWP/mbist1/uda/results
directory.

2. Set up a work directory.

shell> $MGC_HOME/bin/vlib work

3. Compile the memory simulation model, all BIST models, and the
testbench.

shell> $MGC_HOME/bin/vlog ../design/ram4x4.v ram4x4_bist.v\
 ram4x4_bist_con.v ram4x4_tb.v

4. Simulate the test driver.

a. Invoke the QuickHDL simulator and load the testbench model.

shell> $MGC_HOME/bin/vsim ram4x4_tb

5. Set up the lists by running the following dofile:

a. VSIM 1> do ../design/vsim_setup.do

b. This file sets the parameters for the simulation to stop due to tst_done
or fail_h going high. It also sets up a List window so you can examine
pertinent signals.
Memory BIST Training Workbook, V8.2002_1 5-67
March 2002

Memory Modeling for MBISTArchitect
6. Run the simulation until it is finished.

VSIM 2> run -all

a. Write the displayed list to a file.

VSIM 2> write list trace.log.uda

b. Quit the simulation.

VSIM 4> quit

7. Examine the saved list file. Use whatever editor you prefer to view the
trace.log.uda file you saved.

• The signals that comprise the columns in this file include (from left to
right): tst_done, fail_h, the address, the write enable, the data input values,
and the data output values.

• The first portion of the testbench tests some system signals.

• The MarchA algorithm is performed as follows:

-W(up) 1450-2150ns
-RW(up) 2250-3750ns
-RW(up) 3850ns-5350ns
-RW(down) 5450-6950ns
-RW(down) 7050-8550ns
-R(down) 8650-9550ns
Memory BIST Training Workbook, V8.2002_15-68
March 2002

Trademark Information
Mentor Graphics Trademarks

The following names are trademarks, registered trademarks, and service marks of Mentor Graphics Corporation:

3D Design, A World of Learning(SM), ABIST, Arithmetic BIST, AccuPARTner, AccuParts, AccuSim, ADEPT, ADVance MS, ADVance RFIC,
AMPLE, Analog Analyst, Analog Station, AppNotes(SM), ARTgrid, ArtRouter, ARTshape, ASICPlan, ASICVector Interfaces, Aspire
Assess2000(SM), AutoActive, AutoCells, AutoDissolve, AutoFilter, AutoFlow, AutoLib, AutoLinear, AutoLink, AutoLogic, AutoLogic
BLOCKS, AutoLogic FPGA, AutoLogic VHDL, AutomotiveLib, AutoPAR, AutoTherm, AutoTherm Duo, AutoThermMCM, AutoView, Autowire
Station, AXEL, AXEL Symbol Genie, BISTArchitect, BIST Compiler(SM), BIST-In-Place(SM), BIST-Ready(SM), Board Architect, Board Designer,
Board Layout, Board Link, Board Process Library, Board Station, Board Station Consumer, BOLD Administrator, BOLD Browser, BOLD Composer,
BSDArchitect, BSPBuilder, Buy on Demand, Cable Analyzer, Cable Station, CAECO Designer, CAEFORM, Calibre, Calibre CB, Calibre DRC,
Calibre DRC-H, Calibre Interactive, Calibre LVS, Calibre LVS-H, Calibre MDPview, Calibre MGC, Calibre OPCpro, Calibre ORC, Calibre
PRINTimage, Calibre PSMgate, Calibre RVE, Calibre WORKbench, Calibre xRC, CAM Station, Capture Station, CAPITAL, CAPITAL Analysis,
CAPITAL Bridges, CAPITAL Documents, CAPITAL H, CAPITAL Harness, CAPITAL Harness Systems, CAPITAL H the complete desktop engineer,
CAPITAL Insight, CAPITAL Integration, CAPITAL Manager, CAPITAL Manufacturer, CAPITAL Support, CAPITAL Systems, Cell Builder, Cell
Station, CellFloor, CellGraph, CellPlace, CellPower, CellRoute, Centricity, CEOC, CheckMate, CHEOS, Chip Station, ChipGraph,
CommLib, Concurrent Board Process(SM), Concurrent Design Environment, Connectivity Dataport, Continuum, Continuum Power Analyst,
CoreAlliance, CoreBIST, Core Builder, Core Factory, CTIntegrator, DataCentric Model, DataFusion, Datapath, Data Solvent, dBUG, Debug
Detective, DC Analyzer, Design Architect, Design Architect Elite, DesignBook, Design Capture, Design Manager, Design Station, DesignView,
DesktopASIC, Destination PCB, DFTAdvisor, DFTArchitect, DFTInsight, DirectConnect(SM), DSV, Direct System Verification, DSV,
Documentation Station, DSS (Decision Support System), ECO Immunity(SM), EDT, Eldo, EldoNet, ePartners, EParts, E3LCable, EDGE
(Engineering Design Guide for Excellence)(SM), Empowering Solutions, Engineer’s Desktop, EngineerView, ENRead, ENWrite, ESim, Exemplar,
Exemplar Logic, Expedition, Expert2000(SM), Explorer CAECO Layout, Explorer CheckMate, Explorer Datapath, Explorer Lsim, Explorer Lsim-C,
Explorer Lsim-S, Explorer Ltime, Explorer Schematic, Explorer VHDLsim, ExpressI/O, FabLink, Falcon, Falcon Framework, FastScan, FastStart,
FastTrack Consulting(SM), First-Pass Design Success, First-Pass success(SM), FlexSim, FlexTest, FDL (Flow Definition Language), FlowTabs,
FlowXpert, FORMA, FormalPro, FPGA Advantage, FPGAdvisor, FPGA BoardLink, FPGA Builder, FPGASim, FPGA Station, FrameConnect,
Galileo, Gate Station, GateGraph, GatePlace, GateRoute, GDT, GDT Core, GDT Designer, GDT Developer, GENIE, GenWare, Geom Genie,
HDL2Graphics, HDL Architect, HDL Architect Station, HDL Author, HDL Designer, HDL Designer Series, HDL Detective, HDL Inventor, HDL
Pilot, HDL Processor, HDL Sim, HDLWrite,Hardware Modeling Library, HIC rules, Hierarchical Injection, Hierarchy Injection, HotPlot, Hybrid
Designer, Hybrid Station, IC Design Station, IC Designer, IC Layout Station, IC Station, ICbasic, ICblocks, ICcheck, ICcompact, ICdevice,
ICextract, ICGen, ICgraph, ICLink, IClister, ICplan, ICRT Controller Lcompiler, ICrules, ICtrace, ICverify, ICview, ICX, ICX Active, ICX
Custom Model, ICX Custom Modeling, ICX Plan, ICX Pro, ICX Project Modeling, ICX Sentry, ICX Standard Library, ICX Verify, ICX Vision,
IDEA Series, Idea Station, INFORM, IFX, Inexia, Integrated Product Development, Integra Station, Integration Tool Kit, INTELLITEST,
Interactive Layout, Interconnect Table, Interface-Based Design, IBD, IntraStep(SM), Inventra, InventraIPX, Inventra Soft Cores, IP Engine , IP
Evaluation Kit, IP Factory, IP -PCB, IP QuickUse, IPSim, IS_Analyzer, IS_Floorplanner, IS_MultiBoard, IS_Optimizer, IS_Synthesizer, ISD
Creation(SM), ITK, It's More than Just Tools(SM), Knowledge Center(SM), Knowledge-Sourcing(SM), LAYOUT, LNL, LBIST, LBISTArchitect,
Language Neutral Licensing, Lc, Lcore, Leaf Cell Toolkit, Led, LED LAYOUT, Leonardo, LeonardoInsight, LeonardoSpectrum, LIBRARIAN,
Library Builder, Logic Analyzer on a Chip(SM), Logic Builder, Logical Cable, LogicLib, logio, Lsim, Lsim DSM, Lsim-Gate, Lsim Net, Lsim
Power Analyst, Lsim-Review, Lsim-Switch, Lsim-XL, Mach PA, Mach TA, Manufacture View, Manufacturing Advisor, Manufacturing Cable,
MaskCompose, MaskPE, MBIST, MBISTArchitect, MCM Designer, MCM Station, MDV, MegaFunction, Memory Builder, Memory Builder
Conductor, Memory Builder Mozart, Memory Designer, Memory Model Builder, Mentor, Mentor Graphics, Mentor Graphics Support CD(SM), Mentor
Graphics SupportBulletin(SM), Mentor Graphics SupportCenter(SM), Mentor Graphics SupportFax(SM), Mentor Graphics SupportNet-Email(SM), Mentor Graphics
SupportNet-FTP(SM), Mentor Graphics SupportNet-Telnet(SM), Mentor Graphics We Mean Business, MicroPlan, MicroRoute, Microtec, Mixed-Signal
Pro, ModelEditor, ModelSim, ModelSim LNL, ModelSim VHDL, ModelSim VLOG, ModelSim SE, ModelStation, Model Technology,
ModelViewer, ModelViewerPlus, MODGEN, Monet, Mslab, Msview, MS Analyzer, MS Architect, MS-Express, MSIMON, MTPI(SM),
Nanokernel, NetCheck, NETED, Online Knowledge Center(SM), OpenDoor(SM), Opsim, OutNet, P&RIntegrator, PACKAGE, PARADE,
ParallelRoute-Autocells, ParallelRoute-MicroRoute, PathLink, Parts SpeciaList, PCB-Gen, PCB-Generator, PCB IGES, PCB Mechanical Interface,
PDLSim, Personal Learning Program, Physical Cable, Physical Test Manager:SITE, PLA Lcompiler, Platform Express, PLDSynthesis, PLDSynthesis
II, Power Analyst, PowerAnalyst Station, Power To Create, Precision, Precision Synthesis, Precision HLS, Precision PNR, Precision PTC, Pre-
Silicon, ProjectXpert, ProtoBoard, ProtoView, QNet, QualityIBIS, QuickCheck, QuickConnect, QuickFault, QuickGrade, QuickHDL,
QuickHDL Express, QuickHDL Pro, QuickPart Builder, QuickPart Tables, QuickParts, QuickPath, QuickSim, QuickSimII, QuickStart, QuickUse,
QuickVHDL, RAM Lcompiler, RC-Delay, RC-Reduction, RapidExpert, REAL Time Solutions!, Registrar, Reinstatement 2000(SM), Reliability
Advisor, Reliability Manager, REMEDI, Renoir, RF Architect, RF Gateway, RISE, ROM Lcompiler, RTL X-Press, Satellite PCB Station,
ScalableModels, Scaleable Verification, SCAP, Scan-Sequential, Scepter, Scepter DFF, Schematic View Compiler, SVC, Schemgen, SDF (Software
Data Formatter), SDL2000 Lcompiler, Seamless, Seamless C-Bridge, Seamless Co-Designer, Seamless CVE, Seamless Express, Selective Promotion,
SignaMask OPC, Signal Spy, Signal Vision, Signature Synthesis, Simulation Manager, SimExpress, SimPilot, SimView, SiteLine2000(SM),
SmartMask, SmartParts, SmartRouter, SmartScripts, Smartshape, SNX, SneakPath Analyzer, SOS Initiative, Source Explorer, SpeedGate,
SpeedGate DSV, SpiceNet, SST Velocity, Standard Power Model Format (SPMF), Structure Recovery, Super C, Super IC Station, Support Services
BaseLine(SM), Support Services ClassLine(SM), Support Services Latitudes(SM), Support Services OpenLine(SM), Support Services PrivateLine(SM), Support
Services SiteLine(SM), Support Services TechLine(SM), Support Services RemoteLine(SM), Symbol Genie, Symbolscript, SYMED, SynthesisWizard,
System Architect, System Design Station, System Modeling Blocks, Systems on Board Initiative, System Vision, Target Manager, Tau, TeraCell,
TeraPlace, TeraPlace-GF, TechNotes, The Ultimate Tool for HDL Simulation, TestKompress, Test Station, Test Structure Builder, The Ultimate Site
For HDL Simulation, TimeCloser, Timing Builder, TNX, ToolBuilder, TrueTiming, Vlog, V-Express, V-Net, VHDLnet, VHDLwrite,
Verinex, ViewCreator, ViewWare, Virtual Library, Virtual Target, Virtual Test Manager:TOP, VR-Process(SM), VRTX, VRTXmc, VRTXoc,
VRTXsa, VRTX32, Waveform DataPort, We Make TMN Easy, Wiz-o-matic, WorkXpert, xCalibre, xCalibrate, Xconfig, XlibCreator, Xpert,
Xpert API, XpertBuilder, Xpert Dialogs, Xpert Profiler, XRAY, XRAY MasterWorks, XSH, Xtrace, Xtrace Daemon, Xtrace Protocol, Zeelan,
Zero Tolerance Verification, Zlibs
TM-69

Third-Party Trademarks
The following names are trademarks, registered trademarks, and service marks of other companies that appear in Mentor
Graphics product publications:

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange, FrameMaker, FrameViewer, and PostScript are registered trademarks of Adobe Systems
Incorporated.

Altera is a registered trademark of Altera Corp.

AM188, AMD, AMD-K6, and AMD Athlon Processor are trademarks of Advanced Micro Devices, Inc.

Apple and Laserwriter are registered trademarks of Apple Computer, Inc.

ARIES is a registered trademark of Aries Technology.

AMBA, ARM, ARMulator, ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ARM946E-S, ARM966E-S, EmbeddedICE, StrongARM, TDMI, and
Thumb are trademarks or registered trademarks of ARM Limited.

ASAP, Aspire, C-FAS, CMPI, Eldo-FAS, EldoHDL, Eldo-Opt, Eldo-UDM, EldoVHDL, Eldo-XL, Elga, Elib, Elib-Plus, ESim, Fidel, Fideldo, GENIE,
GENLIB, HDL-A, MDT, MGS-MEMT, MixVHDL, Model Generator Series (MGS), Opsim, SimLink, SimPilot, SpecEditor, Success, SystemEldo,
VHDeLDO and Xelga are registered trademarks of ANACAD Electrical Engineering Software, a unit of Mentor Graphics Corporation.

Avant! and Star-Hspice are trademarks of Avant! Corporation.

AVR is a registered trademark of Atmel Corporation.

Cadence, Affirma signalscan, Allegro, Analog Artist, Composer, Concept, Design Planner, Dracula, GDSII, GED, HLD Systems, Leapfrog, Logic DP, NC-
Verilog, OCEAN, Physical DP, Pillar, Silicon Ensemble, Spectre, Verilog, Verilog XL, Veritime, and Virtuoso are trademarks or registered trademarks of
Cadence Design Systems, Inc.

CAE+Plus and ArchGen are registered trademarks of Cynergy System Design.

CalComp is a registered trademark of CalComp, Inc.

Canon is a registered trademark of Canon, Inc. BJ-130, BJ-130e, BJ-330, and Bubble Jet are trademarks of Canon, Inc.

Centronics is a registered trademark of Centronics Data Computer Corporation.

ColdFire and M-Core are registered trademarks of Motorola, Inc.

Ethernet is a registered trademark of Xerox Corporation.

Foresight and Foresight Co-Designer are trademarks of Nu Thena Systems, Inc.

FLEXlm is a trademark of Globetrotter Software, Inc.

GenCAD is a trademark of Teradyne Inc.

Hewlett-Packard (HP), LaserJet, MDS, HP-UX, PA-RISC, APOLLO, DOMAIN and HPare registered trademarks of Hewlett-Packard Company.

HCL-eXceed and HCL-eXceed/W are registered trademark of Hummingbird Communications. Ltd.

HyperHelp is a trademark of Bristol Technology Inc.

Installshield is a registered trademark and service mark of InstallShield Corporation.

IBM, PowerPC, and RISC Systems/6000 are trademarks of International Business Machines Corporation.

I-DEAS and UG/Wiring are registered trademarks of Electronic Data Systems Corporation.

IKON is a trademark of Tahoma Technology.

IKOS and Voyager are registered trademarks of IKOS Systems, Inc.

Imagen, QMS, QMS-PS 820, Innovator, and Real Time Rasterization are registered trademarks of MINOLTA-QMS Inc. imPRESS and UltraScript are
trademarks of MINOLTA-QMS Inc.

ImageGear is a registered trademark of AccuSoft Corporation.

Infineon, TriCore, and C165 are trademarks of Infineon Technologies AG.

Intel, i960, i386, and i486 are registered trademarks of Intel Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

MemoryModeler MemMaker are trademarks of Denali Software, Inc.

MIPS is a trademark of MIPS Technologies, Inc.

MS-DOS, Windows 95, Windows 98, Windows 2000, and Windows NT are registered trademarks of Microsoft Corporation.

MULTI is a registered trademark of Green Hills Software, Inc.

NEC and NEC EWS4800 are trademarks of NEC Corp.

Netscape is a trademark of Netscape Communications Corporation.

Novas, Debussy, and nWave are trademarks or registered trademarks of Novas Software, Inc.

OakDSPCore is a registered trademark for DSP Group, Inc.

Oracle, Oracle8i, and SQL*Plus are trademarks or registered trademarks of Oracle Corporation.

PKZIP is a registered trademark of PKWARE, Inc.

Pro/CABLING and HARNESSDESIGN are trademarks or registered trademarks of Parametric Technology Corporation.

Quantic is a registered trademark of Quantic EMC Inc.

QUASAR is a trademark of ASM Lithography Holding N.V.

Red Hat is a registered trademark of Red Hat Software, Inc.
TM-70

SCO and the SCO logo are trademarks or registered trademarks of Caldera International, Inc.

Sneak Circuit Analysis Tool (SCAT) is a registered trademark of SoHaR Incorporated.

SPARC is a registered trademark, and SPARCstation is a trademark, of SPARC International, Inc.

Sun Microsystems, Sun Workstation, and NeWS are registered trademarks of Sun Microsystems, Inc. Sun, Sun-2, Sun-3, Sun-4, OpenWindows, SunOS,
SunView, NFS, and NSE are trademarks of Sun Microsystems, Inc.

SuperH is a trademark of Hitachi, Ltd.

Synopsys, Design Compiler, DesignWare, Library Compiler, LM-family, PrimeTime, SmartModel, Speed-Model, Speed Modeling, SimWave, and Chronologic
VCS are trademarks or registered trademark of Synopsys, Inc.

TASKING is a registered trademark of Altium Limited.

Teamwork is a registered trademark of Computer Associates International, Inc.

Tensilica and Xtensa are registered trademarks of Tensilica, Inc.

Times and Helvetica are registered trademarks of Linotype AG.

TimingDesigner and QuickBench are registered trademarks of Forte Design Systems

Tri-State, Tri-State Logic, tri-state, and tri-state logic are registered trademarks of National Semiconductor Corporation.

UNIX, Motif, and OSF/1 are registered trademarks of The Open Group in the United States and other countries.

Versatec is a trademark of Xerox Engineering Systems, Inc.

ViewDraw, Powerview, Motive, and PADS-Perform are registered trademarks of Innoveda, Inc. Crosstalk Toolkit (XTK), Crosstalk Field Solver (XFX), Pre-
Route Delay Quantifier (PDQ), and Mentor Graphics Board Station Translator (MBX) are trademarks of Innoveda, Inc.

Visula is a registered trademark of Zuken-Redac.

VxSim, VxWorks and Wind River Systems are trademarks or registered trademarks of Wind River Systems, Inc.

XVision is a registered trademark of Tarantella, Inc.

X Window System is a trademark of MIT (Massachusetts Institute of Technology).

Z80 is a registered trademark of Zilog, Inc.

ZSP and ZSP400 are trademarks of LSI Logic Corporation.

Other brand or product names that appear in Mentor Graphics product publications are trademarks or registered trademarks of
their respective holders.

Updated 2/13/02
TM-71

TM-72

End-User License Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS CAREFULLY
READ THIS LICENSE AGREEMENT BEFORE USING THE SOFTWARE

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading, or have acquired with
this Agreement, including any updates, modifications, revisions, copies, and documentation ("Software")
are copyrighted, trade secret and confidential information of Mentor Graphics or its licensors who
maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics or its authorized distributor grants to you, subject to payment of appropriate license fees,
a nontransferable, nonexclusive license to use Software solely: (a) (in machine-readable, object-code
form; (b) for your internal business purposes; and (c) on the computer hardware or at the site for which an
applicable license fee is paid, or as authorized by Mentor Graphics. A site is restricted to a one-half mile
(800 meter) radius. Mentor Graphics’ then-current standard policies, which vary depending on Software,
license fees paid or service plan purchased, apply to the following and are subject to change: (a) relocation
of Software; (b) use of Software, which may be limited, for example, to execution of a single session by a
single user on the authorized hardware or for a restricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or similar devices); (c)
eligibility to receive updates, modifications, and revisions; and (d) support services provided. Current
standard policies are available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software development (ESD) Software,
Mentor Graphics or its authorized distributor grants to you a nontransferable, nonexclusive license to
reproduce and distribute executable files created using ESD compilers, including the ESD run-time
libraries distributed with ESD C and C++ compiler Software that are linked into a composite program as
an integral part of your compiled computer program, provided that you distribute these files only in
conjunction with your compiled computer program. Mentor Graphics does NOT grant you any right to
duplicate or incorporate copies of Mentor Graphics’ real-time operating systems or other ESD Software,
except those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE

3.1.Portions or all of certain Software may contain code for experimental testing and evaluation ("Beta
Code"), which may not be used without Mentor Graphics’ explicit authorization. Upon Mentor
Graphics’ authorization, Mentor Graphics grants to you a temporary, nontransferable, nonexclusive
license for experimental use to test and evaluate the Beta Code without charge for a limited period of
time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not
to release commercially in any form.

3.2. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the Beta
Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graphics

This license is a legal "Agreement" concerning the use of Software between you, the end-user, either individually or as
an authorized representative of the company purchasing the license, and Mentor Graphics Corporation, Mentor
Graphics (Ireland) Limited, Mentor Graphics (Singapore) Private Limited, and their majority-owned subsidiaries
("Mentor Graphics"). USE OF SOFTWARE INDICATES YOUR COMPLETE AND UNCONDITIONAL
ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to
these terms and conditions, promptly return or, if received electronically, certify destruction of Software and all
accompanying items within 10 days after receipt of Software and receive a full refund of any license fee paid

periodically during your use of the Beta Code to discuss any malfunctions or suggested
improvements. Upon completion of your evaluation and testing, you will send to Mentor Graphics a
written evaluation of the Beta Code, including its strengths, weaknesses and recommended
improvements.

3.3.You agree that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceives or makes during or subsequent to this Agreement,
including those based partly or wholly on your feedback, will be the exclusive property of Mentor
Graphics. Mentor Graphics will have exclusive rights, title and interest in all such property. The
provisions of this subsection shall survive termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the
authorized use. Each copy must include all notices and legends embedded in Software and affixed to its
medium and container as received from Mentor Graphics. All copies shall remain the property of Mentor
Graphics or its licensors. You shall maintain a record of the number and primary location of all copies of
Software, including copies merged with other software, and shall make those records available to Mentor
Graphics upon request. You shall not make Software available in any form to any person other than your
employer’s employees and contractors, excluding Mentor Graphics’ competitors, whose job performance
requires access. You shall take appropriate action to protect the confidentiality of Software and ensure that
any person permitted access to Software does not disclose it or use it except as permitted by this
Agreement. Except as otherwise permitted for purposes of interoperability as specified by the European
Union Software Directive or local law, you shall not reverse-assemble, reverse-compile, reverse-engineer
or in any way derive from Software any source code. You may not sublicense, assign or otherwise transfer
Software, this Agreement or the rights under it without Mentor Graphics’ prior written consent. The
provisions of this section shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY

5.1.Mentor Graphics warrants that during the warranty period Software, when properly installed, will
substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Software will meet your requirements or that operation of Software
will be uninterrupted or error free. The warranty period is 90 days starting on the 15th day after
delivery or upon installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if Software has been
subject to misuse, unauthorized modification or installation. MENTOR GRAPHICS’ ENTIRE
LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS’
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO
MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT
DOES NOT MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LOANED TO YOU FOR A
LIMITED TERM OR AT NO COST; OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH
ARE PROVIDED "AS IS."

5.2.THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER
MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS
OR IMPLIED, WITH RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER
THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF
LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE STATUTE OR
REGULATION, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE
FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER

LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS’ OR
ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY
YOU FOR THE SOFTWARE OR SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE
NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO
LIABILITY FOR ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS
SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE
USE OF SOFTWARE IN ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE
SOFTWARE MIGHT RESULT IN DEATH OR PERSONAL INJURY. YOU AGREE TO INDEMNIFY
AND HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS,
LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS’ FEES, ARISING
OUT OF OR IN CONNECTION WITH SUCH USE.

8. INFRINGEMENT

8.1.Mentor Graphics will defend or settle, at its option and expense, any action brought against you
alleging that Software infringes a patent or copyright in the United States, Canada, Japan,
Switzerland, Norway, Israel, Egypt, or the European Union. Mentor Graphics will pay any costs and
damages finally awarded against you that are attributable to the claim, provided that you: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable
information and assistance to settle or defend the claim; and (c) grant Mentor Graphics sole authority
and control of the defense or settlement of the claim.

8.2. If an infringement claim is made, Mentor Graphics may, at its option and expense, either (a) replace
or modify Software so that it becomes noninfringing, or (b) procure for you the right to continue
using Software. If Mentor Graphics determines that neither of those alternatives is financially
practical or otherwise reasonably available, Mentor Graphics may require the return of Software and
refund to you any license fee paid, less a reasonable allowance for use.

8.3.Mentor Graphics has no liability to you if the alleged infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the modification of
Software other than by Mentor Graphics; (c) the use of other than a current unaltered release of
Software; (d) the use of Software as part of an infringing process; (e) a product that you design or
market; (f) any Beta Code contained in Software; or (g) any Software provided by Mentor Graphics’
licensors which do not provide such indemnification to Mentor Graphics’ customers.

8.4.THIS SECTION 8 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS AND ITS
LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO ANY
ALLEGED PATENT OR COPYRIGHT INFRINGEMENT BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

9. TERM. This Agreement remains effective until expiration or termination. This Agreement will
automatically terminate if you fail to comply with any term or condition of this Agreement or if you fail to
pay for the license when due and such failure to pay continues for a period of 30 days after written notice
from Mentor Graphics. If Software was provided for limited term use, this Agreement will automatically
expire at the end of the authorized term. Upon any termination or expiration, you agree to cease all use of
Software and return it to Mentor Graphics or certify deletion and destruction of Software, including all
copies, to Mentor Graphics’ reasonable satisfaction.

10. EXPORT. Software is subject to regulation by local laws and United States government agencies, which
prohibit export or diversion of certain products, information about the products, and direct products of the
products to certain countries and certain persons. You agree that you will not export in any manner any
Software or direct product of Software, without first obtaining all necessary approval from appropriate
local and United States government agencies.

11. RESTRICTED RIGHTS NOTICE. Software has been developed entirely at private expense and is
commercial computer software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by
the U.S. Government or a U.S. Government subcontractor is subject to the restrictions set forth in the
license agreement under which Software was obtained pursuant to DFARS 227.7202-3(a) or as set forth in
subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR
52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 Boeckman
Road, Wilsonville, Oregon 97070-7777 USA.

12. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics
from Microsoft or other licensors, Microsoft or the applicable licensor is a third party beneficiary of this
Agreement with the right to enforce the obligations set forth in this Agreement.

13. CONTROLLING LAW. This Agreement shall be governed by and construed under the laws of Ireland
if the Software is licensed for use in Israel, Egypt, Switzerland, Norway, South Africa, or the European
Union, the laws of Japan if the Software is licensed for use in Japan, the laws of Singapore if the Software
is licensed for use in Singapore, People’s Republic of China, Republic of China, India, or Korea, and the
laws of the state of Oregon if the Software is licensed for use in the United States of America, Canada,
Mexico, South America or anywhere else worldwide not provided for in this section

14. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be
void, invalid, unenforceable or illegal, such provision shall be severed from this Agreement and the
remaining provisions will remain in full force and effect.

15. MISCELLANEOUS. This Agreement contains the entire understanding between the parties relating to
its subject matter and supersedes all prior or contemporaneous agreements, including but not limited to
any purchase order terms and conditions, except valid license agreements related to the subject matter of
this Agreement which are physically signed by you and an authorized agent of Mentor Graphics. This
Agreement may only be modified by a physically signed writing between you and an authorized agent of
Mentor Graphics. Waiver of terms or excuse of breach must be in writing and shall not constitute
subsequent consent, waiver or excuse. The prevailing party in any legal action regarding the subject
matter of this Agreement shall be entitled to recover, in addition to other relief, reasonable attorneys’ fees
and expenses.

 (10/99 rev B)

	Bookcase
	Table of Contents
	About This Training Workbook
	Introduction
	Audience
	Primary Audience
	Secondary Audience

	Course Timeline
	Course Overview
	Prerequisite Knowledge
	Acronyms Used in This Workbook
	Customer Support Information

	Module 1 Memory BIST Concepts
	Objectives
	Embedded Memories
	Typical Architecture with Embedded Memories
	Types of Memories
	Types of Testing
	Functional Testing
	Direct Access Testing
	Memory BIST Testing
	When Should You Use Memory BIST?
	Advantages of Adding BIST
	Disadvantages of Adding BIST
	Inserting BIST Circuitry
	Memory Testing and Fault Types
	Stuck-at Faults
	Stuck-at Faults
	Transition Faults
	Transition Faults (Continued)
	Coupling Faults
	Neighborhood Pattern Sensitive Faults
	Testing for Cell Array Faults
	Memory BIST Algorithms
	Comparing the Algorithms
	March C+ (March 2)

	Module 2 Generating a Memory BIST
	Objectives
	Typical Memory BIST Flow
	MBISTArchitect Inputs and Outputs
	Graphical User Interface
	MBISTArchitect GUI Overview
	Role of the Test Bench
	Memory BIST Documentation
	Module 2 Lab Exercises
	Module 2: Lab Exercises
	Getting Started
	Software Versions
	Training Files
	Installing the Training Data Files

	Module 3 Common BIST Variations
	Objectives
	Configuring Memory BIST Circuitry
	Support for Multi-port Memories
	Generate a Comparator Functional Test
	Inserting BIST for Multiple Memories
	MBISTArchitect Controller Options
	How the BIST Controller Works
	Read/Write Operations on Synchronous Memories
	Full-Speed Overview
	Full-speed design with pipeline circuitry
	Pipelining Read/Write Operations
	Performing Sequential Memory Tests
	Adding Diagnostics
	Clock Synchronization

	Compressor vs. Comparator
	BIST using a Compressor
	Adding Pipeline Registers
	Specifying Non-controlled Memory Ports
	Specifying Parameters for Memory Clock Signals
	Bypassing Memory in Scan Mode
	Design Compiler Clock Constraints
	Mux-Embedded Memory Support
	Module 3 Lab Exercises
	Module 3: Lab Exercises
	Extra Credit
	Test Your Knowledge
	Lab Summary

	Module 4 Memory BIST-In-Place
	Objectives
	Memory BIST-In-Place Flow
	Memory BIST-In-Place Flow Overview
	Creating BIST Structures
	Model Creation
	Memory Model Example
	Creating BIST Structures Invocation
	Basic Command Flow
	Creating BIST Structures Results
	Example of RTL BIST Logic
	Example WGL File
	Core Test Description File (CTDF)
	Connecting BIST Structures
	Connecting BIST Structures Invocation
	Example Command Flow (Setup)
	Example Continued (Setup)
	Example Command Flow (Synthesis)
	Connecting BIST Structures Results
	Connecting BIST Structures Dofile
	Example CTAF File
	Example RTL Phase Decoder
	Integrating BIST Patterns
	Integrating BIST Patterns Invocation
	Integrating BIST Patterns Commands
	Continued Example (Integration)
	Integrating BIST Patterns Dofile
	Integrating BIST Patterns Results
	Verification
	I/O Pads
	Global Signal Connections
	BSDArchitect/ Memory BIST-In-Place Integration
	Module 4: Lab Exercises

	Module 5 Memory Modeling for MBISTArchitect
	Objectives
	A Memory Model:
	Memory Model Syntax
	Memory Model Editor
	Loading Library Files and Models
	Defining Inputs/Outputs
	The Dont_touch Keyword
	Understanding Clocking Schemes
	Clock Connections
	No Memory Clock
	A Gated Memory Clock
	A Non-Gated Memory Clock
	An Inverted BIST Clock
	Test Clock
	Control Retention Test Delay
	Memory Ports
	Defining Memory Ports
	Port Definition Example 1
	Port Definition Example 2
	Read/Write Cycle Syntax
	The Read Cycle
	The Write Cycle
	Interpreting Data Sheets
	A Synchronous RAM Example
	Interpreting the Read Cycle Timing
	Defining the Read Cycle
	Interpreting the Write Cycle Timing
	Defining the Write Cycle
	Defining Constant Values
	Logical to Physical Mapping
	The Effect of Physical Topology
	Allowing for Physical Topology
	The Checkerboard Algorithm
	Descrambling Functions
	Validating a Memory Model
	User Defined Algorithm
	Troubleshooting a Memory Model
	Troubleshooting Example: March2
	Module 5 Lab Exercises
	Module 5: Lab Exercises

	Trademark Information
	End-User License Agreement
	Send us feedback

