User Manual

3-Heights™
PDF Validator API

Version 4.5

-TOOLS.COM

Premium PDF Technology

1 4} oo Yo 11Tt o ' T 1

1.1 DESCrIPLION . o e e e e 1
1.2 FUNCLIONS . . e e e e e e 2
1.3 INterfaces . . oo 2
1.4 Operating SYstemMS e e e e 2
1.5 HowtoBestRead thisManual e e 3
2 Installation and Deployment i i i i i i e e 3
2.1 WINAOWS . . o e e 3
2.2 UNIX o e e e 4
2.3 INterfaces e 5
2.4 Interface Specific Installation StePS o it e 7
2.5 Uninstall, Installa New Version e e e e 8
2.6 Note aboutthe Evaluation Version i e e e e e e 8
3 License Management ittt ittt ittt ittt 9
3.1 Graphical License Manager TOOlt e 9
3.2 Command Line License Manager TOOl 10
3.3 License Key Storage oot e 10
4 Programming Interfaces ittt ittt ittt ittt 11
A1 VisUAl BasiC bo i 11
A2 INET 12
N T - 1 14
S 14
5 USEr's GUIE ittt ittt ittt ittt teeeeeeaeeeneeeeneeeeneeeeneeenans 15
5.1 Overview of the APl e 15
5.2 Howdoesthe APlworkingeneral? 15
5.3 Whatis PDF/A? . e 16
5.4 Error, Warning and Information 17
5.5 CustomValidation Profiles e 18
Section File . . . e 18
Section DOCUMENT L o e e e e e e e e e e 19
SECHION PagesS . . o . o o e 20
SeCtion GraphiCs . . . o o e e 21
SeCtioON FONES o e e e e e e e 23
Section Interactive Features e e e e e e 24
Section Digital Signatures o e 24
6 Reference Manual ittt ittt ittt tieeeeeneeenneeeenenenans 25
6.1 The PDFValidator Interface e e 25
CategOriES . . o ot e e 25
CategoryTeXt o e e e e 25
CloSE o o e 26
ComMPliaNCe . . o 26
ErrorCode o e e e 26
ErrorMesSSage o 26
GetRIrS T Or . . o e e e e e e e e e e e 26
GetNEXIEITOr . . e e e e e e e e e 26
NoTempRiles . . . 27
OPEN . o e 27
Reportinglevel e 27
S PrOfile . . e 28
STOPONEITOr . o o e 28
Validate . . . e e e 28
6.2 The PDFError Interface i e e e 28
COUNL . o e e e e 28
ErrorCode e 28
FileNamE . . . e 29
MESSAEE . . . o e 29
ObJECtNO . . o o 29

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 1/33

6.3 ENUMIEratioNS o e e e e 29
TPDFErrorCOOe . . o v o e e e e e e e 29
TPDFCOMPIIANCE . . o e e e e e e 29
TPDFCONfOrmanceCategory v v v vt e e e e e e e e e e e e e e e 30

7 (0003 = - T - - 31

7.0 AL PDF VEISiONS . .ot 31

7.2 Checks Specific for PDF/A . . . o o e 32

7.3 Supported PDF VErSIONSottt e e e e e 33

8 Licensingand Copyright ittt tin et neennnnnas 33

9 (0T 1 = T 33

1 Introduction

1.1 Description

The 3-Heights™ PDF Validator API safeguards the quality of PDF documents. It checks PDF files for compliance
with the ISO standards for PDF and PDF/A documents. Unfortunately, there are many PDF creation or manip-
ulation tools in use that do not comply with the PDF or PDF/A standard. System and operational interruptions
often occur as a result. Incoming documents should be verified before they flow into business processes to
prevent interruptions of this nature and to avoid unexpected costs.

PDF Validator

o w
O e Confor-
S g ming PDF
g | - (V)] =

o o0 oLl @ NS

[.

c O = £ S

o OUB3SM o S

URE ™| | © || 8—

PDF/A? X] s Non-Confor-
L = e ming PDF
& 2

11 1 10 ‘
Report

| Parameters '

The 3-Heights™ PDF Validator API checks whether PDF documents comply with the PDF or PDF/A standard.
Additional verification tests, such as checking the version number of the PDF document, are also possible; the
tool can also verify compliance with internal directives - use of the right color, for instance, or use of the right
fonts and other specifications.

Through its interfaces (C, Java, .NET, COM) and thanks to its flexibility a developer can integrate the 3-Heights™
PDF Validator APl in virtually any application

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 2/33

PDF Validator API verifies PDF documents in accordance with the ISO standard for PDF and also PDF/A for
long-term archiving. The tool can check the conformity of individual documents and entire archives. The result
output is needs-oriented, e.g. a detailed report for a manufacturer of PDF software or a summary of error
reports for the user. The description includes every detail such as frequency, page number or PDF object
number. Verification of internal specifications (e.g. standard image resolution) can occur at the same time.

Validate PDF documents on the basis of various PDF specifications (PDF 1.4, PDF/A-1, PDF/A-2, PDF/A-3)
Detailed or summarized reporting (log file)

Detailed error description (hnumber, type, description, PDF object, page number)

Classification by error, warning and information

Optional cancellation of validation on occurrence of the first error

Read encrypted PDF files

Determine claimed compliance of document

Validate compliance with corporate directives defined in custom profile

See chapter Coverage

Input Formats

PDF 1.x (e.g. PDF 1.4, PDF 1.5, etc.)
PDF/A-1a, PDF/A-1b

PDF/A-2a, PDF/A-2b, PDF/A-2u
PDF/A-3a, PDF/A-3b, PDF/A-3u

Standards: ISO 19005-1 (PDF/A-1), ISO 19005-2 (PDF/A-2), ISO 19005-3 (PDF/A-3), ISO 32000 (PDF 1.7)
Quality assurance: Isartor test suite
Bavaria test suite (unofficial) 2

The following interfaces are available: C, Java, .NET, COM.

Windows XP, Vista, 7, 8, 8.1 - 32 and 64 bit

Windows Server 2003, 2008, 2008 R2, 2012, 2012 R2 - 32 and 64 bit

HP-UX 11 and later PA-RISC2.0 32 bit or HP-UX 11i and later ia64 (Itanium) 64 bit
IBM AIX 5.1 and later (64 bit)

Linux (32 and 64 bit)

Mac OS X 10.4 and later (32 and 64 bit)

Sun Solaris 2.8 and later, SPARC and Intel

FreeBSD 4.7 and later 32 bit or FreeBSD 9.3 and later 64 bit (on request)

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 3/33

If you are reading this manual for the first time, i.e. would like to evaluate the software, the following steps are
suggested.

R

Read the chapter Introduction to verify this product meets your requirements.

Identify what interface your programming language uses.

Read and follow the instructions in the chapter Installation And Deployment.

In the chapter Programming Interfaces find your programming language. Please note that not every lan-
guage is covered in this manual.

For many programming languages there is sample code available. For a start it is generally best to refer to
these samples rather than writing code from scratch.

(Optional) Read the chapter User’s Guide for general information about the API. Read Programmer’s Refer-
ence for specific information about the functions of the API.

The retail version of the 3-Heights™ PDF Validator APl comes as a ZIP archive containing various files including
runtime binary executable code, files required for the developer, documentation and license terms.

1.
2.

Download the ZIP archive of the product from your download account at http://www.pdf-tools.com.

Unzip the file using a tool like WinZip available from WinZip Computing, Inc. at http://www.winzip.com to a
directory on your hard disk where your program files reside (e.g. C:\Program Files\PDF Tools AG).

Check the appropriate option to preserve file paths (folder names). The unzip process now creates the
following subdirectories:

bin: Contains the runtime executable binary code.

doc: Contains documentation files.

include: Contains header files to include in your C/ C++ project.
samples: Contains sample programs in various programming languages.

There is the option to download the software as MSI file, which makes the installation easier.

Optionally register your license key using the License Manager.

Identify which interface you are using. Perform the specific installation steps for that interface described in
chapter Interfaces.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 4/33

http://www.pdf-tools.com
http://www.winzip.com

2.2 Unix

This section describes installation steps required on all Unix platforms, which includes Linux, Mac OS X, Sun
Solaris, IBM AlX, HP-UX, FreeBSD and others.

The Unix version of the 3-Heights™ PDF Validator API provides two interfaces:

= Java interface
= Native Cinterface

Here is an overview of the shared libraries and other files that come with the 3-Heights™ PDF Validator API:

Table: File Description

Description

bin/libPdfValidatorAPI.so This is the shared library that contains the main functionality. The file exten-
sion varies depending on the UNIX platform.

doc/x* . * Documentation
bin/VALA. jar Java APl archive.
include/*.h Contains files to include in your C/C++ Project.

Example code written in different programming languages are available at product page of the PDF Tools AG
website (http://www.pdf-tools.com).

All Unix Platforms

1. Unpack the archive in an installation directory, e.g. /opt/pdf-tools.com/
2. Copy or link the shared object into one of the standard library directories, e.g:
1n -s /opt/pdf-tools.com/bin/libPdfValidatorAPI.so /usr/lib
3. Verify that the GNU shared libraries required by the product are available on your system:
= On Linux: 1dd 1ibPdfValidatorAPI.so
= OnAIX:dump -H libPdfValidatorAPI.so
In case you have not installed the GNU shared libraries yet, proceed as follows:
(a) Go to http://www.pdf-tools.com and navigate to “Support” — “Resouces”.
(b) Download the GNU shared libraries for your platform.
(c) Extract the archive and copy or link the libraries into your library directory, e.g /usr/lib or /usr/lib64.
(d) Verify that the GNU shared libraries required by the product are available on your system now.
4. Optionally register your license key using the Command Line License Manager Tool.
5. Identify which interface you are using. Perform the specific installation steps for that interface described in
chapter Interfaces.

MAC 0S/X

The shared library must have the extension .jnilib for use with Java. We suggest that you create a file link for
this purpose by using the following command:
1n libPdfValidatorAPI.dylib 1libPdfValidatorAPI.jnilib

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 5/33

http://www.pdf-tools.com
http://www.pdf-tools.com

2.3 Interfaces

The 3-Heights™ PDF Validator API provides four different interfaces. The installation and deployment of the
software depend on the interface you are using. The table below shows the supported interfaces and examples
with which programming languages they can be used.

Table: Interfaces

Interface Programming Languages

.NET The MS software platform .NET can be used with any .NET capable programming language
such as:
= C#
= VB.NET
- J#
= others
This interface is available in the Windows version only.

JNI The Java native interface (JNI) is for use with Java.

CoM The component object model (COM) interface can be used with any COM-capable program-
ming language, such as:
= MS Visual Basic
= MS Office Products such as Access or Excel (VBA)

= C++
= VBScript
= others

This interface is available in the Windows version only.

C The native C interface is for use with C and C++.

Development

The software developer kit (SDK) contains all files that are used for developing the software. The role of each
file with respect to the four different interfaces is shown in Table: Files for Development. The files are split in
four categories:

Req. Thisfileis required for this interface.
Opt. This file is optional (e.g. Inet.dll is used for http: and other connections. When using the API locally,

this file is not used). See also Table: File Description to identify which files are required for your
application.

Doc. This file is for documentation only. An empty field indicates this file is not used at all for this
particular interface.

Table: Files for Development

.NET JNI
bin\PdfValidatorAPI.d1ll Req. Req. Req. Req.
bin\pdcjk.dll Opt. Opt. Opt. Opt.
bin*NET.d11l Req.
bin*NET. xml Doc.
doc*.pdf Doc. Doc. Doc. Doc.
doc\PdfValidatorAPI.idl Doc.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 6/33

doc\javadoc*. * Doc.

include\pdfvalidatorapi_c.h Req.
include*. * Opt.
jar\VALA. jar Req.

1ib\PdfValidatorAPI.1lib Req.
samples*.* Doc. Doc. Doc. Doc.

The purpose of the most important distributed files of is described in Table: File Description.

Table: File Description

Description

bin\PdfValidatorAPI.d11l This is the DLL that contains the main functionality (required).

bin\pdcjk.dll This DLL contains support for Asian languages. It is loaded from the module
path.
bin*NET.d11l The .NET assemblies are required when using the .NET interface. The files

bin*NET.xml contain the corresponding XML documentation for MS Studio.

include\pdferror.h Supplementary C header file containing error codes.
doc*. * Various documentations.

include*.* Contains files to include in your C / C++ project.
jar\VALA. jar The Java wrapper.

1lib\PdfValidatorAPI.1lib The Object File Library needs to be linked to the C/C++ project.

samples*.* Contains sample programs in different programming languages.

Deployment

For the deployment of the software only a subset of the files are required. Which files are required (Req.),
optional (Opt.) or not used (empty field) for the four different interfaces is shown in the table below.

Table: Files for Deployment

.NET JNI COM C

bin\PdfValidatorAPI.d1l Req. Req. Req. Req.

bin\pdcjk.d1ll Opt. Opt. Opt. Opt.
bin*NET.d11 Req.
jar\VALA. jar Req.

The deployment of an application works as described below:

Identify the required files from your developed application (this may also include color profiles)
Identify all files that are required by your developed application

Include all these files into an installation routine such as an MSI file or simple batch script
Perform any interface-specific actions (e.g. registering when using the COM interface)

A

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 7/33

This is a very simple example of how a COM application written in Visual Basic 6 could be deployed.

1. The developed and compiled application consists of the file .exe. Color profiles are not used.
2. The application uses the COM interface and is distributed on Windows only.
The main DLL PdfValidatorAPI.dIl must be distributed.
Asian text should be supported, thus pdgjk.dll is distributed.
3. Allfile are copied to the target location using a batch script. This script contains the following commands:
COPY PdfValidatorAPI.dll %targetlocationi\.
COPY pdcjk.dll %targetlocation%\.

4. For COM, the main DLL needs to be registered in silent mode (/s) on the target system. This step requires
Power-User privileges and is added to the batch script.
REGSVR32 /s %targetlocationy,\PdfValidatorAPI.dll

Registration: Before you can use the 3-Heights™ PDF Validator APl component in your COM application program
you have to register the component using the regsvr32.exe program that is provided with the Windows operating
system. The following command shows the registration of PdfValidatorAPI.dll. Note that in Windows Vista and
later, the command needs to be executed from an administrator shell.
regsvr32 C:\Program Files\PDF Tools AG\bin\PdfValidatorAPI.dll

If you are using a 64 bit operating system and would like to register the 32 bit version of the 3-Heights™ PDF Val-
idator API, you need to use the regsvr32 from the directory %SystemRoot\SysW0W64 instead of %SystemRoot%\System32.

If the registration process succeeds, a corresponding dialog window is displayed. The registration can also be
done silently (e.g. for deployment) using the switch /s.

Other Files: The other DLLs do not need to be registered, but for simplicity it is suggested that they reside in the
same directory as the PdfValidatorAPl.dll.

For compilation and execution: When using the Java interface, the Java-wrapper jar\VALA jar needs to be on the
CLASSPATH. This can be done by either adding it to the environment variable CLASSPATH, or by specifying it
using the switch -classpath

javac -classpath .;C:\pdf-tools\jar\VALA.jar sample.java
For execution: Additionally the library PdfValidatorAPI.dll needs to be on the Java system property java.library.path.

This can be achieved by either adding it dynamically at program startup before using the API, or by specifying
it using the switch -Djava.library.path when starting the Java VM.

java -classpath .;C:\pdf-tools\jar\VALA.jar -Djava.library.path=.;C:\pdf-tools\bin
sample

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 8/33

The 3-Heights™ PDF Validator APl does not provide a pure .NET solution. Instead, it consists of .NET assemblies,
which are added to the project and a native DLL, which is called by the .NET assemblies. This has to be accounted
for when installing and deploying the tool.

The .NET assemblies (*NET.dll) are to be added as references to the project. They are required at compilation
time. See also chapter “Getting Started”.

PdfValidatorAPl.dll is not a .NET assembly, but a native DLL. It is not to be added as a reference in the project.
The native DLL PdfValidatorAPLdll is called by the .NET assembly PdfValidatorNET.dlI.

PdfValidatorAPI.dIl must be found at execution time by the Windows operating system. The common way to do
this is adding PdfValidatorAPl.dll as an existing item to the project and set its property “Copy to output directory”
to “Copy if newer”.

Alternatively the directory where PdfValidatorAPIdll resides can be added to the environment variable “PATH"
or it can simply be copied manually to the output directory.

The header file pdfvalidatorapi_c.h needs to be included in the C/C++ program.

The library PdfValidatorAPl.lib needs to be linked to the project.

The dynamic link library PdfValidatorAPl.dll needs to be in path of executables (e.g. on the environment
variable “PATH").

If you used the MSI for the installation, go to Start ->3-Heights™ PDF Validator API ... ->Uninstall...
If you used the ZIP file: In order to uninstall the product undo all the steps done during installation, e.g. un-
register using regsvr32 -u, delete all files, etc.

Installing a new version does not require to previously uninstall the old version. The files of the old version
can directly be overwritten with the new version. If using the COM interface, the new DLL must be registered,
un-registering the old version is not required.

The evaluation versions of the 3-Heights™ products automatically add a watermark to the output files.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 9/33

3 License Management

There are three possibilities to pass the license key to the application:

1. Thelicense key is installed using the GUI tool (Graphical user interface). This is the easiest way if the licenses
are managed manually. It is only available on Windows.

2. The license key is installed using the shell tool. This is the preferred solution for all non-Windows systems
and for automated license management.

3. The license key is passed to the application at runtime via the “LicenseKey” property. This is the preferred
solution for OEM scenarios.

3.1 Graphical License Manager Tool

The GUI tool LicenseManager.exe is located in the bin directory of the product kit.

r]
@ PDF-Tocls License Ma_ : |

File Edit Help

+ X 8

Add Key Delete Refresh List

Al Users | Cumrent User License Properties
3-Heights(TM] Document Converter it Mame Value

(] o 0-10A0M- TSR L TR O Key 0-J0A0(- NG LIS

(O] o 0-BCASN- T Be-=2 0 -Er L) LAD- Product 3-Heights(TM) Image
3-Heights(TM] Image to PDF Converter API 4 Intended Use Productive

(7] o 0-JOAD4- M- o - i - + Platform Windows
3-Heights(TM]} Image to PDF Converter Service j:lgm.e ;ﬁﬂm Page(s;lf‘fear

B piration oes not expire

0-1 CAD)- FT L] ol L T .

Ev ke I £ ||| | * Maintainance Expiration 2033-12-711
I Hemimlbdr TEA Timm mmem bm MITAD 7 mims sm b Tl

List all installed license keys

The license manager always shows a list of all installed license keys in the left pane of the window. This includes
licenses of other PDF Tools products. The user can choose between:

= Licenses available for all users. Administrator rights are needed for modifications.
= Licenses available for the current user only.

Add and delete license keys
License keys can be added or deleted with the “Add Key” and “Delete” buttons in the toolbar.

= The “Add key” button installs the license key into the currently selected list.
= The “Delete” button deletes the currently selected license keys.

Display the properties of a license

If a license is selected in the license list, its properties are displayed in the right pane of the window.

Select between different license keys for a single product

More than one license key can be installed for a specific product. The checkbox on the left side in the license
list marks the currently active license key.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 10/33

3.2 Command Line License Manager Tool

The command line license manager tool 1icmgr is available in the bin directory for all platforms except Windows.
A complete description of all commands and options can be obtained by running the program without param-
eters:

licmgr

List all installed license keys

licmgr list

Add and delete license keys

Install new license key:
licmgr store X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Delete old license key:
licmgr delete X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

Both commands have the optional argument -s that defines the scope of the action:

= g: For all users
= u: Current user

Select between different license keys for a single product

licmgr select X-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

3.3 License Key Storage

Depending on the platform the license management system uses different stores for the license keys.

Windows
The license keys are stored in the registry:

= HKLM\Software\PDF Tools AG (for all users)
= HKCU\Software\PDF Tools AG (for the current user)

Mac OS X
The license keys are stored in the file system:

* /Library/Application Support/PDF Tools AG (for all users)
= ~/Library/Application Support/PDF Tools AG (for the current user)

Unix/Linux
The license keys are stored in the file system:

" /etc/opt/pdf-tools (for all users)
= ~/.pdf-tools (for the current user)

Note: The user, group and permissions of those directories are set explicitly by the license manager tool. It
may be necessary to change permissions to make the licenses readable for all users. Example:
chmod -R go+rx /etc/opt/pdf-tools

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 11/33

After installing the 3-Heights™ PDF Validator AP| and registering the COM interface (see chapter Download and
Installation), you find a Visual Basic 6 example PdfValidatorAPl.vbp in the directory samples/VB/. You can either
use this sample as a base for an application, or you can start from scratch.

If you start from scratch, here is a quick start guide for you:

1. First create a new Standard-Exe Visual Basic 6 project. Then include the 3-Heights™ PDF Validator APl com-
ponent to your project.

References - PDF¥alidatorAPL.¥bp

available References: 0K

L] 3-Heights(Tt) Image to POF Conwerter APL1.60 a | Cancel
[3-Heights{TM) PDF Annotation APT 1,60
[[]3-Heights(TM) PDF Content To Image API 1,60
[]3-Heights(TM) PDF Expart APT 1,60 Brawse...
[] 3-Heights{TI) PDF Optimizer APT 1,60

[]3-Heights(TM) POF Printer APT 1,60 ﬂ
[3-Heights{TM) PDF Renderer AFT 1,60

[[] 3-Heights{TM) PDF Repair 4PI 1.60 Pricrity
[[] 3-Heights(TM) PDF Secure APT 1,60

[] 3-Heights(T) PDF Split | Merge API 1,50 ﬂ
[[] 3-Heights(TI) PDF To Image AP1 1,60

5-Height=(TH)
|—|I3—Heic|htszM‘J FOF Viewser O(iX 1,60 _l;l
A 3

r— 3-Heights(TM) PDF Validator API 1,60

Help

PRk,

Location: Dv\BinbiniPdralidatoraPI. dll
Language: Standard

2. Draw a new Command Button and optionally rename it if you like.
3. Double-click the command button and insert the few lines of code below. All that you need to change is the
path of the file name.

Dim validator As New PDFVALIDATORAPILib.PDFValidator
Dim err As PDFVALIDATORAPILib.PDFError

validator.Open(file, "", ePDFA1lb)

validator.Reportinglevel = 2
validator.Validate

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 12/33

As opposed to previous versions, the Windows build numbers 1.7.1.* and later provide a .NET interface.

There should be at least one .NET sample for MS Visual Studio 2005 available in the ZIP archive of the Windows
Version of the 3-Heights™ PDF Validator API. The easiest for a quick start is to refer to this sample.

In order to create a new project from scratch, do the following steps:

1. Start Visual Studio and create a new C# or VB project.

2. Add a reference to the .NET assemblies. To do so, in the “Solution Explorer” right-click your project and
select “Add Reference...". The “Add Reference” dialog will appear. In the tab “Browse”, browse for the .NET
assemblies libpdfNET.dIl and PdfValidatorNET.dIl
Add them to the project as shown below:

MET | com | Projects Browse | Recent |

Lok in: Ia bin j L] EF Ed-

PdfyalidatorAPL.di
[ESkrdfvalidatorET, i

File pame: I ‘PdfvalidatorMET.dIl" "libpdMET . dII" j
Filez of type: IComponent Files [*.dll* Hb:*. olb;* ocx:* exe: manifest] j
oK I Cancel |

3. import namespaces (Note: This step is optional, but useful.)
4. Write Code

Steps 3 and 4 are shown separately for C# and Visual Basic.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 13/33

3. Double-click “My Project” to view its properties. On the left hand side, select the menu “References”. The
.NET assemblies you added before should show up in the upper window.
In the lower window import the namespaces Pdftools.Pdf and Pdftools.PdfValidate.
You should now have settings similar as in the screenshot below:

Application
configuration: |MfA A Platfarm: [kja A
Campile
Debug Pfiirs: Unused References. .. I Reference Paths...
Reference Name | T pel Yersian I Copy Local | Path
References libpdFRET MNET 1.0.0.0 True Ci|Program Filesipdf-toolsibiniibpdfNET dil
Microsoft. VisualBasic. Compatibiity \NET 8.0.0.0 False C\WINNT Microsaft, MET\Frameworki»2.0,507 27| Microsoft. VisualBa:
Resources PdFyalidatarMET MET 1.0.0.0 True C:\Program Files\pdf-toolsibintPdfvalidatorKET dil
System MET 2.0.0.0 False CAWINNTYMicrosoft MET\Frameworklwz 0, 50727\ System, dil
Settings Stystenn, Drawing MET 2.0.0.0 False CWINNTIMicrosaft, MET\Frameworkiv2 .0,50727\System, Drawing, dl
System. Windows, Forms MET 2.0.0.0 False C\WINNT Microsoft, MET\FrameworkiwZ .0, 50727 Syskem, Windows . F
Signing
Security
Publish
< | Bl

Add... |-| Remoye | Ugdate Web Reference, .. |

Imported namespaces:

|Pdfeacls.pdf #add User Import |

PdFtoals, Pdfyalidate

Microsoft, VisualBasic

Microsoft, VisualBasic, Compatibility
System

System, Collections

System. Drawing

<
w
g
ey
a
E
=

Syskem. Windows. Forms
! M‘:’rrncnﬂ’ ;I Wpdate Wser Import |

4. The .NET interface can now be used as shown below:

Dim validator As New PdfValidator
Dim PDFVersion As PDFCompliance = PDFCompliance.ePDFA1lb
Dim FileName, Password As String

validator.Open(FileName, Password, PDFVersion)

3. Add the following namespaces:

using Pdftools.Pdf;
using Pdftools.PdfValidator;

4. The .NET interface can now be used as shown below:

PdfValidator validator = new PdfValidator();
String FileName, Password;

validator.Open(FileName, Password)

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 14/33

When deploying a .NET solution, please refer to the following FAQ “Deploying in .NET":
http://www.pdf-tools.com/pdf/Support/FAQ/Article.aspx?name=Deployment-In-NET

The most common issue when using the .NET interface is if the native DLL is not found at execution time. This
normally manifests when the constructor is called for the first time and exception is thrown - normally of type
System.TypelnitializationException.

To resolve that ensure the native DLL is found at execution time. For this, see section .NET Interface in the
chapter Installation or the following FAQ:
https://www.pdf-tools.com/pdf/Support/FAQ/Article.aspx?name=Exception-type-initializer

There is a Java sample validate.java available which shows how to use the Java interface.

import com.pdftools.pdfvalidator.PdfValidatorAPI;
import com.pdftools.pdfvalidator.PdfError;
import com.pdftools.NativeLibrary;

PdfValidatorAPI doc = new PdfValidatorAPI();
doc.setReportinglevel (2) ;
doc.open(file, "", NativeLibrary.COMPLIANCE.ePDFA1lb);

There is a C sample available within the software package of the evaluation and release version that shows
how the C interface is used. Before the C interface can be used to create objects, it must be initialized once.
This is done using PdfValidatorinitialize, to un-initialize use PdfValidatorUninitialize. Other than that, equal call
sequences as in other interface can be used.

#include "pdfvalidatorapi_c.h"

TPdfValidator* pDocument;
TPdfValidatorError* pError;

PdfValidatorInitialize () ;

pDocument = PdfValidatorCreateObject () ;
PdfValidatorOpenA (pDocument, argv[1], "", ePDFAlb))
PdfValidatorSetStopOnError (pDocument, 0);
PdfValidatorValidate (pDocument) ;

PdfVlidatorUnInitialize();

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 15/33

http://www.pdf-tools.com/pdf/Support/FAQ/Article.aspx?name=Deployment-In-NET
https://www.pdf-tools.com/pdf/Support/FAQ/Article.aspx?name=Exception-type-initializer

The 3-Heights™ PDF Validator APl is a tool to validate existing PDF documents against a specification, such as
the international standard ISO 19005-1 for PDF/A. The tool analyzes a PDF document and states whether it is
compliant or not. If a document is not compliant, it provides detailed information why the validation failed.
This consists of either a list of all validation errors, including a brief error description, the page number, the
PDF object number, and number of occurrences, or a summary.

The API requires as input a PDF document and the selection of a compliance level (e.g. PDF/A 1b).

f Customer Application \
(e.g. Verification Process)

H
¢ B
3-Heights™
PDF Validator

List PDF/A
Compliant
Documents

Compliant
Non-compliant

PDF/A?

List non-compliant

Option: documents
Analyze for customer- _including
specific requirements discrepancies

1. The APl opens a PDF document; at that point a compliance level must be selected.

2. Thereporting level decides what errors types are reported later (none, errors only, errors + warnings, errors
+warnings + information).

3. The document is validated against the selected specification.

4. Alist of all errors can be retrieved after the validation.

5. The document is closed.

Below is a call sequence writing in Visual Basic .NET which illustrates this procedure:

Dim validator As New PdfValidator
validator.ReportinglLevel = ...
validator.Open(...)

validator.Validate ()

Dim PdfErr As PdfError = validator.GetFirstError

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 16/33

While Not (PdfErr Is Nothing)
' Do something with PdfErr, e.g. output PdfErr.Message
PdfErr = validator.GetNextError

End While

validator.Close ()

Please note that the call sequence above is a bit too simple. If you are using this API for the first time, it might
be best to look at one of the provided samples to start with.

The 3-Heights™ PDF Validator API provides two ways to list conformance errors:

List all errors individually. This is the method used in the call sequence above. Every error can be listed
including page number, PDF object, error code and error message. Multiple equal errors on the same page
are merged and the number of occurrences is provided. This approach lists very detailed information, which
is useful for a creator of the PDF document.

Instead of listing all errors individually, it is possible to summarize them in 19 generic categories. E.g. ifin a
PDF document all conformance errors are related to non-embedded fonts, only one category is listed. An
end-user is most likely not interested in a detailed list, but instead only wants to know whether the validated
document is compliant or not. If additional information is not required, a summary is sufficient.

If you purchased a customized version of the 3-Heights™ PDF Validator APl with customized features (such as
validate if embedded images have a resolution within a given range), see additional documentation

vala_custom_extensions_*.pdf.

PDF/A is an ISO Standard for using PDF format for the long-term archiving of electronic documents. PDF/A 1
(ISO 19005-1) is based on PDF 1.4 (Acrobat 5). On top of PDF 1.4, it has additional requirements to keep the
document self-contained and suitable for long-term archival. The most important are:

Encryption may not be used

If device-dependant color space (e.g. DeviceRGB, DeviceCMYK, DeviceGray) are used, a corresponding color
profile must be embedded

Fonts used for visible text must be embedded

Transparency may not be used

PDF/A-2 is described in ISO 19005-2. It is based on ISO 32000-1, the standard for PDF 1.7. PDF/A-2 is meant
as an extension to PDF/A-1. The second part shall complement the first part and not replace it. The most
important differences between PDF/A-1 and PDF/A-2 are:

The list of compression types has been extended by JPEG2000

Transparent contents produced by graphic programs are allowed

Optional contents (also known as layers) can be made visible or invisible

Multiple PDF/A files can be bundled in one file (collection, package)

The additional conformity level U (Unicode) allows for creating searchable files without having to fulfill the
strict requirements of the conformity level A (accessibility)

Documents that contain features described above, in particular layers or transparency, should therefore be
converted to PDF/A-2 rather than PDF/A-1.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 17/33

PDF/A-3 is described in ISO 19005-3. It is based on ISO 32000-1, the standard for PDF 1.7. PDF/A-3 is an exten-
sion to PDF/A-2. The third part shall complement the second part and not replace it. The only two differences
between PDF/A-2 and PDF/A-3 are:

Files of any format and conformance may be embedded. Embedded files need not be suitable for long-term
archiving.
Embed files can be associated with any part of the PDF/A-3 file.

For additional information about PDF/A please visit: http://www.pdf-tools.com/pdf/pdfa-longterm-archiving-
is0-19005-pdf.aspx.

Error codes in the 3-Heights™ PDF Validator API are classified in three types. The meaning of these three types
with respect to PDF/A is described below:

A message of type “information” describes a process step performed by the program. Examples:

A hint about the next step that is going to be performed
A detection that a document does not follow a recommendation of a specification

A message of type “information” does not indicate a problem or violation of a specification. No action is re-
quired.

A warning indicates a violation of the PDF/A specification. A typical warning is formatting error, such as a
missing, but required entry or a prohibited entry. The document may still be compliant with PDF, but not with
PDF/A.

A PDF document which raises warnings but no errors is likely to be recoverable e.g. using the 3-Heights™
PDF to PDF/A Converter. No critical data is missing. The document, even though not PDF/A compliant is still
worthwhile.

An error indicates a violation of the PDF/A specification. An error is more severe than a warning. A typical
error is a corruption, such as missing or invalid data. A PDF document, which raises an error, is likely to be not
fully recoverable. Critical data might be missing. An error can sometimes be repaired using a PDF to PDF/A
converter tool. An error however often indicates that data is missing. Depending on the type of data, a PDF to
PDF/A converter may or may not be able to restore the data adequately. Examples:

Repairable: If a color profile is missing or invalid, it can be replaced by a new, correct color profile.
Not repairable: If image data is missing, the image data cannot be repaired, it must be retrieved from the
original image.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 18/33

http://www.pdf-tools.com/pdf/pdfa-longterm-archiving-iso-19005-pdf.aspx
http://www.pdf-tools.com/pdf/pdfa-longterm-archiving-iso-19005-pdf.aspx

In addition to checking documents for compliance with the PDF Reference and PDF ISO standards, the 3-
Heights™ PDF Validator APl can ensure compliance with custom corporate directives. Custom checks are de-
fined in a configuration file and activated using the SetProfile method.

The format of the configuration file follows the INI file syntax. By default, all custom checks are deactivated, so
all custom checks must be enabled explicitly. All lines starting with a semicolon ;" are ignored.

Key: FileSizel

Error Code: CHK_E_FILESIZE1

Define the maximum allowed file size in megabytes.
Example: Set allowed file size to 100 MB.

[Filel
FileSizel=100

Key: FileSize2
Error Code: CHK_E_FILESIZE2

Define a second limit for the maximum allowed file size in megabytes. If FileSize2 is specified, it must be larger
than the value of FileSize1. If a file's size is larger than FileSize2, the error CHK_E_FILESIZE2 is raised, else if he
size is larger than FileSize1, CHK_E_FILESIZE1 is raised.

Example: Set allowed file size to 200 MB.

[File]
FileSize2=200

Key: MaxPdfVersion
Error Code: CHK_E_MAXPDFVERS

The highest PDF version a document may have is defined by the setting MaxPdfVersion. The argument is a
period-separated value with a major version, a minor version and an optional extension level.

Example: Set maximum allowed PDF version to PDF 1.4 (Acrobat 5).

[Filel

MaxPdfVersion=1.4
Example: Set the maximum allowed PDF version to PDF 1.7, extension level 3 (Acrobat 9).

[File]
MaxPdfVersion=1.7.3

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 19/33

Key: MinPdfVersion
Error Code: CHK_E_MINPDFVERS

The setting MinPdfVersion sets the minimum PDF version the document must have. The usage is equivalent to
MaxPdfVersion.

Example: The following setting requires the document under test to be at least PDF 1.3 and no higher than
PDF 1.6.

[Filel]
MinPdfVersion=1.3
MaxPdfVersion=1.6

Key: Encryption
Error Code: CHK_E_ENCRYPTION

Check, whether or not the file is encrypted.

Values:

true: Raise error, if file is not encrypted.
false: Raise error, if file is encrypted.

Example: Dis-allow encrypted files.

[Filel]
Encryption=false

Key: NonCreators, NonCreatorX
Error Code: CHK_E_CREATOR

Non-approved PDF creators are defined by setting NonCreator='n’, where 'n’ is the count, i.e. a value larger
than 0. Names of the creators are defined using NonCreator1=Name_1 to NonCreator'n'=Name_n.

Example: A list of non-approved PDF creators can be defined like this:

[Document]

NonCreators=2
NonCreatorl=pdf fools
NonCreator2=badpdfcreator

Key: NonProducers, NonProducerX
Error Code: CHK_E_PRODUCER

Non-approved PDF producers are defined similar to non-approved PDF creators.
Example: A list of non-approved PDF producers can be defined like this:

[Document]
NonProducers=1
NonProducerl=pdf fools

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 20/33

Key: EmbeddedFiles, EmbeddedFileX
Error Code: CHK_E_EFTYPE

List of allowed embedded file types. Wild cards are supported at the beginning or the end of the string.

Example: Allow embedded PDF files and job options only.

[Document]

EmbeddedFiles=2
EmbeddedFilel=x.pdf
EmbeddedFile2=%. joboptions

Key: PageSizes, PageSizeX
Error Code: CHK_E_PAGESIZE

Approved page sizes are specified by setting PageSizes='n’, where 'n’ is the count, i.e. a value larger than 0.
Sizes are defined using PageSize1=Size_1 to

Values:

Letter: US Letter page 8.5x 11 in.

A'n': Aseries international paper size standard A0 to A10.

DL: DIN long paper size 99 x 210 mm.

w x h uu: Arbitrary page size of width w, height h measured in units uu. Supported units are in, pt, cm and

mm.

The tolerance used for size comparison is 3 points (3/72 inch, 1Tmm), unless the key SizeTolerance is specified.

Example

[Pages]

PageSizes=4

PageSizel=A0

PageSize2=A3
PageSize3=15.53 x 15.35 in
PageSize4=181 x 181 mm

Key: SizeTolerance
Default: 3 (~1mm)
Error Code: n/a

Tolerance used for page size comparison.
Values:

Percentage: Proportional difference, e.g. SizeTolerance=107,.
Absolute Value: Absolute difference in points (1/72 inch), e.g. “SizeTolenrace=72" allows 1 inch.

The tolerance used for size comparison is 3 points (3/72 inch), unless the key SizeTolerance is specified.

Example: Allow a tolerance of 10%.

[Pages]
SizeTolerance=10Y%

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 21/33

Key: EmptyPage
Error Code: CHK_E_EMPTYPAGE

Use the key EmptyPage to disallow empty pages. A page is considered empty, if no graphic objects are drawn
onto it.
Values:

true: Raise error, if page is not empty.
false: Raise error, if page is empty.

Example: Raise error CHK_E_EMPTYPAGE, if document contains an empty page.

[Pages]
EmptyPage=false

Key: ScanMaxDPI
Error Code: CHK_E_SCANMAXDPI

Use ScanMaxDPI to set maximum allowed resolution in dpi (dots per inch) for scanned images.
Example: Set the maximum allowed resolution to 602DPI.

[Graphics]
ScanMaxDPI=602

Key: ScanMinDPI
Error Code: CHK_E_SCANMINDPI

Use ScanMinDPI to set minimum allowed resolution in dpi (dots per inch) for scanned images.
Example: Embedded images must have a resolution from 148 to 152 dpi.

[Graphics]
ScanMinDPI=148
ScanMaxDPI=152

Key: ScanColor
Error Code: CHK_E_SCANCLR

If you do not want to allow color scans, use the option ScanColor.

Values:
true: Raise error, if scanned image does not contain color.
false: Raise error, if scanned image does contain color.

Example: If you want to dis-allow color scans.

[Graphics]
ScanColor=false

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 22/33

Key: OCRText
Error Code: CHK_E_OCRTEXT

Test, if scanned images have OCR text, i.e. if the file is word searchable.

Values:
true: Raise error, if scanned image has no OCR text (i.e. file is not word searchable).
false: Raise error, if scanned image has OCR text (i.e. file is word searchable).

Example: Raise an error, if an image has no OCR text.

[Graphics]
OCRText=true

Key: ProhibitColor
Error Code: CHK_E_CLRUSED

If you only want to allow black and white, use the option ProhibitColor.
Values:

true: Raise error, if page contains color.

false: Do not check for color.
Example

[Graphics]
ProhibitColor=true

Key: Layers
Error Code: CHK_E_LAYERS

Use the key Layers to disallow layers.

Values:

true: Raise error, if document contains no layers.
false: Raise error, if document contains layers.

Example: Raise error CHK_E_LAYERS, if document contains layers.

[Graphics]

Layers=false

Key: HiddenLayers
Error Code: CHK_E_HIDDENLAYERS

Use the key HiddenLayers to disallow hidden layers.
Values:

true: Raise error, if document contains no hidden layers.
false: Raise error, if document contains hidden layers.

Example: Raise error CHK_E_HIDDENLAYERS, if document contains hidden layers.

[Graphics]
HiddenLayers=false

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 23/33

There are two ways of restricting the allowed fonts used in the validated document. Either every font that is
approved is explicitly white-listed or every font that is not approved is black-listed. Most appropriately only one
of the two settings is used at once.

Key: Fonts, FontX
Error Code: CHK_E_FONT

Restrict the approved fonts to a defined set of fonts. The number of approved fonts is set by Fonts="n’,
where n is a number larger than 0. The names of the approved fonts are listed using Font1=Font_Name_]1
to Font'n'=Font_Name_n. Wild cards are supported Font styles are defined by adding a command and the style
after the font family name.

Example: A list of approved fonts can be defined like this:

[Fonts]
Fonts=163
Font1=AdvC39Db
Font2=AdvC39Db
Font3=AdvHC39b
Font4=AdvHC39Db
Fontb=Arial
Font6=Arial,Bold

Font163=ZapfDingbats

Key: NonFonts, NonFontX
Error Code: CHK_E_FONT

A list of non-approved fonts can be defined, wild cards are supported.

Example

[Fonts]
NonFonts=4
NonFont1=MSTTx*
NonFont2=T1x*
NonFont3=T2x*
NonFont4=T3x*

Key: Subsetting
Error Code: CHK_E_FNTSUB

Subsetting a font means only those glyphs are embedded in the font program, which are actually used. Sub-
setting is mainly used to keep the file size small. The setting Subsetting can be used to test the subsetting of
embedded fonts.

Values:

true: Raise error, if embedded font is not subsettet.
false: Raise error, if embedded font is subsettet.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 24/33

Example: Require all fonts to be subsettet.

[Fonts]
Subsetting=true

Key: NonStdEmbedded
Error Code: CHK_E_FNTEMB

The setting NonStdEmbedded can be used to test the embedding of non-standard fonts.

Values:
true: Raise error, if non-standard font is not embedded.

false: Raise error, if non-standard font is embedded.
Example: Require all non-standard fonts to be embedded.

[Fonts]
NonStdEmbedded=true

Key: Annotations, AnnotationX
Error Code: CHK_E_ANNOTATION

Set a list of approved annotations
Example: Allow form fields (“Widget” annotations) and links (“Link” annotations) only.
[Interactive Features]
Annotations=2

Annotationl=Widget
Annotation2=Link

Key: NonActions, NonActionX
Error Code: CHK_E_ACTION
Set a list of non-approved actions
Example: Disallow URI-Actions.

[Interactive Features]
NonActions=1
NonActionl1=URI

Key: Provider
Error Code: n/a

Set the cryptographic provider used for signature validation.

Example: Use openCryptoki to validate signatures (note that openCryptoki must be installed):

[Digital Signatures]
Provider=libopencryptoki.so

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 25/33

Key: ValidateNewest
Error Code: CHK_E_SIGVAL

Validate the newest signature of the document. Also see the keys Provider and Criteria.

Example: Validate the newest signature using openCryptoki.

[Digital Signatures]
ValidateNewest=true
Provider=libopencryptoki.so
Criteria=1

Criterionl=Verification

Key: Criteria, CriterionX

Error Code: n/a

List of signature validation criteria. Currently supported are:

Verification: The signature can be verified, i.e. the cryptographic message syntax (CMS) is correct and
the document has not been modified.

EntireDoc: Require that the document has not been updated after the newest signature.

Visible: Signature must be visible.

Example: (see key ValidateNewest)

Note this manual describes the COM interface only. Other interfaces (C, Java, .NET) however work similarly, i.e.
they have calls with similar names and the call sequence to be used is the same as with COM.

Property Long Categories
Accessors: Get

Instead of a detailed report using GetFirstError and GetNextError there is the alternative to report a summary.
The summary consists of 19 possible messages (see property CategoryText). If any violation is detected at
least once, it is reported once. The value of the property Categories accessed and used after the validation. It
returns a number in which each bit represents one of these 19 messages. The textual value for each bit can be
retrieved using CategoryText(Bit).

Property String CategoryText (TPDFConformanceCategory iCategory)

Accessors: Get

Return a textual description for each of the 19 summary messages. The messages are described in the chapter
TPDFConformanceCategory.

Parameters:
iCategory: The enumeration of the conformance category.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 26/33

Method Boolean Close ()

Close an opened input file. If the document is already closed the method does nothing.

Return value:
True: The file was closed successfully.

False: Otherwise

Property TPDFCompliance Compliance
Accessors: Get (after Open)

This property indicates the compliance used to validate the currently opened document.
This is usually the same value as provided in the Open method (unless ePDFUnk was supplied).

This property must be read after Open. It is no longer meaningful after a call to Close.

Property TPDFErrorCode ErrorCode

Accessors: Get

This property can be accessed to receive the latest error code. See also enumeration TPDFErrorCode. PDF-
Tools error codes are listed in the header file pdferror.h. Please note, that only few of them are relevant for the
3-Heights™ PDF Validator API.

Property String ErrorMessage

Accessors: Get

Return the error message text associated with the last error (see property ErrorCode).

Note, that the property is NULL, if no message is available.

Method PDFError GetFirstError ()

This method returns the first error, it can also be a warning.

Return value:
The first error if there are any.

Nothing otherwise

Method PDFError GetNextError ()

This method returns the next error, it can also be a warning.

Return value:
The next error if there are any.

Nothing otherwise

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 27/33

Property Boolean NoTempFiles
Accessors: Get, Set
Default: False

If set to True, the Validator will not create any temporary files. If set to False, temporary files mitght be cre-

ated, e.g. for embedded files. Use this option with care, because if set to True this might increase memory
consumption significantly.

Method Boolean Open(String FileName, String Password, TPDFCompliance Compliance)
Method Boolean OpenMem(Variant MemoryBlock, String Password, TPDFCompliance
Compliance)

Method Boolean OpenStream(Variant StreamDesc, String Password, TPDFCompliance
Compliance)

Open a PDF file. If another document is already open, it is closed first.

Parameters:
FileName: The file name and optionally the file path, drive or server string according to the operating
systems file name specification rules.
Path: e.g. c:\data\document.pdf
HTTP URL: http:// [username:password@]domain[:port] [/resource], where username:password are
used for HTTP basic authentication.
HTTPS URL: URL beginning with https://
FTP URL: URL beginning with ftp://

Password: The user or the owner password of the encrypted PDF document.
Compliance: The compliance level, see enumeration TPDFCompliance. If ePDFUnk is passed, the validator
determines the claimed compliance of the document. The determined compliance can be read using the

property Compliance and will be used in the Validate method. Note that the claimed compliance is not
limited to a version of PDF/A.

Return value:
True: The file could successfully be opened.

False: The file does not exist, it is corrupt, or the password is not valid. Use the property ErrorCode for
additional information.

Property Integer ReportinglLevel
Accessors: Get, Set
Default: 3

With this property the reporting level can be set or get. The supported levels are:

0 - none - Nothing is reported

1 - errors - Errors are reported

2 - warnings - Errors and warnings are reported

3 - information - Error, warnings and information are reported

The property ReportingLevel must be set before the Open Method in order to be applied.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 28/33

Method Boolean SetProfile(String FileName)
Method Boolean SetProfileMem(Variant MemoryBlock)
Method Boolean SetProfileStream(Variant StreamDesc)

Set custom profile to validate compliance with corporate directives. See chapter Custom Validation Profiles for
more information on features and configuration file format.

Parameters:
FileName: The file name of the profile configuration file. Set FileName to null or the empty string, in order

to remove the active profile.

Return value:
True: Profile was set successfully.

False: Error setting Profile. Consult the properties ErrorCode and ErrorMessage for more information on
the cause.

Property Boolean StopOnError
Accessors: Get, Set
Default: False

If set to true, the method Validate will abort on the first error. However, it will continue on warnings and
Information messages until the first error occurs.

This property must be set after Open. It is no longer valid after a call to Close.

Method Boolean Validate ()

This method starts the validation. It aborts after the first error if StopOnError is set to true.

Return value:
True: The validation finished successfully

False: The validation was aborted (e.g. because an error was found and StopOnError is set to true)

The return value does not give an indication whether the document is compliant or not. The document is
compliant, if and only if, Validate returns True and the ErrorCode is not set to PDF_E_CONFORMANCE.

Property Long Count
Accessors: Get

This property returns how many times the error occurs on the page.

Property TPDFErrorCode ErrorCode
Accessors: Get

This property can be accessed to receive the latest error code. See also enumeration TPDFErrorCode. PDF-

Tools error codes are listed in the header file pdferror.h. Please note, that only few of them are relevant for the
3-Heights™ PDF Validator API.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 29/33

Property String FileName

Accessors: Get

Return the name of the (embedded) file in which the error occurred.

Property String Message

Accessors: Get

This property returns an explaining error message.

Property Long ObjectNo

Accessors: Get

This property is not yet supported.

This property returns the object number at which the error occurs. If the error is not related to a particular
object, 0 is returned.

Property Long PagelNo
Accessors: Get

This property returns the page number on which the error occurs. If the error is not related to a particular page
number, O is returned.

Note: Depending on the interface, enumerations may have “TPDF" as prefix (COM, C) or “PDF” as prefix (.NET)
or no prefix at all (Java).

All TPDFErrorCode enumerations start with “PDF_" followed by a single letter which is one of “S", “E”, “W" or “I",
an underscore and a descriptive text. The single letter gives in an indication of the type of error. These are:
Success, Error, Warning, Information. With respect to corrupt PDF files: An error indicates a corruption in the
PDF, the file may or may not be readable. A warning indicates the file is readable but not valid.

A full list of all PDF Tools error codes is available in the header file pdferror.h. Note that only a few are relevant
for the PDF Validator API. The most common are listed here.

PDF_S_SUCCESS The operation was completed successfully.

LIC_E_NOTSET, Various license management related errors.
LIC_E_NOTFQOUND, ..

PDF_E_FILEOPEN Failed to open the file.

PDF_E_FILECREATE Failed to create the file.

PDF_E_PASSWORD The authentication failed due to a wrong password.
PDF_E_UNKSECHANDLER The file uses a proprietary security handler, e.g. for a proprietary digital

rights management (DRM) system.

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 30/33

ePDF10

ePDF11

ePDF12

ePDF13

ePDF14

ePDF15

ePDF16

ePDF17

ePDFAla

ePDFA1b

ePDFA2a

ePDFA2b

ePDFA2u

ePDFA3a

ePDFA3b

ePDFA3u

ePDFUnk

PDF Version 1.0
PDF Version 1.1
PDF Version 1.2
PDF Version 1.3
PDF Version 1.4 (corresponds to Acrobat 5)
PDF Version 1.5
PDF Version 1.6 (corresponds to Acrobat 7)
PDF Version 1.7
PDF/A 1a, ISO 19005-1, Level A compliance
PDF/A 1b, ISO 19005-1, Level B compliance
PDF/A 2a, ISO 19005-2, Level A compliance
PDF/A 2b, ISO 19005-2, Level B compliance
PDF/A 2u, ISO 19005-2, Level U compliance
PDF/A 3a, ISO 19005-3, Level A compliance
PDF/A 3b, ISO 19005-3, Level B compliance
PDF/A 3u, ISO 19005-3, Level U compliance

Unknown format (default)

Note that only ePDF14, ePDFA1a, ePDFA1b, ePDFA2a, ePDFA2b, ePDFA2u, ePDFA3a, ePDFA3b and ePDFA3u

are supported.

eConfFormat

eConfPDF

eConfEncrypt
eConfColor

eConfRendering

eConfAlternate
eConfPostScript

eConfExternal

eConfFont

eConfUnicode

© PDF Tools AG - Premium PDF Technology

The file format (header, trailer, objects, xref, streams) is corrupted.

The document doesn't conform to the PDF reference (missing required
entries, wrong value types, etc.).

The file is encrypted and the password was not provided.
The document contains device-specific color spaces.

The document contains illegal rendering hints (unknown intents,
interpolation, transfer and halftone functions).

The document contains alternate information (images).
The document contains embedded PostScript code.

The document contains references to external content (reference
XObjects, file attachments, OPI).

The document contains fonts without embedded font programs or
encoding information (CMAPS)

The document contains fonts without appropriate character to Unicode
mapping information (ToUnicode maps)

PDF Validator API, Version 4.5, July 16, 2015 | 31/33

eConfTransp The document contains transparency.

eConfAnnot The document contains unknown annotation types.
eConfMultimedia The document contains multimedia annotations (sound, movies).
eConfPrint The document contains hidden, invisible, non-viewable or non-printable

annotations.

eConfAppearance The document contains annotations or form fields with ambiguous or
without appropriate appearances.

eConfAction The document contains actions types other than for navigation (launch,
JavaScript, ResetForm, etc.)

eConfMetaData The document’'s meta data is either missing or inconsistent or corrupt.
eConfStructure The document doesn't provide appropriate logical structure information.
eConfOptional The document contains optional content (layers).

Structure of tokens such as keywords, names, numbers, strings etc.
Structure of the cross reference table

File positions in the trailer dictionary, cross reference table, etc.

Whether a referenced object has the correct object and generation number
Length attribute of stream objects

Structure of dictionaries, arrays, indirect objects, streams, etc.
Compression errors, e.g. CCITT, JPEG, Flate, etc.
Errors in embedded font programs

Required entries in dictionaries, e.g. Width entry in an image dictionary

Inherited attributes

Value of the parent entries in dictionaries, e.g. page objects

Type of the dictionary entry's value, e.g. integer, string, name

Whether the object must be indirect or direct, e.g. a page object must be an indirect object
Order of operators in content streams

Number of operands of the operators

Type of operands of the operators

Value ranges of the operands

Unknown referenced resources

Operand stack overflow and underflow

Inconsistent information, e.g. if an image has a stencil mask and soft mask at the same time

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 32/33

No header offset
Presence of a “binary” marker

All Compliance Levels:

Presence of a unique file identifier

Presence of document meta data

Presence of embedded font programs where needed

Presence of character to glyph mapping (encoding) information for the fonts
Presence of an output intent if needed

Absence of encryption

Absence of LZW filters

Absence of Java scripts

Absence of un-allowed annotations

Absence of un-allowed actions

Absence of form fields that are generated on the fly

Absence of embedded PostScript code

Absence of invisible, hidden or non-printable annotations

Absence of device specific color spaces

Absence of unknown rendering intents

Absence of image interpolation

Absence of externally referenced information (external streams, reference XObjects, etc.)
Absence of Open Print Interface (OPIl) information

Absence of alternate images

Absence of color transfer and half-toning functions

Additional Checks for PDF/A-1

Absence of JPX
Absence of layers
Absence of transparency

Additional Checks for PDF/A-1a, PDF/A-2a, PDF/A-2u, PDF/A-3a, PDF/A-3u
Presence of Unicode information where needed
Additional Checks for PDF/A-1a, PDF/A-2a, PDF/A-3a

Presence of document structure information (tagging)

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 33/33

7.3 Supported PDF Versions

The 3-Heights™ PDF Validator API currently validates the following versions of the PDF Reference and PDF/A:
PDF 1.x PDF Reference 1.1-1.6

PDF 1.7 PDF 1.7, 1SO 32000-1

PDF/A-1a PDF/A 1a, ISO 19005-1, Level A compliance
PDF/A-1b PDF/A 1b, ISO 19005-1, Level B compliance
PDF/A-2a PDF/A 2a, ISO 19005-2, Level A compliance
PDF/A-2b PDF/A 2b, ISO 19005-2, Level B compliance
PDF/A-2u PDF/A 2u, I1SO 19005-2, Level U compliance
PDF/A-3a PDF/A 3a, ISO 19005-3, Level A compliance
PDF/A-3b PDF/A 3b, ISO 19005-3, Level B compliance
PDF/A-3u PDF/A 3u, ISO 19005-3, Level U compliance

8 Licensing and Copyright

The 3-Heights™ PDF Validator API is copyrighted. This user's manual is also copyright protected; it may be
copied and given away provided that it remains unchanged including the copyright notice.

9 Contact

PDF Tools AG
Kasernenstrasse 1
8184 Bachenbilach
Switzerland

http://www.pdf-tools.com

© PDF Tools AG - Premium PDF Technology PDF Validator API, Version 4.5, July 16, 2015 | 34/33

http://www.pdf-tools.com

	Contents
	1 Introduction
	1.1 Description
	1.2 Functions
	1.3 Interfaces
	1.4 Operating Systems
	1.5 How to Best Read this Manual

	2 Installation and Deployment
	2.1 Windows
	2.2 Unix
	2.3 Interfaces
	2.4 Interface Specific Installation Steps
	2.5 Uninstall, Install a New Version
	2.6 Note about the Evaluation Version

	3 License Management
	3.1 Graphical License Manager Tool
	3.2 Command Line License Manager Tool
	3.3 License Key Storage

	4 Programming Interfaces
	4.1 Visual Basic 6
	4.2 .NET
	4.3 Java
	4.4 C

	5 User's Guide
	5.1 Overview of the API
	5.2 How does the API work in general?
	5.3 What is PDF/A?
	5.4 Error, Warning and Information
	5.5 Custom Validation Profiles
	5.5.1 Section File
	5.5.2 Section Document
	5.5.3 Section Pages
	5.5.4 Section Graphics
	5.5.5 Section Fonts
	5.5.6 Section Interactive Features
	5.5.7 Section Digital Signatures

	6 Reference Manual
	6.1 The PDFValidator Interface
	Categories
	CategoryText
	Close
	Compliance
	ErrorCode
	ErrorMessage
	GetFirstError
	GetNextError
	NoTempFiles
	Open
	ReportingLevel
	SetProfile
	StopOnError
	Validate

	6.2 The PDFError Interface
	Count
	ErrorCode
	FileName
	Message
	ObjectNo
	PageNo

	6.3 Enumerations
	TPDFErrorCode
	TPDFCompliance
	TPDFConformanceCategory

	7 Coverage
	7.1 All PDF Versions
	7.2 Checks Specific for PDF/A
	7.3 Supported PDF Versions

	8 Licensing and Copyright
	9 Contact

