
DEVELOPING USER APPLICATIONS WITH SASjAF SOFTWARE FOR PCS: THE
SAFARI EXTRACT GENERATOR EXPERIENCE

Michelle Fine, Aetna Life & Casualty

Abstract

In today's changing DP environment,
greater emphasis is being placed,on
providing users with tools allowlng
them to perform functions tradition­
ally handled in a systems department.
As a result, there is a need for soft­
ware products that facilitate the
development of these end-user,
applications. The screen deslgn
capabilities of the SAS/AF software
for PCs along with its error handling
facilities and dataset manipulation
functions make it a strong candidate
for systems of this nature.

This paper addresses a real-life .
business problem that was solved wlth
SAS/AF software for PCs. It beg~ns
by presenting a background descrlp­
tion of the business environment and
the existing problem. It then moves
on to outline the stages of system
development highlighting features of
SAS/AF that' were helpful .. The II f~nal
portion of the paper provldes tlPS
and techniques II for using SAS/AF and
offers recommendations for future
development efforts.

Background

The Personal Financial Security
Division of Aetna Life and Casualty
maintains a large database as part
of its SAFARI (System by Aetna for
Fast Access to Records and Information)
system. Developed in the late 1960 1 s,
this file contains all Personal
Automobile and Homeowners insurance
pOlicy master records - a number
currently in excess of 4 million
records. SAFARI policy information
is used by different customer areas
to follow business trends, report on
claim activity, and make underwriting
decisions. Since this file is the
only central source for data of its
type, extracts are commonly required.

The SAFARI masterfile is a BDAM file
that for purposes of extracting data,
can ~nly be accessed via a series of
Assembler programs. A IIhomegrown lt

front-end to these programs also
exists to aid in the extract process.
The Assembler front-end is composed
of two parts: An ASI-ST dictionary
of field names that correspond to
several SAFARI masterfile fields:
and Ithomegrown lt code used to select
and sort records, format printed
reports, and update the ASI-ST
dictionary. Files of I1homegrown ll

1466

code containing the desired data
selection criteria are linked up
with the Assembler software as well
as the SAFARI masterfile to yield
the requested sub9roups of data.
Preparation of thlS code, however,
is a tedious and time consuming
process. The logic involved can be
complex and there are numerous
coding details to consider. In
addition, syntax validation is only
available for certain portions of the
code. As a result, coding errors are
easy to make.

When extract jobs abend as the
result of coding errors, they need
to be- fixed and rerun. SAFARI
processing time is expensive; hence,
reruns are costly. To help alleviate
this cost and to reduce the time
needed to prepare code files, an
Application Generator was developed
to produce SAFARI extract and dic­
tionary update files. The Appli­
cation Generator displays a series
of menu screens and input panels
that prompt the user for necessary
information (e.g. extract criteria,
field names). It then uses these
parameters to generate the code
needed to run the extract and/or
dictionary update.

The Application Generator was
created on an IBM PC AT using SASjAF
version 6.03. This product was
chosen due to its reputation for
allowing ease and flexibility in
screen design as well as for provi­
ding strong help facility functions.
A personal computer environment was
selected instead of a mainframe
environment due to better response
times and the superior screen design
capabilities offered by the PC
version of the product. The system
was designed to enable both technical
and non-technical users to generate
extract files with the anticipation
that the responsibility for preparing
these files would eventually be
transferred from the systems depart­
ment to a customer area.

Development Experiences

I. Learning the Language

Once SAS/AF had been installed, the
first task in the development process
was to learn seL (~creen fontrol
banguage) - the language that con­
trols the operation of all SAS/AF

PROGRAM screens. Since no formal
training courses were available, the
User's Manual became the primary
educational resource. For an
experienced SAS programmer, working
with SCL required some adjustment
since both its structure and compo­

sition are notably different from
those of the base SAS product. In
contrast to base SAS programs which

are relatively unstructured and are

processed on an interpretive basis,

SCL programs have a definite struc­
ture and need to be compiled prior
to execution. While seL does use
many of the base SAS statements,
several new statements and dataset
manipulation functions unique to SCL
have also been included.

II. Developing the Prototype

After an initial period of experi­
mentation with SCL, development of

the prototype for the Application
Generator began. SAFARI extract
logic can range from a simple value
check for a single field to more
complex processing of multiple

occurrence fields. The goal of the
prototype was to produce a small­
scale workable system that would
have the same basic format as the
projected final result, but would
only address the simpler cases. The
system could later be expanded to

include more involved situations.
The prototype would also include

routines to handle dictionary update
code generation and file uploads to

the mainframe since these functions
are straightforward in nature as
well.

SAS/AF proved useful in this effort.

The product prGvides eight types of

screens, two of which were the most

beneficial for the Generator: MENU

screens and PROGRAM screens. MENU

screens allow the user to choose any
one of a variety of options by
entering a corresponding number on

the command line. These screens have

behind-the-scenes "attribute ll files
associated with them which establish
relationships between an option
number and the path of programs to

be fOllowed upon selection of that

option. PROGRAM screens display
informational messages and allow the

user to input data values to the
system. Each PROGRAM screen has an

SCL program associated with it that
controls validation and processing

of the input parameters. This type

1467

of structure was very accommodating
to the original vision for the
system.

As anticipated, the facilities for
creating screens were easy to use and

allowed a fair amount of flexibility
in terms of the format, color, and
size of the screen. SAS/AF provides
a free-form, full-screen editor for

use in designing panels. Cursor keys

are used to maneuver and position
v~rious portions of the text. The
COLOR command is available to
diversify the colors used for
different aspects of the screen.

The Background, Text, Command Line,
and Message areas, among others, can

be modified from the defaults to a
combination of up to twelve different

colors. In addition, the WSHRINK and

WGRQW commands allow both the width

and length of screens to be altered.
Once into WSHRINK or WGROW "mode",

cursor keys are used to reduce and
increase the size of the panel.
This is helpful in situations where

multiple panels need to be simultan­
eously displayed.

Another nice feature of seL is that

it contains a series of error control

statements and variables which
enabled a PROGRAM screen to mimic a

MENU screen. Coding SAFARI extracts
requires that five main functions be

performed. Since some of these
functions are composed of several
sub-functions, keeping track of
steps completed can be confusing.
The method chosen to ease this
process was to initially highlight

each of the five menu options using
reverse video. Each time a task is

completed, the highlighting is
removed from that option. SAS/AF
MENU screens, however, do not allow
menu options to be highlighted.
Consequently, a PROGRAM screen was

designed to look like the desired
menu and the background SCL program
incorporated error statements to
control the highlighting.

Exhibit I shows both the PROGRAM
screen designed to handle menu
functions and the SCL code that
controls processing. In the INIT

section of the program, five screen
variables are initialized to have
values that correspond to the five

f~nctions for coding SAFARI extracts.

'Slnce, by default, seL highlights
(with reverse video) all screen
variables that are flagged with the

ERRORON statement as having errors,

this statement is used to signal SAS
that each of these five variables
is Ilin errorll. The effect of this is
that when the screen is initially
displayed, all five menu options are
highlighted. Later, in the MAIN
section I each time an option is
selected, the appropriate PROGRAM
or MENU screen is called and the
ERROROFF statement is used to
indicate that the screeh variable
for that option is no longer in
error. Thus, the highlighting is
removed.

The ERRORON and ERROROFF statements
are also helpful for trapping data
values that are input incorrectly.
Screen variables can be edited for
appropriate values and, when an
incorrect entry is found, the
ERRORON statement is used to signal
that the field is in error. The
MSG variable is provided to
communicate messages indicating the
nature of the error. These messages
are displayed in the message area of
the screen. By default, SCL programs
cannot be exited if any screen
fields are in error. Therefore, the
user is required to reenter correct
values for the specified fields
before processing can continue.
Once this is accomplished, the
ERROROFF statement signals that the
field is no longer in error and
system processing resumes.

Two additional features of SCL that
proved useful are its datset manip­
ulation functions and its incorpora­
tion of macro variables. SCL
provides a series of functions that
are used to - among other things -
open, close, sort, retrieve values
from, and update values to SAS
datasets. These functions make
simultaneously accessing multiple
data sets a much easier task than in
the base SAS product. This can be
helpful for processing data located
in several different sources and
for transferring values between
screens. The Application Generator
used this technique to store values
entered on all input panel screens
so that, in the event a screen was
redisplayed prior to completion of
coding an extract, it would reflect
values previously entered. SCL
also provides two macro variable

functions - SYMPUT and SYMGET - that
are used to assign and retrieve
values to and from user-defined
macro variables. The Application
Generator took advantage of these

1468

functions, in addition to those
previously mentioned, for trans­
ferring values between screens.

III. creating an Expanded Version

The SASjAF software for PCs
accommodated the Application Gener­
ator prototype with few difficulties.
Screens created were user-friendly,
response times were fast, and the
SCL programs compiled in relatively
short periods of time. When work
began on the expanded version,
however, some of the drawbacks of
SAS/AF began to surface. Discussion
of these drawbacks is in no way
intended to discourage development of
SAS/AF systems. However, these are
important facts to consider when
planning potential applications.

The Application Generator prototype
was created on an IBM PC AT that
had 640K RAM. For purposes of the
prototype, this amount of memory
was sufficient. As the system grew
larger, however, several memory
problems were experienced. In order
for the system to continue to run, it
was necessary to purchase memory
boards with additional expanded
memory. 1M of memory was needed for
the expanded version to run and an
additional .5M was also purchased to
allow room for future enhancements.
This delayed system development for
six to eight weeks - the time needed
to receive and install the memory
boards.

Problems were also encountered with
several aspects of SCL. Programs
written in SCL have code size
limitations of 32K. Since the
programs in the prototype were only
designed to handle the simpler ex­
tracts, this limit was never reached.
When the programs were expanded to
handle more complex extracts, how-,
ever, several of them exceeded the
size boundaries. To solve this,
the programs were broken down into
multiple, smaller sections and
linked together thru use of the CALL
functions.

In addition, compiling and debugging
seL programs presented some difficul­
ties. The smaller programs of the
prototype compiled within timeframes
of five to eight minutes. Some of
the larger programs of the expanded
version, however, required as long as
twenty minutes to compile. This

factor significantly impeded system
development progress. Debugging SCL
programs can also be difficult.
When a SAS/AF system abends, the
message log does not indicate which
program cau~ed the error. Instead,
it only specifies the error message
and the values of all variables in
the errant program at the time of
the abend. As a result, if program
variable names are not unique or
easily recognizable, determining the
abending program can involve some
creative detective work.

Despite these drawbacks, development
work on the expanded version of the
Application Generator was completed
in June 1989 - approximately one year
after the project had originally
begun. At this writing, the system
is in a pilot phase and reaction has
been positive. Screens continue to
be user-friendly, response times
ream in sufficiently fast, and the
system has improved productivity by
promoting increased efficiency and
speed in preparing extract files.
The Application Generator is current­
ly scheduled for installation at the
first customer site by year-end 1989.

Tips and Techniques

The most important recommendation for
others contemplating projects of this
type is to keep applications as
simple as possible. The less
complicated the system, the less
likely it will be to require addi­
tional memory or to exceed the
limitations for program size.
Smaller applications also have
faster response times and can be
developed more quickly since the SCL
programs compile more rapidly. In
the event that an application does
become complex, a utility package
such as Norton utilities' liS peed
Disk ll will help to decrease system
processing time. Speed Di~k will
organize the SCL program catalogs
and SAS data sets in such a way that
accessing them requires only minimal
activity on the part of the read­
write head. Therefore, it takes less
time to access files and less time
for the system to run.

One other suggestion is to license
the PC SASjFSP product along with
SAS/AF. This package will greatly
aid system development by affording
a means by which dataset observations

1469

can be viewed and interactively
updated. Given the powerful dataset
handling capabilities that SAS/AF
makes available l this is desirable.

Conclusion

SAS/AF proved to be a helpful tool
in the development of the Application
Generator. Despite the drawbacks
encountered, the system was able to
be completed and to function
effectively in the business environ­
ment. Consensus is that the decision
to use SASjAF for this project was a
good one. Had the scope of the
project been less complex, develop­
ment would certainly have been
easier. However, it was still
possible for the application to meet
all of the originally specified
business needs.

Exhibit I

INIT:

***** INITIALIZE SCREEN VARIABLES TO
***** HAVE VALUES THAT CORRESPOND TO
***** THE FIVE MAIN FUNCTIONS FOR
***** CODING SAFARI EXTRACTS.

INITL 'INITIALIZATION';
SCANSEL ~ 'SCAN/SELECTION CRITERIA';
EXTRC ~ 'EXTRACT CARDS';
SORTC = 'SORT CARDS';
DETHDR = 'DETAIL CARDS';
S =' , ;

CONTROL ERROR;
ERRORON INITL SCANSEL EXTRC SORTC

DETHDR;
MSG I I;

RETURN;

MAIN:

***** CHECK TO BE SURE OPTION NUMBER
***** ENTERED IS WITHIN THE CORRECT
***** RANGE;

ERROROFF S;
IF (S < '0') OR (S > '5') THEN DO;

MSG 'SELECTION MUST BE A NUMBER
BETWEEN 0 - 5';

ERRORON S;
RETURN;
END;

***** DEPENDING ON WHICH OPTION
***** NUMBER IS SELECTED, CALL
***** THE APPROPRIATE PROGRAM OR
***** MENU SCREEN AND REMOVE ERROR
***** HIGHLIGHTING FROM THE OPTION
***** DISPLAY;

IF S = 'I' THEN DO;

IF S

IF S

IF S

IF S

CALL DISPLAY('INITLA');
ERROROFF INITL;

MSG ";
S = T ';
RETURN;
END:

'2' THEN DO:
CALL DISPLAY('SCANA');
ERROROFF SCANSEL;

MSG ' ,
S = T ';
RETURN;
END:

'3' THEN DO;
CALL DISPLAY('EXTRA');
ERROROFF EXTRC;

MSG I I:

S = T Ii
RETURN;
END:

'4' THEN DO;
CALL DISPLAY('SRTA');
ERROROFF SORTC;

MSG 1 ';

S = T ';
RETURN;
END:

'5' THEN DO;
CALL DISPLAY('DETTA.MENU');
ERROROFF DETHDR;

MSG I ';

S = T I;
RETURN;
END;

IF S '0' THEN DO;
ERROROFF SORTC DETHDR EXTRC

SCANSEL INITL:
CALL PREVIEW ('CLEAR') :
RETURN:
END:

RETURN:

TERM:

RETURN:

1470

: DuI L.D~ :0: EF"L{:.,Y {:U TDE>: T. PROGFi{.-'!ii (E) NNi'fl'INf'iNNNNNN!1NNi1NNi'iNNNr;NNNNN!'!r:NNt~Ni'iNNN,\1NNNN,'\: ~
;Command =::.'::::::)

AUTO

1) (FIEST)

2) &SCANSEL_ .. _. ___________ " .. _

4} .s.;SOPTC

5; &:DETHDF: {LAST)

0) E:ETURN TO PREV I DUS MENU (PRESS F3 l·j 1 TH TH"J: E; Si=:LECi·· I ON)

ENTER YOUF: SELECTION: J~S

PHESS <ENTER> TO CONTINUE
f~ N 1'1 N N H i1 !,; N i1 N N N N 1111!1 N N N N N 11 N N N N N 11 N N 11 N!1 N N N N 11 i'1 Ni"I!1!'1 N N N N N N F; N 1'1 N N N N ,I>i N N N N 11 N N N i't N N r!:=::1 feN t.! r: r· N N <"

1471

