

Preliminary User's Manual

IECUBE2 for FX4 uPD70F3555-uPD70F3560, uPD70F4007-uPD70F4012 In-Circuit Emulator

QB-V850E2-EE + QB-V850E2FX4-PD-EE

Target Devices

μPD70F3555-uPD70F3560, μPD70F4000-uPD70F4012

Document No. EEDT-CD-0422-01 Date Published November 2009

Table of Contents

List of Figures	3
INTRODUCTION	6
1. General	ε
1.1 Hardware Specifications	
1.2 System Specification	
1.3 Functional Overview	
1.3.1 Program execution function (real-time execution function)	
1.3.2 Step execution function (non-real-time execution function)	
1.3.3 Break functions (program execution stop)1.3.4 Trace function (program execution history)	
1.3.5 Time measurement function	
1.3.6 Event function (specific CPU operation detection)	
1.3.7 Event link function (event combinations)	
1.3.8 Peripheral break function	
1.3.9 Mask function	
1.4 System Configuration	14
1.5 Adapters, Connectors	15
2. Names and Function of Hardware	16
3. Setup Procedure	18
3.1 Installation of Software tools	19
3.2 Clock Settings	
3.3 Connection of System	
3.3.1 Mounting Target Connector	
3.3.2 Connecting Emulator Connector	
3.3.3 Connecting Exchange Adapter	20
3.3.4 Connecting POD and Target System	
3.3.5 Connecting USB cable, AC adapter	
3.4 Turn on IECUBE2	
3.5 Turn on Target System	
3.6 Start the Software Tool	
3.7 Shut down Procedure	23
4. Settings at Product Shipment	24
T. Jeliilus al Fivuuli siiiviileiil	

List of Figures

Figure 1-1 Description of external Dimensions	9
Figure 1-2 Description of System Configuration	
Figure 1-3 Description of Target Connection Details	
Figure 2-1 Names of parts of IECUBE2	
Figure 3-4 Description of turning on IECUBE2	
Figure 3-5 Description of turning on target system	22

IECUBE is a registered trademark of NEC Electronics Corporation in Japan and Germany.

MULTI, Green Hills Software, TimeMachine, and SuperTrace are trademarks of Green Hills Software, Inc.

- The information in this document is current as of November, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this
 document or any other liability arising from the use of such products. No license, express, implied or
 otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC
 Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for
 illustrative purposes in semiconductor product operation and application examples. The incorporation of
 these circuits, software and information in the design of a customer's equipment shall be done under the
 full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavours to enhance the quality, reliability and safety of NEC Electronics
 products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
 entirely. To minimize risks of damage to property or injury (including death) to persons arising from
 defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
 design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02, 11-1

1. Circumstances not covered by product warranty

- If the product was disassembled, altered, or repaired by the customer.
- If it was dropped, broken, or given another strong shock.
- Use at overvoltage, use outside guaranteed temperature range, storing outside guaranteed temperature range.
- If power was turned on while the AC adapter, interface cable, or connection to the target system was in an unsatisfactory state.
- If the cable of the AC adapter, the interface cable, the target cable, or the like was bent or pulled excessively.
- If an AC adapter other than the supplied product was used.
- If the product got wet.
- If the product and target system were connected while a potential difference existed between the GND of the product and the GND of the target system.
- If a connector or cable was connected or disconnected while power was being supplied to the product.
- If an excessive load was applied to a connector or cable.
- If the product is used or stored in an environment where an electrostatic or electrical noise is likely to occur.

2. Safety precautions

- If used for a long time, the product may become hot (50 to 60℃). Be careful of high temperature burns and other dangers due to the product becoming hot.
- Be careful of electrical shock. There is a danger of electrical shock if the product is used as described above in 1. Circumstances not covered by product warranty.
- The AC adapter supplied with the product is exclusively for this product, so do not use it with other products.

INTRODUCTION

Readers This manual is intended for users who wish to perform debugging using the QB-

V850E2-EE + QB-V850E2FX4-PD-EE (FX4). The readers of this manual are

assumed to be familiar with the device

functions and usage, and to have knowledge of debuggers.

Purpose This manual is intended to give users an understanding of the basic specifications

and correct usage of the QB-V850E2-EE + QB-V850E2FX4-PD-EE (FX4).

Organization This manual is divided into the following sections.

General

Setup procedure

Settings at product shipment

Notes

Optional functions

How to Read This Manual

It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, and microcontrollers.

This manual describes the basic setup procedures and how to set switches. To understand the overall functions and usages of the QB-V850E2-EE + QB-

V850E2FX4-PD-EE (FX4)

 \rightarrow Read this manual in the order of the **CONTENTS**.

To know the manipulations, command functions, and other software-related settings of the QB-V850E2FX4

 \rightarrow See the user's manual of the debugger (supplied with the QB-V850E2FX4) to be used.

Conventions

Note: Footnote for item marked with Note in the text Caution: Information requiring particular attention

Remark: Supplementary information Numeric representation: Binary ... xxxx or xxxxB

> Decimal ... xxxx Hexadecimal ... xxxxH

Prefix indicating power of 2

(address space, memory

capacity): K (kilo): $2_{10} = 1,024$

M (mega): $2_{20} = 1,024_2$

Terminology

The meanings of the terms used in this manual are described in the table below.

Term	Meaning
Target device	This is the device to be emulated.
Target system	This is the system to be debugged (system provided by the user). This includes the target program and the hardware provided by the user.
IECUBE2 _{TM}	Generic name for NEC Electronics' high- performance, compact in-circuit emulator.
UC	Umbrella Emulation Chip
CPLD	Complex Programmable Logic Device

Related Documents

Please use the following documents in combination with this manual. The related documents listed below may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Development Tools (User's Manuals)

Document Name		Document Number
FX4 uPD70F3555-uPD70F3560, uPD70F4007-uPD70F4012 Emulation Environment		This Manual

Caution

The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing, etc.

Trademarks

Green Hills, the Green Hills logo, CodeBalance, GMART, GSTART, INTEGRITY, and MULTI are registered trademarks of Green Hills Software, Inc. AdaMULTI, EventAnalyzer, G-Cover, GHnet, GHnetLite, Green Hills Probe, Integrate, ISIM, PathAnalyzer, Quick Start, ResourceAnalyzer, Safety Critical Products, Slingshot, SuperTrace Probe, TimeMachine, and TotalDeveloper are trademarks of Green Hills Software, Inc.

Windows and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

All other company, product, or service names mentioned in this documentation may be trademarks or service marks of their respective owners.

1. General

The IECUBE2 is an in-circuit emulator for emulating the target device shown below. Hardware and software can be debugged efficiently in the development of systems in which the target device is used. This manual descries basic setup procedures, hardware specifications, system specifications, and how to set switches.

Series	Device	Package	Frequency	Instruction flash memory	Data flash memory	Internal RAM	Back-up RAM
	uPD70F3555 uPD70F4007	176GM	80MHz	768 KB	32k	64k	8k
FK4	uPD70F3556 uPD70F4008	176GM	80MHz	1 MB	32k	80k	8k
FN4	uPD70F3557 uPD70F4009	176GM	80MHz	1.5 MB	64k	112k	16k
	uPD70F3558 uPD70F4010	176GJ	80MHz	2 MB	64k	144k	16k
FL4	uPD70F3559 uPD70F4011	208GD	80MHz	1.5 MB	64k	112k	16k
FL4	uPD70F3560 uPD70F4012	208GD	80MHz	2 MB	64k	144k	16k

1.1 Hardware Specifications

	Parameter	Specifications	
Target system	CxVDD	1.2V	
Interface Voltage	ExVDD	3.3 or 5.0V	
	AVDD	3.3 or 5.0V	
Maximum operating free	uency	80 MHz	
Capability of main clock	oscillator	4 to 20MHz	
Low-speed internal oscillate	or	240kHz (typ.)	
High-speed internal oscillat		8MHz (typ.)	
Operating temperature range	ge	-0 to 40℃ (No Condensation)	
Storage temperature rar	nge	-15 to 60℃ (No Condensation)	
External dimensions		See Figure 1	
Power Consumption	AC adapter	15V, 4A	
	Target system power supply	Tbd.	
Weight		Approx. 500g	
Host Interface		USB Interface (1.1, 2.0)	

The composition of the FX4 Emulation Environment and its different components is shown in the figure below.

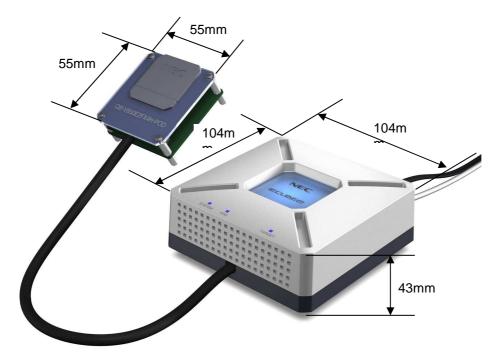


Figure 1-1 Description of external Dimensions

Notes 1 Does not include projection of power switch, host connection and power supply connection

1.2 System Specification

This section shows the IECUBE2 system specifications. For the usage of the debugging function, refer to the documentation of the debugger.

	Parameter	Specification
Emulation memory	Internal ROM	Same as target devices.
capacity	Internal RAM	Same as target devices.
	External memory	None
Program execution	Real-time execution function	Available
functions	Non-real-time execution function	Available
		(Step execution in source level depends on debugger)
Event functions	Detection of execution	Pre-execution: 4 points (only for break function)
		Post-execution: 8 points
	Detection of access	6 points
	Pass counter	12 bits
	Sequential	4 steps
	Modification when running	Available
Break functions	Hardware break	Available
	Software break	Depends on Debugger
	Other	Trace full break, forced break, timer overflow break
Trace functions	Trace data types	Branch-source PC, branch-destination PC, access
		data, access
		address, R/W status, time stamp, DMA access data,
		DMA access
		address, DMA R/W status, DMA transfer count, DMA
		channel number
	Trace events	Delay trigger, section, qualify
	Memory capacity	512K frames
	Other	Trace full stop
Time measurement	Measurement clock	200 MHz
functions	Measurement objects	Beginning through end of program execution
		Start event through end event (6 sections)
	Maximum measurement time	Approximately 195 hours (When using measurement-
		dedicated clock
	100	divided by 32)
	Minimum resolution	5 ns
	Measurement results	Execution time (Start through end of execution)
		Maximum, minimum, average, pass count (between
	Othor	events)
Other to a firm	Other	Timer overflow break function (1 point)
Other functions		Open break function, peripheral break function, mask
		function(_RESET, internal reset)

1.3 Functional Overview

IECUBE2 is provided with a wealth of debug functions to enable efficient program debugging, in addition to being used to emulate the operation of a target device. An overview of the functions is provided in this section. Some functions are not supported, depending on the debugger to be used. See also the manual of the debugger to be used to confirm.

1.3.1 Program execution function (real-time execution function)

The program execution function enables program execution equivalent to that of the target device. The executed program can be stopped under various conditions by using the break functions. The operation of only a function can be checked by executing a program, because a program can be executed from any address.

1.3.2 Step execution function (non-real-time execution function)

The step execution function can be used to execute instructions one by one, in assemble instruction units. Only instructions to be executed purely in steps can be executed, because interrupts are not acknowledged during step execution.

Caution

Step execution to be performed at the C language level is performed by a debugger using the break function. In this case, interrupts are acknowledged in step execution. Consequently, if processing at the interrupt destination cannot be completed, step execution may not be completed. For handling such a case, see the manual of the debugger.

1.3.3 Break functions (program execution stop)

The break functions are used to stop program execution. With IECUBE, program execution can be stopped under the following various conditions. See (1) to (5) for an overview of each break function.

- An address has been executed → Hardware break function, software break function
- A variable has been accessed
 → Hardware break function
 → Timer overflow break function

Variable values can be checked during a break and a program can be executed again by changing register values, because the CPU operates even during a break (while the program is stopped). Interrupts generated during the break are suspended, because basically peripheral functions also operate during the break. Use the peripheral break function to stop peripheral functions during the break.

(1) Hardware break function

The hardware break function is used to observe the CPU bus cycles and set a break for a specific fetch or access operation. For example, a break can be set by detecting a state where an address has been executed or a variable has been accessed. For states that can be set, see "Event function".

Caution

The address for which a break has been set is at a position ahead of the address where an actual access has occurred, because the break set for the access (write, read) is detected at an MEM stage or a WB stage on the CPU pipeline.

(2) Software break function

The software break function is used to set a break when a specific address has been executed (fetched).

(3) Timer overflow break function

This function is used to set a break when a time set by using the time measurement function has elapsed. For example, if the execution time of a function must be 2 ms, a break can be set when at least 2 ms have elapsed between starting and ending the function. This function and the trace function can be used together to find the source that has taken time.

(4) Forced break function

This function is used to forcibly stop a program when it is desired to be stopped.

(5) Trace full break function

This function is used to stop a program when the trace memory is full.

1.3.4 Trace function (program execution history)

The trace function can be used to check the CPU execution history (trace). Items (1) to (7) can be recorded in the execution history.

.

(1) Program counter (PC) of branch source and branch destination

The PCs of a branch source and a branch destination can be recorded in the history.

Consequently, practically all executed programs can be checked, because programs executed between branch points also will be clarified. The amount of trace memory used can be saved and more history items can be traced by that amount, by recording only branch information. (The amount of traces that can be traced back depends on the number of branches.)

(2) Access data/access address

Access addresses for memories and peripheral I/O registers, and access data can be recorded in the history. Read and write operations can also be recorded in the history.

Caution

Accesses to CPU program registers (such as r1 and r2) and system registers (such as PSW and EIPC) cannot be recorded in the history.

(3) Time stamp

The time elapsed from the trace start point can be added to each trace information. The timer performance for time stamps is the same as that of the time measurement function.

(4) DMA access address, data, status, channel number, transfer count

When the DMA function of the target microcontroller is being used, the DMA access can be recorded in the history.

- Access address
- Access data
- Access status (R/W)
- DMA channel number
- Transfer count

(5) History of specific sections (section trace)

Only specific sections can be recorded in the history by using the event function in combination. For example, the execution history of from the start to the end of a function can be recorded.

(6) History of specific phenomenon occurred (qualify trace)

Only the occurrence of specific phenomena can be recorded in the history by using the event function in combination.

For example, a history of having accessed to only a variable can be recorded.

(7) Recording histories before and after specific phenomenon has occurred (delay trigger trace)

The history after a specific phenomenon has occurred can be recorded by using the event function in combination. This is similar to being able to observe a signal waveform by assuming an edge as a trigger, when using an oscilloscope to observe a signal.

For example, the program execution histories before and after a write access has been performed for a variable can be viewed.

1.3.5 Time measurement function

This function is used to measure the execution time of a specific section. The measurement start and end points can be set by using the event function.

In addition, the maximum, minimum, and average execution time and the number by which the measurement section has been passed can be measured.

1.3.6 Event function (specific CPU operation detection)

The event function is used to detect specific fetch and access operations by observing the CPU bus cycle. CPU operations, such as of an address being executed and a variable being accessed can be detected. Such specific CPU operations are called events. Use the event function together with the following functions.

- Hardware break function
- Trace function
- Time measurement function

(1) Pre-execution event

Pre-execution event

A pre-execution event is detected when execution of an address is attempted. It can be used only with the hardware break function. Four pre-execution event points can be specified.

[Detection conditions that can be specified]

Execution address

(2) Post-execution event

A post-execution event is detected when an address has been executed. The address of a post-execution event can be specified as a range. Up to eight post-execution event points can be specified, but if the execution address has been specified as a range, two points will be consumed. When the execution address has been specified as a range for all events, four event points can be specified.

[Detection conditions that can be specified]

• Execution address (can be specified as a range)

(3) Access event

An access event is detected when an address has been accessed (read or written). The following detection conditions can be specified for an access event.

Up to six access event points can be specified, but if the access address has been specified as a range, two points will be consumed. When the access address has been specified as a range for all events, three event points can be specified.

[Detection conditions that can be specified]

- Access address (can be specified as a range)
- Access data
- Access size
- · Access status (read, write, both read and write)

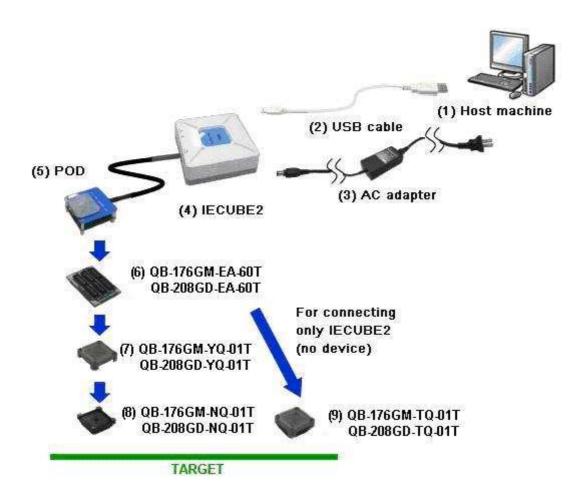
1.3.7 Event link function (event combinations)

The event link function is used to combine into one event, events that have been registered by using the event function. It is used to detect a specific sequence, such as when an address has been executed after a variable was accessed.

1.3.8 Peripheral break function

When the break function has been used to stop program execution, peripheral functions other than the watchdog timer continue to operate in general, but some peripheral functions can be stopped by using the peripheral break function.

1.3.9 Mask function

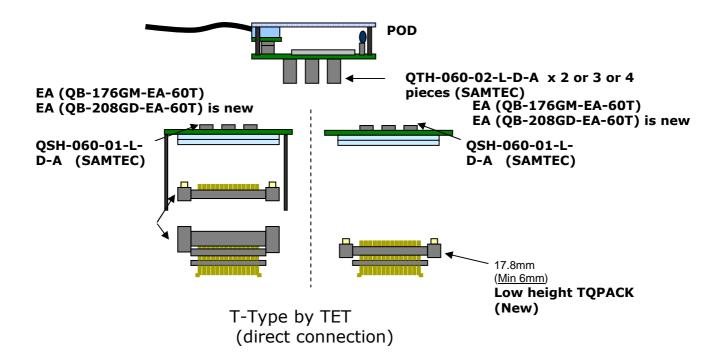

The mask function can be used to mask the following sources.

- _RESET terminal
- internal reset (For example, watch dog timer)

1.4 System Configuration

Figure 1-2 Description of System Configuration

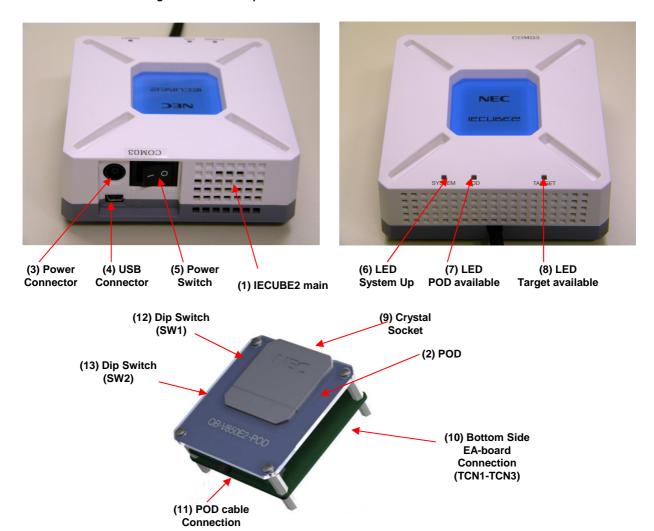
Parameter	Description
(1) Host machine	Computer equipped with a USB port
	Software tools including the USB driver and debugger must be installed.
(2) USB cable	Cable used to connect IECUBE2 to the host
(3) AC adapter	AC adapters classified by region
(4) IECUBE2	IECUBE2 main unit that controls debugging
(5) POD	IECUBE2 peripheral to interface with the target system
(6) QB-176GM-EA-60T	Adapter that converts the signals output from the emulation Pod so that they
QB-208GD-EA-60T	correspond to the pins laid out in the target device.
(7) QB-176GM-YQ-01T	Connector for the exchange adapter and NQPACK
QB-208GD-YQ-01T	
(8) QB-176GM-NQ-01T	Connector mounted on the target board
QB-208GD-NQ-01T	This connector can be connected to IECUBE2 via the YQPACK.
(9) QB-176GM-TQ-01T	Connector mounted on the target board
QB-208GD-TQ-01T	This connector can be connected to IECUBE2 with only QB-144GJ-EA-60T.



1.5 Adapters, Connectors

The following adapters and connectors are necessary to use IECUBE2 connected to the target system. These are sold separately.

Туре	Target devices FK4		Target devices FL4	
	176Pin GM		208Pin GD	
Exchange adapter	QB-176GM-EA-60T		QB-208GD-EA-60T	
Emulator connector	QB-176GM-YQ-01T	QB-176GM-TQ-01T	QB-208GD-YQ-01T	QB-208GD-TQ-01T
Target connector	QB-176GM-NQ-01T	יוט-אויטטאיויםע	QB-208GD-YQ-01T	QB-200GD-1Q-011


Figure 1-3 Description of Target Connection Details

2. Names and Function of Hardware

Figure 2-1 Names of parts of IECUBE2

(1) IECUBE2 main

IECUBE2 main is unit that controls debugging

(2) Pod

Pod is IECUBE2 peripheral to interface with the target system. This unit is equipped with the major features for emulating the real device. A 4 MHz resonator will be mounted upon shipment.

(3) Power connector

This connector is for the power supply cable.

(4) USB connector

This connector is for a USB cable.

(6) Power switch

This switch turns the power on and off. Press the "|" side to turn on the power or the "O" side to turn off the power.

(6,7,8) Status LEDs

The status LEDs turn on or blink according to specific causes as described in the table below. If any LED does not turn on, IECUBE2 might be broken. In this case, contact an NEC Electronics sales representative or distributor.

LED name	Description
SYSTEM	This LED turns on when the power switch is turned on.
	This LED blinks if the FPGA in IECUBE2 is not running correctly. In this case,
	IECUBE2 might be broken.
POD	This LED turns on when communication with the emulation Pod is established.
TARGET	This LED turns on when the target system is turned on.

(9) Crystal Socket

This switch turns the power on and off. Press the "|" side to turn on the power or the "O" side to turn off the power.

(10) Target Connection


For the target connection an EA-adapter is used. This adapter is connected between the POD (TCN1-3) and the customer target. The EA-adapter is the device specific connection board for the POD

(11) POD cable connection

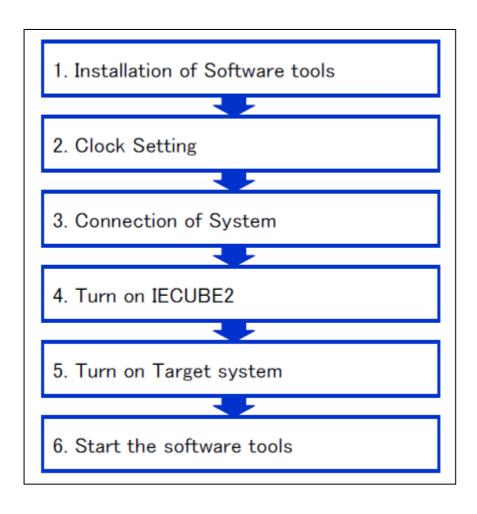
A coaxial cable is used to connect the IECUBE2 main unit and emulation Pod. The cable length is 37cm. Be careful not to excessively bend this cable because doing so might break the cable.

(12,13) DIP switch SW1,SW2

SW1 and SW2 are used to select the direct connection between CAN receive pins and the additional wake up logic of CAN receive pins. For each bit only one switch should be closed. If the CAN wake up feature is selected the normal pin function is not working anymore!

Switch	Setting	Function
SW1		
1	On	FCN0RX (P0_5): CAN receive wake up feature usable
· '	Off	Connection between wakeup logic and FCN0RX is open
2	On	FCN1RX (P0_6): CAN receive wake up feature usable
2	Off	Connection between wakeup logic and FCN0RX is open
3	On	FCN2RX (P0_8): CAN receive wake up feature usable
3	Off	Connection between wakeup logic and FCN0RX is open
4	On	FCN3RX (P0_10): CAN receive wake up feature usable
4	Off	Connection between wakeup logic and FCN0RX is open
5	On	FCN4RX (P0_15): CAN receive wake up feature usable
5	Off	Connection between wakeup logic and FCN0RX is open
6	On	FCN5RX (P0_14): CAN receive wake up feature usable
6	Off	Connection between wakeup logic and FCN0RX is open

Switch SW2	Setting	Function
	On	FCN0RX (P0_5): Direct connection between EA-Adapter and emulation device
1	Off	Direct connection between EA-Adapter and emulation device is open
0	On	FCN1RX (P0_6): Direct connection between EA-Adapter and emulation device
2	Off	Direct connection between EA-Adapter and emulation device is open
3	On	FCN2RX (P0_8): Direct connection between EA-Adapter and emulation device
3	Off	Direct connection between EA-Adapter and emulation device is open
4	On	FCN3RX (P0_10): Direct connection between EA-Adapter and emulation device
4	Off	Direct connection between EA-Adapter and emulation device is open
5	On	FCN4RX (P0_15): Direct connection between EA-Adapter and emulation device
5	Off	Direct connection between EA-Adapter and emulation device is open
6	On	FCN5RX (P0_14): Direct connection between EA-Adapter and emulation device
6	Off	Direct connection between EA-Adapter and emulation device is open


3. Setup Procedure

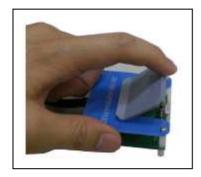
This chapter explains the IECUBE2 setup procedure.

Setup can be completed by performing installation/setup in the order in which it appears in this chapter.

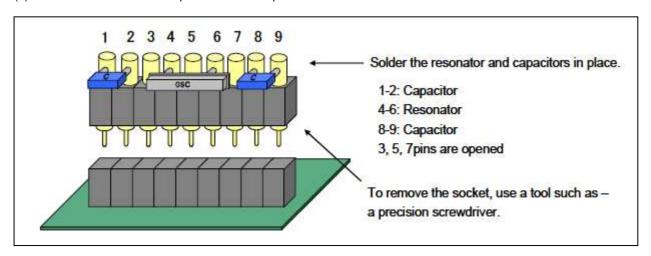
Perform setup along the lines of the following procedure.

To shut down the system, refer to 3.7 Shut Down Procedure

3.1 Installation of Software tools


Before setting up hardware, install the necessary software tools. For details about how to do so, see the documents supplied with the software tools.

3.2 Clock Settings


The main clock is generated by the oscillator in the emulation Pod. If 16 MHz is acceptable for the frequency of the resonator, the setting is not required to be changed. If modification is necessary, see following procedures.

Caution This product does not support target clock input for the 32.768kHz oscillator in the emulation

(1) Open the emulation Pod cover as shown below.

(2) Mount the resonator and capacitors onto the parts board in the emulation Pod.

(3) Close the emulation Pod cover.

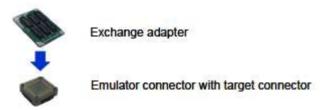
3.3 Connection of System

This section describes how to mount and connect components including connectors. Mount the target connector on the target board. For details about how to do so, see the document supplied with the connector. The following abbreviations are used in this section.

Target connector: QB-176GM-NQ-01T, QB-208GD-NQ-01T
Emulator connector: QB-176GM-YQ-01T, QB-208GD-YQ-01T
Exchange adapter: QB-176GM-EA-60T, QB-208GD-EA-60T

3.3.1 Mounting Target Connector

Mount the target connector on the target board. For details about how to do so, see the document supplied with the connector.


3.3.2 Connecting Emulator Connector

Connect the emulator connector to the target connector. For details about how to do so, see the document supplied with the connector.

3.3.3 Connecting Exchange Adapter

Note the position of pin 1 (positioned at the cut corner) and connect the exchange adapter to the emulator connector as shown below.

Figure 3-1 Description of connecting exchange adapter

Remark:

To remove the exchange adapter, use the stick included with IECUBE2 to gradually pull up the sides of the adapter.

3.3.4 Connecting POD and Target System

Connect the emulation Pod to the exchange adapter. Be careful not to excessively bend the emulation Pod cable.

Figure 3-2 Description of connecting POD

3.3.5 Connecting USB cable, AC adapter

IECUBE2

Connect the USB cable and power supply adapter as shown below. At this time, make sure that IECUBE2 and the target system are not on.

USB cable

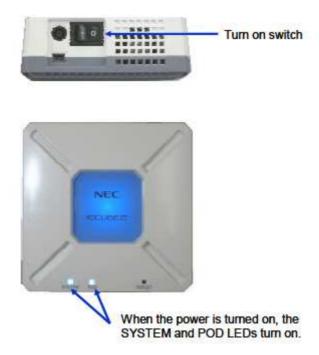
Host machine

AC

AC adapter

Figure 3-3 Description of connecting USB cable, AC adapter

3.4 Turn on IECUBE2


Turn on IECUBE2. At this time, make sure that the target system is not on.

When the power is turned on, the SYSTEM and POD LEDs turn on. If these LEDs blink or remain off, IECUBE2 might be broken.

Remark:

When the power is turned on for the first time, Plug and Play starts and sets up the USB driver. Continue setup according to the wizard.

Figure 3-4 Description of turning on IECUBE2

3.5 Turn on Target System

Turn on the target system.

After the power is on, the TARGET LED turns on. If the LED remains off, connectors might be connected poorly, the emulation Pod cable might be broken, or voltage might not be correctly applied to the power supply pins of the microcontroller (such as VDD).

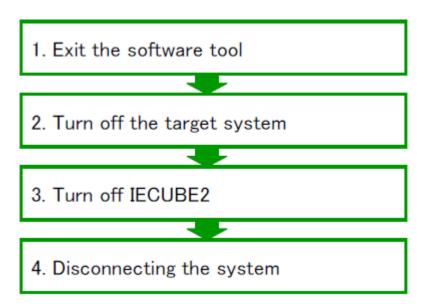
Figure 3-5 Description of turning on target system

3.6 Start the Software Tool

After the above procedure, the system starts up. For downloading and debugging a program by using the GHS MULTI generic debugger, please make sure that you have establish a USB connection between the host and the FX4 emulation environment. For doing so, please specify the following command string within the first line of your debugger script file (*.rc file).

Example:

Stand-alone mode (without connected target):


Target mode (with connected target):

Please note, when -df, -ip and environment variable DEVICE_FILE, IEPATH are specified simultaneously, the device file and the directory specified by -df and -ip are given to priority.

For details about debugging procedures, see the document supplied with the software tool.

3.7 Shut down Procedure

Shut down the system according to the procedure below. Note that shutting down the system incorrectly might damage IECUBE2.

4. Settings at Product Shipment

Item	Setting	Remarks
Clock setting on POD	1 2 3 4 5 6 7 8 9	A 16MHz crystal wil be mounted upon shipment
Power switch	O E	Set to OFF at shipment
POD Dip Switches	Z F X + DB	SW1 all off, SW2 all on (no wake up feature enabled)

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-366-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France

Tel: 01-3067-5800 Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G0706