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Abstract

In this thesis I implement belief revision in SNePS based on a user-supplied epis-

temic ordering of propositions. I provide a decision procedure that performs revi-

sion completely automatically when given a well preorder. I also provide a decision

procedure that, when given a total preorder, performs revision with a minimal num-

ber of queries to the user when multiple propositions within a minimally-inconsistent

set are minimally epistemically entrenched. These procedures are implemented in

SNePS as options alongside the old belief revision subsystem, wherein revision must

be done entirely by hand. I implement both prioritized and nonprioritized belief revi-

sion by adjusting the epistemic ordering function passed to the new procedures. The

first procedure uses Op|Σ|q units of space, and completes within Op|Σ|2 ¨ smaxq units of

time, where Σ is the set of distinct minimally-inconsistent sets, and smax is the number

of propositions in the largest minimally-inconsistent set. The second procedure uses

Op|Σ|2 ¨s2
maxq space and Op|Σ|2 ¨s2

maxq time. The examples provided herein demonstrate

that the new procedures generalize previous work on belief revision in SNePS.

x



1 Introduction

1.1 Belief Revision

At its most basic level, belief revision refers to the general problem of changing belief states

(Gärdenfors and Rott, 1995). Several varieties of belief revision have appeared in the literature over

the years. AGM revision typically refers to the addition of a belief to a belief set, at the expense of

its negation and any other beliefs supporting its negation (Alchourron et al., 1985). Alternatively,

revision can refer to the process of resolving inconsistencies in a contradictory knowledge base,

or one known to be inconsistent (Martins and Shapiro, 1988). This is accomplished by removing

one or more beliefs responsible for the inconsistency, or culprits. This is the task with which I

am concerned. In particular, I have devised a means of automatically resolving inconsistencies

by discarding the least-preferred beliefs in a belief base, according to some epistemic ordering

(Gärdenfors, 1988; Williams, 1994; Gärdenfors and Rott, 1995).

1.1.1 Motivation

Let us say that you are told to believe the following information (the logical formalization appears

on the right):

Blackbeard was a pirate PiratepBlackbeardq
All pirates are uneducfated @xrPiratepxq Ñ �Educatedpxqs

Using the rules of classical first-order logic, the following fact is derivable:
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Blackbeard was uneducated �EducatedpBlackbeardq

But you know in your heart that Blackbeard was indeed an educated man:

Blackbeard was educated EducatedpBlackbeardq

If you choose to accept all of the above information as fact, then you hold a contradictory set of

beliefs. That is, you believe that Blackbeard both is and is not educated:EducatedpBlackbeardq ^
�EducatedpBlackbeardq
We would say that your belief set is inconsistent. In order to restore consistency, you would need

to contract some belief, or remove a belief from your belief set. The result would be a revision of

your beliefs (Gärdenfors and Rott, 1995).

The problem of belief revision is that logical considerations alone do not tell you which
beliefs to give up, but this has to be decided by some other means. What makes things
more complicated is that beliefs in a database have logical consequences. So when
giving up a belief you have to decide as well which of its consequences to retain and
which to retract... (Gärdenfors and Rott, 1995)

In later sections I will discuss in detail how to make a choice of belief(s) to retract when presented

with an inconsistent belief set.

1.1.2 AGM Paradigm

In (Gärdenfors, 1982; Alchourron et al., 1985), operators and rationality postulates for theory

change are discussed. Let CnpAq refer to the closure under logical consequence of a set of propo-

sitions A. A theory is defined to be a set of propositions closed under logical consequence. Thus

2



for any set of propositions A, CnpAq is a theory. We will use the terms belief and proposition

interchangeably (and likewise belief set and set of propositions). It is worth noting that theories

are infinite sets. (Alchourron et al., 1985) discusses operations that may be performed on theories.

The following operations are part of what is referred to as the AGM paradigm.

1. Expansion: Given a set of propositions A and a new proposition x, the expansion of A by x is

equal to CnpAYtxuq. Expansion of A by x is therefore the closure under logical consequence

of the set-theoretic addition of x to A.

2. Contraction: Given a set of propositions A and a proposition x, the contraction of A by x, de-

noted A´x, is equal to a maximal subset of A that fails to imply x (Alchourron and Makinson,

1982). So when contracting A by x, in addition to removing x from A, we remove additional

propositions as necessary to ensure that x may not be rederived under logical consequence.

(Gärdenfors, 1982) presents rationality postulates for contraction functions:

p´1q A ´ x is a theory whenever A is a theory (closure).

p´2q A ´ x Ď A (inclusion).

p´3q If x R CnpAq, then A ´ x “ A (vacuity).

p´4q If x R CnpHq, then x R CnpA ´ xq (success).

p´5q If Cnpxq “ Cnpyq, then A ´ x “ A ´ y (preservation).

p´6q A Ď CnppA ´ xq Y txuq whenever A is a theory (recovery).

The closure postulate p´1q states that the contraction of a theory is still a theory. The inclu-

sion postulate p´2q states that contraction of a belief set cannot yield a belief set with any

new beliefs. The vacuity postulate p´3q states that contraction of a belief set by a proposition

which the belief set neither contains, nor implies as a result of logical consequence, yields the

original belief set. The success postulate p´4q states that the belief set resulting from con-

traction by a non-tautological proposition will not imply that proposition as a result of logical

3



consequence. The preservation postulate p´5q states that if we may conclude the same things

from two propositions by logical consequence, then the belief sets resulting from contraction

of a belief set by either one of those propositions will be the same.

Finally we come to the recovery postulate p´6q. This postulate states that if we contract

a proposition from a belief set, then expand the resulting belief set by that same proposi-

tion to form a third belief set, there will be nothing in the original belief set that cannot be

concluded from the information in the third belief set. There is extensive argument in the

literature about the rationality of this particular postulate. I will discuss some particulars in

§1.1.3.

3. Revision: Given a set of propositions A and a proposition x, the revision of A by x, denoted

A ` x, is equal to

CnppA ´ �xq Y txuq. Revision of A by x therefore accomplishes the addition of x to A in a

fashion that is guaranteed not to produce an inconsistent theory. The mathematical reduction

of revision to the form of contraction expressed above is called the Levi Identity (Levi, 1977).

(Gärdenfors, 1982) presents rationality postulates for revision functions:

p`1q A ` x is always a theory.

p`2q x P A ` x.

p`3q If �x R CnpAq, then A ` x “ CnpA Y txuq.

p`4q If �x R CnpHq, then A ` x is consistent under Cn.

p`5q If Cnpxq “ Cnpyq, then A ` x “ A ` y.

p`6q pA ` xq X A “ A ´ �x, whenever A is a theory.

Postulate p`1q is self-explanatory. Postulate p`2q states that the revision of a belief set by a

proposition results in a belief set containing that proposition. Postulate p`3q states that when

the negation of a belief is not a consequence of a belief set, then revision of that belief set

4



by that belief will be the theory resulting from the closure under logical consequence of the

expansion of the belief set by that belief. Postulate p`4q states that the revision of a belief

set by a non-contradictory proposition results in a consistent belief set. It should be noted

that this would hold even when the original belief set is contradictory, since the contradic-

tory information would be contracted. Otherwise �x could be rederived, since every belief is

derivable from a contradictory set, and so the contraction seen in the Levi Identity would not

really have occurred. Postulate p`5q states that if we may conclude the same things from two

propositions by logical consequence, then the belief set resulting from revision of a belief

set by either one those propositions will be the same. Postulate p`6q states that the common

elements of A and the revision of A by x are in fact the elements of the contraction of A by

�x when A is a theory. This follows trivially from the Levi Identity.

The type of revision accomplished by the above operator may be thought of as prioritized; its

RHS argument is added to the LHS belief set at the possible expense of pre-existing beliefs.

That is, it prioritizes the RHS over other beliefs in the belief set. This follows from postulate

p`2q. I will discuss this notion in more detail in section 1.1.9.

4. Partial Meet Contraction and Revision: Let AKx be the set of all maximal subsets B of

A such that B & x (Alchourron et al., 1985). We say that a maxichoice contraction function

´maxi is one such that A ´maxi x is an arbitrary member of AKx when the latter is nonempty,

or else equal to A itself (Alchourron and Makinson, 1982). The full meet contraction A´ f m x

is defined as
ŞpAKxq when A is nonempty, or else A itself. In (Alchourron and Makinson,

1982) it is shown that the result of full meet contraction is generally far too small to be of use.

Let γ be a function such that for all A,x, γpAKxq is a nonempty subset of AKx when the

latter is nonempty, or else the former is equal to tAu. γ is called a selection function. The

operation ´γ defined by A ´γ x “ Ş
γpAKxq is called the partial meet contraction over A

determined by γ (Alchourron et al., 1985). Note that full meet contraction is equivalent to the

5



special case of partial meet contraction where γpAKxq “ AKx, and maxichoice contraction

is the special case where γpAKxq is a singleton set. Partial meet revision is simply revision

using partial meet contraction as the contraction function seen in the Levi Identity. The se-

lection function γ is used as a way to choose the most desirable members of AKx. Such a

selection function could possibly be used in determining how to proceed from the situation

presented in section 1.1.1. However it is rather impractical to attempt to use any of the pure

AGM operations presented in this section, since they tend to involve infinite theories. The

next section brings us closer to something practical. I conclude by noting that partial meet

contraction and revision satisfy all of the above postulates for AGM contraction and revision

respectively (Alchourron et al., 1985).

1.1.3 Theory Change on Finite Bases

It is widely accepted that agents, because of their limited resources, believe some but
by no means all of the logical consequences of their beliefs. (Lakemeyer, 1991)

A major issue with the AGM paradigm is that it defines operations to be performed on infinite

sets (theories). A more practical model would include operations to be performed on finite belief

sets, or belief bases. Such operators would be useful in supporting computer-based implementa-

tions of revision systems (Williams, 1994).

(Hansson, 1997, 1999b) discusses finite-base analogues to the AGM operators. An important dif-

ference between these two paradigms is the fact that the finite base operators cannot satisfy the

closure and recovery postulates for AGM contraction (Dixon, 1993; Williams, 1994). Obviously,

satisfaction of the closure postulate is not desirable since that would result in infinite theories.

Some argue that satisfaction of the recovery postulate is not desirable because it is inextricably
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tied to the consequence relation (Williams, 1994; Makinson, 1987). Defense of recovery, on the

other hand, is predicated upon the notion that contractions of a belief set should cause a minimal

removal of information — so minimal, in fact, that expansion by a contracted belief should be

sufficient to recapture the original beliefs. In this vein, Johnson makes a compelling point that re-

covery is desirable in the case of belief revision with reconsideration (Johnson, 2006, 35–42), i.e.

iterated belief revision whereby a belief removed at one step no longer has a reason to be absent

after the last step. My new procedures do not satisfy the recovery postulate (see §2.4).

1.1.4 Epistemic Entrenchment

Consider again the four scenarios in section 1.1.9. It is worthwhile to examine the mechanism

by which you decided exactly which belief(s) to retract in the scenarios presented. In fact there

is a similar mechanism at play in all of them. Let us assume that the decision on which beliefs

to retract from a belief set is made is based on the relative importance of each belief, which is

called its degree of epistemic entrenchment (Gärdenfors, 1988). Then we need an ordering ď with

which to compare the entrenchment of individual beliefs. This ordering may be used to determine

a selection function γ with which to define a partial meet revision function. It is because a different

epistemic ordering is used in scenarios 2 and 3 from the one used in scenarios 4 and 5 that different

choices are made on which belief to retract. In fact prioritized revision is just the special case

where new beliefs are always more entrenched than all existing beliefs.

(Gärdenfors, 1988) presents rationality postulates for an epistemic ordering ď.

(K is a belief set, and A, B, and C are beliefs. K represents the contradictory belief set.) Such an

ordering is a noncircular total preorder on all propositions.

(EE1) For any A,B, and C, if A ď B and B ď C, then A ď C. (Transitivity)

(EE2) For any A and B, if A $ B, then A ď B. (Dominance)

7



(EE3) For all A and B in K, pA ď A ^ Bq or pB ď A ^ Bq. (Conjunctiveness)

(EE4) When K ‰ K, A R K iff A ď B for all B. (Minimality)

(EE5) If B ď A for all B, then $ A.

(EE1) is self-explanatory. (EE2) states that we should prefer to remove a belief from which a

second belief may be derived, than to remove the second derived belief. The reason is that the

derived belief may be rederived otherwise. (EE3), when combined with (EE1) and (EE2), states

that we must remove either A or B to remove A ^ B. (EE4) states that propositions that are less

entrenched than all other propositions are not in K (unless K is contradictory). (EE5) states that

propositions with maximal entrenchment are theorems.

Postulate (EE3) does not apply to SNeBR (see §2.5) due to the distinction between hypotheses

and derived beliefs. Postulate (EE4) does not apply to SNeBR since only propositions within a

belief base are ever considered for removal when an inconsistency is detected.

1.1.5 Ensconcements

Ensconcements, introduced in (Williams, 1994), consist of a set of forumlae together with a to-

tal preorder on that set. They can be used to construct epistemic entrenchment orderings, and

determine theory base change operators.

1.1.6 Safe Contraction

In (Alchourron and Makinson, 1985), the operation safe contraction is introduced. Let ă be a

non-circular relation over a belief set A. An element a of A is safe with respect to x iff a is not

a minimal element of any minimal subset B of A such that x P CnpBq. Let A{x be the set of all

8



elements of A that are safe with respect to x. Then the safe contraction of A by x, denoted A ´s x,

is defined to be A XCnpA{xq.

1.1.7 Assumption-based Truth Maintenance Systems

In an assumption-based truth maintenance system (ATMS), the system keeps track of the assump-

tions (base beliefs) underlying each belief (de Kleer, 1986). One of the roles of an conventional

TMS is to keep the database contradiction-free. In an assumption-based ATMS, contradictions are

removed as they are discovered. When a contradiction is detected in an ATMS, then there will be

one or more minimally-inconsistent sets of assumptions underlying the contradiction. Such sets

are called no-goods. (Martins and Shapiro, 1988) presented SNeBR, an early implementation of

an ATMS that uses the logic of SNePS. In that paper, sets of assumptions supporting a belief are

called origin sets. They correspond to antecedents of a justification from (de Kleer, 1986). The

focus of this thesis is modifications to the modern version of SNeBR.

1.1.8 Kernel Contraction

In (Hansson, 1994), the operation kernel contraction is introduced. A kernel set A�α is defined

to be the set of all minimal subsets of A that imply α . A kernel set is like a set of origin sets

from (Martins and Shapiro, 1988). Let σ be an incision function for A. Then for all α , σpA�αq Ď
YpA�αq, and if H ‰ X P A�α , then X X σpA�αq ‰ H. The kernel contraction of A by α based

on σ , denoted A „σ α , is equal to AzσpA�αq.
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1.1.9 Prioritized Versus Non-Prioritized Belief Revision

In the AGM model of belief revision (Alchourron et al., 1985) . . . the input sentence
is always accepted. This is clearly an unrealistic feature, and . . . several models of
belief change have been proposed in which no absolute priority is assigned to the new
information due to its novelty. . . . One way to construct non-prioritized belief revision
is to base it on the following two-step process: First we decide whether to accept or
reject the input. After that, if the input was accepted, it is incorporated into the belief
state (Hansson, 1999a).

Hansson goes on to describe several other models of nonprioritized belief revision, but they all

have one unifiying feature distinguishing them from prioritized belief revision: the input, i.e. the

RHS argument to the revision operator, is not always accepted. To reiterate: Prioritized belief re-

vision is revision in which the proposition by which the set is revised is always present in the result

(as long as it is not a contradiction). Non-prioritized belief revision is revision in which the RHS

argument to the revision operator is not always present in the result (even if it is not a contradiction).

The closest approximation of revision in SNePS by Hansson is the operation of semi-revision

(Hansson, 1997). Semi-revision is a type of non-prioritized belief revision that may be applied to

belief bases. So it is a bridge between the AGM paradigm and SNePS revision, as we shall see in

§1.2.

Let us revisit the example from §1.1.1:

You believe that:

(Your belief set S consists of :)

• Blackbeard was a pirate.

PiratepBlackbeardq

• All pirates are uneducated
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@xrPiratepxq Ñ �Educatedpxqs

• Consequently, Blackbeard was not educated

�EducatedpBlackbeardq

Now consider these five scenarios:

1. You are told that Blackbeard was educated. You weigh this notion against your previous

beliefs, end up deciding that it is not reasonable, and reject it. Your belief set S has not

changed.

2. You are told that Blackbeard was educated. You weigh this notion against your previous

beliefs, end up deciding that it is reasonable, and accept it as fact. As a result, you abandon

your prejudice and discontinue holding the belief that all pirates are uneducated. That is,

you retract �EducatedpBlackbeardq from your belief set S, using a selection function γ ,

as in §1.1.2 part 4, that removes @xrPiratepxq Ñ �Educatedpxqs over PiratepBlackbeardq.

3. You are told that Blackbeard was educated. You weigh this notion against your previous

beliefs, end up deciding that it is reasonable, and accept it as fact. You are a persistent

bigot, so you discontinue holding the belief that Blackbeard was ever a real pirate (you

prefer to believe that no pirate is educated). That is, you retract �EducatedpBlackbeardq
from your belief set S, using a selection function γ as in section 1.1.2 part 4, that removes

PiratepBlackbeardq over @xrPiratepxq Ñ �Educatedpxqs.

4. You are told that Blackbeard was educated. You assume that this is true because it is the last

thing you have been told. As a result, you abandon your prejudice and discontinue holding

the belief that all pirates are uneducated. That is, you retract �EducatedpBlackbeardq
from your belief set S, using a selection function γ as in section 1.1.2 part 4, that removes

@xrPiratepxq Ñ �Educatedpxqs over PiratepBlackbeardq.
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5. You are told that Blackbeard was educated. You assume that this is true because it is

the last thing you have been told. You are a persistent bigot, so you discontinue hold-

ing the belief that Blackbeard was ever a real pirate (you prefer to believe that no pirate

is educated). That is, you retract �EducatedpBlackbeardq from your belief set S, using

a selection function γ as in section 1.1.2 part 4, that removes PiratepBlackbeardq over

@xrPiratepxq Ñ �Educatedpxqs.

In scenarios 1, 2 and 3 you considered whether the new information you were just told was true or

false. You did not automatically prioritize the new information over your existing beliefs. In sce-

narios 2 and 3 in particular, the decision to keep the new belief was made after weighing it against

all the previously held beliefs, rather than on the basis of its novelty. So you were performing

non-prioritized belief revision on your belief set (Hansson, 1999a). In scenarios 4 and 5 you took

as fact the new information you were given without considering its veracity. You automatically

prioritized the new information over your existing beliefs. So you were performing prioritized

belief revision on your belief set.

1.2 SNePS

(Except where otherwise noted, all material in this section comes from (Shapiro and The SNePS

Implementation Group, 2010).)
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1.2.1 Description of the System

“SNePS is a logic-, frame-, and network- based knowledge representation, reasoning, and acting

system. Its logic is based on Relevance Logic (Shapiro, 1992), a paraconsistent logic (in which a

contradiction does not imply anything whatsoever)” (Shapiro and Johnson, 2000). SNePS is di-

vided into several packages, a few of which I discuss here:

SNePSLOG is an interface to SNePS in which information is entered in a predicate logic nota-

tion. It is the interface through which my demonstrations are performed (see §4).

SNeRE, the SNePS Rational Engine, provides an acting system for SNePS-based agents, whose

beliefs must change to keep up with a changing world. Of particular interest is the believe ac-

tion, which is used to introduce beliefs that take priority over all other beliefs at the time of their

introduction.

1.2.2 Belief Change in SNePS

Every belief in a SNePS belief base has one or more support sets, each of which consists of an

origin tag and an origin set. The origin tag will identify a belief as either being introduced as a

hypothesis, or derived (note that it is possible for a belief to be both introduced as a hypothesis and

derived from other beliefs). The origin set contains those hypotheses that were used to derive the

belief. In the case of the origin tag denoting a hypothesis, the corresponding origin set would be a

singleton set containing only the belief itself. The contents of the origin set of a derived belief are

computed by the implemented rules of inference at the time the inference is drawn (Martins and

Shapiro, 1988; Shapiro, 1992).

The representation of beliefs in SNePS lends itself well to the creation of processes for con-
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traction and revision. Specifically, in order to contract a belief, one must merely remove at least

one hypothesis from each of its origin sets. Similarly, prioritized revision by a belief b (where �b

is already believed) is accomplished by removing at least one belief from each origin set of �b.

Non-prioritized belief revision under this paradigm is a bit more complicated. I discuss both types

of revision in more detail in §2.

1.2.3 SNeBR

SNeBR, The SNePS Belief Revision subsystem, is responsible for resolving inconsistencies in the

knowledge base as they are discovered. In the current release of SNePS (version 2.7.1), SNeBR is

able to automatically resolve contradictions under a limited variety of circumstances. Otherwise

“assisted culprit choosing” is performed, where the user must manually select culprits for removal.

After belief revision is performed, the knowledge base might still be inconsistent, but every known

derivation of an inconsistency has been eliminated.

If the SNeRE believe act is performed on the proposition p, it is assumed that belief
in p is to take priority over any contradictory belief. Therefore, SNeBR behaves as
follows.
1. If andor(0,0){p, ...}1 is believed as an hypothesis, it is chosen as the culprit. If it is
a derived belief, assisted culprit choosing is done.
2. If andor(i,1){p, q, ...}2 (i is either 0 or 1) is believed and q is believed as an hypoth-
esis, then q is chosen as the culprit. If q is a derived belief, assisted culprit choosing is
done. (Shapiro and The SNePS Implementation Group, 2010)

So automatic belief revision in this incarnation of SNeBR is heavily dependent on syntax. Ad-

ditionally, it is not extensible. My modified SNeBR addresses these limitations.
1andor(0,0){...} means that every proposition within the braces is false. �p is represented in SNePS as an-

dor(0,0){p}.
2andor(i,1){...} means that at least i and at most 1 of the propositions within the braces is true.
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2 New Belief Revision Algorithms

2.1 Problem Statement

2.1.1 Nonprioritized Belief Revision

Suppose we have a knowledge base that is not known to be inconsistent, and suppose that at some

point we add a contradictory belief to that knowledge base. Either that new belief directly contra-

dicts an existing belief, or we derive a belief that directly contradicts an existing one as a result

of performing forward and/or backward inference on the new belief. Now the knowledge base is

known to be inconsistent. We will refer to the contradictory beliefs as p and �p. Contraction of

either p or �p from the knowledge base will resolve the contradiction.

Since SNePS tags each belief with one or more origin sets, or sets of supporting hypotheses,

we can identify the underlying beliefs that support each of the two contradictory beliefs. In the

case where p and �p each have one origin set, OSp and OS�p respectively, we may resolve the

contradiction by removing at least one hypothesis from OSp, thereby removing p, or at least one

hypothesis from OS�p, thereby removing �p. Since we only need to remove one of these propo-

sitions, the contradiction may be resolved by removing at least one belief from OSp Y OS�p, a

no-good. If there are m origin sets for p, and n origin sets for �p, then there will be at most m ˆ n

distinct no-goods (some unions may be duplicates of others). To resolve a contradiction in this

case, we must retract at least one hypothesis from each no-good (Sufficiency).

I will present an algorithm that will select the hypotheses for removal from the set of no-goods. The

first priority will be that the hypotheses selected should be minimally-epistemically-entrenched

(Minimal Entrenchment) according to some total preorder ď. The second priority will be not to
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remove any more hypotheses than are necessary in order to resolve the contradiction (Information

Preservation), while still satisfying priority one.

2.1.2 Prioritized Belief Revision

The process of Prioritized Belief Revision in SNePS occurs when a contradiction is discovered

after a belief is asserted explicitly using the believe act of SNeRE. The major difference from non-

prioritized belief revision is that a subtle change is made to the entrenchment ordering ď. If ďnonpri

is the ordering used for nonprioritized belief revision, then for prioritized belief revision we use an

ordering ďpri as follows:

Let P be the set of beliefs asserted by a believe action. Then

@e1,e2re1 P P ^ e2 R P Ñ �pe1 ďpri e2q ^ e2 ďpri e1s
@e1,e2re1 R P ^ e2 R P Ñ pe1 ďpri e2 Ø e1 ďnonpri e2qs
@e1,e2re1 P P ^ e2 P P Ñ pe1 ďpri e2 Ø e1 ďnonpri e2qs

That is, a proposition asserted by a believe action takes priority over any other proposition. When

either both or neither propositions being compared have been asserted by the believe action, then

we use the same ordering as we would for nonprioritized revision.

2.2 Common Requirements for a Rational Belief Revision Algorithm

2.2.1 Primary Requirements

The inputs to the algorithm are:

• A set of formulae Φ: the current belief set, which is known to be inconsistent
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• A total preorder ď on Φ: an epistemic entrenchment ordering that can be used to compare

the relative desirability of each belief in the current belief set

• Minimally-inconsistent sets of formulae σ1, . . . ,σn, each of which is a subset of Φ: the no-

goods

• A set Σ “ tσ1, . . . ,σnu: the set of all the no-goods

The algorithm should produce a culprit set T that satisfies the following conditions:

pEESNePS1q @σ rσ P Σ Ñ Dτrτ P pT X σqs (Sufficiency)

pEESNePS2q @τrτ P T Ñ Dσ rσ P Σ ^ τ P σ ^ @wrw P σ Ñ τ ď wsss (Minimal Entrenchment)

pEESNePS3q @T 1rT 1 Ă T Ñ �@σ rσ P Σ Ñ Dτrτ P pT 1 X σqsss (Information Preservation)

Condition pEESNePS1q states that T contains at least one formula from each set in Σ. Condition

pEESNePS2q states that every formula in T is a minimally-entrenched formula of some set in Σ.

Condition pEESNePS3q states that if any formula is removed from T, then Condition pEESNePS1q
will no longer hold. In addition to the above conditions, the algorithm must terminate on all

possible inputs, i.e. it must be a decision procedure.

2.2.2 Supplementary Requirement

In any case where queries must be made of the user in order to determine the relative epistemic

ordering of propositions, the number of such queries must be kept to a minimum.
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2.3 Implementation

I present algorithms to solve the problem as stated:

Where I refer to ď below, I am using the prioritized entrenchment ordering from §2.1. In the case

of nonprioritized revision we may assume that P “ H

2.3.1 Using a well preorder

Let �ď be the output of a function f whose input is a total preorder ď, such that �ď Ďď The idea

is that f creates the well preorder �ď from ď by removing some pairs from the total preorder ď.

Note that in the case where ď is already a well preorder, �ď “ď. Then we may use Algorithm 1

to solve the problem.

Algorithm 1 Algorithm to compute T given a well preorder
Input: Σ,�ď
Output: T

1: T ð H
2: for all pσ P Σq do
3: Move minimally entrenched belief in σ to first position in σ , using �ď as a comparator
4: end for
5: Sort elements of Σ into descending order of the values of the first element in each σ using �ď

as a comparator
6: AddLoop :
7: while pΣ ‰ Hq do
8: currentCulprit ð σ11
9: T ð T Y tcurrentCulpritu

10: DeleteLoop :
11: for all pσcurrent P Σq do
12: if pcurrentCulprit P σcurrentq then
13: Σ ð Σzσcurrent
14: end if
15: end for
16: end while
17: return T
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2.3.2 Using a total preorder

Unfortunately it is easy to conceive of a situation in which the supplied entrenchment ordering

is a total preorder, but not a well preorder. For instance, let us say that, when reasoning about a

changing world, propositional fluents (propositions that are only true of a specific time or situation)

are abandoned over non-propositional fluents. It is not clear then how we should rank two distinct

propositional fluents, nor how to rank two distinct non-propositional fluents. If we can arbitrarily

specify a well preorder that is a subset of the total preorder we are given, then algorithm 1 will

be suitable. Otherwise, we can simulate a well preorder � through an iterative construction by

querying the user for the minimally-entrenched proposition of a particular set of propositions at

appropriate times in the belief-revision process. Algorithm 2 accomplishes just this.
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Algorithm 2 Algorithm to compute T given a total preorder
Input: Σ,ď
Output: T

1: T ð H
2: MainLoop:
3: loop
4: ListLoop:
5: for all pσi P Σ,1 ď i ď |Σ|q do
6: Make a list lσi of all minimally-entrenched propositions, i.e. propositions that are not

strictly more entrenched than any other, among those in σi, using ď as a comparator.
7: end for
8: RemoveLoop:
9: for all (σi P Σ,1 ď i ď |Σ|) do

10: if (According to lσi , σ has exactly one minimally-entrenched proposition p AND the other
propositions in σi are not minimally-entrenched in any other no-good via an lσ j ,(1 ď j ď
|Σ| , i ‰ j)) then

11: T ð T Y tpu
12: for all pσcurrent P Σq do
13: if pp P σcurrentq then
14: Σ ð Σzσcurrent
15: end if
16: end for
17: if pΣ “ Hq then
18: return T
19: end if
20: end if
21: end for
22: ModifyLoop:
23: for all pσ P Σq do
24: if (σ has multiple minimally-entrenched propositions) then
25: query which proposition l of the minimally-entrenched propositions is least desired.
26: Modify ď so that l is strictly less entrenched than those other propositions.
27: break out of ModifyLoop
28: end if
29: end for
30: end loop
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2.3.3 Characterization

These algorithms perform an operation similar to incision functions (Hansson, 1994), since they

select one or more propositions to be removed from each minimally-inconsistent set. Their output

seems analogous to σpΦ�pp ^ �pqq, where σ is the incision function, � is the kernel-set operator

from (Hansson, 1994), and p is a proposition. But we are actually incising Σ, the set of known

no-goods. The known no-goods are of course a subset of all no-goods, i.e. Σ Ď Φ�pp ^ �pq.
This happens because SNeBR resolves contradictions as soon as they are discovered, rather than

performing inference first to discover all possible sources of contradictions.

The type of contraction eventually performed is similar to safe contraction (Alchourron and

Makinson, 1985), except that there are fewer restrictions on our epistemic ordering.

2.4 The Recovery Postulate

When a contradiction occurs between a proposition p and another proposition �p, and �p is

retracted, we also retract one or more beliefs from which �p is derived, as well as all beliefs that

are derived from �p. If we were to immediately reassert �p (let us ignore for the moment that

this will trigger belief revision again), then while the beliefs derived from �p may be reasserted,

any beliefs from which �p was derived that were removed previously will not automatically be

reasserted (recovered). There is simply no mechanism in place to do this. So the procedures above

do not in general satisfy the recovery postulate for belief revision. Recovery would only be possible

in the case where �p was originally asserted solely as a hypothesis. In this case the only beliefs

lost during the initial revision would be those derived from �p. Those beliefs would be recovered

as soon as �p is reasserted (as long as the rest of their origin sets are intact).
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2.5 Conjunctiveness

Since only hypotheses are considered for removal by these procedures, the conjunctiveness postu-

late (EE3) is unnecessary. If we have a and b as hypotheses, and from these we derive a ^ b, then

it is meaningless to compare a and a ^ b, because we do not consider the entrenchment of derived

beliefs. This is similarly true if we believe a^b as a hypothesis, and use it to derive a and to derive

b.

3 Changes to SNePS Manual

3.1 New SNePSLOG Commands

3.1.1 br-mode

Syntax: br-mode [auto|manual]

The br-mode command is used to query or set the default behavior of belief revision.

• Default Setting:

In modes 1 and 2, the default setting for br-mode is manual.

In mode 3, the the default setting for br-mode is auto.

• br-mode auto will cause SNeBR to always attempt automatic belief revision when a con-

tradiction is detected. While this mode is active, SNeBR will always resolve contradictions

using the currently-selected automated belief revision algorithm. Manual belief revision will

not be available.

• br-mode manual will cause SNeBR to present the user with a list of options specifying how
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to proceed when a contradiction is detected. The user will be able to select manual belief

revision, ignore the contradiction and proceed with an inconsistent knowledge base, or use

the currently-selected automated belief revision algorithm.

• br-mode without any arguments will inform the user which of the above two modes is cur-

rently active.

3.1.2 set-order

Syntax: set-order ăfunction-nameą
The set-order command is used to choose the epistemic ordering function used by SNeBR during

automated belief revision.

function-name must be the name of a lisp function visible to the snepslog package.

The function referred to by function-name must be a function of two arguments, lhs and rhs, as

follows:

f uncplhs,rhsq “ true iff lhs ď rhs, i.e. lhs is not strictly more entrenched than rhs.

lhs and rhs are wffs.

The user may define his/her own ordering functions for use with set-order, or use one of the

several built-in functions, described below:

• Default Setting:

In modes 1 and 2, the default order is null-order.

In mode 3, the the default order is fluent.

• set-order null-order will cause all propositions to be equally entrenched.

; ; ; An orde r i n which a l l p r o p o s i t i o n s are e q u a l l y e n t r e n c h e d

( defun n u l l ´ o r d e r ( l h s r h s )
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( d e c l a r e ( i g n o r e l h s r h s ) )

t )

• set-order explicit will cause all propositions to be equally entrenched, except as follows:

If IsLessEntrenched(x,y) is asserted in the knowledge base, then x will be strictly less en-

trenched than y. Note that this ordering function uses statements in the object language of

SNePS to determine relative entrenchment of propositions.
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; ; ; D e s c r i p t i o n : An o r d e r i n g f u n c t i o n r e l y i n g on e x p l i c i t s t a t e m e n t s o f

; ; ; r e l a t i v e en t r enchmen t o f p r o p o s i t i o n s , u s i ng t h e

; ; ; I s L e s s E n t r e n c h e d p r e d i c a t e f o r check s

; ; ; [ I s L e s s E n t r e n c h e d ( x . y ) ] = [ x ] i s s t r i c t l y l e s s e n t r e n c h e d than [ y ]

( defun e x p l i c i t ( l h s r h s )

( not ( t e l l ” ask I s L e s s E n t r e n c h e d ( ˜A, ˜A) ” r h s l h s ) ) )

• set-order source will cause all propositions to be equally entrenched, except as follows:

If HasSource(x,s1), HasSource(y,s2), and IsBetterSource(s2,s1) are asserted in the knowl-

edge base, then x will be strictly less entrenched than y. Note that this ordering function uses

statements in the object language of SNePS to determine relative entrenchment of proposi-

tions.

; ; ; ; D e s c r i p t i o n : An o r d e r i n g f u n c t i o n t h a t cau s e s p r o p o s i t i o n s w i t h more

; ; ; r e l i a b l e s o u r c e s t o be more e p i s t e m i c a l l y e n t r e n c h e d than

; ; ; p r o p o s i t i o n s w i t h l e s s r e l i a b l e s o u r c e s . Also , unsourced

; ; ; p r o p o s i t i o n s are more e n t r e n c h e d than sourced ones .

; ; ; [ HasSource ( x , y ) ] = The sou r c e o f [ x ] i s [ y ]

; ; ; [ I s B e t t e r S o u r c e ( x , y ) ] = [ x ] i s a b e t t e r sou r c e than [ y ]

( defun s o u r c e ( l h s r h s )

( or

( and

( l e t ( ( s ou r c e ´ l h s ( t e l l ” askwh HasSource ( ˜A, ?x ) ” l h s ) )

( sou rce´ r h s ( t e l l ” askwh HasSource ( ˜A, ?x ) ” r h s ) ) )

( cond ( ( and sou r c e ´ l h s sou rce´ r h s )

( l e t ( ( source´ lhs´ t e rm

( cd r ( as soc ’ x ( f i r s t sou r c e ´ l h s ) ) ) )

( source´ rhs´ t e rm

( cd r ( as soc ’ x ( f i r s t sou rce´ r h s ) ) ) ) )

( not ( t e l l ” ask I s B e t t e r S o u r c e ( ˜A, ˜A) ”

source´ lhs´ t e rm source´ rhs´ t e rm ) ) ) )

( sou rce´ r h s n i l )

( t t ) ) ) ) ) )
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• set-order fluent will cause all propositions to be equally entrenched, except as follows:

If pred-sym is contained in the ˚ f luents˚ list in lisp, then any proposition whose predicate

symbol is pred-sym will be strictly less entrenched than every proposition whose predicate

symbol is not contained in the ˚ f luents˚ list. Note that this ordering uses meta-information

outside of the object language of SNePS in order to determine relative entrenchment of

propositions.

; ; ; D e s c r i p t i o n : An o r d e r i n g f u n c t i o n t h a t cau s e s p r o p o s i t i o n a l f l u e n t s t o

; ; ; be l e s s e p i s t e m i c a l l y e n t r e n c h e d than non ´ f l u en t

; ; ; p r o p o s i t i o n s i s a f l u e n t or t h e rh s argument i s no t .

( defun f l u e n t ( l h s r h s )

( or ( i s ´ f l u e n t l h s )

( not ( i s ´ f l u e n t r h s ) ) ) )

; ; ; D e s c r i p t i o n : Re t u rn s t i f f t h e f u n c t i o n symbol f o r n i s a f l u e n t

; ; ; Arguments : n ´ a node

( defun i s ´ f l u e n t ( n )

( l e t ( ( p r ed ( r e l a t i o n ´ p r e d i c a t e n ) ) )

( when ( and pred ( l i s t p pred ) )

( s e t f pred ( get´node´name ( c a r p red ) ) ) )

( member pred ∗ f l u e n t s ∗ ) ) )

3.1.3 br-tie-mode

Syntax: br-tie-mode [auto|manual]

The br-tie-mode command is used to select the algorithm used for automated belief revision.

• Default Setting:

In modes 1 and 2, the default setting for br-tie-mode is manual.

In mode 3, the the default setting for br-tie-mode is auto.
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• br-tie-mode auto will cause SNeBR to arbitrarily break entrenchment ties when multiple

propositions are minimally entrenched within a minimally-inconsistent set. This mode uses

a more time- and space- efficient algorithm to perform belief revision than manual mode. As

such it is preferable whenever the user-supplied ordering is known to be a well preorder (no

arbitrary decisions will be made), or when the user simply does not care how entrenchment

ties are broken.

In the current implementation of SNePS, a proposition whose name (e.g. wff1, wff2, etc.)

has minimal lexicographic rank will be considered to be strictly less entrenched than all other

propositions within a minimally inconsistent set, as long as no other propositions within the

set are strictly less entrenched according to the user-supplied ordering. This has the effect

of making propositions that were conceived of later more entrenched than those that are

otherwise equally entrenched, but conceived of earlier. The order of conception should not

be confused with the order of assertion, which may differ.

• br-tie-mode manual will cause SNeBR to query the user which proposition is strictly mini-

mally entrenched when multiple propositions are minimally entrenched within a minimally-

inconsistent set.

• br-tie-mode without any arguments will inform the user which algorithm is currently being

used for automated belief revision.

3.2 New SNePSUL Commands

3.2.1 br-mode

Syntax: (br-mode t|nil)
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• Default Setting: The default setting for br-mode in SNePSUL is nil

• (br-mode t) in SNePSUL will do the equivalent of entering br-mode auto in SNePSLOG

• (br-mode nil) in SNePSUL will do the equivalent of entering br-mode manual in SNePSLOG

3.2.2 set-order

Syntax: (set-order ăfunction-nameą)

function-name must be the name of a lisp function visible to the sneps package.

In order to use one of the built-in ordering functions, function-name must be prefixed with snep-

slog: (e.g. snepslog:fluent).

• Default Setting: The default setting for set-order in SNePSUL is snepslog:null-order

• (set-order function-name) will do the equivalent of entering set-order function-name in SNeP-

SLOG.

3.2.3 br-tie-mode

Syntax: (br-tie-mode t|nil)

• Default Setting: The default setting for br-tie-mode in SNePSUL is nil

• (br-tie-mode t) in SNePSUL will do the equivalent of entering br-tie-mode auto in SNeP-

SLOG

• (br-tie-mode nil) in SNePSUL will do the equivalent of entering br-tie-mode manual in

SNePSLOG
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3.3 Updates

If the SNeRE believe act is performed on the proposition p, it is assumed that belief
in p is to take priority over any contradictory belief. Therefore, SNeBR behaves as
follows.
1. If andor(0,0){p, ...} is believed as an hypothesis, it is chosen as the culprit. If it is a
derived belief, assisted culprit choosing is done.
2. If andor(i,1){p, q, ...} (i is either 0 or 1) is believed and q is believed as an hypoth-
esis, then q is chosen as the culprit. If q is a derived belief, assisted culprit choosing is
done.

§8.5.1 of the SNePS 2.7.1 manual (Shapiro and The SNePS Implementation Group, 2010, 76),

quoted above, is no longer an accurate description of how SNeBR works. This text will be re-

moved, and replaced with the text below:

If the SNeRE believe act is performed on the proposition p, it is assumed that belief in
p is to take priority over any contradictory belief. Thus if andor(0,0){p, ...} is believed,
it is chosen as the culprit. Therefore, SNeBR behaves as follows:
1. If br-mode is set to manual, then the user will be given a choice to perform assisted
culprit choosing, to attempt automated belief revision, or to continue in an inconsistent
context.
2. If br-mode is set to auto, then automated belief revision will be attempted.

Automated belief revision can proceed in one of two ways:
1. If br-tie-mode is set to manual, then SNeBR will query the user which proposi-
tion is strictly minimally entrenched whenever multiple propositions are minimally
entrenched within a minimally-inconsistent set during the revision process.
2. If br-tie-mode is set to auto, then SNeBR will arbitrarily choose a proposition to
be strictly minimally entrenched whenever multiple propositions are minimally en-
trenched within a minimally-inconsistent set during the revision process.

For more information on how to set the epistemic ordering of propositions, see the
set-order SNePSLOG command.

The portion of §8.5.2 (Shapiro and The SNePS Implementation Group, 2010, 76) that reads as

follows

29



2. The user may choose to continue in an inconsistent context. That situation is not
disastrous, since SNePS uses a paraconsistent logica contradiction does not imply ir-
relevant other propositions.

will be modified to read:

2. The user may choose to continue in an inconsistent context. That situation is not
disastrous, since SNePS uses a paraconsistent logica contradiction does not imply ir-
relevant other propositions. Once the user chooses to continue in an inconsistent con-
text, the SNePSLOG prompt will be prefixed with an asterisk (*) until consistency is
restored.

4 Annotated Demonstrations

4.1 Old Belief Revision Behavior

4.1.1 Manual Revision Example 1

Up until now, belief revision in SNePS was performed manually. A typical interaction might have

gone like this:

;;; Show supports

: expert

;;; Ask the user what to do when belief revision is triggered

: br-mode manual

Automatic belief revision must now be manually selected.

;;; All pirates are uneducated.
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: all(x)(Pirate(x)=>˜Educated(x)).

;;; All criminals are uneducated.

: all(x)(Criminal(x)=>˜Educated(x)).

;;; Blackbeard was a pirate and a criminal.

: and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

: list-asserted-wffs

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

;;; Blackbeard was educated (triggers belief revision)

Educated(Blackbeard).

A contradiction was detected within context default-defaultct.

The contradiction involves the proposition you want to assert:

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

and the previously existing proposition:

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

You have the following options:

1. [a] to attempt to resolve the contradiction automatically

2. [c] to continue anyway, knowing that a contradiction is derivable;

3. [r] to revise the inconsistent part of the context manually

4. [d] to discard this contradictory new assertion from the context

(please type a, c, r or d)
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=><= r

In order to make the context consistent you must delete at least

one hypothesis from each of the following sets of hypotheses:

(wff6 wff5 wff1)

(wff6 wff5 wff2)

The hypotheses listed below are included in more than

one set. Removing one of these will make more than one

set consistent.

(wff6 wff5)

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3) )

3 : wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

(2 supported propositions: (wff7 wff1) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions
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(please type a number OR d, a, r, q or i)

=><= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [q] to quit revising this set.

=><= 3

The consistent set of hypotheses:

1 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(3 supported propositions: (wff5 wff4 wff3) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= q

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(2 supported propositions: (wff8 wff6) )
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2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(5 supported propositions: (wff8 wff7 wff5 wff4 wff3) )

3 : wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

(2 supported propositions: (wff7 wff2) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [q] to quit revising this set.

=><= 2

The consistent set of hypotheses:

1 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

2 : wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

(1 supported proposition: (wff2) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or
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[i] for instructions

(please type a number OR d, a, r, q or i)

=><= q

Do you want to add a new hypothesis? no

;;; The revised knowledge base

list-asserted-wffs

wff9!: nand{Criminal(Blackbeard),Pirate(Blackbeard)} {<ext,{wff2,wff6}>}

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

We see that the user is given total control of how to manipulate the knowledge base to restore

consistency. Notice that in the example above the user was given advice about which propositions

to remove to minimize information loss, but that the advice was ignored. Also notice that there

was no information whatsoever about the relative entrenchment of the culprit hypotheses.

4.1.2 Manual Revision Example 2

Now see the example below:

;;; Show supports

: expert

;;; Ask the user what to do when belief revision is triggered

: br-mode manual

Automatic belief revision must now be manually selected.

;;; All pirates are uneducated.
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: all(x)(Pirate(x)=>˜Educated(x)).

;;; All criminals are uneducated.

: all(x)(Criminal(x)=>˜Educated(x)).

;;; Blackbeard was a pirate and a criminal.

: and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

: list-asserted-wffs

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

;;; Blackbeard was educated (triggers belief revision)

: Educated(Blackbeard).

A contradiction was detected within context default-defaultct.

The contradiction involves the proposition you want to assert:

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

and the previously existing proposition:

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

You have the following options:

1. [a] to attempt to resolve the contradiction automatically

2. [c] to continue anyway, knowing that a contradiction is derivable;

3. [r] to revise the inconsistent part of the context manually

4. [d] to discard this contradictory new assertion from the context

(please type a, c, r or d)
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=><= r

In order to make the context consistent you must delete at least

one hypothesis from each of the following sets of hypotheses:

(wff6 wff5 wff1)

(wff6 wff5 wff2)

The hypotheses listed below are included in more than

one set. Removing one of these will make more than one

set consistent.

(wff6 wff5)

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3) )

3 : wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

(2 supported propositions: (wff7 wff1) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions
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(please type a number OR d, a, r, q or i)

=><= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [q] to quit revising this set.

=><= 3

The consistent set of hypotheses:

1 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(3 supported propositions: (wff5 wff4 wff3) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= q

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(2 supported propositions: (wff8 wff6) )
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2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(5 supported propositions: (wff8 wff7 wff5 wff4 wff3) )

3 : wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

(2 supported propositions: (wff7 wff2) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [q] to quit revising this set.

=><= 1

The consistent set of hypotheses:

1 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3) )

2 : wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

(2 supported propositions: (wff7 wff2) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or
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[i] for instructions

(please type a number OR d, a, r, q or i)

=><= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [q] to quit revising this set.

=><= 2

The consistent set of hypotheses:

1 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(3 supported propositions: (wff5 wff4 wff3) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= q

Do you want to add a new hypothesis? no

;;; The revised knowledge base

list-asserted-wffs

wff10!: nand{Educated(Blackbeard),

all(x)(Criminal(x) => (˜Educated(x)))} {<ext,{wff5}>}

wff5!: and{Pirate(Blackbeard),Criminal(Blackbeard)} {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}
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This example is even more problematic. The user removed far more than was necessary in order

to resolve the contradiction. Further on that note, the user chose to remove wff6 from the second

no-good after removing a proposition from the first no-good. Had the no-goods been presented in

the opposite order, and wff6 was removed initially, then it would not have been necessary to even

look at the other no-good; both would have been made consistent by the removal of wff6.

4.2 New Belief Revision Behavior

We shall see that the problems with manual belief revision discussed in §4.1 are remedied by the

new procedures.

4.2.1 Algorithm 2 Example 1

The example below corresponds to that in §4.1.1, but now automatic belief revision is performed,

using Algorithm 2.

;;; Show supports

: expert

;;; Use algorithm 2

: br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;;; Use an entrenchment ordering where every proposition is

;;; minimally-entrenched

: set-order null-order

;;; All pirates are uneducated.
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: all(x)(Pirate(x)=>˜Educated(x)).

;;; All criminals are uneducated.

: all(x)(Criminal(x)=>˜Educated(x)).

;;; Blackbeard was a pirate and a criminal.

: and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

: list-asserted-wffs

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

;;; Blackbeard was educated (triggers belief revision)

Educated(Blackbeard).

A contradiction was detected within context default-defaultct.

The contradiction involves the proposition you want to assert:

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

and the previously existing proposition:

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

You have the following options:

1. [a] to attempt to resolve the contradiction automatically

2. [c] to continue anyway, knowing that a contradiction is derivable;

3. [r] to revise the inconsistent part of the context manually

4. [d] to discard this contradictory new assertion from the context

(please type a, c, r or d)
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=><= a

Please choose from the following hypotheses the one that you would

least like to keep:

1 : wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

(2 supported propositions: (wff7 wff2) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3) )

3 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

=><= 1

Please choose from the following hypotheses the one that you would

least like to keep:

1 : wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

(2 supported propositions: (wff7 wff1) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3) )

3 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

=><= 1

;;; The revised knowledge base

list-asserted-wffs

wff9!: ˜(all(x)(Criminal(x) => (˜Educated(x)))) {<ext,{wff5,wff6}>}
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wff8!: ˜(all(x)(Pirate(x) => (˜Educated(x)))) {<ext,{wff5,wff6}>}

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

Notice that the user was merely asked which proposition was minimally-entrenched within each

no-good, not to actually remove propositions. As a result, SNeBR was able to correctly identify

wff1 and wff2 as the culprits, remove them, and assert their negations. The user did not get an

opportunity to unnecessarily remove more propositions. Also note that wff6, the last proposition

to be asserted, was an option. Therefore this is an example of nonprioritized belief revision.

4.2.2 Algorithm 2 Example 2

The following example shows a vast improvement in behavior over the example in §4.1.2, using

Algorithm 2.

;;; Show supports

: expert

;;; Always attempt automatic belief revision

: br-mode auto

Automatic belief revision will now be automatically selected.

;;; Use algorithm 2

: br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;;; Use an entrenchment ordering where every proposition is
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;;; minimally-entrenched

: set-order null-order

;;; All pirates are uneducated.

: all(x)(Pirate(x)=>˜Educated(x)).

;;; All criminals are uneducated.

: all(x)(Criminal(x)=>˜Educated(x)).

;;; Blackbeard was a pirate and a criminal.

: andor{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base thus far

: list-asserted-wffs

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

;;; Blackbeard was educated (triggers belief revision)

: Educated(Blackbeard).

Please choose from the following hypotheses the one that you would

least like to keep:

1 : wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

(2 supported propositions: (wff7 wff2) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3) )
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3 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

=><= 1

Please choose from the following hypotheses the one that you would

least like to keep:

1 : wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

(2 supported propositions: (wff7 wff1) )

2 : wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

(4 supported propositions: (wff7 wff5 wff4 wff3) )

3 : wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

(1 supported proposition: (wff6) )

=><= 3

;;; The revised knowledge base

: list-asserted-wffs

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

Again the user was only asked to provide enough information necessary to resolve the contra-

diction, and was not given complete power to alter the knowledge base. More importantly, SNeBR

was able to recognize after the second query that it was not necessary to remove wff2, the proposi-

tion selected as minimal in the first query. This is because wff6, the proposition selected as minimal
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in the second query, was present in both no-goods. Also note that wff6, the last proposition to be

asserted, was contracted. This is a therefore a prime example of nonprioritized belief revision in

action.

4.2.3 Algorithm 1 Example

When algorithm 1 is used, the user is not consulted when there is a question about which propo-

sition is uniquely minimally-entrenched in a no-good. Algorithm 1 attempts to figure this out

using the supplied ordering (none is provided here), and when a question remains it arbitrarily (but

deterministically) chooses a proposition to be minimally-entrenched. In the current implementa-

tion, SNePS will use the lexicographic rank of the name of the proposition (wff1, wff2, etc.) to

determine its relative epistemic ordering. Lexicographic comparison yields a well preorder.

;;; Show supports

: expert

;;; Always use automatic belief revision

: br-mode auto

Automatic belief revision will now be automatically selected.

;;; Use algorithm 1

: br-tie-mode auto

Entrenchment ties will now be automatically broken

;;; Use an entrenchment ordering where every proposition is

;;; minimally-entrenched

: set-order null-order

;;; All pirates are uneducated.

: all(x)(Pirate(x)=>˜Educated(x)).
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;;; All criminals are uneducated.

: all(x)(Criminal(x)=>˜Educated(x)).

;;; Blackbeard was a pirate and a criminal.

: and{Pirate(Blackbeard),Criminal(Blackbeard)}!

;;; The knowledge base as thus far

: list-asserted-wffs

wff7!: ˜Educated(Blackbeard) {<der,{wff2,wff5}>,<der,{wff1,wff5}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

wff2!: all(x)(Criminal(x) => (˜Educated(x))) {<hyp,{wff2}>}

wff1!: all(x)(Pirate(x) => (˜Educated(x))) {<hyp,{wff1}>}

;;; Blackbeard was educated (triggers belief revision)

: Educated(Blackbeard).

;;; The revised knowledge base

: list-asserted-wffs

wff9!: ˜(all(x)(Criminal(x) => (˜Educated(x)))) {<ext,{wff5,wff6}>}

wff8!: ˜(all(x)(Pirate(x) => (˜Educated(x)))) {<ext,{wff5,wff6}>}

wff6!: Educated(Blackbeard) {<hyp,{wff6}>}

wff5!: Pirate(Blackbeard) and Criminal(Blackbeard) {<hyp,{wff5}>}

wff4!: Criminal(Blackbeard) {<der,{wff5}>}

wff3!: Pirate(Blackbeard) {<der,{wff5}>}

We see that wff1 and wff2, being of minimal lexicographic rank, were also least epistemically

entrenched. As a result, they were chosen as culprits to restore consistency to the no-goods in

which they appeared. Though it is not necessarily apparent, nonprioritized belief revision was

performed here as well.
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4.2.4 Prioritized Belief Revision Example

In the following example, prioritized belief revision is demonstrated. Algorithm 2 is used.

;;; Show supports

: expert

;;; Use mode 3 of SNePSLOG (see manual)

: set-mode-3

;;; Always attempt automatic belief revision

: br-mode auto

Automatic belief revision will now be automatically selected.

;;; Use algorithm 2

: br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;;; Initialize believe action (see manual)

: ˆ(attach-primaction believe believe)

;;; Use an order in which every proposition is minimally-entrenched

: set-order null-order

;;; [Walk(prep, obj)] = It walks [prep] a [obj].

: define-frame Walk(verb prep obj)

;;; [Talk(prep, obj]] = It talks [prep] a [obj].

: define-frame Talk(verb prep obj)

;;; We will use x to range over the above frames

: define-frame x(verb prep obj)
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;;; [Isa(obj)] = It is a [obj].

: define-frame Isa(verb obj)

;;; If it [x]s like a [y], it is a [y].

: all(x,y)(x(like,y)=>Isa(y)).

;;; It walks like a duck.

: Walk(like, duck)!

;;; It talks like a duck.

: Talk(like, duck)!

;;; The knowledge base thus far

: list-asserted-wffs

wff4!: Talk(like,duck) {<hyp,{wff4}>}

wff3!: Isa(duck) {<der,{wff1,wff2}>,<der,{wff1,wff4}>}

wff2!: Walk(like,duck) {<hyp,{wff2}>}

wff1!: all(y,x)(x(like,y) => Isa(y)) {<hyp,{wff1}>}

;;; It’s not a duck (triggers belief revision).

: perform believe(˜Isa(duck))

Please choose from the following hypotheses the one that you would

least like to keep:

1 : wff1!: all(y,x)(x(like,y) => Isa(y)) {<hyp,{wff1}>}

(2 supported propositions: (wff3 wff1) )

2 : wff2!: Walk(like,duck) {<hyp,{wff2}>}

(2 supported propositions: (wff3 wff2) )

=><= 2
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Please choose from the following hypotheses the one that you would

least like to keep:

1 : wff1!: all(y,x)(x(like,y) => Isa(y)) {<hyp,{wff1}>}

(2 supported propositions: (wff3 wff1) )

2 : wff4!: Talk(like,duck) {<hyp,{wff4}>}

(2 supported propositions: (wff4 wff3) )

=><= 2

;;; The revised knowledge base

: list-asserted-wffs

wff8!: ˜Walk(like,duck) {<ext,{wff1,wff5}>}

wff7!: ˜Talk(like,duck) {<ext,{wff1,wff5}>}

wff5!: ˜Isa(duck) {<hyp,{wff5}>}

wff1!: all(y,x)(x(like,y) => Isa(y)) {<hyp,{wff1}>}

Note that the final assertion was made by performing a believe act. This invoked prioritized

belief revision, causing the statement that was just believed to be strictly more entrenched than

every other proposition. This is why wff5, the assertion that it’s not a duck, did not even appear

as an option during queries to the user; SNeBR knew it could not be minimally-entrenched in any

no-good. As a result, it was guaranteed to remain asserted at the conclusion of the revision process.

4.3 Capturing Old Results

A significant feature of my work is that it generalizes previous published work on belief revision in

SNePS (Cravo and Martins, 1993; Johnson and Shapiro, 1999; Shapiro and Johnson, 2000; Shapiro
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and Kandefer, 2005). The following demonstrations showcase the new features I have introduced

to SNeBR, and capture the essence of belief revision as seen in the papers mentioned above by

using well-specified epistemic ordering functions. The demos have been edited for formatting and

clarity. The commands br-tie-mode auto and br-tie-mode manual indicate that Algorithm 1 and

Algorithm 2 should be used respectively. A wff is a well-formed formula. A wff followed by

a period (.) indicates that the wff should be asserted, i.e. added to the knowledge base. A wff

followed by an exclamation point (!) indicates that the wff should be asserted, and that forward

inference should be performed on it.

4.3.1 SNePSwD

I present a demonstration on how the automated belief revision behavior of (Cravo and Martins,

1993) can easily be duplicated by my new system. (Cravo and Martins, 1993) uses a predeter-

mined manual ordering of propositions to do belief revision. The ordering was constructed using a

separate command that recorded metainformation about existing propositions outside of the object

language of SNePS. That behavior is replicated by the ordering function explicit.

The following demo is an adaptation of the automated belief revision demo from (Cravo and

Martins, 1993). The descriptions are by and large taken from that article. Formulae stating en-

trenchment orderings have been omitted from the output for clarity.

;;; Show supports

: expert

;;; Always use automatic belief revision

: br-mode auto

Automatic belief revision will now be automatically selected.
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;;; Use algorithm 2

: br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;;; Use an entrenchment ordering where relative entrenchment is manually

;;; specified

: set-order explicit

;;; There are four kinds of meetings: official meetings, classes, work

;;; meetings, and social meetings. Any meeting will be of exactly one of

;;; these types.

: all(m)(meeting(m) => xor{official(m),class(m),work(m),social(m)}).

;;; Philip, Peter, and John will attend work meetings.

: all(m)(work(m) => and{attends(m,Philip),attends(m,Peter),attends(m,John)}).

;;; Any meeting will be either in the morning or the afternoon, but not both.

: all(m)(meeting(m) => xor{in-morning(m), in-afternoon(m)}).

;;; If the same person attends two different meetings, then one of the

;;; meetings has to be in the morning, and the other in the afternoon.

: all(m1,m2,p)({attends(m1,p),attends(m2,p)} &=>

(in-morning(m1) <=> in-afternoon(m2))).

;;; Peter prefers meetings in the morning.

: all(m)(attends(m,Peter) => in-morning(m)).

;;; John prefers meetings in the afternoon.

: all(m)(attends(m,John) => in-afternoon(m)).

;;; Philip prefers meetings in the morning.

: all(m)(attends(m,Philip) => in-morning(m)).
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;;; w is a meeting.

: meeting(w).

;;; w is a work meeting.

: work(w).

;;; Philip’s preference is less important than John’s.

: IsLessEntrenched(wff7,wff6).

;;; John’s preference is less important than Peter’s.

: IsLessEntrenched(wff6,wff5).

;;; The preferences of people are less important than the remaining

;;; information in the problem.

: IsLessEntrenched(wff5,wff1).

: IsLessEntrenched(wff5,wff2).

: IsLessEntrenched(wff5,wff3).

: IsLessEntrenched(wff5,wff4).

: IsLessEntrenched(wff5,wff8).

: IsLessEntrenched(wff5,wff9).

;;; IsLessEntrenched is a transitive relation

: all(x,y,z)({IsLessEntrenched(x,y),IsLessEntrenched(y,z)} &=>

IsLessEntrenched(x,z)).

;;; The knowledge base thus far

list-asserted-wffs

wff18!: all(z,y,x)({IsLessEntrenched(y,z),IsLessEntrenched(x,y)} &=>

{IsLessEntrenched(x,z)}) {<hyp,{wff18}>}

wff9!: work(w) {<hyp,{wff9}>}

wff8!: meeting(w) {<hyp,{wff8}>}

wff7!: all(m)(attends(m,Philip) => in-morning(m)) {<hyp,{wff7}>}

wff6!: all(m)(attends(m,John) => in-afternoon(m)) {<hyp,{wff6}>}
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wff5!: all(m)(attends(m,Peter) => in-morning(m)) {<hyp,{wff5}>}

wff4!: all(p,m2,m1)({attends(m2,p),attends(m1,p)} &=>

{in-afternoon(m2) <=> in-morning(m1)}) {<hyp,{wff4}>}

wff3!: all(m)(meeting(m) => (xor{in-afternoon(m),in-morning(m)}))

{<hyp,{wff3}>}

wff2!: all(m)(work(m) => (attends(m,John) and attends(m,Peter) and

attends(m,Philip))) {<hyp,{wff2}>}

wff1!: all(m)(meeting(m) => xor{social(m),work(m),class(m),official(m)}))

{<hyp,{wff1}>}

;;; When will the meeting w take place?

?when(w)?

;;; The revised knowledge base

list-asserted-wffs

wff93!: ˜(all(m)(attends(m,John) => in-afternoon(m)))

{<ext,{wff2,wff3,wff5,wff8,wff9}>}

wff38!: attends(w) {<der,{wff2,wff9}>}

wff37!: attends(w,John) and attends(w,Peter) and attends(w,Philip)}

{<der,{wff2,wff9}>}

wff36!: xor{social(w),class(w),official(w),work(w)} {<der,{wff1,wff8}>}

wff35!: xor{in-afternoon(w),in-morning(w)} {<der,{wff3,wff8}>}

wff31!: in-morning(w) {<der,{wff2,wff5,wff9}>,<der,{wff2,wff7,wff9}>}

wff29!: attends(w,John) {<der,{wff2,wff9}>}

wff27!: attends(w,Peter) {<der,{wff2,wff9}>}

wff25!: attends(w,Philip) {<der,{wff2,wff9}>}

wff24!: ˜social(w) {<der,{wff1,wff8,wff9}>}

wff22!: ˜class(w) {<der,{wff1,wff8,wff9}>}

wff20!: ˜official(w) {<der,{wff1,wff8,wff9}>}

wff18!: all(z,y,x)({IsLessEntrenched(y,z),IsLessEntrenched(x,y)} &=>

{IsLessEntrenched(x,z)}) {<hyp,{wff18}>}

wff9!: work(w) {<hyp,{wff9}>}

wff8!: meeting(w) {<hyp,{wff8}>}
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wff5!: all(m)(attends(m,Peter) => in-morning(m)) {<hyp,{wff5}>}

wff4!: all(p,m2,m1)({attends(m2,p),attends(m1,p)} &=>

{in-afternoon(m2) <=> in-morning(m1)}) {<hyp,{wff4}>}

wff3!: all(m)(meeting(m) =>

xor{in-afternoon(m),in-morning(m)})) {<hyp,{wff3}>}

wff2!: all(m)(work(m) => (attends(m,John) and attends(m,Peter) and

attends(m,Philip)}) {<hyp,{wff2}>}

wff1!: all(m)(meeting(m) => (xor{social(m),work(m),class(m), official(m)}))

{<hyp,{wff1}>}

As in (Cravo and Martins, 1993), we see that the meeting takes place in the morning, according to

Peter’s preference. Here, unlike in (Cravo and Martins, 1993), the information about entrenchment

orderings is contained in propositions in the object language of SNePS, namely propositions of the

form IsLessEntrenched(...,...). This was done to take advantage of SNePS’s reasoning capabilities

when determining orderings.

4.3.2 Says Who?

I present a demonstration on how the source-credibility-based revision behavior from (Johnson and

Shapiro, 1999) is generalized by my changes to SNeBR. In the following example, the command

set-order source sets the epistemic ordering used by SNeBR to be a lisp function that compares two

propositions based on the relative credibility of their sources. Unsourced propositions are assumed

to have maximal credibility. The sources, as well as their relative credibility, are represented as

meta-knowledge in the SNePS knowledge base. This was also done in (Johnson and Shapiro,

1999) and (Shapiro and Johnson, 2000). As with explicit, the source function makes SNePSLOG

queries to determine sources of propositions and credibility of sources, using the askwh and ask

commands (Shapiro and The SNePS Implementation Group, 2010) seen in quotes. This allows it

to perform inference in making these determinations.
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Here we see that the nerd and the sexist make the generalizations that all jocks are not smart and

all females are not smart respectively, while the holy book and the professor state that all old people

are smart, and all grad students are smart respectively. Since Fran is an old female jock graduate

student, there are two sources that would claim she is smart, and two that would claim she is not.

However, the sources claiming she is smart are more credible than those claiming otherwise. So

the generalizations about jocks and females are discarded. In fact, their negations are asserted,

since belief revision in SNePS provides a mechanism for negation introduction.

;;; Show supports

: expert

: br-mode auto

Automatic belief revision will now be automatically selected.

: br-tie-mode manual

The user will be consulted when an entrenchment tie occurs.

;;; Use source credibilities as epistemic ordering criteria.

set-order source

;;; The holy book is a better source than the professor.

IsBetterSource(holybook, prof).

;;; The professor is a better source than the nerd.

IsBetterSource(prof, nerd).

;;; The nerd is a better source than the sexist.

IsBetterSource(nerd, sexist).

;;; Fran is a better source than the nerd.

IsBetterSource(fran, nerd).
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;;; Better-Source is a transitive relation

all(x,y,z)({IsBetterSource(x,y), IsBetterSource(y,z)} &=>

IsBetterSource(x,z))!

;;; All jocks are not smart.

all(x)(jock(x)=>˜smart(x)). ;wff10

;;; The source of the statement ’All jocks are not smart’ is the

;;; nerd.

HasSource(wff10, nerd).

;;; All females are not smart.

all(x)(female(x)=>˜smart(x)). ;wff12

;;; The source of the statement ’All females are not smart’ is the

;;; sexist.

HasSource(wff12, sexist).

;;; All graduate students are smart.

all(x)(grad(x)=>smart(x)). ;wff14

;;; The source of the statement ’All graduate students are smart’

;;; is the professor.

HasSource(wff14, prof).

;;; All old people are smart.

all(x)(old(x)=>smart(x)). ;wff16

;;; The source of the statement ’All old people are smart’ is the

;;; holy book.

HasSource(wff16, holybook).
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;;; The source of the statement ’Fran is an old female jock who is

;;; a graduate student’ is fran.

HasSource(and{jock(fran),grad(fran),female(fran),old(fran)},fran).

;;; The KB thus far

list-asserted-wffs

wff23!: HasSource(old(fran) and female(fran) and grad(fran) and

jock(fran),fran) {<hyp,{wff23}>}

wff17!: HasSource(all(x)(old(x) => smart(x)),holybook) {<hyp,{wff17}>}

wff16!: all(x)(old(x) => smart(x)) {<hyp,{wff16}>}

wff15!: HasSource(all(x)(grad(x) => smart(x)),prof) {<hyp,{wff15}>}

wff14!: all(x)(grad(x) => smart(x)) {<hyp,{wff14}>}

wff13!: HasSource(all(x)(female(x) => (˜smart(x))),sexist)

{<hyp,{wff13}>}

wff12!: all(x)(female(x) => (˜smart(x))) {<hyp,{wff12}>}

wff11!: HasSource(all(x)(jock(x) => (˜smart(x))),nerd)

{<hyp,{wff11}>}

wff10!: all(x)(jock(x) => (˜smart(x))) {<hyp,{wff10}>}

wff9!: IsBetterSource(fran,sexist) {<der,{wff3,wff4,wff5}>}

wff8!: IsBetterSource(prof,sexist) {<der,{wff2,wff3,wff5}>}

wff7!: IsBetterSource(holybook,sexist) {<der,{wff1,wff2,wff3,wff5}>}

wff6!: IsBetterSource(holybook,nerd) {<der,{wff1,wff2,wff5}>}

wff5!: all(z,y,x)({IsBetterSource(y,z),IsBetterSource(x,y)} &=>

{IsBetterSource(x,z)}) {<hyp,{wff5}>}

wff4!: IsBetterSource(fran,nerd) {<hyp,{wff4}>}

wff3!: IsBetterSource(nerd,sexist) {<hyp,{wff3}>}

wff2!: IsBetterSource(prof,nerd) {<hyp,{wff2}>}

wff1!: IsBetterSource(holybook,prof) {<hyp,{wff1}>}

;;; Fran is an old female jock who is a graduate student (asserted

;;; with forward inference).

and{jock(fran),grad(fran),female(fran),old(fran)}!

wff50!: ˜(all(x)(jock(x) => (˜smart(x)))) {<ext,{wff16,wff22}>,
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<ext,{wff14,wff22}>}

wff24!: smart(fran) {<der,{wff16,wff22}>,<der,{wff14,wff22}>}

;;; The resulting knowledge base

list-asserted-wffs

wff50!: ˜(all(x)(jock(x) => (˜smart(x)))) {<ext,{wff16,wff22}>,

<ext,{wff14,wff22}>}

wff37!: ˜(all(x)(female(x) => (˜smart(x)))) {<ext,{wff16,wff22}>}

wff24!: smart(fran) {<der,{wff16,wff22}>,<der,{wff14,wff22}>}

wff23!: HasSource(old(fran) and female(fran) and grad(fran) and

jock(fran),fran) {<hyp,{wff23}>}

wff22!: old(fran) and female(fran) and grad(fran) and jock(fran)

{<hyp,{wff22}>}

wff21!: old(fran) {<der,{wff22}>}

wff20!: female(fran) {<der,{wff22}>}

wff19!: grad(fran) {<der,{wff22}>}

wff18!: jock(fran) {<der,{wff22}>}

wff17!: HasSource(all(x)(old(x) => smart(x)),holybook) {<hyp,{wff17}>}

wff16!: all(x)(old(x) => smart(x)) {<hyp,{wff16}>}

wff15!: HasSource(all(x)(grad(x) => smart(x)),prof) {<hyp,{wff15}>}

wff14!: all(x)(grad(x) => smart(x)) {<hyp,{wff14}>}

wff13!: HasSource(all(x)(female(x) => (˜smart(x))),sexist)

{<hyp,{wff13}>}

wff11!: HasSource(all(x)(jock(x) => (˜smart(x))),nerd) {<hyp,{wff11}>}

wff9!: IsBetterSource(fran,sexist) {<der,{wff3,wff4,wff5}>}

wff8!: IsBetterSource(prof,sexist) {<der,{wff2,wff3,wff5}>}

wff7!: IsBetterSource(holybook,sexist) {<der,{wff1,wff2,wff3,wff5}>}

wff6!: IsBetterSource(holybook,nerd) {<der,{wff1,wff2,wff5}>}

wff5!: all(z,y,x)({IsBetterSource(y,z),IsBetterSource(x,y)} &=>

{IsBetterSource(x,z)}) {<hyp,{wff5}>}

wff4!: IsBetterSource(fran,nerd) {<hyp,{wff4}>}

wff3!: IsBetterSource(nerd,sexist) {<hyp,{wff3}>}

wff2!: IsBetterSource(prof,nerd) {<hyp,{wff2}>}
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wff1!: IsBetterSource(holybook,prof) {<hyp,{wff1}>}

We see that the statements that all jocks are not smart and that all females are not smart are no

longer asserted at the end. These statements supported the statement that Fran is not smart. The

statements that all old people are smart and that all grad students are smart supported the statement

that Fran is smart. The contradiction was resolved by contracting “Fran is not smart,” since the

sources for its supports were less credible than the sources for “Fran is smart.”

4.3.3 Wumpus World

I present a demonstration on how the state-constraint-based revision behavior from (Shapiro and

Kandefer, 2005) is generalized by my changes to SNeBR. The command set-order fluent says

that propositional fluents are strictly less entrenched than non-propositional fluents. The fluent

order was created specifically to replace the original belief revision behavior of the SNeRE believe

act. In the version of SNeBR used in (Shapiro and Kandefer, 2005), propositions of the form

andorpă 0|1 ą,1qpp1, p2, . . .q were assumed to be state contraints, while the inner propositions,

p1, p2, etc., were assumed to be fluents. The fluents were less entrenched than the state constraints.

We see that the ordering was heavily syntax-dependent.

In my new version, the determination of which propositions are fluents is made by checking for

membership of the predicate symbol of an atomic proposition in a list called *fluents*, which

is defined by the user to include the predicate symbols of all propositional fluents. So the entrench-

ment ordering defined here uses metaknowledge about the knowledge base that is not represented

in the SNePS knowledge base. The command br-tie-mode manual indicates that Algorithm 2

should be used. Note that the xor connective (Shapiro, 2010) used below replaces instances of an-

dor(1,1)(. . . ) from (Shapiro and Kandefer, 2005). The command perform believe(wff) is

identical to the command wff!, except that the former causes wff to be strictly more entrenched
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than every other proposition during belief revision. That is, wff is guaranteed to be safe (unless

wff is itself a contradiction). So we would be using prioritized belief revision.

;;; Show supports

: expert

;;; Always use automatic belief revision

: br-mode auto

Automatic belief revision will now be automatically selected.

;;; Use algorithm 2

: br-tie-mode manual

Entrenchment ties will now be automatically broken

The user will be consulted when an entrenchment tie occurs.

2;;; [Facing(x)] = The agent is facing direction [x].

define-frame Facing(nil onfloor)

;;; Use an entrenchment ordering that favors non-fluents over

;;; fluents

set-order fluent

;;; Establish what kinds of propositions are fluents, specifically:

;;; - That the agent is facing some direction is a fact that may

;;; change over time.

ˆ(setf *fluents* ’(Facing))

;;; The agent is Facing west

Facing(west).

;;; At any given time, the agent is facing either north, south,

;;; east, or west (asserted with forward inference).

xor{Facing(north),Facing(south),Facing(east), Facing(west)}!
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;;; The knowledge base as it stands

list-asserted-wffs

wff8!: ˜Facing(north) {<der,{wff1,wff5}>}

wff7!: ˜Facing(south) {<der,{wff1,wff5}>}

wff6!: ˜Facing(east) {<der,{wff1,wff5}>}

wff5!: xor{Facing(east),Facing(south),Facing(north), Facing(west)}

{<hyp,{wff5}>}

wff1!: Facing(west) {<hyp,{wff1}>}

;;; Tell the agent to believe it is now facing east.

perform believe(Facing(east))

;;; The resulting knowledge base

list-asserted-wffs

wff10!: ˜Facing(west) {<ext,{wff4,wff5}>}

wff8!: ˜Facing(north) {<der,{wff1,wff5}>,<der,{wff4,wff5}>}

wff7!: ˜Facing(south) {<der,{wff1,wff5}>,<der,{wff4,wff5}>}

wff5!: xor{Facing(east),Facing(south),Facing(north),Facing(west)}

{<hyp,{wff5}>}

wff4!: Facing(east) {<hyp,{wff4}>}

There are three propositions in the no-good when revision is performed: Facing(west),

Facing,east, and xor(1,1){Facing(...}. Facing(east) is not considered for re-

moval since it was prioritized by the believe action. The state-constraint xor(1,1){Facing...}
remains in the knowledge base at the end, because it is more entrenched than Facing(west), a

propositional fluent, which is ultimately removed.
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5 Analysis of Algorithm 1

5.1 Proofs of Satisfaction of Requirements by Algorithm 1

I show that Algorithm 1 satisfies the requirements established in section 2:

5.1.1 EESNePS1 (Sufficiency)

During each iteration of AddLoop an element τ is added to T from some σ P Σ. Then each set

σ P Σ containing τ is removed from Σ. The process is repeated until Σ is empty. Therefore each

removed set σ in Σ contains some τ in T (Note that each σ will be removed from Σ by the end of

the process). So @σ rσ P Σ Ñ Dτrτ P pT X σqs. Q.E.D.

5.1.2 EESNePS2 (Minimal Entrenchment)

From lines 8-9, we see that T is comprised solely of first elements of sets in Σ. And from lines

2-4, we see that those first elements are all minimal under �ď relative to the other elements in each

set. Since @e1,e2,ď re1�ďe2 Ñ e1 ď e2s, those first elements are minimal under ď as well. That

is, @τrτ P T Ñ Dσ rσ P Σ ^ τ P σ ^ @wrw P σ Ñ τ ď wsss. Q.E.D.

5.1.3 EESNePS3 (Information Preservation)

From the previous proof we see that during each iteration of AddLoop, we are guaranteed that

at least one set σ containing the current culprit is removed from Σ. And we know that the cur-

rent culprit for that iteration is minimally-entrenched in σ . We also know from pEESNePS2q that
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each subsequently chosen culprit will be minimally entrenched in some set. From lines 2-5 and

AddLoop, we know that subsequently chosen culprits will be less entrenched than the current cul-

prit. From lines 2-5, we also see that all the other elements in σ have higher entrenchment than the

current culprit. Therefore subsequent culprits cannot be elements in σ . So, they cannot be used to

eliminate σ . Obviously, previous culprits were also not members of σ . Therefore, if we exclude

the current culprit from T , then there will be a set in Σ that does not contain any element of T . That

is,

@T 1rT 1 Ă T Ñ Dσ rσ P Σ ^ �Dτrτ P pT 1 X σqsss
6 @T 1rT 1 Ă T Ñ Dσ r��pσ P Σ ^ �Dτrτ P pT 1 X σqqsss
6 @T 1rT 1 Ă T Ñ Dσ r�p�pσ P Σq _ Dτrτ P pT 1 X σqqsss
6 @T 1rT 1 Ă T Ñ Dσ r�pσ P Σ Ñ Dτrτ P pT 1 X σqqss
6 @T 1rT 1 Ă T Ñ �@σ rσ P Σ Ñ Dτrτ P pT 1 X σqsss Q.E.D.

5.1.4 Decidability

We see that DeleteLoop is executed once for each element in Σ, which is a finite set. So it always

terminates. We see that AddLoop terminates when Σ is empty. And from lines 8 and 13 we see

that at least one set is removed from Σ during each iteration of AddLoop. So AddLoop always

terminates. Lines 2-4 involve finding a minimum element, which is a decision procedure. Line 5

performs sorting, which is also a decision procedure. Since every portion of Algorithm 1 always

terminates, it is a decision procedure. Q.E.D.

5.1.5 Supplementary Requirement

Algorithm 1 is a fully-automated procedure that makes no queries of the user. Q.E.D.
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5.2 Complexity of Algorithm 1

5.2.1 Space Complexity

Algorithm 1 can be run completely in-place, i.e. it can use only the memory allocated to the input,

with the exception of the production of the set of culprits T . Let us assume that the space needed

to store a single proposition is Op1q memory units. Since we only need to remove one proposition

from each no-good to restore consistency, algorithm 1 uses Op|Σ|q memory units.

5.2.2 Time Complexity

The analysis for time complexity is based on a sequential-procesing system. Let us assume that

we implement lists as array structures. Let us assume that we may determine the size of an array

in Op1q time. Let us also assume that performing a comparison using �ď takes Op1q time. Then

in lines 2-4, for each array σ P Σ we find the minimum element σ and perform a swap on two

elements at most once for each element in σ . If we let smax be the cardinality of the largest σ in Σ,

then lines 2-4 will take Op|Σ| ¨ smaxq time. In line 5, we sort the no-goods’ positions in Σ using their

first elements as keys. This takes Op|Σ| ¨ logp|Σ|qq time. Lines 7-16 iterate through the elements

of Σ at most once for each element in Σ. During each such iteration, a search is performed for an

element within a no-good. Also, during each iteration through all the no-goods, at least one σ is

removed, though this does not help asymptotically. Since the no-goods are not sorted, the search

takes linear time in smax. So lines 7-16 take Op|Σ|2 ¨ smaxq time. Therefore, the running time is

Op|Σ|2 ¨ smaxq time.

Note that the situation changes slightly if we sort the no-goods instead of just placing the

minimally-entrenched proposition at the front, as in lines 2-4. In this case, each search through

a no-good will take Oplogpsmaxqq time, yielding a new total time of Op|Σ| ¨ smax ¨ logpsmaxq ` |Σ|2 ¨
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logpsmaxqq.

6 Analysis of Algorithm 2

6.1 Proofs of Satisfaction of Requirements by Algorithm 2

I show that Algorithm 2 satisfies the requirements established in section 2:

6.1.1 EESNePS1 (Sufficiency)

Since every set of propositions must contain at least one proposition that is minimally entrenched,

at least one proposition is added to the list in each iteration of ListLoop. In the worst case, assume

that for each iteration of MainLoop, only either RemoveLoop or ModifyLoop do any work. We

know that at least this much work is done for the following reasons: if ModifyLoop cannot operate

on any no-good during an iteration of MainLoop, then all no-goods have only one minimally-

entrenched proposition. So either RemoveLoop’s condition at line 10 would hold, or:

1. A no-good has multiple minimally-entrenched propositions, causing ModifyLoop to do work.

This contradicts our assumption that ModifyLoop could not do any work during this iteration of

MainLoop, so we set this possibility aside.

2. Some proposition p1 is a non-minimally-entrenched proposition in some no-good σn, and a

minimally-entrenched one in another no-good σm. In this case, either p1 is removed during the

iteration of RemoveLoop where σm is considered, or there is another proposition p2 in σm that

is not minimally-entrenched in σm, but is in σm1 . This chaining must eventually terminate at a

no-good σmfinal since ď is transitive and Σ is finite. And the final proposition in the chain p f inal

must be the sole minimally-entrenched proposition in σ f inal , since otherwise ModifyLoop would
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have been able to do work for this iteration of MainLoop, which is a contradiction. ModifyLoop

can only do work once for each no-good, so eventually its work is finished. If ModifyLoop has no

more work left to do, then RemoveLoop must do work at least once for each iteration of MainLoop.

And in doing so, it will create a list of culprits of which each no-good contains at least one. Q.E.D.

6.1.2 EESNePS2 (Minimal Entrenchment)

Since propositions are only added to T when the condition in line 10 is satisfied, it is guaranteed

that every proposition in T is a minimally-entrenched proposition in some no-good σ .

6.1.3 EESNePS3 (Information Preservation)

From line 10, we see that when a proposition p is removed, none of the other propositions in its no-

good are minimally-entrenched in any other no-good. That means none of the other propositions

could be a candidate for removal. So, the only way to remove the no-good in which p appears is

by removing p. So if p were not removed, then pEESNePS1q would not be satisfied. Q.E.D.

6.1.4 Decidability

ListLoop creates lists of minimal elements of lists. This is a decision procedure since the com-

parator is a total preorder. From the proof of pEESNePS1q above, we see that either RemoveLoop or

ModifyLoop must do work for each iteration of MainLoop. ModifyLoop cannot operate more than

once on the same no-good, because there are no longer multiple minimally-entrenched propositions

in the no-good after it does its work. Nor can RemoveLoop operate twice on the same no-good,

since the no-good is removed when ModifyLoop does work. So, eventually ModifyLoop has no

more work to do, and at that point RemoveLoop will remove at least one no-good for each iteration
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of MainLoop. By lines 17-18, when the last no-good is removed, the procedure terminates. So it

always terminates. Q.E.D.

6.1.5 Supplementary Requirement

RemoveLoop attempts to compute T each time it is run from MainLoop. If the procedure does not

terminate within RemoveLoop, then we run ModifyLoop on at most one no-good. Afterwards, we

run RemoveLoop again. Since the user is only queried when the procedure cannot automatically

determine any propositions to remove, we argue that this means minimal queries are made of the

user. Q.E.D.

6.2 Complexity of Algorithm 2

6.2.1 Space Complexity

As before, let smax be the cardinality of the largest no-good in Σ. In the worst case all propositions

are minimally entrenched, so ListLoop will recreate Σ. So ListLoop will use Op|Σ| ¨ smaxq space.

RemoveLoop creates a culprit list, which we stated before takes Op|Σ|q space. ModifyLoop may

be implemented in a variety of ways. We will assume that it creates a list of pairs, of which the

first and second elements range over propositions in the no-goods. In this case ModifyLoop uses

Op|Σ|2 ¨ s2
maxq space. So the total space requirement is Op|Σ|2 ¨ s2

maxq memory units.
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6.2.2 Time Complexity

The analysis for time complexity is based on a sequential-procesing system. For each no-good σ ,

in the worst case, ListLoop will have to compare each proposition in σ agains every other. So, for

each iteration of MainLoop, ListLoop takes Op|Σ| ¨ s2
maxq time. There are at most Opsmaxq elements

in each list created by ListLoop. So, checking the condition in line 10 takes Op|Σ| ¨ s2
maxq time.

Lines 12-16 can be executed in Op|Σ| ¨ smaxq time. Therefore, RemoveLoop takes Op|Σ| ¨ s2
maxq time.

We assume that all the work in lines 24-27 can be done in constant time. So, ModifyLoop takes

Op|Σ|q time. We noted earlier that during each iteration of MainLoop, RemoveLoop or ModifyLoop

will do work. In the worst case, only one will do work each time. And they each may do work at

most |Σ| times. So the total running time for the procedure is Op|Σ|2 ¨ s2
maxq.

7 Conclusions

My modified version of SNeBR provides decision procedures for belief revision in SNePS. By pro-

viding a single resulting knowledge base, these procedures essentially perform maxichoice revision

for SNePS. These procedures work equally well for both prioritized and nonprioritized belief re-

vision, with subtle changes to the epistemic ordering required to perform the latter. Using a well

preorder, belief revision can be performed completely automatically. Given a total preorder, it may

be necessary to consult the user in order to simulate a well preorder. The simulated well preorder

need only be partially specified; it is only necessary to query the user when multiple beliefs are

minimally-epistemically-entrenched within a no-good, and even then only in the case where no

other belief in the no-good is already being removed. In any event, the epistemic ordering itself is

user-supplied. My algorithm for revision given a well preorder uses asymptotically less time and

space than the other algorithm, which uses a total preorder.
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