
AxiCat Server
v1.3.0

User Manual

December 2014

AxiCat Server v1.3.0

Table of Contents
1 Distribution 5

2 Installation 5

3 Program 6
Overview 6
Command Line 6
Network Mode 7
Standard I/O Mode 7
Windows Console 7
Usage Examples 8

Network Mode and Terminal Programs 8
Network Mode and Programming Languages 9
Standard I/O Mode and Console 10
Standard I/O Mode and Piping 10
Initialization File 11

Shutting Down 12
Linux 12
Windows 12

4 Client Protocol 13
Overview 13
Format of Commands and Responses 13

GPIO Write 14
GPIO Read 14
GPIO Set Direction 15
I2C Master Set Speed 15
I2C Master Set Raw Speed 15
I2C Master Enable 16
I2C Master Disable 16
I2C Master Transfer 16
I2C Master Cancel 19
I2C Slave Enable 19
I2C Slave Disable 19
I2C Slave Write 20
I2C Slave Read 20
I2C Slave Cancel Write 20
I2C Slave Cancel Read 20
SPI Master Set Speed 21
SPI Master Set Raw Speed 21
SPI Master Set Configuration 21

2 User Manual

AxiCat Server v1.3.0

SPI Master Enable 21
SPI Master Disable 21
SPI Master Transfer 22
SPI Master Cancel 22
1-Wire Master Enable 22
1-Wire Master Disable 22
1-Wire Master Reset 23
1-Wire Master Touch Bytes 23
1-Wire Master Touch Bits 24
1-Wire Master Enumerate 24
1-Wire Master Probe 27
1-Wire Master Cancel 28
UART Set Baudrate 28
UART Set Raw Baud Rate 28
UART Set Data Bits 28
UART Set Stop Bits 29
UART Set Rx Timeout 29
UART Set Unsolicited Rx Response 29
UART Enable 30
UART Disable 30
UART Write 30
UART Read 30
Quit 31

Client Protocol vs. Application Layer 32
Transfers 32

Types 32
Tables 32
Preparation 32
Scheduling 33
Completion 33
Cancellation 33

5 Serial Paths 34
Linux 34
Windows 35

6 Software Revision History 36

7 Software License 37

8 Legal Information 37
Disclaimer 37
Trademarks 37

9 Contact Information 37

User Manual 3

AxiCat Server v1.3.0

Revision History
Date Authors Description

2014-09-05 Peter S'heeren Initial release.

2014-09-17 Peter S'heeren Added 1-Wire commands.

2014-09-28 Peter S'heeren Added 1-Wire enumeration.

2014-12-12 Peter S'heeren Added 1-Wire probing.

4 User Manual

AxiCat Server v1.3.0

1 Distribution
An executable for each supported platform is distributed in separate package.

The full source of the program is distributed as part of the AxiCat software packages
axicat.tar.gz and axicat.zip.

2 Installation
1. Download the package for your platform, for example axicatserver-1.2.0-linux-

armel.tar.gz.

2. Extract the downloaded package in a local directory.

3. You can now execute the program. Run without command line parameters to display
help.

User Manual 5

AxiCat Server v1.3.0

3 Program

Overview
The AxiCat Server is an important tool for working with the AxiCat. The program is
usually run as a server process hence the name. It offers the functionality of the AxiCat
to its clients.

The server offers two modes of communication with the client:

▪ Network mode: a socket interface enables communication over the network.

▪ Standard I/O mode: another process communicates with the AxiCat by means of
redirecting its input and output to the AxiCat server.

The server uses a simple client protocol that is both human-readable and easy to format
and parse programmatically. Commands and responses are composed of ASCII
characters.

Commands can be padded with spaces to enhance readability. This provision is very
convenient when one uses the server interactively by means of a terminal program, for
example PuTTY.

Empty lines and comments are permitted as well. These features come in handy when
you create script files.

The server is based on the AxiCat Application Layer and offers the same high
performance for all available I/O. You can easily schedule multiple transfers for GPIO,
I2C, SPI and UARTs concurrently. The server will efficiently handle all transfers with the
AxiCat and report appropriate responses when transfers have been completed.
Cancellation of transfers is supported.

Command Line

Parameter Description

-h Display help and exit.

-console Open a console in Windows.

-v Enable verbose output.

-p n Select network mode. The value specifies the port number the server
must listen to. Value n=1..65535 decimal.

-crlf Conclude responses with CR LF instead of LF. The parameter only→
applies when network mode is selected.

-stdio Select standard I/O mode.

-s PATH Select the AxiCat with the given serial path as the interface.
Example PATH in Linux: /dev/ttyUSB0
Example PATH in Windows: \\.\COM4

-i FILE Specify a file with initialization commands.

If no parameters are provided, the program displays help and exits.

Either -p or -stdio must be specified to select the mode of communication.

6 User Manual

AxiCat Server v1.3.0

The -crlf parameter alters the end-of-line character sequence of responses when the
server is operating in network mode. By default, the server concludes each response with
a LF character. This renders undesirable output in terminal programs that distinguish
between LF and CR. PuTTY, for example, doesn't move the cursor to the beginning of the
line when it receives LF. The -crlf parameter solves this particular problem.

If parameter -i is specified, the server will process the given file after it's connected to
the AxiCat and before it starts accepting commands from the client. Using this parameter,
you can have to server send various commands to your AxiCat. Doing so enables you to
bring the AxiCat to a well-defined state before any client connection can start
communicating with the AxiCat.

Network Mode
The server creates the specified port when it has successfully connected to the AxiCat. If
the AxiCat is disconnected, the port will be removed along with the client connection if
present. Nonetheless the server will remain active and keep trying to reconnect to the
AxiCat. This behavior corresponds very well with the plug-and-play nature of the USB-
based AxiCat.

This also means that the AxiCat is initialized only once, during connecting, independently
from connectivity on the server port. As such a client can connect with and disconnect
from the server multiple times without having to worry about the state of the AxiCat; the
state will not change in-between socket connections, unless the AxiCat went through a
USB replugging phase. This is especially interesting if you want to communicate with the
AxiCat from a website where each page has to reconnect with the server program.

The server works with one AxiCat, hence it will accept one incoming socket connection. If
you want to provide access to more than one AxiCat from the same computer, you can
run multiple instances of the server program, one instance for each AxiCat.

Standard I/O Mode
This mode allows another running process to directly write commands to the server and
read responses back on the same system.

Typical use-cases include manually typing in and sending commands from the console,
piping files with commands to the server, and controlling the AxiCat from a scripting
language.

Windows Console
The Windows version of the server is built as a Win32 application, as opposed to a
console application. Nonetheless, the server is capable of opening a dedicated console for
displaying information. Parameters -console and -h will produce the console.

It's not advisable to combine parameter -console with I/O redirecting. For example:

> axicatserver -s \\.\COM3 -console -stdio < commands.txt > responses.txt
The console will take over standard input and output and the result won't be what you
expect. Instead, run the command as follows:

> axicatserver -s \\.\COM3 -stdio < commands.txt > responses.txt

User Manual 7

AxiCat Server v1.3.0

No console will appear and the server will perform the job as expected, taking in the
commands from the input file and emitting the responses to the output file.

Usage Examples

Network Mode and Terminal Programs

Suppose you want the server to enable access to the AxiCat via network port 4000. The
following command will do the job in Linux:

$./axicatserver -s /dev/ttyUSB0 -p 4000 &
This will run the server silently in the background.

The equivalent command in Windows is:

> axicatserver -s \\.\COM10 -p 4000
The server will start listening on port 4000 as soon as it's connected to the AxiCat. Any
computer on your network that has access to the server is now able to communicate with
the AxiCat.

You can manually send commands using a terminal program, like PuTTY. For example:

In the above example, the server is connected to from a remote computer. All it takes is
the IP address and port number of the server. Next, a number of commands are typed in
to which the server responds.

Another convenient way of connecting to the server is using netcat in linux:

$ nc 192.168.1.110 4000
SME
SMT 2 03 00 00 00 00 00 00 00 00 00
SMT2FFFF41424344FFFFFFFF
For the curious, the SPI transfer actually reads out the first 8 bytes from a Microchip
25LC020A EEPROM chip. The CS pin of the EEPROM is connected to SS2 on the AxiCat.
The first four bytes had been programmed as “ABCD” earlier.

8 User Manual

AxiCat Server v1.3.0

Network Mode and Programming Languages

Network mode is great for controlling the AxiCat from a programming language. Every
popular language has built-in support for programming with network sockets. The format
of commands and responses allows for very simple processing in your language of
choice.

Run the server in network mode. This command will do the job in Linux:

$./axicatserver -s /dev/ttyUSB0 -p 4000 &
The equivalent command in Windows is:

> axicatserver -s \\.\COM10 -p 4000
The following example shows how to use the AxiCat from a Python program. Enter the
following Python code in an editor:

import socket

Change host if needed. For example: '192.168.1.110'
host = 'localhost'

Change port number if already used.
port = 4000

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((host,port))

s.send('IOR05\n')

data = s.recv(1024)
print 'Received:'
print data

s.close()
Don't forget to change host if needed. Save this file as client.py for example.

You can run the program in Linux as follows:

$ python client.py
Received:
IOR0511O

$
The output shows that the Python program successfully connected to the server, sent the
GPIO read command, and received the response containing the state of GPIO pin 5.

Standard I/O Mode and Console

A typical use for standard I/O mode is manually typing in commands in the console.
Example in Linux:

User Manual 9

AxiCat Server v1.3.0

$./axicatserver -s /dev/ttyUSB0 -stdio
IOR00
IOR0011I
To accomplish the same in Windows, a console must be opened:

> axicatserver -s \\.\COM10 -stdio -console
An empty console appears where you can type in commands. A great feature of Windows
console is line editing and history; you can use the arrow keys to navigate in all four
directions.

Note: if you forget the -console parameter, the process will start up in the background
and immediately terminate.

Standard I/O Mode and Piping

Another application of standard I/O mode is piping. You can pipe an input file with
commands to the server and pipe the responses to another file, like this:

$./axicatserver -s /dev/ttyUSB0 -stdio < commands.txt > responses.txt
The equivalent command in Windows is:

> axicatserver -s \\.\COM10 -stdio < commands.txt > responses.txt
As mentioned in section Windows Console, don't specify the -console parameter in this
case.

Initialization File

Let's create an initialization file for the following circuit. We've taken a Microchip
25LC020A SPI-EEPROM chip and connected it to the AxiCat.

We want the server to automatically initialize the AxiCat for use with the circuit as soon
as the AxiCat is connected. Initialization for this circuit requires setting up GPIO5 and
enabling the SPI master.

Create the initialization file with an editor:

10 User Manual

SCK

SO

25LC020A

WP

CS

HOLD

Vss

Vcc

SI

AxiCat

G
N

D

SC
LK

SS
2/

G
PI

O
5

3.
3

V

M
IS

O

M
O

SI

10
0n

F

AxiCat Server v1.3.0

Initialization file for SPI-EEPROM, SS2 as chip select

Set up SS2/GPIO5 as output, logic one
IOD 05 O
IOW 05 1

Enable the SPI master
SME
Save the file as spieeprom_init.txt for example.

Let's start the server in network mode. This command will do the job in Linux:

$./axicatserver -s /dev/ttyUSB0 -p 4000 -i spieeprom_init.txt &
The equivalent command in Windows is:

> axicatserver -s \\.\COM10 -p 4000 -i spieeprom_init.txt
With the server up-and-running, you can now start working with the EEPROM chip
without having to worry about setting up the AxiCat. Here are some example SPI
transfers containing EEPROM commands:

Command SMT 2 05 00 RDSR – read status register

Response SMT2FF00 Status register is 00000000b

Command SMT 2 06 WREN – enable write operation

Response SMT2FF
Command SMT 2 05 00 RDSR – read status register

Response SMT2FF02 Status register is 00000010b

Command SMT 2 02 20 45 46 47 48 WRITE – write 4 bytes at offset 20h

Response SMT2FFFFFFFFFFFF
Command SMT 2 03 20 FFFFFFFFFFFFFFFF READ – read 8 bytes at offset 20h

Response SMT2FFFF45464748FFFFFFFF

Shutting Down
When you run the program as a server process, it silently runs in the background. In
order to shut down the server, you can:

▪ Send the quit command QU.

▪ Kill the process.

The first method only works when the server is connected to the AxiCat and the network
port has been created. Remember that the server will only accept a connection to the
network port when the AxiCat is present.

Killing the process always works. The procedure depends on the operating system.

User Manual 11

AxiCat Server v1.3.0

Linux

Look up the process ID of the server and send the kill signal. You must have root
permissions to do that. For example:

ps -A | grep axicatserver
 2111 pts/0 00:00:01 axicatserver
kill -9 2111

Windows

Press CTRL-ALT-DEL to open the Task Manager. Look for a process with image name
axicatserver.exe. Right-click and choose End Process. The process will be terminated.

12 User Manual

AxiCat Server v1.3.0

4 Client Protocol

Overview
The server implements the AxiCat Application Layer module in its back-end and exposes
a server socket (parameter -p) or standard I/O (parameter -stdio) in its front-end.

The client is the process that communicates with the server's front-end. The client can be
any kind of process, like a terminal program, a command line interpreter, a Python
program.

The communications protocol between server and client is composed of commands and
responses. The client sends commands to the server, the server sends responses to the
client.

Some commands produce a response while others don't. A response may be without
command; this a called an unsolicited response. A subset of commands execute
asynchronously (“in the background”) meaning their response comes back some time
later, even after the server may have processed subsequent commands.

Format of Commands and Responses
The server will only execute a command if it's correctly formatted. Parameter -v allows
you to observe processing of commands and possibly errors.

Both commands and responses are composed of a string of ASCII characters concluded
by an end-of-line marker.

The server recognizes LF (10) and CR (13) each as an end-of-line marker. This means
when the client concludes a command with CR LF, the server will actually receive two→
lines, a line with a command followed by an empty line. This is no problem though since
empty lines are simply discarded.

Each response from the server is concluded with LF or LF CR. See parameter → -crlf for
details.

Command may be padded with space and tab characters. The server simply filters them
out. These characters do not serve as delimiters.

A '#' character indicates the start of a comment. The server discard all remaining
characters until the end-of-line marker is reached.

With these rules in mind, the server interprets the following example commands
identically:

IMT4861626364
IMT 48 61 62 63 64
I M T 4 86 16 26364
IM T 48 61626364 # SLA+W, address 24h, "abcd"

User Manual 13

AxiCat Server v1.3.0

The following formatting is used in the description of the commands and responses:

Format Description

QU Literal characters i.e. character 'Q' followed by character 'U'.

ABC These characters containing specific information as explained.

[ABC] An array of these characters containing specific information as explained.

(A) Optional characters containing specific information as explained.

<EOL> End-of-line marker, either LF (10) or CR (13) or LF CR.→
<none> No response.

GPIO Write

Command IOWnns<EOL>
nn GPIO pin number, 00..10 hexadecimal.

s Output state, 0 or 1.

Write the output state of a GPIO pin.

Example

Command IOW 0E 1<EOL>
Set output of GPIO pin 14 to one.

GPIO Read

Command IORnn<EOL>
nn GPIO pin number, 00..10 hexadecimal.

Response IORnniod<EOL>
IORnnSC<EOL>
nn GPIO pin number, 00..10 hexadecimal.

i Input (sensed) state, 0 or 1.

o Output state, 0 or 1.

d Direction, I for input, O for output.

s Non-successful transfer status: canceled.

Read information about a GPIO pin.

Example

Command IOR01<EOL>
Response IOR0100O<EOL>
Read GPIO pin 1. Input state is zero, output state is zero, direction is output.

14 User Manual

AxiCat Server v1.3.0

GPIO Set Direction

Command IODnnd<EOL>
nn GPIO pin number, 00..10 hexadecimal.

d Direction, I for input, O for output.

Set the direction of a GPIO pin.

Example

Command IOD 05 I<EOL>
Set GPIO pin 5 as input.

I2C Master Set Speed

Command IMSS[n]<EOL>
[n] Bus speed, one or more decimal digits.

Set the speed of the I2C bus. The given value must match one of the predefined bus
speeds defined in the AxiCat protocol (see axicat.h, AXICAT_TWI_SPEED_<n>).

Example

Command IMSS 100000<EOL>
Set the speed of the I2C bus to 100000 Hz.

I2C Master Set Raw Speed

Command IMSRrrs<EOL>
rr TWBR, 00..FF hexadecimal.

s TWPS, 0..3 hexadecimal.

Directly write to the speed registers of the I2C function.

Refer to section “Two-wire Serial Interface” in the Atmega164A/324A/644A/1284
datasheet for more information.

Examples

Command IMSR3A1<EOL>
Set the bit rate register to 3Ah (58) and the prescaler register to 1, resulting in a bus
speed of 25000 Hz.

Command IMSR000<EOL>
Set the bit rate register to 00h and the prescaler register to 0, resulting in a bus speed of
750000 Hz. This is the maximum I2C speed.

User Manual 15

AxiCat Server v1.3.0

I2C Master Enable

Command IME<EOL>
This command enables the I2C (TWI) part of the AxiCat.

I2C Master Disable

Command IMD<EOL>
This command disables the I2C (TWI) part of the AxiCat.

Note that you can schedule transfers even when the I2C master is disabled.

All transfers being processed in the AxiCat will be completed. However, one or more
transfers that are still scheduled in the application layer will be initiated in the AxiCat.
The AxiCat will merely buffer these transfers, but for the application layer the transfers
have been started.

If your intention is to cancel all master transfers and disable the I2C function, issue the
following commands:

Command IMC<EOL>
IMD<EOL>

If you want to cancel all slave transfers as well:

Command IMC<EOL>
ISCW<EOL>
ISCR<EOL>
IMD<EOL>

The order is important. First request cancellation, then disable the I2C function. If you do
it the other way around, the application layer is capable of sending one or more
scheduled transfers to the AxiCat between IMD and IMC, ISCW, ISCR.

I2C Master Transfer

This command handles both write (SLA+W) and read (SLA+R) transfers.

16 User Manual

AxiCat Server v1.3.0

Write transfer:

Command IMTaa([dd])(n)<EOL>
aa Slave address and direction.

Bit 7..1 Slave address.

0 Zero, indicating a write (SLA+W) transfer.

([dd]) Zero or more data bytes, 00..FF hexadecimal.

(n) Specify P to force a stop signal.
Specify R for explicit repeated start.

Response IMTaannnnr<EOL>
IMTaaSs<EOL>

aa Slave address and direction.

Bit 7..1 Slave address.

0 Zero, indicating a write (SLA+W) transfer.

nnnn Number of transferred bytes, 0000.. hexadecimal.

r
Response of the slave device, A for ACK, N for NACK. If no bytes
were transferred, it's the slave's response to the SLA+W, else it's
the slave's response to the last byte written by the master.

s Non-successful transfer status: B for bus error, A for arbitration lost,
S for skipped, C for canceled.

Read transfer:

Command IMTaannnn(n)<EOL>
aa Slave address and direction.

Bit 7..1 Slave address.

0 One, indicating a read (SLA+R) transfer.

nnnn Number of bytes to read from the slave device, 0000.. hexadecimal.

(n) Specify P to force a stop signal.
Specify R for explicit repeated start.

Response IMTaar([dd])<EOL>
IMTaaSs<EOL>

aa Slave address and direction.

Bit 7..1 Slave address.

0 One, indicating a read (SLA+R) transfer.

r Response of the slave device to SLA+R, A for ACK, N for NACK.

([dd]) When the slave responded with ACK, one or more data bytes
received from the slave, 00..FF hexadecimal.

s Non-successful transfer status: B for bus error, A for arbitration lost,
S for skipped, C for canceled.

These commands initiate a I2C transfer.

User Manual 17

AxiCat Server v1.3.0

If 'R' is specified, the server withholds scheduling of the transfer. As soon as a
subsequent IMT command without 'R' comes in, the server will schedule all withheld
transfers. Each transfers marked with 'R' will induce a repeated start for the following
transfer. This way, the client can commit a list of transfers that the I2C master will
execute without releasing the I2C bus.

If neither 'R' nor 'L' is specified, the AxiCat application layer will decide whether a STOP
signal or REPEATED START signal will be generated at the end of the I2C transfer. If this
is the last scheduled I2C transfer, the application layer concludes with a STOP signal, else
it generates a REPEATED START signal and issues the next I2C transfer.

The max. number of data bytes is 65535.

Examples

Command IMT 50 41 42 43 44<EOL> SLA+W, address 28h, data bytes

Response IMT500004A<EOL> Slave accepts all data bytes

Successful transmission of data bytes from AxiCat to I2C slave.

Command IMT 50 41 42 43 44<EOL> SLA+W, address 28h, data bytes

Response IMT500002N<EOL> Slave accepts less data bytes

Partial transmission of data bytes from AxiCat to I2C slave.

Command IMT 50 41 42 43 44<EOL> SLA+W, address 28h, data bytes

Response IMT500000N<EOL> NACK response to SLA+W

Failed transmission of data bytes to I2C slave. The slave may be absent, or it may
respond with NACK deliberately.

Command IMT 51 0004<EOL> SLA+R, address 28h, read 4 bytes

Response IMT51A61626364<EOL> Slave returns all data bytes

Successful transmission of data bytes I2C slave to AxiCat.

Command IMT 51 0004<EOL> SLA+R, address 28h, read 4 bytes

Response IMT51A6162<EOL> Slave returns some data bytes

Partial transmission of data bytes I2C slave to AxiCat.

Command IMT 51 0004<EOL> SLA+R, address 28h, read 4 bytes

Response IMT51N<EOL> NACK response to SLA+R

Failed transmission of data bytes to I2C slave. The slave may be absent, or it may return
a NACK response deliberately.

Command IMT 6A 05 R <EOL>
IMT 6B 0004 R<EOL>
IMT 6A 1A R <EOL>
IMT 6B 0010 P<EOL>

Initiate various I2C transfers in one block. When the server receives the last command, it
schedules all four transfers at once. As a result, the AxiCat generates a REPEATED START
signal between I2C transfers. The fourth transfer is explicitly concluded with a STOP

18 User Manual

AxiCat Server v1.3.0

signal.

Note that in case the I2C master looses arbitration, all remaining I2C transfers in the
block will be skipped.

Command IMT40<EOL>
IMT42<EOL>

Response IMT400000A<EOL>
IMT420000N<EOL>

Probe slave addresses 20h and 21h. The slave with address 20h responded with ACK,
slave address 21h was not acknowledged.

I2C Master Cancel

Command IMC<EOL>
Request cancellation of all master transfers.

I2C Slave Enable

Command ISEaa<EOL>
aa Slave address and general call address.

Bit 7..1 Slave address.

0 General call address is enabled (1) or disabled (0).

Enable the I2C slave function.

When the I2C slave is enabled, it will respond to SLA+W and SLA+R packets carrying the
specified slave address. When the slave is addressed, either a slave Tx transfer or a slave
Rx transfer must have been scheduled to let the master continue the bus transaction. If
the required transfer isn't scheduled, the I2C slave will lock up the I2C bus until the
Slave Tx or Rx transfer is scheduled.

I2C Slave Disable

Command ISD<EOL>
Disable the I2C slave function.

User Manual 19

AxiCat Server v1.3.0

I2C Slave Write

Command ISW[dd](L)<EOL>
[dd] One or more data bytes, 00..FF hexadecimal.

(L) Specify L to mark as the last chunk of the data payload.

Response ISWnnnnr<EOL>
ISWSs<EOL>
nnnn Number of bytes written to the master, 0000.. hexadecimal.

r Response of the master, A for ACK, N for NACK.

s Non-successful transfer status: B for bus error, S for skipped, C for
canceled.

Schedule a slave Tx transfer. When an I2C master addresses the slave with SLA+R, it can
read the given data bytes from the slave.

You can split up the data in chunks that form one logical data payload. This features is
useful when the slave can't produce all data bytes in time. When 'L' is omitted and the
I2C master has read data from the slave, the slave will lock up the I2C bus until another
slave Tx transfer is scheduled. Thus it's important to schedule a slave Tx transfer with 'L'
at some point. In many cases, you even don't have to split up the data payload so you'd
always specify 'L'.

I2C Slave Read

Command ISRnnnn(L)<EOL>
nnnn Number of bytes to read from the master, 0001.. hexadecimal.

(L) Specify L to mark as the last chunk of the data payload.

Response ISR[dd]<EOL>
ISRSs<EOL>
[dd] One or more data bytes read from the master, 00..FF hexadecimal.

s Non-successful transfer status: B for bus error, S for skipped, C for
canceled.

Schedule a slave Rx transfer. When an I2C master addresses the slave with SLA+W, it
can write data bytes to the slave.

I2C Slave Cancel Write

Command ISCW<EOL>
Request cancellation of all slave Tx transfers.

I2C Slave Cancel Read

Command ISCR<EOL>
Request cancellation of all slave Rx transfers.

20 User Manual

AxiCat Server v1.3.0

SPI Master Set Speed

Command SMSS[n]<EOL>
[n] Bus speed, one or more decimal digits.

Set the speed of the SPI bus. The given value must match one of the predefined bus
speeds defined in the AxiCat protocol (see axicat.h, AXICAT_SPI_SPEED_<n>).

Example

Command SMSS 750000<EOL>
Set the speed of the SPI bus to 750000 Hz.

SPI Master Set Raw Speed

Command SMSRcx<EOL>
c CR, 0..3 hexadecimal.

x X2, 0..1 hexadecimal.

Set the speed registers of the SPI bus.

SPI Master Set Configuration

Command SMSCpqo<EOL>
p Clock polarity. Clock is low (0) or high (1) when idle.

q Clock phase. Sample on leading (0) or trailing (1) edge.

o Bit order is MSb LSb (0) or LSb MSb (1).→ →

Configure the SPI bus.

SPI Master Enable

Command SME<EOL>
Enable the SPI master.

SPI Master Disable

Command SMD<EOL>
Disable the SPI master.

This command disables the SPI part of the AxiCat.

Note that you can schedule transfers even when the SPI master is disabled.

All SPI master transfers being processed in the AxiCat will be completed. However, one or
more transfers that are still scheduled in the application layer will be initiated in the
AxiCat. The AxiCat will merely buffer these transfers, but for the application layer the
transfers have been started.

If your intention is to cancel all SPI master transfers and disable the SPI function, issue

User Manual 21

AxiCat Server v1.3.0

the following commands:

Command SMC<EOL>
SMD<EOL>

The order is important. First request cancellation, then disable the SPI function. If you do
it the other way around, the application layer is capable of sending one or more
scheduled transfers to the AxiCat between SMD and SMC.

SPI Master Transfer

Command SMTn[dd]<EOL>
n Slave select line, 0..3 hexadecimal.

[dd] One or more data bytes to transmit, 00..FF hexadecimal.

Response SMTn[dd]<EOL>
SMTnSs<EOL>
n Slave select line, 0..3 hexadecimal.

[dd] One or more received data bytes, 00..FF hexadecimal.

s Non-successful transfer status: S for skipped, C for canceled.

This command schedules an SPI transfer.

The command and the response contain the same number of data bytes, unless the
transfer was aborted. The latter may happen if the SPI function is disabled while the
transfer is being executed.

The max. number of data bytes is 65535.

SPI Master Cancel

Command SMC<EOL>
Request cancellation of all SPI transfers.

1-Wire Master Enable

Command OME<EOL>
Enable the 1-Wire master.

1-Wire Master Disable

Command OMD<EOL>
Disable the 1-Wire master.

This command disables the 1-Wire part of the AxiCat.

Note that you can schedule transfers even when the 1-Wire master is disabled.

All 1-Wire master transfers being processed in the AxiCat will be completed. However,
one or more transfers that are still scheduled in the application layer will be initiated in
the AxiCat. The AxiCat will merely buffer these transfers, but for the application layer the

22 User Manual

AxiCat Server v1.3.0

transfers have been started.

If your intention is to cancel all 1-Wire master transfers and disable the 1-Wire function,
issue the following commands:

Command OMC<EOL>
OMD<EOL>

The order is important. First request cancellation, then disable the 1-Wire function. If you
do it the other way around, the application layer is capable of sending one or more
scheduled transfers to the AxiCat between OMD and OMC.

1-Wire Master Reset

Command OMR<EOL>
Response OMRp<EOL>

OMRSs<EOL>

p One or more 1-Wire slaves are present (1) or no slave is present on
the 1-Wire bus (0).

s Non-successful transfer status: S for skipped, C for canceled.

This command schedules a 1-Wire reset.

1-Wire Master Touch Bytes

Command OMT[dd]s<EOL>
[dd] One or more data bytes to transmit, 00..FF hexadecimal.

s Activate strong pull-up (1) or don't (0).

Response OMT[dd]<EOL>
OMTSs<EOL>
[dd] One or more received data bytes, 00..FF hexadecimal.

s Non-successful transfer status: S for skipped, C for canceled.

This command schedules a 1-Wire touch bits transfer. The data bits are specified as an
array of bytes. As such, the command always transfers a multiple of 8 bits.

The command and the response contain the same number of data bytes, unless the
transfer was aborted. The latter may happen if the 1-Wire function is disabled while the
transfer is being executed.

The max. number of data bytes is 8191.

For example, read the scratchpad of a single DS18B20 connected to the 1-Wire bus:

Command OMR<EOL>
OMT CC BE FFFFFFFFFFFFFFFFFF<EOL>

Reset
Skip ROM Read Scratchpad→

Response OMR1<EOL>
OMTCCBE54014B467FFF0C10FD<EOL>

Reset, presence detected
Skip ROM Read Scratchpad→

User Manual 23

AxiCat Server v1.3.0

1-Wire Master Touch Bits

Command OMB[d]s<EOL>
[d] One or more data bits to transmit, 0 or 1 digit.

s Activate strong pull-up (1) or don't (0).

Response OMB[d]<EOL>
OMBSs<EOL>
[d] One or more received data bits, 0 or 1 digit.

s Non-successful transfer status: S for skipped, C for canceled.

This command schedules a 1-Wire touch bits transfer.

The command and the response contain the same number of data bits, unless the
transfer was aborted. The latter may happen if the 1-Wire function is disabled while the
transfer is being executed.

The max. number of data bits is 65535.

For example, read the power mode of a single DS18B20 connected to the 1-Wire bus:

Command OMR<EOL>
OMT CC B4<EOL>
OMB1<EOL>

Reset
Skip ROM Read Power Supply→
Read bit

Response OMR<EOL>
OMTCCB4<EOL>
OMB0<EOL>

Reset
Skip ROM Read Power Supply→
DS18B20 reports parasite power

1-Wire Master Enumerate

Command OMNF(C)(Fff)(snn-[n](-nn))<EOL>
ONNN<EOL>

(C) Optionally specify C to search for slaves in the alarmed state instead
of all slaves. This is also known as alarm condition search.

(Fff) Optionally specify F followed by a family code (00..FF hexadecimal)
to narrow down the enumeration.

(s…) Optionally enable DS2409 smart ON: M for MAIN, A for AUX,
followed by a ROM code that specifies the DS2409.

Response OMN(nn-nnnnnnnnnnnn-nn)<EOL>
OMNs<EOL>
(…) Enumerated ROM code.

s Non-successful transfer status: S for skipped, C for canceled.

The OMN command schedules one iteration of a 1-Wire enumeration. The command
either initiates an enumeration procedure (OMNF – First) or continues the procedure
(OMNN – Next). Both variations of the command generate a response of the same
format.

OMNF establishes a new enumeration context based on the specified search criteria, and
executes the first iteration of the enumeration procedure. In other words, OMNF searches
for the first 1-Wire slave.

24 User Manual

AxiCat Server v1.3.0

OMNN continues from where the previous OMNF or OMNN command left and searches for
the next 1-Wire slave, if any.

OMNF without parameters will start a search for all 1-Wire slaves that are visible on the
1-Wire bus. You can narrow down the enumeration by specifying any combination of the
following search criteria:

▪ Alarm condition search: Only 1-Wire slaves that have an alarm condition are
enumerated.

▪ Family search: Only 1-Wire slaves bearing the specified family code are enumerated.

▪ DS2409 smart ON: If you choose this option, only 1-Wire slaves that reside behind
the main or auxiliary port are enumerated. You have to choose between main and
auxiliary port and you've to provide the ROM code of the target DS2409.

The DS2409 ROM code is made up of hexadecimal digits and one or two hyphens:

▪ The family code comes first, 00..FF hexadecimal.

▪ An hyphen follows.

▪ The serial number is specified as one or more hexadecimal digits.

▪ Optional:

▪ An hyphen.

▪ Followed by a CRC value, 00..FF hexadecimal.

The server calculates the CRC value of the DS2409 ROM code. If a CRC value is specified,
it overwrites the calculated value.

Example commands:

Command OMNF<EOL> Enumerate all 1-Wire slaves

Command OMNF C<EOL> Search slaves with alarm condition

Command OMNF F28<EOL> Only enumerate DS18B20 slaves

Command OMNF M 1F-56BA7<EOL> Search behind DS2409 main port

Command OMNF A 1F-56BA7-80<EOL> DS2409 auxiliary port, CRC specified

Command OMNF C F28 M 1F-56BA7<EOL> All search criteria combined

Command OMNN<EOL> Search next slave

Example responses:

Response OMN01-000016A944DC-D3<EOL> Slave found

Response OMN<EOL> No slave found

Both command and response use a readible formatting of the ROM code, for example
“28-0000040CBBB2-C4”. The actual ROM code bytes that are transferred over the 1-Wire
bus are ordered as follows:

▪ Family code: 1 byte.

▪ Serial number: 6 bytes, LSB MSB.→
▪ CRC value, 1 byte.

ROM code “28-0000040CBBB2-C4” is transferred over the 1-Wire bus as the following

User Manual 25

AxiCat Server v1.3.0

byte sequence: 28h B2h BBh 0Ch 04h 00h 00h C4h.→ → → → → → →
When you acquire a ROM code from an OMNN response and you want to use the ROM
code bytes for addressing the 1-Wire slave in an OMT command, you'll have to flip the
middle six bytes first. In the following example, we enumerate a DS18B20 and read the
scratchpad data:

Command OMNF<EOL>
OMNN<EOL>
OMNN<EOL>

Enumeration commands

Response OMN28-0000040CBBB2-C4<EOL>
OMN01-000016A944DC-D3<EOL>
OMN<EOL>

Found a DS18B20 and a 1-
Wire identification chip.

Command OMR<EOL>
OMT 55 28 B2 BB 0C 04 00 00 C4<EOL>
OMT BE FF FF FF FF FF FF FF FF FF<EOL>

Reset
Match ROM
Read Scratchpad

Response OMR1<EOL>
OMT5528B2BB0C040000C4<EOL>
OMTBE50014B467FFF101049<EOL>

Reset, presence detected
Match ROM
Read Scratchpad

Since the enumeration command is asynchronous, you can increase the speed of
enumeration significantly by scheduling enumeration commands in advance. For
example, let's schedule eight commands in one go:

Command OMNF<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>

Response OMN28-0000040CBBB2-C4<EOL>
OMN01-000016A944DC-D3<EOL>
OMN1F-000000056B3E-A7<EOL>
OMN1F-000000056B31-83<EOL>
OMN1F-000000056BA7-80<EOL>
OMN<EOL>
OMN<EOL>
OMN<EOL>

In the above example, five 1-Wire slaves are present on the bus and their ROM codes
have been reported. The last three responses carry no ROM code meaning all slaves have
been enumerated.

A more advanced enumeration algorithm would involve scheduling a set of commands
initially (one OMNF and several OMNN commands), and then scheduling new OMNN
commands as OMNnn-nnnnnnnnnnnn-nn responses come in, with the intent to keep the
enumeration mechanism going.

26 User Manual

AxiCat Server v1.3.0

Command OMNF<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>

Response OMN28-0000040CBBB2-C4<EOL>
OMN01-000016A944DC-D3<EOL>
OMN1F-000000056B3E-A7<EOL>
OMN1F-000000056B31-83<EOL>

Command OMNN<EOL>
OMNN<EOL>
OMNN<EOL>
OMNN<EOL>

Response OMN28-0000040CBBB2-C4<EOL>
OMN<EOL>
OMN<EOL>
OMN<EOL>

In the above example, we schedule eight enumeration commands to kick off the
enumeration procedure. For every four enumerated 1-Wire slaves we schedule four new
OMNN commands.

If you need very fast enumeration and the connection with the server is rather slow, then
you can easily increment the number of commands to compensate for network delays.
For example, you could start off with 32 commands and schedule 16 more for every 16
enumerated 1-Wire slaves.

1-Wire Master Probe

Command OMPnn-[n](-nn)<EOL>
nn… ROM code of the 1-Wire slave to probe.

Response OMPf<EOL>
OMPs<EOL>

f The 1-Wire slave has been found (1) or not (0).

s Non-successful transfer status: S for skipped, C for canceled.

The OMP command schedules a 1-Wire probing command.

Examples

Command OMP 28-40CBBB2<EOL>
Response OMP1<EOL>
Command OMP 3B-000000183368-2E<EOL>
Response OMP0<EOL>
Since the probing command is asynchronous, you can increase the speed of probing
multiple slaves significantly by scheduling commands in advance. For example:

User Manual 27

AxiCat Server v1.3.0

Command OMP 28-40CBBB2<EOL>
OMP 3B-183368<EOL>

Response OMP1<EOL>
OMP0<EOL>

1-Wire Master Cancel

Command OMC<EOL>
Request cancellation of all 1-Wire transfers.

UART Set Baudrate

Command UuSB[n]<EOL>
u Selected UART, 0 or 1.

[n] Baud rate, one or more decimal digits.

Set the baud rate of the selected UART.

The given value must match one of the predefined baud rates defined in the AxiCat
protocol (see axicat.h, AXICAT_UART_BAUDRATE_<n>).

Example

Command U0SB 9600<EOL>
Set the baud rate of UART0 to 9600.

UART Set Raw Baud Rate

Command UuSRrrrx<EOL>
u Selected UART, 0 or 1.

rrr UBRR, 000..FFF hexadecimal.

x X2, 0..1 hexadecimal.

Set the baud rate registers of the selected UART.

UART Set Data Bits

Command UuSD[n]<EOL>
u Selected UART, 0 or 1.

[n] Data bits, one or more decimal digits.

Set the number of bits per data word for the selected UART.

The given value must match one of the values defined in the AxiCat protocol (see
axicat.h, AXICAT_UART_DATA_BITS_<n>).

28 User Manual

AxiCat Server v1.3.0

Example

Command U1SD9<EOL>
Set the data word size of UART1 to 9 bits.

UART Set Stop Bits

Command UuSS[n]<EOL>
u Selected UART, 0 or 1.

[n] Stop bits, one or more decimal digits.

Set the number of bits per data word for the selected UART.

The given value must match one of the values defined in the AxiCat protocol (see
axicat.h, AXICAT_UART_STOP_BITS_<n>).

Example

Command U1SS2<EOL>
Set 2 stop bits per data word for UART1.

UART Set Rx Timeout

Command UuST[n]<EOL>
u Selected UART, 0 or 1.

[n] Rx timeout, one or more decimal digits, 0..65535 milliseconds.

Set the timeout value in milliseconds for reporting received data. A value of zero means
that the AxiCat will immediately report any received data word. A non-zero value
programs a timeout for reporting all buffered data words since the last data word was
received.

Note that the AxiCat has a limited buffer for receiving data words and will report the data
anyway when the buffer is full.

Example

Command U0ST100<EOL>
Set the Tx timeout to 100 milliseconds for UART0.

UART Set Unsolicited Rx Response

Command UuSUnnnn<EOL>
u Selected UART, 0 or 1.

nnnn Maximum number of data bytes to report (0..65535).

Set the maximum number of data bytes an unsolicited Rx response may report. If this
value is zero, unsolicited Rx responses are disabled, else they're enabled.

The number of data bits determines the words size. If 9 data bits are selected, 2 data

User Manual 29

AxiCat Server v1.3.0

bytes for each word, ordered LSB MSB, are reported by the AxiCat. So if you've set the→
UART to use 9 data bits, you better specify an even number of data bytes.

Example

Command U0SU0120<EOL>
Enable unsolicited Rx responses for UART0. The maximum number of reported data bytes
is 120h (288).

UART Enable

Command UuE<EOL>
u Selected UART, 0 or 1.

Enable the selected UART.

UART Disable

Command UuD<EOL>
u Selected UART, 0 or 1.

Disable the selected UART.

UART Write

Command UuW[dd]<EOL>
u Selected UART, 0 or 1.

[dd] One or more data bytes to transmit, 00..FF hexadecimal.

Transmit data words over the given UART's TXD line.

The number of data bits determines the words size. If 9 data bits are selected, you've to
provide 2 data bytes for each word, in LSB MSB order.→
Example

Command U0W414242410D0A<EOL>
Send 6 characters over the TXD line of UART0. The characters are “ABBA” CR LF.→ →

UART Read

Command UuRnnnn<EOL>
u Selected UART, 0 or 1.

nnnn Maximum number of data bytes to read (1..65535).

Response UuR[dd]<EOL>
u UART, 0 or 1.

[dd] Zero or more received data bytes, 00..FF hexadecimal.

30 User Manual

AxiCat Server v1.3.0

Read data from the given UART.

Response UuR[dd]<EOL>
u UART, 0 or 1.

[dd] One or more received data bytes, 00..FF hexadecimal.

Unsolicited UART Rx response.

The server reports data words received over the given UART's RXD line.

The number of data bits determines the words size. If 9 data bits are selected, 2 data
bytes for each word, ordered LSB MSB, are reported by the AxiCat. So if you've set the→
UART to use 9 data bits, you better specify an even number of data bytes.

Example

Response U1R61626364<EOL>
UART1 received 4 characters “abcd”.

Quit

Command QU<EOL>
Quit the server.

User Manual 31

AxiCat Server v1.3.0

Client Protocol vs. Application Layer
The server translates between client protocol and AxiCat application layer. The server
implements a one-to-one translation between front-end and back-end where possible,
but some things just can't be passed through as-is.

By design the transfer commands in the client protocol can't offer all features of their
counterparts in the application layer and that's where the differences are:

▪ Completion of transfers: the application layer supports completion of transfers in
random order, the client protocol completes transfers in the order they were started.

▪ Cancellation of transfers: the application layer can cancel individual transfers, while
the client protocol cancels all transfers of the same type (table) at once.

Transfers

Types

Both client protocol and application layer know six types of transfers:

▪ GPIO transfer.

▪ I2C master transfer.

▪ I2C slave Tx transfer.

▪ I2C slave Rx transfer.

▪ SPI master transfer.

▪ 1-Wire master transfer.

The server translates transfers between client protocol and application layer in a one-to-
one fashion.

The AxiCat itself also works with these types of transfers, albeit in the form of more
elementary commands that are cached in buffers of small sizes limited by the memory of
the microcontroller.

Tables

The server maintains a table for each transfer type. A transfer table is a cache for
transfer objects created in the application layer and for associated data buffers. A slot
caches a single transfer object and its data buffer.

A transfer table keeps track of the order in which transfers are scheduled; it ensures all
transfers will be reported back in the order they were sent by the client.

Preparation

When the server receives a transfer command from the client, it first prepares a slot in
the transfer table. The transfer object and data buffer in the slot are set up to the point
that the transfer can be scheduled in the application layer.

For example, when the client sends command IMT2041424344, it is first determined
that the command represents an I2C master transfer. The server then picks an available
slot, sets up the transfer object for a write (SLA+W) operation to the I2C slave at

32 User Manual

AxiCat Server v1.3.0

address 10h, and fills the data buffer with the bytes (41h, 42h, 43h, 44h). The transfer is
now ready for scheduling in the application layer.

Scheduling may be delayed until one or more subsequent slots have been prepared in the
table. This is the case for certain I2C master transfer commands, IMT210004R for
example. The trailing 'R' instructs the server to withhold the transfer from scheduling
until another I2C master transfer without 'R' comes in.

Scheduling

When the server schedules a transfer object in the application layer, it calls one of the
scheduling API functions, like AXICAT_AL_SPI_Xfr_Schedule(). Once the call has been
made, the transfer becomes part of another world where the application layer
communicates with the AxiCat using the AxiCat protocol.

Completion

For each transfer table, the server checks for completion of scheduled transfers in the
order they appear in the table. If the first scheduled transfer has completed, the server
formats a response and sends it to the client. The slot of a completed transfer is made
available for reuse, thus it caches a transfer object and a data buffer to be used when a
future client transfer command comes in.

The actual completion of a transfer is handled in the application layer. A transfer may be
completed for several reasons, such as successful execution or cancellation.

Cancellation

The client may request cancellation of all transfers of a transfer type. For example,
command OMC requests the cancellation of all 1-Wire transfers. The server translates
such client command into one or more calls to the application layer, one call for each
scheduled transfer in the table of the target transfer type.

User Manual 33

AxiCat Server v1.3.0

5 Serial Paths
You need to specify a serial path in order to communicate with a serial port. The next
sections explain in more detail how you specify serial paths in each supported operating
system.

Linux
Serial ports are accessible in the device directory structure. A serial path starts with
/dev. A serial path is case-sensitive.

The following table summarizes serial paths that are commonly found on Linux systems:

Serial Path Serial Port

/dev/ttyS0 The computer's 1st on-board serial port

/dev/ttyS1 The computer's 2nd on-board serial port

/dev/ttyS2 The computer's 3rd on-board serial port

/dev/ttyS3 The computer's 4th on-board serial port

/dev/ttyUSB0 1st USB serial adapter

/dev/ttyUSB1 2nd USB serial adapter

/dev/serial/by-id/ This directory contains symbolic links to serial devices.
Each symbolic link name identifies a specific device.

/dev/serial/by-path/ This directory contains symbolic links to serial devices.
Each symbolic link name represents a hardware path to
the device, like a specific USB port on your computer.

Here are some useful commands you can run to get information about present serial
devices and their corresponding serial path. The following commands were run on a Linux
system with one on-board UART and one connected USB serial adapter.

Filter information from the kernel message buffer:

$ dmesg | grep 'tty'
[0.000000] console [tty0] enabled
[0.516785] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
[0.517463] 00:0b: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
[0.559097] tty tty55: hash matches
[66.076326] usb 2-1: FTDI USB Serial Device converter now attached to ttyUSB0
Use the setserial command to produce a list of serial paths:

$ setserial -g /dev/ttyS* /dev/ttyUSB*
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
/dev/ttyS1, UART: unknown, Port: 0x02f8, IRQ: 3
/dev/ttyS2, UART: unknown, Port: 0x03e8, IRQ: 4
/dev/ttyS3, UART: unknown, Port: 0x02e8, IRQ: 3
/dev/ttyUSB0, UART: unknown, Port: 0x0000, IRQ: 0, Flags: low_latency

34 User Manual

AxiCat Server v1.3.0

List serial devices in the device directory:

$ ls -l /dev/ttyS* /dev/ttyUSB*
crw-rw---- 1 root dialout 4, 64 2012-02-22 14:19 /dev/ttyS0
crw-rw---- 1 root dialout 4, 65 2012-02-22 14:19 /dev/ttyS1
crw-rw---- 1 root dialout 4, 66 2012-02-22 14:19 /dev/ttyS2
crw-rw---- 1 root dialout 4, 67 2012-02-22 14:19 /dev/ttyS3
crw-rw---- 1 root dialout 188, 0 2012-02-22 14:20 /dev/ttyUSB0

Windows
Serial ports are accessible through the Win32 device namespace, which is part of the NT
namespace. As such a serial path starts with \\.\ followed by the device name of the
serial port. A serial path is case-insensitive.

A serial port is typically named COM<x> where <x> is a number between 1 and 256.
Other naming schemes may apply and aliases may exist, depending on the serial driver
that controls the serial port.

You can obtain a list of available serial ports
in the device manager. Open the device
manager and view devices by type. The
section named Ports (COM & LPT) contains all
available serial and parallel ports.

The device name of a serial port is shown
between parentheses. In the picture to the
right, you can see two serial ports. COM1 is
the PC's on-board serial port, COM3
represents a USB serial adapter.

The serial paths to the serial ports in the
picture are:

Serial Path Serial Port

\\.\COM1 Communications Port (COM1)

\\.\COM3 USB Serial Port (COM3)

Serial paths like COM1 (that's without the \\.\ prefix) will work because COM1 to COM9
are reserved names in the NT namespace. COM10 to COM256 aren't reserved names and
you'll have to specify the \\.\ prefix with these device names. By comparison, serial
path \\.\COM100 will work but serial path COM100 won't work.

User Manual 35

AxiCat Server v1.3.0

6 Software Revision History
Version Description

1.0.0 ▪ Initial release of AxiCat Server.
▪ Based on AxiCat AL v1.0.0.

1.1.0 ▪ Added 1-Wire commands.
▪ Based on AxiCat AL v1.1.0.

1.2.0 ▪ Added 1-Wire enumeration command.
▪ Based on AxiCat AL v1.2.0.

1.3.0 ▪ Added 1-Wire probing command.
▪ Based on AxiCat AL v1.3.0.

36 User Manual

AxiCat Server v1.3.0

7 Software License
The license is stated in the source code.

8 Legal Information

Disclaimer
Axiris products are not designed, authorized or warranted to be suitable for use in space,
nautical, space, military, medical, life-critical or safety-critical devices or equipment.

Axiris products are not designed, authorized or warranted to be suitable for use in
applications where failure or malfunction of an Axiris product can result in personal
injury, death, property damage or environmental damage.

Axiris accepts no liability for inclusion or use of Axiris products in such applications and
such inclusion or use is at the customer's own risk. Should the customer use Axiris
products for such application, the customer shall indemnify and hold Axiris harmless
against all claims and damages.

Trademarks
All product names, brands, and trademarks mentioned in this document are the property
of their respective owners.

9 Contact Information
Official website: http://www.axiris.eu/

User Manual 37

http://www.axiris.be/

	1 Distribution
	2 Installation
	3 Program
	Overview
	Command Line
	Network Mode
	Standard I/O Mode
	Windows Console
	Usage Examples
	Network Mode and Terminal Programs
	Network Mode and Programming Languages
	Standard I/O Mode and Console
	Standard I/O Mode and Piping
	Initialization File

	Shutting Down
	Linux
	Windows

	4 Client Protocol
	Overview
	Format of Commands and Responses
	GPIO Write
	GPIO Read
	GPIO Set Direction
	I2C Master Set Speed
	I2C Master Set Raw Speed
	I2C Master Enable
	I2C Master Disable
	I2C Master Transfer
	I2C Master Cancel
	I2C Slave Enable
	I2C Slave Disable
	I2C Slave Write
	I2C Slave Read
	I2C Slave Cancel Write
	I2C Slave Cancel Read
	SPI Master Set Speed
	SPI Master Set Raw Speed
	SPI Master Set Configuration
	SPI Master Enable
	SPI Master Disable
	SPI Master Transfer
	SPI Master Cancel
	1-Wire Master Enable
	1-Wire Master Disable
	1-Wire Master Reset
	1-Wire Master Touch Bytes
	1-Wire Master Touch Bits
	1-Wire Master Enumerate
	1-Wire Master Probe
	1-Wire Master Cancel
	UART Set Baudrate
	UART Set Raw Baud Rate
	UART Set Data Bits
	UART Set Stop Bits
	UART Set Rx Timeout
	UART Set Unsolicited Rx Response
	UART Enable
	UART Disable
	UART Write
	UART Read
	Quit

	Client Protocol vs. Application Layer
	Transfers
	Types
	Tables
	Preparation
	Scheduling
	Completion
	Cancellation

	5 Serial Paths
	Linux
	Windows

	6 Software Revision History
	7 Software License
	8 Legal Information
	Disclaimer
	Trademarks

	9 Contact Information

