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For modules in the HERON-FPGA and HERON-IO families, HUNT ENGINEERING provide a 
comprehensive VHDL support package. The VHDL package consists of a “top level”, with 
corresponding user constraints file, VHDL sources and simulation files for the Hardware Interface Layer, 
and User VHDL files as part of many examples. 

The Hardware Interface Layer correctly interfaces with the Module hardware, while the top level (top.vhd) 
defines all inputs and outputs from the FPGA on your module. 

The file user_ap.vhd is where the user implements the design for the FPGA, using the simplified 
interfaces provided by the Hardware Interface layer. 

This document discusses the key interfaces that are provided in the Hardware Interface Layer, and how 
this layer should be used by the logic that is created in the User_Ap part of the FPGA design. 
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The Hardware Interface Layer 

There are several common interfaces that are included in the Hardware Interface Layer for all 
HERON-FPGA and HERON-IO modules. These interfaces are described below, and include the 
system ‘Reset’, clock sources, HERON-FIFO read interface, HERON-FIFO write interface and HSB 
message interface. 

For some modules there are module specific interfaces that do not appear on all module types. A good 
example of this is the A/D and D/A interfaces of many of the HERON-IO modules. These module 
specific interfaces are introduced in this document, but for a full description you should also refer to 
the user manuals and examples provided with those modules. 

General 
The Reset into the FPGA can be used by the Users logic, but remember this reset does not “clear” the 
contents of the FPGA. 

The OSCx inputs are used to provide oscillator inputs to the FPGA. On all boards, there is usually one 
dedicated OSC input, which is connected to a 100MHz crystal oscillator soldered to the module. This 
OSC input will be used by the example projects for generating any required internal clock signals. 

UDPRES can be driven to reset the carrier board and all other modules on it. Use with caution! 
Normally this will be driven inactive (high). 

LED signals can be driven by your design, low to make the LED switch on. This can be useful for 
seeing the status of your internal logic. 

Note that Digital I/Os, where they exist, and UMIs are connected using LVTTL buffers in top.vhd. If 
other formats are required for these signals top.vhd must be modified to provide these buffers, and 
then the port list of user_ap may need to change. 

Clock Sources 
Here are the various possibilities of clock inputs to your design. Normally the only one that has a clock 
signal is OSC3 – used in the examples. 

Use the others if you are connecting other external oscillators, or clock I/O via cables. 

Serial I/Os 
These are the signals connected to the external RS485/232 buffers and to an external differential 
LVPECL buffer, if available on the module type you are using. 
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FIFO Clock Interface 
This interface is the interface that is configured by the settings in the Config module. Depending on the 
settings in the CONFIG module, you drive the Global SRC_FCLK or the separate clocks with the 
FIFO clock frequency that you need, and the output Global or separate FCLK signals provide the 
clock for your internal logic that is correctly aligned with the clock on the HERON FIFO. 

Input FIFOs 
This interface is where you read data from the Input FIFOs of the HERON interface. The Six FIFO 
Read Interface component, HE_RD_6F is provided for reading from all six FIFOs concurrently. 

The interface provides six read request signals INFIFO_READ_REQ[5:0]. These signals are used to 
indicate that data is wanted from each of the external FIFOs. The read request signals must be used in 
combination with the data valid signals INFIFO_DVALID[5:0]. 

Data read from each of the external FIFOs is presented on one of the output data busses, 
INFIFO0_D[31:0] for FIFO 0, INFIFO1_D[31:0] for FIFO1, INFIFO2_D[31:0] for FIFO2, 
INFIFO3_D[31:0] for FIFO3, INFIFO4_D[31:0] for FIFO4 and INFIFO5_D[31:0] for FIFO 5. 

When a read request signal is asserted (set high, logic 1) this indicates that data is requested from the 
corresponding FIFO interface. If there is any data to be read from the external FIFO, that data is read 
at the earliest possible time, and when that data is presented on the INFIFOn_D data bus, the 
corresponding data valid signal is asserted (set high, logic 1). 

The outputs INFIFO_SINGLE[5:0] indicate whether there is any data to be read from the external 
FIFOs. If INFIFO_SINGLEn is asserted (set high, logic 1) this indicates that there is at least one word 
to be read from external FIFO n. 

The outputs INFIFO_BURST[5:0] indicate whether there are multiple data elements to be read from 
the external FIFOs. If INFIFO_BURSTn is asserted (set high, logic 1) this indicates that there are at 
least four words to be read from external FIFO n. 

Input FIFO Latency 
For data read through the external HERON FIFO input data bus there is one clock cycle of delay 
introduced by a single 32-bit input register. This input register is required to initially register the external 
data into the part. With this input register, it is possible to transfer one word of data on every clock 
cycle, where that data is one clock delayed from what was read from the external FIFO. 

The exception to this one clock cycle data delay is where the external FIFO has been empty and the 
first word of data arrives in the external FIFO. In this case where the FIFO is not being accessed, data 
is presented on the fourth clock edge following the clock cycle where the external FIFO indicates there 
is data available for reading. 

Output FIFOs    
This interface is where you write data to the Output FIFOs of the HERON interface. The Six FIFO 
Write Interface component, HE_WR_6F is provided for writing to all six FIFOs concurrently. 

The interface provides six write enable signals OUTFIFO_WRITE[5:0]. These signals are used to 
control whether data is written to each of the external FIFOs. There is one control signal for each of 
the six external FIFOs. OUTFIFO_WRITE0 will control writing to HERON FIFO 0, 
OUTFIFO_WRITE1 will control writing to HERON FIFO1, and so on. To assert a write control 
signal, it must be set high (logic 1). To de-assert a write control signal is must be set low (logic 0). 

During any one clock period, only one of the six write control signals can be asserted. 

To write to a different FIFO, the first write control signal must be de-asserted at the same time, or 
before the second write control signal is asserted. 



 

4 

Data to be output to any of the external FIFOs must be presented on the 32-bit input bus 
OUTFIFO_D[31:0]. For a clock cycle where a write access is being performed (OUTFIFO_WRITEn 
= 1) the corresponding data must be presented on the OUTFIFO_D input. 

The interface provides six ‘ready’ signals OUTFIFO_READY[5:0], one for each of the external FIFOs. 
When one of the OUTFIFO_READY signals is high (asserted), this indicates that data can be written 
to the external FIFO. At the point at which the OUTFIFO_READY signal is first sampled low (de-
asserted) the interface can accept no more that one more data access before writing is stopped to that 
FIFO. Writing to that FIFO may resume when the OUTFIFO_READY signal returns high. 

Output FIFO Latency 
There is a single 32-bit output register used to buffer internal data on the OUTFIFO_D bus to the 
external HERON-FIFO data bus. With this output register, there is one clock cycle of delay from when 
the data is written to the six FIFO interface component, to when it is written into the external 
HERON FIFO. 

HERON-FIFO Interface Examples 
There are two generic examples provided on the HUNT ENGINEERING CD that demonstrate how 
to correctly use the HERON Input FIFO interface and the HERON Output FIFO interface. These 
examples are not included for each and every module type as the issues of interfacing to the HERON-
FIFOs is the same regardless of module type. 

It is recommended that you work through these examples in order to gain an understanding of the 
different data transfer possibilities presented by these interfaces. 

HE_USER Message Interface 
This is actually an interface to the control FPGA on the module. The interface is used to configure the 
User FPGA over the HSB. Once configured this interface allows your FPGA design to interact with 
the HSB, via that control FPGA.   

There are two functional parts to the HE_USER component. The first part is used to receive incoming 
messages, and the second part is used to send messages to another module or to devices on the carrier 
card. Each part can be used on its own, or both parts can be used together. If either function is not 
being used, the unused inputs must be driven low except the MSG_READY input which, if unused, 
must be driven high. 

The MSG_CLOCK input must be connected to the system clock used by your application. The Low-
to-High transition on this clock will cause changes in state of the interface. Both the receive message 
and send message functions require a free running clock to be supplied on this input. If neither the 
receive message or send message functions are to be used, a free running clock must still be connected 
to this component. 

Slave I/F 
The receive message function of the HE_USER component is used to respond to accesses made to 
read or write locations inside the FPGA. When a 'User Write' access is made using this interface, the 
MSG_WEN signal will become asserted (set high), and held asserted until the access is acknowledged. 
Once the access has been acknowledged, the MSG_WEN signal is deasserted (set low). 

Similarly when a 'User Read' access is made using this interface, the MSG_REN signal will become 
asserted (set high), and held asserted until the access is acknowledged. Once the access has been 
acknowledged, the MSG_REN signal is deasserted (set low). 

To acknowledge the write access or read access, the MSG_READY input must be driven high. (While 
the interface is inactive, the MSG_READY signal should be driven low.) 

If the receive message function is not being used, simply leave the MSG_WEN and MSG_REN 
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outputs unconnected, and connect the MSG_READY input to VCC. 

When receiving a message, if the access is a write, the address given on the 8-bit bus 
MSG_ADDRESS[7:0], and the data given on the 8-bit bus MSG_DIN[7:0] will be valid. When the 
access is acknowledged by asserting the MSG_READY signal, this indicates that the data has been 
registered. 

If the access is a read, the address given on the 8-bit bus MSG_ADDRESS[7:0] will be valid. When the 
access is acknowledged be asserting the MSG_READY signal, there must be valid data driven on the 8-
bit data bus MSG_DOUT[7:0]. 

When not using the receiving messages with this component, the MSG_DIN and MSG_ADDRESS 
bus outputs may be left unconnected. 

Master I/F 
When using this interface to send HSB messages as a “master” the inputs MSG_DOUT[7:0], 
MSG_SEND, MSG_SEND_ID, MSG_LAST_BYTE and MSG_CE are all used. In addition the 
outputs MSG_DONE, MSG_COUNT and MSG_CLEAR will be used by the surrounding logic. 

The MSG_CE is used to enable the MSG_CLOCK signal when used by the message sending function. 
This is because the message sending function has an operating limit of 6.25MHz. Therefore where the 
MSG_CLOCK input is being driven at a frequency greater than 6.25MHZ the CE input must be used 
to control the speed of operation. For example, when connecting a free running 50MHz clock to the 
MSG_CLOCK input, the MSG_CE input must be asserted (driven high) for only 1 in every eight clock 
cycles in order to set the operating frequency of the message sending function to 6.25MHz. 

The MSG_SEND input is used to begin message transmission. This input must be asserted (set high) 
when the message is ready for transmission. It must remain asserted until the message sending process 
has been started. This can be seen by the MSG_CLEAR output becoming asserted (set high). 

The MSG_SEND_ID input is used to indicate when a message byte must be replaced by the carrier ID 
and module ID information provided on the pins of the module. For a data transmission byte where 
the ID information must be sent, the MSG_SEND_ID signal must be asserted (set high).  

The MSG_LAST_BYTE input is used to indicate when the last byte to be transmitted is being 
presented on the MSG_DOUT[7:0] input. To indicate that the last byte is being presented it must be 
asserted (set high) during that byte. 

The message sending function of the HE_USER component is designed to be directly connected to a 
memory component that contains the message bytes in consecutive locations. The address of this 
memory should be driven by a counter, and the output of the memory connected directly to the 
MSG_DOUT[7:0] input. 

The address counter should be controlled by the MSG_COUNT and MSG_CLEAR outputs of this 
component. The MSG_COUNT signal should be connected directly to the count enable of the 
counter. The counter will then count, resulting in a change of memory address, when the 
MSG_COUNT signal is asserted (set high). 

The MSG_CLEAR signal should be connected directly to the asynchronous clear of the counter. The 
MSG_CLEAR signal is asserted (set high) at the beginning of message transmission, and should be 
used to initialise the memory address so that the memory is outputting the first data byte in the first 
memory location. 

The MSG_DONE output will be asserted (set high) when the message has been successfully 
transmitted. 

If the message sending function is not being used the inputs MSG_DOUT[7:0], MSG_SEND, 
MSG_SEND_ID, MSG_LAST_BYTE and MSG_CE should all be set low (connected to GND). The 
outputs MSG_DONE, MSG_COUNT and MSG_CLEAR may be left unconnected. 

See the generic example “fpgaHSBmastering” for an example of using this “Master” interface. 
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Digital I/O Interface 
Many of the HERON-FPGA and HERON-IO modules provide a large number of digital I/O 
connectors that can be used for your own digital I/O. They are connected to the user_ap using bi-
directional LVTTL buffers. If this is correct for you then you can simply connect to the CONN_n_IN 
and CONN_n_OUT busses and enable the direction using the CONN_n_EN busses. 

If you require a different I/O format then you need to edit the top.vhd. For instructions on editing the 
top.vhd file, you will need to refer to the relevant section in the user manual for the module you are 
using. 

Analogue I/O Interfaces 
HERON-IO modules typically include both ADC and DAC interfaces. With both interfaces there will 
be a sample clock that is either internally sourced or externally sourced. For each analogue I/O 
application you will need to consider how the sample clock is sourced and what to drive on the signal 
SRC_SCLK. You must also ensure that the internal sample clock SCLK is used to clock all logic that 
directly interfaces to the ADC and DAC components. 

ADC Interface  
ADC interfaces will vary in terms of the number of bits of digital data produced by the external A-to-D 
converter. Regardless of the width of this sample data bus, there will be one input bus to the 
USER_AP entity for each ADC input channel named ‘ADC_x(N downto 0), with x being the channel 
identifier and N being the number of bits of conversion, minus 1. 

The ADC interface will produce a new sample on each clock cycle. This data must be clocked into the 
next stage of processing using the sample clock SCLK. 

Usually, there will also be an out-of-range signal produced by the A/D converter. This will be passed 
into the USER_AP entity to be valid at the same time as the value on the corresponding ADC data bus. 

DAC Interface 
DAC interfaces will vary in terms of the number of bits of digital data sent to the external D-to-A 
converter. Regardless of the width of this sample data bus, there will be one output bus from the 
USER_AP entity for each DAC output channel named ‘DAC_x(N downto 0), with x being the channel 
identifier and N being the number of bits of data, minus 1. 

The output sample data will be registered inside the Hardware Interface Layer component HE_DAC 
on the rising edge of the associated SCLK sample clock. The sample data generated by your application 
must be generated from logic clocked by the same SCLK sample clock. 

ADC Interface Examples 
For each HERON-IO module type there will be several examples provided on the HUNT 
ENGINEERING CD that demonstrate using these examples. Please work through these examples 
and also refer to the User Manual for those boards, in order to fully understand the capabilities of each 
of the interfaces. 
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SDRAM Interface 
This section discusses the Single Data Rate (SDR) SDRAM memory interface. This interface is simply 
referred to as the ‘SDRAM Interface’. For a discussion of the Double Data Rate (DDR) SDRAM 
memory interface, please refer to the following section entitled ‘DDR Interface’. 

Some modules are available with one or more banks of SDRAM memory. If you are using a module 
that has an SDRAM interface, this will be presented via the HE_SDRAM component of the Hardware 
Interface Layer. This component presents all of the signals necessary to read and write a bank of 
SDRAM memory. Issues such as SDRAM initialisation and refresh are performed internally by the 
HE_SDRAM component, leaving the user free to concentrate on simply reading and writing the 
memory. The HE_SDRAM component presents two ports to the user. A read port for data to be read 
out of the external SDRAM, and a write port for data to be written to the SDRAM. 

SDRAM Clock 
The SDRAM interface operates at 133MHz. This frequency is obtained by using a Digital Clock 
Manager (DCM) to frequency synthesize 133MHz from an input clock of 100MHz. This is 
automatically done inside the HE_SDRAM component. 

The generated 133MHz clock is provided as input to the USER_AP entity as the signal SDCLK. This 
clock signal must be used to clock all logic that directly interfaces to the SDRAM write port and read 
port. 

SDRAM Write Port 
The HE_SDRAM component provides a ‘write port’ that allows data to be written to the SDRAM. 
SDRAM memory requires a small amount of time to open a ‘row’ of memory before a read or write 
can be performed. When a row has been opened, the SDRAM can transfer one word of data on each 
clock cycle. 

The SDRAM is organised as 32-bit wide memory. The SDRAM interface always runs at 133MHz. 
Therefore, once a row has been opened, data can be written in a burst of consecutive clock cycles at a 
data rate of 532Mbytes/sec. 

Before a write access can be performed to the memory, the write address must first be initialised. Once 
the write address has been set up, it will automatically increment after each word is written. Therefore, 
the next address initialisation is only required when a new area of memory is to be written. 

The signal SDRAM_WR_ADDR(25 downto 0) must be driven with the 26-bit address for the next 
write access. This value is latched by the SDRAM write interface when the address enable 
SDRAM_WR_AEN is asserted (set high). The address enable must be set high for one clock cycle while 
the address bus is valid, and then immediately de-asserted. 

With the address initialised data can be written to the SDRAM. To begin a memory write operation, the 
SDRAM_WR_READY signal must be asserted (set high) to indicate that there is data to write. When the 
SDRAM interface detects the write-data-ready condition, it will open the SDRAM row indicated by the 
previously initialised write address. 

When the row-open process has completed data will be transferred. For each word transferred, the 
SDRAM_WR_DONE signal will be asserted (set high) by the SDRAM interface. On each clock cycle 
where the SDRAM_WR_DONE signal is asserted, valid data is expected on the write data bus, 
SDRAM_WR_DATA(31 downto 0). 

The signal SDRAM_WR_BURST signal should be used along with the SDRAM_WR_READY signal to 
indicate that there are multiple words of data to transfer. While both signals are asserted (set high) this 
indicates that the SDRAM interface can burst data to the external memory. The write burst will end if 
either the end of the row is reached, or if the burst signal becomes de-asserted. If the end of row is 
reached, the burst must end so that the row can be closed. If there is still more data to transfer, the next 
new row will be opened when the previous has been closed. 
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SDRAM Read Port 
The HE_SDRAM component provides a ‘read port’ that allows data to be read from the SDRAM. 
SDRAM memory requires a small amount of time to open a ‘row’ of memory before a read or write 
can be performed. When a row has been opened, the SDRAM can transfer one word of data on each 
clock cycle. 

The SDRAM is organised as 32-bit wide memory. The SDRAM interface always runs at 133MHz. 
Therefore, once a row has been opened, data can be written in a burst of consecutive clock cycles at a 
data rate of 532Mbytes/sec. 

Before a read access can be performed to the memory, the read address must first be initialised. Once 
the read address has been set up, it will automatically increment after each word is written. Therefore, 
the next address initialisation is only required when a new area of memory is to be read. 

The signal SDRAM_RD_ADDR(25 downto 0) must be driven with the 26-bit address for the next 
read access. This value is latched by the SDRAM read interface when the address enable 
SDRAM_RD_AEN is asserted (set high). The address enable must be set high for one clock cycle while 
the address bus is valid, and then immediately de-asserted. 

With the address initialised data can be read from the SDRAM. To begin a memory read operation, the 
SDRAM_RD_READY signal must be asserted (set high) to indicate that there is space to receive data. 
When the SDRAM interface detects the read-data-ready condition, it will open the SDRAM row 
indicated by the previously initialised read address. 

When the row-open process has completed data will be transferred. Unlike the write interface however, 
the SDRAM_RD_DONE signal does not directly indicate that a data word is being output. This is because 
the external SDRAM memory has a data access delay of several clock cycles. For each assertion of 
SDRAM_RD_DONE this indicates that an item of data has been requested from the memory. 

For each word actually transferred, the SDRAM_RD_DVAL signal will be asserted (set high) by the 
SDRAM interface. On each clock cycle where the SDRAM_RD_DVAL signal is asserted, valid data is 
presented on the read data bus, SDRAM_RD_DATA(31 downto 0). 

The signal SDRAM_RD_BURST signal should be used along with the SDRAM_RD_READY signal to 
indicate that there are multiple words of data to be read. While both signals are asserted (set high) this 
indicates that the SDRAM interface can accept a burst of data from the external memory. The read 
burst will end if either the end of the row is reached, or if the burst signal becomes de-asserted. If the 
end of row is reached, the burst must end so that the row can be closed. If there is still more data to 
transfer, the next new row will be opened when the previous has been closed. 

SDRAM INTERFACE EXAMPLES 
There are two simple memory read and memory write examples discussed in the document ‘Accessing 
SDRAM in Your FPGA Design’. This document is available on the HUNT ENGINEERING CD and 
can be located using the CD browser tool and navigating to the ‘Getting Started with FPGA’ area. 

You will also find VHDL example projects that show the use of the SDRAM interface. These examples 
exist for module types that include the SDRAM interface. 
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DDR Interface 
This section discusses the Double Data Rate (DDR) SDRAM memory interface. This interface is 
simply referred to as the ‘DDR Interface’. For a discussion of the Single Data Rate (SDR) SDRAM 
memory interface, please refer to the previous section entitled ‘SDRAM Interface’. 

Some modules are available with one or more banks of DDR SDRAM memory. If you are using a 
module that has a DDR SDRAM interface, this will be presented via the HE_DDR component of the 
Hardware Interface Layer. This component presents all of the signals necessary to read and write a 
bank of DDR memory. Issues such as DDR initialisation and refresh are performed internally by the 
HE_DDR component, leaving the user free to concentrate on simply reading and writing the memory. 
The HE_DDR component presents either two or four ports to the user. 

For modules with one bank of memory, there is a read port for data to be read out of the external 
DDR, and a write port for data to be written to the DDR memory. For modules with two banks of 
memory, there are two read ports and two write ports. 

DDR Clock 
The DDR interface operates at 200MHz. This frequency is obtained directly from a free running 
200MHz clock source fed into the FPGA. The 200MHz clock source is input to a DCM that generates 
the necessary internal and external clock signals for DDR operation. 

The DDR read interface and DDR write interface are managed using FIFO components internal to the 
HE_DDR component. These FIFOs are asynchronous, in that within the HE_DDR internal logic data 
is read and written at 200MHz.  On the user side of these FIFOs data is transferred in a clock domain 
created by the user logic. 

For a module with two separate banks of DDR memory, the signal DDR_A_USER_CLK must be 
correctly driven by the user in order to use the read FIFO and write FIFO of DDR Bank A. The signal 
DDR_B_USER_CLK must be correctly driven by the user in order to use to the read FIFO and write 
FIFO of DDR Bank B. 

DDR Write Port 
The HE_DDR component provides a ‘write port’ that allows data to be written to the DDR memory. 
DDR memory is designed for high burst performance by using rising edge and falling edge data. This is 
called ‘double-data-rate’ (DDR) transfer. 

For one clock cycle of the memory, one word of data is transferred on the rising clock edge, and one 
word is transferred on the falling edge. The result is two words every clock cycle. DDR memory 
requires a small amount of time to open a ‘row’ of memory before a read or write can be performed, 
but when the row has been opened data can be transferred at a very high rate. 

Due to the nature of DDR memory, data needs to be written in bursts to make the best use of the 
available bandwidth. The write port therefore requires data is written to the memory in groups of four 
32-bit words to ensure bursting is efficient. 

DDR Write Port FIFOs 
Data is written to the DDR memory through FIFO components internal to the HE_DDR component. 
The memory write interface that is presented to the USER_AP entity therefore appears as a FIFO 
interface through which all memory write operations are performed. 

To perform one write access to the DDR memory, four words of data must be written to the write 
interface, along with one word that defines the starting address for the burst, and two bytes of data 
mask information. All of this is done through the use of four separate write interface FIFOs. 

The DDR write interface is organised as a rising-edge data FIFO, a falling edge data FIFO, an address 
FIFO and a data mask FIFO. The data words written to the rising edge FIFO and falling edge FIFO 
are 32-bits wide. The data written to the address FIFO is 25-bits wide and the data written to the data 
mask FIFO is 8-bits wide. 
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When transferring data words ‘data-0’, ‘data-1’, ‘data-2’ and ‘data-3’ to memory each of these FIFOs 
would be written as follows: 

  Data word 0 is written to the write port rising edge FIFO 
  Data word 1 is written to the write port falling edge FIFO 
  Data mask is written for data word 0 and data word 1 to the data mask FIFO 
  Data word 2 is written to the next location of write port rising edge FIFO 
  Data word 3 is written to the next location of write port falling edge FIFO 
  Data mask is written for data word 2 and data word 3 to the data mask FIFO 
  An address word is written to the write port address FIFO 

As data must always be written in blocks of four words, a Data Mask function has been provided. The 
Data Mask function allows individuals bytes to be explicitly enabled or disabled in the data sent to the 
DDR memory. For any byte that whose Data Mask bit is disabled, no data will be written to the 
memory at that location. This allows blocks of data smaller than four words to be written to the DDR 
memory interface. 

Conversely, where bursting of larger amounts of data is required, this is simply done by keeping the 
write data FIFOs full with corresponding addresses that fall within the same row. 

That is, if there are several blocks of four that can be written at addresses within the same row, the 
DDR interface will continue to transfer to the opened row as long as valid data exists in the rising and 
falling write data FIFOs. 

As each address word is read from the write address FIFO it is compared to the currently open row. If 
the top 15-bits of the next address exactly match the currently open row, then the next block of four 
data words will be transferred immediately to the already open memory. 

In this way by ensuring a consecutive set of addresses are used in the values written to the address 
FIFO, bursts much larger than four words can be created to the external DDR memory. 

DDR Write Port FIFO Signals 
For the rising edge, falling edge, address and data mask write FIFOs, one FIFO clock signal is required. 
This signal is also used for the read interface. For DDR Memory Bank A, the signal is named 
DDR_A_USER_CLK. For DDR Memory Bank B, the signal is named DDR_B_USER_CLK. 

This clock signal must be sourced inside the USER_AP part of the design hierarchy. The resulting 
clock signal presented to the HE_DDR component is connected to the write clock input of all four 
write interface FIFOs. 

All logic that directly interfaces to the FIFOs must be clocked with the same clock signal driven out to 
the HE_DDR component. 

For the following section, all signal names given will be for the first bank of DDR memory. All DDR 
Memory Bank A signals begin ‘DDR_A_’. For interfacing to DDR Memory Bank B, simply rename the 
signal to start ‘DDR_B_’. 

The write address FIFO is 25-bits wide. Data for the write address FIFO must be driven on the bus 
DDR_A_WR_ADDR(24 downto 0). To write one address value to the write address FIFO the signal 
DDR_A_WR_ADDR_WEN must be asserted (set high) for one clock cycle. The DDR_A_WR_ADDR bus 
must be valid in the clock cycle where DDR_A_WR_ADDR_WEN is asserted. 

The write address FIFO provides two flags to indicate whether a write can proceed. The signal 
DDR_A_WR_ADDR_FF is the full flag for the write address FIFO. When this signal is asserted (set high) 
the write address FIFO is full and any further writes will be ignored. The signal DDR_A_WR_ADDR_AF 
is the almost full flag. When this signal is asserted (set high) the write address FIFO is almost full. Only 
one more write can be completed while the FIFO is almost full. 
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The write rising data FIFO is 32-bits wide. Data for the rising data FIFO must be driven on the bus 
DDR_A_WR_DATA(39 downto 8). Please note, the DDR_A_WR_DATA bus is shared for accesses to 
the rising data FIFO, the falling data FIFO and the data mask FIFO. Ensure you use the correct 
portion of this bus according to the FIFO you are updating. 

To write one word to the rising data FIFO the signal DDR_A_WR_RISE_WEN must be asserted (set 
high) for one clock cycle. The DDR_A_WR_DATA(39 downto 8) bus must be valid in the clock cycle 
where DDR_A_WR_RISE_WEN is asserted. 

The rising data FIFO provides two flags to indicate whether a write can proceed. The signal 
DDR_A_WR_RISE_FF is the full flag for the rising data FIFO. When this signal is asserted (set high) 
the rising data FIFO is full and any further writes will be ignored. The signal DDR_A_WR_RISE_AF is 
the almost full flag. When this signal is asserted (set high) the rising data FIFO is almost full. Only one 
more write can be completed while the FIFO is almost full. 

The write falling data FIFO is 32-bits wide. Data for the falling data FIFO must be driven on the bus 
DDR_A_WR_DATA(71 downto 40). Please note, the DDR_A_WR_DATA bus is shared for accesses to 
the rising data FIFO, the falling data FIFO and the data mask FIFO. Ensure you use the correct 
portion of this bus according to the FIFO you are updating. 

To write one word to the falling data FIFO the signal DDR_A_WR_FALL_WEN must be asserted (set 
high) for one clock cycle. The DDR_A_WR_DATA(71 downto 40) bus must be valid in the clock 
cycle where DDR_A_WR_FALL_WEN is asserted. 

The falling data FIFO provides two flags to indicate whether a write can proceed. The signal 
DDR_A_WR_FALL_FF is the full flag for the falling data FIFO. When this signal is asserted (set high) 
the falling data FIFO is full and any further writes will be ignored. The signal DDR_A_WR_FALL_AF is 
the almost full flag. When this signal is asserted (set high) the falling data FIFO is almost full. Only one 
more write can be completed while the FIFO is almost full. 

The write data mask FIFO is 8-bits wide. Data for the data mask FIFO must be driven on the bus 
DDR_A_WR_DATA(7 downto 0). Please note, the DDR_A_WR_DATA bus is shared for accesses to 
the rising data FIFO, the falling data FIFO and the data mask FIFO. Ensure you use the correct 
portion of this bus according to the FIFO you are updating. 

To write one byte to the data mask FIFO the signal DDR_A_WR_DM_WEN must be asserted (set high) 
for one clock cycle. The DDR_A_WR_DATA(7 downto 0) bus must be valid in the clock cycle where 
DDR_A_WR_DM_WEN is asserted. 

The data mask FIFO provides two flags to indicate whether a write can proceed. The signal 
DDR_A_WR_DM_FF is the full flag for the data mask FIFO. When this signal is asserted (set high) the 
data mask FIFO is full and any further writes will be ignored. The signal DDR_A_WR_DM_AF is the 
almost full flag. When this signal is asserted (set high) the data mask FIFO is almost full. Only one 
more write can be completed while the FIFO is almost full. 

Each bit of the byte value written to the data mask FIFO corresponds to an enable for one byte lane of 
data. If the corresponding bit is set low, the data byte is written to memory (enabled) and if the 
corresponding bit is set high, the data byte is not written (disabled). The bits in the data mask are 
defined as follows: 

  Bit 0  Byte 0 of falling data 
  Bit 1  Byte 1 of falling data 
  Bit 2  Byte 2 of falling data 
  Bit 3  Byte 3 of falling data 
  Bit 4  Byte 0 of rising data 
  Bit 5  Byte 1 of rising data 
  Bit 6  Byte 2 of rising data 
  Bit 7  Byte 3 of rising data 
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DDR Read Port 
The HE_DDR component provides a ‘read port’ that allows data to be read from the DDR memory. 
DDR memory is designed for high burst performance by using rising edge and falling edge data. This is 
called ‘double-data-rate’ (DDR) transfer. 

For one clock cycle of the memory, one word of data is transferred on the rising clock edge, and one 
word is transferred on the falling edge. The result is two words every clock cycle. DDR memory 
requires a small amount of time to open a ‘row’ of memory before a read or write can be performed, 
but when the row has been opened data can be transferred at a very high rate. 

Due to the nature of DDR memory, data needs to be read in bursts to make the best use of the 
available bandwidth. The read port therefore requires data is read from memory in groups of four 32-
bit words to ensure bursting is efficient. 

DDR Read Port FIFOs 
Data is read from the DDR memory through FIFO components internal to the HE_DDR component. 
The memory read interface that is presented to the USER_AP entity therefore appears as a FIFO 
interface through which all memory read operations are performed. 

To perform one read access from the DDR memory, one word must be written to define the starting 
address for the burst. Once the access from memory has been completed four words of data will be 
presented to the read interface. All of this is done through the use of three separate read interface 
FIFOs. 

The DDR read interface is organised as a rising-edge data FIFO, a falling edge data FIFO and an 
address FIFO. The data words read from the rising edge FIFO and falling edge FIFO are 32-bits wide. 
The data written to the address FIFO is 25-bits wide. 

When transferring data words ‘data-0’, ‘data-1’, ‘data-2’ and ‘data-3’ from memory each of these FIFOs 
would be used as follows: 

  An address word is written to the read port address FIFO 
  …when the access to memory has completed… 
  Data word 0 is read from the read port rising edge FIFO 
  Data word 1 is read from the read port falling edge FIFO 
  Data word 2 is read from the read port rising edge FIFO 
  Data word 3 is read from the read port falling edge FIFO 

As data must always be read in blocks of four words this may mean more words of data are read than 
were required. Unlike the write port, no data mask function is provided. Instead, words of data that are 
read but not required must simply be discarded by the logic that reads from the read rising data FIFO 
and read falling data FIFO. This will allow blocks of data smaller than four words to be read from the 
DDR memory interface. 

Conversely, where bursting of larger amounts of data is required, this is simply done by keeping the 
read data FIFOs empty and providing multiple addresses that fall within the same row. 

That is, if there are several blocks of four that need to be read from addresses within the same row, the 
DDR interface will continue to transfer from the opened row as long as there is space in the rising and 
falling read data FIFOs and appropriate addresses exist in the address FIFO. 

As each address word is read from the read address FIFO it is compared to the currently open row. If 
the top 15-bits of the next address exactly match the currently open row, then the next block of four 
data words will be transferred immediately from the already open memory. 

In this way by ensuring a consecutive set of addresses are used in the values written to the address 
FIFO, bursts much larger than four words can be created from the external DDR memory. 
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DDR Read Port FIFO Signals 
For the rising edge, falling edge and address FIFOs, one FIFO clock signal is required. This signal is 
also used for the write interface. For DDR Memory Bank A, the signal is named DDR_A_USER_CLK. 
For DDR Memory Bank B, the signal is named DDR_B_USER_CLK. 

This clock signal must be sourced inside the USER_AP part of the design hierarchy. The resulting 
clock signal presented to the HE_DDR component is connected to the clock inputs of all three read 
interface FIFOs. 

All logic that directly interfaces to the FIFOs must be clocked with the same clock signal driven out to 
the HE_DDR component. 

For the following section, all signal names given will be for the first bank of DDR memory. All DDR 
Memory Bank A signals begin ‘DDR_A_’. For interfacing to DDR Memory Bank B, simply rename the 
signal to start ‘DDR_B_’. 

The read address FIFO is 25-bits wide. Data for the read address FIFO must be driven on the bus 
DDR_A_RD_ADDR(24 downto 0). To write one address value to the read address FIFO the signal 
DDR_A_RD_ADDR_WEN must be asserted (set high) for one clock cycle. The DDR_A_RD_ADDR bus 
must be valid in the clock cycle where DDR_A_RD_ADDR_WEN is asserted. 

The read address FIFO provides two flags to indicate whether a write can proceed. The signal 
DDR_A_RD_ADDR_FF is the full flag for the read address FIFO. When this signal is asserted (set high) 
the read address FIFO is full and any further writes will be ignored. The signal DDR_A_RD_ADDR_AF 
is the almost full flag. When this signal is asserted (set high) the read address FIFO is almost full. Only 
one more write can be completed while the FIFO is almost full. 

The read rising data FIFO is 32-bits wide. Data from the rising data FIFO must be read on the bus 
DDR_A_RD_DATA(31 downto 0). Please note, the DDR_A_RD_DATA bus is shared for accesses 
from the rising data FIFO and the falling data FIFO. Ensure you use the correct portion of this bus 
according to the FIFO you are reading. 

To read one word from the rising data FIFO the signal DDR_A_RD_RISE_REN must be asserted (set 
high) for one clock cycle. The DDR_A_RD_DATA(31 downto 0) bus will become valid in the 
following clock cycle from where DDR_A_RD_RISE_REN was asserted. 

The rising data FIFO provides two flags to indicate whether a read can proceed. The signal 
DDR_A_RD_RISE_EF is the empty flag for the rising data FIFO. When this signal is asserted (set high) 
the rising data FIFO is empty and any further reads will be ignored. The signal DDR_A_RD_RISE_AE 
is the almost empty flag. When this signal is asserted (set high) the rising data FIFO is almost empty. 
Only one more read can be completed while the FIFO is almost empty. 

The read falling data FIFO is 32-bits wide. Data from the falling data FIFO must be read on the bus 
DDR_A_RD_DATA(63 downto 32). Please note, the DDR_A_RD_DATA bus is shared for accesses 
from the rising data FIFO and the falling data FIFO. Ensure you use the correct portion of this bus 
according to the FIFO you are reading. 

To read one word from the falling data FIFO the signal DDR_A_RD_FALL_REN must be asserted (set 
high) for one clock cycle. The DDR_A_RD_DATA(63 downto 32) bus will become valid in the 
following clock cycle from where DDR_A_RD_FALL_REN was asserted. 

The falling data FIFO provides two flags to indicate whether a read can proceed. The signal 
DDR_A_RD_FALL_EF is the empty flag for the falling data FIFO. When this signal is asserted (set 
high) the falling data FIFO is empty and any further reads will be ignored. The signal 
DDR_A_RD_FALL_AE is the almost empty flag. When this signal is asserted (set high) the falling data 
FIFO is almost empty. Only one more read can be completed while the FIFO is almost empty. 
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DDR Data Count 
At any one point in time, the internal logic of the HE_DDR component can only be performing either 
a read or a write, if the DDR memory interface is active.  

The user logic however is free to update the write interface FIFOs and read interface FIFOs at the 
same time. The internal logic of the HE_DDR component must therefore decide based on this activity 
whether to perform a read or a write. 

As the FIFOs decouple read and write activity between the USER_AP logic and the HE_DDR internal 
logic it is not always obvious from the USER_AP side of the FIFOs whether a write of data has 
completed. Sometimes the data to be written may still be waiting inside the rising data and falling data 
write FIFOs as a different DDR access is currently underway. 

There are design situations where it is necessary to know how much data has been read or written 
inside the HE_DDR component. A simple example of such a situation where this is important is where 
the DDR memory interface is being used to create a large FIFO. 

When creating a FIFO using DDR memory, logic in the USER_AP part of the design must keep track 
of how many items are in the FIFO, or rather, how many words of data have been stored in DDR 
SDRAM. 

For example, if 8 words are written to the write interface FIFOs, the USER_AP logic might wish to 
record that the ‘DDR FIFO’ now contains 8 items. So if this is done, the read side of DDR FIFO will 
now think it correct to allow a read from memory of up to 8 words. While the 8 words are still in the 
write interface FIFOs and not in external memory this is incorrect. 

In order to avoid this situation the HE_DDR component provides a data count bus named 
DDR_A_DATA_COUNT(31 downto 0) for Bank A and a bus named DDR_B_DATA_COUNT(31 
downto 0) for Bank B. For each data count there is a count reset signal. For Bank A this signal is 
DDR_A_USER_RST and for Bank B this signal is DDR_B_USER_RST. 

The reset signal is used to set the count value to zero. This reset signal is asynchronous, but to ensure 
correct operation it should be asserted for at least 10ns. 

The data count logic records the number of accesses made to the DDR memory. For each group of 
four words written to memory (one write access) the data count increments by one, and for each group 
of four words read from memory (one read access) the data count decrements by one. The counter is 
32-bits in size and will roll around when counting up from all bits set, and will roll when counting 
down from zero. 

An example of the use of the data count function can be seen in the SDRAM_FIFO example provided 
for all boards that have a DDR interface. 

DDR INTERFACE EXAMPLES 
There are two simple memory read and memory write examples discussed in the document ‘Accessing 
DDR Memory in Your FPGA Design’. This document is available on the HUNT ENGINEERING 
CD and can be located using the CD browser tool and navigating to the ‘Getting Started with FPGA’ 
area. 

You will also find VHDL example projects that show the use of the DDR memory interface. These 
examples exist for module types that include the DDR memory interface. 
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SPI Interface 
Some modules are available with a Serial Peripheral Interface (SPI). The Serial Peripheral Interface on 
these modules will be used to interface to a specific device connected to the FPGA. For example, on a 
board with a DAC component, there may be a Serial Peripheral Interface connection for controlling 
operation of the DAC. 

If you are using a module that has a SPI interface, this will be presented via the HE_SPI component of 
the Hardware Interface Layer. This component presents all of the signals necessary to read and write 
data via SPI. 

The SPI interface must be provided with a free running clock signal set to 100MHz or lower. All signals 
of the HE_SPI component are synchronised to the SPI clock signal SPI_CLOCK. 

For every read and write performed over SPI, an instruction byte must first be transmitted by the 
FPGA. The instruction byte specifies the address for the serial access, whether the access is a read or a 
write, and the number of bytes to be transferred. 

SPI Write 
To transmit data over SPI the SPI_R_W signal must be set low. The SPI_COUNT(2 downto 0) 
signal must be set to the number of bytes to transmit, and the SPI_ADDRESS(4 downto 0) signal 
must be set to the start address for the access. 

For transfers of more than one byte, please refer to the data sheet for the external device you are 
communicating with to ascertain whether the address auto-increments or auto-decrements. 

Next the data to be written must be latched into the HE_SPI interface. This is done by driving data 
onto the SPI_WR_DATA(7 downto 0) bus and asserting the appropriate SPI load signal. It is 
possible to transmit either 1, 2, 3 or 4 bytes of data for each SPI transaction. 

Inside the HE_SPI interface are four transmit data registers, data-out-0, data-out-1, data-out-2 and 
data-out-3. When writing data from the FPGA to the external device, the HE-SPI interface starts with 
the data in register data-out-0. If more than one byte is to be transmitted it then moves on to the next 
data register. 

To set the contents of data-out-0, the data must be driven on the SPI_WR_DATA(7 downto 0) bus 
while the SPI_LOAD_0 signal is asserted (set high). Data is registered on the rising edge of the SPI 
clock signal, SPI_CLOCK. To set the contents of data-out-1, the data must be driven on the 
SPI_WR_DATA bus while the SPI_LOAD_1 signal is asserted. To set the contents of data-out-2, the 
data must be driven on the SPI_WR_DATA bus while the SPI_LOAD_2 signal is asserted. To set the 
contents of data-out-3, the data must be driven on the SPI_WR_DATA bus while the SPI_LOAD_3 
signal is asserted. 

When the address, count, read-write control and data values are correctly set, the data can be written 
over SPI. Data is transmitted by asserting the signal SPI_TRANSMIT (setting high). The SPI_R_W, 
SPI_COUNT and SPI_ADDRESS signals are all registered on the rising edge of SPI_CLOCK when 
SPI_TRANSMIT is asserted. Once asserted, SPI_TRANSMIT must remain asserted until the 
SPI_ACTIVE signal goes high to indicate transfer has begun. When SPI_ACTIVE becomes asserted 
(set high), the SPI_TRANSMIT signal must be de-asserted. 

When SPI_ACTIVE returns low, this indicates data transmission has completed. 

SPI Read 

To read data over SPI the SPI_R_W signal must be set high. The SPI_COUNT(2 downto 0) signal 
must be set to the number of bytes to receive, and the SPI_ADDRESS(4 downto 0) signal must be 
set to the start address for the access. 

For transfers of more than one byte, please refer to the data sheet for the external device you are 
communicating with to ascertain whether the address auto-increments or auto-decrements. 
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When the address, count and read-write signals are correctly set, the data read can be started over SPI 
by asserting the signal SPI_TRANSMIT (setting high). The SPI_R_W, SPI_COUNT and SPI_ADDRESS 
signals are all registered on the rising edge of SPI_CLOCK when SPI_TRANSMIT is asserted. Once 
asserted, SPI_TRANSMIT must remain asserted until the SPI_ACTIVE signal goes high to indicate 
transfer has begun. When SPI_ACTIVE becomes asserted (set high), the SPI_TRANSMIT signal must 
be de-asserted. 

When SPI_ACTIVE returns low, this indicates data transmission has completed. 

When the transmission of data has completed one or more bytes of read data will be available on the 
output busses SPI_RD_DATA_n. 
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