Memory BIST
Training Workbook

Software Version 8.2004 1

February 2004

nNior

M
raphics

e
aph

Copyright O Mentor Graphics Corporation 1999 - 2004.

All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original
recipient of this document may duplicate this document in whole or in part for internal business purposes
only, provided that this entire notice appears in all copies. In duplicating any part of this document, the
recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the

proprietary information.

End-User License Agreement

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed
entirely at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Table of Contents

Table of Contents

About ThisTraining WorkbooKccoieiieiie e IX
0o (0T o] o SR IX
AUAIBINCE ...ttt sttt b e bt e et st e sbe e s be et e e neesneenreas X
PrmMary AUIENCE.........ceeiie ettt e e e ennes X
SECONAANY AUGIENCE. ... eeiieeiiie ettt neeenree s X
COUISE TIMEINE. ..ttt ettt s e b et nee e Xi
COUISE OVEIVIBIV ...ttt sttt ettt ettt st sttt sre e beenbeenbeeneeeneas Xii
Prerequisite KNOWIEAGE.cooiiiiieie e Xiii
Acronyms Used in ThisSWOrkDOOKcccooeiiiiiiiiiecce e Xiii
Customer SUPPOIt INFOrMELTIONcocvieiece e Xiv

Module 1

MeMOry BIST CONCEPLScceiiiiiiiiiien e e 1-1
(@] o)1= ox 1 Y= RS SS 1-1
Embedded MEmMOTIES........ooii i 1-2
Typical Architecture with Embedded Memories.........cccccveveeicveceecciiecee e, 1-4
TYPES OF MEBIMOIIES.....coiiiieiiee ettt e et e e ns e enreesreeeneas 1-5
TYPES OF TESLING ..ttt sne e e 1-7
g Te o] 7= =] o USSR 1-8
DITeCt ACCESS TESING ..cuveeiieeeiieesiie e see et e e re e st e et eere e e snneesneesnne s 1-9
MemMOry BIST TESHNGeiiiiiiiiiie ettt nnee e 1-10
When Should You Use Memory BIST ... 1-11
Advantages of Adding BISTcoooiiiice e 1-13
Disadvantages of Adding BIST ..o 1-14
INSErting BIST CIICUITIY ...ocvieieieciie et 1-16
Memory Testing and Fault TYPES........coieiiieiie e 1-17
SHUCK-E FAUITS ...ttt nnee s 1-19
SHUCK-GE FAUITS ...eeeiie ettt st snee s 1-20
TranSitioN FAUITS........ooiiie e e e e 1-21
Transition Faults (CONtINUE)cooeeiieiieeeee e 1-22
COUPIING FAUITS.....coeieeie e e 1-23
Neighborhood Pattern Sensitive Faultsccccoeiiievieccie e, 1-26
Testing for Cell Array FaUltS ..o 1-28
Memory BIST AIQONthMS.........oooeiiiee e 1-30
Memory BIST Training Workbook, V8.2002_1 i

March 2002

Table of Contents

Table of Contents (cont.)

Comparing the AIQOrthmS.........c.cooi i 1-31
March C+ (MarCh 2)eeoieieeeceeee e e 1-33
Module 2
Generating aMemory BIST ..ot 2-1
O ECLIVES ...t et et e e e e e re e e ere e s aneeeennee s 2-1
Typical MemOory BIST FIOWccoooiiiiiieiieiese e 2-2
MBISTArchitect Inputs and OULPULS..........ccovriiiieririieesee e 2-4
Graphical USer INTEITACE.........ooiiee ettt 2-6
MBISTATIChiteCt GUI OVEIVIBWcceeeiiiiiiiicesieesieee e 2-7
ROIE Of the TESE BENCH ... e 2-8
Memory BIST DOCUMENTELIONccceeieeiieeiiie et 2-9
MOAUIE 2 LA EXEICISES ...c.eeiieeiieteeieeee ettt et 2-10
MOdUIE 2: LAl EXEICISES ...c.veiieeieieiie ettt sttt st s 2-11
GEING SLAME ..ottt nree s 2-11
SOftWAIE VEISIONS.....c.ceiiiieiieii ettt ettt et sr bt e 2-11
TraINING FIES ... et nree s 2-12
Installing the Training Data Files..........cccooiiiiiiiiii e 2-12
Exercise 1. Creating aBasic Memory BIST Collar..........cccccovevvviieeiieenenn 2-14
Exercise 2: Verifying the BIST CirCUitryccocveeveeevee s 2-20
Module 3
Common BIST Vari@lionsScccoiiiiiniiniieniesie e 3-1
(@] o)1= ot Y= SRR 3-1
Configuring Memory BIST CIrCUITIYccovveeiiie et eee e 3-2
Support for MUlti-port MEMOIIES........cccouiieeiiereeie e 3-5
Generate a Comparator FUNCIONal TESE........ccuveveeiiecieceeesee e 3-6
Inserting BIST for MUltiple MemMOIIES........ccce i 3-8
MBISTATrchitect Controller OptioNnsS..........cocceeeieeiriiieee e 3-10
How the BIST Controller WOrKS...........coieiiniieeeee e 3-11
Read/Write Operations on Synchronous Memories..........cocvvceeveeieenieeeenne 3-12
FUI-SPEEA OVEIVIBW ...t et 3-14
Full-speed design with pipeling CIFCUITIYcccooveviviiiece e 3-16
Pipelining Read/Write OperationS..........couveeeereriseeseeeniee e seee e sneee e eneee e 3-17
v Memory BIST Training Workbook, V8.2002_1

March 2002

Table of Contents

Table of Contents (cont.)

Performing Sequential Memory TESES........coivveiieiieeee e 3-19
AddiNg DIagNOSICSeeiviiiiiiiiieiie et st see e 3-21
Clock SyNChroNIiZatioNccueioeeiie e 3-23
Compressor VS, COMPAIELONcceoiveeieiiiieeeenrieesenieeessssreesssreeesssssessssseeessnseees 3-25
BIST USING @ COMPIESSOLeeveiiuieesieeeieesieeeteesseessteesseeesseesseessessseesssessssesnsesans 3-27
Adding PIpelin@ REJISIEIScc.eeiiiecir ettt 3-29
Specifying Non-controlled Memory POItS..........cccvevveie e 3-32
Specifying Parameters for Memory Clock SIgnalscoocvvvveiieiienienicenienn 3-34
Bypassing Memory in SCan MOdE...........cccvvveiieiiieseeccee e 3-35
SYNtNESIS DIIVEN FIlE .ot 3-38
Design Compiler Clock CONSLAINES........cccvviieeiieiriee e 3-40
Mux-Embedded Memory SUPPOIT.......ccceiiiereenie e 341
MOAUIE 3 LA EXEICISES ...ttt et 3-43
MOdUIE 3: LAl EXEICISESeeeiieiieeiteeetee ettt sttt ne e 3-44
Exercise 3: Changing the BIST AlIgOrithm ... 3-45
Exercise 4: Changing the Data Backgroundc.cccccevoiivniie e s 3-49
Exercise 5: Inserting BIST for Multiple Memories.........ccccovveiceeniennienne, 3-51
Exercise 6: Adding BIST with a CoOmpPressor.........cccvvveeiieenieeieeseeseesien 3-57
Exercise 7. Running BIST at Full-Speed..........cccoo oo 3-61
L= W O = o [PR TRR 3-65
Test YOUr KNOWIEAGEoovieie et 3-66
LA SUMMEIY ..ottt st sree et ere e 3-66
Exercise 8: Adding BIST for Bidirectional Memories.........cccoccveveeveennienne 3-67
Exercise 9: Adding BIST fOor ROMS.......coooiiiiiiieeeeeee e 3-68
Module 4
MeMOry BIST-1N-PlaCe.......ccuiiieieieiece e 4-1
(@ o] o 1 Y= SRS 4-1
Memory BIST-1N-Place FIOWccooieieece e 4-2
Memory BIST-In-Place FIOW OVEINVIEWcccoiiviiie i 4-3
Creating BIST SITUCIUIES........ooovie e 4-5
\Y o0 (= @ " 1 o o TSP 4-6
Memory Model EXamMPLE........covoiiiiecie et 4-7
Creating BIST StructureS INVOCAETON.........ccuveiiriiieiieeie e 4-8
Basic COmMMAaNd FIOW.........cccooiiiiiieieiee e 4-9
Memory BIST Training Workbook, V8.2002_1 Vv

March 2002

Table of Contents

Table of Contents (cont.)

Creating BIST SructureS RESUILS........coevuiiiiieiecie e 4-10
Example of RTL BIST LOGICccceviiieiieiieeiiie sttt 4-11
EXaMPIE@ WGL Fil@.....eeieeeee s 4-12
Core Test Description File (CTDF)coiv e 4-14
CoNNECtiNg BIST SITUCIUIES.......cocviiieiieiie ettt 4-17
Connecting BIST Structures INVOCALION...........covveeiieeriieeiee e cieesee e see e 4-18
Example Command FIOW (SELUP)cooveiieiiieie e 4-19
Example Continued (SEEUP)veeeriieeiie et 4-20
Example Command FIow (SyNthesiS)cveveviieiiieiiecee e 4-21
Connecting BIST SIrUCUreS RESUILScecveeiieciecce e 4-22
Connecting BIST SructureS DOfile........coevviiiieiieiieceeceeeee e 4-23
EXaMPIE CTAF FlE....e et 4-24
Example RTL Phase DECOUEYcccecueeiieie et 4-25
Integrating BIST PallerNS.........cooiiiieiiee e 4-26
Integrating BIST Patterns INVOCALIONcccueeiieiieiieece e 4-27
Integrating BIST Patterns Commandscccccceeveerieeeieesieecsee e see e 4-28
Continued Example (INtegration)ccoeeeieerierieriiesee e 4-29
Integrating BIST PatternS DOfil€.........ccveiieiieiie e 4-30
Integrating BIST PalterNS RESUILScceeiiviiiiiie e 4-31
VA< (107> (o] SRR 4-32
T O ='o TS 4-33
Global Signal CONNECLIONSc.cciuiiieiieesiee et esree s 4-34
BSDArchitect/ Memory BIST-In-Place Integration...........cccoecveevviieeniennnenne, 4-35
MOdUIE 4: LAl EXEICISES ...cveiiveeiiriie ettt sttt st s 4-37
Exercise 10: Setting Up MBISTArchitect OULPULS........cccvveveeecieeiecieecien, 4-38
Exercise 11: Inserting BIST Controllersusing Memory BIST-In-Place...... 4-42
Exercise 12: Trandating BIST Patternsto the SoC Leveccceevveneee. 4-45
Exercise 13: Full FIOW EXEICISEcoviiicee e 4-47
Module 5
Memory Modeling for
A T I N o] = TR 5-1
(@] o)1= ox 1 Y= SRS 5-1
A MEMOIY MOCEL: ...t 5-2
MemOory MOel SYNEAXcceiiiieiiecieesee e 5-3
Vi Memory BIST Training Workbook, V8.2002_1

March 2002

Table of Contents

Table of Contents (cont.)

Memory MOdel EQITOrcooiiiieecseee et 5-4
Loading Library Filesand MOdelS ... 5-5
Defining INPULS/ OULPULSccoueeiieeieecie et sne s 5-7
The Dont_touch K@YWOrdcooiieiiiiie et 5-9
Understanding Clocking SChEMES.........ccoociiiiiiiicie e 5-10
ClOCK CONNECLIONS.......ctietiiiiesieeiieie ettt bbbt sneesaee e ens 5-12
NO MEMOIY ClIOCK ...ttt ettt nnee e 5-14
A Gated MemOry ClOCK........ccoiiiiieiiiiese et 5-15
A Non-Gated Memory ClOCKccceviiieiiece e 5-16
AN INVErted BIST ClOCKcciiiiieieriesiesee et 5-17
L= 5O o o SRS 5-18
Control Retention TeSt DEl@ycvecieiie e 5-19
IMEMOIY POITS ... rnre e 5-20
Defining MemOry POITS........ooiiiiiieiie et 5-21
Port Definition EXamMPIE L.........ooiiiiiecie e 5-22
Port Definition EXAMPIE 2.......eveeeieeeciee et 5-23
Read/WIite CyCle SYNLAXceoeieiieiiiesiie sttt 5-24
THE REAA CYCI... .ot 5-25
TREWIITE CYCIE.. i 5-26
INterpreting Data SNEELScooiviiiiieee e e 5-27
A Synchronous RAM EXamMPIe.......cccoiieiiiiiieee et see e 5-28
Interpreting the Read Cycle TIMINGc.oeceviievie e 5-31
Defining the Read CyCle.......cooui i 5-32
Interpreting the Write Cycle TIMIiNgocceeieeiee i 5-34
Defining the Write CYCle.......coei it 5-35
Defining Constant ValUES..........ccueiiiiiiieiese e 5-37
Logical to Physical MapPiNgcccooueeiieiieeiiecieeciee st esree e esree e 5-39
The Effect of Physical TOPOIOGYccoveiuiiiiie e 5-40
Allowing for Physical TOPOolOgycccoeoveieriiieie e 5-41
The Checkerboard AIgOrithmc.cooeriee e 5-42
Descrambling FUNCHIONS..........cuiiiieieccee e 5-44
Validating aMemory MOEoooeiiieiee e 5-46
User Defined AlQOrithmooeo e 5-47
Troubleshooting aMemory Modelccooeiieiiiicce e 5-49
Troubleshooting Example: March2 ... 5-50
Memory BIST Training Workbook, V8.2002_1 Vii

March 2002

Table of Contents

Table of Contents (cont.)

MOAUIE S LA EXEICISES ..ottt e e e e e e e e e e enees 5-51
MOAUIE 5: LA EXEICISES ..ot e e e e 5-52

viii

Exercise 14: Modifying a Template to Match Y our Memory Specifications... 5-
53

Exercise 15: Reviewing aUser Defined Algorithm..........ccooceevviiiniienienne 5-62
Exercise 16: Running a User Defined Algorithm File.........cccooovevevieceene, 5-66
Memory BIST Training Workbook, V8.2002_1

March 2002

About This Training Workbook

Introduction

This course is designed to be a one-day, self-paced training class. The student will
use this workbook and run exercises to become familiar with memory Built-In-
Self-Test (BIST) concepts. The following are the top level course goals:

* The student will understand the Memory BIST design processes

* The student will gain experience with Mentor Graphics MBISTArchitectr
and Memory BIST-In-Placen tools

* The student will understand how to find information and problem-solve
typical design issues

If taken inits entirety, this training course isintended to introduce design
engineersto the V8.2002_1 version of the Mentor Graphics MBISTArchitect and
Memory BIST-In-Place tools.

Memory BIST Training Workbook, V8.2002_1 iX
March 2002

About This Training Workbook

Audience

Primary Audience

The target student profile is the Electronic Design Engineer using synthesis tools
to develop synchronous digital designs. It is assumed that students will be using
MBISTArchitect, and optionally, Memory BIST-In-Place tools. This type of
student will comprise about 80% of the course attendees and will have the
following characteristics:

* They have some limited familiarity with DFT terminology and concepts.
* They areinterested in learning how to add memory BIST to their designs.

* As they work with these DFT tools, these engineers want to know “what is
this tool doing to my design” (or my design flow) and “how do | control
what the tool is doing to my design?”

* These engineers want to know how to analyze the tool-generated reports
and modify the tool setup constraints to achieve the test goals that may be
imposed on them by their organization.

* These engineers want to be well grounded in the basic tool process flow and
be able to respond appropriately when the tools report “problems.”

Secondary Audience

About 20% of the students will be “test engineers.” These engineers are typically
members of a manufacturing test group or an internal CAD group that provides
support for design engineers. Test engineers are typically well grounded in their
understanding of DFT terms and concepts, but may not have had much experience
with DFT tools.

X Memory BIST Training Workbook, V8.2002_1
March 2002

About This Training Workbook

Course Timeline

8:30
Memory BIST Concepts
930 &F — = — - —— == —— = — ———
LAB 1: Creating a Basic Memory BIST Collar
LAB 2: Verifying the BIST Circuitry
11:00
Configuring Memory BIST Circuitry
12:00 — | ——
Lunch
1:00—
LAB 3: Changing the BIST Algorithm
LAB 4: Changing the Data Background
LAB 5: Inserting BIST for Multiple Memories
LAB 6: Adding BIST with a Compressor
LAB 7: Full-Speed Exercise
LAB 8: Adding BIST for Bidirectional Memories
LAB 9: Adding BIST for ROMs
2:30
Memory BI ST-In-Place
300t - -——-——-—--"—-——"——"—————— — -
LAB 10: Setting Up MBIST Architect Outputs
LAB 11: Inserting BIST Controllers using MBIST-In-Place
LAB 12: Translating BIST Patterns
LAB 13: Full Flow
3:45 Creating MBIST Library Models
. LAB 14: Modifying a Library Model Template
LAB 15: Reviewing a User Defined Algorithm
LAB 16: Running a User Defined Algorithm
5:00

Memory BIST Training Workbook, V8.2002_1
March 2002

About This Training Workbook

Course Overview

The course is divided into the following five parts:
Module 1 Memory BIST Concepts

The first module introduces various types of memories, memory BIST concepts,
memory testing and fault types.

Module 2 Generating a Memory BIST

This module introduces you to the typical memory BIST flow, inputs and outputs
to MBISTATrchitect, and the role of the test bench. It also introduces you to the
MBISTATrchitect graphical user interface (GUI) and user documentation for
memory BIST tools. The lab exercises will give you practice generating a BIST
collar and verifying the circuit.

Module 3 Common BIST Variations

This module highlights a variety of options you can use to customize the memory
BIST circuitry to your design. The lab exercises cover tasks you may use when
adding memory BIST to your design such asinserting BIST for multiple
memories or adding BIST when you have a compressor, ROM, or bidirectional
memories. A number of lab exercises are included here to give you avariety of
choices. Generally, you will not be expected to complete them all.

Module 4 Memory BIST-In-Place

This module gives you a basic understanding of how to create, connect, and
integrate BIST structures using the Mentor Graphics Memory BIST-In-Place tool.
The lab exercises at the end of this module will give you experience in running
through the process flow of Memory BIST-In-Place.

Module 5 Memory Modeling for MBISTArchitect

This module explains how memory devices are modeled inside MBISTArchitect.
The lab exercises are designed to give you practice creating a memory model in
case your company does not already have the model you are looking for. It also

Xii Memory BIST Training Workbook, V8.2002_1
March 2002

About This Training Workbook

introduces you to the Mentor Graphics User Defined Algorithmo function that
can be used to generate your own March-type algorithms.

Prerequisite Knowledge

Prerequisite knowledge in DFT fundamentalsis required. The purpose of

requiring prerequisites is to (1) reduce “learning overload” which can happen
early in the course and (2) help the students move quickly toward learning tool
concepts and best practices for getting results.

Generic DFT concepts and terminology can be learned from sources outside

Mentor Graphics.

Acronyms Used in This Workbook

The following is an alphabetical list of the acronyms used in this workbook:

ASIC - Application Specific Integrated Circuit

ATE - Automatic Test Equipment

ATPG - Automatic Test Pattern Generation

AVI - ASIC Vector Interfaces
BIST - Built-In Self-Test

BSDL - Boundary Scan Design Language

CTAF - Core Test Access File

CTDL - Core Test Description Language
CUT - Circuit Under Test

DFT - Design-for-Test

DRC - Design Rules Checking

DUT - Device Under Test

GUI - Graphical User Interface

HDL - Hardware Description Language
JTAG - Joint Test Action Group

LFSR - Linear Feedback Shift Register
LSB - Least Significant Bit

MCM - Multi-Chip Module

MISR - Multiple Input Signature Register

Memory BIST Training Workbook, V8.2002_1
March 2002

Xiii

About This Training Workbook

MSB - Most Significant Bit

PRPG - Pseudo-Random Pattern Generator
RTL - Register Transfer Level

SCOAP - Sandia Controllability Observability Analysis Program
SFP - Single Fault Propagation

TAP - Test Access Port

TCK - Test Clock

TDI - Test Data Input

TDO - Test Data Output

TMS - Test Mode Select

TRST - Test Reset

WDB - Waveform Data Base

Customer Support Information

Additional help is available from Mentor Graphics Customer Support using the
following phone numbers, email address, and internet site:

DirectConnect (M-F: 6am-5:30pm, 1-800-547-4303

PST)
SupportCenter Fax 1-800-684-1795
SupportNet-Email support_net@mentor.com
SupportNet-Web site http://www.mentor.com/supportnet
Mentor DFT Web site http://www.mentor.com/dft

Xiv Memory BIST Training Workbook, V8.2002_1

March 2002

Module 1
Memory BIST Concepts

When you complete this module, you should have a basic understanding of
memory testing and memory BIST concepts.

Objectives

Upon completion of this module, you will be able to:
e List when and why to use Memory BIST (MBIST)
e List the basic advantages and disadvantages of Memory BIST
* Describe some of the common fault types associated with memory testing

* List the common algorithms used by MBISTArchitect to test memories

Memory BIST Training Workbook, 8.2002_1 1-1
March 2002

Memory BIST Concepts

Embedded Memories

Memory Built-In-Self-Test (MBIST) has been used successfully
for years to solve the test issues for embedded memories.

Embedded Memories

Most of today’s designs contain embedded
memories—features associated with memories:

Memory can consume a large design portion

Memories are dense, resulting in high defect rates
Embedded memory quality is critical to whole chip quality
Memories can have high operating speeds

Embedded memories can be difficult to exercise efficiently
with functional testing

1-2 « MBISTArchitect: MBIST Concepts

Copyright © 2002 Mentor Graphics Corporation

Most of today’s designs contain embedded memadrese are some common
side effects of using embedded memories in chips today:

1-2

Memory can consume a large design portion and result in high defect

rates
In many designs today, memories may take up a large portion of the design.

Se€e‘Typical Architecture with Embedded Memories” on page fb¥dmore
information on architecture and test options.

Embedded memories can be difficult to exer cise efficiently with
functional or other types of testing.
Large, complex circuits often contain difficult-to-test portions of logic.
Even the most testable designs, if large, can require extensive test

generation time, tester pattern memory, and tester application times—all of
which are expensive, yet necessary, to adequately test devices in a classic
test scenario. Memory BIST solves the problems associated with functional

Memory BIST Training Workbook, 8.2002_1

March 2002

Memory BIST Concepts

testing, see “Advantages of Adding BIST” on page 1-1& an overview of
memory BIST advantages.

* Typical ATE testing may not adequately test memories.
The bullets in these slides describe features of memories. In Lesson 3, we’'ll
talk about how a memory can fail and what kinds of patterns need to be
used to test them well.

* Memories can have high operating speeds
Memories of all sorts, but especially high speed memories, are susceptible
to speed-related defects. To ensure high quality memory tests, you need to
test for these sorts of defects by running at-speed memory tests. See the
“Full-Speed Overview” on page 3-Idr information on using
MBISTArchitect to test memory at full access speed.

Memory BIST Training Workbook, 8.2002_1 1-3
March 2002

Memory BIST Concepts

Typical Architecture with Embedded
Memories

Typical Architecture with Embedded Memories

Logic
60% area
99% coverage

Chip
100%: area
39% — 99% coverage

Memory
40% area
T coverage

-
-
-
-
-
-
-
-
-

=
-
-
-
-
-
-

1-3 + MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

This slide shows atypical architecture of a design with embedded memories.

L ogic takes up 60% of the silicon while memories consume 40%. In order to

ensure high quality, you need to thoroughly test these memories. For example, if

your test coverage is 99%, but you don’t test your memories the whole chip test
coverage is much lower and your finished products will be susceptible to test
escapes due to the untested memories.

1-4 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Types of Memories

Types of Memories

¢ General Memory types
« Different depth and width
« Synchronous and asynchronous
o Multi-port

¢ SRAM
DRAM

EPROM & EEPROM
(Flash)

¢ ROM

1-4 + MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

The memories listed in the dlide above are common, your memory BIST circuit
will be different depending upon the model selected. In general, SRAM and
ROMs commonly use memory BIST to solve the test problems.

* General Memory Types
Memories can have different depths and widths, be synchronous and
asynchronous, or be multi-port.

e SRAM
The most commonly used in our industry is an ASIC type of flow. We do
most of our work in this tutorial on variations of an SRAM.

* DRAM

A DRAM isnot as common as an SRAM, a specia process is sometimes
required to accommodate DRAMS.

Memory BIST Training Workbook, 8.2002_1 1-5
March 2002

Memory BIST Concepts

1-6

EPROM and EEPROM

(Flash)

EPROM and EEPROM are also known as “Flash” memory. Flash is fairly
common but is usually not fully functionally tested because of the
extremely long access times. Specialized memory BIST could be generated
but is not commonly done.

ROM

ROM memories are very common and generally use a slightly different
implementation for memory BIST. We’'ll talk about BIST architectures in
Lesson 3.

Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Types of Testing

Types of Testing

¢ Functional testing
¢ Direct access testing

¢ Memory BIST

1-5 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

There are severa common testing techniques used to test memories.

Memory BIST Training Workbook, 8.2002_1
March 2002

1-7

Memory BIST Concepts

Functional Testing

Functional Testing

¢ Pattern generation can be very difficult

¢ Verification can be time consuming

¢ Determining quality is difficult and time consuming
¢ Reduces amount of external test data to store

¢ No functional impacts

1-6 + MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Large, complex circuits often contain difficult-to-test portions of logic. Large

designs require extensive test generation time, tester pattern memory, and tester
application times—all of which are expensive, yet necessary, to adequately test
devices in a classic test scenario.

Previously, ATPG functional testing was the only way to test embedded
memories.Because memory faults differ from random logic faults and memories
reside within larger designs, ATPG does not provide an adequate memory testing
solution. Functional testing is inadequate because pattern generation is difficult,
verification is time-consuming and it is difficult to determine quality.

1-8 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Direct Access Testing

Direct Access Testing

¢ Must Mux inputs and outputs to chip pins

¢+ Pattern generation may be difficult (pattern conversion is
easy)

¢+ Extensive ATE memory required or memory test hardware

¢ Routing and timing issues can arise

1-7 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Another method of testing memoriesis direct accesstesting. This method is
usually feasible only if you only have one or two memories and can be accessed
off of abusthat is aready routed at the top level of the chip. Direct access testing
may require special hardware or ATE memory testing equipment. It also requires
mux input and output access directly to pins. In addition, pattern generation and
verification is still a problem with this method of testing.

Memory BIST Training Workbook, 8.2002_1 1-9
March 2002

Memory BIST Concepts

Memory BIST Testing

Memory BIST Testing

¢ Simplifies pattern generation
¢ High quality guaranteed by algorithmic patterns

¢ Minimal impact to timing and area

1-8 + MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory BIST testing addresses memory testing problems. Memory BIST adds a
layer of test circuitry around the memory. This circuitry becomes the interface
between the high-level system and the memory. This interface minimizes the
controllability and observability challenges of testing embedded memories. And
the built-in, finite-state machine that provides the test stimulus for the memory
greatly reduces the need for an external test set for memory testing.

BIST provides a memory test solution without sacrificing test quality. In many
cases, BIST structures can eliminate or minimize the need for external test pattern
generation (and thus, tester pattern memory) and tester application time. In
addition, adesigner can exercise BIST circuitry within adesign, running tests at
speed due to the proximity of the BIST circuitry to the memory under test. A
designer can also run amemory BIST process from within higher levels of the
design. See “Advantages of Adding BIST” on page 1-1& more detailed
information on the advantages of using memory BIST.

1-10 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

When Should You Use Memory BIST?

When Should You Use Memory BIST?

¢ User should use Memory BIST:

On medium to large embedded memories

On memories that are contained within Intellectual Property
(IP) that will be reused

On memories that should be tested at speed

On devices with multiple embedded memories

On devices that are time-to-market critical

On devices that run on ATEs with limited capability

On SOCs where testing and verification will be difficult

1-9 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Y ou should use Memory BIST (MBIST):

® Medium to Large embedded memories
Y ou should definitely use memory BIST testing on medium-to-large

memories. Very small memories must be considered on a case by case
basis. On very small arrays, the controller may be larger than the array.

Small memories can also be added to an existing MBIST controller so very
minimal impact is observed. Alternative solutions such as MacroTest might
be a better solution.

* Memorieswhich are contained within Intellectual Property (I1P) that
will bereused

MBIST isavery important part of the reusability and portability of IP.

Oncethetest circuitry isbuilt in, it can be reused and rerun wherever the IP
Is placed, with no additional work. Y ou only need to ensure that the
memory BIST operation on the IP is properly controlled at the chip-level.

Memory BIST Training Workbook, 8.2002_1

March 2002

1-11

Memory BIST Concepts

* Memoriesthat should betested at speed
Idedlly, you should test memories at the same rate or arate greater than they
will be used in the application. Additional types of memory faults will be
found if the memory is exercised at full speed. MBISTArchitect has afull
speed option that lets you test the memories at full speed, see the “Full-
Speed Overview” on page 3-1dr more information.

* On deviceswith multiple embedded memories
Memory BIST controllers can be shared across multiple arrays of different
sizes with little incremental area increases. This is practical when the arrays
are in relatively close proximity to each other. If arrays are far apart in the
chip layout, care must be taken not to have excessive routing overhead.

* Ondevicesthat aretime-to-market critical
Pattern generation and conversion is significantly easier with the use of
memory BIST. Verification of the manufacturing patterns is streamlined by
the use of an automated tool.

* Ondevicesthat run on ATEswith limited capability
BIST can reduce the memory, timing, and control signals an ATE would
need to test a memory. This may allow the device to be tested on a simpler
and cheaper tester.

* On SOCswheretesting and verification will be difficult
Verification and test generation are the two largest challenges of SOCs.
Therefore, Memory BIST improves time-to-market and first pass silicon
success.

1-12 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Advantages of Adding BIST

Advantages of Adding BIST

¢ Enables Intellectual Property (IP) reuse
¢ Reduces the routing of signals needed at the chip level

¢ Reduces test application time and simplifies pattern
generation

¢ Reduces amount of test data to store

¢ Facilitates hierarchical test capabilities -- lets you easily test
at model, block, design, and system levels

¢ Merges test and design, reducing developmenttime

¢ BIST controller can be shared across memories

1-10 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Self-testing provides a number of benefits. First, placing the test circuitry on the
chip itself reduces external tester time and expense. Second, it minimizes the
difficulty of testing embedded circuitry by providing system-level control signals
that run and report status of the test operation. Third, because the circuitry itself
generates test stimulus, this eliminates or reduces expensive test pattern
generation time. Likewise, it eliminates or reduces the amount of required external
test data storage.

Additionally, designs with BIST facilitate hierarchical test capabilities.
Hierarchical BIST lendsitself to test at the model, block, design, and system
levels. For example, amemory BIST controller embedded in an IC can be used to
test off-the-shelf memories that are external to the chip.

BIST blends both the design and test disciplines. Merging test into the design
process far earlier in the flow reduces the product development cycle.

Memory BIST Training Workbook, 8.2002_1 1-13
March 2002

Memory BIST Concepts

Disadvantages of Adding BIST

Disadvantages of Adding BIST

¢ Small areaincrease
¢ Adds Mux delay to memory data path
¢ Not as flexible as direct access testing

¢ Small routing and timing impact

1-11 - MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Disadvantages of adding BIST include:

* Small areaincrease
The areaincrease caused by adding BIST is small and depends on what
features you select for your BIST controller and the word and address size
of the array. Typically, acontroller can range from 400 gates for asimple
implementation, to 1500 gates for an implementation that uses many
options and severa algorithms.

* AddsMux delay to memory data path
This multiplexor delay depends on the technology you are using. Typically,
this is in the range of 200ps. This may be a problem if your designer doesn’t
have that much margin built into his or her design.

* Not asflexible asdirect accesstesting
There are many types of tests and algorithms to use for memory BIST.

1-14 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

However, these tests are being “hard-wired” into the controller. After they
are designed in, they cannot be changed. If you have direct access, you can
change your test pattern supplied by the tester and rerun. It is also possible
to design a re-configurable controller but this takes additional work and
overhead.

e Small routing and timing impact
This is usually the reason most designers or managers initially might
guestion the use of memory BIST. However, the routing and timing
changes required by MBIST are almost always so small they are
insignificant. With 5 or 6 layer metal processes and mux delays of 100 to
200ps, you can probably justify the use of memory BIST.

Memory BIST Training Workbook, 8.2002_1 1-15
March 2002

Memory BIST Concepts

Inserting BIST Circuitry

Inserting BIST Circuitry

MUX

System System

Pattern Generator 10 - Memory]

Start TCtrI
BIST Controller

Response Analyzer

\ A 4

V_
Fail?

1-12 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

A built-in self-test (BIST) solution can alleviate many of these classic problems
by embedding the pattern generator within the silicon. This approach can be
automated using MBI STArchitect, which creates the RTL description in either
Verilog or VHDL, that tests the memory without external stimulus or access.

1-16 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Memory Testing and Fault Types

Memory Testing and Fault Types
¢ Faults can be found in:

« Address decoder logic
« Read/write control logic

« Memory cell array

Y | 4

| Address Register |»>| Column Decoder <ﬁ Refresh Logic

¥ v *

Cell
Array

Row Decoder

: :J Data Registers |<

i] \

£
I
Read /Write
Control Circuitry

Address
Decoder

1-13 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1
March 2002

1-17

Memory BIST Concepts

Memory Testing and Fault Types

Memory Testing and Fault Types (Continued)

¢ Faults include:
o stuck-at
« transition
« coupling
« neighborhood pattern sensitive

1-15 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memories fail in a number of different ways. The three main parts—address
decoder logic, memory cell array, and read/write logic—can each have flaws that
cause the device to fail. Memory testing, while similar to random logic testing,
focuses on testing for these memory-specific failures.

The basic types of memory faults include stuck-at, transition, coupling, and
neighborhood pattern sensitive. The next several slides discuss each of these fault

types in more detail.

1-18 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Stuck-at Faults

Stuck-at Faults

¢ Applies to Control signals and memory cells

« Behavior: Value stuck at either 0 or 1 indefinitely (signal/cells
acts as though tied to power or ground)

Tied to ground Tied to power

VDD

v &

1-16 + MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1
March 2002

1-19

Memory BIST Concepts

Stuck-at Faults

Stuck-at Faults (Continued)

w0
Good Cell State Diagram

w0/\ WOK\\
o >
le le
Cell Stuck-at-0 Cell Stuck-at-1

1-17 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

A memory failsif one of its control signals or memory cells remains stuck at a
particular value. Stuck-at faults model this behavior, where asignal or cell
appears to be indefinitely tied to power (stuck-at-1) or ground (stuck-at-0).

1-20 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Transition Faults

Transition Faults

¢ Applies to: Signal or cell

¢ Behavior: Signal or cell cannot transition from
OtolorltoO

1-18 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1 1-21
March 2002

Memory BIST Concepts

Transition Faults (Continued)

Transition Faults (Continued)

w0
Good Cell State Diagram

~

wof o wi
G,
le

Cell with 0->1 (up) Transition Fault

1-19 - MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

A memory failsif one of its control signals or memory cells cannot make the
transition from either 0 to 1 or 1 to 0. Theinability to change fromOto 1iscalled
an up transition fault. Theinability to changefromaltoaOiscalled adown
transition fault.

As the example shows, a cell may behave normally when atest writes and then

reads a1l value. And it may even transition properly from 1 to 0. However, when
undergoing a 0->1 transition, the cell could remain at the 0 state—exhibiting
stuck-at-0 behavior from this point on. However, a stuck-at-0 test might not detect
this fault if the cell was at the 1 state originally.

Thus, to ensure the cell can transition normally, a test must write a 1, write a 0,
and then read the cell contents, as well as write a 0, write a 1, and then read the
cell contents.

1-22 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Coupling Faults

Coupling Faults

¢ Appliesto: Memory cells

¢ Behavior: A write operation changing one cell’'s value
influences another cell’'s value.

« Severaltypes:

— Inversion (CFin) — Transition in one cell causes inversion of another
cell’s value

A A C C
[[| IS~
‘~ ,
Chell_n .o _-="Cell_m
change “"~-~____«- - change
1-20 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1
March 2002

1-23

Memory BIST Concepts

Coupling Faults (Continued)

Coupling Faults (Continued)

¢ Idempotent (CFid) - Transition in one cell forces a particular
value on another cell

A B’ C

c
[e (] [EF—1s]
4 cell_m

Cell_n
= change

change

¢ Bridging (BF) - Short, or bridge between two cells

¢ State (SCF) - A certain state on one cell forces a value onto
another cell

1-21 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memories fail when memory cells do not attain the proper state.This can happen
in a number of different ways. In one case, a write operation in one cell can
influence the value in another cell. Coupling faults model this behavior.

Coupling faults fall into severa categories: inversion, idempotent, bridging, and
state.

Inversion coupling faults, commonly referred to as CFins, occur when one cell’s
transition causes inversion of another cell's value. For example, a 0->1 transition
in cell i causes the value in cell j to go from O to 1.

Idempotent coupling faults, commonly referred to as CFids, occur when one cell’s
transition forces a particular value onto another cell. For example, a 0->1
transition in cell i causes the value of cell j to be 0.

Bridge coupling faults, abbreviated as BFs, occur when a short, or bridge, exists
between two or more cells or signals. Instead of transition operation, a logic value

1-24 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

triggersthe faulty behavior. Bridging faultsfall into either the AND bridging fault
(ABF) or OR bridging fault (OBF) subcategories. ABFs exhibit AND gate
behavior: that is, the bridge has a 1 value only when all the connected cells or
signals have a1 value. OBFs exhibit OR gate behavior: that is, the bridge hasa 1
value when any of the connected cells or signals have a 1 value.

State coupling faults, abbreviated as SCFs, occur when a certain state in one cell
causes another specific state in another cell. For example, a0 valuein cell i causes
alvaueincdlj.

Memory BIST Training Workbook, 8.2002_1 1-25
March 2002

Memory BIST Concepts

Neighborhood Pattern Sensitive Faults

Neighborhood Pattern Sensitive Faults

¢ Applies to: Memory cells

¢ Behavior: A set of values or a transition of values in multiple
cells influences the value of another cell.

1

1-22 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

1-26 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Neighborhood Pattern Sensitive Faults

Neighborhood Pattern Sensitive Faults (Continued)

¢ Threetypes:

« Active — During a certain pattern in neighboring cells, one cell
change causes another cell to change value.

« Passive — Certain pattern in nei ghboring cells cau ses a cell to
remain fixed (appear stuck-at).

« Static — Certain pattern in neighboring cells for cesacelltoa
certain state.

1-23 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Another way in which memory cells can fail involves awrite operation on agroup
of surrounding cells affecting the values of one or more neighboring cells.
Neighborhood pattern sensitive faults model this behavior. Neighborhood pattern
sensitive faults break down into three categories. active, passive, and static.

An active fault occurs when, given a certain pattern of neighboring cells, one cell
value change causes another cell value to change. A passive fault occurs when a
certain pattern of neighboring cells cause one cell value to remain fixed.

A static fault occurs when a certain pattern of neighboring cellsforces another cell
to a certain state.

Because of the complexity and vast number of ways in which these faults can
occur, testing for neighborhood pattern sensitive faults remains a very difficult
task.

Memory BIST Training Workbook, 8.2002_1 1-27
March 2002

Memory BIST Concepts

Testing for Cell Array Faults

Testing for Cell Array Faults

« Stuck-at faults:

— Require writing 0’s in all cells, reading all cells, writing 1’s in all cells,
and reading again.

« Transition faults:

— Require writing (1->0) and immediately reading O’'s at each address,
and repeating the process for writing (0->1) and reading 1’s.

« Coupling faults:

— Require scanning (writing/reading) all memory cells in ascending
order followed by scanning all memory cells in descending order.

« Neighborhood pattern sensitive faults:

— Difficult to detect and require different procedures for different types
of these faults.

1-24 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

To detect stuck-at faults, you must place the value opposite the stuck-at fault at the
fault location. To detect all stuck-at-1 faults, you must place Os at all fault
locations. To detect all stuck-at-0 faults, you must place 1sat all fault locations.

In order to detect al transition faults in the memory array, atest must transition
each cell from 0->1 and then immediately read it. The test must then repesat this
process for the 1->0 transition.

Coupling faultsinvolve cells affecting adjacent cells. Thus, to sensitize and detect
coupling faults, you must perform awrite operation on one cell (j) and later read
cell (i). The write/read operation performed in ascending order assumes coupling
of amemory cell to any number of cellswith lower addresses. Likewise, the
write/read operation performed in descending order assumes coupling of a
memory cell to any of the cells with higher addresses.

Neighborhood pattern sensitive faults are complex and require a variety of
different methods for detection. While currently available, test algorithms for

1-28 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

neighborhood pattern sensitive fault detection require much area overhead and
produce very long test sets. Some test algorithms, in conjunction with manual
circuit manipulation, can produce test sets for this fault type. However, currently
no commercially-available tool alone does an adequate testing job for this
memory fault type.

Memory BIST Training Workbook, 8.2002_1 1-29
March 2002

Memory BIST Concepts

Memory BIST Algorithms

Memory BIST Algorithms

¢ Numerous memory BIST algorithms exist

e« The more popular memory BIST algorithms include:
— March A and March B

— March C, March C-, March C+, March3, and
Column March

— Unique Address

— Checkerboard

— ROM Tests

— Port Interactive Test

— User Defined Algorithm™

1-25 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

The test industry has generated many different algorithms for memory testing.
Thefollowing list gives a brief description of some of the more popular ones:

* March A and March B
The March A and March B algorithms cover some linked faults, such as
idempotent linked faults, transition faults linked with idempotent coupling
faults, and inverting faults coupled with idempotent coupling faults.

* March C+ (March2) Default Algorithm)
The next few slides discuss the March C+ default algorithm.

e Other Algorithms
Other common algorithms include: March C, March C-, March3, Column
March, Unique Address, Checkerboard, ROM Test, the Port Interaction
Test, and the User Defined Algorithm. For more detailed information on
these algorithms, see Chapter 3 in the Built-1n Self-Test Process Guide.

1-30 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

Comparing the Algorithms

Comparing the Algorithms

Testing at 10Mhz
*not supported in MBISTArchitect

Algorithm Fault Coverage Test Time on
1M RAM
March C- Detects address, stuck-at, transition, |1.0 seconds
coupling, and unlinked coupling
March C+ Detects all March C- faults and some |1.3 seconds
(default) dynamic faults such as address
decoder delay faults
MATS* Detects address and stuck-at faults 0.42 seconds
Unique Detects stuck-at and address faults 0.50 seconds
Address

Checkerboard |Locates stuck-at and memory leakage |0.52 seconds
(refresh) faults

Walking 0/1* Locates stuck-at, address, transition, (2.5 days
and coupling faults

GALPAT* Locates address, stuck-at, transition, (5.1 days
coupling, and write recovery faults

1-26 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

This dlide provides a comparison of several algorithms that ran on a 1 Megabit

RAM. Notice that some of the algorithms required alarge amount of time for test
completion. This is due to the nature of the algorithm—the number of operations
(complexity) required for testing.

For example, the March C- algorithm has a complexity of 10n, where n is the
number of locations in the memory. That is, if you count the number of operations
(see the slide depicting the algorithm operations for March C-), you can see that it
requires 10 operations at each location to complete its test. In this comparison, the
March C- algorithm took 1.0 seconds to complete testing of a 1 M RAM.

While more robust in its fault detection, the GALPAT algorithm, on the other
hand, has an orde?a:omplexity. A walking target cell and revisiting of this target
cell after each read greatly increases this algorithm’s complexity. This results in
the following equation that describes the complexity of the GALPAT algorithm:
2(N + 2r12), where N is the number of address lines and n is the number of cells in
the memory. Because of its complexity, in this comparison, the GALPAT

Memory BIST Training Workbook, 8.2002_1 1-31
March 2002

Memory BIST Concepts

algorithm would take 5.1 days to complete testing of a1l M RAM. The MATS
algorithm is a modification of the Algorithm Test Sequence (ATS). MATS
provides the shortest march test for unlinked stuck-at faults, it detected address
and stuck-at faultsin .42 seconds.

Evaluating the Tradeoffs

Selecting one or more algorithms for your BIST design depends on the type of
memory you are testing, your test goals, your overall test strategy, and the advice
you may receive from in-house memory-test experts or ASIC vendors.

Asyou can see, asthe size of the target memory grows, the complexity of the
algorithm playsavery big role in the required test execution time. So, you need to
consider the trade-off between robust fault coverage and test execution time when
determining which algorithms to use.

1-32 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory BIST Concepts

March C+ (March 2)

March C+ (March 2)

¢ Default Algorithm for MBISTArchitect
¢ Adds extraread to each stage of march

¢ Extraread operation immediately after write operation lets you
test at-speed

¢ Algorithm comprised of 14 operations (14n):

Extra Reads

A Wfite Os (tO Inltldlze) to dztect |

. “at speed” faults
A Read0Os, Wite 1s, Read 1s
A Readls, Wite Os, Read Os

W ReadOs, Wite 1s, Read 1s
W Read 1s, Wite Os, Read Os
V¥ ReadOs

1-27 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1 1-33
March 2002

Memory BIST Concepts

March C+ (March 2)

March C+ (March 2) Continued

¢ Detects the same faults as March C, PLUS some stuck-open
faults, and some timing faults if you test at-speed (due to the
read immediately after the write)

¢+ MBISTArchitect refers to March C+ as “March 2”

1-28 « MBISTArchitect: MBIST Concepts Copyright © 2002 Mentor Graphics Corporation

MBISTArchitect uses this algorithm by default if you don’t specify an algorithm
and refers to this algorithm as “March 2”.

The March C+ algorithm modifies the original March C algorithm by adding an
extra read operation after each stage of the march plus another at the end of the
final stage. While increasing the algorithm from 10n (of March C-) to 14n, these
extra reads allows additional fault detection, most notably stuck-open faults for all
types of RAM.

1-34 Memory BIST Training Workbook, 8.2002_1
March 2002

Module 2
Generating a Memory BIST

When you complete this module, you should have a basic understanding of
memory testing inputs and outputs, how to launch MBISTArchitect, and how to
access documentation for MBISTArchitect. The accompanying lab exercises give
you hands-on experience generating and verifying aBIST collar for asimple
memory device.

Objectives

Upon completion of this module, you will be able to:
* Describe what atypical Memory BIST flow might look like
* Listinputs and outputs to MBISTArchitect
e Show how to start MBISTArchitect in GUI mode

e Describe how to locate and use the documentation resources available
through Mentor Graphics for MBISTArchitect

Memory BIST Training Workbook, 8.2002_1 2-1
March 2002

Generating a Memory BIST

Typical Memory BIST Flow

Typical Memory BIST flow

Memory BIST RTL Generation Boundgry Scan
(optional)

Logic Synthesis

Gate level
Netlist v

Add internal scan
(Optional)

A

Timing Closure

A 4

Place & Route
Pattern Generation
A\ 4

Run Diagnostics

2-2 MBISTArchitect:Generating a Memory BIST (O ptlonal) Copyright © 2002 Mentor Graphics Corporation

Here atypica Memory BIST flow. It contains all the basic stepsthat are used in
an ASIC type flow.

* Step 1 — Generate RTL or VHDL type code
Memory BIST RTL codeisinserted at this stage. It can be generated by
hand. But why would you generate the code manually when you can use
tools like MBISTArchitect to generate it for you? Y ou can also add a
boundary scan (IEEE 1149.1), sometimes called JTAG, at thistime.
Boundary scan is avery common method to control test modes such as
memory BIST and scan testing. We will talk about this more in Lesson 5.

* Step 2 — Logic Synthesis
Tools like Synopsys’ Design Compiler, Cadence’ Ambit, or Mentor
Graphics’ Leonardo can handle this step, which turns RTL into a
technology specific gate level netlist.

2-2 Memory BIST Training Workbook, 8.2002_1
March 2002

Generating a Memory BIST

* Step 3 — Adding Internal Scan
Memory BIST is not dependent on having a scan design. Y ou can have
memory BIST inascan design or in anon-scan design. In Lesson 5, we will
talk further on how to interface scan and memory BIST.

* Step 4 — Place and Route
Many tools can be used to generate a physical layout database. This
generates a GDSI| database that is needed to continue the physical flow.

e Step 5 - Timing Closure
Static and Dynamic timing analysis tools can be used to verify timing. An
SDF file can be generated and used in a Verilog-based simulation to check
for additional timing issues.

e Step 6 — Pattern Generation
Patterns can be generated at any time but should be verified with back-
annotated timing information. Memory BIST patterns can be generated
using the testbench generated during the RTL generation.

* Step 7 — Diagnostics and Debug
Diagnostics and debug might be required if a part fails on the ATE tester.
Memory BIST generated with debugging options included can make this
stage possible. We'll also talk about this in Lesson 3.

Memory BIST Training Workbook, 8.2002_1 2-3
March 2002

Generating a Memory BIST

MBISTArchitect Inputs and Outputs

MBISTArchitect Inputs and Outputs

=
LT

2-3 MBISTArchitect:Generating a Memory BIST Copyright © 2002 Mentor Graphics Corporation

The only input to MBISTArchitect is one or more “abstract” memory models.
These memory models reside in ASCII text files. The model describes the signals
on the memory ports and the read/write protocol. These models only serve as a
core around which MBISTArchitect builds an RTL BIST collar. The memory
model itself does not become part of the final design output.

The MBISTArchitect Control Panel gives you a graphic means to setup and
generate the memory BIST circuitry. As shown in the slide, the output is a set of
three HDL files:

1. A memory BIST Controller@ém4x4 _bist.v). This file includes the finite
state machine, the pattern generator, the comparator and memory blocks.

2. A Connection Modelr@m4x4 _bist_con.v). This is basically a set of ports
and wires. It provides a means for connecting the memory BIST Controller
to the memory simulation model and serves as the main interface to your
design.

2-4 Memory BIST Training Workbook, 8.2002_1
March 2002

Generating a Memory BIST

3. Test Bench (ram4x4 _tb.v) You can use this test bench to verify the proper
working of the memory BIST generated circuit before you include the
circuit in your design.

Y ou or your ASIC vendor must supply the memory simulation model. In this case,
assume that your simulation model file is named ram4x4.v.

Memory BIST Training Workbook, 8.2002_1 2-5
March 2002

Generating a Memory BIST

Graphical User Interface

Graphical User Interface

¢ All DFT tools use a similar Graphical User Interface (GUI)
¢ When you invoke atool, it opens:

e The Command line window

e« The Control Panel windows

- Uemvsingd Line Windop Corrol Panel

Frid

L

1
Sureniim Corngdua: Fliiim 1 rial i Fara
Trarsrigs Traat=cnpi [Froguss Flrs Bk, it

Fudidipern 1 o v |
Al ¥ rulm-n-ni

2-4 MBISTArchitect:Generating a Memory BIST Copyright © 2002 Mentor Graphics Corporation

DFT products use two similar graphical user interfaces (GUI): one for BIST
products and one for ATPG products. The BIST graphical user interface supports
MBISTArchitect, LBISTArchitect, BIST Controller Synthesis, BIST-In-Place,
and BSDA rchitect.

The slide shows a representation of the GUI elements that are common to both
user interfaces. Notice that the graphical user interfaces consist of two windows:
the Command Line window and the Control Panel window.

2-6 Memory BIST Training Workbook, 8.2002_1
March 2002

Generating a Memory BIST

MBISTArchitect GUI Overview

MBISTArchitect GUI Overview

Buttons lar
Common

Graphical
Wavelorm

Waodel

Do cumentation
and Help
Systems

2-5 MBISTArchitect:Generating a Memory BIST Copyright © 2002 Mentor Graphics Corporation

The MBISTArchitect GUI provides the following:

¢ Buttons used for common tasks such as |oading memory models, setting the
report environment, and obtaining help.

e Command history, command messaging and a command line for entering
commands manually.

* A graphical wave form model editor.

To launch MBISTArchitect in the GUI mode, type:

shell > nbistarchitect

Y ou will be using the tool in the GUI mode in the first exercise.

Memory BIST Training Workbook, 8.2002_1 2-7
March 2002

Generating a Memory BIST

Role of the Test Bench

Role of the Test Bench

MBIST Circuitry

sys_addr

di

wen

rst

clk

hold |

test_h

RA M1
N, sys_addr
s 5 £ 41 [o]o]o]o
n ® WE .
43 ~ [0[0]0]0] | ..
ES 0(0|0]0 >~
2 o
5 5 0/0[0]0
< § |comp [_
2
&
g
£
Lot S =S
O
fail_h
Test Bench |tst_done

2-6 MBISTArchitect:Generating a Memory BIST

Copyright © 2002 Mentor Graphics Corporation

The testbench instantiates and provides stimulus to the connected memory BIST
model. A high value on the tst_done signal indicates the BIST test has

successfully completed. The fail_h signal value goes high the first time the BIST
controller encounters a miscompare.

2-8

Memory BIST Training Workbook, 8.2002_1
March 2002

Generating a Memory BIST

Memory BIST Documentation

Memory BIST Documentation

¢ You can obtain online help and view Memory BIST
documentation using a PDF viewer

¢ Refer to these guides:
e MBISTArchitect Reference Manual

e« Built-In-Self-Test Process Guide

2-7 MBISTArchitect:Generating a Memory BIST Copyright © 2002 Mentor Graphics Corporation

Use the following documentation for information on BIST concepts and how to
use the MBISTArchitect and Memory BIST-In-Place tools:

* MBI STArchitect Reference Manual—This guide provides reference
information for the Mentor Graphics’ MBISTArchitect and Memory BIST-
In-Place tools. Information contained in this manual includes tool
capabilities, a reference for all tool commands, modeling information, and
sample tool outputs.

* Built-In-Self-Test Process Guide—This guide contains process-oriented
information on MBISTArchitect and Memory BIST-In-Place, as well as
other Mentor Graphics Design-for-Test (DFT) tools. Use this manual to
become familiar with Memory BIST concepts and tool functionality.

Click theHelp andTurn on Query Help buttons to obtain online information and
links to this documentation. You will need a PDF viewer to view documentation.

Memory BIST Training Workbook, 8.2002_1 2-9
March 2002

Generating a Memory BIST

Module 2 Lab Exercises

e Setting Up the Training Data

* Creating a Basic Memory BIST Collar
(20 minutes)

* Verifying the BIST Circuitry
(20 minutes)

2-10 Memory BIST Training Workbook, 8.2002_1
March 2002

Generating a Memory BIST

Module 2: Lab Exercises

In thislab, you will use the MBISTArchitect tool to create a memory BIST collar
and verify the BIST circuitry. The goal of each exerciseis asfollows:

Exercise 1. CreatingaBasic Memory BIST Collar—You will create a basic BIST
collar for a simple 4x4 RAM model, then save the BIST circuit as a Verilog file
set.

Exercise 2: Verifying the BIST Circuitr-You will use ModelSim to verify the
memory BIST circuit using an MBISTArchitect-generated test bench.

D These exercises should take approximately 40 minutes.
Note

Getting Started

This section lists the software versions and versions of the training data you will
need. It also provides instructions on how to install the training data so that you
can run the labs.

Software Versions

This version of the training data and materials (V8.2002_1) should be used with
the V8.2002_1 release of all BIST products to ensure that the lab exercises run
successfully:

MBISTArchitect v8.2002 1

Memory BIST-In-Place v8.2002_1

Acrobat Reader v4.0 (install from MGC CD)

ModelSim EE/Plus 5.5f or newer, including both VHDL

and Verilog libraries

Memory BIST Training Workbook, V8.2002_1 2-11
March 2002

Generating a Memory BIST

Training Files

Training files have been provided for this course. Use the filesin this directory to
access the training data:

* mbist896nwp—This is the data you need to use to run the exercises.

Installing the Training Data Files

The data for the lab exercises consists of circuit(s), library parts, and userware
(called dofiles). Because you will modify some of the data during the lab
exercises, you need to have your own local copy. Use the following procedure to
make a local copy of the lab exercise data:

1. Make sure that your $SMCG_HOME shell variable is set to a MGC_HOME
tree that contains the 8.2002_1 version of the MBISTArchitect and
Memory
BIST-In-Place software.

2. The design data for the lab exercises is nam@&896nwp. It is located in
the directory named:

SMGC_HOME/shared/training/mbist896nwp

Before you can perform the lab exercises, this training data directory must
be installed in your Mentor Graphics tree. To check whether the training
data is installed, list the contents of 88GC_HOME/shared/training

directory by issuing the following operating system command:

/bin/ls $M3C HOVE/ shared/training

If mbist896nwp does not appear in the displayed list, then either you or
your system administrator must install the training package.

3. Before attempting to copy the training directory, ensure you have at least 20
MB of disk space. The uncompressed tar file is approximately 10 MB and
the design data is about 10 MB.

2-12 Memory BIST Training Workbook, V8.2002_1
March 2002

Generating a Memory BIST

4. Copy thetraining package data from the MGC_Home tree to the training
directory on your workstation. Specify the pathname where you want your
local copy. The pathname that you specify in this step isreferred to as
your_path.

Copy from $MGC HOME/shared/training/mbist896nwp
Copy to: your_path/training/mbistnwp

5. Include $SMGC_HOME/bin in your $PATH variable.

6. Ensure that acroread (Acrobat Reader) isalso included in your $PATH
variable.

7. Define an environment variable named MBISTNWP that points to the full
pathname where you copied mbistnwp. For example, in a C shell enter:

$ setenv MBI STNWP <di r _pat h>/ nbi st nwp

8. Each lab directory, such aslabl or lab2, contains a results subdirectory.
Y ou may need to change the permissions of these directoriesto allow write
access.

Memory BIST Training Workbook, V8.2002_1 2-13
March 2002

Generating a Memory BIST

Exercise 1. Creating a Basic Memory BIST Collar

This exercise should take approximately 20 minutes to complete.

1. Change to the following working directory:
shel | > cd $MBI STNWP/ nbi st 1/ r amix4/ desi gn

2. List the design files you will be using in this exercise.

shell>I|s -I rant

The ramdx4.atpg fileis alibrary file contains asingle 4x4 RAM model.
The ramdx4.v file is the corresponding Verilog simulation model.

3. Change to the ram4x4/results directory.

shell> cd ../results
Y ou will work and save your resultsin this directory.

4. Invoke MBISTArchitect.

shel | > nbi starchitect

This step invokes the MBISTArchitect graphical user interface (GUI). You
will be using various aspects of the GUI to create your memory BIST
model.

5. Click onthe Memory block in the Control Panel graphic pane.
This starts the process to load ther amtx4 model.

a. Click on the Browse button, then navigate to the
$MBISTNWP/mbist1/ramdx4/design directory.

b. Double click on the ram4x4.atpg file, then click L oad.
Ther amix4 now appearsin the Available Modelslist.

c. Select ther amix4 model, then click Add.

2-14 Memory BIST Training Workbook, V8.2002_1
March 2002

Generating a Memory BIST

This adds the model to the memory models for BIST insertion.
d. Click OK.

6. From the command line, report on the modelsin the library.
MBISTA> report library models

The tool should respond:
/1 Error: Command 'report library nodels’ is unknown
Thisis not the proper command name.

7. Use the help command to display the available application commands.
MBISTA> help

Thetool displaysalist of commands similar to those shown on the next page.

Memory BIST Training Workbook, V8.2002_1
March 2002

2-15

Generating a Memory BIST

2-16

ADD VErilog Include

ADD VHdl Use

DELet e ALgorithns

DELet e DI agnosti c Monitor
DELet e MEnDry Model s
DELete VHdI Library

DOFi | e

HELp

LOAd ALgorithns

REPort ALgorithm Steps
REPort BI st

REPort Dl agnostic Monitor
REPort MBi st Al gorithmns
REPort VErilog Include
REPort VHdI Library

RESet STate

SAVe BI st

SET Bl stinpl ace

SET COnpar ator Test

SET COntroller Hold

SET FIl e Conpression

SET MEssage Handl i ng

SET SYnt hesi s Envi ronnent
SETup CLock Peri od

SETup COntroller C ock
SETup COntroll er
SETup DI agnhostic C ock
SETup MBi st Al gorithns
SETup MBi st Patterns
SETup MEnory C ock
SETup MJx Locati on
SETup REtention Cycles

Pi pel i ne

ADD VHdI Li brary

ALl as

DELet e DAt a Backgr ounds
DELet e MBi st Al gorithns
DELet e VEril og I ncl ude
DELet e VHdI Use

EXIt

H Story

LOAd Ll brary

REPort ALgorithns
REPort DAt a Backgr ounds
REPort ENvi r onment
REPort MEnory Model s
REPort VErsi on Dat a
REPort VHdI Use

RUN

SAVe Hl story

SET COmand Edi ting

SET COntrol | er Debug
SET DOFi | e Abort

SET &Zi p Opti ons

SET SCan Logi c

SET VHdI Confi gurati ons
SETup COnpar at or Fail fl ag
SETup COntrol | er Nam ng
SETup COntrol | er Reset
SETup FI| e Nam ng

SETup MBi st COVpr essor
SETup MEnory Access
SETup MEnory Test

SETup OBservati on Schene
SYStem

The command you want to useiSREPort MEnory Model s.

1. Get the command usage for Report Memory Models.

MBISTA> help report memory models

The tool should display the following usage:

Usage:

REPort MEnory Models [-Library |

- Model

<nodel _nanme>]

Y ou want to see the modelsin the library, so use the -Library switch.

Memory BIST Training Workbook,

Vv8.2002_1
March 2002

Generating a Memory BIST

2. Report on the library models.

MBISTA> report memory models -library

Or, if you want to use minimal typing:
MBISTA> rep me m -|

The tool displays information on the single model, ram4x4, as follows:

Avai | abl e Menory Model s:
Nane Vendor Technol ogy

Thisisthe memory model around which you want to generate BIST
circuitry.

3. From the command line interface, report more information on the current
memory model by issuing the following command:

MBISTA> report memory models -model ram4x4
The tool should display the following:

Model randx4
data out DC3, D2, DO1, DQO;
data in D3, D2, D1, D O;
address Al, AOQ;
wite _enable VEN | ow,

Vendor: sanple

Technol ogy: sanpl el

Version: 1.0

Addi tional info: 4x4 RAM ports = 1lrw
Nunber of Words: 4

This RAM has one read/write port and contains four words. It has four data
input bits, two address bits, and four data output bits.

4. Click Run.

Default BIST circuitry is added to this model.

Memory BIST Training Workbook, V8.2002_1 2-17
March 2002

Generating a Memory BIST

2-18

5. Click Report BIST

The tool should display the following information:

CGenerated BI ST structures:

ramdx4_bi st Menory Bi st

MBISTATrchitect generates ramédx4 _bist, which isthe memory BIST
controller for the ram4x4 model.

. Click SaveBI ST ...

Verify that the ram4x4 _bist.v model will be saved to the
$MBI STNWP/mbist2/ram4x4/results directory, then click OK. The tool
responds by telling you the modelsit is saving, as such:

Savi ng MBI ST Dat a:
Saved ramix4 _bist.v
Saved ramix4 _bi st _con.v
Saved ramix4 tb.v

. Click View Saved Design Files

Thisaction brings up the File Viewer window which allowsyou to view the
contents of each of the output files. MBISTArchitect generated the
following three Verilog files for the ram4x4 model:

* ram4x4_bist.v - an HDL model that contains the ram4x4 BIST controller.

Examine the top-level signals coming out of and going into the BIST
controller. Scroll down through the file and notice that the default BIST
circuitry includes a comparator.

* ram4x4 bist_con.v - thisHDL model ssimply instantiates both
ramédx4_bist and ramdx4 and connects them up by default. The ports of
this model represent the external interface of the memory BIST collar.

Memory BIST Training Workbook, V8.2002_1
March 2002

Generating a Memory BIST

Examine the top-level signals coming out of this connection model.
Notice that the system signals (sys) replace the previous memory input
ports and the memory signals (Con-Test) are newly created wires that
connect the controller to the memory inputs. Notice also that the
memory data outputs have &0” extension.

There are also three new BIST inpud&; andrst_| drive the new BIST
state machindest_h is a level-sensitive signal that tells the BIST
controller to run the test.

tst_done tells your design that the test is finished and has run
successfully;

fail_h tells your design that the memory test has failed.
* ramé4x4_tb.v - the testbench for them4x4 bist_con.v model.

Examine the top-level signals coming out of this model. Examine the
testing that the testbench performs onrtheix4 bist_con.v model.

8. Exit the tool.
MBISTA> exit

Memory BIST Training Workbook, V8.2002_1 2-19
March 2002

Generating a Memory BIST

Exercise 2. Verifying the BIST Circuitry

This exercise should take approximately 20 minutes to complete.

In this exercise, you will use the MBISTArchitect-generated testbench to verify
the memory BIST circuitry that you created in the last exercise.

1. Ensurethat you are still working in the
$MBISTNWP/mbist1/raméx4/results directory.

2. Set up awork directory.
shel | > $M3C HOVE/ bi n/ vl ib work

3. Compile the memory ssimulation model, all BIST models, and the
testbench.

shel | > $M3C_HOWE/ bi n/ vl og ../ design/ramix4.v \
ramix4_bist.v ramdx4_bi st _con.v ramdx4 _tb.v

4. Simulate the test driver.
a. Invoke the ModelSim simulator and load the testbench model!.
shel | > $M3C HOVE/ bi n/vsi mramix4_tb

b. Set up the lists by running the following dofile:
VSIM 1> do ../design/vsim_setup.do

This dofile sets the parameters for the simulation to stop—either
tst_done orfail_h going high. It also sets up a List window so you can
examine the pertinent signals. If necessary, expand the list window that
appears so you can see all the signals. You can also use a wave window,
if you choose.

c. Run the simulation until it is finished.
VSIM 2> run -all

2-20 Memory BIST Training Workbook, V8.2002_1
March 2002

Generating a Memory BIST

d. Run alittle more to capture the complete pattern for the tst_done

signal.
VSIM 3> run 50

e. Write the displayed list to afile.

VSIM 4> write list trace.log.m2

f. Quit the simulation.

VSIM 5> quit

5. Examinethe saved list file. Use whatever editor you prefer to view the
trace.log.m2 file you saved.

Asyou scroll through thisfile, notice the following things:

The signals that comprise the columns in this file include (from left to
right, fail_h, tst_done, the address, the write enable, the data input
values, and the data output values).

The first 650ns of the testbench tests some system signals.

The March2 algorithm begins at time 1450ns. Remember that the write
enableis active low, and the address changes only when the write
enable is not active (that is, only when the write enable is high). So at
time 1450ns, the address is set to 0, the write enable isinactive, and the
dataon inputsis set to 0. At time 1550ns, the write enable goes low,
capturing the input data and writing it to address space 0. At time
1650ns, the write enable again goes inactive, so the address can change
to space 1. Thus, the time from 1450ns to 1650ns initializes address
space 0 to al Os, and prepares to initialize the next address space to 0.

From 1650ns to 2150ns, the March2 algorithm continues to initialize
address spaces 1, 2, and 3. This completes the first step in the March2
algorithm: Write Osto initialize.

At time 2250ns, with the address set back to space O, the algorithm
reads 0, writes 1, and reads 1. The address space increases to 1, and the

Memory BIST Training Workbook, V8.2002_1 2-21

March 2002

Generating a Memory BIST

2-22

algorithm then reads O, writes 1, and reads 1. This process repeats for
addresses 2 and 3.

At time 4650ns, with the address set back to space 0O, the algorithm
reads 1, writes 0, and reads 0. This repeats for addresses 1, 2, and 3.

At time 7050ns, the algorithm begins the test in reverse address order,
reading Os, writing 1s, and reading 1s.

At time 9450ns, the algorithm again performsthetest in reverse address
order, thistime reading 1s, writing Os, and reading Os.

At time 12750ns, the tst_done flag goes high indicating the BIST
testing is compl ete.

fail_h remains|ow throughout the entire simulation.

Memory BIST Training Workbook, V8.2002_1
March 2002

Module 3
Common BIST Variations

When you compl ete this module, you should have a basic understanding of how to
configure memory BIST circuitry, use one BIST controller for multiple memories,
add diagnostics, add pipeline registers, use compressors and comparators, use
clock constraints, and run MBISTArchitect at full-speed.

Objectives

Upon completion of this module, you will be able to:
* [Insert BIST for multiple memories
* Add BIST with a compressor
* Add BIST for bidirectional memories
* AddBIST for ROMs

e Perform afull-speed BIST test

Memory BIST Training Workbook, 8.2002_1 3-1
March 2002

Common BIST Variations

Configuring Memory BIST Circuitry

Configuring Memory BIST Circuitry

¢ Addto and/or change the BIST algorithms
« Use one BIST controller for multiple memories
« Use acompressor instead of a comparator
— Add more system-level BIST control signals
¢ Use one BIST controller for multiple memories
« Decreases BIST hardware

— Memories must be compatible, event sequences must be the same

3-2 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

3-2 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Configuring Memory BIST Circuitry

Configuring Memory BIST Circuitry (Continued)

¢ Useacompressorinstead of acomparator
« Allows ROM testing
« Reduces diagnostic capability

« Decreases interconnections

3-3 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The MBISTArchitect tool provides acommon default BIST architecture,
however, this default circuitry may not meet all your testing requirements. Thus,
MBISTATrchitect lets you customize the circuitry it generates in anumber of ways.

Y ou can add to or change the default algorithms. For example, if you are adding
BIST circuitry to a multiple-port memory model, you may not want to execute the
March C+ test on every write port. You may instead want to use the Unique
Address algorithm to test just the address and control circuitry for al but the first
port.

Another common variation includes using asingle BIST controller for multiple
memory models. You can add a BIST collar around an individual model or you
can create asingle BIST controller that controls and tests a number of different
compatible memory models.

Memory BIST Training Workbook, 8.2002_1 3-3
March 2002

Common BIST Variations

One common variation includes using a compressor for signature analysis instead
of abuilt-in comparator for direct memory output comparison. Y ou aso have less
capability to diagnose what failure occurred.

Y ou can add a system-level hold signal that can stop the testing process. Y ou can
also define multiple input busses connecting to the memory model to provide
further system control.

3-4 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Support for Multi-port Memories

Support for Multi-port Memories

¢ MBISTArchitect provides the following features for multi-port
memories

o Applies different algorithms to each port
— Reduces test application time
¢ Generates a port interaction test
« Produces higher quality tests
¢ Handles restrictions on simultaneous port access

« Honors read and write constraints for multiple ports

3-4 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The MBISTArchitect tool supports testing of multi-port memories. Using this
functionality, you can apply different algorithms to each port to reduce test
application time. The tool honors the read and write constraints for multiple ports
which it uses to handle restrictions on simultaneous read-port access.

Memory BIST Training Workbook, 8.2002_1 3-5
March 2002

Common BIST Variations

Generate a Comparator Functional Test

Generate a Comparator Functional Test

¢ From controller’s finite state machine

¢ Add two states
e COmp_test_write

e comp_test_read_fail and comp_test_read_pass

— Generate Using:
MBIST> setup observation scheme -compare
set comparator test -on
¢ Use with other options

« Example: Repeat comparator test for each memory prior to any
other tests to test the fail flag of each memory independently

MBIST> setup memory test - sequential
set comparator test -on
setup comparator failflag -separate

3-5 MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The MBISTArchitect tool provides the ability to test the comparator before

running the BIST. This is achieved by adding three states to the controller’s finite
state machine that inject faulty data into the memory at the beginning of the test.
The two states are comp_test_write and comp_test_read_falil.

The comparator test first uses the comp_test_write state to write known data
(background 1) to address zero of all the memories. Then, comp_test read
performs a read/compare expecting a mismatch which should raise the fail_h flag.
Next, comp_test _read performs a second read/compare expecting a match,
thereby resetting the fail_h flag. When you enable the comparator test, it always
precedes all other tests.

To generate the comparator test, use the Setup Observation Scheme command
with the -Compare switch. To test the comparator, use the Set Comparator Test
command with the -on switch as follows:

3-6 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

setup observation scheme -compare
set comparator test -on

The default of the comparator upon invocation of the MBISTArchitect is “-Off”.

Additionally, you can use other MBISTArchitect command options in conjunction
with these commands. For example, you can enable the comparator test in
combination with the Setup Memory Test command’s sequential memory test
(-Sequential) and the comparator fail flag option as shown here:

setup memory test - sequential
setup comparator failflag -separate

In this case, the controller repeats the comparator test for each memory prior to the

application of any other tests. Thus, testing the fail flag of each memory
independently.

Memory BIST Training Workbook, 8.2002_1 3-7
March 2002

Common BIST Variations

Inserting BIST for Multiple Memories

Inserting BIST for Multiple Memories

¢ MBISTArchitect can generate BIST circuitry that tests multiple
memory models

¢ You can load multiple memory models with the Add Memory
Model command

¢ MBISTArchitect runs test in parallel

3-6 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Inserting BIST for Multiple Memories
(Continued)

Inserting BIST for Multiple Memories (Continued)

di

Example

B Memory
addr ! “Model
Wen .. | RAM4X4_0

BIST Circuitry

dd =
T a5 8
™| 2 S [0 di
s 2m adar ™| Memory
Ist L o - Model
clk EO wen
—ﬁmj: % c > RAM4X4_1
test_h S e
— :c(”ﬁ comp
il ol
I
- 3 test done
- £ fail_flag_0
LS -
\ fail_flag_1

3-7 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

You can create asingle BIST controller that runs BIST on multiple memory

models. This can only occur with compatible memory models—those that share
the same vendor and technology and have compatible read and write cycle
definitions.

You can specify multiple memories using one or more Add Memory Models
commands. MBISTArchitect generates BIST circuitry that runs the testing on all
memories in parallel.

In this case, the default names becarfiest model _added> multi.v,
<first_ model _added> multi_con.v, and<first model _added> tb.v.

Memory BIST Training Workbook, 8.2002_1 3-9
March 2002

Common BIST Variations

MBISTArchitect Controller Options

BIST Controller Options

¢ The BIST controller performs two primary functions while
testing memories under test:

o It provides the test stimulus

o It checks theresponse

¢ MBISTArchitect contains options that let you determine how
to test the memory and how fast the MBIST controller
performs memory testing

3-8 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

MBISTATrchitect contains options that et the designer or tester determine how
they want to test the memory and how fast the MBIST controller performs
memory testing. Using MBISTArchitect options, the designer can match the
memory BIST controller speed and hardware required to their own unique needs.

Designers and testers can use MBISTArchitect to test embedded memories at
varying speeds. From using the system default with built-in delay cycles, al the
way up to using the full-speed option to exercise and test the memory at system
cycle speeds, as well as performing timing and stress tests on embedded
memories.

See “How the BIST Controller Works” on page 3-1dr information on how the
BIST controller typically works. Seé&ull-Speed Overview” on page 3-Xdr an
overview of MBISTArchitect full-speed implementation.

3-10 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

How the BIST Controller Works

Typical Memory BIST Controller

FAIL
Compare Capture

Py
@
ol
[}
=
o
®
O
=8
2

>—>»0

C
o
N
T
R
[¢]
L

MEMORY

3-9 MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

In atypical design with memory BIST, the BIST controller performs two primary
functions to the memories under test: 1) it provides the test stimulus, 2) it checks
the response. The slide shows that there is one memory tested by one BIST
controller. Inreality, the BIST controller is much smaller than the memories.

The BIST controller itself is afinite-state machine. The clock controlling its state
transitions can be from either an internal clock generator or an external source. To
avoid clock synchronization problems during the BIST operation, normally the
same clock source controls both the BIST controller and the memoriesit tests. In
this example, we assume all memories are synchronous memories.

See “Read/Write Operations on Synchronous Memories” on pageféfl2
information on how MBISTArchitect performs read/write operations on
synchronous memory. Sé&eipelining Read/Write Operations” on page 3{bv
information on how MBISTArchitect performs read/write operations when using
the full-speed option.

Memory BIST Training Workbook, 8.2002_1 3-11
March 2002

Common BIST Variations

Read/Write Operations on Synchronous
Memories

Typical Read/Write Operations

READ OPERATION WRITE OPERATION

CLOCK CLOCK CLOCK
| CYCLE1 ! CYCLE2 ! CYCLE3 !

| | | CLOCK |, CLOCK
OF READ 1| OF READ 1| OF READ 1|
| | |

CYCLE 1 : CYCLE 2

CLOCK

CLOCK

| |
| |
| |
| |
SETUP SETUP
ADDR/CNTRL:< X220) ADDRICNTRL/
|

DATA

U

SETUP %
By

WRITE K/7////X WRITE

AT ——

MEMORY
OUTPUT

¥

| | |
COMPARE
CIRCUITRY :Vy %COMPAREV |

|

|

%

|

|

|

|

X ﬁI(FAl IJPASS%

CIRCUIT
OUTPUT

3-10 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

To properly perform read or write operations for synchronous memories, the BIST
controller must first generate read/write setup signals before the memory clock is
active. For ssmplicity, the examples presented in this section assume:

* al read/write setup signals are synchronous signals
* al memories and the BIST controller are activated at rising edge

Since the BIST controller and its memories use the same clock, atypical
read/write operation requires two clock cycles. During the first clock cycle, the
BIST controller generates all the necessary read/write setup signals for the
memories under test. During the second clock cycle, aread/write operation occurs
at the edge of memory clock. Thisis called datalatency in single clock memory
BIST operation.

3-12 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

In addition, memory BIST controllers typically use comparators to verify the data
read out from the memories. Since memory outputs are not ready until the edge of
the second clock, the result of the comparator will be captured at the third clock
cycle. Therefore, aBIST controller requires.

* three clock cyclesto perform a complete read operation
* two clock cyclesto finish awrite operation

Typicaly, amemory BIST controller requires six cycles to do two consecutive
read operations and four cycles to do two consecutive write operations. Likewise,
it requires five cycles to do one read operation followed by one write operation.

Memory BIST Training Workbook, 8.2002_1 3-13
March 2002

Common BIST Variations

Full-Speed Overview

Full-Speed Approach

e« BIST controller running at system speed
¢ Memory exercised at system speed

¢ Timing stress testing

3-11 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Because memories are getting larger and denser, design and test engineers need to
ensure higher memory test quality to ensure overall chip quality. Besides static
functional tests, timing and stress tests are necessary to detect system operation
problems. At-speed BIST operation generally means BIST operation is capable of
exercising the memories at system clock frequency. However, at-speed operation
Is not sufficient to detect all timing faults. Even if aBIST controller design is
operated in system clock frequency, its datalatency prevents testing whether the
memory can change the address and read out different data from different
addresses at every cycle. Without this limitation, the BIST operation may not
ensure adequate memory quality.

MBISTArchitect has afeature called Full-Speedo BIST operation. Full-speed is
used to enhance a single clock memory BIST controller so that it can launch a
read or write operation on each active clock edge, thus enabling timing and stress
testing as part of the BIST operation. Besides improved test quality, full-speed
BIST operation significantly reduces test time. For example, typical consecutive

3-14 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

read/write operations require 5 clock cycles which can be donein 2 clock cycles
with full-speed BIST operation.

The MBISTArchitect full-speed functionality provides maximum memory BIST
controller speed and test performance. Running full-speed at system clock speed
tests the memory at the full-speed the system will run.

Full-speed testing reduces testing times. Full-speed can locate defects that will not
be detected at slower speeds, thus providing increased fault detection. Full-speed
provides the additional benefit of testing whether a memory can change an
address and read data from different addresses at every cycle. It enablestiming
and stress testing as part of the BIST operation because it can launch aread/write
operation on each active clock edge.

Memory BIST Training Workbook, 8.2002_1 3-15
March 2002

Common BIST Variations

Full-speed design with pipeline circuitry

Pipelined BIST Controller

Compare Capture
Reference Data

3-12 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The dlide shows a Full-Speed pipelined BIST Controller.

Since there is data latency in memory BIST controllers, the BIST controller must
be pipelined to enable full-speed read/write operation. The pipelineis used to
temporally separate the needed action at each cycle of read/write operations. With
pipelining, you can model the memory as only taking one clock cycle and then use
the pipelining to tear the comparison out of the first cycle and the capture of the
comparison result, which happens at the end of the pipeline.

3-16 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Pipelining Read/Write Operations

Full-Speed Pipelined Read/Write Operations

READ / WRITE OPERATION

CLOCK CLOCK CLOCK CLOCK CLOCK
: CYCLE 1 : CYCLE 2 CYCLE 3 : CYCLE 4 : CYCLE 5
I I I I
1 1 1

CLOCK

1 1 1
| | |
ADDRICNTRL/ | /~sETUp \|/ SETUP SETUP \/ SETUP SETUP
DATA N_READ1 A WRITE1 A READ2 A READ3 A WRITE2 /

MEMORY
OUTPUT

CIRCUIT
OUTPUT

WRITE

I
1
I
Y
I
1 1
I
1
COMPARE | |/COMPARE\, COMPARE\/COMPARE
CIRCUITRY : ! READ 1 ! READ 2 /\ READ 3 !
I
I
1
Y
I
1
Y

3-13 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The slide shows the pipelined design for full-speed memory BIST operation.

A 3-stage pipeline can be used to compress the three cycle read operation into

single cycle read. In this case, the first stage does the read setup—which may
include read address change, read enable activation, and output enable activation.
The second stage activates the read clock and provides the reference data for read
data output comparison. The third stage captures the comparison result. Inside the
BIST controllers, all signals needed for read operation are generated at the rising
edge of the same clock. The following pipelines are also needed:

* A pipeline register to create one-cycle delay at the memory clock signal.

* A pipeline register to create one-cycle delay at the reference data to the
comparator.

Memory BIST Training Workbook, 8.2002_1 3-17
March 2002

Common BIST Variations

* A full-speed BIST controller needs a pipeline register to create two-cycle
delay at the capture signal that activates the capturing the results of the
comparator.

In addition, a 2-state pipeline can compress the two cycle write operation shown
earlier, into asingle cycle write. The first stage does the write setup which may
include write address change, write data change, and write enable activation. The
second stage activates the write clock. Similarly, inside the BIST controllers, al
signals needed for write operation are generated at the rising edge of the same
clock. Here, only the memory clock needs to be delayed one cycle to achieve full-
speed operation. Asexplained earlier, amemory clock is repeated every cycle, the
pipeline register to create one-cycle memory clock delay is not needed.

As part of this module, you can perform a Full-Speed exercise to see the results of
full-speed testing. See “Running BIST at Full-Speed” on page 3-61

3-18 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Performing Sequential Memory Tests

Performing Sequential Memory Tests

« Apply all test algorithms to all ports of a memory before
proceeding to the next memory

— MBIST> setup memory test -sequential [Interleaved | Contiguous]

e« Multiple Memories Sequential Memory Test
e« Generate individual fail flags
— MBIST> setup comparator failflag -separate

« Identifies which memory has failed

3-14 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

MBISTATrchitect creates a controller that by default tests multiple memories
concurrently. Y ou can specify that the controller test each of these memories
sequentialy by using the following command option:

setup memory test -sequential

The -Sequential contiguous switch causes the controller to apply all the test
algorithms to all the ports of a memory before proceeding to the next memory
(thisisthe system default). Using the -Sequential interleaved switch instructs the
MBISTATrchitect tool to interleave algorithm steps between memories.

Since the controller tests the memories independently of one another during
sequential memory testing, the memory’s read/write cycles need no longer be
compatible. However, the current MBISTArchitect implementation of sequential
memory test does not have this capability.

Memory BIST Training Workbook, 8.2002_1 3-19
March 2002

Common BIST Variations

Additionally, you can generate individual fail flags for multiple memories by

using the Setup Memory Test and Setup Comparator Failflag commands as
follows:

setup memory test -sequential
setup comparator failflag -separate

This specifies separate fail flags for multiple memory tests. Thisis especialy
useful in identifying which memory has failed when you specify the sequential
memory test option (-Sequential). The default is Common; output asingle fail bit
regardless of the number of memories.

3-20 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Adding Diagnostics

Adding Diagnostics
¢ Extracts failing data for fault diagnosis process
¢ Data scanned out through a serial pin
¢ Diagnostics contained within the BIST logic

¢ Two modes of operation

3-15 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1 3-21
March 2002

Common BIST Variations

Adding Diagnostics (Continued)

Adding Diagnostics (Continued)

N, sys addr -

Example ai
P e

rst_|

-
clk 1
hold_|
test_h
—_—

debugz

BIST
Controller

n

di

s

addr

wen

.n

di

Memory

Model [
RAM4X4 |

L 0
4

wen

Eﬁ:addr

Memory [
Model N
RAM4X4 |

fail

test_done

-
-
-

scan_out

debugz =0’
debugz =1’

- stop on first fail
- scan out failing data

-

Status of Test

Behavior of scan_out

fail_h Behavior

No Miscompare

Logic ‘0’

Logic ‘0’

Miscompare
Detected

Logic ‘1’ for two clock cycles
Scan out failing data (MSB to LSB)

Scan out failing address (MSB to LSB)
Scan out controller state
Logic ‘0’ for one clock cycle

Logic ‘1’
Logic ‘1’
Logic ‘1’
Logic ‘1’
Logic ‘1’

3-16 MBISTArchitect:Common BIST Variations

Copyright © 2002 Mentor Graphics Corporation

MBISTATrchitect can give the BIST controller the ability to download the failing
data on every occurrence of a miscompare. And, the failing data can be scanned
out with aminimal impact on silicon area and routing overhead. Y ou can switch
on adiagnostic clock and adiagnostic clock pin named diag_clock is added to the
controller pinlist. Thediag_clock pinistoggled at half BIST clock during the test
bench. The BIST controller operates in one of two modes controlled by debugz.
The modes and operation of the fail_h and scan_out portsis as follows:

Normal Mode (debugz = ‘0’) Wherdebugz is set to ‘0", the BIST controller
performs the default test. In this mode, sban_out port is set to ‘0’, as no falil
data is downloaded. THaeil _h port is asserted on the first failure and remains
high for the remainder of the test.

3-22

Memory BIST Training Workbook, 8.2002_1

March 2002

Common BIST Variations

Debug M ode (debugz = ‘1") Wherebugz is set to ‘1’, the diagnostic mode is
enabled. In this mode, a miscompare will suspend the operation of the BIST
controller, and the failing data will be serially scanned out of the controller
throughscan_out (see the table on the opposite page). Once the failing data has
been scanned out, the BIST controller resumes the test and resets fail_h to 0. At
the end of the test, fail_h is asserted to 1 if there has been any failing data. The
scan out operation will repeat on every occurrence of a miscompare.

In order to synthesize the diagnostic functionality into the BIST controller, the
following conditions must be met.

1. The BIST controller must use a comparator for verification.

2. Only algorithms supporting the comparator can be used. These include
marchl, march2, march3, unique address, checkerboard, and topological
checkerboard.

3. The hold_| signal must be added to the BIST controller.

The diagnostics capability is added by using these commands:

setup controller hold -on | -off

setup controller debug -on | -off

set comparator test -on | -off

set comparator failflag {~-Common | -SEparate} {-Singlefail | -Multifail}

You can also set a slow clock to scan out diagnostic data. The cycle time of the
diagnostic clock is two times slower than a BIST clock with a default of 200ns.
Use the Setup Diagnostic Clock -Diag_clock command in conjunction with the
Setup Controller Naming -Diag_clk diag_clk command to set up a diagnostic
clock.

setup diagnostic clock diag_clock
setup controller naming -diag_clk diag_clk

Clock Synchronization

There are two clock domains for the diagnostic process in the Memory BIST
controller. One clock controls the diagnostic clock domain that scans out
diagnostic data to the Automatic Test Equipment (ATE). This clock domain is

Memory BIST Training Workbook, 8.2002_1 3-23
March 2002

Common BIST Variations

usually relatively slow. A second clock domain is run by the bist clock that
operates everything except the diagnostic data scan-out and operates at afaster
clock speed. In default operation, MBI ST Architect operates with these clocksin a
non-synchronized relationship. When you turn synchronization on, these clocks
become synchronized by passing information between the domains. For more
information, see the “Synchronization between BIST Clock and Diagnostic
Clock” section in Chapter 3 of thuilt-In-Self-Test Process Guide.

3-24 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Compressor vs. Comparator

Compressor versus Comparator

¢ Most people use acomparator because:
e It stops on the first fail

« You can add diagnosis capabilities to the BIST controller

¢ Some people use compressors because:
« A ROM testrequires it

3-17 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

In Memory BIST, the output response analysis is performed either by means of a
comparator or a Compressor.

A comparator provides some unique benefits such as diagnostic capability at the
expense of higher area overhead. Since comparator width is the same as the
memory data width, this area overhead increases for wide memories.

However, acomparator has the capability of stopping on thefirst fail or inthe case
of debug mode, stopping on every failure and scanning out the data. These
features result in good diagnostic capability by providing precise information
about failure location.

A compressor, on the other hand, entails relatively less area overhead.
Compressor width can be different than that of the memory data width. Output
from amemory wider than a compressor has to be fed to the compressor through a
properly designed XOR tree.

Memory BIST Training Workbook, 8.2002_1 3-25
March 2002

Common BIST Variations

Since the contents of a ROM are predetermined and cannot be changed by the
BIST controller, the expected reference data for a comparator would have to be
provided through the duplication of ROM contents. In general, thisresultsin a
large area overhead and is unacceptable. Thus, using a compressor for analyzing
the ROMs output response is the only viable aternative.

Compressors cannot provide good diagnostic capability since their contents, in
general, are checked only at the end of atest. Precise identification of the fault
location based on the final content of a compressor is adifficult task.

Compressors can be placed immediately at the output of a memory, or in case of
an embedded memory, can be placed downstream. Placing the compressor
downstream tests the logic between memory outputs and compressor. However,
diagnostic capability will be further worsened since a fault now can be either in
the memory or in the intervening logic.

The MBISTArchitect tool has configurations that use a compressor (MISR) to
capture the output of the memory under test. Y ou use the Setup MBist
Compressor command to define compressor parameters.

Use Setup M Bist Compressor -scan to scan out the final signature and compare
it with the tester. Use Setup M Bist Compressor -localcompar ator to generate a
signature comparator in the memory BIST collar (locally).

3-26 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

BIST using a Compressor

BIST Using a Compressor

Memory Block

vy

|
sys_address n
11]n
test_address n 0 —P= ROM
BIST ’ i
Controller Memory
test_read_enable 1m
read_enable 0 —

vy

test_h
-

rst_|

data_out

! o

A

clk sys_clk
test_capture L m o E—

imisr_data_out
—- - T
telk . MISR fail_h o
| - -
trst_| misr_scan_out
| > a
A 4 A A
tst_done

si |

misr_hold-I

se

\)

3-18 MBISTArchitect:Common BIST Variations

Copyright © 2002 Mentor Graphics Corporation

Within an MBISTATrchitect session, you can generate either a BIST controller
with a comparator or a compressor configuration. If you specify a compressor
configuration, MBISTArchitect generates a separate HDL model for each

compressor(s).

Before you can tell MBISTArchitect to generate a compressor configuration, you
must specify that the controller should use a compressor.

For example, the following set of commands generates the compressor shown:

shel | > $MGEC HOVE/ bi n/ nbi starchitect -library dft.lib

Memory BIST Training Workbook, 8.2002_1

March 2002

3-27

Common BIST Variations

MBIST> add memory model ram4x4 ram8x8 ram8x8
MBIST> set controller hold -on

MBIST> setup observation scheme -compress

MBIST> setup mbist compressor -hold [-localcomparator]
MBIST> run

MBIST> save bist

MBIST> exit

3-28 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Adding Pipeline Registers

Adding Pipeline Registers

¢ Specify number of input and output stages

¢ Pipeline registers are separate modules in the BIST controller
file

¢ Testbench accounts for pipeline stages

« Example Request:

MBIST> setup controller pipeline -depth
input_depth 2 output_depth 3

3-19 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1 3-29
March 2002

Common BIST Variations

Adding Pipeline Registers (Continued)

Adding Pipeline Registers (Continued)

BIST Controller Input
Py)elmes s di

sys_addr = i
WL © 5 | 4 ¥ |
gL o[o —
sys_wen o -
— = m o | test_di
rst_l’ LS RS — Memory
£ @ @ n do
ck_| £ © @@ Model -
—_— = c my addr
hold_| S =
—_— %8 cti*
test_h» < E clk
Y
tst_done
ctl* = mightinclude
wen, cen, or oen
V\“/v
Qutput

Pipeline Registers

3-20 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

In some designs, pipeline registers are inserted along the address/data linesto
synchronize the data flow activity between the memory and a system-level device.
MBISTArchitect can model this pre-determined pipeline delay by allowing you to
insert pipeline registers into the generated connection model.

The Setup Controller Pipeline command specifies the controller pipeline register
settings, the number of pipeline registers to be placed between the controller and
the memory, the position of the comparator in the pipeline, and the number of
pipeline delay stages to be placed between memory and the comparator. For
different configurations you can also specify the respective pipeline stages for the
memory address input, data input, control input, and/or output pipelines. Refer to
the “Setup Controller Pipeline” command section ofNti& STArchitect
Reference Manual for information on specific switches.

Pipelining is useful for several situations, such as when timing is critical or when
you want to control where MBISTArchitect samples and compares the data. With
this command and its options, you can manage time delays and meet timing

3-30 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

constraints. By specifying the comparator’s position, you can control from which
pipeline stage you want to take data for comparison.

For example, by entering the following setup command, MBISTArchitect will
generate two input and three output pipeline registers:

setup controller pipeline -depth input_depth 2 output_depth 3

In this case, MBISTArchitect creates the registers as separate instantiations in the
connection model and modifies the controller timing to account for the pipeline
delay. Notice that pipeline registers can only be added to the address and data
paths and not to any other control signals.

Adding pipeline registers is also used in full-speed testingFadeSpeed
Overview” on page 3-1for more information.

Memory BIST Training Workbook, 8.2002_1 3-31
March 2002

Common BIST Variations

Specifying Non-controlled Memory Ports

Specifying Non-controlled Memory Ports

¢ Memory ports not to be controlled by BIST Controller

¢+ Default assertion state is high

« Test bench holds the signal at the value opposite its assert state

¢ Default direction is input

o Except for “data_out” and “data_inout”

¢ Define in Library Model's bist_definition section

3-21 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

3-32 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Specifying Non-controlled Memory Ports

Specifying Non-controlled Memory Ports (Continued)

¢ Library Model’s bist_definition section

bi st _definition (
dont _touch port_nane assert_state direction

) // end BIST definition
e port_name = pin or bus to be left untouched.
« assert state = “high” (default) or “low”

« direction = “input” or “output”

3-22 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Y ou can use aclause on the bist_definition section of the MBISTArchitect
memory model to specify which ports on the memory should not be controlled by
the BIST Controller. The default assertion state is high and the default direction is
input except for “data_out” and “data_inout.”

Memory BIST Training Workbook, 8.2002_1 3-33
March 2002

Common BIST Variations

Specifying Parameters for Memory
Clock Signals

Specifying Parameters for Memory Clock Signals

¢ Memory Clock Signal Gate Parameters

e« Clock Gating On
— Generate multiplexer in path of clock signal

— MBIST> setup memory clock -control

e« Clock Gating Off (Default)
— Use the system clock for BIST testing

— MBIST> setup memory clock -system
¢ Synchronize Controller with Memory Clock

o Synchronous with Clock’s Rising Edge (Default)

— MBIST> setup memory clock -test noinvert

« Synchronous with Clock’s Falling Edge (inverted)

— MBIST> setup memory clock -test invert

3-23 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The following commands support clock gate control:
SETup MEmory Clock {-System | -Control | {-Test {Noinvert | Invert}}

The -Control switch specifies that the memory clock should be gated. The default
Is-System. When the -Control switch is used, the test mode clock is connected to
the clock control signals created by the BIST controller.

The -Test Noinvert switch lets you specify whether the controller is synchronous
with the rising edge or falling edge (inverted) of the clock. The default isto not
invert.

3-34 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Bypassing Memory in Scan Mode

Bypassing Memory in Scan Mode

¢ Propagates fault efforts around memories

¢ Allows high fault coverage for scan and logic BIST designs
with embedded memories

Bist_con

ram 4X4_block
a0
al

dio Memory
BIST dil Model
Controller di2
di3

oo
ale
218

(ram4X4)

o
o
R

o
o
2

wen

ram4X4_bypass

1—[7 Ft'|7

—

HTIC

)y
bp_clk Non-Scan on
s celis

Test_mode

i

z0

<

X3
"'3[[7

3-24 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Use these commands:

SET SCan Logic [-Addr_observe integer] [-Data_observe integer]
[-NoScan | -Scan] [-Control | -NOControl] [-CNtrl_observe integer]

Where:
* -Addr_Observe: Number of cellsto observe address
e -Data Observe: Number of cellsto observe data
e -Scan: Generate scan cells and scan chain (not default)
e -Control: Multiplex bypass cell outputs onto memory cell outputs

* -NOControl: Do not multiplex bypass cell outputs onto memory cell
outputs

Memory BIST Training Workbook, 8.2002_1
March 2002

3-35

Common BIST Variations

Bypassing Memory in Scan Mode
(Continued)

Bypassing Memory in Scan Mode (Continued)
¢ Commands used:

« SET SCan Logic [-Addr_observe integer] [-Data_observe integer]
[-NOScan | -Scan] [-Control | -NOControl]
[-CNtrl_observe integer]

— -Addr_observe : Number of cells to observe address
— -Data_observe : Number of cells to observe data
— -Scan : Generate scan cells and scan chain (not default)

— -Control : Multiplex bypass cell outputs onto memory cell
outputs

— -NOControl : Do not multiplex bypass cell outputs onto
memory cell outputs

3-25 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Y ou can direct MBISTArchitect to configure scan logic to bypass the memory
during scan mode. Thisis done by XORing all the address lines and all the data
input lines to generate a specified number of compressed signals. Each of these
compressed signals are captured in scan or non-scan cells. These cells are clocked
using anew signal line named bp_clk. If you choose to specify scan cells,
MBISTATrchitect generates three additional signal lines: scan_enable, scan_in,
and scan_out.

The default -Control optionis provided to multiplex the scan/non-scan cell output
to the memory data output. Thisis helpful in testing logic on the output side of the
memory during scan test. MBISTArchitect inserts one multiplexer for each data
output. It connects one input of the multiplexer to memory data output and the
other input to the newly inserted scan/non-scan cells. The multiplexer is
controlled by thetest_mode signal.

3-36 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

The bypass logic created by this command is placed in a hierarchical block called
memory_name_bypass. Also, anew level of hierarchy called

memory_name_block is created if it doesn’t already exist. This
memory_name_block is created or modified to contain both the memory and the
memory_name_bypass blocks. The description of the memory_name_bypass and
memory_name_block are in the same file as the BIST Controller.

To help with testing the logic that surrounds your memory design,

MBISTArchitect allows you to add memory bypass circuitry using the Set Scan
Logic command. This bypass circuitry compresses the address and data input lines
through XOR logic and either scan or non-scan cells into a specified number of
output signals. By using the command’s default -Control switch, these output
signals are multiplexed with the memory data output lines. The multiplexers are
controlled bytest mode. Whentest_mode is asserted high for testing the

surrounding logic, the memory is bypassed and the compressed address and data
input signals are presented to the data output lines. This allows you control over
the downstream logic during testing.

For a detailed description of the MBISTArchitect memory bypass functionality,
refer to theSet Scan Logic command description in kil STArchitect
Reference Manual.

Memory BIST Training Workbook, 8.2002_1 3-37
March 2002

Common BIST Variations

Synthesis Driver File

Synthesis Driver File
¢ MBISTArchitect can produce a basic synthesis script:
o« For Synopsys environments

« Named <design>_dcscript for Synopsys Design Compiler (by
default)

« Thatyou can use as atemplate or example of a basic
synthesis/optimization run

3-26 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

MBISTArchitect can write a basic synthesis script, targeted for Synopsys’ Design
Compiler tools.You can use this script as a template for synthesizing and
optimizing the BIST models MBISTArchitect produces.

While you can change the model’'s name using Setup File Naming, by default
MBISTArchitect names this modeldesign>_dcscript (for Synopsys Design
Compiler).

The Design Compiler can save the BIST controller and BIST block in a single file
for Verilog. For VHDL, the BIST controller and BIST block can be saved to
separate files.

3-38 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

An example is shown below:

/2
/'l File Type: Logic Synthesis Script File

/| Date Created: Wed Feb 6 21:02:00 2002

/1l Tool Version: v8.9 6.02 Wd Feb 6 15:31:55 PST 2002
L
*/

sh nmkdir work
define_design |ib work -path "./work"
read -format verilog top_after.v

current _design cti_sab

uni qui fy

conpil e

wite -format verilog -hierarchy -output

cti _sab_gate.v"

current _design ramix4 _nulti _bi st

uni qui fy

conpil e

wite -format verilog -hierarchy -output
"ranmdx4_mul ti _bist_gate.v"

current _design ramdx4 nulti _bist _ramix4 bl ock O
uni qui fy

conpil e

wite -format verilog -hierarchy -output
"ramdx4_mul ti _bist_ramix4 bl ock_0_gate.v"

current _design ramix4 nulti bist _ramix4 bl ock 1
uni qui fy

conpil e

wite -format verilog -hierarchy -output
"ramdx4_mul ti _bist_ramix4 bl ock 1 gate.v"

current _design ramix4 nulti bist _ramix4 bl ock 2
uni qui fy

conpi |l e

wite -format verilog -hierarchy -output
"ramdx4_mul ti _bist_ramix4 bl ock 2 gate.v"

exi t

Memory BIST Training Workbook, 8.2002_1 3-39
March 2002

Common BIST Variations

Design Compiler Clock Constraints

Design Compiler Clock Constraints

¢ MBISTArchitect lets you define clock constraints within the
Synopsis Design Compiler script

« Example:

Cl ock_Peri od=100
create_cl ock-period CLOCK_PERI OD RCLK
set dont_touch_network RCLK
create_cl ock-period CLOCK_PERI OD Bl ST_CLK
set dont_touch_network BIST_CLK

3-27 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The MBISTArchitect Design Compiler script has been modified to let you define
clock constraints. This script uses the currently defined clock width and add clock
constraints for the BIST controller clock and any other memory model defined
clock signals, where clock gating is disabled.

capture and write the output values of the memory itself. Y ou specify this
information using the Setup Mbist Patterns command.

While you can change the model’'s name using Setup File Naming, by default
MBISTArchitect names this outpstdesign>_bist.pat.

3-40 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Mux-Embedded Memory Support

Mux-Embedded Memory Support

¢ MBISTArchitect supports mux-embedded memory structures

e« The tool uses the inserted muxes within memory blocks to
reduce overhead and timing penalties

test_h Memory Block
sys_address n
o]n
test_address n 1 —p
BIST 7
Controller data |
testh Sys datain ml LS
- - test_data_in m 1 — -
rst_| 2
—_—

clk test_write_enable

Ty

Memory

vy

Y
L

sys_write_enable .
A

A sys_clk

data_out
m

tst_done

fail_h

Yy

3-28 MBISTArchitect:Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

MBISTATrchitect supports mux-embedded memory structures. It is often to your

advantage to design control muxes within memory blocks to reduce overhead and
timing penalty. The tool uses the inserted mux to select test or system signals and
support by-pass logic signalsinside of the memory block. Y ou can design the data
output to either separate system and test pins or to asingle output for both signals.

Library Enhancement

To support the mux-embedded memory structure, alibrary format is used to
specify which signals are paired. The following are mux-embedded memory
support signals that are used in this library format:

port _type sys nane:test_name w dth active_state

A BIST-mode signal is used to select either BIST signals or system signals. This
signal is necessary and is used as follows..

Memory BIST Training Workbook, 8.2002_1 3-41
March 2002

Common BIST Variations

bi st _node nane active state

To support embedded bypass logic inside of mux-embedded memories, the
following signals should be used:

ATPG_mode, scan_clk, scan_enable, scan_in, and scan_out.
at pg_node nane active_state

For information on Mux-Embedded Memory Support limitations and examples of
the mux-embedded memory support library format, see the “Mux-Embedded

Memory Support” section in Appendix A of tih&BISTArchitect Reference
Manual.

3-42 Memory BIST Training Workbook, 8.2002_1
March 2002

Common BIST Variations

Module 3 Lab Exercises

* Changing the BIST Algorithm
(20 minutes)

 Changing the Data Background
(20 minutes)

* Inserting BIST for Multiple Memories
(15 minutes)

* Adding BIST with a Compressor

* Implementing Full-Speed BIST
(20 minutes)

* Adding BIST for Bidirectional Memories
(10 minutes)

* Adding BIST for ROMs
(30 minutes)

Memory BIST Training Workbook, 8.2002_1 3-43
March 2002

Module 3: Lab Exercises

Y ou may be able to increase test coverage and reduce area by taking the time to
configurethe BIST circuitry to your design. The following exerciseswill give you
astart at customizing BIST for different design configurations that you may
encounter. Y ou may choose to do all exercises or only those that fit your design
needs.

Exercise 3: Changing the BIST Algorithm—In this exercise, you will generate a
new memory BIST collar that uses the March 1 rather than the default March 2
algorithm to reduce test time.

Exercise 4. Changing the Data BackgrouAd this exercise, you will improve
the test coverage of the March 1 BIST Controller by adding three different data
pattern backgrounds.

Exercise 5: Inserting BIST for Multiple Memoriesin this exercise, you will
save area and overhead by sharing a BIST controller for multiple memories.

Exercise 6: Adding BIST with a CompresserIn this exercise, you will add a
Compressor instead of a Comparator. A Compressor may be used to improve
area-overhead or optimize routing.

Exercise 7: Running BIST at Full-Speedhn this exercise, you run BIST at “full-
speed” meaning it will run at the system clock speed to test the memory at the full
speed at which the system will run.

Exercise 8: Adding BIST for Bidirectional Memoriedn this exercise, you add
BIST for bidirectional memories.

Exercise 9: Adding BIST for ROMs-In this exercise, you add BIST for ROMs.
A ROM requires the use of a compressor.

D These exercises should take approximately 1 hour and 20 minutes.
Note

Memory BIST Training Workbook, V8.2002_1 3-44
March 2002

Common BIST Variations

Exercise 3: Changing the BIST Algorithm

This exercise should take approximately 20 minutes to complete.

Selecting one or more algorithms for your BIST design depends on the type of
memory you are testing, your test goals, your overall test strategy, and the advice
you may receive from in-house memory-test experts and ASIC vendors.

TheMarch 2 (March C+) algorithmisthe MBISTArchitect default becauseitis so
commonly used and accepted.

In this exercise, you will direct MBISTArchitect to use the March 1 algorithm
when you generate aBIST collar for ther amtx4 memory. Remember that you can
add new algorithms as well as change algorithms. Y ou will gain experience
adding algorithmsin later exercises.

Do the following:
1. Verify that you are in the $MBI STNWP/mbi st1/ramdx4/results directory.

2. Invoke MBISTArchitect while loading the library at invocation.
shel | > nbistarchitect -lib ../design/randx4. atpg

3. Add ther amtx4 model to the list of memory models for BIST insertion.

4. Select the Controller block to access the Setup Mbist Controller dialog
box.

5. Select the Test Algorithmstab, select March 1, then click OK.
6. Click Run to add default BIST circuitry to this model.

7. Savethe default outputs by clicking Save BIST. After verifying the format
and destination directory, click OK.

MBISTATrchitect prompts you with the following question:

One or nore of the output files already exist. Do you
want to overwite thenf?

Memory BIST Training Workbook, V8.2002_1 3-45
March 2002

Common BIST Variations

Click No in the Question dialog box, then Cancel the Save Bist Results
dialog box.

In Exercise 1, you saved outputs with the same default filenames. Instead of
replacing these files, you can give them custom names.

8. Click onthe Output Files Names button in the Control Panel Window. In
the Setup Output File Naming dialog box, change the filenames to the
following, then click OK:

aQd Filenane New Fil enane

ramix4 _bist.v ramix4 _nml _bist.v
ramix4 _bi st _con.v ramix4 _mil_bi st _con.v
ramix4 _tb.v ramix4 _ml tb.v

9. Click Save BIST.

10. From the Command Line, list the generated outputs:
MBISTA> system Is ram*

The System command lets you issue an operating system command. Thel s
command shows the contents of the working directory. Y ou should see:

ramix4 _bist.v ramix4_nml _bist.v ramix4 _nml tb.v
ramix4_bi st _con.v ramix4 _ml_bi st _con.v ramix4 thbh.v

MBISTATrchitect generated three new Verilog models for the ram4x4
model:

* ram4x4 _ml bist.v- amodel that contains just the ram4x4 BIST control
circuitry,

* ram4x4_ml bist_con.v - the connection model that connects the BIST
controller to the ram4x4 simulation model, and

* ram4x4_ml_th.v - the testbench that instantiates and tests the
ram4x4_ml_bist_con.v model.

11. Click View Saved Design Files.

3-46 Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

MBISTATrchitect generated three Verilog models for the ramdx4 model:

Look at ramdx4 _ml bist.v. This model is very much the same as
ramdx4_bist.v, except for the March 1/March 2 algorithm differences. Both
algorithms perform the basic March test, with Marchl eliminating the
RWR operation to reduce the algorithm from 14n to 10n.

12. Exit thetool.
13. Compile the outputs.
a. Set up anew work directory for the Marchl test models.
shel | > $M3C HOVE/ bin/vlib work_ nl

b. Compile the memory simulation model, all BIST models, and the
testbench.

shel | > $M3C HOVE/ bi n/ vl og -work work_ni \
../design/ramix4.v ramdx4_nmil_bist.v \
ramix4 _ml _bist _con.v ramdx4 ml tb.v
14. Simulate the BIST circuitry
a. Invoke the ModelSim simulator and |oad the ram4X 4 testbench.
shel | > $M3C HOVE/ bin/vsim-lib work_ml ramix4_tb

b. Set up thelists by running the following dofiles:
VSIM 2> do ../design/vsim_setup.do

c. Run the simulation until it is finished.
VSIM 3> run -all

d. Run alittle more to capture the complete pattern for the tst_done signal.
VSIM 4> run 50

e. Write the displayed list to afile.
VSIM 5> write list trace.log.m1

Memory BIST Training Workbook, V8.2002_1 3-47
March 2002

Common BIST Variations

f. Quit the simulation.
VSIM 6> quit

Examine the saved list file.

3-48 Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

Exercise 4. Changing the Data Background

This exercise should take approximately 20 minutes to complete.

This exercise repeats the steps you performed in the last exercise—with one
exception. In this exercise, instead of having the March 2 test write words of Os
and 1s, you will tell MBISTArchitect to create a March2 pattern generator that
uses 1010, 0010, and 0100 as the data backgrounds.

1. Ensure you are in tf&MBISTNWP/mbistl/ramédx4/results directory.
2. Invoke MBISTArchitect.

3. Load theram4x4.atpg library from the../design directory, but do not add
the model to the memory list).

4. Add the ram4x4 model to the list of memory models for BIST insertion.
MBISTA> add me m ram4x4

5. Change the data background for the March 2 algorithm.
MBISTA> add data backgrounds 1010 0010 0100

Because you specified three patterns, MBISTArchitect applies the March 2
algorithm three times. In the first March 2 test, the algorithm uses the word
value 1010 instead of 0000 and then uses the inverse, 0101, instead of 1111.
In the second March 2 test, the algorithm uses 0010 instead of 0000, and
then uses the inverse, 1101, instead of 1111. In the third March 2 test, the
algorithm uses 0100 instead of 0000, and then uses the inverse, 1011,
instead of 1111.

6. Generate the BIST circuitry for this memory model.
MBISTA> run

7. Set up file naming.

MBISTA> setup file naming -bist_model ram4x4 _mldb_bist.v -connected \
ram4x4_mldb bist _con.v -test_ bench ram4x4 _mildb_tb.v

8. Save the output files with the customized names.

Memory BIST Training Workbook, V8.2002_1 3-49
March 2002

Common BIST Variations

10.

11.

12.

3-50

MBISTA> save bist -script

Because you specified the -Script switch, MBISTArchitect saves a
synthesis script file named ram4x4_bist.v_dcscript in addition to the
regular outputs.

Exit the tool.
MBISTA> exit

Compile the outputs and simul ate the testbench. Create a new work
directory called work _m2db for the compilation and simulation results.
Y ou can use the ../design/vsim_setup_db.do file to setup the simulation.
Name the trace file trace.log.m2db. If you need assistance with this
process, refer back to Exercise 2: Verifying the BIST Circuitry.

Observe from the List Window that the background patterns you specified
are written to and read from the memory.

Exit the smulator.

Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

Exercise 5. Inserting BIST for Multiple Memories
This exercise should take approximately 15 minutes to complete.

This exercise explores several additional features of MBISTATrchitect. Firgt, it
creates asingle BIST controller for two memories: an 8x4 RAM and a4x4 RAM.
Second, the BIST controller applies the March 2 algorithm to the first write port
and the “unique address” algorithm to the second write port. Third,
MBISTArchitect produces the BIST controller in VHDL format.

Now that you have become more acquainted with the GUI features, you will be
able to utilize the command line to take advantage of minimum typing and other
features.

1. Change directories.

shel I > cd $MBI STNWP/ nbi st 2/ nul ti _ram dwp/results
This is where you will do your work and save your results.

2. Invoke MBISTArchitect.

shel | > nbi starchitect

3. Load the appropriate libraries (you can load only one library at a time):
MBISTA>load library ../design/ram4x4.atpg
MBISTA>loa li ../design/ram8x4.atpg
4. Add both the ram4x4 and ram8x4 models to the list of memory models for
BIST insertion:

MBISTA> add me m ram4x4 ram8x4

5. Add the “Unique Address” algorithm to port 2.
MBISTA> add mbist algorithm 2 unique

Memory BIST Training Workbook, V8.2002_1 3-51
March 2002

Common BIST Variations

10.

3-52

The BIST controller automatically applies the March 2 algorithm to
port 1. This command adds the unique address algorithm to port 2

Note (the second port of the ram8x4 memory), replacing the default
March 2 algorithm for this specified port only.

If you issued the Add Mbist Algorithms command Add MBIST
Algorithms command again for port 2, the BIST controller would
apply both specified algorithms to port 2.

Add default BIST circuitry to this model.
MBISTA> run

Save default VHDL -format outputs with the default names.
MBISTA> save bist -vhdl

Note that when you generate a BIST controller for multiple memories,
MBISTArchitect names the saved outputs <first_memory>_ multi _bist.vhd,
<first._ memory> multi_bist_con.vhd, and <first._ memory>_ muilti_tb.vhd,

by default. In this case, you added ram4x4 first with the Add Memory
Models command, so “ram4x4” becomes the prefix for each saved file.

. Examine the generated outputs using\hev Saved Design Files button

in the Control Panel window.

. Exit the tool.

MBISTA> exit
Compile the outputs and simulate the testbench.

a. Set up a work directory for the March2/Unique test models.
shel | > $M3C_HOVE/ bi n/ vl i b wor k

b. Compile the core logic, all BIST models, and the testbench.

Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

shel | > $M3C_HOWE/ bi n/ vl og ../design/ramix4.v \
../ design/ranBx4.v

shel | > $M3C_HOME/ bi n/ vcom -explicit \
ramdx4 _mul ti _bist.vhd ramdx4 _multi _bist _con.vhd \
ramix4 nmulti _tb.vhd

Y ou use vlog for compiling Verilog (the original memory models)
D and vcom for compiling VHDL (the MBISTAr rchitect-generated
Note outputs). Inthisexercise, you perform mixed Verilog/VHDL

simulation using Model Sim after compiling the models.

a. Invoke the ModelSim simulator and load the testbench mode!.
shel | > $M3C HOVE/ bi n/vsi mramdx4_mul ti _tb

b. Set up the lists by running the following dofile:
VSIM 1> do ../design/vsim_setup.do

c. Run the simulation until it isfinished.
VSIM 2> run -all

d. Run alittle more to capture the complete pattern for the tst_done signal.
VSIM 3> run 50

e. Write the displayed list to afile.

VSIM 4> write list trace.log.m2.un

f. Quit the simulation.
VSIM 5> quit

Examine the saved list file.

The BIST controller runs testing on the RAM4x4 and RAM8x4 memoriesin
parallel, first running the March 2 agorithm on port 1 of each memory, followed
by running the Unique Address algorithm on port 2 of RAM8x4.

Memory BIST Training Workbook, V8.2002_1 3-53
March 2002

Common BIST Variations

The Unique Address algorithm places the address value in the address
location. For example, the algorithm places address value 0000 in location
0, address value 0001 in location 1, address value 0010 in location 2, and so
on. If the address and data widths do not match, the algorithm concatenates
the M SB values of the address and places them asthe L SB of the dataword,
to pad the data word to the appropriate size.

In this exercise, the address bus has three bits while the datawidth has four.
So the agorithm pads the data word by duplicating the most significant
address bit as the least significant dataword bit to increase the word size to
four bits. For example, in this case the algorithm places the value 0000 at
location O, 0010 at location 1, 0100 at location 2,..., 1011 at location 5, and
so on. Note that you see the data values in reverse bit order (L SB->M SB)
during simulation.

At this time, the descending March test performs the
D read/write/read operation in the order 0,3,2,1 (for RAM4x4) or
Note 0.7,6,54,3,2,1 (for RAM8x4).

Table 3-1 provides a breakdown of the testbench simulation, and thus, the
memory BIST controller operation.

Table 3-1. March2 and Unique Address Simulation Activity

Activity/Address

Time(ns) | RAM4x4 RAM 8x4

Activity/Address

Algorithm
Operation

BEGIN BIST LOGIC TESTING

(Initialize for the BI

ST controller)

Hold WEN B off

0-2975 WriteO/ 0 WriteO/ 0 Test for the system
Read0/0 Read0/0 path

BEGIN MARCH 2 TESTING OF RAM4X4 AND RAM8X4 PORT 1

3050-3750 WriteO / 0->3 Write0 / 0->3 Initialize for March

3750-4550 Hold WEN off WriteO / 4->7 2 Test

3-54

Memory BIST Training Workbook, V8.2002_1

March 2002

Common BIST Variations

Table 3-1. March2 and Unique Address Simulation Activity

Time (ns) RAM4x4 RAM 8x4 Algorithm
Activity/Address | Activity/Address | Operation
4650-6850 Read0,Writel,Readl/ ReadO,Writel,Readl/ | a
0->3 0->3 Read0
7050-9250 Hold WEN off ReadO,Writel,Readl/ | Writel
4->7 Read1
Hold WEN B off
9450-11650 | Readl,WriteO,Read0/ Readl WriteO,Read0/ | a
0->3 0->3 Readl
11850-14050 | Hold WEN off Read1,WriteO,Read0/ | WriteO
4->7 Read0
Hold WEN B off
14550-16450 | Hold WEN off ReadO,Writel,Readl/ | v
7->4 Read0
16650-18850 | ReadO,Writel,Readl/ ReadO,Writel,Readl/ | Writel
3->0 3->0 Readl1
Hold WEN B off
19050-21250 | Hold WEN off Read1 WriteO,Read0/ | v
7->4 Readl1
21450-23650 | Readl,WriteO,Read0/ Read1,WriteO,Read0/ | WriteO
3->0 3->0 Read0
Hold WEN B off
23685-25250 | Read0/ 3->0 Read0/ 7->4 v
Read0/ 3->0 Read0/ 3->0 Read0
Hold WEN B off
BEGIN UNIQUE ADDRESS TESTING OF RAM8X4 PORT 2
25550-26950 | Hold WEN off Hold WENA off A
0->7 Write address value
to address location
27050-28550 | Hold WEN off Hold WENA off A
0->7 Read value from
address location
28650-30050 | Hold WEN off Hold WENA off A
0->7 Writel to all
address locations

Memory BIST Training Workbook, V8.2002_1

March 2002

3-55

Common BIST Variations

Table 3-1. March2 and Unique Address Simulation Activity

Time(ns) | RAM4x4 RAM 8x4 Algorithm
Activity/Address | Activity/Address | Operation
30250-31750 | Hold WEN off Hold WENA off A
7->0 Writeinverse
address value to
address location
31850-33250 | Hold WEN off Hold WENA off A
Read value from
address locations

3-56 Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

Exercise 6: Adding BIST with a Compressor
This exercise should take approximately 40 minutes to complete.

This exercise demonstrates how to generate BIST circuitry that uses a compressor
instead of a comparator. Since you have invoked MBISTArchitect and generated
BIST circuitry several timesin previous exercises, this exercise does not provide
as much detail as the previous exercises. If you need assistance, refer to

Exercise 1. Creating a Basic Memory BIST Collar.

This exercise again uses the RAM4x4 model—for the sake of both simplicity and
comparison to the architectures generated by earlier exercises.

1. Change to thévBl STNWP/ nbi st 2/ raméx4/ resul t s directory.

2. Invoke MBISTArchitect, loading theamdx4.atpg library
(../design/ramdx4.atpg) at invocation.

3. Add the ram4x4 model to the list of memory models for BIST insertion.
4. Specify that the BIST controller should not include a comparator in the
architecture.
MBISTA> setup observation scheme -compress
The -Compress switch tells MBISTArchitect not to include a comparator as
part of the controller. In this case, you want to use a compressor for
signature analysis, instead of a comparator. You will set up the compressor
parameters in the next step.
5. Set up the compressor parameters.
MBISTA> setup mbist compressor -low 32

This specifies for MBISTArchitect to generate a compressor model
associated with RAM4x4 with a MISR length of 32 bits.

Due to character conflicts, the minimum typing for Setup Mbist
Compressor is “set mb com” and the minimum typing for Setup Mbist
Controller is “set mb con”.

Memory BIST Training Workbook, V8.2002_1 3-57
March 2002

Common BIST Variations

6. Runthe BIST circuitry generation process.
7. Set up output file naming.

Y ou already generated default outputs in a previous exercise. Because you
do not want MBISTArchitect to overwrite these models, you should give
the models generated in this exercise unigue names.

MBISTA> setup file naming -bist_model ram4x4_nocompare_bist.v \
-connected ram4x4_nocompare_bist_con.v \
-test_bench ram4x4_nocompare_tb.v
8. Save the default outputs, with the customized names, in Verilog format.

MBISTA> save bist -r

9. List the generated outputs.
MBISTA> system Is *.v

Because of the compressor model, this time when you saved
MBISTATrchitect generated FOUR new Verilog models for the ram4x4
model. These modelsinclude:

e Compressor_lib.v - the compressor-only model.

* ramdx4_nocompare_hist.v - amodel that contains just the ram4x4
BIST control circuitry.

* ramdx4_nocompare bist_con.v - the connection model for the
controller and the RAM collar.

* ramdx4 _nocompare th.v - the testbench that instantiates and tests the
ramdx4_nocompare_bist_con.v model.

10. Reset the state of MBISTArchitect and make some changes within the
session.

Assume you examined the files and decided you want to implement a
hold_| signal. Thissignal letsyou pause BIST testing with alow value on
the hold_| signal, retaining the state of the BIST test process. When the
hold_| signal returnsto a high state, the BIST test continues. The hold |

3-58 Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

11.

12.

13.

signal, among other purposes, enables you to perform data retention testing.
If you pause testing between awrite and aread, the read performed after
testing should display the expected values from the write operation. If not,
the memory could have a data retention problem.

Next, assume you decide to generate a synthesis script for the
MBISTATrchitect outputs as well as afile capturing the BIST-generated
inputs to the RAM4x4 memory. Y ou can do this within the current session
by resetting the state and running the additional commands as follows:

reset state

add me m ram4x4

report memory models

set obs s -compress

set con h -on

set mb com -low 32 -hold

setup file naming -bist ram4x4_nocompare_bist.v -con \
ram4x4_nocompare_bist_con.v -t ram4x4_nocompare_tb.v \
-script ram4x4_nocompare_synth.script

run

save bist -scr -r

Hint: Instead of entering these commands interactively, run the
..Idesign/nocomp.do dofile.

Examine the generated outputs.

First look at ramd4x4 _nocompare_bist.v. Notice that this model contains
two signals that the previous models did not: test_capture 0 and hold_|.

Y ou should also notice that the connection file,
ramdx4_nocompare_bist_con.v, instantiates the BIST controller and the
RAM collar.

Exit MBISTArchitect.

Compile the outputs and run the ssmulation using the following script.
Verify that the final signature is 8482e23a.

shel | > runsi m

Answer “No” to the question about finishing.

Memory BIST Training Workbook, V8.2002_1 3-59
March 2002

Common BIST Variations

14.

15.

3-60

Examine the synthesis template script generated.

The synthesisfile, ramdx4_nocompare_synth.script, in your results
directory provides atemplate script for compiling and synthesizing the
BIST controller model in the Design Compiler environment.

If you have time, and want to explore more of the available algorithms for

the compressor architecture, repeat this exercise specifying one of the other
algorithms—such as Diagonal or Checkerboard—instead of the default
March 2 algorithm.

Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

Exercise 7: Running BIST at Full-Speed

This exercise will take approximately 20 minutes.We will generate BIST circuitry
using the default values for MBISTArchitect with the exception of adding the
library and BIST changes required to run at full speed.

FULL SPEED isdefined as clocking with back to back read/write cycles.

1. Change to the following working directory:

shell> cd $M BI STNWP/full_speed/design
2. List the design files you will be using in this exercise:
shell>1Is -ltr *

3. Change directories to the full _speed/results directory:

cd ../results
4. Invoke MBISTArchitect:
shel | > nbi starchitect

5. Click onthe Memory block in the Control Panel graphic pane. Thiswill
start the process to load the “Full speed” memory model.

a. Click on theBrowse button, then navigate tddesign directory.

b. Double click thdab13.atpg file. A list of files displays, click on
Full_speed.atpg, then clickL oad. TheFull_speed model now appears
in the available Models list.

c. Select thé-ull_speed model, then clickAdd.
d. ClickOK.
You've just added the memory model for BIST insertion.

6. Click on theController block in the Control Panel graphic pane.

Memory BIST Training Workbook, V8.2002_1 3-61
March 2002

Common BIST Variations

Now you can modify the specific settings to enable the generation of
the FULL SPEED memory BIST controller.Y ou should now see the
“Setup Mbist Controller” panel.

a. Select th€ontroller Optionstab at the top right of the “Setup MBIST
Controller” panel.

b. Make sure that th®ystem Clock is selected in the Type of Memory
Clock.

c. Select thésetup Pipelining... button at the bottom left of the “Setup
MBIST Controller” panel.

You should now see the “Setup Pipeline Staging” panel come up.
I. SelectPipeline Stages
ii. SelectAdd Pipeline Controller Registersof Different Depths
a. Set#lnput Stages=0
b. Set#Output Stages = 2
li. SetPosition of the Comparator = 1
Iv. SelectPlacement of Delay Stages
a. SelectNo Delay Set

v. Click OK in “Setup Pipeline Staging.” The following figure displays
the settings for this dialog box.

3-62 Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

Controller HDL
Diagnostics | Language

Controller | Scan
Haming Logic

Controller
Options

Test Data
Algorithms | Backgrounds

BIST Clock Period : Emn ns

Retention Cycles : El[l] % Bist Clock Period
_I Prevent Simultaneous Access of a Single Address from Multiple Ports During Read/Mrite Operations

Generate the Following

1 "Hold™ Control Signal
i BIST-in-Place Information
B Comparator
_| Comparator Test
M Connections to Memory Models
o Common Fail Flag
_| Multiple Fail Flag
| Multiplexors Located Inside Controller
_| VHDL Configurations
Type of Memory Clock : - Control Clog'._ . Doooto— 2ot et S
[— Setup Pipeline Staging
M Fipeline Stages
- Synchronize Controller to Falling Bdge| 10 ot Add Pipeline Controller Registers

Type of Diagnostic Gock : & BIST Coc

T L S [. Add Pipeline Controller Registers of Equal Depth
_I Sequential Test for Memory Dentl Iu—
ERL L UL # Add Pipeline Controller Registers of Different Depths

#input Stages : 11 #Output Stages : [2
@ Position of the Comparator : ;1
W Placement of Delay Stages
« 3et Delays for All Controller Pipelines
~ Mumber of Input Delay Registers : Iﬂ_
. Number of Output Delay Registers : |0
4 Mo Delays Set

Setup Pipelining...

d. Click OK in the “Setup Mbist Controller” panel.
7. Click Run in the Control Panel. This will generate the BIST circuitry.

8. Click Save BIST and click OK. This will generate the BIST circuitry and
add to the BIST model.

Memory BIST Training Workbook, V8.2002_1 3-63

March 2002

Common BIST Variations

9. Click View Saved Design Files.

Next, look at the files you just generated. Y ou should see three new
files.(Full_speed bist.v, Full_speed bist_con.v, Full_speed tb.v). Look at
the* bist.vfileand try to identify the new pipeline registers.

10. What makes the memory model differentin AT Speed vs. FULL Speed?
Look at the memory models and compare them.

a. Open up another shell window:
shell> cd $M BI STNWP/mbist/full_speed/design
b. Useyour text editor to chose and view the library file.

shell > vi | abl3. at pg

Y ou will seetwo RAM model definitionsin thislibrary file. Thefirstis
called At_speed and the second is called Full_speed.

Try and identify all the differences between these two models.

11. Next, we will verify the BIST logic works properly. Use the BIST
Controller you just generated with the Verilog model of the memory and
resimulate to seeif everything works.

a. Open up another shell window

shel I > cd $MBI STNWP/ nbi st/ full _speed/results
shel I > runsim

b. A window displays with the message “Are you sure you want to
finish?” Click No.

3-64 Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

— wave — default

File Edit Cursor Zoom Compare Bookmark Format Window

% ed_lnstance_1sdin [1111111 j RERR AR
b d_Instance_ls/dout (1117171117 00000000 | -
¢ ad_th/Elst_done |St0 '
} Spesd_th/E1/ail_h|S10
} peed_th/Elstest_h |51
¥ lI_Spead_th/E1/CIK |51

Speed_th/E1/rst_| |SH

|| ||||i|||| ||||i|||| IR EEEE
400 pat 14

14750000 psg

R
14500 ns

b

14375340 ps to 149369170 ps

READ WRITE READ,

c. Review the wave - default window pane.

Separated by time cursors are 3 cycles of interest for the first back-to-

back RWR operation for address 0.

Extra Credit

To do additional speed comparisons go through steps 1 - 11 again but
this time select the At_speed model in steps 5b and 5c¢. Skip step 6.

Memory BIST Training Workbook, V8.2002_1
March 2002

3-65

Common BIST Variations

* Comparethe verilog of the* _bist.v files. What are the differences and
why?

* Compare the Verilog expected data and the number of cyclesin the 2
testbench file. What are the differences and why?

Test Your Knowledge
* Why do you need pipelining stages to test your memory at Full-Speed?

* What two things do you need to change to accomplish Full-Speed
Memory BIST?

* What are the advantages and disadvantages of doing Full-Speed
memory BIST?

Lab Summary

Y ou should now be able to take a memory that can perform back-to-back
read/write cycle and generate a memory BIST circuit to do Full Speed testing of
that memory.

3-66 Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

Exercise 8: Adding BIST for Bidirectional Memories

This exercise should take approximately 10 minutes to complete.

This exercise demonstrates BIST insertion for a RAM with abidirectional data
bus. In this exercise, you will duplicate the default run you performed in another
exercise, then examine the generated outputs to understand the circuitry that
MBISTATrchitect creates.

1.

2.

> W

o

10.

Change to the $MBI STNWP/ nbi st 2/ br amix4/ desi gn directory.

Examine the model defined in bram4x4.atpg. Notice the data_inout
statement declaration for the bidirectional data bus “dio”.

Change to the/results directory.
Invoke MBISTArchitect.

Load the./design/bramdx4.atpg library.

. Add the bram4x4 model to the list of memory models for BIST insertion.
. Add default BIST circuitry to this model.
. Save the default outputs, with the default names.

. Exit the tool.

Compile the outputs and the memory modé&lesigns/bramdx4.v) then
simulate the testbench. Create a new work directory catbekifor the
compilation and simulation results. You can use .fdesign/vsim_setup.do
file to setup the simulation and format the transcript. Name the trace file
trace.log. If you need assistance with this process, refer back to
Exercise 2: Verifying the BIST Circuitry

Memory BIST Training Workbook, V8.2002_1 3-67
March 2002

Common BIST Variations

Exercise 9: Adding BIST for ROMs

This exercise should take approximately 30 minutes to complete.

In this exercise, you will use adofile to add BIST circuitry to test aROM. This
exercise uses a ROM64x16 model.

3-68

1. Change to the $MBI STNWP/ nbi st 2/ r on64x16/ r esul t s directory.

2. Look at the following dofile:

shell > nore ../design/ron64x16. do
The contents should appear as follows:

load library ../design/ron64x16.1ib
add nenory nodel s ronb4x16

set obs s -conpress

set nb com-|ow 32

run

report bi st

save bist -r

exi t

This dofile sets up for ROM BIST circuitry generation, runs the insertion,
and saves the default outputs with the default names to the current
directory.

The ROM BIST insertion processis very automated. MBISTArchitect
recognizes memory models without defined write cycles as ROMs. When
you add a ROM model during a session, MBISTArchitect automatically
sets the algorithm type to ROM. An architecture with a compressor, not a
comparator, supports ROM testing. Thus, you must specify that the BIST
controller not contain a comparator. Y ou then additionally specify for
MBISTArchitect to generate a compressor using the Setup Mbist
Compressor command.

3. Invoke MBISTArchitect without the GUI using a dofile:

shel | > nbi starchitect -dofile ../design/ron64x16. do \
- nogui

Memory BIST Training Workbook, V8.2002_1
March 2002

Common BIST Variations

4. Examine each of the generated files in the current (rom64x16/results)

directory.
ron64x16 _bist.v ron64x16 _bi st _con.v
Conpressor _lib.v rom64x16 tbh.v

5. Run the simulation using the following script and examine the results.

shell > runsim

Answer “No” to the question about finishing.

Memory BIST Training Workbook, V8.2002_1
March 2002

3-69

Common BIST Variations

3-70 Memory BIST Training Workbook, V8.2002_1
March 2002

Module 4
Memory BIST-In-Place

This module will give you a basic understanding of how to create, connect, and
integrate BIST structures using the Memory BIST-In-Placetool. The lab exercises
at the end of this module will give you experience in running through the process
flow of Memory BIST-In-Place.

Objectives

Upon completion of this module, you will be able to:
* Define the Memory BIST-In-Place flow
¢ Launch the Memory BIST-In-Place tool

e Definethefiles used in thetool to create BIST structures

Memory BIST Training Workbook, V8.2002_1 4-1
March 2002

Memory BIST-In-Place

Memory BIST-In-Place Flow

Memory BIST-In-Place Flow

[MBISTArchitect
BIST Controller
CTDL for MBIST BIST collars
Controllers (Library models)
SoC Netlist —
RTL Synthesi
Phase i
Test Access
Description

CORE INTEGRATOR

BIST Vectorsy, |
(WGL)

SoC MBIST
Patterns (WGL

or Verilog)

4-2 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Memory BIST-In-Place automates the insertion of Memory BIST structures for
embedded memory test in a System-on-a-Chip (SoC) design. Thisincludes:

* theinsertion of BIST collars around the origina embedded memories
* the connection of memoriesto the inserted BIST controller(s)

* the synthesis of access structuresin order for BIST controllersto be
accessed from the SoC periphery

* pattern trandation

The BIST controllers and memory collars are generated from the standalone
Mentor Graphics Memory BIST tool, MBISTATrchitect.

4-2 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Memory BIST-In-Place Flow Overview

Memory BIST-In-Place Flow Overview

Create BIST BIST Generator
Structures input: MBISTA library

.!) output: RTL BIST logic, Verilog TB, WGL, CTDF
RTL Simulation P g 9

1

Connect BIST BIST Insertion and Stitching

Structures input: Verilog design, library, WGL, RTL BIST
; logic, CTDF

Synthesis output: BISTed design, RTL access logic, CTAF

niEeieEie ST DRC and Pattern Conversion

Patterns

l input: Gate level Verilog design, ATPG library,
CTDF, CTAF
Gate-Level

output: Design level pattern (WGL/Verilog)

Simulation

4-3 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, V8.2002_1

Create BIST structures
Invoke the MBISTArchitect tool to generate RTL, BIST logic, aVerilog
test bench, and WGL and Core Test Description Files.

RTL Simulation
Run the Mentor Graphics Model Sim tool to simulate the design. Y ou can
also run agate-level simulation later in the process.

Connect BIST structures

Run Memory BIST-In-Place in the Synthesis mode to connect BIST
structures and output a bisted design, RTL access logic, and Core Test
Access Files.

Synthesis
Run the bisted design through a synthesis tool.

March 2002

4-3

Memory BIST-In-Place

Integrate BIST patterns
Run Memory BIST-In-Place in the Integration mode to perform a design
rules check and to generate patterns.

Gate-Level Simulation
Run the Mentor Graphics Model Sim tool to simulate the design.

Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Creating BIST Structures

Creating BIST Structures

¢ Uses MBISTArchitect
¢ Requires Memory BIST models for input
¢ Creates RTL BIST models

« BIST controller

o BIST collar

4-4 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

4-5

Memory BIST-In-Place

Model Creation

Creating BIST Structures
Model Creation

¢ Model description includes:

o Pin interface

« Read/write cycle description
¢ You can create models:

« Manually, using basic syntax

« Graphically, with the
MBISTArchitect Model Editor

4-5 « Memory BIST Training Workbook: MBIST In-Place

NOTES:

4-6

Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Memory Model Example

Creating BIST Structures
Memory Model Example

nodel ramdx4 [(DO3, DO2, DOL, DOO, Al, A0, WEN, DI3, D2, D1, DIO) |
bi st _definition (
8ala_OU[dU(_O(L)Ud, DOz, DUL, U;ll). P I t f
ata_in di (D3, D2, D1, DIO);
address addr (Al, A0); N n.er.ace
write enable VWEN | ow; \ Descnp“on
m n_address 0;

max_address 3;

data size = 4. Port and Control

read write port(SlgnaIS DeSC”ptIOﬂ
read cycl e(
change addr;
wait;

y expect d_o move; Optional information

write_cycle(
change addr;
change di;
wai t;
assert VEN,
wai t;

))
y Read and Write
Cycle Description
4-6 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Creating BIST Structures Invocation

Creating BIST Structures
Invocation

¢+ MBISTArchitect point tool invocation
o $ mbistarchitect -library lib_name -nogui
¢ BIST-in-Place GUIl invocation
o $ bistinplace

o Click on “Create BIST Structures”
step in the Task Flow Manager

4-7 + Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-8 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Basic Command Flow

Creating BIST Structures
Basic Command Flow

Load Library <library name>

Add Memory Model <model name...>
Add Mbist Algorithm <port#> <algorithm>
Set Bistinplace -on

Run

Save Bist

Exit

* & O O O o o

4-8 + Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1 4-9
March 2002

Memory BIST-In-Place

Creating BIST Structures Results

Creating BIST Structures
Results

¢ RTL BIST logic (ramname_bist.v)
« BIST logic

« Adds specparams to convey the info of connections between
RAM and BIST to MBIP

¢ WGL file (ramname_bist.wgl)

« Used for pattern conversion in MBIP pattern integration step
¢ CTDF (ramname_bist.v.ctdf)

« Defines procedures to get in test mode and isolation mode

4-9 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-10 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Example of RTL BIST Logic

Creating BIST Structures
Example RTL BIST Logic

modul e ranmBx4_mul ti _bi st
specify

BIST Controller Name

specparam cti_cel |l _type$ramBx4_mul ti _bist =
“mbist_controller”;

specparam bist_cycles$ram8x4_multi_bist =
"466"

_BIST Cycles

Specparam ctl_connecislest_addra_0 =
"ram8x4_block_0/Test_addra_0";

4__BIST Controller

& Collar Connection

specparam cti_connectslest_DOs_s5 =
"ram8x4_multi_bist_ram4x4_block_3/DO3_3";

specparam cti_pin_type$test_h = "test_h";
specparam cti_pin_type$clk = "clk";
specparam cti_pin_type$rst_| = "rst_I"; ’

}IST Control
Signal Names

specparam cti_cell_type$ram8x4_block_0 =
"mbist_memory:ram8x4_multi_bist";

(BIST Collar Name

endspecify

4-10 » Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

4-11

Memory BIST-In-Place

Example WGL File

Creating BIST Structures
Example WGL File

waveform ramBx4_mul ti _bi st

si gnal
test_h : input initialp[N];
clk : input initialp[N;

rst_| : input initialp[N;
tst_done : output;
fail_h : output;

Test Pin Interface

end;
_ _ Timeplate definition

timeplate TPO period 400ns +/

I pattern bist_control (test_h, clk, rst_I, tst_done, fail_h)
Pin Order List
4-11 » Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation
NOTES:
4-12 Memory BIST Training Workbook, V8.2002_1

March 2002

Memory BIST-In-Place

Example WGL File (Continued)

Creating BIST Structures
Example WGL File

111 XX];
110XX]; \

vector (+, TPO)
vect or (+, TPO)

I
——

BIST Initialization

Pattern
| oop 450
vector(+, TPO) :=[11100 1];
end
| oop 16 A
vector(+, TPO) :=[111 X01]; \BIST Test Pattern
end
vector(+, TPO) :=[11 1101];
end
end
4-12 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation
NOTES:
Memory BIST Training Workbook, V8.2002_1 4-13

March 2002

Memory BIST-In-Place

Core Test Description File (CTDF)

Creating BIST Structures
Core Test Description File (CTDF)

core ramdx4 multi bist =
out put Test_addr_3[1:0];
out put Test_WEN_3;

out put tst_done; /
out put fail _h;

input

Test_da_03_0, Test_da_02_0, Test _da_o0l1_0, Test _da_o0_0;
nput test_h;

input clk;

input rst_I;

clock clk;

clock_lo rst_I;

- Input & Output

end;

4-13 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-14 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Core Test Description File (Continued)

Creating BIST Structures

Core Test Description File (CTDF)

core ram8x4_multi _bist =

procedure core_isolate =
core ram8x4_multi _bist;
timeplate tpil;

cycle =

hold clk O <
hold test_h 1;

expect tst_done O;

expect fail_h 0;

end;

end;

Procedure to
place BIST
Controller in
Isolation
Mode

4-14 « Memory BIST Training Workbook: MBIST In-Place

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

Copyright © 2002 Mentor Graphics Corporation

4-15

Memory BIST-In-Place

Core Test Description File (Continued)

Creating BIST Structures

Core Test Description File (CTDF)

core ram8x4_multi_bist =

Procedure to place

BIST Controller into

procedure core_test run_bist =
core ram8x4_multi _bist; <
timeplate tpl;

probe tst_done, fail_h, clk, rst_I;

patteTn fiTe ramBx4_mult1_bist. wgl.

cycle =
hold test_h 1;
end;

/

Test Mode

== P ins to be monitored
during BIST test

~ Test pattern file name

end;

4-15 « Memory BIST Training Workbook: MBIST In-Place

NOTES:

4-16

Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, V8.2002_1

March 2002

Memory BIST-In-Place

Connecting BIST Structures

Connecting BIST Structures

¢ Uses Memory BIST-In-Place Synthesis mode
¢ Requires
« RTL or gate-level design (VHDL or Verilog)
« VHDL or Verilog library
« BIST design objects created earlier in flow
« CTDF created earlier in flow
¢ Inserts/connects BIST structures within hierarchy and to
chip-level 1/O

4-16 +« Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

4-17

Memory BIST-In-Place

Connecting BIST Structures Invocation

Connecting BIST Structures
Invocation

¢ Can invoke with GUI or as command line only tool

o $ bistinplace design_name -verilog -lverilog
verilog_library_name -synthesis -guilnogui

ﬁ BIST Structos Cosnecfos Floe Gande
17 i o e e B e
o Serre Srmir =

o 9 il 01 el

il M1 D b Dz |“‘i Luvin sl BEET [t i 20 gt

e el Yo Theh T3040 ODENINLEG Hieh WIFT 0w rri s getai sl

':_."::"" el i ¥y Lhs D00 1N Che Chesla NINT DISWOEEved S,

T .

i Lot TR ok v v T

1 ey B -

e

e b g,

[

Biwre. |
e ETRErmiuinemee M W
~oea |
4-17 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation
4-18 Memory BIST Training Workbook, V8.2002_1

March 2002

Memory BIST-In-Place

Example Command Flow (Setup)

Connecting BIST Structures
Example Command Flow (Setup)

¢ Load RTL bist logic

o load design object ramname_bist.v
¢ Load CTDF file

o load core description file ramname_bist.v.ctdf
¢ Define clocks

o add clock 0 clock_name

4-18 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

4-19

Memory BIST-In-Place

Example Continued (Setup)

Connecting BIST Structures
Example Continued (Setup)

¢ Specify BIST controller location and RAM/RAM collar
correspondence

o« add mbist controller <bist_controller_pathname>
<bist_controller_module_name> <memory_path_name>
-Collar <memory_collar_module_name>

¢ Switch to synthesis mode
o setsystem mode synthesis

4-19 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-20 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Example Command Flow (Synthesis)

Connecting BIST Structures
Example Command Flow (Synthesis)

¢ Run
« insert access logic

¢ Write out RTL access logic and phase decoder
« save design file_name -replace

¢ Write out CTAF file
« save core access file_name -replace

¢ Write driver files for Design Compiler and Memory BIST-In-
Place integration mode
« save driver files -logic_synthesis file_name -integration

file_name

¢ Exit

s exit
4-20 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1

March 2002

4-21

Memory BIST-In-Place

Connecting BIST Structures Results

Connecting BIST Structures
Results

¢ Core Test Access File (CTAF)

o Contains mapping information
between BIST controller and design pins

« Recommended file naming: !

— <design_name>.ctaf or .access
o Connect BIST
¢ RTL access logic and

phase decoder Ac | Structures N Int.
¢ Driver files for CTAF ‘ ‘ Mode
downstream tools Dofile

. . . _ Access Synthesis
« Design compiler synthesis script

) } Logic Driver
« MBIP integration mode
4-21 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation
NOTES:
4-22 Memory BIST Training Workbook, V8.2002_1

March 2002

Memory BIST-In-Place

Connecting BIST Structures Dofile

Connecting BIST Structures
Example Dofile

| oad design objects ranmBx4_bist.v

add nbi st controller mbistc ramBx4_bi st
/Ul/mem a -collar ramBx4_block 0

| oad core description ramx4_bist.v.ctdf
set system mode synthesis

insert access |logic

save design corel_rtl.v -replace

save access file corel_rtl.access -replace
save driver files -logic_synthesis dc.do
-bsda bsda.do -replace

exit

4-22 » Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1 4-23
March 2002

Memory BIST-In-Place

Example CTAF File

Connecting BIST Structures
Example CTAF File

BIST Controller Name
core_instance /core_b/ mbistc /
core ramgdx4_multi _bist; |

ma TR = ClKp ., T_1 = TP .,

mp Ctst_dé’ne'l c{_sag; b ¢ _BIS_T C.ontrollerto
map fail_h = cl bp; Chip Pin Mapping
enda,

procedure core_access =
TTmeplate gen tp2 , | <

core_instance /core_b/ mbistc ; |
Tycle = \ BIST Controller

force clkp 0 ; Instance Name

force core_addr_0 1 ;
force core_addr_1 0 ;

force cti_core_test_mode 1 ; \ Pro-cedure ©
. Activate a

force rstp 1 ;

Timeplate name

end; Test Path
4-23 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation
NOTES:
4-24 Memory BIST Training Workbook, V8.2002_1

March 2002

Memory BIST-In-Place

Example RTL Phase Decoder

Connecting BIST Structures
Example RTL Phase Decoder

modul e mbi p_decoder

assT gn core_aaar_en| o]

= C
assign core_addr_en[1l]= ¢

ore_aaar _0o,
ore_addr _1;

al ways @ (core_addr_en)
begin : cnt_shf
case (core_addr_en)

Core_address signal
/ chooses which BIST
controller is tested

Core_address “00”

/ assigned to isolate
all BIST controllers

Core_address “10”

/ assigned to activate

BIST controller #1

Z DUOU0.
begin
core_select 0 = 1'bl;
core_select_1 = 1'bO0;
core_select 2 = 1'bO0;
end
2" b1l0:
begin
core_select 0 = 1'bO0;
core_select 1 = 1'"bl;
core_select 2 = 1'b0;
end
endcase
end
endmodul e

4-24 + Memory BIST Training Workbook: MBIST In-Place

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

Copyright © 2002 Mentor Graphics Corporation

4-25

Memory BIST-In-Place

Integrating BIST Patterns

Integrating BIST Patterns

¢ Uses Memory BIST-In-Place Integration mode

¢ Requires
o Gate-level netlist
e ATPG library

¢ Creates design level test vector running the BIST process
o Verilog and WGL

4-25 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-26 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Integrating BIST Patterns Invocation

Integrating BIST Patterns
Invocation

¢ Can invoke with GUlI or as command line only tool
« $ bistinplace design_name -verilog -library atpg_library_name

-mteg ration
- W e e 1=
ﬁ MIST Parsers Iaregeanion Fiow Gads
———
§I gy el i e -
Hemitugmm
xwed T e Tead Bvs e §ir Loasd ars Taet Deacripiicn Filas
Ll Tk Vil i F i
o o e g Ay ey
ot k. e L B DG Raoail wel lEdldte e FLET
P Mokl iy imae il bl b Ty daesrisd el W deslgs
il TN T PN B
s Pl e W
Bl i R |_ LT L ITE T |
e
T = |
St s |
T S Ty e, LT Alert
T g L kil M b . el L6, b Sl Pl Pt .
Chesn
4-26 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

4-27

Memory BIST-In-Place

Integrating BIST Patterns Commands

Integrating BIST Patterns
Example Command Flow (Setup)

¢ Load CTDF file
o load core description ramname_bist.v.ctdf
¢ Load CTAF file
« load core access design_name.ctaf
¢ Define clocks
o add clocks 0 clock_name
¢ Switch to integration mode
« set system mode integration

4-27 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-28 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Continued Example (Integration)

Integrating BIST Patterns
Continued Example (Integration)

¢ Specify BIST controller name(s) for pattern conversion
« add pattern translation -all

¢ Run
e run

¢ Write out chip-level test patterns
« save pattern file_name [-verilog|-wgl] -replace

4-28 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1
March 2002

4-29

Memory BIST-In-Place

Integrating BIST Patterns Dofile

Integrating BIST Patterns
Example Dofile

| oad core description ranBx4_bist.v.ctdf
| oad core access my_design. ct af

add clocks 0 clock _clkl

add clocks 1 reset _rstO

set system node integration

add pattern translation -all

run

save patterns my_pats -verilog -repl ace
save patterns my_pats.wgl -wgl -replace
exit

4-29 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-30 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Integrating BIST Patterns Results

Integrating BIST Patterns
Results

¢ Verilog pattern for simulation
¢ WGL pattern for tester &

4-30 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, V8.2002_1 4-31
March 2002

Memory BIST-In-Place

Verification

Issues/Caveats Create BIST
Verification Structures

! |

‘ RTL Simulation ‘
¢ You can run simulation to ,!,
verify at two different points Connect BIST
in BIST-in-Place flow Structures
« After BIST creation
« After pattern integration

¢ Labs cover verification Synthesis

Integrate BIST
Patterns

! |

Gate-Level
Simulation

4-31 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-32 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

/O Pads

Issues/Caveats
/O Pads
¢ Designs with I/O pads attributes need to be added in Verilog

library
modul e i opadl (pad, cin, i, oen)

i nout pad,;

out put cin;

i nput i, oen;

bufifo Ul (pad,i,oen);

buf U2 (cin,pad);

specify

specparam cti_cel |l _type$i opadl = “io_pad_bidi";

specparam cti_pin_type$pad = "io_pin" ;
specparam cti_pin_type$cin = "data_in" ;
specparam cti_pin_type$i = "data_out" ;
specparam cti_pin_type$oen = "output_enable_n" ;
/Ispecparam cti_pin_type$oen = "output_enable";
/lif enable is active high.
endspecify
endmodule

4-32 « Memory BIST Training Workbook: MBIST In-Place

NOTES:

Memory BIST Training Workbook, V8.2002_1

March 2002

Copyright © 2002 Mentor Graphics Corporation

4-33

Memory BIST-In-Place

Global Signal Connections

Global Signal Connections

¢ MBISTArchitect lets you make a connection for bypass
logic
Use the Set Global Pin command to specify the global pins for pin types
clock _bypass and control_bypass
¢ For example, use this command in MBIP synthesis mode:
« SET Global Pin -clock _bypass U1l/portl
« SET Global Pin -control_bypass U2/ port2

Memory collar

Design U1 Bypass block

Bp_clk
’F ortl P
’F ore2 Test_mode

u2

4-33 « Memory BIST Training Workbook: MBIST In-Place Copyright © 2002 Mentor Graphics Corporation

NOTES:

4-34 Memory BIST Training Workbook, V8.2002_1

March 2002

Memory BIST-In-Place

BSDArchitect/ Memory BIST-In-Place

Integration

BSDArchitect / Memory BIST-In-Place Integration

Memory BIST-In-Place creates a BSDA dofile

BSDA reserves an instruction register and creates a data register for
memory BIST

BSDA uses the information in the dofile to run memory BIST
Example dofile:

add
add
add
add
add
add
set
set

save driver file -bsda bsda.do -inst mbist -reg mbist_reg -op 0011

external register nmbist_reg 2

bscan instr nmbist -reg nbist_reg -code 0011
port connection clk buf TCK

port connection cti_core_test_node buf nbist
port connection rst_| mbist nand update_dr
nontop port core_addr_0O core_addr_1
testbench para -tck 200

external _register interface mbist_reg \

-capture outl out2 -update core_addr_0 acore_addr_1

set

nmbi st interface -instr nbist -shift_in 10 10 \

-shift_out xx 10 -cycle 0 156

run

save bscan -r

4-34 « Memory BIST Training Workbook: MBIST In-Place

NOTES:

Memory BIST Training Workbook, V8.2002_1

March 2002

Copyright © 2002 Mentor Graphics Corporation

4-35

Memory BIST-In-Place

4-36 Memory BIST Training Workbook, V8.2002_1
March 2002

Module 4: Lab Exercises

The following exercises take you through the Memory BIST-In-Place process
flow illustrated in this [esson.

Exercise 10: Setting Up MBISTArchitect Outputs —You will create a memory
BIST structure using MBISTArchitect, then generate the files needed for use with
Memory BIST-In-Place.

Exercise 11: Inserting BIST Controllers using Memory BIST-In-Pta€éou
will insert the BIST controller and synthesize the design.

Exercise 12: Translating BIST Patterns to the SoC LevAk the final step in
the Memory BIST-In-Place process flow, you will translate the BIST patterns to
the chip-level.

Exercise 13: Full Flow Exercise-You will run through the entire process again
using a different design. To make things faster, you will run through various
scripts which take you through the process.

Memory BIST Training Workbook, V8.2002_1 4-37
March 2002

Memory BIST-In-Place

Exercise 10: Setting Up MBISTArchitect Outputs

The purpose of this exerciseisto use MBISTATrchitect to create the output files
needed by Memory BIST-In-Place. You will generate a BIST structure for a
design, mbip.v, that has three 4x4 RAMs and one 8x4 RAM.

Now that you are familiar with the MBISTArchitect GUI and its command line
interface, we will invoke MBISTArchitect through Memory BIST-In-Place. The
Memory BIST-In-Place GUI provides atask flow manager that makes creating
BIST structures easier. For every command that the flow guide executes, do the
following:

1. Changeto the $VBI STNWP/ nbi st 4/ r anBx 4 directory.

2. Invoke Memory BIST-In-Place
shel | > $M3C_HOMVE/ bi n/ bi sti npl ace

3. From the GUI, click on Create BIST Structures.

The BIST Structures Creating Flow Guide opens to the first step.

[=] Ll
| : :
| il BIST Structures Creation Flow Guide
SIF i dorovnal Aeccimietoid’ Der ol (il phds o)
Syrtain Fealy &
Fla Progress
i
Load Libaries Load Libaries
Aod kMemores
Spachy Algerthn Speaify the library or libraries ocontaining the
Specky Dma Backgrounds mamorlas for which you wank to create BIST circuliry.
Specify Controfer Options
&dd Cormgd Funcian Click Hiro te St Lp
Scan Logic otesols bt bt ten ol pad!
Setup Controlier MNaming il
Ganeraim 15T Logc
Specily Cutpui File Mames |
Crmd Line.., |
To sccans oibar ssasson wirdsws you soet focak closs bhes Fleow Dusds Bﬂ-l‘.'.'i M Daiil
Te reagen it, <lick the “Flowiyuds® botton an che Contial Pensl e EEE olle— |
Close |
4-38 Memory BIST Training Workbook, V8.2002_1

March 2002

Memory BIST-In-Place

4. Load the mbist.lib design library. Click Click Hereto Set Up... to set up
the Load Libraries information. In the new window, select the mbist.lib
library and click L oad. Close this window.

5. Click Next >>> to move to the Add Memories step, then set up the Add
Memories information as shown. Y ou will be adding one 8x4 RAM and
three 4x4 RAMsfor BIST insertion. This shares multiple RAMs with one
BIST controller.

=l B

— 3Specify the M 1 Sg|ect Jded
Availahle dels Added Models

Y : Y
—— 2. Click

% 3. Select
T 4. Click 3 times

= P Delete selected

== Add ==

el

KModel Information for "ramgxd"

Technology : samplel
Vendor : sample
Version : 1.0
Mz Address : T

Address Width
Data Width : 4 F]

Pl =
(5. Click)

Ok : | Cancel | Tum On Query Help |

6. Continue to the next step in the flow guide. Since you will be using the
default algorithm setting, there is no need to set up any information for this

step.

7. Continue to the next step in the flow guide. Y ou are now at the Specify
Controller Options step. For this exercise, you will create multiplexers

Memory BIST Training Workbook, V8.2002_1 4-39
March 2002

Memory BIST-In-Place

outside of the controller, in the BIST collar block, and create the necessary
output files for use with Memory BIST-In-Place.

Crabrmiler Tesi I1vila | Conirsker | Hiss Limitrel
Tpilees bl i T B egrostels | iz T Lisja Fi g | b
Hurmbier af Memory bl Bessn ;0

Tasl Darsh Oock Marad = 103 B - vl M Oack Cynibrdnits Coniofei B Fakreg Edpe ol Oocl)

| Prevenl Savaitsnsse Aecesy of & Seeps Sldmess fmm kaotiphs Peris Duneg Resdfeie Oparsioss
1. Select Crermrle e Faliraan
faki™ Conir Gsgral
BART -jn- Fiace Informatan
Ly R

2. Deselect

T TR

j
N L

L i

= patiplexors thal me Located inskie Conirsier

. Cmilperalisic
B Onck Galmng
_ Bynchrenes Neasl Sgnal

Sopasstial Te# ToF Moy

- P Slages

TTTHL R ST sipul Sages t i
3. C|ICk/
it iusiedd) i Sy o

8. From this point on, you will want to use the default settings. Click
Next >>> until you get to the Generate BIST Logic step.

9. Click Next >>> to run the BIST circuitry generation process.

10. Click Next >>> until you get to the Save Results step. Set thisup to
generate BIST-In-Place files, then click OK.

11. Click Next >>> twice and Close Flow Guide.

12. From the MBISTArchitect command line window, list the generated
outputs.

MBISTA> system |s ram8x4*

4-40 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

13.

14.

15.

16.

Because you specified for the tool to save Memory BIST-In-Place
information, MBISTArchitect generated atotal of FIVE files. Thesefiles
include:

* ram8x4 _multi_bist.v — The RTL-level BIST logic.

* ram8x4_multi_bist con.v— The connection model for the controller
and the RAM collar.

* ram8x4_multi_tb.v— The testbench that instantiates and tests the BIST
model.

e ram8x4_multi_bist.v.ctdf — The CTDF file.

* ram3x4_multi_bist.wgl — The WGL pattern file.
Examine the generated outputs.

Exit MBISTArchitect.

Exit Memory BIST-In-Place.

Compile the model outputs and simulate the testbench to verify the BIST
structure using the given script.

shel | > runnmsi m

Answer “No” to the question about finishing.

Memory BIST Training Workbook, V8.2002_1 4-41
March 2002

Memory BIST-In-Place

Exercise 11: Inserting BIST Controllers using Memory
BIST-In-Place

In this exercise, you will be continuing through the design flow of Memory
BIST-In-Place, building on the data created in the previous exercise. Thisexercise
steps you through the process of inserting BIST controllers on the RTL level.

1. Ensurethat you are still in the $MBISTNWP/mbi st4/ram8x4 directory.

2. Invoke Memory BIST-In-Place in synthesis mode.

shel | > $M3C_HOVE/ bi n/ bi sti npl ace MBI P.v \
-verilog -lverilog vlib -synthesis -nogui

Memory BIST-In-Place has two modes upon which you can invoke the
tool: synthesis and integration. Here we invoked in synthesis mode in order
to replace aRAM with the BISTed RAM generated in the previous
exercise. This mode also creates access logic to a BIST controller and a
connection to an SoC. All outputs in this mode are at the RTL level.

The -Iverilog switch specifies the Verilog RAM library used in the design
file.

3. Load the BISTed RAM information.
SETUP> load design objects ram8x4_multi_bist.v

4. Scheduletheinsertion of the BIST controller into the SoC design. Actual
insertion does not take place until you transition the tool into the Synthesis
mode.

SETUP> add mbist controller core_b/mbistc ram8x4_multi_bist \
mem_a -c ram8x4_multi_bist_ram8x4_block_0\
core_b/mem_b -c ram8x4_multi_bist_ram4x4_block_1\
core_c/mem_c -c ram8x4_multi_bist_ram4x4 block 2\
core_c/core_e/mem_d -c ram8x4_multi_bist_ram4x4 _block_3

This command places the BIST controller in /core_b/mbistc.

Y ou can also run the add_mbist.do dofile to keep from having to type the
whole thing.

4-42 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

5. Load the core test description file.

SETUP> load core description ram8x4_multi_bist.v.ctdf
Thisfile contains information on how to test and isolate a BIST controller.

6. Switch to Synthesis mode.

SETUP> set system mode synthesis

7. Insert accesslogic.
BISTINPLACE> insert access logic

The Insert Access Logic command initiates all the actions specified during
the setup mode. These include:

* Replacement of memories by the BIST collar equivalents.
e Connection of the BIST collarsto the BIST controllers.

* Insertion of the MUXes to provide access to the BIST controller from
SOC pins.

* Insertion of logic to provide isolation conditions for the BIST
controller.

8. Savetheresults.

a. Savethe RTL level accesslogicto corel rtl.v and modified SoC netlist
to BIP_cti.v

BISTINPLACE> save design corel _rtl.v -all -replace

b. Savethe CTAF file which includes information on how to access the
BIST controller from the SoC level.

BISTINPLACE> save access file corel_rtl.access -replace

c. Savethe script files necessary for downstream tools.

BISTINPLACE> save driver files -logic_synthesis dc.do -include \
MBIP_cti.v -integration int.do -replace

Memory BIST Training Workbook, V8.2002_1 4-43
March 2002

Memory BIST-In-Place

The scripts saved are as follows:
* dc.do — Design Compiler script for the RTL access logic.

* -include BIP_cti.v — Inserts an include statement in the SoC level
netlist with the names of the synthesis-generated files.

* int.do — Script file for Memory BIST-In-Place integration mode.
9. Exit the tool.

10. At this point, you will synthesize the RTL design using a logic synthesis
tool such as Design Compiler. Since we cannot run Design Compiler here,
examine theunDC anddc.do scripts provided in this directory.

4-44 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Exercise 12: Translating BIST Patterns to the SoC
Level

In this exercise, you will be continuing through the design flow of Memory
BIST-In-Place, building on the data created in the previous exercise. Thisexercise
steps you through the process of tranglating the BIST patterns to the SoC level.

1. Ensurethat you are still in the $MBISTNWP/mbi st4/ram8x4 directory.
2. Examine the dofile int.do. It should look something like this:

| oad core description ranBx4 nmulti _bist.v.ctdf
| oad core access corel rtl.access

add clock 0 clkp

add clock 1 rstp

set gate report error

set gate |level design

set drc hand c2 ignore

set system node int

report cores

add pattern translation -al

run

save patterns mapped.v -verilog -repl ace
save patterns nmapped.wyl -wgl -replace
exit -d

Thefirst step isto load in the core test description file
(ram8x4_multi_bist.v.ctdf), which describes how to get in to test mode and
isolation mode of the BIST controller, and core accessfile

(corel _rtl.access), which describes the procedure for accessing the BIST
controller for test purposes.

After defining the design’s clocks (clock=clkp and reset=rstp), you set the
system mode to cti or integration mode. This initiates a set of design rules
checks. Then you tell the tool to translate all patterns (Note: If you have
multiple memories and/or multiple controllers, you could translate patterns
for only a subset of these), and then run, which creates chip-level vectors to
control the BIST operation. You then save patterns in both Verilog (for
simulation/verification) and WGL (for test program) formats.

Memory BIST Training Workbook, V8.2002_1 4-45
March 2002

Memory BIST-In-Place

3. Invoke Memory BIST-In-Place in integration mode. Y ou will be invoking
on the dofile you created in the previous exercises.

shel | > $M3C_HOME/ bi n/ bi stinplace MBIP_cti.v -verilog \
-lib atpglib -integration -dof int.do -nogui

4. Scroll back through the transcript to see the results of the steps described
previoudly.

5. Verify the chip-level BIST test patterns.

This step performs afinal simulation of the chip-level BIST operation,
simulating them to ensure there are no mismatches.
shel I > runfinal sim

Answer “No” to the question about finishing. You should see the comment
“No error between simulated and expected patterns.”

4-46 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

Exercise 13: Full Flow Exercise

This exercise follows the same process flow as the previous exercises, but gives
you the opportunity to work on a different design. This exercise demonstrates the
use of MBISTArchitect for generating BISTed memory models. In addition, this
exercise takes you through the process of inserting BISTed memories and
connecting the BIST circuitry at the chip-level with Memory BIST-in-Place (an
option to MBISTArchitect). This exercise goes through the entire chip-level
memory BIST process.

1. Changeto the $MBI STNWP/ nbi st 4/ pi cdr anf dat a directory.
2. Invoke MBISTArchitect.

First you will invoke MBISTArchitect to generate a BIST structure for a
RAM called picdramin the design design_noscan.v.

shel | > $M3C_HOVE/ bi n/ nbi st archi t ect
3. Load adesign library and add memories.
Click on the Memory models block in the MBISTArchitect Control panel.

The MBISTArchitect library islocated in ../libs/ram.atpg. Click the
Browse...button to find and select the appropriate library. Navigate up one
level and into the libs directory. Select the ram.atpg library, click OK inthe
File Browser dialog and then click Load. Y ou should see two models
appear in the Available Models field.

The next step isto Add Memories. This means you are choosing the
memory models you want to BIST from the library that you just loaded.

Select picdram from “Available Models” and clieke Add >>. You should
see this model description listed under “Added Models.” If you click on
picdram, you can view model information in the “Model Information” area.

Click OK to close the Setup Memory Models dialog box.

Memory BIST Training Workbook, V8.2002_1 4-47
March 2002

Memory BIST-In-Place

4-48

4. Specify algorithms.

Click on the line between the Controller and RAM blocks in the Control
Panel. Here you can seethelist of all available algorithms the tool supports.
The March2 agorithm, which is the default (shown on the Controller
block), is the algorithm we'll be using in thislab. It is already selected by
default, so you can just Cancel out of this dialog.

. Specify controller options.

You have alot of flexibility in setting up the Memory controller. Click on
the Controller block in the Control panel to see these options.

In this case, we want to put multiplexors under the Memory collar block (as
opposed to putting them in the controller block), since thereis only one
memory being BISTed. Therefore, unselect the option to create a
configuration that has Multiplexors Located Inside Controller.

We also want to turn clock gating off so make sure you unselect the option
Clock Gating (the system clock is used for the memory).

Also, we want to insert BIST-in-placein the design, so check the option for
BIST-in-Place information. Click OK when you are finished.

. Generate BIST logic.

We are now ready to perform a Memory BIST generation. Y ou need only
click the Run button to generate the BIST logic. Notice how the
compressor block disappears from the Control Panel. That is because we
did not choose to use a compressor, but instead are using a comparator to
determine whether the memory passes the BIST process.

. Savetheresults.

Thelast step isto save al results. Click on the Save BIST...button. When
the Save BIST Results dialog appears, check all the boxesto select all the
options. Then click OK.

Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

The tool writes out atotal of six files, which you can see in the transcript
area

* piccdram bist.v — BIST Model

* picdram bist_con.v — Connected Model (RAM collar and BIST
controller)

* picdram tb.v— Test bench

* picdram bist.v_dcscript — DC synthesis script

e picdram bist.v.ctdf — CTDF file

e picdram _bist.wgl — WGL format pattern file
8. Exit MBISTArchitect.

You have just created BIST structures for your memory model - so you now
have a “BISTed” memory. In other words, you have a memory model with
a BIST collar, a BIST controller to control the BIST operation for this
memory, as well as other files (testbench, core test definition, DC synthesis
script, and WGL pattern file) that will be used downstream.

You are now ready to insert these BIST structures into the chip-level
design. For this process we will run a series of scripts.

9. Verify the operation of the BISTed model.

You are now going to run a simulation of the RTL BIST model you created.
To do this, execute the following command:

shel I > runsi ml
Answer “No” to the question about finishing.

This script compiles the BIST design objects and runs the generated
testbench on the model.

Memory BIST Training Workbook, V8.2002_1 4-49
March 2002

Memory BIST-In-Place

10.

4-50

Notice the march2 agorithm asits shown in the Wave window. Expand the
Wave window. Y ou can Zoom > Zoom Full to see the whole BIST
process, or zoom into various parts by clicking your middle mouse button
and drawing a box around a particular area. Y ou may also need to expand
the leftmost area where the signals are displayed to see their full names.

Basically what you are seeing isthe test clock (clk), the reset signal (rst_1),
the test signal (test_h), the test_done signal (tst_done), the fail flag (fail_h),
followed by the clock, address, we, din, and dout of the memory model.
Notice the read/write operations and the address incrementing up and down
the address space, as occurs during the march test. Thetst_done signal goes
high when the BIST operation compl etes.

Use File > Quit from the Model Sim EE window to close Modelsim, and
thistime enter Y es, that you want to quit.

Run BIST-in-Place synthesis.

The next step isto insert the BISTed memory and controller into the design.
We will do thisviaascript that runs the Memory BIST-in-Place tool in
synthesis mode. The end result isthat we will have an RTL design that
includes the inserted memory model with BIST collar, BIST controller,
access logic, phase decoder, and all the appropriate connections. To
perform this operation, execute the following command:

shel | > runsyn

Scroll up through the transcript of BISTINPLACE. The main steps that
were performed include copying the original design, inserting the
controller, connecting the controller to the memory, and replacing the
memory with the BISTed memory. The tool then creates access logic to the
chip-level, mapping the controller 1/0 to chip-level pins. The tool then
saves the design (mbip_rtl.v) and access file (mbip.access).

The design file (mbip_rtl.v) now needs to undergo synthesis, as the next
phase of BIST-in-place, integration mode, requires a gate-level design.
Integration mode also uses the access file (mbip.access) as described in the
next step.

Memory BIST Training Workbook, V8.2002_1
March 2002

Memory BIST-In-Place

11. Run BIST-in-Place integration

In anormal design flow, you would synthesize the RTL design created
during BIST-in-Place synthesis (mbip_rtl.v) to gates. However, dueto time
constraints, we will use a design that has aready been synthesi zed.
Therefore, the final step isto perform rules checking on the gate-level
design to ensure safe testing when the access path is sensitized and then
create chip-level patternsto initiate the memory BIST operation. Thisisall
done in the integration phase of BIST-in-Place.

To view the steps the tool will perform, view the integration script, runint.
It should look as follows:

$MEC_HOVE/ bi n/ bi sti npl ace desi gn_noscan_cti.v -verilog \
-lib ../libs/atpglib -int -nogui <<!!

| oad core description picdrambist.v.ctdf

| oad core access nbip. accessl

add cl O rantl k1l

add cl 1 clk2

set sys mcti

add pattern translation -al

run

save pattern mapped.v -verilog -r

save pattern mapped.wgl -wgl -r
I

Thefirst step isto invoke Bl ST-in-Place on the synthesized Verilog design
(design_noscan_cti.v). You then load in the core test description file
(picdram_bist.v.ctdf), which describes how to get in to test mode and
isolation mode of the BIST controller, and core access file (mbip.accessl),
which describes the procedure for accessing the BIST controller for test
purposes.

After defining the design’s clocks (clock=ramclk1 and reset=clk2), you set
the system mode to cti or integration mode. This initiates a set of design
rules checks. Then you tell the tool to translate all patterns (Note: If you
have multiple memories and/or multiple controllers, you could translate
patterns for only a subset of these), and then run, which creates chip-level
vectors to control the BIST operation. Y ou then save patterns in both
Verilog (for smulation/verification) and WGL (for test program) formats.

Memory BIST Training Workbook, V8.2002_1 4-51
March 2002

Memory BIST-In-Place

12.

4-52

To run the integration process, execute the script:

shel | > runint
Verify the chip-level BIST test patterns.

This step performs afinal simulation of the chip-level BIST operation,
simulating them to ensure there are no mismatches.

To perform this checking, execute the following command:

shel | > runsi n?2

You should see the comment “No error between simulated and expected
patterns.”

Memory BIST Training Workbook, V8.2002_1
March 2002

Module 5
Memory Modeling for
MBISTArchitect

This module gives you a basic understanding of how to create, load and verify
MBISTATrchitect memory models. Thelab exercises at the end of thismodule also
give you experience creating, verifying and troubleshooting a variety of memory
model types.

Objectives

Upon completion of this module, you will be able to:
* Defineinputs and outputs.
¢ Understand clocking schemes.
¢ Understand memory models.

¢ Understand troubleshooting procedures.

Memory BIST Training Workbook, 8.2002_1 5-1
March 2002

Memory Modeling for MBISTArchitect

A Memory Model:

A Memory Model:

¢ Is an abstract data model that defines the memory ports and
the read/write protocol of each port

Is the only “design” input to MBISTArchitect
Is not a simulation model

Uses a basic DFT library model description
Adds its own constructs to support BIST insertion
Ignores the constructs it does not need

3-2 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The MBISTATrchitect tool uses an abstract data model that defines the memory
ports and read/write protocol of each port. This model adds its own constructs to
support BIST insertion. The memory model isthe only input to MBISTArchitect.
See the next slide for an example of amemory model and a description of memory
model syntax.

Y ou can add or change memory models using the Memory Model Editor in the
MBISTATrchitect Control Panel. See “Memory Model Editor” on page 5-fbr a
sample of the Memory Model Editor.

5-2 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Memory Model Syntax

Memory Model Syntax

model model _name(list_of_pins)(
bist_definition (

address <name> (list_of_pins);
data_in <name> (list_of_pins);
data_out <name> (list_of_pins);
data_i nout <name> (list_of_pins);
clock <pin> <active_state>;
write_enable <pin> <active_state>;
read_enabl e <pin> <active_state>;
out put _enabl e <pin> <active_state>;
chip_enabl e <pin> <active_state>;
control <pin> <active_state>;
dont _touch <name> <active_state> <dir>;

Input/Output Definitions

tech = <tech_name>;
vendor = <vendor_name>;
version = “number”;
message = “message_text";
address_size = <number>;
min_address = <lowest address>;
max_address = <highest address>;

Memory Identification

data_size = <data_bus_bits>; Memo ry Size Information

addr_inc = <number>
write_port (
write_cycle (...))
read_port (
read_cycle (...))
) /I end bist_definition
) // end model description

S —

Read and Write Cycles

3-3 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The MBISTArchitect tool shares the library format used by the DFT/ATPG tools
FastScan, FlexTest, and DFTAdvisor. Y ou need only to add the special
“bist_definition” section if you have an existing memory model in the DFT library
format. MBISTArchitect does not use the gate-level simulation primitive
information found in the primitive construct. The other DFT/ATPG tools use this
information, but MBISTArchitect simply ignores it.

The term “pin” in this context refers to the individual inputs and outputs of the
memory at the cell boundary. A pin can be defined as a scalar bit or an array. An
array represents a bus and is sometimes referred to as a “wide pin”. The pin name
must exactly match the port names specified in the associated Verilog or VHDL
simulation model (both in name and case).

See“Loading Library Files and Models” on page Hdr instructions on how to
load the library file, add a memory model, and run MBISTArchitect to generate
memory BIST logic.

Memory BIST Training Workbook, 8.2002_1 5-3
March 2002

Memory Modeling for MBISTArchitect

Memory Model Editor

Memory Model Editor

|

erpasry BEET Betup

=y

I

*1

|

il
A

Al

F

3-4 + MBISTArchitect: Common BIST Variations

Copyright © 2002 Mentor Graphics Corporation

Y ou can add or change memory models using the Memory Model Editor in the
MBISTATrchitect Control Panel. For more information on how to use the Memory
Model Editor, refer to “Using the Memory Model Editor” in Chapter 3 of the

MBI STArchitect Reference Manual.

Memory BIST Training Workbook, 8.2002_1

March 2002

Memory Modeling for MBISTArchitect

Loading Library Files and Models

Loading Library Files and Models

¢ Follow these steps to run MBISTArchitect, load libraries
add memories, and generate :

Launch MBISTArchitect
Load a library

Add a model

Run MBISTArchitect
Save the output and exit

* & & oo o

3-5 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Follow these steps to invoke, set up, and run the MBISTArchitect tool using the
minimum set of commands needed to generate memory BIST logic.

1. Invoke MBISTArchitect.

To invoke MBISTArchitect, enter the following command at the shell:

shel | > $M3C_HOVE/ bi n/ mbi st ar chi t ect
2. Load aLibrary.

After tool invocation, you must load a DFT library that contains the
memory model(s) for which to add BIST logic. To load a DFT library
interactively during the session, enter:

MBISTA> load library dft.lib

Memory BIST Training Workbook, 8.2002_1 5-5
March 2002

Memory Modeling for MBISTArchitect

5-6

Where dft.lib isthe name of the library. You can also load alibrary at
invocation by using the -Lib switch.

. Add aMemory Moddl.

The next step isto add amemory model from the loaded library to the BIST
configuration. For example:

MBISTA> add memory models ram4x4

Where ram4dx4 is the name of the memory model for which you want to add
BIST logic.

. Run MBISTArchitect.

After you have loaded a library and added a memory model, you can run
MBISTATrchitect to generate default BIST logic:

MBISTA> run

. Save the Output.

MBISTATrchitect savesfilesin Verilog (default) or VHDL format. After
memory BIST generation, you need to save the outpuit:

MBISTA> save bist

. Toend an MBISTArchitect session, enter:

MBISTA> exit

Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Defining Inputs/Outputs

Defining Inputs/OQutputs

Address <4+— Address bus

data_in <4— Datainputbus
data_out Data output bus
data_inout <4+——— Data bus (bidirectional)
Cl ock — Memory clock(s)
write_enable <«+—— Control signals

read_enabl e
out put _enabl e
chip_enabl e

control <4+—— Additional control signals if reserved
keywords insufficient

dont _touch +— Pins that are not controlled or
observed by the BIST controller

3-6 + MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Defining Buses Y ou should define the address and data buses in the same manner
as the simulation model for the memory. If abusin your simulation model is
declared as an array, then declare the same bus in your memory model header as
an array. Consider the following memory model header segment:

nodel ramix4 (A, DI, DO VEN)

(bist _definition (
address A (array = 1:0;);
data_in D (array = 3:0;);
data _out DO (array = 3:0);

When MBISTArchitect reads this model, it assumes the address and data ports on
the HDL model are declared asarraysand will usethe STD_LOGIC_VECTOR as
the data type when generating the matching bus in the BIST controller. You can
changethesignal typeto STD _CLOGIC_VECTOR to specify it at the end of each
Statement.

Memory BIST Training Workbook, 8.2002_1 5-7
March 2002

Memory Modeling for MBISTArchitect

Now consider the following memory model header segment:

nodel ranmdx4 (DO3, DO2, DO1, DOO, Al, A0, WEN, DI3, D2, D1,
Dl 0)
(bist _definition (

data _out d_o(DG3, DO2, DOL, DQO);

data_in di (D3, D2, D1, DO);

address addr (A1, A0);

Each bus element in the model header is declared as an individual scalar bit, the
same as the simulation model. Notice that the bist_definition segment allows you
to collect the individual bit under a single bus name and the ordering is
significant. MBISTArchitect assumes that the bit order is from most significant
(MSB) to least significant (LSB). MBISTArchitect uses this pin ordering when it
connects the BIST controller to the RAM model. Thus, mismatches between the
specified library pin ordering and the HDL model pin ordering can result in an
improperly-connected BIST controller.

Memory Clocks Y ou can define one or more memory clocks for synchronous
memories.

Control Signals The active state can be either high (default) or low. During the
read and write cycles, control signals always remain at the value opposite this
state except when explicitly asserted. The following example declares an active
low write enable named “wrt”:

wite enable wt | ow,

If the control signal operates a bidirectional data bus, the active state required to
control tri-state buffers for the data bus follows the signal’s active state. You must
specify eithettri_| ortri_h to define this tri-state output buffer control state.

When you define a model with a bidirectional data bus, you must specify a tri-
state output control state for at least one of the defined control signals.

5-8 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

The Dont_touch Keyword

The Dont_touch Keyword

¢ Memory pins notconnected to the BIST controller
« Examples: supply pins, status output pins

ramvdd oectram

N

BIST

sys_addr —p

sys_din —» addrag dout\

\

Asynchronous

sys_wen ——» State dat asy RAM

sys_rst_| ——» Machine

sys_hold_I ——»

sys_test_h ——»

test_clk —u_—l fail _h_

clk

test_done

3-7 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The dont_touch keyword allows you to specify pins that have no need to be
controlled by the BIST controller. The syntax for specifying dont_touch portsisas
follows:

dont touch pin_nane assert_state direction,

The assert state is either high (default) or low and defines the pin’s active state.
Dont_touch pins always remain at the vabpposite their assert state. The
direction is eitherinput or output.

The default is input for all vector types except “data_out” and “data_inout.” The
following example declares two dont_touch ports — an active low input port
named “clr” and an active high output port named “refcntso”:

dont touch clr |ow,
dont touch refcntso out;

Memory BIST Training Workbook, 8.2002_1 5-9
March 2002

Memory Modeling for MBISTArchitect

Understanding Clocking Schemes

Understanding Clocking Schemes

¢ Asynchronous Memory

« Nomemory clock input

« A changein inputs starts aread or write cycle
¢ Gated Memory Clock

« In system mode,the memory clock connects through a mux to
the system clock

« Intest mode,the memory clock connects to a controller-
related clock signal

¢ Non-Gated Memory Clock

« Memory clock (mem _clk) connects to the system memory
clock

3-8 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The Primary Goal

Y our job in creating amemory model isto define aread and write cycle that meets
the minimum timing constraints as specified by the manufacturer, but at the same
time runs at the fastest test speed. Introducing just one extratest clock cycleina
read operation, for example, can increase the total test time for a March2
algorithm by 50%.

There are different clocks that you need to reference when defining the read and

write cycles for a memory model. This discussion refers to the “BIST clock” as

the primary input clock to the BIST controller. This clock is named “clk” by

default and is used to advance the BIST state machine to the next state. As the
state machine enters each state, memory control signals are asserted or de-asserted
and memory bus values can be changed. The term “memory clock” (mem_clk)
refers to the clock input to a synchronous memory. A memory can have one or
more clock inputs. Asynchronous memories don’t have a clock input. During

testing, a “test clock” is also generated as described next.

5-10 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Understanding Clocking Schemes

Understanding Clocking Schemes (Continued)

Non-Gated Clock

Gated Clock
Ctrl Mem
A Test_h
BIST Clock Ctrl
1

System Clock System BIST Clock |

During test, ATE drives Mem

BIST_clock and Sys_clock A

pins with the same BIST Clock

“Signal” Related Signal —1

System Clock o

MBISTArchitect has a variety of clock connection options. Use

these commands to control the clock connection:
Setup Memory Clock [-System -Test[Noinvert|Invert]]|-Control]
Set controller clock [-positive|-negative]

3-9 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

* Non-Gated (also referred to as System)—During test (and during actual
system use), the memory clock is driven by a system clock.

e Gated —There is a MUX (gate) attached to the clock input of the memory.
During system use, the MUX is set so the memory clock is driven by a
system clock. During test mode, the MUX is set so that the memory is
driven by a BIST related clock. There are three important variations of this
described in the following clocking diagrams.

The key advantage of the Non-Gated approach is that it greatly simplifies getting
clock timing correct for normal system use. Depending on the clock-tree
generation process and the severity of the minimal skew requirements, using the
Non-Gated approach can be almost mandatory. It is the default mode.

The major disadvantage to this approach is that the tester must be set up to drive
the system clock input and the bist clock input with the same signal. There are
potential skew issues with this due to tester limitations. However, these are often
mitigated by the tester clock being much slower than the expected system clock.

Memory BIST Training Workbook, 8.2002_1 5-11
March 2002

Memory Modeling for MBISTArchitect

Clock Connections

Clock Connection

Test_h Ctrl

Ctrl Test_h

Mem rl>y
Mem

BIST Clofk |

BIST Clqck

A
System|Clock o -
System Clock 0

Gated Clock Test [noinvert]

Gated Clock Test Invert

MBISTArchitect has a variety of clock connection options. Use

these commands to control the clock connection:
Setup Memory Clock [-System| -Test[Noinvert|lnvert]]-Control]
Set controller clock [-positive|-negative]

3-10 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Clock Connection (Continued)

ctrl
Test_h
Logic
Mem
N
BIST Clogk

System €Clock |

Controller

Note: Fastest possible clock out of ctrl is 1/2 rate of the BIST clock or even
slower

MBISTArchitect has a variety of clock connection options. Use

these commands to control the clock connection:
Setup Memory Clock [-System|-Test[Noinvert|lnvert]]|-Control]
Set controller clock [-positive|-negative]

3-11 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

5-12 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

When Memory clocking is set to anything other than -System, there will be a
MUX instantiated which will select between a system clock and a BIST-related
signal. ThisMUX will be very obvious when you use commands that place MUX
related RTL in the collar. Otherwise, it may be buried in the BIST controller RTL.

* When the SETup MEmory Clocking -Test command is specified, the BIST
clock will be sent to the BIST controller and directly to the MUX.

* When the SETup MEmory Clocking -Test INVERT command is specified,
the BIST clock will be routed to the BIST controller. It will be passed
through an inverter and then routed to the MUX.

* When the SETup MEMory Clocking -Controller command is specified, the
BIST controller will use internal logic to drive asignal that isto act asthe
clock.That signal will be routed to the MUX. The BIST controller itself isa
synchronous, single-phase clock, design. So, it cannot change the state of
this clock signal any faster than once per BIST clock. So, the clock it
generates cannot be any faster than one-half the speed of the BIST clock
(one clock for going high, one-clock for going low). Depending on the
operation needed, the BIST controller may keep the output clock constant
for several BIST clock cycles. Often, thisisto calculate and set up
conditions for arising clock edge on the memory.

Thereisaseparate command: SET COntroller Clock [-positive | negative] that can
be used in conjunction with the clock connection command to deal with memories
that lock their inputs on falling edges rather than rising edges. Also, the two
commands can be used to effect half-cycle phase shift which can overcometiming
violation issues. Thisis discussed later in this workbook.

Memory BIST Training Workbook, 8.2002_1 5-13
March 2002

Memory Modeling for MBISTArchitect

No Memory Clock

No Memory Clock

¢ Asynchronous memory
¢ test clk drives the BIST state machine

Write Cycle
1 1
BIST 1 1
agor] test_clk [L L[]
din — addr dout ! !
Asynchronous r H
wen State din RAM addr X : 4: X
rst_I —— | Machine wen 1 1
hol d_I ——> . : 4:
test _h ——»] |, din X 1] X
< 1 1
test_clk —..—l fail_h
cl k wen
test_done
1 /l

Change Latch Write
Inputs Address Input Data

3-11 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Asynchronous memories don't have a clock input, so a change in one or more of
the inputs starts a read or write cycle. In this write cycle example, a change on the
addr address bus starts the write cycle. After a minimum settling timeyeine

write enable signal goes active low which causes the memory to latch the new
address. Sometime before then signal goes inactive high, new data is placed on
thedin bus and allowed to settle. Whemen goes inactive high, the data is written

to memory and the write cycle ends.

5-14 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

A Gated Memory Clock

A Gated Memory Clock

While under test, mem_clk is driven by the BIST controller.
Set Menory Clock -control

Write Cycle
test_clk | I | I | | | I | |
BIST 1
| k—p]
sys_fem.¢ mem cl k mem_clk | I | | |
1
addr — addr Synchronous dd .
RAM Data_o aadr X 1
dat a — dat a ~_
wen ——» State - 1
| Machine wen .
rett — din X 1
hold | —» :
test_h —}+--—---+ - :
wen _|—|—l—
test_clk _’_I,k fail _h_ 1
c]
1
test _don€
Change
Inputs
Latch Write
Address Input Data
3-12 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

If the memory model is synchronous, the default is -system. Noticein the
illustration that a reference clock called test_clk drivesthe BIST state machine.
When test_h goes active, the multiplexor prevents the sys clk from reaching the
memory and the BIST state machine drives the mem_clk input. The BIST
controller drivesthis clock input as it would any other control signal. Notice that
the mem_clk frequency is half the test_clk frequency (at best), and that the
controller has total control over the memory clock.

Memory BIST Training Workbook, 8.2002_1 5-15
March 2002

Memory Modeling for MBISTArchitect

A Non-Gated Memory Clock

A Non-Gated Memory Clock

Non-gated mem_clk is in phase with test_clk

Setup Memory Clock -System (default)

mem_cl k

BIST

Write Cycle

test_clkllllllllllll

memclk||||||||||||
addr | Synchronous _% -

dat a

addr < RAM dout

~
wen State din <

rst_| Machine T wern——>1

hold_|
test_h

test_clk—»—l fail _h

A

clk

test_done

T
:

addr X
din X validiData X
1

wen | |

1
Change
Inputs
Latch Write
Address Input Data

3-13 « MBISTArchitect: Common BIST Variations

Copyright © 2002 Mentor Graphics Corporation

If your design environment doesn’t permit a gated clock, MBISTArchitect can
generate a BIST controller without one, as shown in the illustration. In this case,
the source for theest_clk is also tied to the mem_clk and they are both the same
frequency and in phase (assuming no skew). Assuming that you must allow for
minimum setup and hold times, the total test time for this non-gated clock scheme
is about the same as the gated clock scheme (four test clock cycles). By shifting
the two clocks out of phase, it is possible to cut this write cycle time in half.

5-16

Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

An Inverted BIST Clock

An Inverted BIST Clock

Non-gated mem _clk is 180 out of phase with test_clk
Setup Memory Clock -Test invert

Write Cycle

1 1
1 1

mem cl k test_clk | I | l | |
sys_mem cl k — 1 1
BIST 1 1

mem_clk
addr —»| Synchronous % | I | | | Invert of
> T ¥ Test_clk
addr < | RAM dout 1 I
data — > ~ ~_ : 1
wen —> State din =~ - addr X | New Afidress | x

rst_| — Machine wen K :

— . T T)<___
hotd_l din X | Valid|Data |
test _h —> < .
1 1

J fail

test_clk —» Tk _h wen U

test_done | \
Change
Inputs
Latch Write
Address Input Data
3-14 + MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Y ou can use a setup command in MBISTArchitect to tell the BIST state machine
to respond to the falling edge of the clock. In this case, the falling edge of the
clock input to the state machine causes the memory input buses and control lines
to change. One half cycle later, the rising edge of the clock input to the
synchronous memory capturesthe input data. This scheme reducesthe write cycle
from four cycles to two, and thus cuts the write cycle test timein half.

Memory BIST Training Workbook, 8.2002_1 5-17
March 2002

Memory Modeling for MBISTArchitect

Test Clock

A Test Clock

Memory clock is connected to a mux. In test mode, the clock is

driven from a signal generated by the BIST controller.
Setup Memory Clock -Test

Test Clock
Ctrl Mem Ctrl Mem
-invert -noinvert

3-15 +« MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

When using the test clock scheme, the memory clock connects to a mux. In
system mode, the clock is driven from the system memory clock. In test mode, the
clock isdriven from asignal generated by the BIST controller. Thissignal isa
reassignment of the BIST controller clock. The generated RTL will be modified
for the controller assigned test clock scheme to include the controller assignment
of the clock and the clock mux.

Two types of test clock connection are supported, -noinvert and -invert.

5-18 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Control Retention Test Delay

Control Retention Test Delay

Write cycle Retention time Read/write cycle Retention time Read cycle
w
RAM1 — R_, > >

(Bist controller 1)
RAM2

\

(Bist controller2)

start_retention_h

test_resume

tst_done

3-16 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

MBISTATrchitect lets you control the delay value used in the WGL and simulation
test bench when waiting to assert the resume signal. Thisis used to continue the
BIST session following aretention test synchronization delay.

Y ou can specify the delay value, as a multiple of the number of controller clock
cycles. The default valueis 100 cycles. The report environment reports the delay
value.

The diagnostics capability isadded by using the Setup Retention Cycles command
followed by avalue defining the delay in cycles. For example, to set adelay value
of 50 cycles, enter:

setup retention cycles 50

Memory BIST Training Workbook, 8.2002_1 5-19
March 2002

Memory Modeling for MBISTArchitect

Memory Ports

Memory Ports

¢ Memory ports define their read and write capability
« Can have any number of read ports, write ports or read/write

ports
Write J —>{ A_addr Write port
A_di . .
Port — Aien Write operation only
—> B_addr
Esratd {ﬁ B_ren Bl Read port
_ Read operation only

lread, 1 write

Read/Write A e Read/Write port
Port 3 A_din A_dout b—>
A_wen .
- Both read and write
Read/Write _J —=2] B-addr operations
B_d
Port -%:3 B:wlgn B_dout |—>

2 read/write
3-17 + MBISTArchitect: Common BIST Variations

Copyright © 2002 Mentor Graphics Corporation

A memory component can have any number of read ports, write ports, or
read/write ports. The memory model syntax can match the port scheme of any
memory component.

5-20 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Defining Memory Ports

Defining Memory Ports

¢ Each unique port requires its own port definition
¢ Portdefinitions are not explicitly labeled

¢ MBISTArchitect identifies a port by the signals
controlled within the read/write cycles

e evce ¢ Write Port
y « Contains write cycle only
write_port (‘ Read POI’t

write_cycle (

_— « Contains read cycle only
: ¢+ Read/Write Port

read_write_port (. .
read_cycle (« Contains both aread cycle and write
""" cycle
write_cycle (
s
)
3-18 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Each unique port requiresits own port definition and the definitions are not
explicitly labeled. MBISTArchitect identifies a port by the signals controlled
within the read/write cycles. Only the write port is identified as a port for the add
mbist algorithm command.

Thefirst port that is defined within the bist_definition isreferred to as port #1 and
the MBISTATrchitect Model Editor will enter acomment identifying it as such.
The second port defined in the model will be referred to as port #2, and so on.

Memory BIST Training Workbook, 8.2002_1 5-21
March 2002

Memory Modeling for MBISTArchitect

Port Definition Example 1

Port Definition Example 1

¢ Example: 1lread, 1 write memory

write_port (
write_cycle (
change A_addr;
. change A_din;
Write %:; A_gfidr wai t ;
Port 2] A_din assert A_wen;
—> A_wen wai t;
)
—>| B_add
Read —aadt B_dout b—>)
Port ——>{ B_ren
read_port (
lread, 1 write read_cycle (
change B_addr;
wai t ;
assert B_ren;
wai t ;
expect B_dout;
wai t;
)
)
3-19 + MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
5-22 Memory BIST Training Workbook, 8.2002_1

March 2002

Memory Modeling for MBISTArchitect

Port Definition Example 2

Port Definition Example 2

¢ Example: 2 read/write memory

Port AZwen

Port —> B_wen

2 read/write

i —>1 A_addr
Read/Write { A din Aot

. ——>1 B_addr
Read/Write % B_din B_dout —>

read_write_port (

read_cycle (

change A_addr;

wai t;

expect A_dout;

wait;

write_cycle (

change A_addr;

change A_din;
wai t;
assert A_wen;
wai t;

)

read_write_port (

read_cycle (

change B_addr;

wait;

expect B_dout;

wait;

)
write_cycle (

change B_addr;

change B_din;
wai t;
assert B_wen;
wai t;

3-20 + MBISTArchitect: Common BIST Variations

NOTES:

Memory BIST Training Workbook, 8.2002_1
March 2002

Copyright © 2002 Mentor Graphics Corporation

5-23

Memory Modeling for MBISTArchitect

Read/Write Cycle Syntax

Read/Write Cycle Syntax

A addr ;

read_write_z;t—é(/ change: assign next scheduled value
on address and data buses

assert: force control signal to its
active state for one cycle

Addout (move);

write_cycle (
change A_add expect: read the expected value on
\fvg?n?e A_din; output data bus
& ; (strobe the comparator/MISR)
arts wait: advance one clock cycle
) subsequent operations occur
one clock cycle later

3-21 + MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Y ou use event statements to describe the action of the inputs and outputs during a
read and write cycle. Y ou use the change statement to assign the next scheduled
value on the address bus and data buses.

Y ou use the assert statement to force a control signal to its active state during that
test clock cycle. The control signal returnsto itsinactive state on the leading edge
of the next test clock cycle, unless asserted again with another assert statement.

The expect statement tells the BIST controller that the data on the specified busis
valid, starting with the leading edge of that test clock cycle. Thistellsthe BIST
controller that it can read the data for use with the comparator or MISR.

Inserting await statement is like inserting the leading edge of the next test clock
cycle (the clock that drives the BIST state machine). Any signals described in the
change, assert, or expect statements that follow the wait statement become active
or are valid on the leading edge of that clock cycle.

5-24 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

The Read Cycle

The Read Cycle

read_cycle (

implied clock edge (wait)
change A_addr;

wait;

expect A_dout (move);
wait;

\

test_clk | | |
®
A_addr X~ X =
=
<]
A_dout X < N
44
Tpd addr-dout Measure
A_dout

3-22 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

A read or write cycle often starts with amemory input becoming active, such asan
address bus or a chip enable line. This change occurs on the rising edge of the
clock that is advancing the state of the BIST controller. Y ou can also think of a
wait statement as arising edge of the reference clock and aread or write cycle as
starting with an implied wait statement, even though the wait statement is not
explicitly written into the model. Y ou should place an explicit wait statement at
the end of aread or write cycle to mark the end of the cycle.

In this example, the change in address marks the beginning of an asynchronous
read cycle. After a specified period, the data appears on the output data bus. Y ou
can assume that this period is less than one test clock cycle. The next wait
statement marks the next clock edge and the expect statement following that tells
MBISTATrchitect that the dataisvalid and it is okay to measure the output at that
clock edge.

Memory BIST Training Workbook, 8.2002_1 5-25
March 2002

Memory Modeling for MBISTArchitect

The Write Cycle

The Write Cycle

write_cycle (
implied clock edge (wait)

change A_addr;
change A_din;
//wait;
assert A_wen;
////Walli
)

L1 L

A_addr A X/ g
A_din of X g
<

3-23 + MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

In this asynchronous write cycle, the change in address occurs on the rising edge
of the test_clk and marks the beginning of an asynchronous write cycle. The new
input datais also changed at this time, although typically, the change could occur
later in the cycle without violating the timing constraints. The next wait statement
marks the next rising edge of the test_clk. A_wen goes active low, which latches
the address into the memory. On the next clock edge (wait statement), A_wen is
released because it is not explicitly activated in the memory model. This action
writes the data to memory and ends the write cycle.

An expect statement can include an optional move modifier that specifies when
an event executes. The move modifier means that the MBISTArchitect tool can
move this event to alater clock cycle when optimizing the BIST structure. The
move option usually appliesto data outputs. The MBISTArchitect tool uses the
move option only when it istrying to optimize circuitry while combining read and
write cycles together to form read/write/read cycles or other large cycles.

5-26 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Interpreting Data Sheets

Interpreting Datasheets

¢ Read and Write cycles can be determined from datasheets
¢ Dependenttiming constraints are handled with “wait”
statements
« Setup and hold constraints
« Sequential behavior

3-24 + MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, 8.2002_1 5-27
March 2002

Memory Modeling for MBISTArchitect

A Synchronous RAM Example

A Synchronous RAM Example

1 read/write - synchronous RAM

1 2
r—> |-
csh i
—> mem_clk 1t S a2 o
mem_clk‘ \
— addr
% din addr valid
5 6
dout 9 el [
—>{ rwb — . .
- B
—>] oeb
oeb ’
10 11
—>] csb <l
dout valid .
9 12—
1 csbsetup 5 addr setup 9 oeb tri -> active
2 csbhold 6 addr hold 10 read access
3 precharge 7 rwb setup 11 oeb active -> tri
4 mem_clk active 8 rwb hold 12 read deaccess

Read cycle timing diagram

3-25 +« MBISTArchitect: Common BIST Variations

NOTES:

5-28

Copyright © 2002 Mentor Graphics Corporation

Memory BIST Training Workbook, 8.2002_1

March 2002

Memory Modeling for MBISTArchitect

A Synchronous RAM Example

A Synchronous RAM Example (Continued)

din X valid X
l<%><—2>| <4>
csh ‘<—>
- .
—> mem_clk e _ellx// 1
% addr addr valid
. 7 8
—> ain —_
; rw
—>] rwb clout IR [
b ’
—] oeb ¢
13 12
= -
—>] csb dout din
11 14—
> -
1 din setup 6 mem_clk active 11 oeb tri -> active
2 din hold 7 addr setup 12 oeb active -> tri
3 csb setup 8 addr hold 13 read access
4 csbhold 9 rwb setup 14 read deaccess
5 precharge 10 rwb hold
Write cycle timing diagram
3-26 * MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
Memory BIST Training Workbook, 8.2002_1 5-29

March 2002

Memory Modeling for MBISTArchitect

A Synchronous RAM Example

A Synchronous RAM Example (Continued)

¢ Input/Output Definitions

model ram_1rw (addr, din, rwb, oeb, csb, mem_clk,
dout)(
bist_definition (

—>
address addr (array = 4:0;); % addr

mem_clk

data_in din (array = 3:0;);

data_out dout (array = 3:0;); din

output_enable oeb low; dout 9
write_enable rwb low; > rwb
chip_enable csb low; >
clock mem_clk high; oeb
—>| csb
tech = “technology_1";
vendor = “acme_silicon”;
version = “1.0";
message = “Synchronous SRAM, 1rw”;
address_size = 5;
min_address = 0;
max_address = 31;
data_size = 4;
3-27 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
5-30 Memory BIST Training Workbook, 8.2002_1

March 2002

Memory Modeling for MBISTArchitect

Interpreting the Read Cycle Timing

Interpreting the Read Cycle Timing

oeb
0 11
dout < valid —
— -~ 12
1 csbsetup 5 addrsetup 9 oeb tri -> active
2 csbhold 6 addr hold 10 read access
3 precharge 7 rwb setup 11 oeb active -> tri ¢
4 mem_clk active 8 rwb hold 12 read deaccess

Read cycle timing diagram

Read cycle is synchronized
by mem_clock rising edge
Look for dependencies

csb setup before mem_clk
addr setup before mem_clk
Tpd oeb to dout
Tpd mem _clk to dout
csb hold after mem_clk
addr hold after mem _clk
rwhb setup and hold???

— No -rwb is inactive
other dependencies

3-28 « MBISTArchitect: Common BIST Variations

NOTES:

Memory BIST Training Workbook, 8.2002_1
March 2002

Copyright © 2002 Mentor Graphics Corporation

5-31

Memory Modeling for MBISTArchitect

Defining the Read Cycle

Defining the Read Cycle

4 ¢ Read dependencies
test_clock - |_| . csb setup before mem_clk
« addr setup before mem_clk
addr X
« Tpd oeb to dout
« rwb remains inactive
dout X o
= « Tpd mem_clk to dout
e . csb hold after mem _clk
rwh 5
©
csb
Set memory clock
oeb Set controller clock
P
Strobe d_out
3-29 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
5-32 Memory BIST Training Workbook, 8.2002_1

March 2002

Memory Modeling for MBISTArchitect

Defining the Read Cycle

Defining the Read Cycle (Continued)

— A
test_clock I \I | |
read_cycle (
addr X\ change addr;
assert csh;
assert oeb;
dout X) wait:
1S assert csb;
rwb —S ass?ert oeb;
wait;
csb | expect dout;
wait;
oeb)
Strobe d_out
3-30 ¢« MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
Memory BIST Training Workbook, 8.2002_1 5-33

March 2002

Memory Modeling for MBISTArchitect

Interpreting the Write Cycle Timing

Interpreting the Write Cycle Timing

T ¢ Write cycle is synchronized

Tji by mem _clock rising edge

N ¢ Look for dependencies
-

« csb setup before mem_clk

N

A a o addr setup before mem_clk
;>§< o rwb setup before mem_clk

Ve « Tpd mem_clk to data valid
s

« csb hold after mem _clk

« addr hold after mem_clk

4 « rwb hold after mem_clk
« oeb setup and hold?

12
(-

>

1 din setup 6 mem_clk active 11 oeb tri -> active
2 din hold 7 addr setup 12 oeb active -> tri — - i
3 csbsetup 8 addr hold 13 read access No -oeb is for observe only
4 csbhold 9 rwb setup 14 read deaccess — o0eb can be asserted
5 precharge 10 rwb hold A
¢ No other dependencies
Write cycle timing diagram
3-31 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

NOTES:

5-34 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Defining the Write Cycle

Defining the Write Cycle

¢ Write dependencies
test_clock | | . csb setup before mem _clk
addr X « addr setup before mem_clk
« din setup before mem_clk
din " « rwb setup before mem_clk
= « Tpd oeb to dout
2 « Tpd mem _clk to data valid
rwb _§ . csb hold after mem_clk
csb — « addr hold after mem_clk
« rwb hold after mem _clk
oeb [
3-32 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
NOTES:
Memory BIST Training Workbook, 8.2002_1 5-35

March 2002

Memory Modeling for MBISTArchitect

Defining the Write Cycle

Defining the Write Cycle (Continued)

test_clock ~ | | |
write_cycle (
addr change addr;
* change din;
din assert csb;
L assert rwb;
IS
g assert oeb;
rwhb S wait;
° assert mem_clk;
csh < assert csb;
I assert rwb
oeb assert oeb;
wait;
)
3-33 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
5-36 Memory BIST Training Workbook, 8.2002_1

March 2002

Memory Modeling for MBISTArchitect

Defining Constant Values

Defining Constant Values

¢ Some signals can be held constant during both read and write
cycles
« For example, output enable, chip enable

¢ These signals can be redefined in the memory model
o« Redefine the active state to be the inactive state
« Remove the assert statements from the read and write cycles

Original Description Modified Description

bist_definition (bist_definition (
address addr (array = 4:0;); address addr (array = 4:0;);
data_in din (array = 3:0;); data_in din (array = 3:0;);
data_out dout (array = 3:0;); data_out dout (array = 3:0;);
output_enable oeb low; output_enable oeb HIGH;
write_enable rwb low; write_enable rwb low;
chip_enable csb low; chip_enable csb HIGH;
clock mem_clk high; clock mem_clk high;

3-34 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
NOTES:
Memory BIST Training Workbook, 8.2002_1 5-37

March 2002

Memory Modeling for MBISTArchitect

Defining Constant Values

Defining Constant Values (Continued)

¢ Modified read and write cycles

read_cycle (write_cycle (
change addr; change addr;
wait; change din;
assert mem_clk; assert rwb;
wait; wait;
expect dout; assert mem_clk;
wait; assert rwb

) wait;

)
3-35 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation
NOTES:
5-38 Memory BIST Training Workbook, 8.2002_1

March 2002

Memory Modeling for MBISTArchitect

Logical to Physical Mapping

Logical to Physical Mapping

¢ Example: 64-bit RAM
o« 16 words, 4 bits per word Logical Addressing
e 16 physical columns by 4 physical rows 15
« 4 words perrow

Physical Addressing o 1 2 3

T 15

P_ll
7

[

ohoON

3-36 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Externally, the memory illustrated may appear to consist of sixteen 4-bit words.
The internal physical layout of amemory is organized in a two-dimensional
matrix, in this case acommon word per row configuration. Memory designers use
different physical configurationsin an effort to reduce cell space, reduce power
consumption, increase yield (by including spare rows and columns), and
accommodate mapping to standard chip pin assignments. In this example, there
are four words per row.

Memory BIST Training Workbook, 8.2002_1 5-39
March 2002

Memory Modeling for MBISTArchitect

The Effect of Physical Topology

The Effect of Physical Topology

¢ Apply checkerboard algorithm
e Should ensureinversion between every bit

Physical topology compromises algorithm effectiveness

N\ /~\ /N /~\ JA
12 fjoy1(oy1[1\O |1 /O [ON1|OY1 [INO([1JO)fzs
pddress 8 |O0f1lof1falolafofofafofafafolafoln
4 oji1jof1f1joj1jo0foj1jol1f1j0(21}0}°"~
0 OfJ1|O0NL|2//O]J2TNO]JOA2|ONL]|2IH0O0]2)0) s
Data V 102 3\4 2 1 M 12 3\4 2 1 \/
bits
No inversions
3-37 +« MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

A checkerboard algorithm detects stuck-at-faults and shorts between adjacent

cells by writing alternating 1's and O’s to cells as viewed from a logical layout.
When the physical layout differs, the inversion of the bits between adjacent cells
doesn’t always happen, as shown in the illustration.

5-40 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Allowing for Physical Topology

Allowing for Physical Topology

¢ Solution
« Adjustthe data pattern to fit the physical topology
« Datainverted at addresses 1, 3,4,6,9, 11,12, 14

3-38 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

NOTES:

Memory BIST Training Workbook, 8.2002_1
March 2002

5-41

Memory Modeling for MBISTArchitect

The Checkerboard Algorithm

The Checkerboard Algorithm

¢ Supports basic “columns per row” architectures
¢ Library keywords define topology

e top_column =number columns (words) per row

o top_word defines muxing on address decoder
¢ Select algorithm with the following command:

« Add Mbist Algorithms Checkerboard

top_column = 4;
top_word = 0;

3-39 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

The Checkerboard algorithm reads the physical topology information from the
memory model and adjusts the output patternsto create the proper checkerboard
pattern among physically adjacent cells. When you are creating the memory
model, you must include the physical topology information by placing the
following lines within the memory model bist_definition. Often thisinformation
is not found in a standard memory data book and you must request it from the
manufacturer. top_column=<value> tells the algorithm the number of words per
row. The <value> can be any integer greater than 0. The algorithm uses this value
to ensure that the first word of each row is different than the first word of the
previous row, thus creating a checkerboard pattern. top_wor d=<value> tells if
multiplexers in the column address decoder. A multiplexer is used to select
between the bits of two words that are interleaved. If thisis the case, then writing
all 1's to one word and all O’s to the other creates a checkerboard pattern.
indicates there are multiplexers, 0 indicates there are not.

[EEY

5-42 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Y ou must use the Setup Observation Scheme -Compar e command when you
use the Checkerboard algorithm to compare algorithms. In addition, multiple
memories of different topologies can share the same controller. It isonly

necessary that each memory model contain its own top_column and top_word
statements.

Memory BIST Training Workbook, 8.2002_1 5-43
March 2002

Memory Modeling for MBISTArchitect

Descrambling Functions

Descrambling Functions

¢ Descrambling provides most flexible topological mapping
Used for more complex topological mapping

Defines where data is inverted

Addresses can also be descrambled

Must use “Setup Mux location -controller”

descrambling_definition (
data_in (
data0O_desc = data0 XOR ((addr3 AND (NOT addr0)
datal_desc = dataO XOR ((addr3 AND (NOT addr0)
data2_desc = dataO0 XOR ((addr3 AND (NOT addr0)
data3_desc = dataO0 XOR ((addr3 AND (NOT addr0)

(addr0O AND (NOT addr3));
(addr0O AND (NOT addr3));
(addr0O AND (NOT addr3));
(addrO AND (NOT addr3));)

O0O0O0
XU

3-40 +« MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

If your memory uses a scheme that “translates” an external address to an internal
address or translates the input data in some way for internal storage, you must
describe this translation to the Topchecker algorithm. Otherwise, an accurate
checkerboard pattern cannot be generated. Usually this kind of information is not
found in a standard data book and you must request it from the manufacturer.

Theaddress subsection defines the descrambling for the address bus and the
data_in subsection defines the descrambling for the data input bus. For each
address/data line of the memory there must be a line in the corresponding
subsection. For example, if the width of the address bus is 4, there must be four
lines in theaddress subsection of the descrambling definition section of the

memory model. Similarly, if the width of the data bus is 8, there must be eight

lines in thedata section of the descrambling definition section of the memory
model. The names of the descrambled address/data lines are arbitrary but the order
of the statements in each section is important.

5-44 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Thefirst statement corresponds to the L SB and the last to the M SB. The supported
Boolean operators are BUF, INV, AND, NAND, OR, NOR, XOR, XNOR.
Finally, you must define BOTH address and data_in subsections, regardless of
whether or not scrambling information exists for both.

Memory BIST Training Workbook, 8.2002_1 5-45
March 2002

Memory Modeling for MBISTArchitect

Validating a Memory Model

Validating a Memory Model

Create model ¢ Validation is performed
Run | ¢ Memory model errors
MBISTArchitect will resultin incorrect

BIST controller

v

Compile & run
testbench Correct
simulation problem

Examine simulation
waveforms and
locate problem

3-41 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

NOTES:

5-46 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

User Defined Algorithm

User Defined Algorithm ™

¢ You can define your March-type algorithm

¢ Notsupported in User Defined Algorithm function:
« Access to multiple ports at the same time
« Non-March type algorithms (such as Galpat)
« Example of UDA:

1.Write all 0 except base cell

2.Read first cell

3.Read base cell

4. Repeat 2-3 for all cells

O |o|olo
O |o|olo
O |o|olo
O|r | O
O |o|olo

3-42 « MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

Prior to inclusion of the Mentor Graphics User Defined Algorithmo function, all
of thetest algorithms availablein the MBI ST Architect tool were precoded into the
tool. Adding a new algorithm required engineering work at the factory to support
the new algorithm. The User Defined Algorithm functionality removes the pre-
coded test algorithms and replaces them with algorithm definitions, loaded from
files, which you can modify prior to BIST generation. All of the algorithms pre-
configured as part of the MBISTArchitect tool, except the comparator test and
port interaction tests, are defined within the software using this facility.

Y ou can use User Defined Algorithms to define a class of simple March-type
algorithms. This capability lets you define algorithms that perform asingle
memory access operation or more complex activity formed from read and write
operations, at each address of arange of memory addresses.

Memory BIST Training Workbook, 8.2002_1 5-47
March 2002

Memory Modeling for MBISTArchitect

When the memory BIST kernel is active, you can use User Defined Algorithm
commands to load algorithms into the tool and change the set of available
algorithms. The UDA algorithms use the UDA language that follows a Verilog-
like style. Algorithms are composed of these parts:

* Tests
* Repetitions
e Steps

Use these commands when working with User Defined Algorithms. Load
Algorithms, Delete Algorithms, and Report Algorithms.

User Defined Algorithm Exercises are available at the end of this module so that
you can get experience using this MBISTArchitect feature.

5-48 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Troubleshooting a Memory Model

Troubleshooting a Memory Model

Three major causes of mismatches

Incorrect memory model description

« Re-examine datasheet and memory model
Additional MBISTArchitect commands required

« Some memories will require some setup in
MBISTArchitect

Incorrect simulation model or inaccurate datasheet
« Intended behavior correct, but still getting problems

3-43 « MBISTArchitect: Common BIST Variations

NOTES:

Memory BIST Training Workbook, 8.2002_1

March 2002

Copyright © 2002 Mentor Graphics Corporation

5-49

Memory Modeling for MBISTArchitect

Troubleshooting Example: March?2

Troubleshooting Example: March2

A (Wr0), A (RO, Wrl, R1), A (R1, Wr0, RO), ¥ (RO, Wrl, R1), ¥ (R1, Wr0, RO)

¢ |Is data being written correctly during a(Wr0)?
« Yes :write operation is correct
« No : problem with write operation
¢ |Is data being read correctly on RO of o(RO,W1,R1)?
« Yes :read operation is correct
« No : problem with read operation
¢ Is data being read correctly on R1 of o(RO,W1,R1)?
« Yes :read, write, and rwr operation is correct
« No : problem optimizing read and write cycles to rwr
¢ Does incorrect behavior apply to all addresses?
e Yes :problem is not address dependent

« No :there may be a problem interfacing last a(WO0)
and first a(RO,W1,R1) operations

3-44 + MBISTArchitect: Common BIST Variations Copyright © 2002 Mentor Graphics Corporation

NOTES:

5-50 Memory BIST Training Workbook, 8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Module 5 Lab Exercises

* Using the Model Editor
(20 minutes)

* Reviewing a User Defined Algorithm
(20 minutes)

* Running a User Defined Algorithm File
(20 minutes)

Memory BIST Training Workbook, 8.2002_1
March 2002

5-51

Module 5: Lab Exercises

The following exercises introduce you to the Model Editor and User Defined
Algorithms,

Exercise 14: Modifying a Template to Match Y our Memory Specifications —
You will use the model editor to make a working copy of a template, modify the
template, and save the model.

Exercise 15: Reviewing a User Defined AlgorithYou will review a User
Defined Algorithm (UDA) that has been modified to change the Marchl
algorithm.

Exercise 16: Running a User Defined Algorithm FH¥ou will run the User
Defined Algorithm reviewed in the previous exercise and simulate a memory
model which uses the algorithm.

Memory BIST Training Workbook, V8.2002_1 5-52
March 2002

Memory Modeling for MBISTArchitect

Exercise 14: Modifying a Template to Match Your
Memory Specifications

The purpose of this exercise isto give you step-by-step instruction on how to use
the Model Editor. Y ou will invoke the Model Editor, make aworking copy of a
template that comes close to the RAM model you need, modify the working copy
to conform to the specifications of your particular RAM, then save the model.
Before you begin, you should be aware of the following characteristics of the
Model Editor:

* The Model Editor works on the principle of “Correct-by-Construction
(CBC)". It will only read and write a complete and syntactically-correct
model file.

* The Model Editor works on selected objects. Therefore, in most cases, you
must first select an object before you modify or replace that object.

* The Model Editor allows you to save to multiple models to one file.
Therefore, during a save operation, only a model with exactly the same
name is overwritten in that file. If you save a model by a different name,
that model will be appended to the existing models in the file.

Memory BIST Training Workbook, V8.2002_1 5-53
March 2002

Memory Modeling for MBISTArchitect

Becoming Familiar with your RAM Input/Output Specifications

1. Examine the following model information:

RAM4x16
1-Port Asynchronous RAM with 4 words by 16 bits

Technology: Newest
Version: 1.00
Date: 4/29/96

Inputs/Outputs
al:0 - Addresslines.

d15:0 - Datainputs.

g15:0 - data outputs (tri-state).

oe - Output Enable - active low.

wrt - Write control line. A high state enables writing, alow state enables reading.

Miscellaneous Info: Input and Output buses are defined as wide-pins (arrays) on
the ssimulation model.

Make a Working Copy of a Similar Template

1. Moveto the mbist3 directory.
shel | > cd $MBI STNWP/ nbi st 3/ ramdX16/results

2. Invoke MBIST Architect:

shel | > nbi starchitect

5-54 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory Modeling for MBISTArchitect

3. Click the Moddl Editor button, then follow the directions below to select a

template:

<8

odel Selocti (1. Click)
one Blectuon
K

Model to Edit : New...| Existing..| Template...

|

=

I

Available Model Templates ’\2 Select /
Bsynchronons 2 dxd : 2 Ports (1 Read, 1 Write) : FBits = (M:N) A
2 015 B dxd o 1 Read/Write) . Bi
Asynchronons RAM : dxd : 1 Port (1 Read/Write) : Bits = bhitM ... bitH
Asynchronous RAM : 4x8 : 1 Port (1 Read/Write) . Bits = bitM ... bitH
Synchronous REM Ax2 . 1 Port (1 Read/Write) : Bits = bitM ... bitN
hezynchronous RAM 162l : 1 Port (1 Read/Write) ; Bits = (M.
Asynchronous RAM 16x8 : 1 Port (1 Read/Write) ; Bits = (M.
Bsynchronous RAM : 128x8 . 1 Port (1 Read/Write) ; Bits = (M.
Bsynchronous RAM : 128x16 : 1 Port (1 Read/Write) : Bits = (M:H)
Bsynchronous RAM : 128x32 : 1 Port (1 Read/Write) : Bits = (M:N)
Asynchronous RAM : 256x8 : 1 Port (1 Read/Write) : Bits = (M:N)
asynchronous RAM : 256x16 : 1 Port (1 Read/Write) . Bits = (M:N)
szynchronous RAM : 256x32 : 1 Port (1 Read/Write) © Bits = (M.
szynchronous RAM : 1024x8 : 1 Port (1 Read/Write) © Bits = (M.
nezynchronous RAM : 1024x16 : 1 Port (1 Read/Write) ; Bits = (M.
Bsynchronous RAM : 1024x32 : 1 Port (1 Read/Write) ; Bits = (M.
Bsynchronous RAM : 2048x16 : 1 Port (1 Read/Write) : Bits = (M:H)
Bsynchronous RAM : 2048x32 : 1 Port (1 Read/Write) : Bits = (M:N) 7
ek |
i M%— 3. Click Cancel E |

4. Change the model nhame to wv_RAMAX16_bussed.

5. Click Save M oddl..., then do the following.

1. Enter
Path to Model File : [my _rams.iih <& F‘mese.. E

If the File Already Contains a Model with the Same Name :

«- Putomatically Replace it

4 Prol 2 Click tion Before Replacing
n‘w/

ew the File After it Has Been Written

Read the Fle into MBISTArchitect After it Has
Been Written and Then Load the Model

(3. Click)

Cancel ;

Memory BIST Training Workbook, V8.2002_1
March 2002

— |

5-55

Memory Modeling for MBISTArchitect

The File Viewer window should appear with the template displayed. At this
point, only the model name has changed.

BEST PRACTICE: Keep the File Viewer window open and off to the side, so
you can examine the updated status of the file after you execute each Save
Model... command.

Edit the Miscellaneous Information

1. Bring the Model Editor window to the front, then click on Change Above
I nfor mation.

2. Changethe Data Width to 16.
3. Changethe Message Text to read 4xi6 RaM.
4. Click OK.

Edit the Read Cycle Definition

1. Examine the following vendor timing diagram:

Read Cycle Timing Diagram
l«—— Trc —»

e—— Taa —

q7:0 valid data previousread datanot valid valid data

| Toh--|
TOZ || |—{ Toe
oe

Trc - read cycle time - minimum 6.0ns

Taa - address access time - maximum 6.0ns

Toh - output hold time from address change - minimum 3.7ns
Toz - output disable time - maximum 0.9ns

Toe - output enable time - minimum 1.0ns

al.0

hi-Z

Read Cycle Description - An address change initiates the read sequence. Data from

the previous read is valid for aminimum of 3.7ns. Output data for the new addressisvalid
6.0ns after the address change. If the output_enable goes inactive low, output data
remains valid for.9ns, then goesto hi-Z. Output datais valid 1.0ns after output_enable
goes active high.

5-56 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory Modeling for MBISTArchitect

It is helpful to draw a simplified event-driven diagram that uses the test
clock as areference. For thisfirst exercise, you can use the following
diagram:

Simplified Read Cycle Diagram

Test
Clock

al:0

q7: (O valid datafprevious address data not valid valid data

Assumptions:

1. An address change occurs on the rising edge of the test clock.
2. Thetest clock will not violate setup and hold times.

3. New datawill be valid after one test clock cycle
4.0utput_enable will not be tested by the BIST circuitry.

2. Verify that the Read Cycle for Port #1 is selected for editing. If not, select
“1 Read/Write (Read)”, then click Edit the Selected Cycle

3. Click Define Cycle Pinsthen select the Address definition on the right
side of the form.

4. Changethe Namefrom “addr” to “a”, click>> Add >>, then clickChange
Selected.

5. Select théata OUT definition, then change the name from “do” to “g”
and change the bus width to “15:0", cliek Add >>, then clickChange
Selected.

6. Add an Output_Enable signal called oe. Since you will not be testing this
signal, define it as active low even though it is active high. This causes the

Memory BIST Training Workbook, V8.2002_1 5-57
March 2002

Memory Modeling for MBISTArchitect

BIST controller to hold it in what it thinksis the inactive state (high), when
in fact it isthe active state (for example, output always enabled).

In the Write Cycle editing session that follows, you will define the
D write_enable “wrt” signal as active “high”. You can assume this
signal is low during the read cycle, therefore you don’t have to

Note
define it as part of the read- cycle protocol.

. End the Cycle Pin editing by clicking OK.

. Look at the Cycle Editor timing diagram. The output data should be valid

one test clock cycle after a valid address change, so click on the “q” signal
line where shown in Step 1 below. Also, the read cycle is complete within
two test clock cycles, so you should shorten the Read Cycle by one test
clock cycle, as shown in Step 2 below:

2. Click

el e >

Cycle Editor

"o

g o End

Edit the Write Cycle Definition

In the following sequence, you will learn how to Import a signal definition from
the Read Cycle to the Write Cycle.

Memory BIST Training Workbook, V8.2002_1
March 2002

Memory Modeling for MBISTArchitect

1. Examine the following Write Cycle timing diagram

Write Cycle Timing Diagram

|- Twe >
al:0 valid write address
Taw >
Tasw |
we -4— Twp —»‘
| Tdw | Tdh |

we going high (true) initiates the Write sequence.
Twc - write cycle time - minimum 5.5ns

Taw - address valid to end of write - minimum 5.5ns
Tasw - Address setup to we high - minimum 2.6ns
Twp - write minimum pulse - maximum 2.9ns

Tdw - datavalid to end of write - minimum 3.7ns
Tdh - data hold time - minimum 3.7ns

Write Cycle Description - With the address stable, Write Enable (we) initiates
the write sequence. The addressis latched into memory on the rising edge of we.
Data on the data input bus is written into memory on the falling edge of we.

The simplified event-driven diagram below uses the test clock as a

reference:

Simplified Write Cycle Diagram
Test
Clock
al:.0 valid address
d7:0 valid data
" Gt

Geassaa)—" |

Assumptions:
1. Address and data changes on the rising edge of the test clock.
2. Thetest clock will not violate setup and hold times.
3. Addressis latched on the rising edge of wrt (next test clock cycle).
4. Input datais written into memory on the falling edge of wrt (next test clock cycle).
5. Output_enable will not be tested by the BIST circuitry.

Memory BIST Training Workbook, V8.2002_1
March 2002

5-59

Memory Modeling for MBISTArchitect

2. Select 1 Read/Write (Write)” in the Model Editor window, then click
Edit the Selected Cycle

3. Click Define Cycle Pingselect the Address definition, then click Import
Pin...

4. Select the Address definition, click OK, click >> Add >>, then click
Change Selected

5. Select the Data_IN definition. Change the name from “di” to “d”, change
the bus width to “15:0”, them> Add >> the input to the Write Cycle
definition.

6. Change the Write_Enable input to an active high “wrt” signal, then click
OK.

7. Look at the Cycle Editor timing diagram and make it conform to the
illustration below:

— Cycle Editor
+| =
& ®
a
d
wrt ! h
H I H 1

8. End the Modeling Editing session by clicking®ave Model..., then click
OK.

9. Examine the updated status of the Read and Write Cycle in the File Viewer
window. Verify that it corresponds with your understanding of what the
syntax should be.

5-60 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Summary

In this exercise, you modified atemplate to match the specifications of your
particular RAM model. Y ou changed the model name, changed the bus width
specification, then modified the read cycle protocol. Y ou then imported the read
cycle specification to modify the write cycle protocol. Y ou are now ready to
invoke MBISTArchitect on this model and create a bist collar for it.

Memory BIST Training Workbook, V8.2002_1 5-61
March 2002

Memory Modeling for MBISTArchitect

Exercise 15: Reviewing a User Defined Algorithm

MBISTATrchitect contains a User Defined Algorithm (UDA) feature that lets you
create your own algorithms. The UDA functionality removes the pre-coded test
algorithms and replaces them with algorithm definitions contained in files, which
you can modify prior to BIST generation. You would typically create a user
defined algorithm if you wanted to modify one of the memory test algorithms.

In this exercise, we will show you an example of a user defined algorithm. The
next exercise shows you how to load a dofile that references this algorithm and to
run the dofile in MBISTAT rchitect.

Reviewing an Algorithm File

1. Move to the mbist3/uda/design directory.
shel | > cd $MBI STNWP/ nbi st 3/ uda/ desi gn

2. Thefile named marchA.dsc is an algorithm file that has been created to
modify the existing March 1 algorithm. Use your favorite text editor or vi to
open thisfile.

3. Thisfile contains the following sections:
* Définition
e Steps
e Algorithm repetition

The Definition section contains the test name, a summary of the test, and size.
Thisisfollowed by an algorithm definition that defines the actions to be taken in
the algorithm. In this example, it defines the read and write operations performed
during the up and down memory test.

5-62 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Definition Section

mar chA

Summary:
test exanple for a marching al gorithm naned mar chA

Size: Copyright (C Mentor G aphics Corporation 1999 Al Rights

Reserved

10n

Al gorithm
up - wite 0
up - read 0, wite 1
up - read 1, wite 0
down - read 0, wite 1
down - read 1, wite O
down - read O

The Steps section declares the basic activity across the address space of the
memory ports. The step includes the following:

e addr
The address clause defines what happens to the address register during the
step of the algorithm.

* data
A string that defines what data values will be used by the operation applied
at each address visited by the algorithm step.

* operation
A string that defines the activity, such as aread or write, that is performed
at each address visited by the algorithm step.

Memory BIST Training Workbook, V8.2002_1 5-63
March 2002

Memory Modeling for MBISTArchitect

Steps Section

step wSeedUp;
addr mn, nax, up, 1;
data seed;
operation w

step rw nvSeedUp;
addr mn, nax, up, 1;
data i nvSeed;
operation rw,

step rwSeedUp;
addr mn, nax, up, 1;
data seed;
operation rw,

step rw nvSeedDown;
addr mn, nax, down, 1;
dat a i nvSeed;
operation rw,

step rwSeedDown;
addr mn, nax, down, 1;
dat a seed;
operation rw,

step r SeedDown;
addr mn, nax, down, 1;
dat a seed;
operation r;

The Repetition section defines the action that will be taken in the algorithm. It
includes the following:

* seed
A string that specifies acommon default value to be used by all the stepsin
the repetition.

* keywordsand steps
The begin and end keywords surround the body of the repetition
declaration, which is a sequence of step references.

5-64 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory Modeling for MBISTArchitect

Repetition Section

seed
begi n
step
step
step
step
step
step
end

repetition marchA;

0;

wSeedUp;

rwi nvSeedUp;
rwSeedUp;

rw nvSeedDown;
r wSeedDown;

r SeedDown;

test marchA;
repetition marchA;

Once you have finished reviewing the sample algorithm, close the text editor. In
the next exercise, you will load a dofile that references the MarchA agorithm and
run the dofile in MBISTArchitect.

Memory BIST Training Workbook, V8.2002_1

March 2002

5-65

Memory Modeling for MBISTArchitect

Exercise 16: Running a User Defined Algorithm File

In this exercise, you will review adofile that |oads the user defined algorithm
reviewed in Exercise 15: Reviewing aUser Defined Algorithm. You will also run
the dofile in MBISTArchitect and synthesize the design.

Running an Algorithm Dofile

1. Move to the mbist3/uda/design directory.
shel | > cd $MBI STNWP/ nbi st 3/ uda/ desi gn

2. Useyour favorite text editor or vi to open the ramdx4.do file. Thisfile
contains commands required to load the design, memory model and the
MarchA algorithm.

ram4x4.do sample

loa I'i ../design/ramix4. at pg
add ne mrandx4

| oad al gorithm mar chA. dsc
add nbis alg 1 marchA

run

save bist -replace

exit

3. Once you have finished reviewing the sample algorithm, close the text
editor.

4. You are now ready to run MBISTArchitect and load this dofile. Change to
the results directory.

shel | > cd $MBI STNWP/ nbi st 3/ uda/ resul ts

Type the following command to launch MBISTArchitect and run the dofile:

shell > nbistarchitect -nogui -dofile ../design/ramix4.do

5-66 Memory BIST Training Workbook, V8.2002_1
March 2002

Memory Modeling for MBISTArchitect

MBISTArchitect will load the design, memory models, and MarchA
algorithm. It will create BIST circuitry and create the following files, it will
also save these files and exit the tool:

ramdx4_bist.v
ramdx4_bist_con.v
ramédx4 tb.v

Verifying the BIST Circuitry

Next, you will use the MBI ST Architect-generated testbench to verify the memory
BIST circuitry created by running the dofile.

1. Ensurethat you are still working in the $MBISTNWP/mbist1/uda/results
directory.

2. Set up awork directory.

shel | > $M3C HOVE/ bi n/ vl ib work

3. Compile the memory simulation model, all BIST models, and the
testbench.

shel | > $MGC HOVE/ bi n/ vl og ../ design/ramix4.v randx4_bi st. v\
ramix4 _bi st _con.v ramdx4 tb.v

4. Simulate the test driver.
a. Invoke the QuickHDL simulator and load the testbench model.
shel | > $M3C_HOVE/ bi n/ vsi m ramdx4_tb
5. Set up the lists by running the following dofile:
a. VSIM 1> do ../design/vsim_setup.do

b. Thisfile setsthe parameters for the simulation to stop dueto tst_done
or fail_h going high. It also setsup aList window so you can examine
pertinent signals.

Memory BIST Training Workbook, V8.2002_1 5-67
March 2002

Memory Modeling for MBISTArchitect

6. Runthe ssimulation until it is finished.
VSIM 2> run -all

a. Writethe displayed list to afile.

VSIM 2> write list trace.log.uda

b. Quit the simulation.
VSIM 4> quit

7. Examinethe saved list file. Use whatever editor you prefer to view the
trace.log.uda file you saved.

* The signasthat comprise the columnsin this file include (from left to
right): tst_done, fail_h, the address, the write enable, the data input values,
and the data output values.

* Thefirst portion of the testbench tests some system signals.
* The MarchA agorithm is performed as follows:

-W(up) 1450-2150ns
-RW(up) 2250-3750ns
-RW(up) 3850ns-5350ns
-RW(down) 5450-6950ns
-RW(down) 7050-8550ns
-R(down) 8650-9550ns

5-68 Memory BIST Training Workbook, V8.2002_1
March 2002

Trademark Information

Mentor Graphics Trademarks

The following names are trademarks, registered trademarks, and service marks of Mentor Graphics Corporation:

3D Designld, A World of Learning(SM), ABISTO, Arithmetic BISTO, AccuPARTnerd, AccuParts(], AccuSimO, ADEPTO, ADVancell MS, ADVancel] RFIC,
AMPLEQO, Analog Analyst], Analog Station(], AppNotes(SM), ARTgridd, ArtRouterd, ARTshapeld, ASICPland, ASICVector Interfaces], Aspireld
Assess2000(SM), AutoActiveld, AutoCellsO, AutoDissolvell, AutoFilterd, AutoFlow, AutoLibd, AutoLineard, AutoLink(, AutoLogicl, AutoLogic

BLOCK SO, AutoLogic FPGAL, AutoLogic VHDL, AutomotiveLibl], AutoPARO, AutoTherm[, AutoTherm DuolJ, AutoThermMCMO, AutoView(], Autowire
Stationd, AXELO, AXEL Symbol Genield, BISTArchitectd, BIST Compiler(SM), BIST-In-Place(SM), BIST-Ready(SM), Board Architect(], Board Designer,
Board Layout[, Board Link[d, Board Process Library(l, Board Station(], Board Station Consumerd, BOLD AdministratorC], BOLD Browser[], BOLD Composer(],
BSDArchitect[], BSPBuilder], Buy on Demand[], Cable Analyzer[], Cable Station], CAECO Designerl], CAEFORMU, Calibrell, Calibre CBLJ, Calibre DRCL,
Calibre DRC-HO, Calibre Interactiveld, Calibre LV SO, Calibre LVS-HO, Calibre MDPview(, Calibre MGCO, Calibre OPCprolJ, Calibre ORCL, Calibre
PRINTimagell, Calibre PSMgatell, Calibre RVEQ, Calibre WORKbench, Calibre xRCO, CAM Station, Capture Station(], CAPITALO, CAPITAL Analysisd,
CAPITAL Bridges[], CAPITAL Documentsl], CAPITAL HO, CAPITAL Harness[J, CAPITAL Harness Systems[], CAPITAL H the complete desktop engineer(],
CAPITAL InsightTd, CAPITAL Integrationd, CAPITAL Managerd, CAPITAL Manufacturerd, CAPITAL Supportd, CAPITAL Systemsl, Cell Builder[d, Cell
Station], CellFloor(l, CellGraph(l, CellPlacel], CellPowerl], CellRoutel], Centricityl], CEOCL, CheckMatel], CHEOS[], Chip Station(1, ChipGraph(],
CommLiblJ, Concurrent Board Process(SM), Concurrent Design Environment(J, Connectivity Dataport(], ContinuumC, Continuum Power Analyst(],
CoreAllianceld, CoreBISTO, Core Builder, Core Factory(l, CTIntegrator(, DataCentric ModelJ, DataFusion, Datapath], Data Solvent, dBUGL, Debug
Detectivel], DC Analyzerd, Design Architect[], Design Architect Elitel], DesignBook[], Design Capturel], Design Manager(], Design Station(], DesignView(],
DesktopASICL, Destination PCBL, DFTAdvisor(], DFTArchitectl], DFTInsight[, DirectConnect(SM), DSV, Direct System Verificationd, DSV,
Documentation Station[], DSS (Decision Support System)d, ECO Immunity(SM), EDTO, Eldod, EldoNet[, ePartnersl, EParts, E3L Cable[], EDGE
(Engineering Design Guide for Excellence)(SM), Empowering Solutions], Engineer’s Desktdp, EngineerView!, ENRead], ENWritell, ESinl], Exemplat],
Exemplar Logi€l, Expeditiori], Expert2000(SM), Explorer CAECO Layaut Explorer CheckMate, Explorer Datapathi, Explorer Lsintl, Explorer Lsim-C],
Explorer Lsim-$1, Explorer Ltimél, Explorer Schematid¢, Explorer VHDLsinil, Expressl/@, FabLinkd, Falcor], Falcon FramewoiR, FastScan, FastStari,
FastTrack Consulting(SM), First-Pass Design Sué¢eBgst-Pass success(SNFexSint], FlexTesfl, FDL (Flow Definition Languagé), FlowTabs],
FlowXpert], FORMAL, FormalPral, FPGA Advantage, FPGAdvisofl, FPGA BoardLink], FPGA Buildef], FPGASini], FPGA Statiofl, FrameConnett,
Galilead, Gate Stationl, GateGraphl, GatePlacg, GateRoutel, GDTU, GDT Corél, GDT Designerl, GDT Developerl, GENIE], GenWarél, Geom Genigl,
HDL2Graphic$], HDL Architect], HDL Architect Statiofl, HDL Author], HDL Designet], HDL Designer Serigs, HDL Detectivé], HDL Inventor], HDL
Pilot], HDL Processan, HDL Sim(l, HDLWrite[J,Hardware Modeling Library, HIC rules], Hierarchical Injectionl, Hierarchy Injectiofl, HotPlot], Hybrid
Designet], Hybrid Statiori], IC Design Stationi, IC Designel], IC Layout Statiofl, IC Statiorid, ICbasic], ICblocks], ICcheck], ICcompadi, ICdevicé],
ICextract], ICGeril, ICgraph], ICLink, IClister], ICplar], ICRT Controller Lcompildr, ICrules], ICtracél, ICverify(], ICview(], ICXO, ICX Activeld, ICX
Custom Modéll, ICX Custom Modelingl, ICX Plar], ICX Prd], ICX Project Modeling!, ICX Sentry1, ICX Standard Libraryi, ICX Verify[, ICX Vision(,
IDEA Seried], Idea Statiofl, INFORMO, IFX0O, Inexidl, Integrated Product Developmeéhtintegra Statiofl, Integration Tool Kifl, INTELLITESTO,
Interactive Layoutl, Interconnect Table, Interface-Based Desigh IBDU, IntraStep(SM), Inventfa, InventralPXJ, Inventra Soft Corés, IP Enginel, IP
Evaluation KitJ, IP Factory], IP -PCBJ, IP QuickUsél, IPSini], IS_Analyzet], IS_Floorplannet, IS_MultiBoard], IS_Optimizefl, IS_Synthesizer, ISD
Creation(SM), ITKJ, It's More than Just Tools(SM), Knowledge Center(SM), Knowledge-Sourcing(SM), LAYQUNLO, LBISTO, LBISTArchitectd,
Language Neutral Licensifg LclJ, Lcore], Leaf Cell Toolkit], Led, LED LAYOUT0, Leonardal, Leonardolnsight, LeonardoSpectrum, LIBRARIANJ,
Library Builder], Logic Analyzer on a Chip(SM), Logic Buildér Logical Cablél, LogicLibl, logiol], Lsim, Lsim DSMJ, Lsim-Gaté], Lsim Net], Lsim
Power Analysf], Lsim-Review, Lsim-Switch, Lsim-XLO, Mach PAJ, Mach TAO, Manufacture View, Manufacturing Advisdr, Manufacturing Cablg,
MaskComposé, MaskPE], MBISTL, MBISTArchitect], MCM Designet], MCM Statiori], MDV[, MegaFunctionl, Memory Buildef], Memory Builder
Conductoft], Memory Builder Mozaff, Memory Designér, Memory Model Buildelt], Mentor], Mentor Graphics, Mentor Graphics Support CD(SM), Mentor
Graphics SupportBulletin(SM), Mentor Graphics SupportCenter(SM), Mentor Graphics SupportFax(SM), Mentor Graphics Suppal{SietyBvientor Graphics
SupportNet-FTP(SM), Mentor Graphics SupportNet-Telnet(SM), Mentor Graphics We Mean BusiMéssPlari], MicroRoutél, Microtedd, Mixed-Signal
Prod, ModelEditof], ModelSm(J, ModelSm LNL O, ModelSm VHDL [0, ModelSm VLOGO, ModelSm SH1, ModelStation!, Model Technology,
ModelViewei], ModelViewePlusll, MODGENDO, Monetd, Mslali], Msviewd, MS Analyzefl, MS Architect], MS-Expres&, MSIMONO, MTPI(SM),
Nanokernell, NetCheckl, NETEDO, Online Knowledge Center(SM), OpenDoor(SM), OgsinDutNet], P&RIntegrator], PACKAGHE], PARADE,
ParallelRoute-Autocells, ParallelRoute-MicroRoute, PathLinkd, Parts SpeciaList, PCB-Genl, PCB-Generatat, PCB IGES], PCB Mechanical Interfacg
PDLSIm, Personal Learning ProgramPhysical Cablg, Physical Test Manager:SITE PLA Lcompilef], Platform Expreds, PLDSynthesis, PLDSynthesis
110, Power Analysil, PowerAnalyst Statidd, Power To Create, Precisiofl, Precision Synthedis Precision HLS], Precision PNR, Precision PTC, Pre-
Silicond, ProjectXperfl, ProtoBoardl, ProtoView], QNetd, QualitylBISO, QuickCheckl, QuickConnedl, QuickFaull, QuickGradél, QuickHDLL,
QuickHDL Expres8], QuickHDL Prd], QuickPart Buildell, QuickPart Tables, QuickPart8l, QuickPatf), QuickSinid, QuickSimIl, QuickStarfl, QuickUsé],
QuickVHDLO, RAM Lcompiled], RC-Delay], RC-Reductiofl, RapidExpeffl, REAL Time Solutiondll, Registral], Reinstatement 2000(SM), Reliability
Advisorl], Reliability Managell, REMEDIO, Renoif], RF Architecl, RF Gatewayl, RISE], ROM Lcompilef], RTL X-Pres§l, Satellite PCB Statidn,
ScalableModelS, Scaleable Verificatidd, SCARJ, Scan-Sequential, Sceptell], Scepter DFE, Schematic View Compiler, SVT Schemgell, SDFJ (Software
Data Formatter), SDL2000 Lcompilér Seamleds, Seamless C-Bridge Seamless Co-Desigiigr Seamless CVE, Seamless Express Selective Promotidn,
SignaMask OPQ, Signal Sp¥, Signal Visioril, Signature Synthedis Simulation Managét, SimExpress], SimPilo], SimView, SiteLine2000(SM),
SmartMaskl, SmartParts, SmartRouten, SmartScripts, Smartshage, SNXO, SneakPath Analyzer, SOS Initiativé]l, Source Explorét, SpeedGate,
SpeedGate DSV, SpiceNefl, SST Velocityl, Standard Power Model Format (SPNIFStructure Recovefy, Super Cl, Super IC Statiodl, Support Services
BaseLine(SM), Support Services ClassLine(SM), Support Services Latitudes(SM), Support Services OpenLine(SM), Supportigaelides(BM), Support
Services SiteLine(SM), Support Services TechLine(SM), Support Services RemoteLine(SM), Symhid| Gemikolscript), SYMEDO, SynthesisWizard,
System Architedl, System Design Statiéh System Modeling Blocks, Systems on Board Initiatize System Visiofl, Target Managét, Taul, TeraCelll,
TeraPlacgl, TeraPlace-GE, TechNote8l, The Ultimate Tool for HDL Simulatidi, TestKompreds, Test Statiofl, Test Structure Buildét, The Ultimate Site
For HDL Simulatiori], TimeClosel], Timing Buildef], TNXO, ToolBuildefd, TrueTimind], Vlogd, V-Expres§l, V-Net, VHDLnet], VHDLwrite[,
Verinex], ViewCreatol!, ViewWardl, Virtual Library, Virtual Targetl, Virtual Test Manager:TOP, VR-Process(SM), VRTX, VRTXmc, VRTXoc,
VRTXsal, VRTX320, Waveform DataPaort, We Make TMN Easyl, Wiz-o-matid], WorkXpertd, xCalibrel, xCalibratél, Xconfigd, XlibCreatof], Xpert],
Xpert APIO, XpertBuildef], Xpert Dialog§l, Xpert Profilef], XRAY O, XRAY MasterWork§l, XSHO, Xtracdl, Xtrace Daemon, Xtrace Protocdl, Zeelari],
Zero Tolerance Verificatidn, ZlibsC

Third-Party Trademarks

The following names are trademarks, registered trademarks, and service marks of other companies that appear in Mentor
Graphics product publications:

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange, FrameM aker, FrameViewer, and PostScript are registered trademarks of Adobe Systems
Incorporated.

Alterais aregistered trademark of Altera Corp.

AM188, AMD, AMD-K6, and AMD Athlon Processor are trademarks of Advanced Micro Devices, Inc.
Apple and Laserwriter are registered trademarks of Apple Computer, Inc.

ARIES is aregistered trademark of Aries Technology.

AMBA, ARM, ARMulator, ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9OE-S, ARM946E-S, ARM966E-S, Embedded| CE, StrongARM, TDMI, and
Thumb are trademarks or registered trademarks of ARM Limited.

ASAP, Aspire, C-FAS, CMPI, Eldo-FAS, EldoHDL, Eldo-Opt, Eldo-UDM, EldoVHDL, Eldo-XL, Elga, Elib, Elib-Plus, ESim, Fidel, Fideldo, GENIE,
GENLIB, HDL-A, MDT, MGS-MEMT, MixVHDL, Model Generator Series (MGS), Opsim, SimLink, SimPilot, SpecEditor, Success, SystemEldo,
VHDeLDO and Xelga are registered trademarks of ANACAD Electrical Engineering Software, aunit of Mentor Graphics Corporation.

Avant! and Star-Hspice are trademarks of Avant! Corporation.
AVR is aregistered trademark of Atmel Corporation.

Cadence, Affirma signalscan, Allegro, Anadog Artist, Composer, Concept, Design Planner, Dracula, GDSII, GED, HLD Systems, Leapfrog, Logic DP, NC-
Verilog, OCEAN, Physical DP, Pillar, Silicon Ensemble, Spectre, Verilog, Verilog XL, Veritime, and Virtuoso are trademarks or registered trademarks of
Cadence Design Systems, Inc.

CAE+Plus and ArchGen are registered trademarks of Cynergy System Design.

CaComp is aregistered trademark of CalComp, Inc.

Canon isaregistered trademark of Canon, Inc. BJ-130, BJ-130e, BJ-330, and Bubble Jet are trademarks of Canon, Inc.
Centronics is aregistered trademark of Centronics Data Computer Corporation.

ColdFire and M-Core are registered trademarks of Motorola, Inc.

Ethernet is aregistered trademark of Xerox Corporation.

Foresight and Foresight Co-Designer are trademarks of Nu Thena Systems, Inc.

FLEXIm isatrademark of Globetrotter Software, Inc.

GenCAD isatrademark of Teradyne Inc.

Hewlett-Packard (HP), LaserJet, MDS, HP-UX, PA-RISC, APOLLO, DOMAIN and HPare registered trademarks of Hewlett-Packard Company.
HCL-eXceed and HCL-eXceed/W are registered trademark of Hummingbird Communications. Ltd.

HyperHelp is atrademark of Bristol Technology Inc.

Installshield is aregistered trademark and service mark of InstallShield Corporation.

IBM, PowerPC, and RISC Systems/6000 are trademarks of International Business Machines Corporation.

I-DEAS and UG/Wiring are registered trademarks of Electronic Data Systems Corporation.

IKON is atrademark of Tahoma Technology.

IKOS and Voyager are registered trademarks of IKOS Systems, Inc.

Imagen, QMS, QM S-PS 820, Innovator, and Real Time Rasterization are registered trademarks of MINOLTA-QMS Inc. imPRESS and UltraScript are
trademarks of MINOLTA-QMS Inc.

ImageGear is aregistered trademark of AccuSoft Corporation.

Infineon, TriCore, and C165 are trademarks of Infineon Technologies AG.

Intel, 960, 1386, and 1486 are registered trademarks of Intel Corporation.

Javaand all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.

Linux is aregistered trademark of Linus Torvalds.

MemoryModeler MemMaker are trademarks of Denali Software, Inc.

MIPSis atrademark of MIPS Technologies, Inc.

MS-DOS, Windows 95, Windows 98, Windows 2000, and Windows NT are registered trademarks of Microsoft Corporation.
MULTI isaregistered trademark of Green Hills Software, Inc.

NEC and NEC EWS4800 are trademarks of NEC Corp.

Netscape is a trademark of Netscape Communications Corporation.

Novas, Debussy, and nWave are trademarks or registered trademarks of Novas Software, Inc.

OakDSPCoreis aregistered trademark for DSP Group, Inc.

Oracle, Oracle8i, and SQL* Plus are trademarks or registered trademarks of Oracle Corporation.

PKZIPis aregistered trademark of PKWARE, Inc.

Pro/CABLING and HARNESSDESIGN are trademarks or registered trademarks of Parametric Technology Corporation.
Quantic is aregistered trademark of Quantic EMC Inc.

QUASAR is atrademark of ASM Lithography Holding N.V.

Red Hat is aregistered trademark of Red Hat Software, Inc.

SCO and the SCO logo are trademarks or registered trademarks of Caldera International, Inc.
Sneak Circuit Analysis Tool (SCAT) is aregistered trademark of SoHaR Incorporated.
SPARC is aregistered trademark, and SPARCstation is atrademark, of SPARC International, Inc.

Sun Microsystems, Sun Workstation, and NeWS are registered trademarks of Sun Microsystems, Inc. Sun, Sun-2, Sun-3, Sun-4, OpenWindows, SunOS,
SunView, NFS, and NSE are trademarks of Sun Microsystems, Inc.

SuperH is atrademark of Hitachi, Ltd.

Synopsys, Design Compiler, DesignWare, Library Compiler, LM-family, PrimeTime, SmartModel, Speed-Model, Speed Modeling, SimWave, and Chronologic
VCS are trademarks or registered trademark of Synopsys, Inc.

TASKING is aregistered trademark of Altium Limited.

Teamwork is aregistered trademark of Computer Associates International, Inc.

Tensilicaand Xtensa are registered trademarks of Tensilica, Inc.

Times and Helvetica are registered trademarks of Linotype AG.

TimingDesigner and QuickBench are registered trademarks of Forte Design Systems

Tri-State, Tri-State Logic, tri-state, and tri-state logic are registered trademarks of National Semiconductor Corporation.
UNIX, Motif, and OSF/1 are registered trademarks of The Open Group in the United States and other countries.
Versatec is atrademark of Xerox Engineering Systems, Inc.

ViewDraw, Powerview, Motive, and PADS-Perform are registered trademarks of Innoveda, Inc. Crosstalk Toolkit (XTK), Crosstalk Field Solver (XFX), Pre-
Route Delay Quantifier (PDQ), and Mentor Graphics Board Station Translator (MBX) are trademarks of Innoveda, Inc.

Visulais aregistered trademark of Zuken-Redac.

VxSim, VxWorks and Wind River Systems are trademarks or registered trademarks of Wind River Systems, Inc.
XVision isaregistered trademark of Tarantella, Inc.

X Window System is atrademark of MIT (Massachusetts Institute of Technology).

780 is aregistered trademark of Zilog, Inc.

ZSP and ZSP400 are trademarks of LS| Logic Corporation.

Other brand or product names that appear in Mentor Graphics product publications are trademarks or registered trademarks of
their respective holders.

Updated 2/13/02

End-User License Agreement

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS CAREFULLY
READ THIS LICENSE AGREEMENT BEFORE USING THE SOFTWARE

Thislicenseisalegal "Agreement" concerning the use of Software between you, the end-user, either individually or as
an authorized representative of the company purchasing the license, and Mentor Graphics Corporation, Mentor
Graphics (Ireland) Limited, Mentor Graphics (Singapore) Private Limited, and their majority-owned subsidiaries
("Mentor Graphics'). USE OF SOFTWARE INDICATES YOUR COMPLETE AND UNCONDITIONAL
ACCEPTANCE OF THE TERMSAND CONDITIONS SET FORTH IN THISAGREEMENT. If you do not agreeto
these terms and conditions, promptly return or, if received electronically, certify destruction of Software and all
accompanying items within 10 days after receipt of Software and receive afull refund of any license fee paid

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading, or have acquired with
this Agreement, including any updates, modifications, revisions, copies, and documentation (" Software")
are copyrighted, trade secret and confidential information of Mentor Graphics or its licensors who
maintain exclusive title to al Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics or its authorized distributor grantsto you, subject to payment of appropriate license fees,
anontransferable, nonexclusive license to use Software solely: (a) (in machine-readable, object-code
form; (b) for your internal business purposes; and (¢) on the computer hardware or at the site for which an
applicable license feeis paid, or as authorized by Mentor Graphics. A siteisrestricted to a one-half mile
(800 meter) radius. Mentor Graphics' then-current standard policies, which vary depending on Software,
license fees paid or service plan purchased, apply to the following and are subject to change: (&) rel ocation
of Software; (b) use of Software, which may be limited, for example, to execution of asingle session by a
single user on the authorized hardware or for arestricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or similar devices); (c)
eligibility to receive updates, modifications, and revisions; and (d) support services provided. Current
standard policies are available upon request.

2. ESD SOFTWARE. If you purchased alicense to use embedded software development (ESD) Software,
Mentor Graphics or its authorized distributor grants to you a nontransferable, nonexclusive license to
reproduce and distribute executable files created using ESD compilers, including the ESD run-time
libraries distributed with ESD C and C++ compiler Software that are linked into a composite program as
an integral part of your compiled computer program, provided that you distribute these filesonly in
conjunction with your compiled computer program. Mentor Graphics does NOT grant you any right to
duplicate or incorporate copies of Mentor Graphics' real-time operating systems or other ESD Software,
except those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE

3.1.Portions or all of certain Software may contain code for experimental testing and evaluation ("Beta
Code"), which may not be used without Mentor Graphics' explicit authorization. Upon Mentor
Graphics' authorization, Mentor Graphics grants to you a temporary, nontransferable, nonexclusive
license for experimental useto test and eval uate the Beta Code without charge for alimited period of
time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not
to release commercialy in any form.

3.2. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the Beta
Code under normal conditions as directed by Mentor Graphics. Y ou will contact Mentor Graphics

periodically during your use of the Beta Code to discuss any malfunctions or suggested
improvements. Upon completion of your eval uation and testing, you will send to Mentor Graphics a
written evaluation of the Beta Code, including its strengths, weaknesses and recommended
improvements.

3.3.You agree that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceives or makes during or subsequent to this Agreement,
including those based partly or wholly on your feedback, will be the exclusive property of Mentor
Graphics. Mentor Graphics will have exclusive rights, title and interest in all such property. The
provisions of this subsection shall survive termination or expiration of this Agreement.

4, RESTRICTIONSON USE. You may copy Software only as reasonably necessary to support the
authorized use. Each copy must include all notices and legends embedded in Software and affixed to its
medium and container as received from Mentor Graphics. All copies shall remain the property of Mentor
Graphicsor itslicensors. Y ou shall maintain arecord of the number and primary location of all copies of
Software, including copies merged with other software, and shall make those records available to Mentor
Graphics upon request. Y ou shall not make Software available in any form to any person other than your
employer’'s employees and contractors, excluding Mentor Graphics' competitors, whose job performance
requires access. Y ou shall take appropriate action to protect the confidentiality of Software and ensure that
any person permitted access to Software does not discloseit or use it except as permitted by this
Agreement. Except as otherwise permitted for purposes of interoperability as specified by the European
Union Software Directive or local law, you shall not reverse-assemble, reverse-compile, reverse-engineer
or in any way derive from Software any source code. Y ou may not sublicense, assign or otherwise transfer
Software, this Agreement or the rights under it without Mentor Graphics' prior written consent. The
provisions of this section shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY

5.1.Mentor Graphics warrants that during the warranty period Software, when properly installed, will
substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Software will meet your requirements or that operation of Software
will be uninterrupted or error free. The warranty period is 90 days starting on the 15th day after
delivery or upon installation, whichever first occurs. Y ou must notify Mentor Graphics in writing of
any nonconformity within the warranty period. Thiswarranty shall not be valid if Software has been
subject to misuse, unauthorized modification or installation. MENTOR GRAPHICS ENTIRE
LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO
MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT
DOESNOT MEET THISLIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THISAGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH ISLOANED TO YOU FOR A
LIMITED TERM OR AT NO COST; OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH
ARE PROVIDED "ASIS."

5.2.THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER
MENTOR GRAPHICSNOR ITSLICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS
ORIMPLIED, WITH RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER
THISAGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THISEXCLUSION OR RESTRICTION OF
LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE STATUTE OR
REGULATION, IN NO EVENT SHALL MENTOR GRAPHICSOR ITSLICENSORS BE LIABLE
FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER

8.

9.

10.

LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS OR
ITSLICENSORS LIABILITY UNDER THISAGREEMENT EXCEED THE AMOUNT PAID BY
YOU FOR THE SOFTWARE OR SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE
NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO
LIABILITY FOR ANY DAMAGES WHATSOEVER.

LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS
SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE
USE OF SOFTWARE IN ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE
SOFTWARE MIGHT RESULT IN DEATH OR PERSONAL INJURY. YOU AGREE TO INDEMNIFY
AND HOLD HARMLESS MENTOR GRAPHICS AND ITSLICENSORS FROM ANY CLAIMS,
LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS FEES, ARISING
OUT OF OR IN CONNECTION WITH SUCH USE.

INFRINGEMENT

8.1.Mentor Graphics will defend or settle, at its option and expense, any action brought against you
alleging that Software infringes a patent or copyright in the United States, Canada, Japan,
Switzerland, Norway, Israel, Egypt, or the European Union. Mentor Graphicswill pay any costs and
damages finally awarded against you that are attributabl e to the claim, provided that you: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable
information and assi stance to settle or defend the claim; and (c) grant Mentor Graphics sole authority
and control of the defense or settlement of the claim.

8.2.1f aninfringement claim is made, Mentor Graphics may, at its option and expense, either (a) replace
or modify Software so that it becomes noninfringing, or (b) procure for you the right to continue
using Software. If Mentor Graphics determines that neither of those aternativesis financialy
practical or otherwise reasonably available, Mentor Graphics may require the return of Software and
refund to you any license fee paid, less a reasonable allowance for use.

8.3.Mentor Graphics has no liability to you if the alleged infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the modification of
Software other than by Mentor Graphics; (c) the use of other than a current unaltered rel ease of
Software; (d) the use of Software as part of an infringing process; (€) a product that you design or
market; (f) any Beta Code contained in Software; or (g) any Software provided by Mentor Graphics
licensors which do not provide such indemnification to Mentor Graphics' customers.

8.4. THISSECTION 8 STATESTHE ENTIRE LIABILITY OF MENTOR GRAPHICSAND ITS
LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO ANY
ALLEGED PATENT OR COPYRIGHT INFRINGEMENT BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

TERM. This Agreement remains effective until expiration or termination. This Agreement will
automatically terminate if you fail to comply with any term or condition of this Agreement or if you fail to
pay for the license when due and such failure to pay continues for a period of 30 days after written notice
from Mentor Graphics. If Software was provided for limited term use, this Agreement will automatically
expire at the end of the authorized term. Upon any termination or expiration, you agree to cease all use of
Software and return it to Mentor Graphics or certify deletion and destruction of Software, including all
copies, to Mentor Graphics' reasonabl e satisfaction.

EXPORT. Software is subject to regulation by local laws and United States government agencies, which
prohibit export or diversion of certain products, information about the products, and direct products of the
products to certain countries and certain persons. Y ou agree that you will not export in any manner any
Software or direct product of Software, without first obtaining all necessary approval from appropriate
local and United States government agencies.

11.

12.

13.

14.

15.

RESTRICTED RIGHTS NOTICE. Software has been developed entirely at private expense and is
commercial computer software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by
the U.S. Government or a U.S. Government subcontractor is subject to the restrictions set forth in the
license agreement under which Software was obtained pursuant to DFARS 227.7202-3(a) or as set forthin
subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR
52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 Boeckman
Road, Wilsonville, Oregon 97070-7777 USA.

THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics
from Microsoft or other licensors, Microsoft or the applicable licensor isathird party beneficiary of this
Agreement with the right to enforce the obligations set forth in this Agreement.

CONTROLLING LAW. This Agreement shall be governed by and construed under the laws of Ireland
if the Software islicensed for usein Israel, Egypt, Switzerland, Norway, South Africa, or the European
Union, the laws of Japan if the Software islicensed for use in Japan, the laws of Singaporeif the Software
islicensed for use in Singapore, People's Republic of China, Republic of China, India, or Korea, and the
laws of the state of Oregon if the Software islicensed for use in the United States of America, Canada,
Mexico, South America or anywhere el se worldwide not provided for in this section

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be
void, invalid, unenforceable or illegal, such provision shall be severed from this Agreement and the
remaining provisionswill remain in full force and effect.

MISCELLANEOQOUS. This Agreement contains the entire understanding between the parties relating to
its subject matter and supersedes all prior or contemporaneous agreements, including but not limited to
any purchase order terms and conditions, except valid license agreements related to the subject matter of
this Agreement which are physically signed by you and an authorized agent of Mentor Graphics. This
Agreement may only be modified by a physically signed writing between you and an authorized agent of
Mentor Graphics. Waiver of terms or excuse of breach must be in writing and shall not constitute
subsequent consent, waiver or excuse. The prevailing party in any legal action regarding the subject
matter of this Agreement shall be entitled to recover, in addition to other relief, reasonabl e attorneys’ fees
and expenses.

(10/99 rev B)

	Bookcase
	Table of Contents
	About This Training Workbook
	Introduction
	Audience
	Primary Audience
	Secondary Audience

	Course Timeline
	Course Overview
	Prerequisite Knowledge
	Acronyms Used in This Workbook
	Customer Support Information

	Module 1 Memory BIST Concepts
	Objectives
	Embedded Memories
	Typical Architecture with Embedded Memories
	Types of Memories
	Types of Testing
	Functional Testing
	Direct Access Testing
	Memory BIST Testing
	When Should You Use Memory BIST?
	Advantages of Adding BIST
	Disadvantages of Adding BIST
	Inserting BIST Circuitry
	Memory Testing and Fault Types
	Stuck-at Faults
	Stuck-at Faults
	Transition Faults
	Transition Faults (Continued)
	Coupling Faults
	Neighborhood Pattern Sensitive Faults
	Testing for Cell Array Faults
	Memory BIST Algorithms
	Comparing the Algorithms
	March C+ (March 2)

	Module 2 Generating a Memory BIST
	Objectives
	Typical Memory BIST Flow
	MBISTArchitect Inputs and Outputs
	Graphical User Interface
	MBISTArchitect GUI Overview
	Role of the Test Bench
	Memory BIST Documentation
	Module 2 Lab Exercises
	Module 2: Lab Exercises
	Getting Started
	Software Versions
	Training Files
	Installing the Training Data Files

	Module 3 Common BIST Variations
	Objectives
	Configuring Memory BIST Circuitry
	Support for Multi-port Memories
	Generate a Comparator Functional Test
	Inserting BIST for Multiple Memories
	MBISTArchitect Controller Options
	How the BIST Controller Works
	Read/Write Operations on Synchronous Memories
	Full-Speed Overview
	Full-speed design with pipeline circuitry
	Pipelining Read/Write Operations
	Performing Sequential Memory Tests
	Adding Diagnostics
	Clock Synchronization

	Compressor vs. Comparator
	BIST using a Compressor
	Adding Pipeline Registers
	Specifying Non-controlled Memory Ports
	Specifying Parameters for Memory Clock Signals
	Bypassing Memory in Scan Mode
	Design Compiler Clock Constraints
	Mux-Embedded Memory Support
	Module 3 Lab Exercises
	Module 3: Lab Exercises
	Extra Credit
	Test Your Knowledge
	Lab Summary

	Module 4 Memory BIST-In-Place
	Objectives
	Memory BIST-In-Place Flow
	Memory BIST-In-Place Flow Overview
	Creating BIST Structures
	Model Creation
	Memory Model Example
	Creating BIST Structures Invocation
	Basic Command Flow
	Creating BIST Structures Results
	Example of RTL BIST Logic
	Example WGL File
	Core Test Description File (CTDF)
	Connecting BIST Structures
	Connecting BIST Structures Invocation
	Example Command Flow (Setup)
	Example Continued (Setup)
	Example Command Flow (Synthesis)
	Connecting BIST Structures Results
	Connecting BIST Structures Dofile
	Example CTAF File
	Example RTL Phase Decoder
	Integrating BIST Patterns
	Integrating BIST Patterns Invocation
	Integrating BIST Patterns Commands
	Continued Example (Integration)
	Integrating BIST Patterns Dofile
	Integrating BIST Patterns Results
	Verification
	I/O Pads
	Global Signal Connections
	BSDArchitect/ Memory BIST-In-Place Integration
	Module 4: Lab Exercises

	Module 5 Memory Modeling for MBISTArchitect
	Objectives
	A Memory Model:
	Memory Model Syntax
	Memory Model Editor
	Loading Library Files and Models
	Defining Inputs/Outputs
	The Dont_touch Keyword
	Understanding Clocking Schemes
	Clock Connections
	No Memory Clock
	A Gated Memory Clock
	A Non-Gated Memory Clock
	An Inverted BIST Clock
	Test Clock
	Control Retention Test Delay
	Memory Ports
	Defining Memory Ports
	Port Definition Example 1
	Port Definition Example 2
	Read/Write Cycle Syntax
	The Read Cycle
	The Write Cycle
	Interpreting Data Sheets
	A Synchronous RAM Example
	Interpreting the Read Cycle Timing
	Defining the Read Cycle
	Interpreting the Write Cycle Timing
	Defining the Write Cycle
	Defining Constant Values
	Logical to Physical Mapping
	The Effect of Physical Topology
	Allowing for Physical Topology
	The Checkerboard Algorithm
	Descrambling Functions
	Validating a Memory Model
	User Defined Algorithm
	Troubleshooting a Memory Model
	Troubleshooting Example: March2
	Module 5 Lab Exercises
	Module 5: Lab Exercises

	Trademark Information
	End-User License Agreement
	Send us feedback

