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1 Abstract 
OVM (Open Verification Methodology) is the result of joint development by Cadence and Mentor 
Graphics. It combines the Cadence incisive Plan-to-Closure Universal Reuse Methodology (URM) and 
the Mentor Advanced Verification Methodology (AVM).  

  
As users of both AVM and URM methodologies, we have existing testbenches that were developed for 
each individual methodology. During the process of migrating from our existing AVM-only and URM-
only testbench to OVM testbench, we were able to understand better on how the two methodologies 
complement each other in the OVM.     
 
Using the same design under verification, we will describe the testbench facilities in each methodology 
and compare the similarities and differences between them. We will specifically discuss aspects of 
stimulus generation, response checking, scoreboarding, and testbench architecture in each of these 
methodologies. Finally, we will briefly describe our OVM testbench’s configuration control mechanism, 
virtual sequence, and factory capabilities. 
 
Finally, we will talk about generating an OVM based testbench automatically using a template 
generator.  The template generator allows users to generate a customized OVM-based environment, it 
enforces a consistent look and feel, and it enables rapid development and maintenance of the verification 
code across multiple-sites and cultural barriers. 



 

 

2 Testbench architectures 
This section describes the PW Router design and gives a high-level overview of the URM, AVM, and 
OVM testbench architectures that we put together to verify the PW Router design.   

2.1 PW Router Design 
At Paradigm Works, we developed a plethora of testbenches against an in-house router Design-Under-
Verification (DUV) called the “PW Router”. The design has a single input packet interface and three 
output packet interfaces. The host interface allows access to the status and control registers in the design. 
Figure 1 shows a general block diagram of the device. 
 
A packet parity check verifies the packet contents entering and exiting the design. The host processor 
may configure the design to use either odd or even parity checking. Additionally, the host may configure 
the design to drop packets that fail the parity check. 
 
Furthermore, the PW Router design has many features that are beyond the scope of this paper: 
• Interrupt controller 
• Packet length check engine 
• Forwarding engine that directs packets to the packet output ports based on the address and priority 

fields in the packet.  The router intermediately stores packets to one of the four external memories 
that are represented by the router’s priority.   

• The PW Router may be configured using fixed or round robin arbitration schemes.  
• Packet FIFO underflow and overflow error detection logic 
•  Packet segmentation engine 
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Figure 1 PW Router DUV 

2.2 AVM Testbench  
Figure 2 shows the AVM Testbench that we put together for the PW Router DUV. The AVM Cookbook 
states that an AVM Testbench is broken-up into two domains; the operational domain and the analysis 
domain. The operational domain is the set of components, including the DUV, that operate the DUV. 
This includes the stimulus generators, BFMs and similar components, the DUV, responder and driver —
along with the environment components that directly feed or respond to drivers and responders. The rest 
of the testbench components, i.e., monitors, scoreboards, coverage collectors and controller, comprise 
the analysis domain. These are the components that collect information from the operational domain.i 
 
One large way AVM promotes component reuse is by using TLM (Transaction-Level Modeling). TLM 
allows the testbench components to communicate with each other by sending transactions back and forth 
through channels.  Using transactions eliminates the need for referencing testbench-specific components 
(pointers) within other components that diminished reuse. TLM is based on the OSCI Standard. The 
abstraction level of the transaction may vary at the product-description rather than the physical-wire 
level. This allows components to easily be swapped in and out without affecting the rest of the 
environment. 
 
A special TLM port, called an analysis port, forms the boundary between the operational domain and the 
analysis domain in an AVM testbench. The analysis domain consists of a collection of components that 
is responsible for analyzing the behaviors observed by the monitors in the testbench. A monitor is 
responsible for converting the operational domain’s bus activity into higher-level abstraction 
transactions. The monitor component (publisher) broadcasts transactions in zero-time (non-blocking) to 



 

 

one or more analysis domain components (subscribers). The subscribers are able to store an unbounded 
amount of transaction in its analysis fifo in the case if the subscriber operates slower than the publisher.       
 
The AVM Cookbook points out that the analysis domain components answer two questions: 

• Does it work?  
• Are we done? 

 
Scoreboard components are recommended to determine if the design is working. Scoreboards collect a 
list of expected transfers (perhaps through the use of a transfer function) and compare them against the 
actual DUV response. Monitor components may also use SystemVerilog Assertions (SVA) to verify the 
correctness of the DUV. In general, analysis domain components send error status to the test controller. 
The test controller is responsible for taking appropriate testbench action based on its configuration and 
the error condition. 
 
Coverage components answer the “Are we done” question. Coverage components contain 
SystemVerilog functional coverage constructs. Although the AVM Cookbook also recommends feeding 
back information based on coverage data into the test controller for reactive style testing, at Paradigm 
Works, it is our experience that reactive testing is impractical because it does not scale well with 
complex SoC designs.        
 
The SystemVerilog interface is a module-like construct that contains pins that can be connected to 
modules and classes. Additionally, AVM recommends using ModPorts to setup and ensure proper pin 
direction. 
Figure 2 shows the two domains and the TLM ports. 
 



 

 

 
Figure 2 AVM Testbench Architecture 

 

2.3 URM Testbench  
The URM SystemVerilog Class-Based Implementation is an implementation of the Cadence Plan-to-
Closure Universal Reuse Methodology (URM). It is a complete reuse methodology that codifies the best 
practices for Universal Verification Components (UVC) development targeted at verifying large gate-
count, IP-based SoCs. The methodology delivers a common objected-oriented UVC usage model, and 
ensures that all URM-compliant UVCs will inter-operate seamlessly regardless of origin or language 
implementation.ii 
 
URM Testbench Overview 
Figure 3 shows the URM testbench architecture that we put together for the PW Router DUV.  The 
URM Testbench architecture is layered and highly configurable.  The layering allows for a high degree 
of reuse at the protocol and module level of abstraction. The URM configuration mechanism allows 
fields to be configured in a verification component at various layers within the testbench.  In addition, 
the URM includes factory capabilities.  All these concepts are described in detail later in this paper. 
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Figure 3 URM Testbench Architecture 

 
 
Interface UVC & Agents 
These are reusable verification components specific to a particular protocol. Although every UVC 
implements a different protocol or design, all UVCs have common stimulus-generation and 
configuration APIs. 
 
An Interface UVC is made up of one or more agents.  An agent is a component that connects to a single 
port on the DUV. It is made up of a monitor, driver, and a BFM (example agent shown Figure 4). An 
agent can be configured as either active or passive.  
 
The testbench needs to drive data onto ports that are located on the peripheral of the DUV. An active 
agent satisfies this objective.  In active mode, the agent contains a driver, BFM and a monitor. Stimulus 
is driven onto the bus via the BFM/driver and the monitor captures bus activity. 
  



 

 

Sometimes a port is located deep inside the DUV and it is not accessible at the boundary of the DUV. 
With this topology, the agent must be configured in passive mode. In passive mode, the agent includes 
only a monitor - the BFM and driver are not included inside the agent. A passive agent only captures bus 
activity and does not drive stimulus into the DUV. 
 
The topology of the pw_router DUV consists of one input port and three output ports. For our PW 
Router URM testbench, we developed an interface UVC called packet_env which is synonymous with 
the “Packet Interface UVC”. The  packet_env  includes one master agent and three slave agents (Figure 
3).  The master agent is connected to the input port and the slave agents are connected to the output 
ports. In addition, we developed another interface UVC called the host_env which is responsible for 
driving and monitoring host traffic.   
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Figure 4 Agent 

 
 

URM Testbench 
The complete PW Router URM testbench is shown in Figure 3. It includes two container layers that are 
specific to the testbench (i.e. they are not intended for reuse): the pw_router_sve and test cases.   
 
The pw_router_sve container encapsulates the reusable interface UVCs. This layer may encapsulate 
sophisticated module UVC(s) and virtual sequences but we opted to exclude these components in this 
version of our URM testbench due to time constraints.  The test cases layer allows users (sometimes 
referred to as test writers) an opportunity to customize testbench controls. All the agents inside the 
pw_router_sve are configured in active mode. This is because all the ports are located on the peripheral 
of the DUV. 



 

 

 

2.4 OVM Testbench  
OVM combines concepts from both AVM and URM. As described above the concepts and capabilities 
of these two methodologies are different. In addition, OVM is backwards compatible with both AVM 
and URM code. Note that there are some minor nomenclature changes for OVM as shown below in 
Table 1. The remainder of this document will refer to the OVM naming convention. 
 

URM name OVM name 
BFM Driver 
Driver Sequencers 

Table 1 Differences in URM and OVM names 

 
OVM Planning 
According to the Cadence OVM User Manual, the OVM methodology provides the best framework to 
achieve coverage driven verification (CDV). CDV combines automatic test generation, self-checking 
testbenches, and coverage metrics to significantly reduce the time spent verifying a design. The purpose 
of CDV is to:iii 

• Eliminate the effort and time spent creating hundreds of tests. 
• Ensure thorough verification using up-front goal setting. 
• Receive early error notifications and deploy run-time checking and error analysis to simplify 

debugging. 
 
It is vital that an OVM Architecture is planned before any code implemented. OVM is derived from 
AVM and URM. It is backwards compatible to both these methodologies. OVM includes a reference 
manual with low-level details on the library functions but does NOT include a user manual.  The usage 
of the library is unclear and somewhat open ended. A verification methodology manual is a key 
ingredient of for users to understand how to utilize the library.  Both URM and AVM include a manual 
with significantly different methodology styles. Since OVM is backwards computable either one of 
these methodologies may be applied to an OVM testbench. Therefore, OVM users must make a decision 
on what path they intend on following and make important decisions on issues such as those listed in 
Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

  AVM URM OVM 
Testbench Layered 

- Test Controller 
- Operational Domain
- Analysis Domain 

Layered 
-Test cases 
-SVE  
-UVCs 

Support both 

Components Flat/ 
TLM Channels 

Layered/ 
Structured / 
Configurable 

Support both 

Stimulus avm_random_stimulusSequences Support both 

Configuration/ 
Factory 

No AVM library 
features 

Configuration/ 
URM Factory

Configuration/ 
OVM Factory 

Table 2 AVM vs. URM & what is supported by OVM 

We decided to use the testbench architecture and component concepts from URM. A key aspect of 
developing efficient reusable verification code is to design a testbench architecture that is made up of 
multiple layers of highly configurable components. Complex designs are typically broken up into 
multiple manageable and controllable unit-level testbenches and a system-level testbench that envelopes 
the entire design. Therefore, reuse of components across multiple unit-level testbenches and at the 
system-level is vital. It is also desirable to reuse components across projects within an organization.  
 
URM satisfies this requirement by providing components that are reusable from a protocol level of 
abstraction (interface UVCs) and module level of abstraction (module UVCs). Interface and module 
UVCs coupled with the URM configuration/factory mechanism provides all the hooks needed to reuse 
components from testbench to testbench.   
 
We made a decision to connect all components using TLM channels similar to that of our AVM 
Testbench. TLM promotes component reuse as stated in the AVM Testbench section. This allowed us to 
reuse the scoreboard and coverage components easily from our AVM testbench. In addition, it will make 
it easy for us to reuse our UVCs and possibly our scoreboard components in future testbenches. To a 
lesser extent, we used TLM channels between our components inside our interface UVCs. The idea is 
that the interface UVC is a single entity that will not be taken apart. Note that this is not always the case 
for all UVCs but is true for us.  
 
For stimulus generation we opted to use the powerful URM sequence mechanism in our OVM 
testbench.  A virtual sequence allows stimuli to be managed across multiple interface UVCs.  AVM 
stimulus components do not have this capability. Additionally, virtual sequences allow sequencer 
libraries to be reused across different testbenches. For example, in the future we should be able to reuse 
our host sequences in both the unit and system level testbenches. 
 
OVM Testbench Overview  
The OVM Testbench that we put together for our PW Router DUV is shown in Figure 5.  
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Figure 5 OVM Testbench Architecture 

   
For our OVM PW Router Testbench we reused the packet and hast interface UVCs from our URM PW 
Router testbench and the scoreboard components from our AVM PW Router Testbench. In addition, we 
added a virtual sequence (pwr virtual sequence) and module UVC (pw_router_env) component.  
Virtual Sequence  
As stated above, a virtual sequence coordinates activity among multiple UVCs. For example, the 
pw_router design requires the host to initialize the DUV before routing packet traffic. We developed a 
host sequence to accomplish this.  Additionally, while packet_env’s sequencer has packet traffic 
flowing, the host_env’s sequencer needs to service interrupts. Virtual sequences provide all the 
coordination needed here. Our virtual sequencer is discussed in detail later in this paper. 
 
 
 
 
 



 

 

Module UVC 
These are reusable verification components for verifying a DUV module. Module UVCs promote reuse 
at the module level of abstraction. The intent is for the module UVC to be used in multiple testbenches. 
For example, they we plan on reusing our module UVC in both our unit-level testbench and system-
level testbench. 
 
Module UVCs encapsulate multiple interface UVCs and monitor activity amongst the interfaces. The 
monitor typically observes abstract data activity such as registers and memory contents. In addition, a 
module UVC undertakes scoreboarding to verify end-to-end expected data against actual data. 
Occasionally, a module UVC may include a virtual sequence that coordinates stimulus activity among 
multiple interface UVCs. 
 
In Figure 5, the pw_router’s module UVC is included in the testbench. It consists of two interface 
UVCs: packet_env and host_env, two scoreboards: packet scoreboard and interrupt scoreboard, and a 
monitor: pw_router’s monitor which shadows the contents of the registers/memories inside the 
pw_router design. 
 
The scoreboards are connected to the monitors using TLM ‘analysis ports’. These ports allow 
transactions to be sent from a producer (publisher) to one or more target components (subscribers).  
TLM promotes verification component reuse in a number of ways as described in the AVM Testbench 
section.  
 
OVM Testbench 
As stated previously, the unit-level testbench for pw_router DUV is shown in Figure 5. This testbench 
includes container layers that are specific to this testbench (i.e. they are not intended for reuse); the 
pw_router_sve and test cases.  The pw_router_sve container encapsulates the reusable pw_router_env 
module UVC and some other verification components not intended for reuse. For example, the 
pw_router virtual sequence component is included in the pw_router_sve container. This sequencer is 
responsible for coordinating host and packet stimulus traffic. This traffic is specific to this testbench 
only. The test case layer allows users (sometimes referred to as test writers) an opportunity to customize 
testbench controls. Finally, the testbench is connected to the DUV using SystemVerilog interfaces 
similar to that of the AVM testbench. 
 
Future OVM System Level Testbench  
Figure 6 shows a system-level testbench for a design called “pw_top” that we are planning to implement 
in the future. This design encapsulates pw_router design and another design module called pw_ahb. The 
system testbench for the pw_top DUV introduces two new layers; a top-level container called 
pw_top_sve and a system UVC called pw_top_env. In addition, the system level testbench also contains 
a test case layer similar to that of the unit-level testbench.    
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Figure 6 Future OVM System Level Testbench 

 
A system UVC encapsulates a cluster of module UVCs, performs scoreboarding, may monitor activity 
amongst the module UVCs, and allows for further reuse. For example, pw_top_env may be included as 
module UVC in a larger system context. The pw_top_env system UVC encapsulates the reusable 
pw_route module UVC. It also encapsulates another reusable module UVC called pw_ahb_env. Finally, 
a scoreboard component is included inside the system container to verify the interface across the 
pw_ahb and pwr_router designs. 
 
The top-level container in the system testbench called pw_top_sve encapsulates the system UVC, 
pw_top_env and a sequencer component, pw_top_sequencer, that is specific to the system-level 
testbench.  The pw_top_sequencer is responsible for coordinating AMBA bus (ahb) and host traffic at 
the system level. 
 
In the system-level testbench, the master agent inside the packet_env needs to be configured as a passive 
agent. This is because the master agent in the packet env becomes an internal interface in the pw_system 
DUV and hence the testbench can only monitor activity on this interface.  Note that putting the agent in 
passive mode does not affect the packet and interrupt scoreboards inside the pw_router_env. The 
scoreboards still verify expected data against actual data as they did in the unit-level testbenches. 
 



 

 

2.5 AVM/URM to OVM Code Migration 
The OVM library includes AVM and URM compatibility facilities.  Our Pw Router AVM 2.0 testbench 
was able to run using the OVM library without any issues. Most of the URM classes, macros, and 
messages were able to migrate from URM to OVM without any issues. However, we did experience 
several minor annoyances as shown in the list below and in Figure 7.  

• The OVM macro utility fields have “OVM_” in their name 
• OVM introduced a new macro for enumerators 
• The component’s new constructor in OVM has a different prototype argument names  

 
 

 
 

class host_agent extends urm_agent; 
 
  protected bit is_active = 1; 
  pwr_parity_kind parity_kind; 
 
  `urm_unit_utils_begin(host_agent) 
    `urm_field_int(is_active, OVM_ALL_ON) 
    `ovm_field_enum(pwr_parity_kind, parity_kind, OVM_ALL_ON)  
`urm_unit_utils_end 
 
     
  // new - constructor 
  // new (string name, urm_object parent); does not work - 

prototype mismatch  
  extern function new (string name, ovm_component parent); 
 
endclass : host_agent 
 
 
   
   

Able to reuse urm* componets! 

-Able to use most 
MACRO utilities!  
- However, the utility 
fields need modification. 

Constructors need modification. 

OVM adds enumerator 
field utility. 

Figure 7 URM to OVM Code Migartion 



 

 

3 Configuration control 
OVM components are self-contained. The behavior and implementation are independent of the overall 
testbench, facilitating component reuse. The components are built using recursive construction. In this 
approach, the parent component builds only its immediate children. Children components in turn then 
build their own immediate children componentsiv.    
 
Typically, components operate with a variety of different modes controlled by fields (sometimes 
referred to as ‘knobs’). It is pertinent that the testbench environment and/or the test writers have the 
ability to configure component field settings. 
 
There are two flavors of fields: 

• Hierarchal fields like the active_passive field inside an agent 
• Behavior fields that may control testbench activities such as the PW Router design using ODD or 

EVEN parity.  
 

OVM provides advanced capabilities for controlling the configuration fields. The primary purpose of the 
configuration mechanism is to control the field value setup during the build phase. The build phase 
occurs before any simulation time is advanced. The fields may also be changed during simulation time 
(or the run phase) but this capability is beyond the scope of this paper. 
 
The configuration mechanism gives test writers and higher layer testbench components (i.e. 
module/system UVCs) the ability to overwrite the default field settings of the components. A testbench 
hierarchy is established in top-down fashion where parent components are built before their child 
components. Higher-level testbench layers (test cases) and components (system/module UVCs) can 
overwrite default configuration settings. Increasing configuration overwrite priority is from right to left 
in Figure 8.   
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Figure 8 Testbench Configuration Flow 



 

 

 
Below is a code example of how we implemented the parity_kind field inside our testbench. Recall that 
the PW Router DUV can operate with either ODD or EVEN parity. In our testbench in Figure 6, the host 
sequencer needs to know the parity_kind when the DUV’s initialization sequence is executing and the 
packet master needs to know what kind of parity kind to generate when generating/sending packets into 
the DUV. These two interface UVCs are self-contained and operate autonomously. Therefore, at the 
beginning of the simulation we need to synchronize them with the same value of parity_kind.    
 
The OVM’s ovm_component class provides components configuration facilities. OVM classes, such as 
the environment, monitor and scoreboard component classes all inherited these configuration features 
from ovm_component class. In our example code in Figure 9, we derived our host and packet sequence 
from the ovm_sequence class. We declared a “behavioral field” called parity_kind in both of these 
classes. The parity_kind is an enumerator that has one of the two values – ODD or EVEN. The 
parity_kind enumerator is declared as a SystemVerilog property and then registered as a field using the 
using the ‘ovm_field_enum macro. Configuration functions can only operate on properties & objects 
that are registered using field automation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
In Figure 10, we declared and registered another parity_kind field inside the pw_router module UVC. 
The module UVC’s parity_kind field allows us to synchronize the parity_kind values inside the host 
and packet interface UVCs. The module UVC’s parity_kind field contains the default value used in 
our OVM PW Router Testbench. Since this is a constrained random testbench, we want our tests by 
default to run with random values of parity. Therefore, we declare the parity_kind field using the 
SystemVerilog ‘rand’ keyword.   

class pi_master_sequencer extends ovm_seqeuncer; 
 
pwr_parity_kind parity_kind; 
… 
   class host_seqeuncer extends ovm_seqeuncer; 

 
pwr_parity_kind parity_kind; 
 
 
 
   
   

TYPE VALUE FIELD

Register with 
factory 

 `ovm_component_utils_begin(host_sequencer) 
      `ovm_field_enum (pwr_parity_kind, parity_kind, OVM_ALL_ON)  
 `ovm_component_utils_end 

Figure 9 Interface uVC’s parity config field 



 

 

 
Figure 10 Module UVC’s parity config field 

 
Configuration settings in higher scope take precedence to the one in lower scopes. Therefore, the sve 
testbench layer is built before the pwr module UVC – see Figure 6. Figure 11 shows a snippet of the 
OVM sve hierarchy and build() method inside the pwr module UVC component. The sve container is 
built by the super.build() call. The pwr module UVC instance pwr0 is created using the 
create_component() OVM method. Users may optionally explicitly call the build() OVM method after 
creating the component. However, we opted to let OVM implicitly handle building the pwr0 
implicitly. This helps keep our code as simple as possible. Randomizing the pwr0 must be called after 
creating it. 
  

 
Figure 11 Randomize Module UVC fields 

 
The next step is to push down the parity_kind field in the module UVC to the lower layer interface 
UVCs. This occurs in the module UVC’s build phase as shown in Figure 12. The set_config_* OVM 
method is used to push down the value of the parity_kind field found at the module UVC. Because the 
first argument is a wildcard ‘*’, it performs a top-down search through all lower layer components 
(includes the host and packet interface UVCs) looking for a match on field “parity_kind”. When a 
match is found, the “parity_kind” fields in lower layer components are assigned the value of the 
“parity_kind” field inside the module UVC. This exhibits the push down behavior that we need to 
synchronize the value of the parity_kind in both the host and packet module UVCs. 
 

class pwr_env extends ovm_env; 
 
  protected rand pwr_parity_kind parity_kind;  
 
 `ovm_component_utils_begin(pwr_env) 
    `ovm_field_enum (pwr_parity_kind, parity_kind, OVM_ALL_ON)      
 `ovm_component_utils_end 
… 

Since 
parity_kind is 
used by more 
than 1 uVC we 
add it value in the 
module uVC By default 

parity_kind 
is random  
(ODD or 
EVEN)! 

class pwr_sve_env extends ovm_env; 
 
virtual function void build(); 
    super.build(); 
 
   $cast(pwr0, create_component("pwr_env", "pwr0")); 
    assert(pwr0.randomize());  
  
… 
 endfunction : build 
   

Randomize 
after 
creating 
pwr0 
component  



 

 

Note that it is vital for the set_config_int() OVM method to be called out before the interface UVC’s 
create_component() method. The set_config method uses greedyv wildcard ‘*’ matches and is capable 
of single character ‘?’ matchesvi. In addition, we found it very helpful to call out the interface UVC’s 
print() task to help debug if the fields are pushed down as expected. 
 

 
Figure 12 Module UVC pushing party field to interface UVCs 

Finally, an example of a test called “test_odd_parity_kind” is shown in Figure 13. This test overwrites 
the default random parity_kind. It forces the parity_kind field in the module UVC to always be set to a 
value of ODD. Note that the set_config_* method is used to control the field setting and it must be 
called before the calling super.build() which ultimately builds the testbench. 
 
 

class pwr_env extends ovm_env; 
       
    virtual function void build(); 
       super.build(); 
 
 

          set_config_int(      "*“     , "parity_kind", parity_kind ); 
   
 
 
 

           // host env sub-component 
       $cast(host0, create_component("host_env", "host0")); 
        
   
        // pi env sub-component 
        $cast(pi0, create_component(“packet_env", “pi0")); 
         
 

set_config*  
- Searches top-down 
-May use wildcards 
 
Note: make sure to call 
set_config* before 
creating the agents 

Hint: for debugging set_config_* call  
host0.print() and pi0.print() here 



 

 

 
 

class test_odd_parity_kind extends pwr_base_test; 
 
  `ovm_component_utils(test_parity_kind) 
 
virtual function void build(); 
     
      set_config_int("pwr_sve0.pwr0", "parity_kind", ODD); 
     
    super.build(); 
  endfunction : build 
 
endclass : test_odd_packet_parity 

Figure 13 Test override default parity 



 

 

4 OVM Sequence Mechanism  
OVM sequences allow test writers to control and generate stimuli to the DUV. The sequence mechanism 
may be flat, layered, hierarchical (sometimes referred to as nested) layered, and controlled from higher 
layers of abstraction using a mechanism called virtual sequences. All these sequence capabilities 
promote reuse as described below.  
 
An OVM sequence mechanism is comprised of three entities: 

• Sequence(s) 
• Sequencer 
• Driver 

 
An OVM sequence is a construct that generates and drives transfers (or sequence items) to a driver via a 
sequencer. This is referred to as flat sequences. Additionally, a sequence can call other sequences. This 
is referred to as hierarchical sequences. 
 
The OVM sequencer is a verification component that mediates the generation and flow of data between 
the sequence(s) and the sequence driver. The sequencer has a collection of sequences associated with it 
called sequence library.  
 
The OVM driver is a verification component that connects to the pin-level interface on the DUV.  
Drivers include one or more transaction-level interfaces that decode the transaction and drive it onto the 
DUV’s interface. 
 
The pw_router DUV testbench requires two sequencer mechanisms, a host sequencer and a packet 
sequencer.  
 
SEQUENCE ITEMS (TRANSACTIONS) 
The sequence mechanism randomizes and transmits sequence items (or transactions). The code snippet 
in Figure 14 shows the packet_transfer used by the packet sequence mechanism. A transfer class is 
derived from the ovm_sequence_item class. The packet_transfer class declares the addr, data, and parity 
fields. These data fields are declared as random variables using SystemVerilog rand keyword.  A 
SystemVerilog constraint named parity_error_c is included in the transfer definition. This constraint 
prevents the randomization of the packet transfer from generating invalid parity calculations (this is 
accomplished by assigning parity_kind == 0 in the constraint). Finally, OVM provides the 
`ovm_object_utils macro to register the packet_transfer into the factory.  The factory mechanism allows 
test writers to override the default behavior exhibited in the testbench as described in section 5.  Only 
objects/components that register with the factory can take advantage of this capability. 
 



 

 

 
 
SEQUENCES 
 
FLAT SEQUENCES 
A flat sequence drives transactions to the sequence driver via the sequencer. An example of the host’s 
write_seq  sequence construct is shown in Figure 15. Sequences are derived from the ovm_sequence 
class. Inside the write_seq class, the `ovm_sequence_utils macro registers the write_seq sequence to the 
host_master_sequencer class and the factory. Next, data fields for the sequence are declared. Finally, all 
sequence include a body() task. The body() task contains the procedural code that is executed when a 
sequence is invoked.  Inside the body() of the write_seq, the host_transfer sequence item is driven to the 
driver in the host sequencer using the `ovm_do_with macro.  
 

class host_transfer extends ovm_sequence_item;                              
 
 
  rand bit [31:0]          addr; 
  rand bit [7:0]            data;  
  rand bit                    rw; 
 
 
   `ovm_object_utils_begin(host_transfer) 
     `ovm_field_int (addr,  OVM_ALL_ON) 
     `ovm_field_int (rw,     OVM_ALL_ON) 
     `ovm_field_int (data,  OVM_ALL_ON) 
  `ovm_object_utils_end 
 
   
endclass : host_transfer 
    

Register 
with factory 

class packet_transfer extends ovm_sequence_item;                    
 
 
  rand bit [31:0]          addr; 
  rand bit [7:0]            data[];  
  rand bit          parity_error;   
… 
 
 constraint parity_error_c {parity_error == 0;} 
   
 
 
   `ovm_object_utils_begin(packet_transfer) 
     `ovm_field_int (addr,  OVM_ALL_ON) 
     … 
     `ovm_object_utils_end 
 
endclass : packet_transfer 

Register with 
factory 

Declare Data Fields 

SystemVerilog constraint 

Figure 14 Packet Transfer 



 

 

 
 
HIERARCHICAL SEQUENCES 
Hierarchical sequences invoke other sequences. For example, the host initialization sequence, shown in 
Figure 16, invokes the write_seq sequence. Hierarchical sequences allow testbench users to develop new 
sequences by reusing other sequences. This example highlights how the parity_kind field is called in the 
initialization sequence. 
   

class write_seq extends ovm_sequence; 
 
    
 
 
   `ovm_sequence_utils(write_seq, host_master_sequencer)     
 
     
    
    host_transfer this_transfer; 
    rand bit [31:0] write_addr; 
    rand bit [7:0]  write_data; 
 
   virtual task body(); 
     
       `ovm_do_with(this_transfer,  
          {   addr == write_addr; 
        data == write_data; 
              rw == 0; 
             } ) 
     endtask 
 
endclass : write_seq 

Send sequence 
item to the host 

sequencer 

Register with the sequencer 
and factory 

Declare data fields 

Figure 15 Flat Sequence 



 

 

 
 
 
SEQUENCERS 
The host sequencer includes a library of sequences that includes the write_seq and init_duv_seq.  The 
“default sequence” is the sequence that starts when the sequencer enters the OVM run phase (or when 
simulation time starts). For the host sequencer, the “init_duv_seq” sequence is assigned as the default 
sequence. See Figure 17 below.  
 
The host sequencer operates in pull mode. In pull mode, the sequencer presents the transaction to the 
driver and the driver is responsible for pulling the sequence item out of the sequencer and drives it onto 
the physical busses. 
  
 
 

 
class init_duv_seq extends ovm_sequence; 
 
 
   `ovm_sequence_utils(init_duv_seq, host_master_sequencer)   
      
 
 
 
     write_seq write_seq0; 
 
   
   virtual task body(); 
             
     `ovm_do_with(write_seq0,  
        { write_addr == 'h56740000; 
     write_data == {p_sequencer.parity_kind, 3'h7}; } )) 
      … 
   endtask : body 
 
endclass : init_duv_seq 

Declare write 
sequence 

Register with the sequencer 
and factory 

Call out the 
write sequence 

Figure 16 Hierarchical Sequence 



 

 

 
Figure 17 Sequencer/Driver Interface 

 
DRIVER 
As just stated, the driver is responsible for pulling transactions from the sequencer and driving them 
onto the pin interface on the DUV. For example, in Figure 18, the host_driver class, which is inherited 
from the ovm_driver class, executes a forever loop inside the OVM’s run() task. The forever loop calls a 
blocking task get_next_item() . This task retrieves the next sequence item from the host sequencer. Next, 
the sequence item is cast into a host transfer and calls out a drive_transfer() task. This task decodes the 
host transfer and drives the data onto the pin interface on the DUV. After the data is driven out, the 
item_done()  task  is called to signal the sequencer that the transfer has finished. 
 

 host_driver producer I/F 

To DUV 

Interface 
sequencer 

Interface or 
sequence 
driver 

 host_sequencer 

consumer I/F 

… 

…

interrupt seq
init duv seq

default_seq 



 

 

 
Figure 18 Driver 

 
Notice that the sequence driver communicates through a special TLM consumer/producer interface. This 
allows different kinds of drivers to easily be swapped using the same sequencer.  
  
VIRTUAL SEQUENCES 
The pw router design requires the host to initialize the DUV before routing packet traffic. Additionally, 
while packet traffic is flowing, the host interface needs to service interrupts. Therefore, we need to 
coordinate control of stimuli on both the host and packet interfaces. OVM virtual sequences provide this 
type of coordination.  
 

 
class host_driver extends ovm_driver;  
 
  task  run(); 
    ovm_sequence_item item; 
    host_transfer this_trans; 
 
    forever begin 
      @(posedge hmi.clk); 
      seq_item_prod_if.get_next_item(item); 
      $cast(this_trans, item); 
      drive_transfer(this_trans); 
      seq_item_prod_if.item_done(); 
    end 
  endtask : run 
 
  task drive_transfer(); 
   … 
  endtask : drive_transfer 
 
endclass: host_driver 

Get transfer from 
sequencer 

Drive DUV with 
transfer data 

Signal sequencer that 
driver is done 



 

 

t  
Figure 19 PWR Virtual Sequence Architecture 

 
Figure 19 show a graphical view of the PWR Virtual Sequence and its connections to the downstream 
host and packet sequencers. It is assumed that the virtual sequence is the initiator component and the 
downstream sequences are the target components. The virtual sequencer initiator has the ability to call 
out the library of sequences in the target sequencers. For example, the PWR Virtual Sequence may 
invoke the init_duv_seq seqence and/or interrupt_seq sequence found in the host sequencer. Similarly, 
the PWR Virtual Sequence may also invoke the basic_traffic_seq sequence in the packet sequencer. 
Note that this is a simplified list of sequences for the intent of this paper. Our sequencers have additional 
sequences and additionally include the OVM built in sequences that are described in the OVM 
Reference Manualvii. 
 
 

 
Figure 20 PWR Virtual Sequence Progression 
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Figure 20 depicts the sequence progression we used in our PW Router OVM Testbench. Our testbench 
boilerplate pwr virtual sequence first initializes the DUV using the host sequencer’s init_duv_seq and 
then we invoke a traffic sequence using the packet sequencer in parallel with the host sequencer’s 
interrupt sequencer.  
 
In Figure 21 we shows a code snippet of the PWR Virtual Sequence progression illustrated in Figure 18. 
Virtual sequences are inherited from the ovm_sequence class. In our virtual sequence, we invoke the 
host’s init_duv_seq. This is accomplished by using a special OVM virtual sequence macro called 
`ovm_do_seq. The first argument specifies the sequence and the second argument specifies the interface.  
After the host’s init_duv_seq finishes, the packet and interrupt sequences are concurrently invoked using 
the `ovm_do_seq macro.  

 
 

class pwr_seq extends ovm_sequence; 
`ovm_sequence_utils(pwr_seq, pwr_virtual_sequencer) 
 
  init_duv_seq         init_duv_seq_inst;  // host sequencer 
  interrupt_seq        interrupt_seq_inst; // host sequencer 
  traffic_seq             traffic_seq_inst;     // pi sequencer  
     
virtual task body(); 
 
      `ovm_do_seq(init_duv_seq_inst, p_sequencer.seq_cons_if[“host_sequencer"]) 
 
 fork 
    begin 
              `ovm_do_seq(traffic_seq_inst,p_sequencer.seq_cons_if[“pi_sequencer"]) 
          end 
          begin 
              `ovm_do_seq(interrupt_seq_inst,p_sequencer.seq_cons_if[“host_sequencer"]) 
         end 
   join_any 
    endtask 
 

Register 
sequence 

Instantiate 
sequences

Call Init DUV with Host Sequencer 

Call traffic with PI Sequencer 

Call Interrupt with Host Sequencer 

Figure 21 Virtual Sequence 



 

 

5 The OVM Factory - Parity Error Example 
The OVM factory is a powerful mechanism that allows test writers to override the default behavior 
exhibited in the testbench. The factory and configuration mechanism can both override testbench 
behavior but have different charters. The primary focus of configuration mechanism is to allow various 
layers of the testbench an opportunity to overwrite default field values in a top-down manner during the 
build phase. The factory gives users the ability to override OVM objects during both the build and run 
phases. 
 
An OVM factory is a static singleton object. When OVM objects are created in the testbench, they may 
be registered into the factory. Test writers can derive their own OVM objects and then perform type 
overrides (globally or on a particular instance) of those OVM objects in the testbench. This methodology 
is completely non-intrusive with regard to the testbench code. The test writers may change the behavior 
of an OVM object by overwriting virtual functions, adding properties, as well as defining and adding 
additional constraints. 
 
The following example shows how a test writer can intelligently override the PW Router Testbench’s 
default behavior using the factory. Packet transactions, by default, are constrained to send only legal 
parity packets (see Packet Transfer Class in Figure 14). However, the test writer can use inheritance and 
the factory to force and drive illegal parity data. Figure 22 shows a new class called 
my_error_traffic_seq that inherits from the parent class traffic_seq. The `ovm_sequence_util macro 
registers my_error_traffic_seq with the factory and then adds it into the pi_sequencer’s library. 
 
Inside the sequence body() the my_error_traffic_seq sequence, the `ovm_create macro is used to obtain 
a reference to the pi transfer. Next, the parity_error_c constraint which forces the pi transfer to generate 
only good parity is shut off. Then, the `ovm_rand_send_with macro is called to send the sequence to the 
sequencer/driver with the pi transfer constrained to always have parity error.       
  

 
 
Finally, the test writer needs to create a test to send the new error traffic sequence. The clas 
The code example in Figure 23 shows how the test writer may use the OVM factory methods 
set_type_override() or set_inst_override() to force the testbench to send the error traffic. 
set_type_override() replaces the type traffic_seq with  my_error_traffic_seq either globally while 

class my_error_traffic_seq extends traffic_seq; 
 
  `ovm_sequence_utils(my_error_traffic_seq, pi_sequencer)     
 
    pi_transfer this_transfer; 
 
    virtual task body(); 
  `ovm_create(this_transfer)     // create a variable for manipulation  
  this_transfer.parity_error_c.constraint_mode(0); // turn off default constraint 
       `ovm_rand_send_with(this_transfer, { parity_error == 1'b1; } ) 
     endtask 
   
endclass  Force a parity 

error! 

Register 
sequence 

Figure 22 Packet Error Transfer 



 

 

set_inst_override() method overrides a type based on some component’s instance in the testbench 
hierarchy.  

class test_error_packet extends pwr_base_test; 
 
  `ovm_component_utils(test_error_packet) 
 
 … 
   
virtual function void build(); 
 ovm_factory::set_type_override( “traffic_seq",  
                                                       "my_error_traffic_seq“); 
 ----- OR ----- 
 ovm_factory::set_inst_override( "*traffic_seq_inst", 
                                                        "traffic_seq ", 
                                                        "my_error_traffic_seq“ ); 
  // Create the sve 
    super.build(); 
  endfunction : build 
endclass  
 
 

Hint: for debugging purposes call out 
ovm_factory::print_all_overrides(); 

These factory overrides will force 
“my_error_traffic_sequence” to be invoked! 

Figure 23 Parity Error Factory 



 

 

6 Automating OVM Testbench Generation 
As we have shown in the previous sections, well-structured OVM verification components are highly 
reusable. However, OVM usage is quite open ended. Teams may implement their code using an 
approach that may be more geared towards either the AVM or URM style. It is a time-consuming task 
for an organization to decide on which approach is most suitable for their verification teams to utilize 
based on their verification charter. We found that just implementing a “best-practice” OVM testbench 
framework is a time consuming task. 
 
Furthermore, the OVM methodology lacks recommendations for directory structure, file-naming 
conventions and coding styles. Typically, most of these types of items are beyond the scope of standard 
verification methodologies such as OVM. Instead, organizations usually have there own methodologies 
in place to handle most of these items. 
 
We found organizations have difficulty deploying their “best-practice” usage uniformly throughout the 
entire verification organization. It is important that organizations uniformly deploy their “best practice” 
methodologies in order to reap the awards of reuse. For example, an organization may decide to develop 
testbenches using a UVC approach as described in this paper. If one of the verification teams in the 
organization mistakenly does not utilize agents in their verification components then this may diminish 
the ability to reuse this particular component in future testbenches.  Another example could be that one 
of the verification teams does not use analysis ports in their scoreboard hence once again diminishing 
easy reuse in other testbenches.  
 
To overcome these deployment obstacles we developed a Template Generator (TG) tool that 
automatically generates a testbench based on templates.  Figure 24 shows the flow of the TG Tool. We 
created a complete set of generic OVM templates that feed into the TG. These templates were 
implemented using our “best-practice” techniques for monitors, sequencers, sequence libraries, drivers, 
agents, virtual sequences, interface/module UVCs, and SVMs. The template generator builds up an 
entire OVM framework or testbench that includes a makefile and a dummy test that allows teams to 
compile all the code out of the box using Cadence or Mentor simulators. The TG allows teams to control 
the name and number of UVCs they want to generate.  
 
Moreover, organizations may easily customize the templates for any number of changes such as coding 
styles, naming conventions and copyright format in file headers. Using the TG truly deploys testbench 
code that has the same “look-and-feel” throughout the company. This significantly speeds up the 
developing testbench development. This is especially true if the teams are attempting to learn a new 
methodology such as OVM – it helps bring the entire team up to speed using the new methodology. 
Finally, the TG is also capable of merging changes into previously generated code in the case where the 
teams decide to modify their “best practice” approaches.  
 
 
 



 

 

 
Figure 24 Template Generator 
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7 Conclusion 
The migration effort from AVM and URM to OVM is a relatively easy process. We were able to rerun 
our AVM 2.0 code using the OVM libraries with no changes. We ran into several minor syntax issues 
during our URM to OVM code conversion exercise. 
 
More important than the migration effort is for the verification architects to understand which OVM 
features their team needs to utilize and designing a testbench architecture that is sufficient to hit your 
current coverage goals. OVM includes concepts such as agents and UVCs which allow for greater reuse 
but come at a cost of extra effort. These concepts may be larger than what is currently needed to hit a 
project’s coverage goals but it is our experience that the small upfront cost pays dividends down the 
road. More often than not, verification code is eventually typically migrated from one project to another. 
Usually, the intent of the original verification code was not put together for reuse.  
 
Implementing OVM code is often difficult due to the complexity of debugging macros. However, the 
open source gives the users the ability to debug issues much deeper with a clearer understanding. It is 
vital that users do not stray away from the OVM structure shown in the xbus example that is included in 
the OVM library download and the OVM User Manual. For example, we ran into numerous difficult 
debug issues by experimenting with changing the order of the configuration override calls, component 
creation and build steps. Overall, we found the macros help make the code more intuitive and readable. 
Additionally, the configuration wildcard “field matching” capabilities greatly reduced the configuration 
code compared to previous eRM (e Reuse Methodology) coding efforts.  
 
OVM has rich features that greatly help with reuse such as the configuration mechanism, factories, TLM 
and sequences. The OVM best practice reuse capabilities will not become fully apparent just from 
reading the OVM Reference Manual, monitoring the OVM Forum, or looking through the OVM 
Examples. At the time of writing this paper (September 2008), it is only a little more than nine months 
since the initial OVM release. At this time, new material is starting to become available to aid users in 
developing reusable testbenches. For example, the OVM User’s guide from Cadence and new books 
such as OVM Step by Step Functional Verification with OVM by Sasan Iman are now available. 
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