
Subtitles Exchange Support: User Manual

Andrea Reale
andrea.reale@mentalsmash.org

28th June 2010

About

This short guide is intended to give insights of how to use the services offered
by the Subtitles Exchange subsystem implemented in Triber.

It is directed to developers who want to interact with the Subtitles sub-
system to publish, retrieve and search for subtitles: it gives an overview of
the API and of the rationale behind it.

For things that you don’t find in this manual, you may have more luck
taking a look at:
http://www.tribler.org/wiki/RichMetadata

i

http://www.tribler.org/wiki/RichMetadata

ii

Contents

1 Quick Start 1
1.1 Introduction . 1
1.2 SubtitlesSupport Facade . 2

1.2.1 Publishing a subtitle 3
1.2.2 Searching for available subtitles 4
1.2.3 Retrieving a subtitle 6

1.3 Final remarks . 6

iii

iv

Chapter 1

Quick Start

This chapter is intended to be 10 minutes reference for readers who are
only interested in how to use the Subtitles subsystem, and do not need to
understand how things work in the details. Only the basic API functionalities
will be introduced. For the full API please consult [2].

1.1 Introduction

The Subtitle Exchange Subsystems extends the channel concept in Triber
adding the ability to publish, search and retrieve subtitles published within
channels.

With it an user can associate one or more subtitles in different languages
to an item (i.e. a torrent) in its channel. Other peers will be able to access
information about subtitles availability in others’ channels and to retrieve
them remotely. It is important to remark that every subtitle in a certain
language is strictly associated to an item in a channel; since at the time
of writing there is a one-to-one correspondence between items and torrents,
a subtitle can be uniquely identified by the triple (channel_id, infohash,
language), where channel_id is the PermID of the channel owner, infohash is
the 20 bytes infohash of the torrent corresponding to the item, and language
is the language of the subtitle.

Before explaining how to work with subtitles, it might be a good idea to
list the functionalities that are currently implemented and the ones that are
missing.

What the Subtitle Exchange Subsystem does:

• Allow a Tribler user to enrich items in its channel attaching subtitles
to them.

• Disseminate information about subtitles availability throughout the
Overlay Network.

• Replicate subtitle contents in the network at subscribers hosts

1

Listing 1.1: Retrieve the SubtitlesSupport instance
from Tr ib l e r . Core . S ub t i t l e s . Subt i t l e sSuppor t \

import Subt i t l e sSuppor t

. . .

def method_using_subtit les () :
r e t r i e v e the co r r e c t in s tance
sub_supp = Subt i t l e sSuppor t . g e t In s tance ()

do t h i n g s wi th i t
. . .

. . .

• Provide a simple API trough which publish, search, and retrieve sub-
titles contents both locally or in a remote fashion.

What the Subtitle Exchange Subsystem does not:

• Cope with any kind of GUI integration.

• Integrate and synchronise subtitles with video playback.

• Deal with different metadata other then subtitles (even tough everything
is ready for an easy extension).

• Anything else that is not explicitly mentioned in this manual.

1.2 SubtitlesSupport Facade

The basic API is kept as simple as possible. So simple that is possible
to perform all the basic interactions just calling methods of a single ob-
ject acting as facade for the entire subsystem. This object is an instance
of Tribler.Core.Subtitles.SubtitlesSupport.SubtitlesSupport from
now on referred with the unqualified name SubtitlesSupport.

There is a single instance of this object in a running Tribler Session,
and you should always use that instance, since it is initialized at startup
with the proper arguments. To retrieve it you can call the static method
SubtitlesSupport.getInstance() as shown in listing 1.1

Once you have a reference to the singleton instance you can use its meth-
ods to publish, search and retrieve subtitle contents. In the next subsections
we will show how to perform each of these tasks.

2

Listing 1.2: Publishing a subtitle
. . .

lang = ’ nld ’ # ISO 639−2 code f o r dutch language
path = os . path . j o i n (’ path ’ , ’ to ’ , ’ s u b t i t l e . s r t ’)
the in fohash o f one o f the t o r r en t s
in the l o c a l channel
i n fohash = . . .

sub_supp i s the Su b t i t l e Suppo r t s i n g l e in s tance
we have r e t r i e v e d b e f o r e
sub_supp . pub l i s hSub t i t l e (in fohash , lang , path)

. . .

1.2.1 Publishing a subtitle

Let’s assume that an user wants to publish a subtitle for the torrent of a film
he previously added to its channel. To do that he needs to have a copy of
the file containing subtitles on his local machine. Currently only subtitles in
SubRip format (.srt) [1] are supported.

A possible GUI will allow him to select the item in the channel to attach
subtitle to, and of course to specify the local path where the .srt file is, and
the language of the subtitle he wishes to publish.

After the user has performed the necessary associations the SubtitlesSupport
instance can be used to do the actual publishing: all it is needed is to call
the publishSubtitle() instance method.

• publishSubtitle(infohash, lang, pathToSrt) :

infohash is the binary string representing the infohash of the torrent
to associate the subtitle to. The method assumes that such a torrent
has already been added to the local channel.

lang is a three character language code specifying the language of the
subtitle; for a list of the supported language codes please see the on
the wire protocol specification available at [3].

pathToSrt is a local file system path pointing to the file containing a
copy of the subtitle in srt format.

If everything works, after the method returns, the subtitle is copied in a
dedicated directory located into the Tribler state dir, and all the necessary
information is stored in the MegaCache. Dissemination for the added subtitle
automatically starts.
An exemple of the subtitle publishing procedure is shown in listing 1.2.

3

1.2.2 Searching for available subtitles

There are two different methods in SubtitlesSupport that are intended to
be used to retrieve information about available subtitles.

• getSubtitleInfos(channel, infohash)

• getSubtitleInfosForInfohash(infohash)

The first one can be used to search for subtitle for an element in a par-
ticular channel; this can be useful for example while browsing a channel. On
the other hand the second method, given an infohash, searches for subtitles
available in all the known channels. This can be used, for example, while
showing the results from a keyword search, in order to show all the subtitles
associated to an hit in different channels.

getSubtitleInfos() returns a dictionary: each value is an instance of
SubtitleInfo and its key is a three characters string corresponding to the
language code of the subtitle. A returned dictionary could look like:

{
’ eng ’ : s u b t i t l e I n f o 1 ,
’ i t a ’ : s u b t i t l e I n f o 2 ,
’ deu ’ : s u b t i t l e I n f o 3

}

In the example there are three subtitles available, respectively in English,
Italian and German.

Similarly getSubtitleInfosForInfohash() returns a dictionary: this
time the keys of the dictionary are channel identifiers (PermIDs), and their
associated value is itself a dictionary whose keys are language codes and
whose valeus are SubtitleInfo instances:

{
channel_id1 : {

’ nld ’ : s u b t i t l e I n f o 1 ,
’ rus ’ : s u b t i t l e I n f o 2

} ,

channel_id2 : { ’ kor ’ : s ub t i t l e I n f oN }
}

In this case subtitles were found in two channels identified by PermIds chan-
nel_id1 and channel_id2. In the first subtitles in Dutch and Russian are
available; in the second only subtitles in Korean have been published.

The SubtitleInfo class is defined in module
Tribler.Core.Subtitles.MetadataDomainObjects.SubtitleInfo. It con-
tains all the basic information about a subtitle, as shown in listing 1.3, trough
several examples.

4

Listing 1.3: How to use the SubtitleInfo class
. . .

sub_supp i s the Su b t i t l e Suppo r t s i n g l e t o n ins tance
r e t r i e v e d b e f o r e
channel and in fohash are by t e s t r i n g s i d e n t i f y i n g
a channel and the in fohash o f a t o r r en t in i t
r e s u l t s = sub_supp . g e t S ub t i t l e I n f o s (channel , in fohash)

for lang , subIn fo in r e s u l t s . i t e r i t em s () :
print "Hit f o r a s u b t i t l e in %s" % lang

the lang proper ty o f a S u b t i t l e I n f o
r e f l e c t s the key in the d i c t i ona r y
a s s e r t lang == subIn fo . lang

SHA−1 checksum of the s u b t i t l e . I t i s a lways
s e t f o r a v a l i d s u b t i t l e
sha1Checksum = subInfo . checksum
print " Sub t i t l e ’ s sha1 i s %s " % sha1Checksum

loca lPath = subInfo . path

i f l o ca lPa th i s None i t means t ha t the s u b t i t l e
i s not l o c a l l y a v a i l a b l e
i f l o ca lPath i s None :

the s u b t i t l e E x i s t s method does the same
th ing
a s s e r t not subIn fo . s u b t i t l e E x i s t s ()
print " Sub t i t l e not a v a i l a b l e l o c a l l y "

else :

print " Sub t i t l e i s a v a i l a b l e at %s " % loca lPath

i f the s u b t i t l e i s a v a i l a b l e the
checksum can be v e r i f i e d
print "Checking checksum . . . "
i f subIn fo . verifyChecksum () :

print "OK"
else

print "FAIL"

. . .

5

1.2.3 Retrieving a subtitle

Assume that you’ve searched for some subtitles for a torrent, and now you
have a bunch of SubtitleInfo instances, as it has been explained in Section
1.2.2.

For some of them the property path will be set to a local path in the file
system pointing to the actual .srt file. You can double check that this file
actually exists calling the subtitleExists() method on the SubtitleInfo
object. If that is the case there is no need to retrieve remotely the contents
and you can use the subtitles simply reading the data at the given path.

On the contrary, for other SubtitleInfos a local path could not be
available (again, you can check it by calling subtitleExists()). In that
case you might want to retrieve the .srt file remotely.

To accomplish this task a method in SubtitlesSupport exists.

• retrieveSubtitleContent(channel, infohash, subtitleInfo,
callback)

Calling this method schedules a remote query directed to peers who are
known to have the desired subtitle. The method has no return value.

The callback parameter in the method signature is intended to be used
as a notification mechanism informing when the subtitle content is in. It
must be a function accepting a single parameter. This function will be
called by the OverlayThread when the requested .srt is locally available and
its parameter will be bound to an instance of SubtitleInfo whose path
property reflects the local path of the subtitle file.

It is important to notice that for several reasons it is possible that the
subtitle is never received. In such a case the callback method is never called.
Listing 1.4 shows how to use this functionality.

1.3 Final remarks

That’s it: now you should know how to interoperate with the Subtitles
Subsystem for what concerns the basic functionalities. If you’re interest in
understanding how things work please consult the Full API documentation
and the other documents listed in the references.

6

Listing 1.4: Retrieving subtitle contents
. . .

sub_supp = Subt i t l eSuppor t . g e t In s tance ()

we have the sub In fo S u b t i t l e I n f o in s tance from prev ious
i n t e r a c t i o n s

def call_me_back (retr ieved_sub_info) :

not i c e t ha t re t r i eved_sub_in fo might not be the same
ins tance as subIn fo

print " Sub t i t l e now ava i l a b l e at %s " % \
retr ieved_sub_info . path

sub_supp . r e t r i e v eSub t i t l eCon t en t (channel , in fohash ,
subInfo , call_me_back)

print " Sub t i t l e r eque s t scheduled to be sent "

. . .

7

8

Bibliography

[1] VideoLAN Wiki: SubRip Subtitle Format Description [Online]. http:
//wiki.videolan.org/SubRip, June 2010.

[2] A. Reale. Tribler Subtitle Exchange Subsystem. API documentation.
http://subtitles.zqx.net, June 2010.

[3] A. Reale. Tribler wiki: Richmetadata [online]. http://wiki.tribler.
org/trac/wiki/RichMetadata, June 2010.

9

http://wiki.videolan.org/SubRip
http://wiki.videolan.org/SubRip
http://subtitles.zqx.net
http://wiki.tribler.org/trac/wiki/RichMetadata
http://wiki.tribler.org/trac/wiki/RichMetadata

	Quick Start
	Introduction
	SubtitlesSupport Facade
	Publishing a subtitle
	Searching for available subtitles
	Retrieving a subtitle

	Final remarks

