
SAV Interface Developer
Toolkit
user manual

4.9Product version:
April 2015Document date:

Contents

1 Document revision history..6

2 About SAVI...7

2.1 What is SAVI?...7

2.2 The SAVI programming paradigm...7

2.3 SAVI programming methods...7

2.4 How to use SAVI...8

2.5 SAVI threading model...10

2.6 Macintosh file handling...11

2.7 SAVI version 3 changes..12

2.8 SAVI version 4 changes..13

3 Initializing SAVI...14

3.1 Initializing the interface using COM and C++...14

3.2 Initializing the interface using C..15

4 Configuring SAVI..16

4.1 The configuration interface...16

4.2 Retrieving configuration options...16

4.3 Using a configuration option...17

4.4 Getting a configuration value..18

4.5 Setting a configuration value..18

4.6 Default configurations...19

5 SAVI callbacks..20

5.1 Using callbacks...20

5.2 Creating callback objects..20

5.3 Registering callbacks..20

6 Using SAVI...22

6.1 Obtaining version information...22

6.2 Scanning for threats..22

6.3 Handling the results of a scan..25

7 Terminating the interface..29

8 Updating SAVI..30

9 SAVI Interfaces...31

10 Return values...33

2

11 SAVI configuration options...34

12 SAVI server entry point...35

13 IUnknown..36

13.1 QueryInterface..36

13.2 AddRef..37

13.3 Release...38

14 ISavi2..39

14.1 Initialise...40

14.2 InitialiseWithMoniker...40

14.3 Terminate..41

14.4 GetVirusEngineVersion...42

14.5 SweepFile...44

14.6 DisinfectFile..45

14.7 SweepLogicalSector...46

14.8 SweepPhysicalSector...48

14.9 DisinfectLogicalSector..49

14.10 DisinfectPhysicalSector..50

14.11 SweepMemory..52

14.12 Disinfect..53

14.13 SetConfigDefaults...54

14.14 SetConfigValue...55

14.15 GetConfigValue...56

14.16 GetConfigEnumerator...57

14.17 RegisterNotification...58

15 ISavi3..60

15.1 LoadVirusData..61

15.2 SweepBuffer...62

15.3 SweepHandle...63

15.4 SweepStream...65

15.5 DisinfectBuffer...66

15.6 DisinfectHandle...67

15.7 DisinfectStream..69

16 Enumerator interfaces..71

16.1 Next..72

16.2 Skip...73

16.3 Reset..73

3

16.4 Clone..74

17 IIDEDetails..76

17.1 GetName..76

17.2 GetType..77

17.3 GetState..78

17.4 GetDate..79

18 ISweepResults..81

18.1 IsDisinfectable..81

18.2 GetThreatType..82

18.3 GetThreatName..83

18.4 GetLocationInformation..84

19 ISweepError..86

19.1 GetLocationInformation..86

19.2 GetErrorCode...87

20 IEngineConfig...90

20.1 GetName..90

20.2 GetType..91

21 IVersionChecksum..93

21.1 GetType..93

21.2 GetValue...94

22 IClassFactory..96

22.1 CreateInstance...96

22.2 LockServer..97

23 Callback interfaces...99

23.1 ISweepNotify...99

23.2 ISweepNotify2...104

23.3 ISweepDiskChange..108

23.4 ISaviStream..110

23.5 ISaviStream2..114

23.6 IChangeNotify...119

23.7 ISeverityNotify...121

24 IQueryLoadedProtection..123

24.1 GetMatchingIdentities...123

24.2 GetAllIdentities..124

24.3 GetSingleIdentity..125

25 IIdentityInfo...127

4

25.1 GetName..127

25.2 GetNameWithoutType...128

25.3 IsVariant..129

25.4 IsFamily..130

26 Technical support..131

27 Legal notices..132

5

1 Document revision history
This table describes the changes to the SAV Interface Developer Toolkit user manual.

Summary of changesRevision date

January 9, 2015 Updated information about installing Sophos Anti-Virus and SAVI. See About
SAVI (page 7).

Updated the description of the return values for the ReadStream function of
the ISaviStream callback interface. See ReadStream (page 110).

April 9, 2015 Updated for version 4.9.

6

SAV Interface Developer Toolkit

2 About SAVI
This section introduces SAVI and describes

■ the SAVI programming paradigm

■ SAVI programming methods

■ how to use SAVI

■ the SAVI threading model

■ Macintosh file handling

■ SAVI version 3 changes

■ SAVI version 4 changes

Note:

Sophos Anti-Virus must be installed before third-party applications can call the SAVI interface.
To install Sophos Anti-Virus, see the Sophos Anti-Virus installation documentation for your platform
(available from www.sophos.com/en-us/support/documentation).

The Sophos Anti-Virus Interface (SAVI) is also available in a standalone SAVI package, which
you will need to install before third-party applications can call the SAVI interface.

2.1 What is SAVI?
SAVI is an application programming interface (API) that enables software developers to integrate
Sophos Anti-Virus with their applications.

2.2 The SAVI programming paradigm
The SAVI interface conforms to Microsoft’s Component Object Model (COM) specification. This
means that SAVI clients on Windows operating systems can access it using standard COM
functions such as CoCreateInstance().

SAVI can be programmed without COM on any SAVI-supported platform. However, on platforms
that support it, it is simpler to use COM.

2.3 SAVI programming methods

2.3.1 Sophos standard data types

To allow cross-platform development Sophos defines standard data types very strictly. Refer to
the header file s_types.h for a full description.

7

user manual

http://www.sophos.com/en-us/support/documentation.aspx

2.3.2 String manipulation

All string information (including paths) passed to and from SAVI is defined in terms of pointers to
OLE strings (LPOLESTR). On platforms where these types do not exist they are redefined to
platform-specific standard types.

On Windows platforms, OLE strings consist of 16-bit Unicode characters.You must therefore
build SAVI client applications with Unicode support.

When writing cross-platform code use the macro SOPHOS_COMSTR to translate strings to the
appropriate data type for functions taking LPOLESTR.

Functions that write information into buffers supplied by the client usually enable the client to ask
for the amount of buffer space required.

2.4 How to use SAVI
SAVI consists of a set of interfaces and enumerators that provide access to various objects used
internally by SAVI. For a full listing, see SAVI Interfaces (page 31).

The interfaces are retrieved

■ by making a call to the SAVI library entry point function, or

■ by allowing COM to supply them automatically (only when accessing SAVI through a COM
subsystem, e.g. on Win32 platforms), or

■ from the SAVI interface itself.

2.4.1 Using C++ syntax or C syntax

The interfaces can be used with C++ syntax or C syntax. The C++ syntax is generally simpler,
but is currently supported only on Windows platforms.

There are various differences between C and C++ syntax. In C syntax

■ an additional parameter, a pointer to the interface structure, has to be supplied as the first
parameter.

■ interface member functions are accessed via the structure’s pVtbl member.

■ interface IDs (IIDs) cannot use the C++ reference syntax and so must be passed using explicit
‘address of’ syntax e.g. &SOPHOS_IID_SAVI3.

If you are using C++ you should include the isavi3.h header file in your client source.This contains
a declaration for each SAVI interface in the form of a C++ abstract base class. Interface member
functions should be called using the usual C++ syntax, for example

HRESULT hr = pSAVI->Initialise();

If you are using C you should include the csavi3c.h header file. This contains a declaration for
each SAVI interface in the form of structures of function pointers. Interface member functions are
then called using C pointer syntax, for example

HRESULT hr = pSAVI->pVtbl->Initialise(pSAVI);

8

SAV Interface Developer Toolkit

2.4.2 Calling SAVI from other languages

On Microsoft Windows operating systems SAVI is implemented as a COM object which conforms
fully with Microsoft’s COM specification. However, this does not guarantee that SAVI objects can
be called from all languages which nominally offer support for COM. Microsoft Visual Basic, for
example, might link to a COM object using the "Automation" approach. This is implemented in
COM objects by offering an interface called IDispatch. SAVI does not currently implement this
interface.

Other languages which require Automation support in order to use COM objects will also be
unable to use SAVI directly.

2.4.3 Initialising GUIDs

Applications which use SAVI tell the SAVI library (either directly or via the COM subsystem on
Microsoft Windows) which kind of object they want by passing a pointer to a Globally Unique ID
(GUID). A GUID is a 16-byte data structure representing a 128-bit number which is guaranteed
to be unique.

GUIDs are used in COM to represent object class IDs and interface IDs. Pointers to class IDs
and interface IDs are defined as types REFCLSID and REFIID.

In order for the SAVI client application to generate a pointer to a GUID it is necessary for a GUID
data structure to be declared and initialised with values in the client code.This need only be done
in one client source module: other modules in the client application can just declare an external
pointer to this GUID structure.

The way that this is achieved in practice is that the GUIDs are defined in a header (SAVI GUIDs
are defined in swiid.h). The GUIDS are declared in the header using a special macro, and the
macro can have two forms. In one form it actually assigns the GUID symbol to some storage
initialised with the 128-bit value. In the other form it just declares the symbol to be an external.

If building a SAVI client for a platform other than Microsoft Windows, the client code switches
between these two forms by defining the symbol INITGUID before including swiid.h in just one of
the source modules.

Under Microsoft Windows the situation is a little more complex in that the macros are defined in
Microsoft-supplied headers, there are various methods for switching between the two forms, and
these methods may vary depending on the compiler / SDK version. In some versions, defining
INITGUID as described above will work. In some more recent versions, instead of defining
INITGUID, it is necessary to include the Windows SDK headers objbase.h and initguid.h before
including swiid.h, e.g. :

#include <objbase.h> /* Windows platform SDK header. */

#include <initguid.h> /* Windows platform SDK header. */

#include “isavi3.h” /* SAVI header - also includes swiid.h. */

2.4.4 Using enumerators

Much of SAVI’s functionality is accessed through a special type of interface called an enumerator,
which, when queried, returns a sequence of other interfaces.

9

user manual

The user asks the SAVI interface for a particular enumerator interface (e.g. ISweepResults) then
iterates across it to query each underlying interface in turn.When an individual interface has been
retrieved, the information stored can be accessed.

Typical use of an enumerator is to call Reset() initially, and then call Next() to retrieve one item
at a time until SAVI returns SOPHOS_S_FALSE (i.e. function call unsuccessful).

The use of enumerators is shown in the examples in Using SAVI (page 22).

2.4.5 Testing results of SAVI function calls

All interface functions return values which indicate whether the function succeeded.

The simplest method for testing for success or failure is to use the SOPHOS_SUCCEEDED() or
SOPHOS_FAILED() macros defined in the SAVI header files.

For example, to test whether SAVI was correctly initialised, use this code:

HRESULT hr = pSAVI->Initialise();
if (SOPHOS_FAILED(hr))
 puts("SAVI could not be initialised");

If more information than a simple success/failure test is required, the return value can be tested
for the predefined values listed in the SAV Interface Developer Toolkit supplement. For example,
calls to threat detection functions return a success code if a scan completes, whether a threat is
found or not.

SAVI client applications should be designed to behave gracefully if they encounter new return
codes not listed in the header file used at the time the application was compiled.

2.5 SAVI threading model
The Win32 implementation of SAVI includes multi-threaded support which makes it possible to
call SAVI in a free-threaded fashion. However, developers writing non-Win32 or cross-platform
code must use the apartment-threaded model, where the client should create and initialise a
separate SAVI object for each thread. This is also recommended for Win32 platforms.

Note: The code samples supplied with the SAVI Developer Toolkit implement SAVI clients using
the apartment-threaded model.

The underlying scanning engine relies on threat descriptions to detect threats. These threat
descriptions are read in from a disk file, decompressed, indexed and stored in a set of tables.
The procedure can be very demanding on system resources and so multiple SAVI objects created
by a single client process share the threat data of the first SAVI object. The data stays in memory
as long as the client process owns one or more SAVI objects. This is on a per-process basis – a
separate client process will always have its own copy of the threat data.

Where a client application is actively creating and destroying multiple SAVI objects during the
course of its execution, it will run much more efficiently if it is designed to keep at least one SAVI
object alive throughout execution of the program. This object acts as an anchor that keeps threat
data in memory.

Note: It is essential that the first SAVI object be allowed to finish loading the threat data before
any other SAVI objects are given access to it. All operating systems currently supported by SAVI,

10

SAV Interface Developer Toolkit

except for FreeBSD6, have thread protection to prevent problems in this area. If your application
uses SAVI on a FreeBSD6 system, it must take responsibility for this. The safest approach is to
create a SAVI object and establish threat data before creating any additional SAVI objects. The
client must then ensure thread safety during any attempts to reload the threat data. These
measures could include avoiding threat data reload altogether, but if a reload is necessary, activity
should be halted on all other SAVI objects and threads until the reload is complete.

Multi-threaded SAVI client applications must ensure that, for each SAVI object, there is never
more than one thread executing a SAVI interface function. This can be achieved by, for example,
creating a separate SAVI object for each thread in an application.

Versions 3 and above of the SAVI library have been enhanced to allow the threat data to be
reloaded by a running SAVI object. If this feature is used, multithreaded SAVI client applications
must ensure that all scanning activity on all SAVI objects is halted until the reload is complete.

2.6 Macintosh file handling
On Apple Macintosh systems running versions of the Macintosh operating system earlier than
Mac OS X, individual files are stored in two parts. These parts are known as the resource fork
and the data fork. Both are considered to be part of the file, but the resource fork is used to save
Macintosh resources such as executable code, menu definitions and icons. The data fork was
primarily intended for user-supplied data, but may also contain executable code.

Although every pre-Mac OS X Macintosh file has resource and data forks, one or both can be
empty, depending on the kind of file.

Support for this way of splitting a file’s contents is not available on all operating/file systems. For
example, the NTFS partitions available on Windows NT can save both forks, although the resource
fork will not normally be visible if the file is listed from a Windows client.

However, many other file systems, including the FAT system used on Windows 95/98/Me and
those common on Unix systems, cannot store both forks under one file name. These systems
use various schemes to save the two forks as separate files. Some schemes, including encoding
schemes like AppleSingle or BinHex, involve extracting both forks and saving them separately in
a kind of archive file. Since email messages must be able to pass through many different kinds
of system, this approach is used to send Macintosh files as email attachments.

From a threat-scanning perspective, native, executable Macintosh threats will generally be found
in the resource fork. However, macro viruses, such as those targeting Microsoft Word files, will
be located in the data fork. Non-Macintosh executable viruses only ever infect the data fork.

The SAVI NamespaceSupport setting allows a SAVI client to control which forks are scanned.
However, this is only relevant on systems which support dual fork file storage. For these systems,
the SAVI client can be configured to scan only for Macintosh executable (resource fork) threats
by setting the option to SOPHOS_MAC_FILES. Alternatively, setting the option to
SOPHOS_DOS_AND_MAC_FILES configures SAVI to scan both forks.

On all other systems, the SOPHOS_DOS_FILES setting will cause the single (data) fork to be
scanned for all threat types.

Note: If SAVI scans a file created using one of the encoding schemes for separate resource and
data forks, both forks are scanned, even if the file system does not natively support dual forks.
See the list of engine configuration options in the SAV Interface Developer Toolkit supplement
for details of the schemes supported by SAVI.

11

user manual

2.7 SAVI version 3 changes
This section outlines the main differences between SAVI2 and SAVI3. In particular it contains
information for developers familiar with SAVI2 who would like to find out what’s new in SAVI3.

Firstly it is important to draw attention to the distinction between the SAVI library (dll on Win32),
a SAVI object, and the interfaces the object supports. A SAVI3 library will always create SAVI3
objects, just as the SAVI2 library always creates SAVI2 objects. This is true regardless of which
interface is requested.

A SAVI3 object supports both the ISavi2 and ISavi3 interfaces, but the old SAVI2 object does not
support the ISavi3 interface. ISavi3 is an extension of the ISavi2 interface. It contains the same
functions, plus seven new ones that have been added to provide greater control and functionality.

The ISavi2 interface is supported for backwards compatibility in accordance with the principles
of COM.When writing a SAVI3 client application, full functionality is obtained by utilising the ISavi3
interface and there is nothing to be gained by using ISavi2.

Note: To check if your library is SAVI2 or SAVI3, create a SAVI object and request an ISavi3
interface (see Initializing SAVI (page 14)). If this returns SOPHOS_E_NOINTERFACE, you have
a SAVI2 library that does not support SAVI3.

2.7.1 Additional scanning functionality

SAVI3 includes three new scan/disinfect function pairs that enable SAVI3 to scan and disinfect
file handles, memory buffers and client-implemented data streams.These functions are described
in Using SAVI (page 22) and ISavi3 (page 60).

2.7.2 Threat data loading

SAVI3 also gives the client greater control of the underlying threat data, which is used to detect
threats.The ISavi3 interface includes LoadVirusData() which can be called to release any existing
data then reload. This enables threat data to be reloaded manually without shutting down or
restarting either the client application or the SAVI object it owns.

SAVI3 also allows the location of threat identity files (IDEs) and the name and location of the
threat data file to be modified. This is done via the configuration interface (see Configuring SAVI
(page 16)). SAVI2 loads the threat data during initialisation, but as this can be a
resource-consuming exercise, the load has been delayed for SAVI3 in order to give the client a
chance to modify data locations or names. The data is now loaded either when it is required (i.e.
when a Sweep...() function or GetVirusEngineVersion() is called) or when LoadVirusData() is
called.

Following threat data load, if one of the threat data location configuration settings is subsequently
changed then threat data will be loaded again from the new location the next time it is required.

If the new functionality is not required, a SAVI3 client can behave like a SAVI2 client as the threat
data will be loaded automatically from the default location when needed (i.e. when a Sweep...()
function or GetVirusEngineVersion is called). The only exception to this rule is if multiple SAVI
objects are created by the same client process. In this case, LoadVirusData() should be called
on the first SAVI object before creating any subsequent ones. This will avoid any confusion

12

SAV Interface Developer Toolkit

between multiple SAVI objects that share the threat data and possible threading risks on some
platforms (see Enumerator interfaces (page 71)).

Note: Note that any delay apparent while loading the threat data will now occur at the start of
the first Sweep...() or GetVirusEngineVersion() call or during LoadVirusData(). Initialisation itself
is now likely to be significantly faster than for SAVI2.

2.8 SAVI version 4 changes

2.8.1 New callback interfaces

Version 4 of the SAVI library introduces two new callback interfaces IChangeNotify and
ISeverityNotify.

The first of these is used to allow a SAVI object to inform its client when a change has been made
to threat data and/or the underlying threat engine. This change may have resulted from a call to
LoadVirusData() made to this or another SAVI object in the same process. This will result in just
the threat data changing. Win32 implementations have the ability to update both threat data and
scanning engine without the SAVI client process being otherwise aware that this has happened
(this is known as a “hot update”). In this situation a call is made to the IChangeNotify interface
with details of both components (engine and data) having changed.

The ISeverityNotify callback interface is provided to give SAVI client code more fine-grained error
reporting (i.e. there may be several errors generated internally but only one error code can be
returned to the client from the SAVI interface function). The callback also provides additional
information about the severity of the error. This may help client code take a decision on how to
proceed from the error.

2.8.2 Automatic scan abort

The new "auto-stop" feature gives protection against some forms of malicious file which are
designed to disrupt the action of AV scanners.These files (sometimes referred to as "zip bombs")
usually take the form of otherwise innocent-looking archives which, when unpacked in order to
scan, turn out to require enormous amounts of time, disk space or memory.

Detection of these files may be enabled by setting the EnableAutoStop option to "1". If a file of
this sort is encountered then the scan is immediately aborted and the scan function returns the
new error code SOPHOS_SAVI_ERROR_SCAN_ABORTED.

Note: Please note that detection of these files uses a set of heuristic tests and, as a result, it is
possible to get the occasional false positive (i.e. scan is aborted on a genuine, non-malicious
archive file).

13

user manual

3 Initializing SAVI
All access to Sophos Anti-Virus functionality is through the interfaces described in the isavi3.h
(C++) or csavi3c.h (C) header files.

To gain access to these interfaces you must first create a SAVI interface object. The process of
creation is simplified by using CoCreateInstance() on Win32 platforms that support COM. If you
are not using COM, load the SAVI library and then call the DllGetClassObject() method to create
a class factory object. Once the factory has been created it can be used to manufacture an instance
of the SAVI interface.

Then initialize the scanning engine by calling Initialise() or InitialiseWithMoniker().

■ Initializing the interface using COM and C++ (page 14) demonstrates how to do this using
C++.

■ Initializing the interface using C (page 15) demonstrates how to do this using C.

3.1 Initializing the interface using COM and C++

/ *
 * Initialise COM (Win32 only).
 * /
CoInitialize(NULL);
/ *
 * Create an instance of the SAVI interface.
 * /
ISavi3* pSAVI;
HRESULT hr = CoCreateInstance(SOPHOS_CLASSID_SAVI,
 NULL, CLSCTX_ALL,
 SOPHOS_IID_SAVI3,
 (void**)&pSAVI);
if(SOPHOS_SUCCEEDED (hr)){
 LPCOLESTR ClientName = L”SAVI Demo”;
 / *
 * Initialise the SAVI interface
 * /
 hr = pSAVI->InitialiseWithMoniker(ClientName);
}
else if(pSAVI){
 / *
 * Initialisation failed so clean up.
 * /
 pSAVI->Release();
 pSAVI = NULL;
}

14

SAV Interface Developer Toolkit

3.2 Initializing the interface using C

CISavi3* pSAVI;
CISweepClassFactory2* pFactory;
HRESULT hr;
const OLECHAR* ClientName =
 SOPHOS_COMSTR(“SAVIDemo”);
/ *
 * Load the SAVI DLL and then request a class factory
 * interface.
 * /
hr = DllGetClassObject((REFCLSID)&SOPHOS_CLASSID_SAVI,
 (REFIID)&SOPHOS_IID_CLASSFACTORY2,
 (void**)&pFactory);
if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Ask the class factory for a CSAVI3 interface.
 * /
 hr = pFactory->pVtbl->CreateInstance(pFactory, NULL,
 &SOPHOS_IID_SAVI3,
 (void**)&pSAVI);
 / *
 * Drop the factory immediately, we don’t need it
 * again in this example.
 * /
 pFactory->pVtbl->Release(pFactory);
 / *
 * Was the CSAVI3 interface returned?
 * /
 if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Ask SAVI to initialise itself.
 * /
 hr = pSAVI->pVtbl->InitialiseWithMoniker(pSAVI,
 ClientName);
 / *
 * If the initialisation failed, release the
 * SAVI interface and set the pointer to NULL.
 * /
 if(SOPHOS_FAILED(hr)) {
 printf(“ERROR: Initialise [%ld].”, (long)hr);
 pSAVI->pVtbl->Release(pSAVI);
 pSAVI = NULL;
 }
 }
 }

15

user manual

4 Configuring SAVI
This section describes how to configure SAVI scanning activity. For the full list of configuration
options, see the SAV Interface Developer Toolkit supplement.

Note: The examples in this section are in C++ syntax and assume the code is compiled for
Unicode on a Win32 platform. For the differences between C++ and C syntax, see Using C++
syntax or C syntax (page 8).

The values of SAVI configuration settings are passed across the SAVI interface as strings. For
numeric settings the values are encoded as decimal strings. For more information about SAVI
and strings see Sophos standard data types (page 7).

4.1 The configuration interface
By default SAVI will perform threat scanning in a mode recommended by Sophos.The configuration
interface enables you to alter the behaviour of SAVI during the scanning process.

The configuration values are accessed via the SAVI interface. However, to get information about
available configuration options, you must obtain an enumerator interface.

4.2 Retrieving configuration options
First acquire an enumerator interface from SAVI. Then use the enumerator interface to access
each element in turn. Finally release the enumerator interface.

IEnumEngineConfig* pConfigEnum;
IEngineConfig* pConfig;
HRESULT hr = pSAVI->GetConfigEnumerator(
 SOPHOS_IID_ENUM_ENGINECONFIG,
 (void**)&pConfigEnum);
 / *
 * Reset the enumerator to the start of the list.
 * /
 HRESULT hr = pConfigEnum->Reset();
 / *
 * Loop through the enumerator.
 */
 while(pConfigEnum->Next(1, (void**)&pConfig,
 &pcFetched) == SOPHOS_S_OK){
 / *
 * Output some information about this
 * configuration object.
 * /
 / *
 * Release this configuration interface.
 * /
 pConfig->Release();
}

16

SAV Interface Developer Toolkit

4.3 Using a configuration option
Once an interface to a particular configuration value has been obtained it can be used to retrieve
various important pieces of information about it.

With this information, you can get and set its value, as shown in the next two sections. To get a
configuration object’s name, use the Config interface and call GetName(). The type is retrieved
in a similar way.

LPOLESTR name = NULL;
U32 nameLength = 0;
U32 arraySize = 0;
HRESULT hr;
 / *
 * First get the size of the array that holds the name.
 * /
 hr = pConfig->GetName(0, NULL, &nameLength);
 if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Set aside memory for the name.
 */
 name = new OLECHAR[nameLength];
 arraySize = nameLength;
 nameLength = 0;
 / *
 * Call again to retrieve the name.
 */
 hr = pConfig->GetName(arraySize, name,
 &nameLength);
 if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Now get the type of the config.
 * /
 U32 type;
 hr = pConfig->GetType(&type);
 if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Do what you want with the name and type.
 * /
 }
 }
 / *
 * Free up the allocated array.
 * /
 delete [] name;
}

17

user manual

4.4 Getting a configuration value
Using the configuration name and type, you can determine the current state of that setting. In this
example GetConfigValue() is used twice; once to give the size of the value, and once to retrieve
the value.

U32 size = 0;
U32 arraySize = size;
LPOLESTR value = NULL;
/ *
 * First call to get the buffer size required to hold
 * the data.
 * /
 hr = pSAVI->GetConfigValue(name,
 type,
 0,
 NULL,
 &size);
if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Allocate space for the value.
 * /
 arraySize = size;
 value = new OLECHAR[arraySize];
 size = 0;
 / *
 * Now call to retrieve the data.
 * /
 hr = pSAVI->GetConfigValue(name,
 type,
 arraySize,
 value,
 &size);
 if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Do what you want with the value.
 * /
 }
 / *
 * Tidy up allocated memory
 * /
 delete [] value;
}

4.5 Setting a configuration value
For example, to switch on full scanning do the following.

hr = pSAVI->SetConfigValue(SOPHOS_DO_FULL_SWEEP,
 SOPHOS_TYPE_U32,
 SOPHOS_COMSTR ("1"));

18

SAV Interface Developer Toolkit

4.6 Default configurations
The first time a program uses the SAVI interface it begins with a series of default configuration
values.

The default values are listed in the SAV Interface Developer Toolkit supplement.

19

user manual

5 SAVI callbacks
This section describes the use of callbacks to monitor threat scanning.

5.1 Using callbacks
SAVI client applications can monitor the progress of scanning within large archives. To do this,
the application must register a callback object with SAVI. The callback can be used to gain
information about objects scanned, threats found and errors as they occur.This enables the client
application to control the flow of execution as Sophos Anti-Virus runs.

5.2 Creating callback objects
It is up to the SAVI clients to implement notification callback objects.These must support functions
such as

■ OnVirusFound(...)

■ OnErrorFound(...)

■ OnFileFound(...)

as well as the standard COM interface members

■ QueryInterface()

■ AddRef()

■ Release().

For further information see the SaviDemo application and descriptions of ISweepNotify (page 99)
and ISweepNotify2 (page 104).

5.3 Registering callbacks
Once the notification object has been created the client application must register it with SAVI.

For example, using C++ syntax

CISweepNotify* pNotify = NULL;
HRESULT hr;
/ *
 * Attempt to create a new notification interface.
 * /
 pNotify = new CISweepNotify();
 if(pNotify){
 / *
 * Register the notification interface with SAVI.
 * /

20

SAV Interface Developer Toolkit

 hr = pSAVI->RegisterNotification(
 SOPHOS_IID_SWEEPNOTIFY,
 pNotify,
 NULL);
 / *
 * Find out if SAVI accepted the notification
 * interface.
 * /
 if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Callback in place.
 * /
 }
 else {
 / *
 * Tidy up callback object.
 * /
 delete pNotify;
 }
}

21

user manual

6 Using SAVI
This section describes

■ how to obtain scanning engine version information (Obtaining version information (page 22))

■ how to scan for threats (Scanning for threats (page 22))

■ how to handle the results of a scan (Handling the results of a scan (page 25)).

It assumes that you have already initialised SAVI (Initializing SAVI (page 14)).

Note: The examples in this chapter are in C++ syntax and assume the code is compiled for
Unicode on a Win32 platform. For the differences between C++ and C syntax, see Using C++
syntax or C syntax (page 8).

6.1 Obtaining version information
You can use the SAVI interface to retrieve information about the scanning engine by calling
GetVirusEngineVersion(). This will return the version number and date of the scanning engine,
together with the number of threats that can be detected and an enumerator of the additional
threat identity files that are in use.

Note: For more information about obtaining version information, see GetVirusEngineVersion
(page 42) and the SAVI Developer Toolkit code samples.

6.2 Scanning for threats
This section describes how to use SAVI to scan different types of data for threats. For specific
information about the functions mentioned in this section, see the reference section of this User
Manual.

It describes

■ scanning files

■ scanning disk sectors

■ scanning memory

■ advanced scanning methods.

6.2.1 Scanning files

SAVI can scan files directly via a filename or alternatively via an open file handle.

Available functions

SweepFile() - ISavi2 and ISavi3

SweepHandle() - ISavi3

22

SAV Interface Developer Toolkit

Scanning a file via its filename

To scan a file via its filename, pass the filename to SweepFile(). Filenames can be absolute or
relative to the current directory.

IEnumSweepResults* pEnumResults;
HRESULT hr;
hr = pSAVI->SweepFile(SOPHOS_COMSTR("c:\\eg.exe"),
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults);

Scanning a file via an open file handle

To scan a file via an open file handle, use SweepHandle(). Use SOPHOS_FD (see savitype.h)
for the file handle, which must be opened in an appropriate manner for the platform. Once opened
it can be passed directly to SweepHandle().

IEnumSweepResults* pEnumResults;
HRESULT hr;
SOPHOS_FD fileHandle = SOPHOS_FD_NULL;
/ *
 * Open file handle here with appropriate system call
 * and then pass it to SweepHandle. e.g. for windows
 * platforms
 * /
fileHandle = CreateFileW(L"c:\\example.exe",
 GENERIC_READ|GENERIC_WRITE,
 FILE_SHARE_READ|FILE_SHARE_WRITE,
 NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL);
If (fileHandle != SOPHOS_FD_NULL){
 hr = pSAVI->SweepHandle(L"handle name string",
 fileHandle,
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults);

6.2.2 Scanning disk sectors

SAVI can scan disk sectors via physical disk, cylinder and head numbers, or alternatively via a
logical sector number.

Available functions

SweepPhysicalSector() - ISavi2 and ISavi3

SweepLogicalSector() - ISavi2 and ISavi3

Note: These functions are not available for all platforms. Calls to unsupported functions will return
SOPHOS_SAVI_ERROR_NOT_SUPPORTED.

Scanning a physical disk sector

23

user manual

To scan a physical disk sector, use SweepPhysicalSector(). The following example scans the
boot sector of the first physical hard drive.

IEnumSweepResults* pEnumResults;
HRESULT hr;
hr = pSAVI->SweepPhysicalSector(
 L"\\\\.\\PHYSICALDRIVE0",
 0, 0, 0,
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults
);

Scanning a logical disk sector

To scan a logical disk sector, use SweepLogicalSector(). The following example scans the boot
sector of drive A, usually the floppy drive.

IEnumSweepResults* pEnumResults;
HRESULT hr;
hr = pSAVI->SweepLogicalSector(
 L"\\\\.\\a:",
 0, 0,
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults
);

6.2.3 Scanning memory

Available functions

SweepMemory() - ISavi2 and ISavi3

SweepBuffer() - ISavi3

Scanning memory

SweepMemory() enables SAVI to scan memory blocks occupied by running processes.

Note: This function is not available for all platforms. Calls to unsupported functions will return
SOPHOS_SAVI_ERROR_NOT_SUPPORTED.

IEnumSweepResults* pEnumResults = NULL;
HRESULT hr;
hr = pSAVI->SweepMemory(SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults);

Scanning a buffer

To scan data that has first been loaded into memory (e.g. a memory-mapped file or disk sector),
use SweepBuffer().

IEnumSweepResults* pEnumResults = NULL;
HRESULT hr;
hr = pSAVI->SweepBuffer(L"buffer name string",
 buffLen,

24

SAV Interface Developer Toolkit

 pBuffer,
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults);

6.2.4 Advanced scanning

SAVI also provides a way to sweep data in more complex forms. This can be used when the
nature of data to be scanned makes the other scanning options unsuitable (e.g. when reading
data from a network socket interface).

Available functions

SweepStream() - ISavi3

To exploit this functionality, implement an object that offers the ISaviStream interface (see
ISweepDiskChange (page 108)) and pass an interface pointer into the SweepStream() method.

IEnumSweepResults* pEnumResults = NULL;
HRESULT hr;
ISaviStream* pStream = new myStreamObject(…);
hr = pSAVI->SweepStream(L"stream name string",
 SOPHOS_IID_SAVISTREAM,
 (void*)pStream,
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults);

6.3 Handling the results of a scan

6.3.1 Testing return codes

Scanning an item returns an HRESULT which should be tested to determine the result of a scan.
The client can either use the pre-determined macros SOPHOS_SUCCEEDED() and
SOPHOS_FAILED(), or test the return value explicitly as follows.

switch(hr){
case SOPHOS_S_OK:
 / *
 * Scan success - no threats encountered.
 * /
 break;
case SOPHOS_SAVI_INFO_THREATPRESENT:
 / *
 * See below for ways to extract more information
 * about the threat or threats discovered.
 * /
 break;
default:
 / *
 * Some other error.
 * /

25

user manual

 break;
}

6.3.2 Obtaining threat information

Calls to scan or disinfect objects take a pointer to an IEnumSweepResults enumerator interface.
When the function returns you can iterate through this IEnumSweepResults enumeration to
retrieve information about any threats found.

First ensure that processing starts at the begining of the enumeration. To do this call the Reset()
function of the IEnumSweepResults interface returned by the scan.

HRESULT hr = pEnumResults->Reset();

Once the enumerator has been reset you can begin to iterate. To iterate over the set, use the
Next() function of the IEnumSweepResults interface. This returns a new interface to an individual
SweepResults object which you can query for further information.

ISweepResults* pResults;
while (pEnumResults->Next(1, (void**)&pResults, NULL) ==
SOPHOS_S_OK){
 / *
 * Put code relating to specific result here.
 * /
}

Once a specific SweepResults interface has been retrieved, use the ISweepResults functions to
get further information. For example, you can obtain the name of the threats, as well as whether
it can be disinfected.

U32 BufLen = 0;
U32 Len = 0;
LPOLESTR pBuf = NULL;
/*
 * First find the length of the buffer required.
 */
pResults->GetVirusName(BufLen, pBuf, &Len);
/*
 * Allocate memory.
 */
BufLen = Len;
pBuf = new OLECHAR[Len];
Len = 0;
/*
 * Get the name of the threat.
 */
pResults->GetVirusName(BufLen, pBuf, &Len);
wprintf(L"Virus name: %s\n", pBuf);
/*
 * Free memory.
 */
delete [] pBuf;
pBuf = NULL;
/*

26

SAV Interface Developer Toolkit

 * Now tell user if it can be disinfected.
 */
S32 IsDisinfectable;
pResults->IsDisinfectable(&IsDisinfectable);
wprintf (L"Is threat disinfectable?: %s\n",
 (isDisinfectable? L"Yes": L"No"));

After processing, each SweepResult object must be released.

/*
 * Release this results interface ready for the next
 * time around.
 */
pResults->Release();
pResults = NULL;

Likewise the IEnumSweepResults interface must be released once it has been finished with.This
is always the case, even if it has not been used to obtain threat information.

pEnumResults->Release();
pEnumResults = NULL;

6.3.3 Disinfection

If a threat has been detected, there are two ways to approach disinfection.

Individual SweepResults objects describing a specific disinfectable threat can be passed into
Disinfect() to attempt to remove the instance of the threat.

/*
 * Perform a sweep and iterate over the results
 * object as shown in the previous section.
 */
/*
 * Check to see if each object is disinfectable.
 */
U32 isDisinfectable = 0;
pResults->IsDisinfectable(&isDisinfectable);
if(isDisinfectable){
 / *
 * Pass the object back to the SAVI interface for
 * disinfection.
 * /
 HRESULT hr = pSAVI->Disinfect(
 SOPHOS_IID_SWEEPRESULTS,
 pResults);
 if(SOPHOS_SUCCEEDED (hr)){
 / *
 * Check the results object to ensure disinfection
 * was complete and repeat process if required.
 * /
 }
}

27

user manual

/ *
 * Once all results objects are finished with,
 * release the pointer to the results interface.
 * /

Note: Do not assume that because Disinfect() succeeded the object is completely free of threats.
Disinfect() only attempts to disinfect a specific instance of the threat found. Multiple infections
within objects are not dealt with. If a SAVI client calls Disinfect() the client must re-scan the object
to ensure it is free of threats (see Disinfect (page 53)).

As an alternative to disinfecting specific threats, each of the Sweep...() functions in the SAVI
interface has a corresponding Disinfect....() function (the exception is SweepMemory() for which
disinfection is not offered due to the risks and complications of attempting disinfection of code
segment memory). These methods can be used to attempt to remove all disinfectable threats
from the object.

IEnumSweepResults* pEnumResults;
IEnumSweepResults* pEnumDisinfResults;
HRESULT hr;
hr = pSAVI->SweepFile(L"c:\\example.exe",
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)&pEnumResults);
if (hr == SOPHOS_SAVI_INFO_THREATPRESENT){
 / *
 * Enumerate through results to extract threats
 * details and check any threats found are
 * disinfectable (see note below).
 */
 hr = pSAVI->DisinfectFile(L"c:\\example.exe",
 SOPHOS_IID_ENUM_SWEEPRESULTS,
 (void**)& pEnumDisinfResults);
 if (hr == SOPHOS_SAVI_INFO_THREATPRESENT){
 /*
 * Disinfection unavailable: file still infected.
 */
 }
 else if (SOPHOS_SUCCEEDED (hr)){
 /*
 * Disinfection was successful.
 */
 }
 else {
 /*
 * Error encountered during file disinfection.
 */
 }
 pEnumDisinfResults->Release();
 pEnumDisinfResults = NULL;
}
pEnumResults->Release();
pEnumResults = NULL;

Note: It is still advisable to use the results object to obtain threat information as previously
described, and confirm that any threats found are disinfectable.

28

SAV Interface Developer Toolkit

7 Terminating the interface
The following code shows how to unload SAVI when the program has finished with it. The version
using COM must also uninitialize the COM library when it completes, while the non-COM version,
which dynamically loaded the SAVI DLL (see Initializing SAVI (page 14)), may need to free it.

The code given here is in C++ syntax.

/ *
 * Finish with the SAVI interface and release the
 * reference to it
 * /
pSAVI->Terminate();
pSAVI->Release();
/ *
 * Finish with COM:
 * /
CoUninitialize();

29

user manual

8 Updating SAVI
You must regularly update SAVI to ensure it can detect all the latest threats.

Sophos provides the following updates.

■ Full updates of the scanning engine.

■ Threat identity files (IDEs), issued whenever a new threat is discovered.

If you are using a version of SAVI that does not support the ISavi3 interface, you must terminate
and restart any running SAVI interface objects in order for the updated threat data to be read.
Versions of SAVI that support ISavi3 can use LoadVirusData() to discard the old threat data
definitions and re-read updated information.

Note that Win32 versions of SAVI implement the Sophos Scanning Engine as a separate library
which can be updated independently. SAVI clients will automatically back off during updating to
enable the scanning engine to be replaced. There is normally no need to stop SAVI clients for
the update to succeed. Once the Sophos Anti-Virus update has completed successfully, SAVI
clients will begin to service requests using the new scanning engine.

Following such an update of the scanning engine (on Windows only), calls to SAVI interface
functions may return SOPHOS_SAVI_ERROR_MUST_REINIT. This happens when the new
version of the Engine is incompatible with the currently loaded version of the SAVI library. In this
situation it is necessary for the old SAVI library to be explicitly unloaded and the new one loaded
in its place. There is sample source code in the SAVI Developer Toolkit ‘C++ Demo’ application
which illustrates how this may be done.

30

SAV Interface Developer Toolkit

9 SAVI Interfaces
SAVI consists of the set of interfaces declared within isavi3.h (C++) or csavi3c.h (C). These
interfaces provide access to various objects used internally by SAVI. The header files isavi2.h
and csavi2c.h are also provided for backward compatibility.

The SAVI interfaces are as follows:

DescriptionInterface identifierInterface name

The basic interface for
programming scans and
disinfections.

SOPHOS_IID_SAVI2ISavi2

An extension of ISavi2 offering a
wider range of scan and disinfect
functions.

SOPHOS_IID_SAVI3ISavi3

The interface which describes an
individual threat identity file (IDE).

SOPHOS_IID_IDEDETAILSIIDEDetails

Used to enumerate a list of IDEs.SOPHOS_IID_ENUM_
IDEDETAILS

IEnumIDEDetails

The results interface that describes
an individual threat found by a
scan.

SOPHOS_IID_ SWEEPRESULTSISweepResults

The error interface that describes
an error encountered when
attempting to scan a file.

SOPHOS_IID_ SWEEPERRORISweepError

Used to enumerate a list of scan
results.

SOPHOS_IID_
ENUM_SWEEPRESULTS

IEnumSweepResults

The interface that describes an
individual SAVI configuration
option.

SOPHOS_IID_ ENGINECONFIGIEngineConfig

Used to enumerate a list of SAVI
configuration options.

SOPHOS_IID_
ENUM_ENGINECONFIG

IEnumEngineConfig

The interface which describes the
checksum of one of the SAVI
components.

SOPHOS_IID_CHECKSUMIVersionChecksum

31

user manual

DescriptionInterface identifierInterface name

This is used to enumerate a list of
IVersionChecksum objects.

SOPHOS_IID_ENUM_
CHECKSUM

IEnumVersionChecksum

This interface may be implemented
by SAVI clients wishing to receive

SOPHOS_IID_ CHANGENOTIFYIChangeNotify

notification of changes to SAVI
components.

This interface may be implemented
by SAVI clients requiring more
detailed error reporting.

SOPHOS_IID_ SEVERITYNOTIFYISeverityNotify

The basic notification interface that
can be implemented by SAVI

SOPHOS_IID_ SWEEPNOTIFYISweepNotify

clients that wish to receive
notification callbacks from SAVI.

An extension of ISweepNotify
enabling greater control of the
scanning process.

SOPHOS_IID_ SWEEPNOTIFY2ISweepNotify2

This interface must be
implemented by SAVI clients that

SOPHOS_IID_ DISKCHANGEISweepDiskChange

wish to receive notifications when
SAV requires part of the virus data.

This interface must be
implemented by SAVI clients using

SOPHOS_IID_SAVISTREAMISaviStream

SweepStream() or
DisinfectStream() in ISavi3.

Used to create an instance of
SAVI.

SOPHOS_IID_ CLASSFACTORY2IClassFactory

32

SAV Interface Developer Toolkit

10 Return values
All interface functions return values that indicate whether the function succeeded.

In this User Manual, the most common return values are listed with each function description. For
a definition of any other return value, refer to the SAV Interface Developer Toolkit supplement,
which is included in the SAVI Developer Toolkit and is also available on the OEM Integration
Resources webpage of the Sophos website.

33

user manual

https://secure2.sophos.com/en-us/partners/oem-and-technology/integration-resources-and-services/oem-integration-resources.aspx
https://secure2.sophos.com/en-us/partners/oem-and-technology/integration-resources-and-services/oem-integration-resources.aspx

11 SAVI configuration options
SAVI configuration options configure SAVI and the underlying threat scanning engine. They have
unique name strings, and are passed to the APIs as LPCOLESTR. This data type maps to a
pointer to either a Unicode/wide character string or an ASCII string, depending on the platform.
Symbols defining some of the option names are published in savitype.h (under "Configuration
option names"). However, this list is not comprehensive.

For a complete list of the configuration options supported by an installed version of SAVI, clients
can call the ISavi2 or ISavi3 function GetConfigEnumerator() (GetConfigEnumerator (page 57))
. The returned interface can be used to list the names and types of all available configuration
options.

The list of configuration options grows as more features are added and new file types are
supported. They are published in the SAV Interface Developer Toolkit supplement, which is
included in the SAVI Developer Toolkit and is also available on the OEM Integration Resources
webpage of the Sophos website.

To return configuration options to their default values, use the SetConfigDefaults() function
(SetConfigDefaults (page 54)) of the ISavi2 or ISavi3 interfaces.

To change or read the values of individual configuration options use the SetConfigValue()
(SetConfigValue (page 55)) and GetConfigValue() (GetConfigValue (page 56)) functions of the
ISavi2 or ISavi3 interfaces.

From SAVI3 onwards, group configuration options are also available. They enable the SAVI client
to set the value of a group of related options in a single operation. Group configuration options
are explained further in the SAV Interface Developer Toolkit supplement.

34

SAV Interface Developer Toolkit

https://secure2.sophos.com/en-us/partners/oem-and-technology/integration-resources-and-services/oem-integration-resources.aspx
https://secure2.sophos.com/en-us/partners/oem-and-technology/integration-resources-and-services/oem-integration-resources.aspx

12 SAVI server entry point
There is one entry point to the SAVI server, named DllGetClassObject(), whose prototype follows.
SAVI clients not using COM use this function to retrieve an instance of the SAVI class factory.

HRESULT DllGetClassObject(
 REFCLSID rclsid,
 REFIID riid,
 LPVOID* ppv
);

Parameters

A constant that identifies the type of class factory to
create. This must be SOPHOS_CLASSID_SAVI.

rclsid

A constant that identifies the type of interface to be
requested from the object created. This must be
SOPHOS_IID_CLASSFACTORY2.

riid

A pointer to a location to which DllGetClassObject()
copies a pointer to the requested interface. If
DllGetClassObject() fails, NULL is copied.

ppv

Return Values
If the object was created and the interface is supported, the return value is SOPHOS_S_OK.

Remarks
DllGetClassObject() adds a reference to the interface returned through the ppv parameter. The
client must be sure to release that reference when it has finished with the interface, by calling the
interface’s Release() function.

If you are using SAVI on a Windows platform, a simpler method of obtaining a SAVI interface
pointer is by calling the Windows CoCreateInstance API, thus:

ISavi3* pSAVI;HRESULT hr = CoCreateInstance(&SOPHOS_CLASSID_SAVI,
NULL, CLSCTX_ALL, &SOPHOS_IID_SAVI3, (void**)&pSAVI);

Although this is the recommended method of obtaining a SAVI interface on Windows platforms,
you may call DllGetClassObject() directly. This method can be used to create truly cross-platform
SAVI client source code.

35

user manual

13 IUnknown
The member functions of IUnknown in COM are common to all the SAVI interfaces listed in this
document.

The member functions are as follows:

Request a particular interface from an object.QueryInterface

Add a reference to the interface, preventing its
destruction.

AddRef

Release a reference.Release

13.1 QueryInterface
C++ syntax:

HRESULT SOPHOS_STDCALL QueryInterface(
 REFIID IID,
 void** ppObject
);

C syntax:

HRESULT SOPHOS_STDCALL QueryInterface(
 void* object,
 REFIID IID,
 void** ppObject
);

Description

Asks an object for a pointer to a specific interface. If the object supports the interface,
QueryInterface() returns a pointer to the interface. If the object does not support the interface,
QueryInterface() returns an error.

Parameters

A poitner to the SAVI interface structure.object (C syntax only)

One of the predefined interface identifiers contained in swiid.h.IID

36

SAV Interface Developer Toolkit

A pointer to a location to which QueryInterface() will copy a pointer to the
interface requested. If QueryInterface() fails, NULL will be copied.

ppObject

Return values
If the interface is supported, the return value is SOPHOS_S_OK. If the interface is not supported,
the return value is SOPHOS_E_NOINTERFACE.

Remarks
None.

13.2 AddRef
C++ syntax:

SOPHOS_ULONG SOPHOS_STDCALL AddRef();

C syntax:

SOPHOS_ULONG SOPHOS_STDCALL AddRef(void* object);

Description

Called by a client of an interface to add a reference to the underlying object.The underlying object
will continue to exist as long as its reference count is greater than zero.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Return values
If AddRef() succeeds, the return value is an integer in the range 1 to n, the value of the new
reference count. Note that in multithreading situations this return value is not reliable and should
therefore not generally be used.

Remarks
A client may add a reference to an object to extend its life for as long as the object is required by
a client. SAVI internally calls the AddRef() function before returning any interface pointers requested
by the client, so generally clients do not need to call AddRef().

Every client call to AddRef() must be balanced by a subsequent call to Release().

37

user manual

13.3 Release
C++ syntax:

SOPHOS_ULONG SOPHOS_STDCALL Release();

C syntax:

SOPHOS_ULONG SOPHOS_STDCALL Release(void* object);

Description

Called by a client of an interface to release a reference to the underlying object. The underlying
object will continue to exist as long as its reference count is greater than zero.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Return values
If Release() succeeds, the return value is an integer in the range 0 to n, the value of the new
reference count. Note that in multithreading situations this return value is not reliable and should
therefore not generally be used.

Remarks
A SAVI client makes a call to Release() when it has finished using an interface or an object. It
must make a call to Release() to balance every call to AddRef(). SAVI internally calls AddRef()
on every interface returned to client code, which is then responsible for calling Release(). An
interface must not be used after Release() has been called. If the client fails to call Release(), the
system is unable to recover memory used by the object.

Example

IEnumSweepResults* pEnumResults;

HRESULT hr = pSAVI->SweepFile(L"a:\\v.com",
SOPHOS_IID_ENUM_SWEEPRESULTS, (void **) &pEnumResults);
if (SUCCEEDED(hr))
{ / *
 * Use pEnumResults here.
 * /
 pEnumResults->Release();
 / *
 * Finish with the list of infections.
 * /
}

38

SAV Interface Developer Toolkit

14 ISavi2
ISavi2 is an interface to the main SAVI object used for performing threat scans and attempting
disinfections. This object is created using an operating system-specific method (see SAVI server
entry point (page 35)). More than one SAVI object may be created, but each instance must be
initialised by InitialiseWithMoniker(), using a different moniker.

The member functions are as follows:

Request a particular interface from an object. See
QueryInterface (page 36).

QueryInterface

Add a reference to the interface, preventing its
destruction. See AddRef (page 37).

AddRef

Release a reference. See Release (page 38).Release

Initialize the SAVI object.Initialise

Initialize the SAVI object with a client name.InitialiseWithMoniker

Finish with the SAVI object.Terminate

Retrieve information about the underlying virus
scanner.

GetVirusEngineVersion

Scan a single file for viruses.SweepFile

Try to completely disinfect a file.DisinfectFile

Scan a logical disk sector for viruses.SweepLogicalSector

Scan a physical disk sector for viruses.SweepPhysicalSector

Try to completely disinfect a logical disk sector.DisinfectLogicalSector

Try to completely disinfect a physical disk sector.DisinfectPhysicalSector

Scan memory for viruses.SweepMemory

Disinfect a file or sector from a specific virus infection.
Use DisinfectFile() or DisinfectSector() if you require
complete disinfection.

Disinfect

Reset all configuration options to their default values.SetConfigDefaults

39

user manual

Set the value of a specific configuration option.SetConfigValue

Get the value of a specific configuration option.GetConfigValue

Create an object that can be used to enumerate the
names of configuration options.

GetConfigEnumerator

A SAVI client may supply a notification interface to
this function if it wishes to be notified of events during
a scan.

RegisterNotification

14.1 Initialise
C++ syntax:

HRESULT SOPHOS_STDCALL Initialise();

C syntax:

HRESULT SOPHOS_STDCALL Initialise(void* object);

Description

Initializes the SAVI interface ready for use. Either Initialise() or InitialiseWithMoniker() must be
called before any other interface functions are called.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Return values
If Initialise() succeeds, the return value is SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_OLD_VIRUS_DATA.

Remarks
On Windows platforms it is strongly recommended that InitialiseWithMoniker() is called instead
of Initialise(). The client must call Terminate() when it has finished using the interface.

14.2 InitialiseWithMoniker
C++ syntax:

HRESULT SOPHOS_STDCALL InitialiseWithMoniker(LPCOLESTR
pApplicationMoniker
);

C syntax:

40

SAV Interface Developer Toolkit

HRESULT SOPHOS_STDCALL InitialiseWithMoniker(
 void* object,
 LPCOLESTR pApplicationMoniker
);

Description

Initializes the SAVI interface ready for use. Either Initialise() or InitialiseWithMoniker() must be
called before any other interface functions are called.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A short text string supplied by the client to uniquely identify this instance
of the SAVI interface. In the case of Windows platforms, this text will
appear in the Sophos Anti-Virus window.

pApplicationMoniker

Return values
If InitialiseWithMoniker() succeeds, the return value is SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_OLD_VIRUS_DATA.

Remarks
The client must call Terminate() when it has finished using the interface.

On Windows the length of the moniker string is limited to 200 characters. If the passed string
exceeds this length then it will be truncated. If a zero-length string is passed, then the function
will return SOPHOS_E_INVALIDARG.

14.3 Terminate
C++ syntax:

HRESULT SOPHOS_STDCALL Terminate();

C syntax:

HRESULT SOPHOS_STDCALL Terminate(void* object);

Description

Terminates the SAVI interface after use.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

41

user manual

Return values
If Terminate() succeeded, the returned value is SOPHOS_S_OK.

Remarks
None.

14.4 GetVirusEngineVersion
C++ syntax:

HRESULT SOPHOS_STDCALL GetVirusEngineVersion(
 U32* pVersion,
 LPOLESTR pVersionString,
 U32 StringLength,
 SYSTEMTIME* pVdataDate,
 U32* pNumberOfDetectableViruses,
 U32* pVersionEx,
 REFIID DetailsIID,
 void** ppDetailsList
);

C syntax:

HRESULT SOPHOS_STDCALL GetVirusEngineVersion(
 void* object,
 U32* pVersion,
 LPOLESTR pVersionString,
 U32 StringLength,
 SYSTEMTIME* pVdataDate,
 U32* pNumberOfDetectableViruses,
 U32* pVersionEx,
 REFIID DetailsIID,
 void** ppDetailsList
);

Description

Gets information related to the scanning engine used for scanning.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A pointer to a location for the scanning engine version number.
This U32 is made up of 2 U16s in the form

pVersion

MajorVersion|MinorVersion. To extract the relevant information
use the following:

U16 MajorVersion = *pVersion>>16;

42

SAV Interface Developer Toolkit

U16 MinorVersion = *pVersion&0x0000FFFF

This can be NULL if not required.

A pointer to a buffer for a string containing the version number of
the main threat data. This can be NULL if not required.

pVersionString

The size of the buffer allocated for pVersionString in characters
(not bytes).

StringLength

A pointer to a location for the date of the main threat data. This
can be NULL if not required.

pVdataDate

A pointer to a location for the number of detectable threats. This
can be NULL if not required.

pNumberOfDetectableViruses

A pointer to a location for extended scanning engine version
information. This U32 is made up of two U16s in the same way as

pVersionEx

for pVersion above, except that the MSW is the 'patch' level and
the LSW an (optional) revision. NB either of these words may be
set to a value of 0xffff to indicate that this version number is
undefined. Can bel NULL if not required.

Identifies the type of details to be returned. This can be one of:
SOPHOS_IID_ENUM_IDEDETAILS,

DetailsIID

SOPHOS_IID_ENUM_CHECKSUM or
SOPHOS_IID_DATA_VERSION_NOLOAD.

A pointer to a pointer to the interface object created by this function.
The object can be used by the client to enumerate objects of the

ppDetailsLists

class appropriate to the DetailsIID parameter. If there are none,
an enumerator containing zero items is returned. When the client
has finished with the enumerator object, it must call Release() on
the object.This parameter can be NULL if it is not required. It must
be NULL if DetailsIID is
SOPHOS_IID_DATA_VERSION_NOLOAD.

Return values
If GetVirusEngineVersion() succeeds the return value is SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_PARTIAL_INFORMATION.

Remarks
If DetailsIID is SOPHOS_IID_ENUM_IDEDETAILS then information on loaded threat data files
is returned in an IEnumIDEDetails interface.

If DetailsIID is SOPHOS_IID_ENUM_CHECKSUM then checksums of SAVI binary components
are returned in an IEnumVersionChecksum interface.

43

user manual

If it is wished to obtain just scanning engine and threat data version information without the
overhead of actually loading the threat data then pass DetailsIID as
SOPHOS_IID_DATA_VERSION_NOLOAD and ppDetailsList and pNumberOfDetectableViruses
as NULL. SAVI will return threat data and Engine version information via the pVersion, pVersionEx,
pVersionString and pVdataDate parameters. NB this functionality is only applicable if called via
ISavi3, as ISavi2 loads threat data during initialisation.

If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

If the date of the main threat data is requested it is returned as a SYSTEMTIME structure. The
date and time encoded in this structure is an absolute UTC time and is not adjusted for any local
timezone.

14.5 SweepFile
C++ syntax:

HRESULT SOPHOS_STDCALL SweepFile(
 LPCOLESTR pFileName,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL SweepFile(
 void* object,
 LPCOLESTR pFileName,
 REFIID ResultsIID,
 void** ppResults
);

Description

Scans a file for threats.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The name fo the file to be scanned.pFileName

The type of results required. At present this
parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to a location to which SweepFile() will copy
a pointer to the results interface requested. This

ppResuts

parameter may be supplied as NULL if no results are
required.

44

SAV Interface Developer Toolkit

Return values
If SweepFile() succeeds and no threats are found, the return value is SOPHOS_S_OK. If a threat
is found, the return value is SOPHOS_SAVI_INFO_THREATPRESENT.

Note that there are two success return values so it is a good idea to use the
SOPHOS_SUCCEEDED() macro to check for success.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

The client may use the results object to enumerate threats found in the file scanned. If no threats
are found, the results object returned contains zero entries. The individual results objects can be
passed directly to Disinfect().

If the file scanned is a compound file such as a Zip archive more than one threat may be found.
In this case, the results object contains one entry for each threat found.

A confusing situation can occur when scanning compound files. If one part of a compound file
contains a threat, and an error occurred scanning a different part of the compound file, SweepFile()
returns SOPHOS_SAVI_INFO_THREATPRESENT.There is no indication that Sophos Anti-Virus
failed to scan the whole compound file. Therefore, if a compound file contains a threat, treat the
entire contents of the compound file as suspect.

On Windows versions of SAVI, scanning functions which take a file name string as a parameter
now open the literal file name.This bypasses any automatic Windows file name modification (e.g.
for file names ending with a space character).

14.6 DisinfectFile
C++ syntax:

HRESULT SOPHOS_STDCALL DisinfectFile(
 LPCOLESTR pFileName,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL DisinfectFile(
 void* object,
 LPCOLESTR pFileName,
 REFIID ResultsIID,
 void** ppResults
);

Description

45

user manual

Tries to disinfect a file completely, then scans it in the same way as SweepFile().

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The name of the file to be disinfected.pFileName

The type of results required. At present this
parameter is
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to the location to which DisinfectFile()
copies a pointer to the results interface requested.

ppResults

This parameter may be supplied as NULL if no results
are required.

Return values
If DisinfectFile() succeeds the return value is SOPHOS_S_OK. If any threats are still present, the
return value is SOPHOS_SAVI_INFO_THREATPRESENT.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client.Therefore the client must call Release() when it has finished using the interface.This
function only returns SOPHOS_S_OK if the file is completely free of threats after disinfection.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

14.7 SweepLogicalSector
C++ syntax:

HRESULT SOPHOS_STDCALL SweepLogicalSector(
 LPCOLESTR pDriveName,
 U32 Reserved,
 U32 SectorNumber,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL SweepLogicalSector(
 void* object,
 LPCOLESTR pDriveName,

46

SAV Interface Developer Toolkit

 U32 Reserved,
 U32 SectorNumber,
 REFIID ResultsIID,
 void** ppResults
);

Description

Scans a logical sector on a disk.

Note: Logical sector scanning is not available on all platforms.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The name of the disk drive to scan, in the form \\.\A:
where A is the drive letter.

pDriveName

This value is reserved. It must be 0.Reserved

The sector number you wish to scan (zero based).SectorNumber

The type of results required. At present this
parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to a location to which SweepLogicalSector()
will copy a pointer to the results interface requested.

ppResults

This parameter may be supplied as NULL if no results
are required.

Return values
If SweepLogicalSector() succeeds and no threats are found, the return value is SOPHOS_S_OK.
If a threat is found, the return value is SOPHOS_SAVI_INFO_THREATPRESENT.

Note that there are two success return values so it is a good idea to use SOPHOS_SUCCEEDED()
to check for success.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

The client may use the results object to enumerate threats found in the sector scanned. If no
threats are found, the results object returned contains zero entries. Individual results objects can
be passed directly to Disinfect().

47

user manual

14.8 SweepPhysicalSector
C++ syntax:

HRESULT SOPHOS_STDCALL SweepPhysicalSector(
 LPCOLESTR pDriveName,
 U32 Head,
 U32 Cylinder,
 U32 Sector,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL SweepPhysicalSector(
 void* object,
 LPCOLESTR pDriveName,
 U32 Head,
 U32 Cylinder,
 U32 Sector,
 REFIID ResultsIID,
 void** ppResults
);

Description

Scans a physical sector on a disk.

Note: Physical sector scanning is not available on all platforms.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The name of the disk drive to scan. Two formats are
supported: \\.\A: where A is the drive letter or

pDriveName

\\.\PHYSICALDRIVEx, where x is the physical drive
number (0 for the first fixed disk).

The zero-based index to the physical disk head.Head

The zero-based index to the physical disk cylinder.Cylinder

The one-based index to the physical disk sector.Sector

The type of results required. At present this
parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

48

SAV Interface Developer Toolkit

A pointer to a location to which
SweepPhysicalSector() copies a pointer to the results

ppResults

interface requested. If SweepPhysicalSector() fails,
NULL is copied. This parameter may be supplied as
NULL if no results are required.

Return values
If SweepPhysicalSector() succeeds and no threats are found, the return value is SOPHOS_S_OK.
If a threat is found, the return value is SOPHOS_SAVI_INFO_THREATPRESENT.

Note that there are two success return values so it is a good idea to use SOPHOS_SUCCEEDED()
to check for success.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

The client may use the results object to enumerate threats found in the sector scanned. If no
threats are found, the results object returned contains zero entries. The individual results objects
can be passed directly to Disinfect().

14.9 DisinfectLogicalSector
C++ syntax:

HRESULT SOPHOS_STDCALL DisinfectLogicalSector(
 LPCOLESTR pDriveName,
 U32 Reserved,
 U32 SectorNumber,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL DisinfectLogicalSector(
 void* object,
 LPCOLESTR pDriveName,
 U32 Reserved,
 U32 SectorNumber,
 REFIID ResultsIID,
 void** ppResults
);

Description

49

user manual

Tries to completely disinfect a logical sector on a disk believed to be infected by a threat, then
scan it in exactly the same way as SweepLogicalSector().

Note: Logical sector disinfection is not available on all platforms.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The name of the disk drive to scan, in the form \\.\A:
where A is the drive letter.

pDriveName

This value is reserved. It must be 0.Reserved

The sector number you wish to scan (zero based).SectorNumber

The type of results required. At present this
parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to a location to which
DisinfectLogicalSector() copies a pointer to the

ppResults

results interface required. This parameter may be
supplied as NULL if results are not required.

Return values
If DisinfectLogicalSector() succeeds the return value is SOPHOS_S_OK. Do not assume that
DisinfectLogicalSector() succeeded, check the return value.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

Generally it is easier to use Disinfect() than DisinfectLogicalSector() if SweepLogicalSector() has
been called and a sweep results object is available.

14.10 DisinfectPhysicalSector
C++ syntax:

HRESULT SOPHOS_STDCALL DisinfectPhysicalSector(
 LPCOLESTR pDriveName,
 U32 Head,
 U32 Cylinder,

50

SAV Interface Developer Toolkit

 U32 Sector,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL DisinfectPhysicalSector(
 void* object,
 LPCOLESTR pDriveName,
 U32 Head,
 U32 Cylinder,
 U32 Sector,
 REFIID ResultsIID,
 void** ppResults
);

Description

Tries to completely disinfect a physical sector on a disk believed to be infected by a threat, then
scan it in exactly the same way as SweepPhysicalSector().

Note: Physical sector disinfection is not available on all platforms.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The name of the disk drive to scan. Two formats are
supported: \\.\A: where A is the drive letter or

pDriveName

\\.\PHYSICALDRIVEx, where x is the physical drive
number (0 for the first fixed disk).

The zero-based index to the physical disk head.Head

The zero-based index to the physical disk cylinder.Cylinder

The one-based index to the physical disk sector.Sector

The type of results required. At present this
parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to a location to which
DisinfectPhysicalSector() copies a pointer to the

ppResults

results interface requested. This parameter may be
supplied as NULL if results are not required.

51

user manual

Return values
If DisinfectPhysicalSector() succeeds the return value is SOPHOS_S_OK. Do not assume that
DisinfectPhysicalSector() succeeded, check the return value.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

Generally it is easier to use Disinfect() than DisinfectPhysicalSector() if SweepPhysicalSector()
has been called and a sweep results object is available.

14.11 SweepMemory
C++ syntax:

HRESULT SOPHOS_STDCALL SweepMemory(
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL SweepMemory(
 void* object,
 REFIID ResultsIID,
 void** ppResults
);

Description

Scans memory for threats. The memory blocks scanned are those containing the executable
segments of all currently running processes. To scan a block of memory created or owned by the
SAVI client use SweepBuffer() (see SweepBuffer (page 62)).

Note: Memory scanning is not available on all platforms.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The type of results required. At present this
parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to a location to which SweepMemory()
copies a pointer to the results interface requested.

ppResults

52

SAV Interface Developer Toolkit

This parameter may be supplied as NULL if no results
are required.

Return values
SOPHOS_S_OK. If a threat is found, the return value is
SOPHOS_SAVI_INFO_THREATPRESENT. Versions of SAVI in which this function is not
supported return SOPHOS_SAVI_ERROR_NOT_SUPPORTED.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

Note that there are two success return values so it is a good idea to use SOPHOS_SUCCEEDED()
to check for success.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

The client may use the results object to enumerate any threats found. If no threats are found, the
results object returned contains zero entries.

This function could take several minutes to complete, depending on factors such as the number
of processes in memory.

14.12 Disinfect
C++ syntax:

HRESULT SOPHOS_STDCALL Disinfect(
 REFIID ToDisinfectIID,
 void* pToDisinfect
);

C syntax:

HRESULT SOPHOS_STDCALL Disinfect(
 void* object,
 REFIID ToDisinfectIID,
 void* pToDisinfect
);

Description

Tries to remove a specific threat from a specific item.The item and threat to disinfect are identified
by the pToDisinfect object that was previously created by one of the Sweep...() functions.

Parameters

53

user manual

A pointer to the SAVI interface structure.object (C syntax only)

The type of results to disinfect. At present this
parameter must be SOPHOS_IID_SWEEPRESULTS.

ToDisinfectIID

A pointer to the sweep results object that identifies
the item to disinfect.

pToDisinfect

Return values
If Disinfect() succeeds the return value is SOPHOS_S_OK. Do not assume that Disinfect()
succeeded (see below).

Remarks
Disinfect() differs from other Disinfect...() functions in that after eliminating one threat, it does not
perform another scan to check for further threats.Therefore, Disinfect() may return SOPHOS_S_OK
after a successful disinfection when the object actually contains more threats.

■ If complete disinfection of an object is required, call the relevant Disinfect...() function.

■ If you use Disinfect(), perform another scan after a successful disinfection to ensure the object
is completely fee of threats.

14.13 SetConfigDefaults
C++ syntax:

HRESULT SOPHOS_STDCALL SetConfigDefaults();

C syntax:

HRESULT SOPHOS_STDCALL SetConfigDefaults(
 void* object
);

Description

Resets all configuration options to their default values. For a list of the defaults for all configuration
options, see the SAV Interface Developer Toolkit supplement.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Return values
If SetConfigDefaults() succeeds the return value is SOPHOS_S_OK.

54

SAV Interface Developer Toolkit

Remarks
This can cause a virus data reload if global virus data related config items have been changed
from default values

14.14 SetConfigValue
C++ syntax:

HRESULT SOPHOS_STDCALL SetConfigValue(
 LPCOLESTR pValueName,
 U32 Type,
 LPCOLESTR pData
);

C syntax:

HRESULT SOPHOS_STDCALL SetConfigValue(
 void* object,
 LPCOLESTR pValueName,
 U32 Type,
 LPCOLESTR pData
);

Description

Sets the value of a configuration option.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The name of the configuration option the value of which is to be
changed.

pValueName

The type of configuration option.Type

The value to set, supplied as a text string.pData

Return values
If SetConfigValue() succeeds the return value is SOPHOS_S_OK.

Remarks
The name and type of the configuration option must correspond to an item in the SAV Interface
Developer Toolkit supplement, which is included in the SAVI Developer Toolkit and is also available
on the OEM Integration Resources webpage of the Sophos website.

55

user manual

https://secure2.sophos.com/en-us/partners/oem-and-technology/integration-resources-and-services/oem-integration-resources.aspx

14.15 GetConfigValue
C++ syntax:

HRESULT SOPHOS_STDCALL GetConfigValue(
 LPCOLESTR pValueName,
 U32 Type,
 U32 MaxSize,
 LPOLESTR pData,
 U32* pSize
);

C syntax:

HRESULT SOPHOS_STDCALL GetConfigValue(
 void* object,
 LPCOLESTR pValueName,
 U32 Type,
 U32 MaxSize,
 LPOLESTR pData,
 U32* pSize
);

Description

Reads the value of a configuration option. See Getting a configuration value (page 18).

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The configuration option name being read.pValueName

The type of configuration option.Type

The size of the buffer supplied in characters (not bytes).MaxSize

The value read, copied into this buffer as a text string. If you supply
NULL for this parameter, the size of the required buffer is returned in
pSize.

pData

This value receives the size of the config value in characters (including
terminator).

pSize

Return values
If GetConfigValue() succeeds the return value is SOPHOS_S_OK or
SOPHOS_SAVI_INFO_OPT_GRP_INVAL_RTN. If the client supplied a buffer that was not big
enough, SOPHOS_SAVI_ERROR_BUFFER_TOO_SMALL is returned.

56

SAV Interface Developer Toolkit

Remarks
The name and type of the configuration option must correspond to an item in the SAV Interface
Developer Toolkit supplement, which is included in the SAVI Developer Toolkit and is also available
on the OEM Integration Resources webpage of the Sophos website.

14.16 GetConfigEnumerator
C++ syntax:

HRESULT SOPHOS_STDCALL GetConfigEnumerator(
 REFIID ConfigIID,
 void** ppConfigs
);

C syntax:

HRESULT SOPHOS_STDCALL GetConfigEnumerator(
 void* object,
 REFIID ConfigIID,
 void** ppConfigs
);

Description

Gets a pointer to an enumerator interface that can be used to list the configuration options
supported by SAVI. See Retrieving configuration options (page 16).

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The type of configuration object required. At present this parameter must
be SOPHOS_IID_ENUM_ENGINECONFIG.

ConfigIID

A pointer to a location to which SAVI copies a pointer to the config
enumerator interface requested. If GetConfigEnumerator() fails, NULL is
copied.

ppConfigs

Return values
If GetConfigEnumerator() succeeds the return value is SOPHOS_S_OK.

Remarks
The configuration option enumerator can only be used to list the options available. To modify or
read the values call the SetConfigValue() (page 55) and GetConfigValue() (page 56) functions
in the ISavi2 interface.

57

user manual

https://secure2.sophos.com/en-us/partners/oem-and-technology/integration-resources-and-services/oem-integration-resources.aspx

14.17 RegisterNotification
C++ syntax:

HRESULT SOPHOS_STDCALL RegisterNotification(
 REFIID NotifyIID,
 void* pCallbackInterface,
 void* Token
);

C syntax:

HRESULT SOPHOS_STDCALL RegisterNotification(
 void* object,
 REFIID NotifyIID,
 void* pCallbackInterface,
 void* Token
);

Description

Supplies the SAVI interface with a notification interface that SAVI can use to call back when
specific events occur during scanning or while reading the threat data.

Parameters

A pointer to the interface structure.object (C syntax only)

The type of notification object supplied. At present this parameter must
be SOPHOS_IID_SWEEPNOTIFY or SOPHOS_IID_SWEEPNOTIFY2

NotifyIID

or SOPHOS_IID_SWEEPDISKCHANGE or
SOPHOS_IID_CHANGENOTIFY or SOPHOS_IID_SEVERITYNOTIFY.

A pointer to the callback interface supplied to SAVI. To unregister a
previously registered sweep notification, supply NULL.

pCallbackInterface

An optional pointer to client data. This pointer is supplied to functions in
the notification interface. It is not used internally by SAVI at all. If it is not
used, supply NULL.

Token

Return values
If RegisterNotification() succeeds the return value is SOPHOS_S_OK.

Remarks
At present the only types of notification interface supported are ISweepNotify (page 99),
ISweepNotify2 (page 104), ISweepDiskChange (page 108), IChangeNotify (page 119) and

58

SAV Interface Developer Toolkit

ISeverityNotify (page 121). Attempts to register other types will fail.The SAVI interface immediately
calls AddRef() on the interface supplied, and subsequently calls Release() when the interface is
no longer required. The SAVI client must be prepared for the life of the notification object to be
at least as long as the life of the ISavi2 interface with which it is registered.

Note: If a SOPHOS_IID_SWEEPDISKCHANGE notification is required, it must be registered
with RegisterNotification() before threat data is loaded (see Threat data loading (page 12)).

59

user manual

15 ISavi3
ISavi3 is a development of the ISavi2 interface, described in ISavi2 (page 39). It combines the
member functions of ISavi2 with some additional functions. General comments about ISavi2 also
refer to ISavi3.

The member functions are listed in the following table. For a description of the duplicated member
functions, see ISavi2 (page 39).

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Initialise the SAVI object. See Initialise (page 40).Initialise

Initialise the SAVI object with a client name. See InitialiseWithMoniker
(page 40).

InitialiseWithMoniker

Finish with the SAVI object. See Terminate (page 41).Terminate

Retrieve information about the underlying virus scanner. See
GetVirusEngineVersion (page 42).

GetVirusEngineVersion

Load virus descriptions into the virus scanner.LoadVirusData

Scan a single file for viruses. See SweepFile (page 44).SweepFile

Try to completely disinfect a file. See DisinfectFile (page 45).DisinfectFile

Scan a logical disk sector for viruses. See SweepLogicalSector (page
46).

SweepLogicalSector

Scan a physical disk sector for viruses. See SweepPhysicalSector (page
48).

SweepPhysicalSector

Try to completely disinfect a logical disk sector. See
DisinfectLogicalSector (page 49).

DisinfectLogicalSector

Try to completely disinfect a physical disk sector. See
DisinfectPhysicalSector (page 50).

DisinfectPhysicalSector

Scan memory for viruses. See SweepMemory (page 52).SweepMemory

60

SAV Interface Developer Toolkit

Scan a passed buffer for viruses.SweepBuffer

Scan a passed open file handle for viruses.SweepHandle

Scan for viruses using a passed stream interface object.SweepStream

Try to completely disinfect a passed buffer.DisinfectBuffer

Try to completely disinfect a passed open file handle.DisinfectHandle

Try to completely disinfect a passed stream interface object.DisinfectStream

Disinfect a file or sector from a specific virus infection. Use DisinfectFile()
or DisinfectSector() if you require complete disinfection. See Disinfect
(page 53).

Disinfect

Reset all configuration options to their default values. See
SetConfigDetails (page 54).

SetConfigDetails

Set the value of a specific configuration option. See SetConfigValue
(page 55).

SetConfigValue

Get the value of a specific configuration option. See GetConfigValue
(page 56).

GetConfigValue

Create an object that can be used to enumerate the names of
configuration options. See GetConfigEnumerator (page 57).

GetConfigEnumerator

A SAVI client may supply a notification interface to this function if it
wishes to be notified of events during a scan. See RegisterNotification
(page 58).

RegisterNotification

15.1 LoadVirusData
C++ syntax:

HRESULT SOPHOS_STDCALL LoadVirusData();

C syntax:

HRESULT SOPHOS_STDCALL LoadVirusData(void* object);

Description

Causes SAVI to load (or reload) the underlying scanning engine with threat description data.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

61

user manual

Return values
If the threat data is located and loaded successfully, SOPHOS_S_OK is returned. If the threat
descriptions are detected as being out of date, SOPHOS_SAVI_ERROR_OLD_VIRUS_DATA is
returned.

Remarks
If the scanner has already read threat descriptions, it drops them before re-reading commences.
SAVI needs to have threat descriptions loaded before it can complete many of its member functions
such as Sweep...(), Disinfect...() and GetThreatEngineVersion(). If one of these functions is called
before threat descriptions have been loaded, SAVI makes an internal call to this function before
proceeding.

This function may be called at any time, but can take a significant time to complete, during which
any scanning activity by SAVI clients sharing the data is suspended. It is advisable to call this
function only when threat data has changed, or as part of an initialisation sequence.

15.2 SweepBuffer
C++ syntax:

HRESULT SOPHOS_STDCALL SweepBuffer(
 LPCOLESTR pBuffName,
 U32 buffSize,
 U08* pBuff,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL SweepBuffer(
 void* object,
 LPCOLESTR pBuffName,
 U32 buffSize,
 U08* pBuff,
 REFIID ResultsIID,
 void** ppResults
);

Description

Scans the passed memory buffer for threats.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

62

SAV Interface Developer Toolkit

A name assigned by the SAVI client to the buffer. This is used for
identification purposes and is not used internally by SAVI.

pBuffName

The size of the buffer in bytes.buffSize

A pointer to the buffer.pBuff

The type of results required. At present this parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to the location where the function copies a pointer to the
requested results interface. The parameter may be supplied as
NULL if no results are required.

ppResults

Return values
If no threats are found in the buffer, SOPHOS_S_OK is returned. If a threat is found
SOPHOS_SAVI_INFO_THREATPRESENT is returned.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

The client may use the results object to enumerate threats found in the buffer scanned. If no
threats are found, the results object contains zero entries. The individual results object can be
passed directly to Disinfect().

SweepBuffer() fails if the passed buffer is in an address space that is inaccessible from that
occupied by SAVI.

15.3 SweepHandle
C++ syntax:

HRESULT SOPHOS_STDCALL SweepHandle(
 LPCOLESTR pHandleName,
 SOPHOS_FD fileHandle,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL SweepHandle(
 void** object,

63

user manual

 LPCOLESTR pHandleName,
 SOPHOS_FD fileHandle,
 REFIID ResultsIID,
 void** ppResults
);

Description

Scans the file corresponding to the passed handle for threats.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A name assigned by the SAVI client to the file being scanned. This is
used for identification purposes and is not used internally by SAVI.

pHandleName

The handle returned from opening the file.fileHandle

The type of results required. At present this parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to the location where the function copies a pointer to the
requested results interface. The parameter may be supplied as NULL
if no results are required.

ppResults

Return values
If no threats are found in the buffer, SOPHOS_S_OK is returned. If a threat is found
SOPHOS_SAVI_INFO_THREATPRESENT is returned.

Remarks
The data type represented by SOPHOS_FD varies between platforms (see the header file
savitype.h). It is essential that the file to be scanned is opened using a platform-specific function
that returns a handle of this data type.

Files to be scanned must have the binary access flag set where appropriate to the platform. In
addition, file handles to be disinfected must be created with write access.

SweepHandle() fails if the SAVI process does not have sufficient read/write access permissions
on file handles created by the SAVI client.

If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

The client may use the results object to enumerate threats found in the buffer scanned. If no
threats are found, the results object contains zero entries. The individual results objects can be
passed directly to Disinfect().

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

64

SAV Interface Developer Toolkit

15.4 SweepStream
C++ syntax:

HRESULT SOPHOS_STDCALL SweepStream(
 LPCOLESTR pStreamName,
 REFIID StreamIID,
 void* pStream,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL SweepStream(
 void* object,
 LPCOLESTR pStreamName,
 REFIID StreamIID,
 void* pStream,
 REFIID ResultsIID,
 void** ppResults
);

Description

Scans for threats using the passed stream interface functions.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A name assigned by the SAVI client to the stream. This is used mainly
for reporting purposes.

pStreamName

The type of stream interface implemented by the client. At present this
must be either SOPHOS_IID_SAVISTREAM or
SOPHOS_IID_SAVISTREAM2.

StreamIID

A pointer to the ISaviStream object.pStream

The type of results required. At present this parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to the location where the function copies a pointer to the
requested results interface. The parameter may be supplied as NULL if
no results are required.

ppResults

65

user manual

Return values
If no threats are found in the stream, SOPHOS_S_OK is returned. If a threat is found
SOPHOS_SAVI_INFO_THREATPRESENT is returned.

Remarks
The passed ISaviStream pointer points to an interface structure that enables the threat scanner
to make calls to client-supplied code in order to access the data to be scanned. This enables the
client to implement more complex data access methods than allowed by the other Sweep...()
methods. For information about the ISaviStream and ISaviStream2 interfaces, see ISaviStream
(page 110) and ISaviStream2 (page 114).

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

The client may use the results object to enumerate threats found in the scanned stream. If no
threats are found, the results object contains zero entries. The individual results objects can be
passed directly to Disinfect().

If threats are discovered, SAVI calls AddRef() on the ISaviStream interface for each threat. This
ensures the ISaviStream object persists in case Disinfect() is called on the individual results object.
These references are released automatically when the client releases the results interface.

SweepStream() fails if the passed stream interface is in an address space that is inaccessible
from the SAVI process.

15.5 DisinfectBuffer
C++ syntax:

HRESULT SOPHOS_STDCALL DisinfectBuffer(
 LPCOLESTR pBuffName,
 U32 buffSize,
 U08* pBuff,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL DisinfectBuffer(
 void* object
 LPCOLESTR pBuffName,
 U32 buffSize,
 U08* pBuff,
 REFIID ResultsIID,
 void** ppResults
);

66

SAV Interface Developer Toolkit

Description

Tries to disinfect a file completely, and then scan it in the same way as SweepBuffer().

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A name assigned by the SAVI client to the buffer. This is used for
identification purposes and is not used internally by SAVI.

pBuffName

The size of the buffer in bytes.buffSize

A pointer to the buffer.pBuff

The type of results required. At present this parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to the location where the function copies a pointer to the
requested results interface. The parameter may be supplied as NULL if
no results are required.

ppResults

Return values
If DisinfectBuffer() succeeds, SOPHOS_S_OK is returned. If any threats are still present,
SOPHOS_SAVI_INFO_THREATPRESENT is returned.

Remarks
If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

This function only returns SOPHOS_S_OK if the buffer is completely free of threats after the
disinfection attempt.

DisinfectBuffer() fails if the passed buffer is in an address space inaccessible from that occupied
by SAVI.

15.6 DisinfectHandle
C++ syntax:

HRESULT SOPHOS_STDCALL DisinfectHandle(
 LPCOLESTR pHandleName,
 SOPHOS_FD fileHandle,
 REFIID ResultsIID,

67

user manual

 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL DisinfectHandle(
 void** object,
 LPCOLESTR pHandleName,
 SOPHOS_FD fileHandle,
 REFIID ResultsIID,
 void** ppResults
);

Description

Attempts complete disinfection of the file corresponding to the passed handle, and then scans it
in exactly the same way as SweepHandle().

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A name assigned by the SAVI client to the file being scanned. This is
used for file identification purposes and is not used internally by SAVI.

pHandleName

The handle returned from opening the file in read/write mode.fileHandle

The type of results required. At present this parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to the location where the function copies a pointer to the
requested results interface. The parameter may be supplied as NULL if
no results are required.

ppResults

Return values
If DisinfectHandle() succeeds, SOPHOS_S_OK is returned. If any threats are still present,
SOPHOS_SAV_INFO_THREATPRESENT is returned.

Remarks
The data type represented by SOPHOS_FD varies between platforms (see the header file
savitype.h). It is essential that the file to be scanned is opened using a platform-specific function
that will return a handle of this data type.

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

68

SAV Interface Developer Toolkit

Files to be disinfected must be opened in read/write mode, with the binary access flag set where
appropriate to the platform. In addition, file handles to be disinfected must be created with write
access.

DisinfectHandle() fails if the SAVI process does not have sufficient read/write access permissions
on file handles created by the SAVI client.

If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

This function only returns SOPHOS_S_OK if the file is completely free of threats after the
disinfection attempt.

15.7 DisinfectStream
C++ syntax:

HRESULT SOPHOS_STDCALL DisinfectStream(
 LPCOLESTR pStreamName,
 REFIID StreamIID,
 void* pStream,
 REFIID ResultsIID,
 void** ppResults
);

C syntax:

HRESULT SOPHOS_STDCALL DisinfectStream(
 void* object,
 LPCOLESTR pStreamName,
 REFIID StreamIID,
 void* pStream,
 REFIID ResultsIID,
 void** ppResults
);

Description

Attempts complete disinfection of the object encapsulated by the passed ISaviStream interface,
then scans it in exactly the same way as SweepStream().

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A name assigned by the SAVI client to the stream. This is used mainly
for reporting purposes.

pStreamName

The type of stream interface implemented by the client. At present this
must be either SOPHOS_IID_SAVISTREAM or
SOPHOS_IID_SAVISTREAM2.

StreamIID

69

user manual

A pointer to the implemented stream interface.pStream

The type of results required. At present this parameter must be
SOPHOS_IID_ENUM_SWEEPRESULTS.

ResultsIID

A pointer to the location where the function copies a pointer to the
requested results interface. The parameter may be supplied as NULL if
no results are required.

ppResults

Return values
If DisinfectStream() succeeds, the return value is SOPHOS_S_OK. If any threats are still present,
SOPHOS_SAVI_INFO_THREATPRESENT is returned.

Remarks
The passed ISaviStream pointer points to an interface structure that enables the threat scanner
to make calls to client-supplied code in order to access the data to be scanned. This enables the
client to implement more complex data-access methods than allowed via other Sweep...() functions.
For information about the ISaviStream and ISaviStream2 interfaces, see ISaviStream (page 110)
and ISaviStream2 (page 114) .

A results interface may be returned even if the function returns a failure code. Always check the
return value of ppResults because failure to release objects returned may cause memory leaks.

If a results interface is returned, SAVI internally calls AddRef() for the interface before it is returned
to the client. Therefore the client must call Release() when it has finished using the interface.

The client may use the results object to enumerate threats found in the scanned stream. If no
threats are found, the results object contains zero entries. The individual results objects can be
passed directly to Disinfect().

If threats remain in the stream, SAVI calls AddRef() on the ISaviStream interface for each threat.
This ensures the ISaviStream object persists in case Disinfect() is called on the individual results
object.These references are released automatically when the client releases the results interface.

DisinfectStream() fails if the passed stream interface is in an address space that is inaccessible
from the SAVI process.

70

SAV Interface Developer Toolkit

16 Enumerator interfaces
The functions of an enumerator interface allow SAVI client code to work through a list of objects
of a particular type, for example the descriptions of the IDE files currently loaded. There are a
number of enumerator interfaces in SAVI. Each one has the same functions and parameters, but
the type of object enumerated is different for each.

Enumerator interfaces may be returned by a number of different SAVI interface functions.

SAVI currently offers the following enumerator interfaces, which are returned by the functions
listed.

Returns a list of IIDEDetails objects, each of which describes a virus
data file used by the current SAVI object. Returned by
GetVirusEngineVersion().

IEnumIDEDetails

Returns a list of ISweepResults. These describe the results obtained
from scanning a file, disk sector, etc. Returned by SweepFile(),
SweepLogicalSector(), etc.

IEnumSweepResults

Returns a list of IEngineConfig objects, each of which describes one of
the configuration settings available for a SAVI object. Returned by
GetConfigEnumerator().

IEnumEngineConfig

Returns a list of IVersionChecksum objects, which describe the
checksum of a SAVI component. Depending on platform,

IEnumVersionChecksum

IVersionChecksum objects may be returned for the SAVI library code
and/or the virus data. Returned by GetVirusEngineVersion().

Returns a list of IIdentityInfo objects, each of which describes an identity
in the virus database. Returned by the GetMatchingIdentities() and
GetAllIdentities() methods of IQueryLoadedProtection.

IEnumIdentityInfo

The number of functions of each enumerator interface are as follows:

Request a particular interface from an object. See QueryInterface (page 36).QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef (page
37).

AddRef

Release a reference. See Release (page 38).Release

Request the next item from the list.Next

Skip over the next items from the list.Skip

71

user manual

Reset the enumerator to the start of the list.Reset

Create a copy of the enumerator in its current state.Clone

16.1 Next
C++ syntax:

HRESULT SOPHOS_STDCALL Next(
 SOPHOS_ULONG cElement,
 void* pElement[],
 SOPHOS_ULONG* pcFetched
);

C syntax:

HRESULT SOPHOS_STDCALL Next(
 void* object,
 SOPHOS_ULONG cElement,
 void* pElement[],
 SOPHOS_ULONG* pcfetched
);

Description

Copies the next elements from the enumerator into a buffer supplied by the client.

Parameters

A pointer to the enumerator interface structure.object (C syntax only)

The number of elements requested, typically one.cElement

A pointer to a buffer allocated by the client that is big enough to accept
cElement elements.

pElement

A pointer to a location that will receive the actual number of elements
copied. NULL may be supplied if this value is not required.

pcFetched

Return values
If Next() succeeds, the return value is SOPHOS_S_OK. If Next() retrieves fewer elements than
requested, it returns SOPHOS_S_FALSE.

72

SAV Interface Developer Toolkit

Remarks
Next calls AddRef() on each interface pointer that it returns.Therefore the client must call Release()
when it has finished using each interface.

16.2 Skip
C++ syntax:

HRESULT SOPHOS_STDCALL Skip(
 SOPHOS_ULONG cElement
);

C syntax:

HRESULT SOPHOS_STDCALL Skip(
 void* object,
 SOPHOS_ULONG cElement
);

Description

Skips the next elements in the enumerator.

Parameters

A pointer to the enumerator interface structure.object (C syntax only)

The number of elements to skip.cElement

Return values
If Skip() succeeds, the return value is SOPHOS_S_OK. If Skip() skips fewer elements than were
requested, it returns SOPHOS_S_FALSE.

Remarks
None.

16.3 Reset
C++ syntax:

HRESULT SOPHOS_STDCALL Reset();

C syntax:

HRESULT SOPHOS_STDCALL Reset(void* object);

Description

Resets the enumerator so that the next call to Next() retrieves the first item in the enumerator.

73

user manual

Parameters

A pointer to the enumerator interface structure.object (C syntax only)

Return values
If Reset() succeeds, the return value is SOPHOS_S_OK.

Remarks
None.

16.4 Clone
C++ syntax:

HRESULT SOPHOS_STDCALL Clone(
 void** ppEnum
);

C syntax:

HRESULT SOPHOS_STDCALL Clone(
 void* object,
 void** ppEnum
);

Description

Creates a copy of the enumerator in its current state.

Parameters

A pointer to the enumerator interface structure.object (C syntax only)

A pointer to a location to which Clone() copies a pointer to the newly
created copy of the enumerator object.

ppEnum

Return values
If Clone() succeeds, the return value is SOPHOS_S_OK.

74

SAV Interface Developer Toolkit

Remarks
Clone() calls AddRef() on the new enumerator object before returning it to the client. Therefore
the client must call Release() when it has finished using the object. The new enumerator is an
exact copy of the enumerator that cloned it, including its internal state.

75

user manual

17 IIDEDetails
IIDEDetails is the interface to an object that represents an update file (IDE, UPD or VDL) in use
by the underlying scanning engine. The interface can be used to retrieve information about the
update file, such as its name. An enumerator of IIDEDetails is created by the
GetThreatEngineVersion() function in the ISavi2 and ISavi3 interfaces (see GetVirusEngineVersion
(page 42)).

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page 36).QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef (page
37).

AddRef

Release a reference. See Release (page 38).Release

Get the name of the update file.GetName

Get the type of the update file.GetType

Get the state of the update file.GetState

Get the date of the update file.GetDate

17.1 GetName
C++ syntax:

HRESULT SOPHOS_STDCALL GetName(
 U32 ArraySize,
 LPOLESTR pIDEName,
 U32* pIDENameLength
);

C syntax:

HRESULT SOPHOS_STDCALL GetName(
 void* object,
 U32 ArraySize,
 LPOLESTR pIDEName,
 U32* pIDENameLength
);

76

SAV Interface Developer Toolkit

Description

Gets the name of the update file.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The size of the buffer supplied by the client, in characters (not bytes).ArraySize

A pointer to a buffer supplied by the client, to which is copied the name of
the update file. This parameter may be supplied as NULL, in which case
ArraySize is ignored.

pIDEName

The length of the update file name (including terminator) is copied to this
location in characters (not bytes).This parameter may be supplied as NULL.

pIDENameLength

Return values
If GetName() succeeds, the return value is SOPHOS_S_OK. If the buffer supplied by the client
is not big enough, SOPHOS_SAVI_ERROR_BUFFER_TOO_SMALL is returned.

Remarks
If the size of the name string is required in advance then call the function with a NULL LPOLESTR
and the function will write the required buffer size (characters including terminator) to the name
length pointer.

17.2 GetType
C++ syntax:

HRESULT SOPHOS_STDCALL GetType(
 U32* pType
);

C syntax:

HRESULT SOPHOS_STDCALL GetType(
 void* object,
 U32* pType
);

Description

Gets the type of the update file.

Parameters

77

user manual

A pointer to the SAVI interface structure.object (C syntax only)

Receives the type of the update file.pType

Return values
If GetType() succeeds, the return value is SOPHOS_S_OK.

Remarks
The possible types of update file are as follows:

The file is an IDE file.SOPHOS_TYPE_IDE

The file is a UPD file.SOPHOS_TYPE_UPD

The file is a VDL file.SOPHOS_TYPE_VDL

The file is the main threat data file.SOPHOS_TYPE_MAIN_THREAT_DATA

The file type is unknown.SOPHOS_TYPE_UNKNOWN

17.3 GetState
C++ syntax:

HRESULT SOPHOS_STDCALL GetState(
 U32* pState
);

C syntax:

HRESULT SOPHOS_STDCALL GetState(
 void* object,
 U32* pState
);

Description

Gets the state of the update file.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

78

SAV Interface Developer Toolkit

Receives the state of the update file.pState

Return values
If GetState() succeeds the returned value is SOPHOS_S_OK.

Remarks
The possible states of an update file are as follows:

The update file is in use.SOPHOS_IDE_VDL_SUCCESS

A problem occurred loading the update file - it is not in
use.

SOPHOS_IDE_VDL_FAILED

The data format is an unrecognized version - the file
is not in use.

SOPHOS_IDE_VDL_INVALID_VERSION

The update file is in use, but more than 90 days old.SOPHOS_IDE_VDL_OLD_WARNING

17.4 GetDate
C++ syntax:

HRESULT SOPHOS_STDCALL GetDate(
 SYSTEMTIME* pDate
);

C syntax:

HRESULT SOPHOS_STDCALL GetDate(
 void* object,
 SYSTEMTIME* pDate
);

Description

Gets the file system time stamp of the update file.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Receives the file system time stamp of the update file.pDate

79

user manual

Return values
If GetDate() succeeds, the return value is SOPHOS_S_OK.

Remarks
None.

80

SAV Interface Developer Toolkit

18 ISweepResults
ISweepResults is the interface to an object that represents a threat found by a scanning function.
The interface can be used to retrieve information about the threat, such as its name. An enumerator
of ISweepResults is created by any scan or disinfection function in the ISavi2 or ISavi3 interfaces.
An ISweepResults interface pointer is passed as a parameter to Disinfect() to identify the threat
to be disinfected.

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Indicate whether the infected object can be disinfected.IsDisinfectable

Indicate the type of the virus infection.GetVirusType

Get the name of the virus.GetVirusName

Get the location of the virus infection.GetLocationInformation

18.1 IsDisinfectable
C++ syntax:

HRESULT SOPHOS_STDCALL IsDisinfectable(
 U32* pIsDisinfectable
);

C syntax:

HRESULT SOPHOS_STDCALL IsDisinfectable(
 void* object,
 U32* pIsDisinfectable
);

Description

Call this function to find out whether a threat found can be disinfected.

Parameters

81

user manual

A pointer to the SAVI interface structure.object (C syntax only)

Receives the value of the IsDisinfectable() flag. This value is either
SOPHOS_SAVI_NOT_DISINFECTABLE or
SOPHOS_SAVI_DISINFECTABLE.

pIsDisinfectable

Return values
If IsDisinfectable() succeeds, the returned value is SOPHOS_S_OK.

Remarks
None.

18.2 GetThreatType
C++ syntax:

HRESULT SOPHOS_STDCALL GetThreatType(
 U32* pThreatType
);

C syntax:

HRESULT SOPHOS_STDCALL GetThreatType(
 void* object,
 U32* pThreatType
);

Description

Call this function to discover how the threat was identified.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Receives the type of threat.pThreatType

Return values
If GetThreatType() succeeds, the return value is SOPHOS_S_OK.

82

SAV Interface Developer Toolkit

Remarks
The threat type is not generally of interest to a SAVI client. However, it takes the following values:

No threat found.SOPHOS_NO_THREAT

Threat found.SOPHOS_THREAT

Threat identity found.SOPHOS_THREAT_IDENTITY

Threat pattern found.SOPHOS_THREAT_PATTERN

Macintosh threat found.SOPHOS_THREAT_MACINTOSH

18.3 GetThreatName
C++ syntax:

HRESULT SOPHOS_STDCALL GetThreatName(
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

C syntax:

HRESULT SOPHOS_STDCALL GetThreatName(
 void* object,
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

Description

Gets the name of the threat.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The size of the buffer supplied by the client, in characters (not bytes).ArraySize

A pointer to a buffer supplied by the client, to which is copied the name
of the threat. This parameter may be supplied as NULL, in which case
ArraySize is ignored.

pName

83

user manual

The length of the threat name (including terminator) in characters (not
bytes) is copied to this location. This parameter may be supplied as
NULL.

pNameLength

Return values
If GetThreatName() succeeds, the return value is SOPHOS_S_OK. If the buffer supplied by the
client is not big enough, SOPHOS_SAVI_ERROR_BUFFER_TOO_SMALL is returned.

Remarks
None.

18.4 GetLocationInformation
C++ syntax:

HRESULT SOPHOS_STDCALL GetLocationInformation(
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

C syntax:

HRESULT SOPHOS_STDCALL GetLocationInformation(
 void* object,
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

Description

Gets the location of the threat.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The size of the buffer supplied by the client, in characters (not bytes).ArraySize

A pointer to a buffer supplied by the client, to which is copied the name
of the location where the threat was found. This parameter may be
supplied as NULL, in which case ArraySize is ignored.

pName

84

SAV Interface Developer Toolkit

The length of the threat name (including terminator) in characters (not
bytes) is copied to this location. This parameter may be supplied as
NULL.

pNameLength

Return values
If GetLocationInformation() succeeds, the return value is SOPHOS_S_OK. If the buffer supplied
by the client is not big enough, SOPHOS_SAVI_ERROR_BUFFER_TOO_SMALL is returned.

Remarks
None.

85

user manual

19 ISweepError
ISweepError is the interface to an object that holds information about an error. It can be used
from within the SAVI OnErrorFound() callback function to retrieve detailed information about the
error encountered.

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Get the location of the error.GetLocationInformation

Get the type of error that occurred.GetErrorCode

19.1 GetLocationInformation
C++ syntax:

HRESULT SOPHOS_STDCALL GetLocationInformation(
 U32 ArraySize,
 LPOLESTR pLocation,
 U32* pLocationNameLength
);

C syntax:

HRESULT SOPHOS_STDCALL GetLocationInformation(
 void* object,
 U32 ArraySize,
 LPOLESTR pLocation,
 U32* pLocationNameLength
);

Description

Gets the location of the error.

Parameters

86

SAV Interface Developer Toolkit

A pointer to the SAVI interface structure.object (C syntax only)

The total size of the buffer supplied to receive the name, in characters.ArraySize

A pointer to the buffer that will receive the location text.You may supply
NULL for this parameter, for example, to discover the required buffer size.

pLocation

This location receives the total length of the error location (including
terminator) in characters.

pLocationNameLength

Return values
If GetLocationInformation() succeeds, the return value is SOPHOS_S_OK. If the client supplies
a buffer that is not big enough, SOPHOS_SAVI_ERROR_BUFFER_TOO_SMALL is returned.

Remarks
None.

19.2 GetErrorCode
C++ syntax:

HRESULT SOPHOS_STDCALL GetErrorCode(
 HRESULT * ErrorCode
);

C syntax:

HRESULT SOPHOS_STDCALL GetErrorCode(
 void* object,
 HRESULT* ErrorCode
);

Description

Gets the type of error that occurred.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

This location receives the return value (error code). At present the following
values are possible:

ErrorCode

87

user manual

The file is encrypted.SOPHOS_SAVI_ERROR_FILE_ENCRYPTED

The file is corrupt.SOPHOS_SAVI_ERROR_CORRUPT

The file format is not supported.SOPHOS_SAVI_ERROR_NOT_SUPPORTED

The file cannot be opened.SOPHOS_SAVI_ERROR_COULD_NOT_OPEN

Note: See the SAV Interface Developer Toolkit supplement for information about other error
code values.

Return values
If GetErrorCode() succeeds the return value is SOPHOS_S_OK. Otherwise, one of the return
values listed above may be returned.

Remarks
None.

Example

HRESULT SOPHOS_STDCALL CSaviNotify::OnErrorFound(
 void* Token,
 REFIID ErrorIID,
 void* pError)
{
 try{
 HRESULT hr = SOPHOS_S_OK;
 HRESULT errorCode = SOPHOS_S_OK;
 ISweepError* INTerror = (ISweepError*)pError;
 OLECHAR* location = NULL;
 U32 locLength = 0;
 if((!pError) || (ErrorIID !=SOPHOS_IID_SWEEPERROR)) {
 return SOPHOS_E_INVALIDARG;
 }
 / *
 * Find out how long the location string is.
 * /
 hr = INTerror->GetLocationInformation(0, NULL,
 &locLength);
 if(FAILED(hr)) {
 hr = SOPHOS_E_UNEXPECTED;
 }
 else {
 / *
 * Make memory to store the location string.
 * /
 location = new OLECHAR[locLength];

88

SAV Interface Developer Toolkit

 / *
 * Now get the location string.
 * /
 hr = INTerror->GetLocationInformation(locLength,
 location, NULL);
 if(FAILED(hr)) {
 hr = E_UNEXPECTED;
 }
 else {
 / *
 * Now get the error code.
 * /
 hr = INTerror->GetErrorCode(&errorCode);
 if(FAILED(hr)) {
 hr = E_UNEXPECTED;
 }
 else {
 / *
 * Now output the information
 * /
 wprintf(L"——>Error 0x%08lx in %s\n",
 errorCode, location);
 hr = SOPHOS_SAVI_CBCK_CONTINUE_NEXT;
 }
 }
 delete [] location;
 }
 return hr;
 }
}

89

user manual

20 IEngineConfig
IEngineConfig is the interface to an object that represents a single configuration option of the
underlying threat engine.The interface can be used to retrieve information about the option, such
as its name.

An enumerator of IEngineConfig is created by GetConfigEnumerator() in the ISavi2 or ISavi3
interfaces. Although the IEngineConfig interface provides name and type of configuration options,
it cannot be used to read or modify values. The ISavi2 and ISavi3 interfaces provide those
functions.

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Get the name of the configuration option.GetName

Get the type of the configuration option.GetType

20.1 GetName
C++ syntax:

HRESULT SOPHOS_STDCALL GetName(
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

C syntax:

HRESULT SOPHOS_STDCALL GetName(
 void* object,
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

Description

90

SAV Interface Developer Toolkit

Gets the name of the configuration option.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The size of the buffer supplied by the client, in characters (not bytes).ArraySize

A pointer to a buffer supplied by the client to which will be copied the name
of the configuration option. This parameter may be supplied as NULL, in
which case ArraySize is ignored.

pName

The length of the configuration option name (including terminator) is copied
to this location in characters (not bytes). This parameter may be supplied
as NULL.

pNameLength

Return values
If GetName() succeeds, the return value is SOPHOS_S_OK. If the buffer supplied by the client
is not big enough, SOPHOS_SAVI_ERROR_BUFFER_TOO_SMALL is returned.

Remarks
If the size of the name string is required in advance then call the function with a NULL LPOLESTR
and the function will write the required buffer size (characters, including terminator) to the name
length pointer.

20.2 GetType
C++ syntax:

HRESULT SOPHOS_STDCALL GetType(
 U32* pType
);

C syntax:

HRESULT SOPHOS_STDCALL GetType(
 void* object,
 U32* pType
);

Description

Gets the type of a particular configuration option, one of the SOPHOS_TYPE_... constants, listed
in the SAV Interface Developer Toolkit supplement.

Parameters

91

user manual

A pointer to the SAVI interface structure.object (C syntax only)

Receives the type of the configuration option.pType

Return values
If GetType() succeeds, the returned value is SOPHOS_S_OK.

Remarks
None.

92

SAV Interface Developer Toolkit

21 IVersionChecksum
IVersionChecksum is the interface to an object that represents the checksum of one of the
underlying components of the running SAVI implementation. This allows SAVI clients to check
whether or not the fundamental scanning capability has been updated.

Depending on platform, IVersionChecksum objects may be returned for the SAVI library code
and/or the threat data. The interface will return both the checksum and which the component the
checksum relates to.

An enumerator of IVersionChecksum is created by passing SOPHOS_IID_ENUM_CHECKSUM
as the DetailsIID parameter to the GetThreatEngineVersion() function in the ISavi2 and ISavi3
interfaces (see GetVirusEngineVersion (page 42)).

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Get the type of the checksum.GetType

Get the value of the checksum.Get Value

21.1 GetType
C++ syntax:

HRESULT SOPHOS_STDCALL GetType (
 U32* pType
);

C syntax:

HRESULT SOPHOS_STDCALL GetType (
 void* object,
 U32* pType
);

Description

93

user manual

Gets the type of the checksum – i.e. what SAVI component is represented by the checksum. This
may be either SOPHOS_TYPE_VDATA (threat data) or SOPHOS_TYPE_BINARY (SAVI library).

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Receives the type of the checksum.pType

Return values
If GetType() succeeds, the returned value is SOPHOS_S_OK.

Remarks
None.

21.2 GetValue
C++ syntax:

HRESULT SOPHOS_STDCALL GetValue (
 U32* pValue
);

C syntax:

HRESULT SOPHOS_STDCALL GetValue (
 void* object,
 U32* pValue
);

Description

Gets the checksum value itself.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

Receives the value of the checksum.pValue

Return values
If GetValue() succeeds, the returned value is SOPHOS_S_OK.

94

SAV Interface Developer Toolkit

Remarks
None.

95

user manual

22 IClassFactory
ClassFactory is the interface used for creating instances of the SAVI object. An instance of
IClassFactory is obtained by calling DllGetClassObject() (see SAVI server entry point (page 35)).
See also the Win32 function CoGetClassObject().

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Creates an instance of a specified object.CreateInstance

Locks the SAVI server in memory.LockServer

22.1 CreateInstance
C++ syntax:

HRESULT SOPHOS_STDCALL CreateInstance(
 IUnknown* pUnkOuter,
 REFIID riid,
 void** ppObject
);

C syntax:

HRESULT SOPHOS_STDCALL CreateInstance(
 void* object,
 IUnknown* pUnkOuter,
 REFIID riid,
 void** ppObject
);

Description

Creates an instance of a SAVI object and requests it for an interface whose type is supplied in
the riid parameter. At present the only type supported is SOPHOS_IID_SAVI.

Parameters

96

SAV Interface Developer Toolkit

A pointer to the SAVI interface structure.object (C syntax only)

Not used, only present for compatibility with COM. This parameter must
always be supplied as NULL.

pUnkOuter

Identifiees the type of interface requested.riid

A pointer to a location to which CreateInstance() will copy a pointer to the
interface requested. If CreateInstance() fails, NULL will be copied.

ppObject

Return values
If CreateInstance() succeeds, the return value is SOPHOS_S_OK.

Remarks
None.

22.2 LockServer
C++ syntax:

HRESULT SOPHOS_STDCALL LockServer(
 SOPHOS_BOOL Lock
);

C syntax:

HRESULT SOPHOS_STDCALL LockServer(
 void* object,
 SOPHOS_BOOL Lock
);

Description

Locks the SAVI interface server in memory (Windows platforms only).

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

If this parameter is non-zero, the SAVI server is locked in memory.
Otherwise, it is unlocked.

Lock

97

user manual

Return values
If LockServer() is supported on this platform and it succeeds, the return value is SOPHOS_S_OK.

Remarks
On Windows platforms, this function can be used to lock the SAVI interface server in memory.
This feature might be useful to keep the server loaded when no SAVI interfaces are currently in
use, saving time the next time a SAVI interface is requested. Every call that locks the server must
be balanced by a call that unlocks the server.

On non-Windows platforms this function has no effect.

98

SAV Interface Developer Toolkit

23 Callback interfaces
The following group of interfaces are fundamentally different to the other SAVI interfaces in that
they are implemented by the client and called by SAVI. These interfaces may be used by clients
wishing to receive additional information from SAVI or notification about particular events.

A SAVI client wishing to receive these notifications can implement an object with the relevant
interface as described in the following sections.The pointer to an instance of one of these objects
is then passed to SAVI using RegisterNotification() in the SAVI interface (see RegisterNotification
(page 58)). The client must implement QueryInterface(), AddRef() and Release() (see IUnknown
(page 36)) as well as the notification functions themselves.

Many of the notification functions can return values to the SAVI object that indicate how SAVI
should then proceed.

23.1 ISweepNotify
This callback interface provides information on the progress of a scan.

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

This function is called by SAVI whenever it encounters a file or sub-file.OnFileFound

This function is called by SAVI whenever it has found a virus in an object.OnVirusFound

This function is called by SAVI whenever it is unable to scan an object
because of an error of some kind.

OnErrorFound

23.1.1 OnFileFound

C++ syntax:

HRESULT SOPHOS_STDCALL OnFileFound(
 void* Token,
 LPCOLESTR pName
);

99

user manual

C syntax:

HRESULT SOPHOS_STDCALL OnFileFound(
 void* object,
 void* Token,
 LPCOLESTR pName
);

Description

This function is called by SAVI whenever it encounters a file or sub-file. For example, if SweepFile()
has been called on a self-extracting Zip archive called test.exe which contains two files, file1.exe
and file2.dat, OnFileFound() will be called three times, once for test.exe and once for each
contained file. However, if SweepFile() has been called on a simple executable called prog.exe,
OnFileFound() will be called once, for prog.exe.

Parameters

A pointer to the interface structure.object (C syntax only)

This is the token value supplied to RegisterNotification() in the SAVI interface
when the notification object is registered. Typically it points to some data
within the SAVI client that the function needs to access.

Token

This is the name of the file or sub-file about to be scanned.pName

Return values
The implementation of this function must return one of the following values to determine how the
scan will proceed:

Go ahead and scan this sub-file.SOPHOS_SAVI_CBCK_CONTINUE_THIS

Skip this sub-file, go on to the next one.SOPHOS_SAVI_CBCK_CONTINUE_NEXT

Perform no further scanning in this file.SOPHOS_SAVI_CBCK_STOP

Adopt default behavior for this callback.SOPHOS_SAVI_CBCK_DEFAULT

The SOPHOS_SAVI_CBCK_DEFAULT return value from OnFileFound() is equivalent to
SOPHOS_SAVI_CBCK_CONTINUE_THIS.

If any value other than those in the above table is returned, SOPHOS_SAVI_ERROR_CALLBACK
is ultimately returned to the client where it invoked the scan.

100

SAV Interface Developer Toolkit

Remarks
The implementation of this function must be thread-safe if the SAVI client is multithreading. For
example, on Windows platforms all the functions in the interface should be protected with a critical
section.

The implementation of this function may not internally call any SAVI interface functions.

23.1.2 OnThreatFound

C++ syntax:

HRESULT SOPHOS_STDCALL OnThreatFound(
 void* token,
 REFIID ResultsIID,
 void* pResults
);

C syntax:

HRESULT SOPHOS_STDCALL OnThreatFound(
 void* object,
 void* token,
 REFIID ResultsIID,
 void* pResults
);

Description

This function is called by SAVI whenever it has found a threat.

Parameters

A pointer to the interface structure.object (C syntax only)

This is the token value supplied to RegisterNotification() in the SAVI
interface when the notification object is registered. Typically it points to
some data within the SAVI client that the function needs to access.

Token

This value indicates the type of object passed in the pResults parameter.
At present it is SOPHOS_IID_SWEEPRESULTS. Other types may be
supplied in the future.

ResultsIID

This parameter points to an object that describes the threat found. At
present it is always of type ISweepResults. Other types may be supplied
in the future.

pResults

101

user manual

Return values
The implementation of this function must return one of the following values to determine how the
scan will proceed:

Continue searching this file or sub-file for further
viruses. This feature is only useful for detecting
multiple infections, not generally necessary.

SOPHOS_SAVI_CBCK_CONTINUE_THIS

Go on to scan the next file or sub-file.SOPHOS_SAVI_CBCK_CONTINUE_NEXT

Perform no further scanning within this file or sub-file.SOPHOS_SAVI_CBCK_STOP

Adopt default behavior for this callback.SOPHOS_SAVI_CBCK_DEFAULT

The SOPHOS_SAVI_CBCK_DEFAULT return value from OnThreatFound() is equivalent to
SOPHOS_SAVI_CBCK_CONTINUE_NEXT.

If any value other than those in the above table is returned, SOPHOS_SAVI_ERROR_CALLBACK
is ultimately returned to the client where it invoked the scan.

Remarks
The implementation of this function must be thread-safe if the SAVI client is multithreading. For
example, on Windows platforms all the functions in the interface should be protected with a critical
section.

The implementation of this function may not internally call any SAVI interface functions.

23.1.3 OnErrorFound

C++ syntax:

HRESULT SOPHOS_STDCALL OnErrorFound(
 void* Token,
 REFIID ErrorIID,
 void* pError
);

C syntax:

HRESULT SOPHOS_STDCALL OnErrorFound(
 void* object,
 void* Token,
 REFIID ErrorIID,
 void* pError
);

102

SAV Interface Developer Toolkit

Description

This function is called by SAVI whenever it is unable to scan a file or sub-file.

Parameters

A pointer to the interface structure.object (C syntax only)

This is the token value that was supplied to RegisterNotification in the
SAVI interface when the notification object was registered. Typically it

Token

points to some data within the SAVI client that the function needs to
access.

This value indicates the type of object passed in the pError parameter.
At present it is SOPHOS_IID_SWEEPERROR. Other types may be
supplied in the future.

ErrorIID

This parameter points to an object that describes the error found. At
present it is always of type ISweepError, but other types may be supplied
in the future.

pError

Return values
The implementation of this function must return one of the following values to determine how the
scan will proceed:

Attempt to ignore the error and continue scanning
the file or sub-file.

SOPHOS_SAVI_CBCK_CONTINUE_THIS

Go on to scan the next file or sub-file.SOPHOS_SAVI_CBCK_CONTINUE_NEXT

Perform no further scanning within this file or sub-file.SOPHOS_SAVI_CBCK_STOP

Adopt default behavior for this callback.SOPHOS_SAVI_CBCK_DEFAULT

The SOPHOS_SAVI_CBCK_DEFAULT return value from OnErrorFound() is equivalent to
SOPHOS_SAVI_CBCK_CONTINUE_NEXT.

If any value other than those in the above table is returned, SOPHOS_SAVI_ERROR_CALLBACK
is ultimately returned to the client where it invoked the scan.

Remarks
The implementation of this function must be thread-safe if the SAVI client is multithreading. For
example, on Windows platforms all the functions in the interface should be protected with a critical
section.

The implementation of this function may not internally call any SAVI interface functions.

103

user manual

23.2 ISweepNotify2
ISweepNotify2 is a development of the ISweepNotify interface, described in ISweepNotify (page
99). It combines the member functions of ISweepNotify with two additional functions. General
comments about ISweepNotify also refer to ISweepNotify2.

The member functions are listed in the following table. For a description of the duplicated member
functions, see ISweepNotify (page 99).

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

This function is called by SAVI whenever it encounters a file or sub-file. See
OnFileFound (page 99).

OnFileFound

This function is called by SAVI whenever it has found a virus in an object.
See OnThreatFound (page 101).

OnVirusFound

This function is called by SAVI whenever it is unable to scan an object
because of an error of some kind. See OnErrorFound (page 102).

OnErrorFound

This function is called by SAVI whenever it has successfully identified a file
or subfile as a type recognized by SAVI.

OnClassification

This function is called by SAVI whenever it is engaged in a potentially lengthy
operation.

OkToContinue

23.2.1 OnClassification

C++ syntax:

HRESULT SOPHOS_STDCALL OnClassification(
 void* Token,
 U32 Classifn
);

C syntax:

HRESULT SOPHOS_STDCALL OnClassification(
 void* object,
 void* Token,

104

SAV Interface Developer Toolkit

 U32 Classifn
);

Description

This function is called by SAVI whenever it has successfully identified a file or sub-file (e.g. a file
contained within a Zip archive) as one of the types handled by the threat scanner.

Note: SAVI does not make calls to OnClassification() unless the StorageReport configuration
option is set to 1.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The token value supplied to RegisterNotification() when this notification
object was registered. Typically it points to some data within the SAVI
client that the notification function may need to access.

Token

One of the file classification codes from the ID_..._STORAGE list defined
in savitype.h.

Classifn

Return values
The implementation of this function must return one of the values in the following table to determine
how the scan will proceed:

Go ahead and scan this sub-file.SOPHOS_SAVI_CBCK_CONTINUE_THIS

Skip this sub-file, go on to the next one.SOPHOS_SAVI_CBCK_CONTINUE_NEXT

Perform no further scanning in this file.SOPHOS_SAVI_CBCK_STOP

Adopt default behavior for this callback
(CONTINUE_THIS).

SOPHOS_SAVI_CBCK_DEFAULT

The SOPHOS_SAVI_CBCK_DEFAULT return value from OnClassification() is equivalent to
SOPHOS_SAVI_CBCK_CONTINUE_THIS.

If any value other than those in the above table is returned, SOPHOS_SAVI_ERROR_CALLBACK
is ultimately returned to the client where it invoked the scan.

Remarks
Classification codes passed to the SAVI client using this interface function may be one of the
ID_..._STORAGE codes listed in savitype.h. Sophos is continually developing its products to

105

user manual

handle new and previously undetected file types. SAVI clients must therefore be written in such
a way as to cope with new classification codes that may not yet be in the published header.

The classification codes refer to the file or sub-file most recently notified through the OnFileFound()
function of this interface (see OnFileFound (page 99)).

Some file types may go through several stages of classification. For example, self-extracting
executables will first be identified as executable, then as self-extracting types, and then as
executable again as the underlying compressed executable file is processed. In this situation
there will be several calls to OnClassification() following a single call to OnFileFound().

The implementation of this function must be thread-safe if the SAVI client is multithreading. For
example, on Windows platforms all the functions in the interface should be protected with a critical
section.

The implementation of this function may not internally call any SAVI interface functions.

23.2.2 OkToContinue

C++ syntax:

HRESULT SOPHOS_STDCALL OkToContinue(
 void* Token,
 U16 Activity,
 U32 Extent,
 LPCOLESTR pTarget
);

C syntax:

HRESULT SOPHOS_STDCALL OkToContinue(
 void* object,
 void* Token,
 U16 Activity,
 U32 Extent,
 LPCOLESTR pTarget
);

Description

This function is repeatedly called by SAVI during internal threat scan operations that could
potentially use up large amounts of computer resources. Resources are assessed in terms of
processor cycles, disk space or simply elapsed time. The SAVI client can decide whether or not
to allow the scan to continue.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The token value supplied to RegisterNotification() when this notification
object was registered.Typically it points to some data within the SAVI
client that RegisterNotification() may need to access.

Token

106

SAV Interface Developer Toolkit

This parameter indicates which activity the threat scanner is currently
performing, and is set to one of the SOPHOS_ACTIVITY_... codes
defined in savitype.h.

Activity

This parameter indicates how much of the above activity has taken
place so far.

Extent

This parameter defines the name of the object upon which the Activity
is being performed.

Target

Return values
The implementation of this function must return one of the values in the following table to determine
how the scan will proceed.

Go ahead and scan this sub-file.SOPHOS_SAVI_CBCK_CONTINUE_THIS

Skip this sub-file, go on to the next one.SOPHOS_SAVI_CBCK_CONTINUE_NEXT

Perform no further scanning in this file.SOPHOS_SAVI_CBCK_STOP

Adopt default behavior for this callback
(CONTINUE_THIS).

SOPHOS_SAVI_CBCK_DEFAULT

The SOPHOS_SAVI_CBCK_DEFAULT return value from OkToContinue() is equivalent to
SOPHOS_SAVI_CBCK_CONTINUE_THIS.

If any value other than those in the above table is returned, SOPHOS_SAVI_ERROR_CALLBACK
is ultimately returned to the client where it invoked the scan.

Remarks
The client function may use this callback to interrupt processing if scanning a particular object
seems to be consuming excessive resources. It is up to the client to decide, based on the Activity
and Extent parameters, what action to take. This callback can be useful in terminating the
processing of files that maliciously target threat scanners.

Activity and Extent parameters may be interpreted as follows:

This activity code indicates that the threat scanner is
attempting to match the contents of the file with threat

SOPHOS_ACTVTY_CLASSIF

patterns. In this situation, the Extent parameter represents
the number of thousands of loops around the central
pattern-matching loop.

107

user manual

The threat scanner is decompressing the contents of a
compressed archive.The Extent parameter represents the

SOPHOS_ACTVTY_DECOMPR

number of kilobytes decompressed from the current
compressed stream.

The threat scanner has found another subfile inside an
archive-type parent. The Extent parameter represents the

SOPHOS_ACTVTY_NEXTFILE

number of files encountered in the parent archive. It should
be noted that if excessive subfiles are encountered within
an archive parent, the only appropriate return value to abort
processing is SOPHOS_SAVI_CBCK_STOP.

The implementation of this function must be thread-safe if the SAVI client is multithreading. For
example, on Windows platforms all the functions in the interface should be protected with a critical
section.

The implementation of this function may not internally call any SAVI interface functions.

23.3 ISweepDiskChange
A SAVI client that wishes to receive notifications when SAVI requires part of the threat data must
implement an object with this interface.This interface must be supplied to the RegisterNotification()
function in the SAVI interface before either Initialise() or InitialiseWithMoniker() is called.

The notification functions return values that indicate to SAVI how to proceed.

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

This function is called by SAVI whenever a new section of VDL is required.
Usually this is caused by the data being spread across more than one disk,

OnDiskChange

but may be caused by the data being spread across more than one file in
the same directory.

108

SAV Interface Developer Toolkit

23.3.1 OnDiskChange

C++ syntax:

HRESULT SOPHOS_STDCALL OnDiskChange(
 void* token,
 LPCOLESTR pFileName,
 U32 partNumber,
 U32 timesRound
);

C syntax:

HRESULT SOPHOS_STDCALL OnDiskChange(
 void* object,
 void* token,
 LPCOLESTR pFileName,
 U32 partNumber,
 U32 timesRound
);

Description

This function is invoked whenever a new section of VDL is required. Usually this is caused by the
data being spread across more than one disk, but it may be caused by the data being spread
across more than one file in the same directory.The implementation of this routine should prompt
the user to provide the required part of the threat data (e.g. by changing disks).

Parameters

A pointer to the interface structure.object (C syntax only)

The user value supplied to RegisterNotification() in the SAVI interface.Token

The filename of the next part of the VDL data that is being requested.pFileName

The part number being requested.partNumber

Counter to indicate the number of times this part has been requested
(zero for the first time).This allows clients to display a different message
to prompt the user on subsequent calls.

timesRound

Return values
If OnDiskChange() locates the requested threat data part file, SOPHOS_S_OK should be returned.
SAVI may proceed with loading threat data.

If OnDiskChange() fails to locate the requested threat data part file, SOPHOS_S_FALSE should
be returned. The loading of threat data should be aborted.

109

user manual

Remarks
None.

23.4 ISaviStream
A SAVI client using the SweepStream() or DisinfectStream() functions of the ISavi3 interface must
pass in a pointer to the ISaviStream interface.

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Read data from the stream.ReadStream

Write data to the stream.WriteStream

Seek within the stream.SeekStream

Return the length of the stream.GetLength

23.4.1 ReadStream

C++ syntax:

HRESULT SOPHOS_STDCALL ReadStream(
 void* lpvBuffer,
 U32 uCount,
 U32* bytesRead
);

C syntax:

HRESULT SOPHOS_STDCALL ReadStream(
 void* object,
 void* lpvBuffer,
 U32 uCount,
 U32* bytesRead
);

Description

110

SAV Interface Developer Toolkit

This function is called when SAVI wishes to read data from the stream represented by the
ISaviStream object.

Parameters

A pointer to the interface structure.object (C syntax only)

A pointer to a buffer (allocated by SAVI_ to which the data read must be
copied.

IpvBuffer

The number of bytes to be read from the stream.uCount

A pointer to a value that will hold the number of bytes successfully read
from the stream (this may be less than or equal to the number requested).

bytesRead

Return values
The implementation of this function should return one of the following values:

■ SOPHOS_S_OK if one or more bytes were returned.

■ SOPHOS_SAVI_ERROR_ STREAM_ READ_FAIL if there was an error and no bytes were
returned.

Attempting to read from a position past the end of the stream is an error.

Remarks
The number of bytes to be read from the stream is represented by a U32 value because it is not
logical to permit a request to read a negative number of bytes.

23.4.2 WriteStream

C++ syntax:

HRESULT SOPHOS_STDCALL WriteStream(
 const void* lpvBuffer,
 U32 uCount,
 U32* bytesWritten
);

C syntax:

HRESULT SOPHOS_STDCALL WriteStream(
 void* object,
 const void* lpvBuffer,
 U32 uCount,
 U32* bytesWritten
);

111

user manual

Description

This function is called when SAVI wishes to write data to the stream represented by the ISaviStream
object.

Parameters

A pointer to the interface structure.object (C syntax only)

A pointer to a buffer (allocated by SAVI) containing the data to be written.IpvBuffer

The number of bytes to be written (a maximum of 32K).uCount

A pointer to a value that holds the number of bytes successfully written
to the stream (this may be less than or equal to the number requested).

bytesWritten

Return values
The implementation of this function should return an appropriate value, likely to be SOPHOS_S_OK
or SOPHOS_SAVI_ERROR_STREAM_WRITE_FAIL.

Remarks
None.

23.4.3 SeekStream

C++ syntax:

HRESULT SOPHOS_STDCALL SeekStream(
 S32 lOffset,
 U32 uOrigin,
 U32* newPosition
);

C syntax:

HRESULT SOPHOS_STDCALL SeekStream(
 void* object,
 S32 lOffset,
 U32 uOrigin,
 U32* newPosition
);

Description

This function is called when SAVI wishes to move the stream pointer of the ISaviStream object.

Parameters

112

SAV Interface Developer Toolkit

A pointer to the interface structure.object (C syntax only)

The number of bytes to move the pointer.IOffset

A value representing the origin of the pointer movement.uOrigin

A pointer to a value that will hold the new position of the stream pointer
(relative to the start of the stream).

newPosition

Return values
The implementation of this function should return an appropriate value, likely to be SOPHOS_S_OK
or SOPHOS_SAVI_STREAM_SEEK_FAIL.

Remarks
This function should move the stream pointer by the number of bytes specified in lOffset, relative
to the position specified by uOrigin. uOrigin must be one of the following values (see savitype.h):
SAVISTREAM_SEEK_SET (seek relative to start of stream), SAVISTREAM_SEEK_CUR (seek
relative to current position) or SAVISTREAM_SEEK_END (seek relative to end of stream).

23.4.4 GetLength

C++ syntax:

HRESULT SOPHOS_STDCALL GetLength(
 U32* length
);

C syntax:

HRESULT SOPHOS_STDCALL GetLength(
 void* object,
 U32* length
);

Description

This function is called when SAVI wishes to determine the length of the stream represented by
the ISaviStream object.

Parameters

A pointer to the interface structure.object (C syntax only)

A pointer to a value that will hold the overall length of the stream (in
bytes).

length

113

user manual

Return values
The implementation of this function should return an appropriate value, likely to be SOPHOS_S_OK
or SOPHOS_SAVI_ERROR_STREAM_GETLENGTH_FAIL.

Remarks
None.

23.5 ISaviStream2
A SAVi client using the SweepStream() or DisinfectStream() methods of the ISavi3 interface may
pass a pointer to a stream object which implements either the ISaviStream or ISaviStream2
interface. Which of these interfaces is actually used is controlled by the StreamIID parameter of
the method. If scanning using ISaviStream then pass SOPHOS_IID_SAVISTREAM. For
ISaviStream2 pass SOPHOS_IID_SAVISTREAM2.

ISaviStream2 offers some advantages over ISaviStream. Firstly, it allows for stream sizes in
excess of the 4 Gbyte limit imposed by the 32 bit ISaviStream interface. Second, it allows SAVi
to request that the stream be truncated to a different length (usually zero). This offers more
complete disinfection, as viral fragments at the end of a stream can be effectively eliminated.

A reference will be taken on the stream object as a result of SAVi calling QueryInterface() to
request the passed interface.

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Read data from the stream.ReadStream

Write data to the stream.WriteStream

Seek within the stream.SeekStream

Return the length of the stream.GetLength

Set the length of the stream to the passed value.TruncateStream

114

SAV Interface Developer Toolkit

23.5.1 ReadStream

C++ syntax:

HRESULT SOPHOS_STDCALL ReadStream(
 void* lpvBuffer,
 U32 count,
 U32* bytesRead
);

C syntax:

HRESULT SOPHOS_STDCALL ReadStream(
 void* object,
 void* lpvBuffer,
 U32 count,
 U32* bytesRead
);

Description

This function is called when SAVi wishes to read data from the stream represented by the
ISaviStream2 object.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A pointer to a buffer (allocated by SAVI) to which the data read must be
copied.

IpvBuffer

The number of bytes to be read from the stream.uCount

A pointer to a value that will hold the number of bytes successfully read
from the stream (this may be less than or equal to the number requested).

bytesRead

Return values
The implementation of this function should return an appropriate value: SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_STREAM_READ_FAIL.

Remarks
In the situation where a read request simply cannot return the number of bytes requested, the
function should still return SOPHOS_S_OK. The number of bytes actually read can be returned
in *bytesRead. Even if this is zero, scanning may still continue. The …STREAM_READ_FAIL
return code indicates a fatal error in the stream and will cause scanning to be terminated.

115

user manual

23.5.2 WriteStream

C++ syntax:

HRESULT SOPHOS_STDCALL WriteStream (
 const void* lpvBuffer,
 U32 uCount,
 U32* bytesWritten
);

C syntax:

HRESULT SOPHOS_STDCALL WriteStream (
 void* object,
 const void* lpvBuffer,
 U32 uCount,
 U32* bytesWritten
);

Description

This function is called when SAVI wishes to write data to the stream represented by the
ISaviStream2 object.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

A pointer to a buffer (allocated by SAVI) containing the data to be written.IpvBuffer

The number of bytes to be written.uCount

A pointer to a value that holds the number of bytes successfully written to
the stream (this may be less than or equal to the number requested).

bytesWritten

Return values
The implementation of this function should return an appropriate value: SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_STREAM_WRITE_FAIL.

Remarks
In the situation where WriteStream cannot write the number of bytes requested, the function
should still return SOPHOS_S_OK. The …STREAM_WRITE_FAIL return code indicates a fatal
error in the stream and will cause scanning to be terminated.

116

SAV Interface Developer Toolkit

23.5.3 SeekStream

C++ syntax:

HRESULT SOPHOS_STDCALL SeekStream (
 S32 lOffsetLo,
 S32 lOffsetHi,
 U32 uOrigin,
 U32* newPosLo,
 U32* newPosHi
);

C syntax:

HRESULT SOPHOS_STDCALL SeekStream (
 void* object,
 S32 lOffsetLo,
 S32 lOffsetHi,
 U32 uOrigin,
 U32* newPosLo,
 U32* newPosHi
);

Description

This function is called when SAVI wishes to move the stream pointer of the ISaviStream2 object.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The low 32 bits of the requested seek offset.IOffsetLo

The high 32 bits of the requested seek offset.IOffsetHi

A value representing the origin of the pointer movement.uOrigin

The low 32 bits of the resultant stream pointer value.newPosLo

The high 32 bits of the resultant stream pointer value.newPosHi

Return values
The implementation of this function should return an appropriate value: SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_STREAM_SEEK_FAIL.

117

user manual

Remarks
Requests to seek beyond the 'end' of the stream may just indicate some corruption in the contents
of the stream being scanned and should not result in an error return.The …STREAM_SEEK_FAIL
return code indicates a fatal error in the stream and will cause scanning to be terminated.

The value passed in uOrigin will be one of SAVISTREAM_SEEK_SET, SAVISTREAM_SEEK_CUR
or SAVISTREAM_SEEK_END, which follow the normal semantics of seek functions.

23.5.4 GetLength

C++ syntax:

HRESULT SOPHOS_STDCALL GetLength (
 U32* lengthLo,
 U32* lengthHi
);

C syntax:

HRESULT SOPHOS_STDCALL GetLength (
 void* object
 U32* lengthLo,
 U32* lengthHi
);

Description

This function is called when SAVI wishes to determine the length of the stream represented by
the ISaviStream2 object.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The low 32 bits of the stream length.lengthLo

The high 32 bits of the stream length.lengthHi

Return value
The implementation of this function should return an appropriate value: SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_STREAM_GETLENGTH_FAIL.

Remarks
The …STREAM_GETLENGTH_FAIL return code indicates a fatal error in the stream and will
cause scanning to be terminated.

118

SAV Interface Developer Toolkit

23.5.5 TruncateString

C++ syntax:

HRESULT SOPHOS_STDCALL TruncateStream (
 U32 lengthLo,
 U32 lengthHi
);

C syntax:

HRESULT SOPHOS_STDCALL TruncateStream (
 void* object,
 U32 lengthLo,
 U32 lengthHi
);

Description

This function is called when SAVI wishes to modify the length of the stream represented by the
ISaviStream2 object.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The low 32 bits of the new stream length.lengthLo

The high 32 bits of the new stream length.lengthHi

Return value
The implementation of this function should return an appropriate value: SOPHOS_S_OK or
SOPHOS_SAVI_ERROR_STREAM_TRUNC_FAIL.

Remarks
This function will normally be (a) called as part of DisinfectStream() and (b) will usually just request
that the stream length is truncated to zero.

The …STREAM_TRUNC_FAIL return code indicates a fatal error in the stream and will cause
scanning to be terminated.

23.6 IChangeNotify
This callback interface notifies the client that a change to one or more SAVI components has
occurred, either as a result of an update or through a SAVI object making a call to
LoadThreatData().

119

user manual

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Invoked whenever virus data or a binary component has changed.OnChange

23.6.1 OnChange

C++ syntax:

HRESULT SOPHOS_STDCALL OnChange (
 void* Token
);

C syntax:

HRESULT SOPHOS_STDCALL OnChange (
 void* object,
 void* Token
);

Description

Notifies client that a change to SAVI has taken place.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The user value supplied to RegisterNotification in the SAVI interface.Token

Return values
Return value from client is ignored.

Remarks
None.

120

SAV Interface Developer Toolkit

23.7 ISeverityNotify
This callback interface provides additional information about errors detected by SAVI. Not only
does it call back to the client on intermediate errors but it also provides a severity rating for every
error reported.

The member functions are as follows:

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Called whenever an error condition is detected by the SAVI object.OnSevereError

23.7.1 OnSevereError

C++ syntax:

HRESULT SOPHOS_STDCALL OnSevereError (
 void* Token,
 HRESULT ErrorCode,
 U32 Severity
);

C syntax:

HRESULT SOPHOS_STDCALL OnSevereError (
 void* object,
 void* Token,
 HRESULT ErrorCode,
 U32 Severity
);

Description

Provides client with details of an error detected during a SAVI method call.

Parameters

A pointer to the SAVI interface structure.object (C syntax only)

The user value supplied to RegisterNotification in the SAVI interface.Token

121

user manual

The error that has occurred (see the SAV Interface Developer Toolkit
supplement for full list of HRESULT error codes.)

ErrorCode

The severity of the error (see remarks).Severity

Return values
Return value from client is ignored.

Remarks
The possible severity values passed in calls to OnSevereError are as follows:

No error encountered.SOPHOS_ERROR_SEVERITY_SUCCESS

Single function failure - not likely to
recur.

SOPHOS_ERROR_SEVERITY_TRANSIENT

Severity not determined.SOPHOS_ERROR_SEVERITY_UNKNOWN

Wait until threat data update is
complete.

SOPHOS_ERROR_SEVERITY_SUSPEND_ACTIVITY

Reinitialize SAVI interface before
continuing.

SOPHOS_ERROR_SEVERITY_REINIT_SAVI

Reinstall Sophos Anti-Virus.SOPHOS_ERROR_SEVERITY_REINSTALL_SAV

Permanent, unrecoverable error.SOPHOS_ERROR_SEVERITY_CRITICAL

122

SAV Interface Developer Toolkit

24 IQueryLoadedProtection
The IQueryLoadedProtection and associated interfaces provides a means of determining which
identities are loaded in the threat database and some details about them.

The IQueryLoadedProtection interface can only be obtained by using QueryInterface on an existing
SAVI interface. It cannot be explicitly created for example.

Request a particular interface from an object. See QueryInterface (page
36).

QueryInterface

Add a reference to the interface, preventing its destruction. See AddRef
(page 37).

AddRef

Release a reference. See Release (page 38).Release

Get a list of all identities matching a sub-string.GetMatchingIdentities

Get a list of all identities.GetAllIdentities

Get the information for a single named identity.GetSingleIdentity

24.1 GetMatchingIdentities
C++ syntax:

HRESULT SOPHOS_STDCALL GetMatchingIdentities(LPCOLESTR
pIdentityName,
 REFIID IdListIID
 void** ppIdList,
 U32* pMatchingIdCount
);

C syntax:

HRESULT SOPHOS_STDCALL GetMatchingIdentities(
 void* object,
 LPCOLESTR pIdentityName,
 REFIID IdListIID,
 void** ppIdList,
 U32* pMatchingIdCount
);

Description

123

user manual

Returns a list and the number of entries in the list of identities matching a given sub-string.

Parameters

(C syntax only) A pointer to the IQueryLoadedProtection interface structure.Object

The sub-string against which the identity names are to be matched. The
string is case insensitive. Wildcard matches are not supported.

pIdentityName

The IID specifying the type of identity information object required. Must
be SOPHOS_IID_ENUM_IDENTITY_INFO.

ppIdListIID

An address of a location to receive the address of the required enumerator.
This may be NULL if the count is not required.

ppIdList

The address of a location to receive the number of matching identities.
This may be NULL if the content is not required.

pMatchingIdCount

Remarks
One of ppIdLIst and pMatchingIdCount must be non-NULL.

The string compare is case insensitive and looks for a sub-string and compares the given string
against the full name of the threat as returned by the GetName function of the IdentityInfo interface.

24.2 GetAllIdentities
C++ syntax:

HRESULT SOPHOS_STDCALL GetAllIdentities(
 REFIID IdListIID,
 void** ppIdList,
 U32* pMatchingIdCount
);

C syntax:

HRESULT SOPHOS_STDCALL GetAllIdentities(
 void* object,
 REFIID IdListIID,
 void** ppIdList,
 U32* pMatchingIdCount
);

Description

Returns a list and the number of entries in the list of all identities.

Parameters

124

SAV Interface Developer Toolkit

(C syntax only) A pointer to the IQueryLoadedProtection interface structure.Object

The IID specifying the type of identity information object required. Must
be SOPHOS_IID_ENUM_IDENTITY_INFO.

ppIdListIID

An address of a location to receive the address of the required enumerator.
This may be NULL if identity information is not required.

ppIdList

The address of a location to receive the number of matching identities.
This may be NULL if the count is not required.

pMatchingIdCount

Remarks
One of ppIdLIst and pMatchingIdCount must be non-NULL.

24.3 GetSingleIdentity
C++ syntax:

HRESULT SOPHOS_STDCALL GetSingleIdentity(
 LPCOLESTR pIdentityName,
 REFIID IdInfoIID,
 void** ppIdInfo
);

C syntax:

HRESULT SOPHOS_STDCALL GetSingleIdentity(
 void* object,
 LPCOLESTR pIdentityName,
 REFIID IdInfoIID,
 void** ppIdInfo
);

Description

Returns the identity information for the identity with the given name.

Parameters

(C syntax only) A pointer to the IQueryLoadedProtection interface structure.Object

The name of the desired identity. The name is case insensitive.pIdentityName

The IID specifying the type of identity information object required. Must
be SOPHOS_IID_IDENTITY_INFO.

ppIdInfoIID

125

user manual

An address of a location to receive the address of the required enumerator.
This may be NULL if the count is not required.

ppIdInfo

An address of a location to receive the address of the required IdentityInfo.pMatchingIdCount

Remarks
The string compare is case insensitive and compares the given string against the full name of the
threat as returned by the GetName function of the IdentityInfo interface.

126

SAV Interface Developer Toolkit

25 IIdentityInfo
IIdentityInfo is the interface to an object that represents some details of a threat database identity.
The interface can be used to retrieve information about the identitity, such as its name.

An enumerator of IIdentityInfo is created by the GetMatchingIdentities() and GetAllIdentities()
methods of IQueryLoadedProtection.

StandardQueryInterface

StandardAddRef

StandardRelease

Gets the name of the threatGetName

Gets the name of the threat but without the type qualifierGetNameWithoutType

Is the threat a variant on a base threatIsVariant

Is the identity for a family of threatsIsFamily

25.1 GetName
C++ syntax:

HRESULT SOPHOS_STDCALL GetName(
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

C syntax:

HRESULT SOPHOS_STDCALL GetName(
 void* object,
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

Description

GetName returns the name of the threat for which the identity is targeted, e.g. W32/Netsky-G.

127

user manual

Parameters

(C syntax only) A pointer to the IIdentityInfo interface structure.Object

The size in characters of the buffer specified by pName.ArraySize

The address of a location to receive the name of the threat. pName may
be NULL if the name is not required.

pName

The address of a location to receive the actual length of the name.
pNameLength may be NULL if the length is not required.

pNameLength

Remarks
Either of pName and pNameLength may be NULL, but not both.

The lengths are in characters, not bytes, and must include the terminator character.

25.2 GetNameWithoutType
C++ syntax:

HRESULT SOPHOS_STDCALL GetNameWithoutType(
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

C syntax:

HRESULT SOPHOS_STDCALL GetNameWithoutType(
 void* object,
 U32 ArraySize,
 LPOLESTR pName,
 U32* pNameLength
);

Description

GetNameWithoutType returns the name of the threat for which the identity is targeted but without
the threat type qualifier, e.g. Netsky-G.

Parameters

(C syntax only) A pointer to the IIdentityInfo interface structure.Object

The size in characters of the buffer specified by pName.ArraySize

128

SAV Interface Developer Toolkit

The address of a location to receive the name of the threat. pName may
be NULL if the name is not required.

pName

The address of a location to receive the actual length of the name.
pNameLength may be NULL if the length is not required.

pNameLength

Remarks
Either of pName and pNameLength may be NULL, but not both.

The lengths are in characters, not bytes, and must include the terminator character.

25.3 IsVariant
C++ syntax:

HRESULT SOPHOS_STDCALL IsVariant(
 U32* pVariant
);

C syntax:

HRESULT SOPHOS_STDCALL IsVariant(
 void* object,
 U32* pVariant
);

Description

IsVariant returns whether the threat for which the identity is targeted is a variant of another threat.

Parameters

(C syntax only) A pointer to the IIdentityInfo interface structure.Object

The address of a location to receive a boolean value which is non-zero if
the threat is a variant.

pVariant

Remarks
None.

129

user manual

25.4 IsFamily
C++ syntax:

HRESULT SOPHOS_STDCALL IsFamily(
 U32* pFamily
);

C syntax:

HRESULT SOPHOS_STDCALL IsFamily(
 void* object,
 U32* pFamily
);

Description

IsFamily returns whether the identity is targeted at a family of threats.

Parameters

(C syntax only) A pointer to the IIdentityInfo interface structure.Object

The address of a location to receive a boolean value which is non-zero if
the identity is targeted at a family of threats.

pFamily

Remarks
None.

130

SAV Interface Developer Toolkit

26 Technical support
You can find technical support for Sophos products in any of these ways:

■ Visit the SophosTalk community at community.sophos.com/ and search for other users who
are experiencing the same problem.

■ Visit the Sophos support knowledgebase at www.sophos.com/en-us/support.aspx.

■ Download the product documentation at www.sophos.com/en-us/support/documentation.aspx.

■ Open a ticket with our support team at
https://secure2.sophos.com/support/contact-support/support-query.aspx.

131

user manual

http://community.sophos.com
http://www.sophos.com/en-us/support.aspx
http://www.sophos.com/en-us/support/documentation.aspx
https://secure2.sophos.com/support/contact-support/support-query.aspx

27 Legal notices
Copyright © 2008–2015 Sophos Limited. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise unless you are either a valid licensee where
the documentation can be reproduced in accordance with the license terms or you otherwise have
the prior permission in writing of the copyright owner.

Sophos and Sophos Anti-Virus are registered trademarks of Sophos Limited and Sophos Group.
All other product and company names mentioned are trademarks or registered trademarks of
their respective owners.

132

SAV Interface Developer Toolkit

	Contents
	1 Document revision history
	2 About SAVI
	2.1 What is SAVI?
	2.2 The SAVI programming paradigm
	2.3 SAVI programming methods
	2.3.1 Sophos standard data types
	2.3.2 String manipulation

	2.4 How to use SAVI
	2.4.1 Using C++ syntax or C syntax
	2.4.2 Calling SAVI from other languages
	2.4.3 Initialising GUIDs
	2.4.4 Using enumerators
	2.4.5 Testing results of SAVI function calls

	2.5 SAVI threading model
	2.6 Macintosh file handling
	2.7 SAVI version 3 changes
	2.7.1 Additional scanning functionality
	2.7.2 Threat data loading

	2.8 SAVI version 4 changes
	2.8.1 New callback interfaces
	2.8.2 Automatic scan abort

	3 Initializing SAVI
	3.1 Initializing the interface using COM and C++
	3.2 Initializing the interface using C

	4 Configuring SAVI
	4.1 The configuration interface
	4.2 Retrieving configuration options
	4.3 Using a configuration option
	4.4 Getting a configuration value
	4.5 Setting a configuration value
	4.6 Default configurations

	5 SAVI callbacks
	5.1 Using callbacks
	5.2 Creating callback objects
	5.3 Registering callbacks

	6 Using SAVI
	6.1 Obtaining version information
	6.2 Scanning for threats
	6.2.1 Scanning files
	6.2.2 Scanning disk sectors
	6.2.3 Scanning memory
	6.2.4 Advanced scanning

	6.3 Handling the results of a scan
	6.3.1 Testing return codes
	6.3.2 Obtaining threat information
	6.3.3 Disinfection

	7 Terminating the interface
	8 Updating SAVI
	9 SAVI Interfaces
	10 Return values
	11 SAVI configuration options
	12 SAVI server entry point
	13 IUnknown
	13.1 QueryInterface
	13.2 AddRef
	13.3 Release

	14 ISavi2
	14.1 Initialise
	14.2 InitialiseWithMoniker
	14.3 Terminate
	14.4 GetVirusEngineVersion
	14.5 SweepFile
	14.6 DisinfectFile
	14.7 SweepLogicalSector
	14.8 SweepPhysicalSector
	14.9 DisinfectLogicalSector
	14.10 DisinfectPhysicalSector
	14.11 SweepMemory
	14.12 Disinfect
	14.13 SetConfigDefaults
	14.14 SetConfigValue
	14.15 GetConfigValue
	14.16 GetConfigEnumerator
	14.17 RegisterNotification

	15 ISavi3
	15.1 LoadVirusData
	15.2 SweepBuffer
	15.3 SweepHandle
	15.4 SweepStream
	15.5 DisinfectBuffer
	15.6 DisinfectHandle
	15.7 DisinfectStream

	16 Enumerator interfaces
	16.1 Next
	16.2 Skip
	16.3 Reset
	16.4 Clone

	17 IIDEDetails
	17.1 GetName
	17.2 GetType
	17.3 GetState
	17.4 GetDate

	18 ISweepResults
	18.1 IsDisinfectable
	18.2 GetThreatType
	18.3 GetThreatName
	18.4 GetLocationInformation

	19 ISweepError
	19.1 GetLocationInformation
	19.2 GetErrorCode

	20 IEngineConfig
	20.1 GetName
	20.2 GetType

	21 IVersionChecksum
	21.1 GetType
	21.2 GetValue

	22 IClassFactory
	22.1 CreateInstance
	22.2 LockServer

	23 Callback interfaces
	23.1 ISweepNotify
	23.1.1 OnFileFound
	23.1.2 OnThreatFound
	23.1.3 OnErrorFound

	23.2 ISweepNotify2
	23.2.1 OnClassification
	23.2.2 OkToContinue

	23.3 ISweepDiskChange
	23.3.1 OnDiskChange

	23.4 ISaviStream
	23.4.1 ReadStream
	23.4.2 WriteStream
	23.4.3 SeekStream
	23.4.4 GetLength

	23.5 ISaviStream2
	23.5.1 ReadStream
	23.5.2 WriteStream
	23.5.3 SeekStream
	23.5.4 GetLength
	23.5.5 TruncateString

	23.6 IChangeNotify
	23.6.1 OnChange

	23.7 ISeverityNotify
	23.7.1 OnSevereError

	24 IQueryLoadedProtection
	24.1 GetMatchingIdentities
	24.2 GetAllIdentities
	24.3 GetSingleIdentity

	25 IIdentityInfo
	25.1 GetName
	25.2 GetNameWithoutType
	25.3 IsVariant
	25.4 IsFamily

	26 Technical support
	27 Legal notices

