
TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computing Science

MASTER’S THESIS
Product Software Quality

 By

Dipl.ing. Gregor Panovski

Graduation supervisor:

Dr. Alexander Serebrenik (LaQuSo, TU/e)

 Graduation committee members:

Dr. Natalia Sidorova (TU/e)

Dr. Marko van Eekelen – (LaQuSo, RU Nijmegen)

Graduation tutor:

Ir. Petra Heck - LaQuSo (TU/e)

Eindhoven, February 2008

 2

Preface
The MSc. study of “Computer Science and Engineering” at the Eindhoven University
of Technology (TU/e) is concluded with master thesis project. This research was
conducted at the LaQuSo (Laboratory for Software Quality) in Eindhoven.

In the first place, I would like to thank Eindhoven University of Technology and
LaQuSo for giving me the opportunity to graduate in such interesting domain. I would
like to thank Petra Heck and Alexander Serebrenik for their supervision, advices,
comments on the thesis, pleasant cooperation and feedback. I thank to Marko van
Eekelen for his practical advices and participation in graduation committee, Natalia
Sidorova for participation in graduation committee, Jovan Pehcevski and Jasen
Markovski for their readings and comments on my thesis, and all other employees of
LaQuSo, for the wonderful time and nice working environment at LaQuSo.

Finally yet importantly, I would like to thank my family, especially to my daughter
Mia and my wife Natasha and to my parents Ljiljana and Vladimir for their, support
and encouragements.

 3

Abstract
Product Software is a commercial software package, containing a software application
and accompanying documentation. Software Quality is defined as conformance of the
produced software to stated and implied needs [ISO/IEC 9126-1]. In order to
understand and measure quality, scientists often built models of how quality
characteristics relate to each other. A quality model is a set of quality characteristics
and relationships between them, which provides the basis for evaluating product
software quality and specifying its requirements [ISO/IEC 9126-1].

Evaluation of product software quality is the topic of this M.Sc. project at the
Eindhoven University of Technology conducted at the Laboratory for Quality
Software (LaQuSo). The project is focused on evaluation of external quality, which
means assessing the behavior of product software when it is executed. In this thesis,
we present our experiences and guidelines for evaluating quality of product software
applications from different application domains.

The major research question we addressed is how one should evaluate external
product software quality. As quality is known to be a complex and multidimensional,
subject to many constraints, it follows that quality evaluation is a complex process as
well. Hence, to fully address this question, the following related sub-questions are
considered:

• Is product software quality domain dependent?
• How can we use the ISO/IEC 9126-1 quality model in different domains?
• What are the differences between product software quality and tailor-made

software quality?

Current quality models such as ISO/IEC 9126 contain numerous metrics and their full
usage requires significant evaluation effort per product. Accordingly, we focus on a
subset of metrics that are relevant for chosen application domains and to evaluate
quality with the relevant metrics only. We also conduct a survey contacting the
software producers in the Netherlands asking them which ISO/IEC sub-characteristics
are important for their product software. We analyzed the results, but the response
was not sufficiently high to perform a relevant statistical analysis. We believe that the
industrial response was limited due to marginal use of the ISO/IEC 9126 standard in
the industry.

As a starting point in the quality evaluation, we divided the software products in three
categories: infrastructure software, software development tools, and application
software [OECD]. Further, we executed product analysis in order to define which
quality sub-characteristics are relevant for specific and related products classified in
the same category. The reason for this was to reduce the evaluation effort focusing on
relevant characteristics per category only. To create category specific quality models,
we departed from the ISO/IEC 9126 standard and made use of the methodology
proposed in [Botella] for building ISO/IEC 9126-based quality models. The
methodology consists of several steps and the basic idea is to derive domain specific
metrics starting from ISO/IEC 9126 quality characteristics. In our work, we
decomposed each of the relevant ISO 9126 sub-characteristics in more concrete
entities, called attributes and proposed metrics for these attributes. As a guideline for
metric definition, we used the external metrics provided by [ISO/IEC 9126-2]. The

 4

first part of the metrics was literary taken from [ISO/IEC 9126-2], the second part of
the metrics was inspired by the [ISO/IEC 9126-2] metrics and derived for the specific
product, while the third part were metrics not defined by the standard but related to
the application domain of product software.

Using the above methodology, we analyzed seven product software examples from
the three listed categories and completely evaluated four product software
examples: two examples of application software and two software development tools.
Different ISO 9126 characteristics were relevant for the three product software
categories. For example, functionality is very important for all the three categories but
portability is not important for any of them. For the other three ISO 9126
characteristics (usability, reliability and efficiency), we have discovered significant
differences between product software belonging to different categories. Usability is
very important for application software products, but it is less important for software
development tools and infrastructure software. Reliability and efficiency, on the other
hand, are very important for infrastructure software but less important for the other
two categories. With this analysis, we prepared reduced quality models per category.
Using these reduced quality models on our evaluated product software examples we
reduced software evaluation time to one week per product software, compared to the
time of more than one month per product when using full quality models.

We focused on the metrics provided by [ISO/IEC 9126-2]. We found that several
[ISO/IEC 9126-2] metrics require presence of internal information and documents
such as requirements specification or the number of faults during development. These
documents may not be available for external evaluation, as they contain company
confidential information. Hence, we expect this subset of [ISO/IEC 9126-2] metrics to
be used for assessment by an internal evaluator only. Other [ISO/IEC 9126-2] metrics,
such as the efficiency metric Throughput and security metric Access controllability,
are too general, so the evaluator should refine or translate them to metrics specific for
the product. Finally, the third group of [ISO/IEC 9126-2] metrics can be widely
applied in different domains.

We conclude that external product software quality is domain or category dependent.
We created reduced quality models based on ISO 9126 that can be applied per product
software category. Using these reduced quality models, we decreased the evaluation
effort per product software. As a proof of concept, we evaluated the external quality
of four product software applications from different domains.

Metrics provided by [ISO/IEC 9126-2] can be used as a starting point for metrics
definition, but in our opinion, they are not “ready to use”. Thus, the evaluator should
adapt them to the product category or to the domain and business objectives.

 5

Table of Contents
1. Introduction..7
2. Product Software..10
3. Quality and Quality Models...14
4. Related Research..25
5. Survey results...28
6. Analysis of product software ...31
7. Reflection...39
8. List of Abbreviations ...48
9. References:...49
Appendix..52

 6

1. Introduction
This thesis reports is the final step of the “Computer Science and Engineering”
graduate program at Eindhoven University of Technology (TU/e). The thesis
investigates “Product Software Quality” and was conducted at the Laboratory for
Quality Software (LaQuSo), activity of the Faculty of Mathematics and Computer
Science at TU/e.

LaQuSo aims to measure quantify and predict the quality of the designed software in
order to increase the predictability of the development process. The focus of LaQuSo
is on quality of software. The development process is not the subject of this study, but
only the output of the development process.

This thesis project was related to LaQuSo certification services, where LaQuSo
certifies software artifacts as an independent evaluator. The architecture of LaQuSo
certification is presented on the figure below:

Figure 1 LaQuSo certification architecture

The project falls under “validation (empirical) methods, techniques and tools” in
LaQuSo competences, presented on LaQuSo web site on following URL:
http://www.laquso.com/research/researchcertification.php.

Research Questions
This document reports on a study of: Product Software Quality, Quality models and
Product Software.

In this project, we aim at researching the product software quality assessment, and
argue the need of a quality model as a first step in the software quality assessment. A
quality model is a set of quality characteristics that should be evaluated. We expect
that the relative importance of the quality characteristics could be domain-dependent,
where for some domain one characteristic may be very important, while for other
domains the same characteristic may be irrelevant.

 7

We address the following research questions:

• How do we measure product software quality?
Software quality in general is hard to define and therefore hard to measure.
• Is product software quality domain dependent?
We believe that different quality characteristics are important for different
application domains. Our research should be able to endorse or reject this
conjecture.
• How can we use the ISO/9126-1 quality model in different domains?
ISO/9126-1 is too general in order to give coverage for all application domains.
We expect that for some domains a reduced set of ISO/9126-1 can be used for
assessing the quality. Using a reduced set of characteristics, the assessment and
verification effort can also be reduced.
• What are the differences between product software quality and tailor-made

software quality?
We want to compare which quality characteristics are important for the tailor-
made software.

Our expectation is that for different domains we can define different domain-based
quality models. These domain based quality models will be based on the ISO/9126-1
quality model, but we expect that they will not be identical to the ISO/9126-1 model.

Research Methods
During this project, we used the following research methods:

• Literature study
A literature study involves reviewing readily available scientific papers related to
the research area. We conducted literature study in the areas of Quality, Software
Quality Models and Product Software.
• Conducting a survey
This method had several parts:

o Designing a questionnaire required for executing structured interviews.
We prepared a questionnaire and enclosed letters according to the theory
of questionnaire design [Litkowski]. The complete version of the
questionnaire is available in the Appendix A.

o Personal interviews with different stakeholders
We also used the web and library, scientific and industrial resources for
interviewing [Litkowski]. These resources helped in conducting structured
interviews.

o Analysis of the survey
The results of the interviews were further analysed. On the basis of the
interviews, we tried to extract information which quality characteristics are
important for the specific product software and for the specific application
domain. Due to lack of insufficient feedback, our survey did not provide us
with statistically significant results.

 8

• Quality evaluation and construction of a quality model for real product
software applications

This step will help in assessing relevance of the quality model on a real
software application. As a starting point, we executed domain analysis in
order to define which quality sub-characteristics are relevant for a specific
product and to reduce the evaluation effort focusing on relevant
characteristics only. To this end we departed from the ISO/IEC 9126
standard and made use of the methodology proposed in [Botella] for
building ISO/IEC 9126-based quality models. The methodology consists
of several steps and the basic idea is to derive metrics starting from ISO
9126 quality characteristics. In our work, we derive attributes for all
relevant ISO 9126 sub-characteristics and propose metrics for these
attributes. As a guideline we used external metrics provided by [ISO/IEC
9126-2]: some metrics were literary taken from [ISO/IEC 9126-2], other
 were inspired by the [ISO/IEC 9126-2] metrics, while the third part were
metrics not defined by the standard but related to the application domain of
the product software.

Report Outline

The rest of this thesis is organized as follows. Chapter 2 explains the notion of
product software and discusses the place of product software in the software market.
Chapter 3 focuses on quality, software quality, and quality models; the chapter
describes related terms and previous research. Chapter 4 discusses the related research.
In Chapter 5, we present the survey results and the analysis of these results. Chapter 6
presents the evaluation procedure of four product software applications. Chapter 7
contains reflections and conclusion remarks.

 9

2. Product Software

There is no clear distinction between the terms product software and software product.
We find it important that the term is perceived based on the provided definition. For
this research, we will give preference to the term product software because this is the
terminology used by the researchers in the Netherlands. We will use the following
product software definition [Xu]:

Product software is defined as a packaged configuration of software components or a
software-based service, with auxiliary materials, which is released for and traded in a
specific market.

This definition contains the following terms/concepts. Packaged software
components mean code, executables and web pages that can be obtained ready from
software vendors and do not require much customization. Software-based service
means commercial software services. Auxiliary materials refer to the accompanying
software documentation (user manuals and brochures. Release and trading give the
commercial values of the product software.

Another related term is a software product. We cite the definition from the ISO/IEC
9126-1:2001 standard originally published in ISO/IEC 12207:1995:

Software product is the set of computer programs, procedures, and possibly
associated documentation and data.

This definition seems too general and means that every running program can be
considered as a software product. It defines another term and has other meaning
compared to the definition from [Xu]. We will mainly use the definition from [Xu];
we presented the ISO, because it is related to ISO/IEC 9126-1 quality model.

[Lassila] provides another definition of software product:

Software product is the application that is productized and can be customized to suit
the customer needs by customization.

This definition is closer to the definition of [Xu], because it assumes that the
application is a product (productized) unlike the ISO definition where the software
product represents a set of programs and procedures alike. On the other hand, [Lassila]
definition differs from [Xu] definition, because [Lassila] assumes customization to
suit the customer needs. Therefore, [Lassila] cannot make a clear differentiation
between product software and tailor-made software. This fact is also visible on Figure
2. Further, [Lassila] definition appears simpler and less vague, assuming that the
reader has an understanding of the term productized.

In this report, we use the term product software. However, given that the definition
from [Xu] is somewhat vague, we simplify the meaning of this term by providing the
following definition:

 10

Product Software is a commercial software package, containing a software
application and accompanying documentation.

The difference between our definition and the definition from [Xu] is that services are
not included in our definition. This is because we do not consider services as a
product software.

We should be able to make distingtion between the product software and other
software types. Rough division of software types in three groups is presented on the
following figure [Lassila]:

Product
Software

Tailor-made
Software

Embedded
Software

Figure 2 Categories of Software offer [Lassila]

This classification is based on the [Lassila] definition of software product, where
authors have not made a clear distinction (border in the figure) between software
product and tailor-made software, resulting in an intersection between the two, as
shown in figure 3.

In our study, we mainly focus on the category Software Products. [Xu] mentions three
main differences between product software and tailor-made software:
1. Product software introduction to the market might need coordination of

dependable software engineering activities, like market analysis. Thus, product
software is market oriented, while for the tailor-made software we are usually
working for only one customer.

2. Product software might require installation and usage of different hardware and
software platforms. Tailor-made software is used on only one software and
hardware platform.

3. Product software vendor stays owner of the software and the accompanying
(auxiliary) materials, and the users of the product software should pay a license
for its usage. In case of tailor-made software, the users usually own the software.

Embedded software differs from other software categories because its main role is
interaction with the physical world [Lee]. Embedded software usually runs on systems
that are not complete computer systems, such as airplanes, mobile telephones, audio
equipment, robots, appliances, toys, security systems, pacemakers, heart monitors,
weapons, television sets, printers, and manufacturing systems.

 11

Product software terms and categories

The literature distinguishes several product software related terms. [Xu] explains the
differences between these terms:

• Shrink-wrapped software is software on boxed, shrink-wrapped mediums.
This kind of software is sold in the stores.

• COTS software is developed for a whole market. COTS software can be used
as it is, or partly personalized within the boundaries of the application to be
modified without changing its original functionality.

• Packaged software describes ready-made software products that can be
obtained from software vendors, requiring little modification or customization
in order to be used. This term is widely used in the literature with the meaning
similar to product software.

• Commercial software is software that should be bought or licensed before it
can be used.

• Standard software is routinely installed by Information Technology (IT) staff
on most computers within the organization. Standard software usually contains
an operating system and accompanying applications.

The following figure presents the relationship between the product software terms:

Product Software

Commercial Software
Large Packaged Software

Packaged Software
COTS

Shrink-Wrapped Software
Software-based services

Open-source software

Figure 3 Product software terms [Xu]

[Xu] mentions several product software classifications defined in the literature. These
classifications are based on the application domain, the architectural style used, and
the programming languages. They give preference to the [OECD] classification,
where product software is divided in the following categories:

- System infrastructure software (Operating Systems, middleware and security
software)

- Software development tools (database management systems, development
environments, development life-cycle management)

- Application software (ERP systems, CAD/CAM/CAE and other applications)

 12

Product software summary
In this chapter, we defined product software related terms used in the science and
industry. We also introduced the categorization of product software proposed by
[OECD]. Defining product software terms and [OECD] categorization is important
for the reader, because in the next sections we will refer to these terms and to the
categories of [OECD]. In the next chapter, we will continue explaining and defining
terms related to quality, software quality and quality models.

 13

3. Quality and Quality Models
Product quality and software quality have been defined by many authors. In this
chapter, we present a number of quality definitions in order to provide a clear picture
s about quality related terms.

Quality

ISO 8402 provides the following definition cited in the ISO quality related documents:

The totality of features and characteristics of a product or service that bear on its
ability to satisfy specified or implied needs.

Quality has been intensively studied in the past. In the following paragraphs, we will
summarize the various contributions on quality, its views and insights.

[Crosby], one of the revolutionary and best selling books about quality, claims that
investing in quality means zero cost for the company and this investment can only
bring money. He also introduces the “Zero Defects” rule as the only acceptable
performance. This is an interesting statement that gives a kind of perfection or
excellence dimension to the term quality.

[Garvin] defines the following quality views:

• The transcendental quality view means excellence or elegance that can be
recognized but not defined.

• The user-based view can be summarized as “fitness for purpose i.e. how
much the product meets the user needs”.

• The manufacturing quality view means conformance to the specification. In
software industry, this means conformance to requirement specifications.

• The product-based view is an economist view and it considers product
quality characteristics and their impact on costs - the higher the quality, the
higher the costs (i.e. Rolls Royce in the automotive industry).

• The value-based view means that quality depends on the amount that the
customer is willing to pay (i.e. Ford Escort in the automotive industry).
Similarly as in the software industry, here the quality can be constrained by
cost (i.e. people, time and tools).

Garvin also stresses that different people in different areas (like philosophy,
marketing, and operations management) perceive quality differently.

 [Gillies] presents the following insights about quality:

• Quality is not absolute, unlike its physical characteristics i.e. temperature
quality cannot be measured on a quantitative scale.

• Quality is multidimensional, meaning that many factors define and influence
the quality.

• Quality is subject to constraints, i.e. by means of costs or resources.
• Quality is about acceptable compromises, meaning that sometimes some

quality attributes may be rejected in favor of other ones.

 14

• Quality criteria are not independent, i.e. quality criteria interact with each
other, possibly causing conflicts.

These above statements provide a nice description of quality and explain that the
assessment of quality is a complex process.

Software Quality

[Ince] provides the following statement about software quality:

“A high quality product is one which has associated with it a number of quality
factors. These could be described in the requirements specification; they could be
cultured, in that they are normally associated with the artefact through familiarity of
use and through the shared experience of users; or they could be quality factors
which the developer regards as important but are not considered by the customer and
hence not included in the requirements specification"

This is an interesting statement explaining that only few quality factors can be
mentioned in the requirements specification. Here we also see a differentiation
between quality views and stockholder’s views as mentioned by [Garvin], where the
requirements specifications are covering the manufacturer quality view only.
However, as [Ince] observes, the stakeholder’s views do not completely cover the
quality requirements.

We use the following software quality definition [Fitzpatrick]:

Software quality is the extent to which an industry-defined set of desirable features
are incorporated into a product so as to enhance its lifetime performance.

We have chosen this definition because it mentions existence of a product that relates
it to our research. Another reason to use this definition is that it focuses on the timely
dimension of quality.

Quality Models
In order to understand and measure quality, scientists have often built models of how
quality characteristics relate to each other [Kitchenham]. So far, the scientists have
prepared many models intending to cover the entire software development. In this
report, we mention a number of important quality models.

As a starting point, we quote the definition of quality models from [ISO9126]:

A quality model is the set of characteristics and the relationships between them,
which provide the basis for specifying quality requirements, and evaluating quality.

Initial quality models were developed in mission critical application domains (Air
Force Systems, Rome Air Development Center and NASA).

The first published method for Software Quality Evaluation is [Rubey], which
proposes quality attributes and metrics. The paper further considers external factors

 15

that have impact on the program’s performance. Using the metrics and the external
factors, the authors also propose a quality model that can be used both for program
quality and programming environment quality evaluation.

McCall Software Product Quality Model
[McCall] proposes one of the first structured quality models. Some authors consider
McCall’s model as the first and the most used quality model [Fitzpatrick]. [McCall]
proposes the following framework:

Figure 4 Software Quality Framework [McCall]

On the highest level, the major aspects or factors are specified. The framework
assumes that these factors represent the management or customer view of product
quality.

This model mentions the following software quality factors:

- Correctness
- Reliability
- Efficiency
- Integrity
- Usability
- Maintainability
- Testability
- Flexibility
- Portability
- Reusability
- Interoperability

On the middle level [McCall] places the attributes that provide the characteristics for
the factors. Few criteria are defined for each factor. For example, Access control and
Access audit criteria are defined for the Integrity factor.

The first two levels of the [McCall] quality model are presented on the following
figure:

 16

Corectness

Reliability

Tracebility

Completeness

Consistency

Accuracy

Error Tolerance

Efficiency
Execution Efficiency

Storage Efficiency

Integrity
Access Control

Access Audit

Usability

Operability

Training

Communicativeness

Maintainability

Simplicity

Conciseness

Instrumentation

Testability

Self-descriptiveness

Expandability

Generality

Modularity

Software System
independence

Machine independence

Communication
commonality

Data Commonality

Flexibility

Portability

Reusability

Interoperability

Figure 5 McCall quality model hierarchical representation

On the lowest level [McCall] places the software quality metrics that should measure
the software attributes.

 17

According to some authors, the main idea behind McCall’s model is assessment of
relationships among external quality factors and product quality criteria [Ortega]. The
external quality is related to the product and is measured by the customers, while the
internal quality is quality experienced during the development and it is measured by
the programmers [Kent].

Further, McCall organizes these factors in three categories based on the uses of a
software product. His classification is presented on the following figure:

Product Maintainabili Productty
Flexibility

Portability
transition Reusability

Testability Interoperability

Product operations

Correctnes s
Efficiency

Reliability
Integrity

Usability

Figure 6 McCall Quality Model [McCall]

revision

Product operation refers to the product’s ability to be understood, to be stable and
functional. Product revision is related to error correction and system adaptation.
Product transition is related to portability characteristics assuming rapidly changing
hardware.

Boehm Software Product Quality Model

[Boehm] considers the code as realization of requirements and design. The authors
assume that software quality can be defined as a function of the metrics’ values. After
proposing a number of metrics for some of the program characteristics, they conclude
that considering a value of a single metric rather than of the entire collection of
metrics may be advantageous. This is because major quality characteristics often
conflict, e.g. efficiency conflicts with portability.

The proposed model has the model of McCall as a starting point. The authors added a
number of additional characteristics stressing the importance of maintainability of a
software product. Boehm’s model is based on a wider range of characteristics than the
McCall’s model and incorporates 19 criteria, including characteristics of hardware
performance, which are missing in the McCall model [Ortega].

The model of [Boehm] further defines a hierarchical set of quality characteristics; the
quality model is presented on the following figure:

 18

Figure 7 Software Quality Characteristics Tree [Boehm]

The second level of hierarchy is divided by considering the following three questions:

- How well can the software product be used? Authors name these
characteristics as-is utility.

- How easy can the software product be maintained? Authors name these
characteristics maintainability.

- Can the software product still be used in case of change of the environment?
Authors name this characteristic portability.

These three high-level characteristics are associated with a set of lower level
characteristics. Some of the low-level characteristics are related to more than one
high-level characteristic. Therefore, the model is not purely hierarchical, or according
to [Gilies] the model is represented as an extended hierarchy where quality attributes
are sub-divided.

FURPS model
The FURPS model has been proposed by Robert Grady and Hewlett-Packard Co
[Grady]. The model uses five characteristics, its name being derived from these
characteristics: Functionality, Usability, Reliability, Performance, and Supportability.
The model decomposes characteristics into two categories of requirements:
-Functional requirements: Defined by input and expected output.

 19

-Non-functional requirements: Usability, Reliability, Performance, and Supportability.

According to [Grady], the FURPS model should be applied in two steps: first,
priorities should be set, where measurable quality attributes should be defined. [Grady]
notes that setting priorities is important given the implicit trade-off between the
characteristics (improving one quality characteristic can deteriorate another quality
characteristic). One disadvantage of this model is that it fails to consider the software
product’s portability.

ISO/IEC 9126:1991
ISO 9126 defines product quality as a set of product characteristics [Ortega]. The first
quality model version was proposed in 1991 and it is known in the literature as ISO
9126:1991. The first version had six main characteristics (functionality, reliability,
usability, efficiency, maintainability and portability) and 20 sub-characteristics.

The model seems more structured than the previous models. One advantage of this
model is that it is completely hierarchical: every characteristic has a set of sub-
characteristics as presented on the following figure:

Figure 8 ISO/IEC 9126:1991 [Kitchenham]

Some authors such as [Dromey] consider ISO 9126:1991 as being derived from
the Boehm model. That statement is partly true, but unlike the Boehm’s model,
sub-characteristics in ISO 9126:1991 are hierarchical, thus related to only one
high-level characteristic.

 20

Dromey Quality Model
[Dromey] proposed a model that extends ISO 9126:1991. Dromey’s model consists of
eight high-level quality characteristics, the same six from ISO 9126:1991 plus
Reusability and Process Maturity.

[Dromey] presents a process of building a product quality model. The author divides
the model building process in the following tasks:

- The first task addresses the users’ requirements of the model.
- The second task defines the architecture of the model.

He proposes the following architecture of the model:

Figure 9 Software Product Quality Model Architecture [Dromey]

Based on this architecture, he divides the further work in three parts:

- Constructing a software product model
- Constructing a quality model
- Linking the software product and quality models to a software product quality

model
[Dromey] searches for relationships between the characteristics and the sub-
characteristics of quality. He also attempts to pinpoint the properties of the software
product that affect the characteristics of quality [Kececi]. We have a similar approach
as Dromey, because we also believe that quality is category or domain specific.

The disadvantage of the Dromey model is associated with Reliability and
Maintainability, since it is not feasible to judge both these attributes for a system
before it is actually operational in the production area.

 21

ISO/IEC 9126:2001
ISO/IEC 9126:2001 is industrial standard proposed for quality evaluation.

In 2001 ISO prepared an updated version of the ISO/ IEC 9126:1991 standard also
known as ISO/IEC 9126:2001.

The ISO/IEC 9126-1 quality model is presented on the following figure (from [ISO
9126]):

Figure 10 ISO/IEC 9126:2001 quality model [ISO9126]

As shown on Figure 8, ISO/IEC 9126-1 contains six main quality characteristics:
functionality, reliability, usability, efficiency, maintainability and portability. Every
characteristic contains sub-characteristics; there are in total 27 sub-characteristics
(suitability, accuracy,…,replaceability, portability compliance). More details and
definitions of ISO/IEC 9126-1: 2001 are available in the Appendix section.

Similarly to the ISO/IEC 9126:1991 standard, ISO/IEC 9126:2001 is also hierarchical,
so every high-level characteristic has a number of related sub-characteristics. ISO/IEC
9126:2001 contains seven more sub-characteristics than ISO/IEC 9126:1991, six of
them are compliance characteristics and the seventh is attractiveness, which was not
part of ISO/IEC 9126:1991.

New Generation of ISO/IEC Software Product Quality Standards

ISO/IEC decided to prepare a new generation of software product quality standards in
order to repair the imperfections of ISO/IEC 9126 standard. [Suryn] and Sawyer
mention several imperfection of ISO/IEC 9126:

 - The standard does not tackle quality requirements specification;
 - Consistency with other ISO standards published in parallel;
 - Scope of applicability, addressing quality needs in system life and user

guidance for various users and methodology for applying quality engineering
instruments within the standard.

 22

The new standard had a working name SQuaRE or Software Product Quality
Requirements and Evaluation. The new generation working group has the following
guidelines:

- merging separate series ISO/IEC 9126 and ISO/IEC 14598 Software
engineering - Product evaluation in a harmonised one,

- introducing new organization of the standard,
- introducing a new reference model,
- introducing detailed guides,
- introducing of a standard on Quality Requirements,
- introducing of guidance on the practical use of the series with examples,
- coordination and harmonization of the measure model with ISO/IEC 15939

Software Engineering - Software Measurement Process.

The new standard SQuaRE consists of 14 documents grouped under five thematic
headings:

• Quality Management, defining all common models, terms and definitions
referred to by all other standards in the SQuaRE series,

• Quality Model, probably updated version of ISO/IEC 9126-1
• Quality Measures, derived from ISO/IEC 9126 and ISO/IEC 14598,
• Quality Requirements, standard for supporting the specification of quality

requirements, and
• Quality Evaluation, providing requirements, recommendations and

guidelines for software product evaluation.

Comparison of the Quality Models
The following table from [Ortega] compares characteristics of different quality
models. The table illustrates the characteristics and their updates during the last 30
years. ISO 9126 in the table is based on revision from 1998, which is version between
ISO/IEC 9126:1991 and ISO/IEC 9126:2001.

Quality
Characteristic

Boehm McCall FURPS ISO 9126 Dromey

Testability X X X
Correctness X
Efficiency X X X X X
Understandability X X X X
Reliability X X X X X
Flexibility X X
Functionality X X X
Human
Engineering

X

Integrity X X
Interoperability X X
Process Maturity X
Maintainability X X X X X
Changeability X
Portability X X X X
Reusability X X

 23

Table 1 Comparison between the quality models [Ortega]

In the above table, it is visible that all quality models score more or less equally well.
Examples about model specific characteristics are “Human Engineering” and
“Changeability” for Boehm model and “Process Maturity” for Dromey model,
however we do not consider these model specific characteristic too relevant, therefore
we will not pay attention in our next section of the report.

Quality and Quality Models Summary
In this chapter, we described main quality and software quality terms. Further, we
provided historical overview of quality models.

ISO/IEC 9126:2001 is an international and widely recognized standard in the IT
society [Cote]. However, some authors [Pfleeger] note that ISO/IEC 9126 is mainly
used by academic and research institutions and only marginally used in the industry.
We believe that ISO/IEC 9126:2001 can be used as a basis for domain-based software
quality model, because ISO/IEC 9126:2001 is internationally approved standard and
contains hierarchical organization of characteristics and sub-characteristics. Another
argument for ISO/IEC 9126:2001 is that it is the latest introduced model, containing
the experiences from previous models and providing basis in software quality.

Domain-based software quality models can be seen as sub-models of ISO/IEC
9126:2001, including quality characteristics relevant for the application domain, but
also including domain-specific sub-characteristics and metrics. In chapter 6 we will
try to design category-based quality models, applicable for categories of products
defined by [OECD].

 24

4. Related Research

Introduction
During the literature study, we found many scientific papers related to the Quality and
Software Quality Models. In this chapter, we present several of them that seem
relevant for our project.

Korea University
Scientists from Korea University executed a similar ISO/IEC 9126:2001 related
survey [Jung]. The study was conducted by means of a questionnaire, which referred
to 18 of the 27 quality sub-characteristics. In the questionnaire, the Reliability and
compliance sub-characteristics were omitted, because the pretest users had difficulties
with these sub-characteristics.

The survey contains input from 75 users of product software from one company
producing a query and reporting tool for business databases. From these 75 users, 48
were end users, 25 were developers, and two were “other” users.

After processing the results, 14 sub-characteristics were classified in 5 dimensions
based on correlations between the sub-characteristics. The values next to the sub-
characteristics are the correlation coefficients ranging from -1 (total negative
correlation) to +1 (perfect positive correlation)

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5
Analyzability
(0.616)

Understandability
(0,769)

Time behaviour
(0.805)

Suitability
(0.818)

Security
(0.856)

Changeability
(0.653)

Learnability
(0.827)

Resource
utilization
(0.766)

Accuracy
(0.648)

Stability
(0.814)

Operability
(0.848)

 Interoperability
(0.796)

Adaptability
(0.699)

Attractiveness
(0.616)

Table 2 Correlations Table [Jung]

The sub-characteristics with correlation coefficients between them and derived
dimension of 0.6 or higher are grouped in same dimensions. Four sub-characteristics:
testability, installability, replaceability and co-existence were not related to any
dimension and so they are not presented in the table.

The categorization above is similar to the ISO/IEC 9126-1 quality model
categorization. The first dimension groups maintainability sub-characteristics with
adaptability (a sub-characteristic of portability). The second dimension contains sub-
characteristics of usability. The third dimension groups sub-characteristics of

 25

efficiency, while the forth dimension contains functionality sub-characteristics. It
should be noted that security is in a separate fifth dimension, not related to the other
functionality sub-characteristics.

The authors executed a survey similar to our surveys described in chapter 5, but they
received a higher response rate. Therefore, they were able extract a statistical data
from the survey. Our survey did not have a high response rate, but we managed to go
step further and create category-based quality models.

National ICT Australia
[Al-Kilidar] conducted experimental evaluation of ISO/IEC 9126 quality standard.
The experiment aimed at assessing the applicability of ISO/IEC 9126 to product
design and possibilities of the quality assessment of the intermediate design product.

[Al-Kilidar] made the following remarks for the ISO/IEC 9126 standard:

- Parts of the ISO/IEC 9126 standard are ambiguous, e.g. the definition for
functional compliance.

- Some definitions are overlapping, which can lead to multiple counts when
the metrics are constructed.

- Some measures contain imperfections because they require information
that is not available for the designers.

[Al-Kilidar] therefore concludes that, due to ambiguities and omissions, the current
version of ISO/IEC 9126 standard fails to achieve the desired objectives.

However, ISO 9126 was not proposed for design assessment. Therefore, it is a bit
preposterous to accuse ISO measures of imperfections. On the one hand, our opinion
is also that ISO/IEC 9126 standard is too general. On the other hand, unlike [Al-
Kilidar], we think that ISO/IEC 9126 can be used as a basis for a domain-specific
quality model. In chapter 6, we will prove how ISO/IEC 9126 standard can be applied
as a base for creation of categoru-based quality models based on ISO/IEC 9126.

Universitat Politèchnica de Catalunya (UPC)
This institution published numerous papers on the ISO/IEC 9126 quality model. The
most relevant work is [Botella], which presents a methodology for building a domain-
based quality model. The same group of authors also published quality models for
some COTS products such as ERP and Mail Servers [Burgues].

These papers provide examples of domain-based quality models. We also believe that
quality models are domain related, and therefore we use their methodology to
construct domain-based quality models.

Universidad Simón Bolívar and Universidad Ezequiel Zamora
[Ortega] presents the design of a quality model with a systematic approach to product
software. Their model is mainly focused on product’s efficiency and effectiveness.

 26

Product efficiency is determined by internal design and programming activities, while
product effectiveness is determined by activities involving requirement identification,
interface design and general network design.

The authors designed a quality model that aims at reflecting the most important
attributes of quality. They evaluated the model using the following evaluation steps:

- Designing a survey, where they define that they will evaluate similar
products by evaluators with similar background

- Formulating, validating and applying metrics
- Defining an algorithm to obtain the quality estimates
- Analyzing the results

This research is interesting since we can use model design and model evaluation
techniques similar to [Ortega]. The difference is that we execute the survey as part of
the model design and not in the model evaluation phase.

Related Research Summary
In this chapter, we provided an overview of the research related to ISO/IEC 9126 and
software quality. Cited papers and institutions prove that software quality and quality
models were interesting and challenging research topics for scientists worldwide.

Research related so design of domain based quality models of [Botella] and [Burgues],
is the most related and the most relevant to our work. Therefore, we will use their
methodology as a guideline in our design of category-based quality models in the next
chapters.

 27

5. Survey results

Introduction
The surveys were executed in order to gain an industry input about the importance of
ISO/IEC 9126:2001 sub-characteristics and characteristics.

We created two questionnaires in order to execute two surveys. The first version of
the questionnaire was longer and it contained questions about all ISO/IEC 9126:2001
sub-characteristics; details about this questionnaire are available in the appendix. The
second shorter version of the questionnaire contained questions about high-level
characteristics of ISO/IEC 9126:2001.

We have executed two actions to invite the companies to participate in our surveys:
-The first action was in November 2006, when we sent an invitation by mail to nine
companies to participate in our survey. We selected companies producing product
software for different application domains, in order to gain impression about the
importance of ISO/IEC 9126-1:2001 characteristics in different domains. From nine
invited we organized one interview and we received one filled questionnaire.
- The second action was in March 2007, during the VVSS 2007 (Symposium on
Verification and Validation of Software Systems). On this event, we distributed about
300 shorter questionnaires and we asked the event participants if they are interested to
be contacted for an interview or for a longer version of the questionnaire. On that
occasion, we received twelve filled short questionnaires and only six of them
responded that they would like to participate in the survey based on the longer
questionnaire.

Long Questionnaire Results

We executed two interviews and we have received three filled questionnaires.
Participating companies are developing or testing product software in completely
different application domains. However, we found the following to be common for
most of the questionnaires:

- Functionality was selected as the most important high-level characteristic by
all of the companies. This is not surprising, since the functionality consists in
determining whether the software meets the functional requirements.

- Portability was selected as the least important high-level characteristics from
four of total five companies. This is related to the fact that companies develop
product software that should run on one software platform (operating system).

- Suitability, accuracy and interoperability were selected as the most important
low-level sub-characteristics. This corresponds to an earlier remark that
functionality is the most important high-level characteristic, so functionality
sub-characteristic should be the most important sub-characteristic too.

- Replaceability and compliance sub-characteristics (for portability and
maintainability) and other portability sub-characteristics were selected as some
of the least important. That is probably related to the fact that portability was
the least important high-level characteristic and that companies do not have to
meet the compliance criteria.

 28

Short Questionnaire Results
We received twelve filled short questionnaires from total of 200-250 questionnaires
that were distributed during VVSS 2007, symposium organized by LaQuSo. From the
twelve questionnaires, two contained invalid data so they were not included in the
results.

In the short questionnaire, the participants were asked to rank the high-level
characteristics by giving a percentage. They were also requested to provide
information about their area of expertise and the type of software that they are
verifying or developing.
The table bellow presents the results of this survey.

The first six columns show the percentage that the survey participants assigned to
each high-level characteristic:
-F% presents the percentage assigned to functionality.
-R% presents the percentage assigned to reliability.
-U% presents the percentage assigned to usability.
-E% presents the percentage assigned to efficiency.
-M% presents the percentage assigned to maintainability.
-P% presents the percentage assigned to portability.

The next five columns show the types of product software that the survey participants
were assessing, where:
-SIS means System Infrastructure Software.
-STD means Software Development Tools.
-AS means Application Software.
-SBS means Software Based Services.
-Other means other types of software not covered by the above four categories.
Examples of these products were Embedded Software and Doc. Conv., meaning
Document Conversion Application.

The last column shows the area of expertise of the participants, where:

- QA means testing and Quality Assurance.
- SE means Software Engineering.

F % R % U % E % M % P % Software
Category

Expertise

40 9 10 10 20 1 AS, SBS QA
40 15 15 20 8 2 AS, SBS QA
70 10 5 10 5 0 AS, SBS QA
30 20 15 10 25 0 AS SE
30 15 20 10 10 15 SIS,AS, SBS QA
30 25 20 10 15 0 SBS QA
30 20 10 20 10 10 AS, SBS QA
60 15 13 10 0 2 SBS QA
50 10 10 20 5 5 SBS QA
40 12 12 12 12 10 SIS,SDT, AS,

SBS
SE, QA

Table 3 Results of the short questionnaire survey

 29

The second table list the summations (with suffix Sm) and average (with suffix Av)
percentage for the categories of Application Software (AS) and Software Based (SBS)
Services, where:

- AS Av is the average percentage for Application software
- SBS Av is the average percentage for Software Based Services

 F% R% U% E% M% P%
AS Sum: 280 101 87 92 90 38
AS Avg. 40 14,4286 12,43 13,14 12,86 5,43
SBS
Sum

390 131 115 122 85 45

SBS
Sum

43,33 14,56 12,78 13,56 9,44 5

Table 4 Summation and average values of the short questionnaire survey

On the basis of the above table, we can notice that:
-Functionality was selected as the most important high-level characteristics in this
survey.
-Portability was selected as the least important high-level characteristics in this
survey.
- Other four high-level characteristics (Reliability, Usability, Efficiency and
Maintainability) have approximately same importance for the participants in our
survey. The exception is that maintainability seems to be less important for
software-based services.

Survey Results Conclusions and Recommendations
The response for our survey was not sufficient to provide statistically significant
information. It seems that the ISO/IEC 9126 is not very interesting for the industry.
However, based on our two surveys we can draw the following conclusions:

- All of the participants selected functionality as the most important high-level

quality characteristic.
- Nine of ten participants selected portability as the least important high-level

quality characteristic.
- The other high-level quality characteristics: reliability, usability, efficiency

and maintainability were selected as equally important, which mainly depends
of the business objectives of the software producer or verifier.

Based on these conclusions, we can make the following recommendations for future
work:

- We will not assess the compliance sub-characteristics, because they do not
seem relevant to us. This fact was also confirmed by most of the product
software companies’ questionnaires.

- We will not assess the portability in details, because it seems less relevant for
the product software companies. However, some sub-characteristics as
installability are important for some of the product software categories,
therefore installability will be evaluated in the categories where it is relevant.

- We will further analyze which sub-characteristics are important for specific
product software based on our domain analysis and of our longer
questionnaire survey.

 30

6. Analysis of product software

Introduction
In the previous chapter, we analyzed the results of our survey. Since we did not
receive enough survey responses, we decided to determine ourselves which quality
characteristics are important for product quality on specific examples from different
categories defined by [OECD]. Accordingly, in this chapter, we continue with our
quality evaluation by analyzing several examples of product software from different
categories and create category-based quality models. Created category-based quality
models contain the relevant ISO/IEC 9126-1 characteristics and sub-characteristics,
attributes related to the sub-characteristics and metrics for the attributes.

The idea is that we assess product software from different categories, with our survey
results and the product software documentation being used as an input. We will use
the customer or market view to evaluate the selected product software applications.

The results from our survey revealed that functionality is the most important
characteristic and that suitability is the most important sub-characteristic. These
results should not be a surprise since functionality represents conformance to
functional requirements that should be important for any product.

One important question, however, is which of the other characteristics representing
non-functional requirements are important for various product software categories. In
this chapter, we specify which characteristics are important for the three product
software categories identified by [OECD]: infrastructure software, software
development tools, and application software. We analyze them from a user
perspective, trying to specify which characteristics are important for the end user. We
also measure external quality (i.e., software behavior when executing) using external
quality metrics.

In creation of category-based quality models, we used a methodology similar to the
methodology described in [Botella] and [Burgues]. The methodology is divided in the
following steps:

- Determining the importance of high-level quality characteristics. This step
defines which ISO/IEC 9126:1 high-level quality characteristics are important

- Determining the importance of quality sub-characteristics. This step defines
which ISO/IEC 9126:1 quality sub-characteristics are important for the
product software. We estimate which sub-characteristics are important, but we
also check the product documentation and survey results in order to verify our
statements.

- Decomposing sub-characteristics into attributes. In this decomposing step, the
abstract sub-characteristics are decomposed in more concrete entities -
attributes.

- Determining metrics for the attributes. In this step, metrics for selected
attributes are selected.

In our analysis, we will not consider the compliance sub-characteristics because
our survey gave an indication that they are irrelevant. In addition, maintainability
and its sub-characteristics will also not be considered, since we are executing

 31

external (black box) analysis, while the maintainability sub-characteristics such as
changeability and testability are code (white box) related.

Some of the sub-characteristics can be directly decomposed to metrics. This is due
to the fact that these sub-characteristics are not abstract in nature, so ISO/IEC
9126-2:2003 or other metrics can be used directly to measure the quality of the
sub-characteristic, i.e., reliability sub-characteristic, maturity can be directly
assessed and it is usually assessed in the industry with the metric Mean time
between failures (MTBF).

In this chapter, we present a brief summary of the Infrastructure Software,
Application software and Software Development Tool category. In Appendix C we
provide further details about created category-based quality models presenting the
attributes, metrics and results of the evaluation for the categories of software
development tools and application software.

System Infrastructure Software
We evaluated two product software applications from this category:

1) Sun Solaris Operating System version 10
2) HP OpenView Operations for UNIX network management software version 8

We have chosen these two products, because they are typical representatives of
System Infrastructure Software category. Sun Solaris is commonly used operating
system and OpenView is one of the most popular network/infrastructure applications.

For this software category, we considered the following characteristics and sub-
characteristics as relevant:

Functionality – has high importance for Operating Systems and Infrastructure
Software category, because the product software should provide functions that are
able to meet stated and implied needs. We found the following functionality sub-
characteristics relevant for this product category:
 - Suitability
 - Interoperability
 - Security

Reliability – has high importance for Operating Systems and Infrastructure Software
category, because we expect these products should correctly operate under specified
and extreme conditions such as software and hardware failures. We found the
following reliability sub-characteristics relevant for this category:
 - Maturity
 - Fault tolerance
 - Recoverability

Efficiency - has high importance for Operating Systems and Infrastructure Software
category, especially for Operating Systems, because we expect that Operating

 32

Systems should keep resources available for higher-level applications. We found the
following efficiency sub-characteristics relevant for this category:
 -Time behaviour
 - Resource utilization

We found the following characteristic and accompanying sub-characteristics to be less
relevant:

Usability – has medium importance for related products addressing home users
market (i.e. Microsoft Windows), thus involving users with moderate computer skills.

Portability - is usually irrelevant for the operating systems, but partly relevant for
infrastructure software. It is common for the System Infrastructure category products
that producers prepared separate versions for every software and hardware platform.

Software Development Tools
We will monitor the following product software applications from this category:

1) TOAD tool for management and development of databases representing
Database development tools

2) SA4J code analyzer for Java programming language product of IBM and
Alpha Works representing code analyzer tools

We have chosen above products because they are typical representatives of this group.
TOAD is popular application for Database development used in the industry; SA4J is
example of code analyzer tool, product that is closer to academic environment. Both
of these product have freeware versions that makes them easy accessible.

For this software category, we assume the following (sub-) characteristics as relevant:

Functionality:

- Suitability: these products should provide their specific functions like
compiling or database development. Suitability of SA4J is defined that
SA4J application should analyze structure of Java classes. Suitability of
TOAD is defined with compilation, debugging and execution of stored
procedures, triggers, functions and types.

- Accuracy is important for these products. The meaning of accuracy for
these applications is to provide code fault detection. Accuracy of SA4J
means that it should discover architectural problems in the analyzed
application and detect antipatterns (bad design elements based on the set
of known bad design examples). Accuracy for TOAD can be presented
with SQL Optimization feature, which optimizes the database performance.

Reliability:

- Recoverability has high importance because we expect these product
software applications to be able to recover the data or the actual work in
the case of failure.

 33

Usability:
- Understandability has medium importance because the users should be

able to understand how to use these product software applications for their
development tasks.

- Learnability has medium importance because users of these applications
are expert, so we can understand learnability as enabling expert users to
learn these applications quickly.

Efficiency:

- Time behaviour has medium importance because we expect that these
product software applications should have low processing times.
Otherwise, their usage will cost more, when we calculate the time when
the developer is waiting for the results.

We found the following characteristic less relevant:

Portability is usually not very important characteristic for this product category.
Development tools usually have different versions for different platforms.
Installability is a bit relevant, but these applications should not necessarily install
easily since their users have computer literacy.

Application Software
This product category is broader and contains many different products and product
domains; therefore, we divide this category in the following subcategories:

- Administrative or office applications like text editors and email client
application.

- Entertainment application like games, focusing on action games

We monitor the following product software applications from this category:

1) Microsoft Office Word part of the Microsoft Office suite
2) Minesweeper, game delivered as part of Microsoft Windows Operating

System. Entertainment (games) subgroup will be analyzed in the next
subsection, because we assume that quality characteristics of entertainment
application are different with the previous categories.

We have chosen these two products, because they are good representatives of the
category. Microsoft Word is the most popular text editor and probably one of the
most used example of Application Software category worldwide. Minesweeper is a
game that is installed with every Windows operating system, thus also with
significant number of installations.

For office applications, we assume the following characteristics and sub-
characteristics as relevant:

 34

Application Software Office Applications
Functionality – has high importance for Office applications, because the applications
should execute their functions like text editing. We found the following functionality
sub-characteristics relevant for this product category:

- Suitability
- Accuracy
- Security

Reliability – has medium importance for Office applications, because we expect that
data can be retrieved in case of failure. We found the following reliability sub-
characteristic relevant for this product category:

- Recoverability

Usability - has high importance for Office applications, because we expect that these
applications should be easy to understand, to use and to learn. We found the following
usability sub-characteristics relevant for this product category:

- Understandability
- Learnability
- Operability

Efficiency - has medium importance for Office applications, because we expect that
these applications are not very slow and they do not fully utilize the system resources.
We found the following efficiency sub-characteristics partly relevant for this product
category

- Time behavior
- Resource utilization

Portability: - has medium importance for Office applications, because we expect that
these applications can be easily installed. We found the following portability sub-
characteristic relevant for this product category:

- Installability

Corrections:
Security
Initially we did not select security as important sub-characteristic of application
software. Analyzing the new features of Word 2007, we discovered that the producer
introduced several security features such as digital signature, detection of documents
containing macros and prevention of changes to the final version of the documents.
These facts prove the relevance of security for this product category.

Application Software Entertainment Applications
Functionality - has high importance for Entertainment application, because these
applications should execute their basic functions that are running the animated
gaming application, and these days they commonly run in a networked environment.
We found the following functionality sub-characteristics relevant for this product
category

- Suitability
- Interoperability

 35

Usability - has medium importance for Entertainment applications, because we
expect that these applications should be easy to understand, easy to use, easy to learn
and attractive for the user. We found the following usability sub-characteristics
relevant for this product category

- Understandability is important because the users should be able to
understand and use these applications without much effort

- Learnability is also important because the users should be able to learn
how to use these applications

- Attractiveness is probably the most important usability sub-characteristic,
because if the product is not attractive the users might use similar but more
attractive product.

Efficiency – has medium importance for Entertainment applications, because they
should not be too slow. We found the following efficiency sub-characteristic partly
relevant for this product category

- Time behaviour

Portability - has medium importance for Entertainment applications, because we
expect that these applications can be easily installed and run with other applications.
We found the following portability sub-characteristics relevant for this product
category

- Installability
- Co-existence

Summary of analysis of product software
In the following table, we present a summary of sub-characteristics’ importance for
different product software categories. We use three levels of importance:

- “--“ means low importance
- “+-“ means medium importance
- “++” means high importance

ISO/IEC 9126:2001
sub-characteristics

System
Infrastructure
Software

Software
Development
Tools

Application
Software
Office and
Antivirus
applications

Application
Software
Entertainment
applications

Functionality ++ ++ ++ ++
Suitability ++ ++ ++ ++
Accuracy -- +- +- +-
Interoperability ++ +- +- +-
Security ++ +- +- --
Reliability ++ +- +- --
Maturity ++ +- -- --
Fault tolerance ++ +- -- --
Recoverability +- ++ ++ +-
Usability -- +- ++ ++
Understandability -- +- ++ ++
Learnability +- +- ++ ++

 36

Operability -- +- ++ +-
Attractiveness -- +- +- ++
Efficiency ++ +- +- +-
Time behaviour ++ +- +- +-
Resource utilization ++ -- +- --
Portability -- +- +- +-
Adaptability -- -- -- --
Installability -- +- ++ ++
Co-existence -- +- +- +-
Replaceability +- +- -- --
Table 5 Overview of sub-characteristics importance per product category

Based on the above table, we can define the profiles for every application category
graphically as described in [Maiocchi], we will intentionally omit functionality
because it has high importance for all product categories:

Portability

Usability

Efficiency

Reliability

Application software

System Infrastructure
Software

Software
Development Tools

Explanation:

Figure 11 Quality chart for software categories

From the table and from the chart it is visible that different ISO/IEC 9126
characteristics are relevant per category. For System Infrastructure Software category
next to the functionality, reliability and efficiency have high importance. For Software
Development tools next to the functionality reliability, efficiency and usability have
medium importance. For Application Software next to functionality, usability has
high importance.

This analysis shows that for different software categories, we should focus our
evaluation on different ISO/IEC 9126 characteristics. We followed this guideline in
our evaluation and creation of category-based quality models. In appendix C we
presented the details of our evaluation of sample products from different categories
and the details of the category-based quality models. Presented category-based quality
models can be reused for other products that can be categorized in one of the three
categories.

In this chapter, we provided a summary of our product evaluation procedure and our
results about the importance of different characteristics for different product

 37

categories. In the next chapter, we will present the reflection and concluding remark
about this project.

 38

7. Reflection

Reflection about the thesis project
The project presented in this thesis has been carried out as a part of LaQuSo
certification activities. The objective of this project was to determine the quality
attributes of product software artifacts.

The initial project description was clear and concise; our impression was that a project
based on such description is interesting and challenging. The project description was
also assuming participation of the software industry in the Netherlands and
neighboring countries. Industry representatives were expected to participate in the
interviews conducted by the author, discuss the quality attributes of their products and
provide them for evaluation. Unfortunately, we did not gain enough support from the
industry and that fact changed partly the project direction.

We believe that several factors might have been responsible for insufficient industrial
participation.

First, the software industry hardly uses the ISO/IEC 9126 standard as noticed by
[Pfleeger]. Our opinion is that the main reason for low industrial popularity of
ISO/IEC 9126 is due to the growing market demand of certification, on the one hand,
and inability of ISO/IEC 9126 to provide for any form of certificate, on the other.
Producing software in different domains demands for compliance to domain-
dependent standards (e.g. HIPAA or FDA compliance for medical product software,
SOX compliance for EAI software). Therefore, the producers are focused on
compliance with respect to the standards demanded by the market and do not pay
much attention to standards that are not required. Consequently, evaluating the
product software towards market demanding standards seems like a better business
opportunity.

For software producers ISO/IEC 9126 is probably just another standard; they are not
supposed to follow it, and they are not very enthusiastic about the standard. The
producers have some internal or market objectives that are also part of the ISO/IEC
9126 standard; examples of these objectives are reliability metrics of [ISO/IEC 9126-
2] Mean Time Between Failures (MTBF) i.e. of 200 hours or availability of i.e.
99,5%. Thus, in the case when producers want to have their product evaluated on
some of the quality characteristics, ISO/IEC 9126 standard can be a good starting
point. Evaluating quality characteristics important for the software producers, such as
efficiency, reliability and usability, seems like a good business opportunity. Our
expectation is that not every producer considers all three characteristics important.
Therefore, potential projects could be evaluation of usability for producers of
application software applications, and/or evaluation of reliability for infrastructure
software producers.

Second factor contributing to low industrial participation is the time issue; software
producers could not find time for participating in our survey. Our assumption is that it
was difficult to claim some time for activities that are not essential for their business.
With approach that is more persistent, we could organize more interviews with

 39

software producers, but even then, we would not get their software for evaluation.
Another approach could be using the personal network of contacts within the Dutch
Software Industry. We organized few interviews by contacting colleagues or friends
employed in the software industry, but with this approach, we cannot get an input
from various domains.

Third factor is that ISO/IEC 9126 does not provide procedure and methodology for
evaluation. The ISO/IEC 9126 standard contains a quality model, collection of
different metrics, but it does not contain a methodology and process for evaluation,
process and methodology are described in the ISO/IEC 14598 standard. This issue
makes the implementation of the ISO/IEC 9126 standard complex and vague for the
industry.

Fourth factor contributing to low industrial participation is the price of ISO/IEC 9126
and related standards. Complete set of ISO/IEC 9126 and ISO/IEC 14598 standards
costs about thousand US dollars, which is significant investment for private users and
small companies. We expect that if the price is lower or the standards are free the
popularity of the standards will be higher. In that case, private users could order or
download the standards and use the parts that are interesting for them.

Despite of the above remarks, we nevertheless managed to prove that product
software quality is domain dependent. We developed domain/category based quality
models, and we demonstrated that such created models can be reused for evaluating
various examples of product software applications with reasonable evaluation effort.

Evaluation process
ISO/EIC 9126 standard does not contain a methodology or a process for evaluation as
part of the standard. Therefore, we followed the methodology published by [Botella]
and [Burgues] as a guideline. The methodology is briefly described in Chapter 6. The
difference with our approach is that we assumed that we could reduce the number of
relevant quality characteristics and sub-characteristics per product. The first two steps,
defining relevant quality characteristics and sub-characteristics were executed based
on our category or domain investigation and our domain perception. The following
two steps, deriving attributes for the sub-characteristics and defining metrics for the
attributes, were more demanding.

We experienced difficulties in decomposing several sub-characteristics into attributes.
These difficulties were most likely because the ISO/IEC 9126 standard does not
contain the attributes layer. As a result, some sub-characteristics, such as “resource
utilization” and “installability”, were difficult to be decomposed to attributes. We
resolved these issues by checking the proposed metrics in [ISO/IEC 9126-2] and then
proposing attributes based on the metrics.

Another issue was defining objective metrics. Examples were related to performance
and usability metrics. In the case of performance metrics, like “response time”, the
results are dependable on the hardware resources. Thus, we had to use our working
hardware configuration as a reference configuration. Similar was the issue with
usability metrics, where metrics defined in [ISO/IEC 9126-2] required a test user,

 40

where in absence of a test user an evaluator with higher IT literacy should act as a test
user.

After executing evaluation of the categories of infrastructure software, software
development tools and application software, we actually created three category-based
quality models that can be reused for any product belonging to these three categories.
Using the category based quality models we also designed an evaluation process that
can be summarized with the following steps:

- Categorizing the product software, where the product should be assigned to
one of the three categories, based on the product software characteristics and usage.
 - Specifying the relevant metrics that will be measured, based on the category
quality model. Category quality models are described in Chapter 6 and Appendix C.
Several metrics related to functionality should be modified in order to allow
functionality of evaluated product software and related product software from same
domain.
 - Executing measurement of the product software. Using the metrics defined in
the previous phase, the evaluator should execute the test cases defined by the metrics.

One open issue is how we can derive an overall grade of product software quality. At
some moment of our evaluation, we were calculating the average value of metric
results per sub-characteristics, but this does not seem to be an appropriate method of
calculation, because we came to the point where we were calculating average values
of unrelated metrics. Consequently, the average value was not presenting an adequate
picture of the quality per sub-characteristics. One solution for this issue could be
defining norms for each tested metrics in different categories; with this approach, we
can have pass/fail criteria per metric. Another solution for grading the product
software could be giving a weight per metric and then deriving the final grade.

Another open issue is that ISO/IEC 9126 does not contain evaluation guidelines
explaining the evaluation process, evaluation process and methodologies are
described in another standard ISO/IEC 14598. Therefore, the evaluator using ISO/IEC
9126 only, should assess the software based on scientific papers, his experience and
knowledge, without having clear guidelines examples and recommendations. The
issue was tackled by the new series of ISO/IEC software product quality standards –
SQuaRE. The SQuaRE series provides Quality evaluation guide and processes not
only for evaluators but also for acquirers and developers in one standard group.

Reflection about [ISO/IEC 9126-2] metrics

In this chapter, we describe our experiences and provide our opinion about [ISO/IEC
9126-2] standard metrics. We focused on the metrics for external quality described in
the second part of the ISO/IEC 9126 standard referred as [ISO/IEC 9126-2]. We
evaluated four product software applications using these metrics. In the following
paragraphs, we present our findings about possibilities to use [ISO/IEC 9126-2] as an
external evaluator.

 41

Numerous metrics
[ISO/IEC 9126-2] standard contains numerous metrics. For several sub-characteristics,
[ISO/IEC 9126-2] also proposes numerous characteristics. For example, for
Operability metrics the standard proposes eight metrics. In total, the standard contains
more than a hundred external quality metrics. Assessing a product with all the
proposed metrics can take months of effort per product. Authors of the standard were
aware of this fact; therefore, they proposed evaluation based on the business
objectives and the nature of the product [ISO/IEC 9126-1]. Our approach was similar
to their proposal, so we tried to conduct a survey with the software producers from
different domains in order to define which quality sub-characteristics are relevant for
various products. The survey did not provide required responses from the industry, so
we analyzed products from various domains and defined which characteristics are
relevant. Our idea was to evaluate only a set of sub-characteristics that are relevant for
the specific product software. With this method, we reduced the number of relevant
metrics and consequently the evaluation effort per product down to one week.

General metrics
Some of the metrics proposed in [ISO/IEC 9126-2] are too general. This is logical,
because the standard was designed and written to be applicable for any software
product in any domain. Evaluators should refine the metrics according to the product
they are evaluating. For example, [ISO/IEC 9126-2] proposes two security metrics: a
metric Access Auditability, which for different products has a different meaning
(although what the metric means is clear); and Access Controllability, which can be
represented with a restricted permissions feature when evaluating an office product
software such as MS Word 2003.

Similar general metrics are efficiency-related metrics such as throughput and
response time metrics. Throughput is defined by [ISO/IEC 9126-2] as number of tasks
completed over a time period. Evaluators should define which task is product specific
and measure how many of these tasks are completed within a time period. Example of
this can be found in the literature where UPC presents a metric message throughput
for mail servers; our opinion is that UPC only refines Throughput metric of [ISO/IEC
9126-2] for mail servers.

Inapplicable metrics
Part of proposed [ISO/IEC 9126-2] metrics cannot be applied, because of the
evaluating requirements and the application methods proposed by the standard.
Examples of these metrics are Usability related metrics, where [ISO/IEC 9126-2]
recommends conducting user tests. User test according to [ISO/IEC 9126-2] means
monitoring and interviewing sample users of the product software. The standard
recommends that for reliable results at least eight users should be tested. In absence of
users, the evaluator can take that role; however, the issue here is that the evaluator has
usually better IT skills than the typical application user. The relevance of the results is
also questionable in this case because only one user is participating. We evaluated
several understandability metrics, in a way that we were executing functions as
described in the product documentation and demonstration. Example of these metrics
is completeness of description and demonstration accessibility, where [ISO/IEC 9126-

 42

2] proposes a method of user test. Our evaluation was that the evaluator was checking
the product documentation and looking for demonstrations.

Another example of metrics inapplicable for external evaluation are suitability metrics
where [ISO/IEC 9126-2] assumes that the evaluator posses requirements specification
document of the product. Requirements specification documents are usually not
publicly available for commercial product software, so external evaluator probably
will not be able to evaluate suitability sub-characteristic as described in [ISO/IEC
9126-2]. With suitability metrics, we tried to redefine them in the usable manner so
instead of evaluating all the functions from requirements specification we evaluated
the main commercial features.

Similar issue is the one with the maturity sub-characteristic, where most of the metrics
are related to detected and resolved problems. This fact makes the evaluation of
external evaluators almost impossible, unless the producers are willing to share this
information.

Another remark related to [ISO/IEC 9126-2] metrics is that these metrics provide
results in numbers, where the number is usually between 0 and 1. We used the same
approach but observed that, in some cases, numbers were impractical. This was
especially the case with suitability metrics as “Functional adequacy”.

Applicable Metrics
Recoverability metrics are widely applicable, but their implementation requires
monitoring the product software for a longer period. Examples of this kind of metrics
are Availability, Mean Down Time, Restartability, and Mean Recovery Time. We did
not evaluate these metrics since we did not have the product software running for a
longer period. Our opinion is that these metrics can be evaluated on base of the
application and operating system log files on a system that is in use. In that case the
evaluator can get information about restarts and crashes of the system caused by the
product software.

Efficiency metrics for resource utilization can also be applied in many different
domains. Some of them contain imperfections that can make the evaluation complex,
but if the evaluators obtain the point of the metric, they can redefine it in a more
useful way. Example of this metric is maximal memory utilization that we redefine it
to memory usage, which is easier to measure.

Another group of usable metrics is installability metrics like rase of installation and
ease of Setup Retry that are general and applicable for various product software
applications.

Conclusion about [ISO/IEC 9126-2] Metrics
Our conclusion is that [ISO/IEC 9126-2] metrics can be used for quality evaluation.
First part of the metrics (named as “Applicable Metrics”) can be used as they are
provided by [ISO/IEC 9126-2], second part of metrics (named as “General Metrics”)
can be used as a guideline on defining domain specific metrics based on the [ISO/IEC
9126-2] metrics and third part of metrics can be used only during internal evaluation.

 43

Our opinion is that [ISO/IEC 9126-2] standard is not “ready to use” so the evaluators
should adjust it to their application domain and business objectives.

Defined and derived metrics

Domain specific metrics
During this project, we defined a number of metrics that are not identical to the
metrics described in [ISO/IEC 9126-2]. First part of the metrics were domain-specific
metrics that are not described by [ISO/IEC 9126-2], but they provide indication about
the product software functionality. Defining a domain-specific metric requires not
only investigating product and marketing documentation of the evaluated product, but
also investigating documentation from related product software application from the
same domain. By reading the product documentation, the evaluators can gain a better
overview about domain related features and quality characteristics. Based on the
overview, we defined metrics like Support of specific/additional text editor features
for text editors, “Storing/displaying the best scores” for gaming applications, Support
for different programming languages and Additional code analyzer features for code
analyzer tools.

Solutions for general metrics
Second part of the metrics ware proposed for [ISO/IEC 9126-2] metrics that were too
general. Defining these metrics was based on the product documentation, but we had
the [ISO/IEC 9126-2] metrics as a guideline. Example of a metric defined with this
approach is Grammar error correction, specific text editor metric derived from Error
correction in [ISO/IEC 9126-2].

Another interesting example redefining metric is Data preservation in case of
abnormal events derived from Restorability [ISO/IEC 9126-2:2001] for evaluating
DB development tool. We analyzed what is important to be preserved for DB
development tool in case of abnormal events and we came to conclusion that data
should be preserved.

Similar is the example with the security metrics of [ISO/IEC 9126-2], where we
defined several metrics for text editor application. The first metric is Document
corruption prevention derived from Data corruption prevention [ISO/IEC 9126-2].
Further we also defined additional metrics as Open and Modify document protection
and Macros protection, that are domain specific, but initially derived from Access
controllability and Data corruption prevention respectively.

We also derived portability metric Supported Operating Systems for DB development
tool was more specific than Supported Software Environment metric provided by
[ISO/IEC 9126-2].

Additional metrics
We could not find a metric about hardware requirements in [ISO/IEC 9126-2]. A
minimal hardware requirement is important feature mentioned in marketing and
technical documentation of product software, and gives quality information.

 44

Therefore, we introduced a metric Minimal Hardware Requirements that should
check minimal hardware requirements of a product software.

Similar example was with installability metrics, where [ISO/IEC 9126-2] contains
Ease of installation metric, but it does not contain a metric about uninstallation of
software. We consider uninstallation also important feature, so we derived a metric
Ease of uninstallation metric.

Answers of the Research Questions
At the start of the project, we posed four research questions. At the end of this project,
we can provide the following answers:

1) How do we measure product software quality?

We tried to design, develop and execute product software quality evaluation process.
Measuring product software quality based on our designed process has the following
phases:

- Categorizing the product software, where the product should be assigned to
one of the three categories, based on the product software characteristics and
usage.
- Specifying the related metrics that will be measured, based on the category
quality model. Category quality models are described in Chapter 6 and
Appendix C.
- Executing the measurement of the product software. Using the metrics
defined in the previous phase, the evaluator should execute the test cases
defined by the metrics.

2) Is product software quality domain dependent?

Our analysis in Chapters 5 and 6, pointed that for product software in different
categories, different quality characteristics and sub-characteristics are relevant. Thus,
we proved that product software quality is category dependent, because different
product software categories have different usages and different expectations from
users. We assume that if we go to the domain level, we will get more domain specific
sub-characteristics and metrics. Thus, we can also prove that product software quality
is domain dependent.

3) How can we use the ISO/IEC 9126-1 quality model in different domains?

Our recommendation is to use ISO/IEC 9126 category based quality models in
different applications domains. Application domains represent subset of product
categories, so our assumption is that category-based quality domains can be used for
quality evaluation in different domains. During this project, we created category
based quality models; we believe that these models can be reused for product software
evaluation in the future.

 45

4) What are the differences between product software quality and tailor-made
software quality?

We have not evaluated tailor-made software during this project, but our experience
and expectation is that tailor-made software is usually comparable with the product
software from the same domain. Our expectation is that tailor-made software should
have similar quality requirements as related product software in the same domain,
which means that same quality characteristics and sub-characteristics should be
relevant. One issue related to the tailor-made software is that there is a single
customer, so the probability of detecting all faults in the software is lower, which in
turn has an impact on the maturity of the tailor-made software. Consequently, we
expect that the tailor-made software should have a lower reliability than the product
software. Another assumption is that in the case of the tailor-made software, the
communication between a producer and a customer is better, and that the
requirements are clearly described to the producer. Because of this, we might expect
better suitability and functionality in the case of the tailor-made software. We also
expect that portability is less relevant for tailor-made software; this is because tailor-
made software is supposed to run on one software and hardware platform. Further, we
assume that installability of tailor-made software is not so important, because the
producer is usually installing the software.

Conclusion and recommendations
We can evaluate product software quality using ISO/IEC 9126 standard as a
framework. Our evaluation on the selected product software applications showed that
we could use quality characteristics and sub-characteristics of [ISO/IEC 9126-1]
standard and external metrics of [ISO/IEC 9126-2] in product software quality
evaluation. These two ISO/IEC 9126 standards are not “ready to use”. Therefore,
domain analysis reducing number of relevant quality characteristics and sub-
characteristics per product is one of the most important steps in quality evaluation,
which should be executed at the start. Further, relation from characteristics to metrics
should be established by decomposing sub-characteristics to attributes and proposing
relevant metrics for the attributes. When metrics are defined, the evaluator should test
the application and modify the metrics that are not applicable.

We conclude that external product software quality is domain or category dependent,
because for different categories different quality characteristics and sub-
characteristics are relevant. Therefore, we created reduced quality models based on
ISO 9126 that can be applied per product software category. Using these reduced
quality models, we decreased the evaluation effort per product software. Proof of this
concept was evaluating the external quality of four product software applications from
different domains.

ISO/IEC 9126 standard is not gaining the deserved attention from the industry. We
assume that this is because of the fact that market does not demand ISO/IEC 9126
certification and ISO/IEC 9126 does not offer any certification at all. At the same
time different markets require following of other standards and regulations. ISO/IEC
9126 is mainly used by the research institutions and still not extensively used in the
industry. Another reason for ISO/IEC 9126 unpopularity is that the standard does not
describe the evaluation process, so the companies miss the information how to use

 46

this standard. We expect that this process issue will be resolved with the next
generation of ISO/IEC 9126 quality standards SQuaRE.

Our recommendation is that providing consulting and certification services for
market-requested standards are better business opportunities than evaluating software
quality using ISO/IEC 9126. An alternative business opportunity is using ISO/IEC
9126 standard as a guideline for evaluation of specific quality characteristics i.e.
usability of application software, provided that there is a demand from the software
producers.

Future work
Current work did not focus much on the research question about differences between
product software and tailor-made software quality evaluation. We believe that quality
for tailor-made software can also be evaluated using [ISO/IEC 9126-1], and ISO/IEC
category-based quality models. Tailor-made software evaluation looks like a nice
challenge for a future project at LaQuSo.

Quality evaluation of system infrastructure software was not completed in this project,
because software producers in the Netherlands do not produce products from this
category. Therefore, they do not seem relevant for future evaluation of other products.

In this chapter, we mentioned several issues related to evaluation of product software
as grading the product software are establishing evaluation process. We believe that
next generation of ISO/IEC 9126 quality standards SQuaRE will address these issues
and integrated them in one group of standards. Therefore, researching application of
SQuaRE quality standards should be one of the related research activities of software
quality scientists in the future.

Software quality and quality are interesting scientific areas containing many
interesting research topics. Future challenges in the future can be industrial standards
related to software quality processes as Six sigma, CMM (Capability Maturity Model),
TMap and ISEB (Information Systems Examinations Board). These standard seem
interesting and are widely used by the industry, therefore researching them can
provide not only scientific, but also practical benefits.

 47

8. List of Abbreviations

AS Application Software
CAD Computer Aided Design
CAE Computer Aided Engineering
CAM Computer Aided Manufacturing
CMM Capability Maturity Model
EAI Enterprise Application Integration
ERP Enterprise Resource Planning
FDA Food and Drug Administration
FTP File Transfer Protocol
HIPAA Health Insurance Portability and Accountability Act, address
the security and privacy of health data
ICT Information and Communication Technology
ISEB Information Systems Examinations Board
ISO International Organization for Standardization
IEC International Electrotechnical Commission
LaQuSo Laboratory for Quality Software
MTBF Mean Time Between Failures
OECD Organisation for Economic Co-operation and Development
RU Nijmegen Radboud Universiteit Nijmegen
SBS Software Based Services
SDT Software Development Tools
SIS System Infrastructure Software
SOX Sarbanes-Oxley Act
SQuaRE Software Product Quality Requirements and Evaluation
TMap Test Management Approach
TU/e Technische Universiteit Eindhoven, English name is Eindhoven
University of Technology
UPC Universitat Politèchnica de Catalunya
VVSS Verification and Validation of Software Systems
WWW World Wide Web

 48

9. References:

Al-Kilidar, Hiyam, Karl Cox, Barbara Kitchenham, The Use and Usefulness of the
ISO/IEC 9126 Quality Standard, International Symposium on Empirical Software
Engineering, pp. 126-132, November 2005,

Boehm, B. W, J. R. Brown, M. Lipow, Quantitative Evaluation of Software Quality,
Proceding 2nd International Conference on Software Engineering, October 1976, pp.
592-605

Botella, Pere, Xavier Burgues, Juan P. Carvallo, Xavier Franch, Carme Quer, Using
Quality Models for Assessing COTS Selection, In Proceeding of
5th Workshop on Requirements Engineering (WER) pp. 263-277, Valencia, Spain,
November 2002.

Burgues, Xavier, Pere Botella, Juan P. Carvallo, Xavier Franch, Joan A. Pastors,
Carme Quer , Towards a Quality Model for the Selection of ERP Systems, Cechich et
al. (Eds.): Component-Based Software Quality, LNCS 2693, Springer-Verlag Berlin
Heidelberg, pp. 225–245, 2003

Grady, R., Caswell, D.. Software Metrics: Establishing a Company-Wide Program.
Englewood Cliffs, NJ, Prentice-Hall, 1987.

Crosby, Phillip B., Quality Is Free: The Art of Making Quality Certain,
McGraw-Hill Companies 1979, ISBN: 978-0070145122

Cote, Marc-Alexis, Witold Suryn and Clode Y. Laporte, The Evolution Path for
Industrial Software Quality Evaluation Methods Applying ISO/IEC 9126:2001
Quality Model: Example of MITRE’s SQAE Method, Software Quality Journal,13, pg.
17-30 Springer Science 2005

Dromey, R. G, Software Product Quality: Theory, Model, and Practice, Technical
Report, Software Quality Institute, Griffith University, Nathan, Brisbane, Australia
1998

Fitzpatrick, Ronan, Software Quality: Definitions and Strategic Issues, Staffordshire
University, School of Computing Report, Staffordshire University, UK, 1996

Garvin D., What does Product Quality Really Mean? Sloan Management Review, Fall
1984

Gillies, Alan C., Software quality: Theory and management, Chapman & Hall,
London, England 1992

Grady R., D. Caswell, Software Metrics: Establishing a Company-Wide Program.
Englewood Cliffs, NJ, Prentice-Hall 1987

 49

Ince Darrel, ISO 9001 and software quality assurance, McGraw-Hill, Berkshire,
ISBN: 0077078853, England 1994

ISO/IEC 9126-1, ISO/IEC 9126-1 Software engineering Product quality Part 1:
Quality Model, ISO/IEC 2001

ISO/IEC 9126-2, ISO/IEC, ISO/IEC 9126-2 Software engineering Product quality
Part 2: External Metrics, ISO/IEC 2003

Jung Ho-Won, Seung-Gweon Kim, Chang-Shin Chung, Measuring Software Product
Quality: A Survey of ISO/IEC 9126, IEEE Computer Society 2004

Kececi N, L. Buglione, A. Abran, An Integrated Graphical Assessment for Managing
Software Product Quality, Universite Québec Montréal, Canada

Kent, Beck, Extreme Programming Explained: Embrace Change. Addison Wesley,
2000.

Kitchenham Barbara, Shari Lawrence Pfleeger, Software Quality: The Elusive Target,
IEEE Software, Volume 13, Issue 1 Pages: 12 - 21 (January 1996)

Lassila Aki, Jani-Pekka Jokinen, Janne Nylund, Petru Huurinainen, Markku Maula,
Jyrki Kontio, Finnish Software Product Business: Results of the National Software
Industrial Survey 2006, Technical report, Centre of Expertise for Software Product
Business

Lee Edward A., Embedded Software, Advances in Computers
(M. Zelkowitz, editor), Vol. 56, Academic Press, London, 2002

Litkowski Kenneth, Erwin W. Bedarf, Using Structured Interviewing Techniques,
United States General Accounting Office, Program Evaluation and Methodology
Division June 1991

Maiocchi Marco, Experiences in evaluating software quality within the banking
sector, Achieving Software Product Quality Erik van Veenendaal pg. 109-125/Julie
McMullan (eds.)

McCall J.A., J.P. Cavano, A Framework for the Measurement of Software Quality,
Proceedings of the ACM Software Quality Assurance Workshop, November 1978, pp.
133-139

OECD, Organization for Economic Co-operation, and Development: The software
sector: Growth, structure and policy issues. OECD Report
STI/ICCP/IE(2000)8/REV2 (2001)

Ortega Maryoly, Maria Perez, Teresita Rojas, Construction of a Systemic Quality
Model for Evaluating a Software Product, Kluwer Academic Publishers. Software
Quality Journal, 11, 219–242, 2003

 50

Pfleeger Shari Lawrence, Software Engineering: Theory and Practice, 2nd edition,
Upper Saddle River, NJ, Prentice Hall, 2001

Rawashdeh Adnan, Bassem Matalkah, A New Software Quality Model for Evaluating
COTS Components, Journal of Computer Science 2 (4): 373-381, 2006 ISSN 1549-
3636

Rubey R. J., R. D. Hartwick, Quantitative Measurement of Program Quality, ACM
National Conference Proceedings, 1968, pp. 671-677.

Sawyer Erran Carmel, Steve Sawyer, Packaged software development teams: what
makes them different?, Information Technology & People, 11, 7–19

Suryn Witold, Alain Abran, ISO/IEC SQuaRE. The second generation of standards
for software product quality, IASTED 2003 - SEA 2003 November 3-5, 2003 Marina
del Rey, CA, USA

Xu Lai, Sjaak Brinkkemper, Concepts of Product Software: Paving the Road for
Urgently Needed Research, Technical report, Institute of Information and Computing
Sciences, Utrecht University, The Netherlands

 51

Appendix

A. Appendix ISO/IEC 9126-1 Questionnaire

Introduction
This survey is part of a master thesis project about “Product Software Quality” at
Eindhoven University of Technology (TU/e). The project is executed at the
Laboratory for Quality Software (LaQuSo). We conduct this research of software
product quality characteristics in order to set a product quality model based on the
ISO/IEC 9126 standard.

Part of the project is research of a number of Software product companies in the
Netherlands (or wider) and to find which software product quality characteristics are
important for them.

We selected you as a representative of a Software Product company who can give a
significant input for our survey. We are grateful to your organization for participating
in this survey. Results of this survey and thesis report will be available for your
company.

Your participation in the survey and the name of your company will not be mentioned
in the thesis report or in other scientific publications.

The results of this survey will be analyzed and incorporated in the Master thesis report.

Questions
These questions are related to the software product that is produced by your company,
the questions are not related to the software development process nor your
organization. Questions are based on the ISO/IEC 9126-1 Software Engineering –
Product quality- Quality model. The ISO/IEC 9126-1 Quality model is presented on
the following figure from [1]:

Figure 1 Quality model for external and internal quality [1]

 52

As you notice on Figure 1, ISO/IEC 9126-1 contains 6 main quality characteristics
(functionality, reliability, usability, efficiency, maintainability and portability) and 27
subcharacteristics (portability, accuracy …replaceability, portability compliance).

There are two questions for each subcharacteristic. The first question asks about the
importance of the sub-characteristics. The second question asks how you assess the
sub-characteristics.

Definitions from [1] are provided in Italic style to describe every characteristic as
specified in the ISO/IEC 9126-1 standard.

Instruction
Please give a grade about the importance of the sub-characteristics scale where 1 =
very unimportant, 2 = unimportant, 3 = neutral, 4 = important, 5 = very important

On the question about assessing the sub-characteristics, you should give a number
from 1 to 4, where 1 = you do not asses the sub-characteristic, 2 = you assess this sub-
characteristics manually, 3 = you asses the sub-characteristics using tools or
automated methods and 4 = means that you asses the sub-characteristics manually and
using tools or automated methods.

Functionality Questions

Definition: Functionality is the capability of the software product to provide
functions which meet stated and implied needs when the software is used under
specified conditions.

The sub-characteristics of functionality are:

• Suitability is the capability of the software product to provide an
appropriate set of function for specified tasks and user objectives.

1) How important is the suitability of the software product produced by
your company?

1 2 3 4 5

2) How do you assess the suitability of the software product?

1 2 3 4

• Accuracy is the capability of the software product to provide the right

or agreed results or effect with the needed degree of precision.
3) How important is the accuracy of the software product produced by

your company?

1 2 3 4 5

4) How do you assess the accuracy of the software product?

 53

1 2 3 4

• Interoperability is the capability of the software product to interact

with one or more specified systems.
5) How important is the interoperability of the software product

produced by your company?

1 2 3 4 5

6) How do you assess the interoperability of the software product?

1 2 3 4

• Security is the capability of the software product to protect information

and data so that unauthorized person.
7) How important is the security of the software product produced by

your company?

1 2 3 4 5

8) How do you assess the security of the software product?

1 2 3 4

• Functionality compliance is the capability of the software product to

adhere to standards, conventions or regulations in laws and similar
prescriptions relating to functionality.

9) How important is the functionality compliance of the software
product produced by your company?

1 2 3 4 5

10) How do you assess the functionality compliance of the software

product?

1 2 3 4

Reliability Questions
Definition: Reliability is the capability of the software product to maintain a specific
level of performance when used under specified conditions.

The sub-characteristics of the reliability are:

 54

• Maturity is the capability of the software product to avoid failure as a
result of faults in the software.

11) How important is the maturity of the software product produced by
your company?

1 2 3 4 5

12) How do you assess the maturity of the software product?

1 2 3 4

• Fault tolerance is the capability of the software product to maintain a

specific level of performance in cases of software faults or of
infringement of its specified interface.

13) How important is the fault tolerance of the software product produced
by your company?

1 2 3 4 5

14) How do you assess the fault tolerance of the software product?

1 2 3 4

• Recoverability is the capability of the software product to re-establish

a specified level of performance and recover the data directly affected
in the case of a failure.

15) How important is the recoverability of the software product produced
by your company?

1 2 3 4 5

16) How do you assess the recoverability of the software product?

1 2 3 4

i. Availability is the capability of the software product to
be in a state to perform a required function at a given
point in time, under stated conditions of use. Externally,
availability can be assessed by the proportion of total
time during which the software is in up state.
Availability is combination of maturity (that covers the
frequency of failure), fault tolerance and recoverability

 55

(which covers the length of down time after each
failure).

17) How important is the availability of the software product produced by
your company?

1 2 3 4 5

18) How do you assess the availability of the software product?

1 2 3 4

• Reliability compliance of the software product to adhere to standards,

conventions or regulations relating to reliability.
19) How important is the reliability compliance of the software product

produced by your company?

1 2 3 4 5

20) How do you assess the reliability compliance of the software product?

1 2 3 4

Usability Questions
Definition: Usability is the capability of the software product to be understood,
learned, used and attractive to the user, when used under specified condition.

The sub-characteristics of the usability are:

• Understandability is the capability of the software product to enable the user
to understand whether the software is suitable, and how it can be used for
particular tasks and conditions of use.

21) How important is the understandability of the software product
produced by your company?

1 2 3 4 5

22) How do you assess the understandability of the software product?

1 2 3 4

• Learnability is the capability of the software product to enable the user to

learn its application.

 56

23) How important is the learnability of the software product produced by
your company?

1 2 3 4 5

24) How do you assess the learnability of the software product?

1 2 3 4

• Operability is the capability of the software product to enable the user to

operate and control it.
25) How important is the operability of the software product produced by

your company?

1 2 3 4 5

26) How do you assess the operability of the software product?

1 2 3 4

• Attractiveness is the capability of the software product to be attractive to the

user.
27) How important is the attractiveness of the software product produced

by your company?

1 2 3 4 5

28) How do you assess the attractiveness of the software product?

1 2 3 4

• Usability compliance is the capability of the software product to adhere to

standards, conventions, style guides or regulations regarding to usability.
29) How important is the usability compliance of the software product

produced by your company?

1 2 3 4 5

30) How do you assess the usability compliance of the software product?

1 2 3 4

 57

Efficiency Questions
Definition: Efficiency is the capability of the software product to provide appropriate
performance, relative to the amount of resources used, under stated conditions.

The sub-characteristics of the efficiency are:

• Time behaviour is the capability of the software product to provide
appropriate response and processing times and throughput rates when
performing its function, under stated conditions.
31) How important is the time behaviour of the software product

produced by your company

1 2 3 4 5

32) How do you assess the time behaviour of the software product?

1 2 3 4

• Resource utilization is the capability of the software product to use

appropriate amounts and types of resources when the software performs
its function under stated conditions.
33) How important is the resource utilization of the software product

produced by your company?

1 2 3 4 5

34) How do you assess the resource utilization of the software product?

1 2 3 4

• Efficiency compliance is the capability of the software product to adhere

to standards or conventions regarding to efficiency.
35) How important is the efficiency compliance of the software product

produced by your company?

1 2 3 4 5

36) How do you assess the efficiency compliance of the software product?

1 2 3 4

 58

Maintainability Questions
Definition: Maintainability is the capability of the software product to be modified.
Modifications may include corrections, improvements or adaptation of the software to
changes in environment, and in requirements and functional specifications.

The sub-characteristics of the maintainability are:

• Analysability is the capability of the software product to be diagnosed for
deficiencies or causes of failures in the software, or for the parts to be
modified to be identified.

37) How important is the analysability of the software product produced

by your company?

1 2 3 4 5

38) How do you assess the analysability of the software product?

1 2 3 4

• Changeability is the capability of the software product to enable a specified

modification to be implemented.
39) How important is the changeability of the software product produced

by your company?

1 2 3 4 5

40) How do you assess the changeability of the software product?

1 2 3 4

• Stability is the capability of the software product to avoid unexpected effects

from modifications of the software.
41) How important is the stability of the software product produced by

your company?

1 2 3 4 5

42) How do you assess the stability of the software product?

1 2 3 4

• Testability is the capability of the software product to enable modified

software to be validated.
43) How important is the testability of the software product produced by

your company?

 59

1 2 3 4 5

44) How do you assess the testability of the software product?

1 2 3 4

• Maintainability compliance is the capability of the software product to

adhere to standards or conventions related to maintainability.
45) How important is the maintainability compliance of the software

product produced by your company

1 2 3 4 5

46) How do you assess the maintainability compliance of the software

product?

1 2 3 4

Portability Questions
Definition: Portability is the capability of the software product to be transferred from
one environment to another.

The sub-characteristics of the portability are:

• Adaptability is the capability of the software product to be adapted for
different specified environments without applying actions or means other than
those provided for this purpose for the software considered.

47) How important is the adaptability of the software product produced by
your company?

1 2 3 4 5

48) How do you assess the adaptability of the software product?

1 2 3 4

• Installability is the capability of the software product to be installed in a

specified environment.
49) How important is the installability of the software product produced

by your company?

 60

1 2 3 4 5

50) How do you assess the installability of the software product?

1 2 3 4

• Co-existance is the capability of the software product to co-exist with other

independent software in a common environment sharing common resources.
51) How important is the co-existance of the software product produced by

your company?

1 2 3 4 5

52) How do you assess the co-existance of the software product?

1 2 3 4

• Replaceability is the capability of the software product to be used in place of

another specified software product for the same purpose in the same
environment.

53) How important is the replaceability of the software product produced
by your company?

1 2 3 4 5

54) How do you assess the replaceability of the software product?

1 2 3 4

• Portability compliance is the capability of the software product to adhere to

standards or conventions related to portability.

55) How important is the portability compliance of the software product
produced by your company?

1 2 3 4 5

56) How do you assess the portability compliance of the software product?

1 2 3 4

 61

ISO/IEC 9126-1 Ranking Questions
57) Which of the six high level characteristics (Functionality, Reliability,

Usability, Efficiency, Maintainability and Portability) is the most
important to you?

58) Which of the six high level characteristics is the least important?
59) If you cannot choose the most and the least important, please try to

estimate their meaning dividing 100% in six pieces.

60) Which three low level (sub-characteristics) are the most important?
61) Why they are most important?
62) Which three sub-characteristics are the least important?
63) Which low-level (sub-characteristics) does your company

assess/measure currently?

General questions about ISO/IEC 9126-1 and the questionnaire
64) Which of these 28 quality sub-characteristics are obsolete for assessing

the quality of your product software?
65) Which additional quality characteristics are relevant for assessing your

product software?
66) What do you think about this questionnaire?
67) Which questions would you remove from the questionnaire?

Reference:
[1] ISO/IEC 9126-1 Software engineering Product quality

 62

B. Appendix Short Questionnaire Version

ISO/IEC 9126-1 Questionnaire

Introduction
This research is carried out as a part of a Master Thesis on “Product Software Quality”. We research
product software quality characteristics in order to design quality models based on the ISO/IEC 9126
standard. We expect that different application domains demand different quality models. Hence, we
intend to construct a domain-based quality models.

Your participation in the survey and the name of your company will not be mentioned in the thesis
report or in other scientific publications.

ISO/IEC 9126 – 1 Software Product Quality Model
These questions are related to the software product that is produced or evaluated by your company, the
questions are not related to the software development process nor to your organization. Questions are
based on the ISO/IEC 9126-1 Software Engineering – Product quality – Quality model. The ISO/IEC
9126-1 Quality model is presented on the following figure:

Figure Quality model for external and internal quality ISO/IEC 9126 - 1

As you notice on Figure 1, ISO/IEC 9126-1 contains 6 main quality characteristics (functionality,
reliability, usability, efficiency, maintainability and portability)

The definitions of the main quality characteristics are presented in Italic font below:

Functionality is the capability of the software product to provide functions, which meet stated and
implied needs when the software is used under specified conditions.

Reliability is the capability of the software product to maintain a specific level of performance when
used under specified conditions.

Usability is the capability of the software product to be understood, learned, used and attractive to the
user, when used under specified condition.

Efficiency is the capability of the software product to provide appropriate performance, relative to the
amount of resources used, under stated conditions.

Maintainability is the capability of the software product to be modified. Modifications may include
corrections, improvements or adaptation of the software to changes in environment, and in
requirements and functional specifications.

 63

Portability is the capability of the software product to be transferred from one environment to another.

Questions:

1. Do you assess functionality of product software?

Yes No
2. Do you assess reliability of product software?

Yes No
3. Do you assess usability of product software?

Yes No
4. Do you assess efficiency of product software?

Yes No
5. Do you assess maintainability of product software?

Yes No
6. Do you assess portability of product software?

Yes No

7. Rank the six high level characteristics (Functionality, Reliability, Usability, Efficiency,
Maintainability and Portability) starting with the most important characteristic first, please try to
estimate their meaning dividing 100% in six pieces.

8. What kind of product software do you (your organization) produce/test?

a) System infrastructure software
b) Software development tools
c) Application software
d) Software based services
e) Other, please specify

9. What is your area of expertise within the company/institution? Please choose the function that best

describes you.
 a) Software Engineering
 b) Software Testing and Quality Assurance
 c) Project or Line Management
 d) Other, please specify

10. Are you interested in a longer questionnaire or interview about product software quality?

Yes No

If yes, please leave your contact information or give your business card with this questionnaire:

Name: Phone:

Email: Company:

Please leave the filled copies of this questionnaire at the reception.

 64

C. Appendix Product Software Evaluation

Operating System Attributes and Metrics
Functionality Attributes and Metrics of Operating System (OS):

We can define the following functionality attributes related to operating systems
functionality some of the attributes are related to other characteristics:
Suitability attributes of OS:

o Managing system resources, (these attributes are also related to
performance)

 Multitasking or switching processes quickly
o Managing system memory

 Virtual memory management, increases the amount of memory
available for each process by using the disk storage like main
memory

 Managing virtual addresses, preventing different processes
from interfering with each other's memory

o Supporting scripting/programming languages
Suitability metrics of OS:
- Functional adequacy of major functions [ISO/IEC 9126-2]. Evaluator should

verify if major functions are adequately functioning.
- Functional implementation completeness of major functions. Evaluator should

verifying that major functions are completely functional
o Management of system processes, evaluator should check the state of

the system processes and try to stop/start system processes
o Management of system memory and virtual memory, evaluator should

check memory status with the commands vmstat and memstat
o Supporting/including compiler and runtime environment for common

programming languages i.e. C, Java, C++, evaluator should check
which of the compilers are present in the OS.

o Supporting/including scripting languages and shells (Born, bash, Korn
shell, c shell, PERL), evaluator should check which of the shells and
scripting languages are supported.

Interoperability attributes of OS:
o Supporting different hardware peripherals
o Supporting software Internet/networking services
o Interoperability with other Operating Systems (i.e. Linux and Windows)

Interoperability metrics of OS:

- Data exchangeability with other systems and peripherals
Evaluator should check the support of these hardware peripherals.

o Support of CDROM/DVD ROM
o Support of CD/DVD writing devices CDRW/DVD RW
o Support of on-board audio
o Support of floppy disk
o Support of USB devices
o Support of Wireless Network Interfaces

 65

o Support of Ethernet Interfaces
o Support of Printer devices
o Supporting of common networking protocols (telnet, ssh, FTP, WWW,

etc) as part of the Operating system

Security attributes of OS:

o Providing internal security
 Protection the computer's resources from the programs

concurrently running on the system
 Providing auditing of security events

o Providing external Security
 Providing secure access to the services for the authorized users
 Providing Network Security

Security metrics of OS:

- Access controllability [ISO/IEC 9126-2]. Evaluator should check whether OS
has mechanisms to allow/deny access. Then verify if illegal operations are
possible, under illegal operations we mean unauthorized users access.

- Access auditability [ISO/IEC 9126-2]. Evaluator should check that the OS has
logging of access. If access login exists, then is it recording all accesses?

- Providing System files integrity, comparable to data corruption prevention
[ISO/IEC 9126-2]. Evaluator should check frequency of system files
corruption events.

- Protecting system processes, Boolean metric, Evaluator should check whether
the OS contains mechanisms for protecting system processes from application
processes and non-system users.

- Providing software firewall Boolean metric, Evaluator should check whether
the OS contains software firewall. Evaluator should check OS technical
documentation or help whether firewall is part of the OS. If firewall is part of
the OS then evaluator should be able to enable it.

Reliability attributes and Metrics of OS:
Maturity attributes of OS:

- Existence and quality of stability indicators

Maturity metrics of OS:

- Mean Time Between Failures [ISO/IEC 9126-2]

Fault tolerance attributes of OS:
- Error Avoidance
- Performance in case of failure

Fault tolerance metrics of OS:
- Breakdown avoidance [ISO/IEC 9126-2]. Evaluator should analyze system

files and count the breakdowns with respect to failures.
- Incorrect operation avoidance [ISO/IEC 9126-2]. Evaluator should execute

number of test cases that can cause critical failures and count how many of the
failures were avoided.

 66

- Support for clustering this is Boolean metric whether OS supports clustering
or not. Evaluator should check OS technical documentation whether clustering
is supported by the evaluated OS.

Recoverability attributes of OS:

- Recoverability from hardware faults
- Recoverability from software/application faults

Recoverability metrics of OS:

- Availability of OS [ISO/IEC 9126-2]. Evaluator should analyze log files of a
production system, calculate operation time To, and repair time Tr.

- Mean Downtime of OS [ISO/IEC 9126-2]. Evaluator should analyze log files
of a production system and calculate down time during a specified trial period.

- Mean recovery time [ISO/IEC 9126-2]. Evaluator should analyze log files of a
production system and calculate recovery time for each time the system was
brought down. After calculating the recovery times the evaluator should
calculate average value.

- Restartability of OS [ISO/IEC 9126-2]. Evaluator should analyze log files of a
production system and counts the number of successful restarts and total
number of restarts.

Efficiency attributes and Metrics of OS
Resource utilization attributes of OS:

- CPU efficiency
- Memory efficiency
- Memory swapping
- Networking performance
- File system performance
- Application performance
- Hardware system requirements like CPU and amount of system memory

Resource utilization metrics of OS:

- Networking device utilization related to I/O devices utilization [ISO/IEC
9126-2]

- Networking loading limits related to I/O loading limits [ISO/IEC 9126-2]
- Memory usage. Evaluator should check the amount of memory used by the

system processes. This can be done running system tools or commands i.e.
Task manager on Windows OS or UNIX system commands (top or prstat) on
a UNIX system.

- Maximum CPU Utilization caused by system processes, similar as maximum
memory utilization [ISO/IEC 9126-2], but in this case evaluator should
measure the maximum of CPU utilization that can have values from 0 to 100%.

- Amount of CPU time the operating system spends fulfilling system calls,
similar as previous time, it this case evaluator should calculate time spent on
system processes and divide with total uptime of the system

Time behaviour attributes of OS:

- Response and processing times

Time behaviour metrics of OS:

 67

- Boot time. Evaluator should measure the time that a system needs to boot
starting from moment when the power button is pressed to the moment when
the user successfully logged in. This test case should be executed ten times
and average value calculated.

- Response time for operations derived from [ISO/IEC 9126-2], i.e. time needed
to open terminal application. Evaluator should execute this test case should be
executed ten times and average value calculated.

Network Management Application Attributes and Metrics
Functionality Attributes of Network Management Application (NMA)
We can define the following functionality attributes related to OpenView
Operations

Suitability attributes:
- Processing events from different systems on the network
- Presenting events from different systems on the network

Suitability metrics:

- Event filtering, prioritizing and grouping of messages, this is Boolean metric,
Evaluator should check that event filters are working properly

- Event correlation/time this metric, evaluator should count the number of
correlations that happened within the time period

- Buffering messages if management system is down this is Boolean metric,
evaluator should verify buffering messages. Test should be executed on
various client systems, at least one client running different OS.

- Presenting the events in different colors that indicates the severity of the event,
Boolean metric, evaluator should confirming whether the events are presented
with different colour/severity

- Providing event specific action that operator should execute Boolean metric,
evaluator should open an alarm and check whether it contains operator action

Interoperability attributes:

- Collecting events/alarms from different systems on the network,

Interoperability metrics:

- Alarms/events arrived related to data exchangeability of [ISO/IEC 9126-2].
Evaluator should check that alarms related to data exchange between the
server and client nodes arrived.

- Collecting information from application and system log files of client systems.
Boolean metric, evaluator should check the alarms or application logs of NMA
whether they contain alarms or entries from application and system log files.

- Collecting system messages of client systems. Boolean metric, evaluator
should check the alarms or application logs of NMA whether they contain
system messages entries from clients

- Collecting SNMP traps and variables of client systems. Boolean metric
evaluator should check the alarms or application logs of NMA whether they
contain SNMP trap messages entries from clients

 68

- Collecting OS resource/performance metrics of client systems. Boolean metric,
evaluator should check the alarms or application logs of NMA whether they
contain performance alarms or entries from clients.

Security attributes:
- Securing communication with the agents (client systems)

Security metrics:

- Controlled secure access communication from agents (i.e. using HTTPS and
SSL). Evaluator should check whether the communication with the client
system is secure using secure protocols HTTP and SSL

- Auditing of secure access communication with agents similar to [ISO/IEC
9126-2] metric security auditing. Evaluator should check NMA application
logs, whether they contain auditing information about client connections.

- Communicating via proxy servers and firewalls. Evaluator should
check/analyze if events arrive via proxy servers and firewalls.

Reliability attributes and metrics of Network Management Application
Maturity attributes of Network Management Application

- Certification for Operating System i.e. Certificate for Microsoft Windows, was
announced by HP as reliability improvement

- Existence and quality of analyzing, configurations and tracing tools
Maturity attributes of Network Management Application

- Existence and quality of stability indicators. Boolean metrics check that the
application contains stability indicators.

- Readability of stability indicators. Boolean metrics check that stability
indicators can give quality of software configuration tools. Boolean metric that
checks existence of configuration tools.

- Existence of software updates

Fault tolerance attributes of OS:

- Error Avoidance

Fault tolerance metrics:

- Incorrect operation avoidance [ISO/IEC 9126-2]
- Breakdown avoidance [ISO/IEC 9126-2]

Recoverability attributes of Network Management Application

- Recoverability from software faults

Recoverability metrics:

- Availability of Network Management Application [ISO/IEC 9126-2].
Evaluator should analyze NMA log files of a production system, calculate
operation time To, and repair time Tr of NMA.

- Mean downtime of Network Management Application [ISO/IEC 9126-2].
Evaluator should analyze NMA log files of a production system and calculate
down time during a specified trial period.

- Restartability of the complete system caused by NMA [ISO/IEC 9126-2].
Evaluator should analyze log files of a production system and counts the

 69

number of successful restarts (providing running NMA application) of
complete system and total number of restarts.

- Restartability of NMA services derived from [ISO/IEC 9126-2]. Evaluator
should analyze log files of a production system and counts the number of
successful restarts (providing running NMA application) of NMA services and
total number of restarts of NMA services.

Efficiency attributes for Network Management Application

- Event processing
- CPU efficiency
- Memory efficiency
- Hardware system requirements

Efficiency metrics for Network Management Application
Time behavior metrics for Network Management Application

- Response time of starting the Administration Interface. Evaluator should
measures time needed to start NMA Administrator User Interface several
times (i.e. ten times) and calculate the average value.

- Response time of starting and stopping the application processes. Evaluator
should measures time needed to start NMA application processes several times
(i.e. ten times) and calculate the average value.

- Amount of CPU time the system spends executing Network Management
Application processes. In this case we will have time spent on NMA
application processes/ total uptime of the system

Resource utilisation metrics:
- Number of events processed per time unit. Evaluator should generate test

events and calculate how many of created test events are processed by the
system.

- CPU Utilization caused by Network Management Application processes.
Evaluator should run OS performance commands (top command on HP UX or
prstat command on Solaris OS) that present CPU usage by different processes.

- Memory usage caused by Network Management Application processes.
Evaluator should run OS performance commands (top command on HP UX or
prstat command on Solaris OS) that present memory usage by different
processes

DB development tool

We assessed the following versions of TOAD:

- TOAD Oracle Freeware version 8.5.0.50 g, we started with this version of
TOAD, but since we did not have Oracle Database in our testing
environment, we switched to version of TOAD for MySQL

- TOAD for MySQL version 2.0.3.795

Functionality attributes and metrics of development tool
Suitability attributes of DB development tool:

 70

- Editor functionality for programmers
- Tools for building SQL queries
- Database reporting in different formats – HTML, PDF, XLS, JPG, RTF
- View and edit data types
- Compilation, debugging and execution of stored procedure, triggers,

function and types
- Generation of Schema and Database scripts

Conversion of SQL statements to programming and scripting languages
Suitability metrics of DB development tool:

- Adequacy of the listed suitability attributes. This metric is derived from
functional adequacy [ISO/IEC 9126-2:2001]. The metric is defined by
[ISO/IEC 9126-2:2001] as X=1 –A/B, where:

o A=Number of functions in which problems are detected in
evaluation. We give the following grades 1 for unsuccessful, 0,5
for partly successful and 0 for successful.

o B=Number of evaluated functions
Functions that succeeded are counted as 1, not succeeded functions are
counted as 0 and partly succeeded functions are counted as 0,5.

We evaluated the following functions defined:
o Editor functionality for programmers Succeeded, editor can be

started from the standard toolbar.
o View and edit data types – Database browser functionality

 Succeeded, we were able to open and edit MySQL Databases
o Tools for building SQL queries Succeeded, we executed

trivial SQL queries as use liverepository; SHOW TABLES;.
o Database reporting in different formats – HTML, PDF, XLS, JPG,

RTF Partly Succeeded we received DB report in HTML
format, other formats were mentioned in the marketing
documentation, but they were not available in the application.

o Compilation, debugging and execution of stored procedure, triggers,
function and types Partly Succeeded it was possible to create
stored procedure and function.

o Conversion of SQL statements to programming and scripting
languages. Not Succeeded option is not available in the freeware
version of TOAD for SQL.

We calculated the following numbers: A=2 B=6 X=0,667
- Completeness of the listed suitability attributes. This metric is derived

from functional implementation completeness [ISO/IEC 9126-2:2001]. In
the absence of functional requirement specifications, we could not execute
completeness tests. Therefore, we focused on the functional adequacy in
the previous paragraph.

- Supported Databases by Database Management tool. We can define this
metric like X=A/B, where A is number of supported Databases and that is
1 per tool, B is total number of Databases, where we count most often
industry used databases (Oracle, SQL Server, Sybase and DB2) is 5, so
X=A/B=0,2. The remark is that TOAD versions for other database exist,
but it is always one database per tool. This metric may be defined in other
way like Boolean metric called “Support for different databases” in that
case we will have 0 for tool supporting only one database type and 1 for
tool supporting different database types. This is relatively low value, but

 71

the fact is that most of the DB management tools will score low because
they dedicated to one database only.

Interoperability attributes:

- Connection to databases
- Network/OS tools support

Interoperability metrics:
- Database update, metric that verifies that the tool is capable to execute

basic Database operations like “add” and “delete” records. Metric is
defined as X=A/B where A is number of supported operations and B is
number of total operation. In this case we will have A=2, B=2 and X=1

- Connection to Database and possibility to open Database files. TOAD for
MySQL can connect to database and open database files. So the values
will be A=2, B=2 and X=1. TOAD for Oracle can connect to database only
in this case we will have the following values A=1, B=2 and X=0,5

- Support/contain Operating System and Network tools. E.g. FTP, telnet,
rexec, ping, tnsping, UNIX crontab interface Windows Service
Management. Metric that verifies presence of these tools in a way X=A/B,
where A is number of tool supported = 0 (for these freeware versions) and
B is 7, thus X=0

Other Functionality metrics not applicable for TOAD but applicable for the other
similar products on the market:

- Data export, exporting data to one of the common formats MS Access, MS
Excel (or csv), MS WORD, PDF. This metric can be defined as X=A/B
where A is number of supported common export formats and B is total
number of common formats

- Data extract (backup of the meta data and tables). Boolean metric that will
verify whether these functionality is present.

- Data Import MS Access, MS Excel and other popular formats to database
tables. This metric can be defined as X=A/B where A is number of
supported common import formats and B is total number of common
formats

- Data/DB Comparer, compare and synchronize context/structure of
databases. Boolean metric that will verify whether these functionality is
present and working properly

Reliability attributes and metrics for DB development tool
Recoverability attributes for DB development tool:

- Data preservation from e faults
- Frequency of software faults during the usage

Recoverability metrics for DB development tool:
- Data preservation in case of abnormal events, derived from Restorability

[ISO/IEC 9126-2:2001]
This metric is defined by [ISO/IEC 9126-2:2001] as X=A/B where
A is number of abnormal events cases when data was not damaged
B is number of abnormal events cases tested as per requirements

 72

We executed three test cases two times per case thus in total six times.
1) First case was stopping TOAD for MySQL application via task manager,
2) Second case was shutting down the system from a power button while tool has

connections with databases
3) Third case was shutting down the system from power button while tool has

connections with databases
In all six cases, we had a successful restoration and the connection to the
databases at the moment of stopping the application was remembered, that results
in: A=6, B=6 and X=1.

Usability attributes and metrics of DB development tool
Understandability attributes of DB development tool:

- Product demonstration
- Help menu
- Self-explanatory and consistency of user interface

Understandability metrics for DB development tool:

- Existence of product manual / help as part of the product software.
Boolean metric that checks whether user manual exist as part of the
product software. We executed these tests with both TOAD versions.

TOAD for Oracle:
We have checked the documentation links from TOAD Windows program
menu (Start> Programs> Quest Software> Toad Oracle Freeware>
Documentation) as shown on the figure bellow:

Figure 2 TOAD for Oracle Documentation

 So the value for this metric, existence of product manual/help X=1

TOAD for MySQL:
We have a similar result for TOAD for MySQL, where documentation is

included as part of the product software

Figure 3 TOAD for MySQL documentation

The value for this metric, existence of product manual/help X=1

- Accessibility of product manual as part of the product software.

 73

TOAD for Oracle:
From the four specified documents, only two were available. Therefore, we
will have the following values:
- A number of existing product manuals = 2
- B number of total product manuals = 4
- X accessibility of product manual = A/B = 0,5

TOAD for MySQL:
 We received the following values:
- A=Number of accessible product manuals/help = 2,5, grade of 0,5 was

assigned to TOAD for MySQL release notes, because the document was
almost empty containing a link to URL where the actual release notes are

Figure 12 TOAD for MySQL Release notes (Readme file)

- B=number of total product manuals =3
- X accessibility of product manual = A/B =0,83

- Existence of product manual on Internet.
TOAD for Oracle:
Product documentation for TOAD for Oracle exists on internet but is not
publicly available. In order to get the documentation the user should register
on the Quest Software (TOAD producer) web site. So the grade for this metric
of TOAD for Oracle will be 0,5, because the User guide cannot be
downloaded without registration, providing personal information on the web
site of Quest Software.

TOAD for MySQL:

 74

Product manual for TOAD for MySQL does not exist on the Quest Software
web site. Therefore, the grade existence of product manual of TOAD for
MySQL will be 0.

- Existence of demonstrations. Boolean metric check whether demonstration

tutorials exist as part of the product software or on Internet. These tutorials
do not exist for both of TOAD versions so our grade for this metrics will
be 0.

- Self-descriptive User Interface (UI) functions. We define this metric as
X=A/B, where
A=Number of UI functions that are self descriptive to the user=11,5
B=Total number of UI functions=18
For this metric, we evaluated the following UI functions on the figure:

Figure 13 User Interface Functions

We have calculated the following numbers that are subjective:
A=11,5 B=18 and X=0,639

- Understandable input and output provided by the tool [ISO/IEC 9126-
2:2001]. This metric cannot be executed as [ISO/IEC 9126-2:2001]
described therefore we will try to give a subjective grade of 0,8 of 1,
because it seems clear to us what the input and output for this product
software are.

Learnability attributes of DB development tool:

- Product Manual

Learnability metrics of DB development tool:

- Ease of learning to perform a task in use [ISO/IEC 9126-2:2001], this is a
bit difficult to measure in absence of the dedicated users that will be
monitor and time needed to learn a function measured. Our impression
after executing few operations on base of the Help is that we can grade
this metric with 0,8 of 1

- Correctness of user documentation. We evaluated correct description of
functions in one of the manuals. Metric is defined as X=A/B. Where:
A= Number of functions correctly described
B= Total number of the function described

 Functions that succeeded are counted as 1, not succeeded functions are
counted as 0 and partly succeeded functions are counted as 0,5.

For this metric, we evaluated “TOAD for Oracle Getting Started Guide
Version 9.0” and “TOAD for MySQL Getting Started Guide version 2.0”.

We executed the following procedures from the TOAD for Oracle Getting
Started Guide Version 9.0” and we received the following results:

o Installation Succeeded
o Installation log (Install. Log) creation Succeeded
o Silent Install Succeeded
o Uninstall (also executed in ease of uninstallation)

 Succeeded

 75

o Trial Version Registration Not succeeded, option is
not available for the freeware version that we evaluated

So we calculated the following numbers for “TOAD for Oracle Getting
Started Guide v. 9.0” A= 4, B=5 X=0,8

We executed the following procedures from “TOAD for MySQL Getting
Started Guide Version 2.0”

o Online help, help selection Partly Succeeded, manual
says that it is on the Tools | Options | Interface | General, but it is
actually on Tools | Options | Interface | Help System.

o Online help, context sensitive Succeeded
o Online help, general information Succeeded
o Online help, keyword searching Succeeded
o Release Notes Succeeded
o Installing TOAD Partly succeeded getting

started guide does not contain some screens that appear during the
installation

o Uninstall TOAD for MySQL Succeeded
o Files Installed Succeeded
o Registering TOAD for MySQL Partly succeeded, Getting

started guide does not specify how to get to the authorization key
menu

Calculated number for “TOAD for MySQL Getting Started Guide Version
2.0” A= 7,5 B=9 and X=0,833
- Help accessibility [ISO/IEC 9126-2:2001]. The metric is defined by

[ISO/IEC 9126-2:2001] as X=A/B, where
A number of tasks we choose here more for number of screens for which
correct online help is located
B total number of screens that can appear

Example of screen without help button is TOAD server Login started with File > New
Connection, presented on the following figure:

 76

Figure 14 TOAD new connection

However, after pressing the F1 button the appropriate help menu appears.
We executed this operation on the 12 basic screen using TOAD for MySQL and we
received appropriate help screen. The only remark is the help screens for Procedures
and functions, where we received the following screen:

 77

Figure 15 Help Menu for Function and procedures

Therefore, we will grade these two menus with 0,5 and the numbers will be A= 11
(10*1 +2*0,5), B=12 and X= 0,917

Efficiency attribute and metrics of DB development tool

Time behaviour attributes:

- Server and session statistics
- Processing times of functions

Time behaviour metrics:
- Tool start time is defined by T= in seconds. We count the average value of

start time we received the following values for
TOAD for MySQL:
T=4sec.
TOAD for Oracle is:
T=4 sec. with the remark that for TOAD for Oracle we should press Close
button on a pop-up window to continue.

 78

Figure 16 Pop-up window appearing during TOAD start-up

- Time needed to open a small database of 40k. We executed this metric
using TOAD for MySQL only. The result was:

T= 2,5sec.

Resource Utilization attributes:

- Hardware resource

Resource Utilization metrics:

- Minimum hardware requirements, we found these information in Getting
Started guide and in the web page of the producer Quest Software

TOAD for Oracle has following hardware requirements
o Required space on disk for installation 75MB
o Required RAM memory 512 MB, 1GB recommended

TOAD for MySQL has the following hardware requirements:
o Required space on disk for installation 44MB
o Required RAM memory 256 MB, 512 MB recommended
o Required CPU frequency 233MHz (minimal), 300MHz or higher

recommended
- Memory usage, we checked the memory usage of the TOAD process

toad.exe in the windows Task Manager as shown on the following figure:

 79

Figure 17 TOAD memory usage

TOAD for Oracle has memory usage of 39 MB when running empty, without
any connections to databases. We cannot give further numbers because we did
not have an Oracle DB available at the testing environment.
TOAD for MySQL has memory usage of 13 MB when running empty, without
any connections to databases. After opening a small database, the memory
usage became 108MB. After opening, a second connection to an almost empty
database memory usage becomes 120MB.

Portability attributes and metrics of DB development tool
Installability attributes of DB development tool:

- Installation package availability
- Supported Software Environments
- Supported connecting database and supported versions of these databases
- Database client requirements

Installability metrics of DB development tool:

- Ease of manual installation [ISO/IEC 9126-2:2001]. Installation is easy as
described in [ISO/IEC 9126-2:2001] that is 3 of 4 on [ISO/IEC 9126-
2:2001] scale. On the end of the installation, we select that readme file
should be open, but the installation program could not find this file
because it was not on the specified location. So we received the following
error:

 80

Figure 18 TOAD installation cannot find readme file

Therefore, our grade for ease of installation for TOAD for Oracle will be 0,65
of 1.
TOAD for MySQL:
When installing this product we did not have this kind of issues, so the grade
value will be 0,75
- Ease of manual uninstallation, on base of the “Ease of user’s manual install
operation” metric of [ISO/IEC 9126-2:2001] we defined this metric.
TOAD for Oracle:

Based on the scale as defined in [ISO/IEC 9126-2:2001] we can grade ease
of uninstallation as easy, it contains uninstall button from the Windows
program menu. So the grade will be X=0,75 of 1.

 TOAD for MySQL:
 We can also grade ease of uninstallation of TOAD for MySQL as easy with a
remark that this application does not contain uninstall link in the Windows program
menu. Therefore, the grade for ease of uninstallation will be 0,65.

- Ease of Setup Retry [ISO/IEC 9126-2:2001]
This metric is defined by [ISO/IEC 9126-2:2001] as X=1-A/B where
A is number of cases in which user fails in re-trying set-up during set-up operations
B total number of cases in which user attempt to re-try setup during set-up operations
TOAD for MySQL:
We executed 4 cases using TOAD for MySQL thus B=4. Only one was partly
unsuccessful when installation path was not on the default path “C:\Program
Files\Quest Software\Toad for MySQL Freeware 2.0” A=3,5 and then X=0, 875. In
that case, after opening a database we received the following error message that
indicates hard coded paths in the tool:

 81

Figure 19 Error message after installing TOAD on non-default path

- Supported Operating Systems. Check product documentation, which
Operating Systems are supported. We define this metric as X=A/B where:

A=Number of supported Operating Systems =1 Windows only
B=Commonly used Operating Systems families: Windows, Linux, Solaris,
UNIX (POSIX)=4
Consequently X=A/B=0,25

SA4J

Functionality attributes and metrics for code analyzer tool
Functionality attributes for code analyzer tool

- Stability analysis of application structure
- Anti-pattern detection of application packages
- Package analysis of application packages
- What-if impact analysis of components

Functionality metrics for code analyzer tool:
- Completeness of the listed major functions. This metric is derived from

functional implementation completeness [ISO/IEC 9126-2:2001]. In order
to verify this function we need the functional requirements specifications,
which is not publicly available. Therefore, we cannot execute this test. An
alternative is to verify application features mentioned in the marketing
materials.

 82

- Verification of the major product functions:
o Analyse of randomly selected application
o Anti-patern detection of randomly selected application
o What-if impact analysis of randomly selected application

To verify these features we downloaded random applications from Internet
JavaFE and Smart Chat, we were able to executed analysis with SA4J.
Because of this, we could verify the above-mentioned functionality attributes.
- Supported input in the case of code analyzer tool the input can be binary

files or code, so we can define a metric as X=A/B where
o A= number of supported input=1 since SA4J does not analyze code

it analyses Java classes only
o B=total number of inputs = 2
o X=A/B=0,5

- Support for different programming languages, this metric can be define in

two ways:
o Boolean X=0 it supports only one language, X=1 supports more

than one programming language. The result of SA4J in this case
will be X=0

o In a way X=A/B where A is number of supported programming
languages and B is total number of programming languages, that is
kind of vague to count, we can eventually focus on most popular
languages like Java, C++ and Visual Basic. The result of SA4J in
this case will be X=1/B or X=1/3=0,333

Other code analyzer metric not applicable for SA4J, but applicable for the other
products in the same domain:

- Detection of duplicated code. Run the tool using sample code containing
duplicated code and check whether the tool can detect duplicated code.

- Removal of duplicated code. Run the tool using sample code containing
duplicated code and check whether the tool can remove duplicated code.

- Coding standard check, check source code against definable coding
standard. Boolean metric that verifies the coding standard functionality.
Define couple of coding standard rules in the tool. Run the tool using
sample code containing violations of defined coding standards and check
whether the tool can detect violation of the defined coding standards.

- Integration with development tools (e.g. Borland JBuilder, Oracle9i
JDeveloper e.t.c). The metrics can be defined as X=A/B, where A is
number of supported development tool and B is number of commonly used
tools

- Code metrics based analysis (e.g. Number of statements per method,
Number of statements per class, Static Path count, Code Nesting,
Cyclomatic Complexity e.t.c.). This metric can be defined as X=A/B,
where A is number of supported metrics by the tool and B is total number
of metrics

- Generation of reports in the standard formats like text, HTML, pdf, csv.
This metric can be defined as X=A/B, where A is number of supported
report formats, B is number of common report formats =4

- Compatibility check of binaries and code with the older releases of the
programming language. Boolean metric that checks whether code analyzer

 83

can execute a compatibility check with older version code and binaries
from the same programming language

Reliability attributes and metrics for code analyzer tool:
Recoverability attributes for code analyzer tool:

- Data preservation

Recoverability metrics for code analyzer tool:

- Data preservation in case of abnormal events, derived from Restorability
[ISO/IEC 9126-2:2001]

This metric is defined by [ISO/IEC 9126-2:2001] as X=A/B where
A is number of abnormal events cases when data was not damaged
B is number of abnormal events cases tested as per requirements
We executed three test cases two times per case thus in total 6 times.

1) First case was stopping SA4J application via task manager,
2) Second case was shutting down the system from a power button while

application was running.
3) Third case was shutting down the system while application was running
In all 6 cases we had no data damage restoration that results in:

 A=6, B=6 and X=1

Fault tolerance metrics for code analyzer tool:

- Incorrect operation avoidance
This metric is defined by [ISO/IEC 9126-2:2001] as X=A/B where
A is number of avoided critical and serious failures occurrences
B is number of executed test cases of incorrect operating pattern
Example of these cases is trying to open a project file with wrong file extension. Then
we will receive the following error message:

Figure 20 Opening project file with wrong extension

Another example is specifying wrong code files, when running File> New Java
Project:

Figure 21 Creating new project with wrong file

Third example is when we try the option File > Open Project, directories that do not
contain files with .saj extension are not listed, as shown on the following figure:

 84

Figure 22 Open Project in SA4J

On base of three two examples, we can give the following numbers:
A=3, B=3 and X=1

Usability attributes and metrics of analyzer tool
Understandability attributes of code analyzer tool:

- Product demonstration
- Help menu

Understandability metrics of analyzer tool:

- Completeness (covering all available operations) of product manual
[ISO/IEC 9126-2:2001]

Evaluation criteria: Product manual used was “Structural Analysis for Java Tutorial”
supplied with the application. Metric is defined in [ISO/IEC 9126-2:2001] X=A/B
where the value of X closer to 1 means high quality.
A= Number of functions understood=15
B=total number of functions = 18
X=0,833

Example of a function available but not properly described is opening a new project.
When we execute this function, the following pop-up window appears:

 85

Figure 4 SA4J issue opening new project

After we press, the button “Continue” for three times the application continues.

Another example of this kind of issue is Java > Diagram option presented on the
following figure of the manual:

Figure 5 SA4J interface as described in the tutorial

The Java menu does not exists in the latest version of the tool. The interface now has
the following menus:

Figure 6 Actual SA4J interface

 86

- Understandable user interface functions, “function understandability” in
[ISO/IEC 9126-2:2001]
Metric is defined in [ISO/IEC 9126-2:2001] X=A/B
A=14=Number of UI function whose purpose is correctly understood by the
user
B=21=Number of UI functions available from UI
X=0.667

- Understandable input and output provided by the tool [ISO/IEC 9126-

2:2001] X= A/B where A is number of input and outputs that user
successfully understands A depends of the user knowledge of structures,
thus we cannot measure this metric objective

Learnability attributes of analyzer tool:

- Product Manual

Learnability metrics of analyzer tool:

- Ease of function learning [ISO/IEC 9126-2:2001] in our case it does not
take too long to learn a function, as a subjective case we can give a grade
X=0.7 of 1

- Existence of product manual/help. Boolean metric, checks whether user
manual/help exist as part of the product software or on Internet. X=1
product manual exist as part of the software installation package.

- Ease of learning to perform a task in use [ISO/IEC 9126-2:2001] this is
also a subjective function same as Ease of function learning and also the
output is in time not very relevant for getting an appropriate result.

- Effectiveness of the user documentation [ISO/IEC 9126-2:2001]
Here we will use the same data as for completeness of user documentation
While evaluating we gave 1 for a function that is completely good described,
0.5 for a function that is available but on other position in user interface as a
result of this classification we received the following numbers. A=13; B=18
X=0,72
- Help accessibility on application screens derived from “help accessibility”

[ISO/IEC 9126-2:2001]
Metric is defined by [ISO/IEC 9126-2:2001] as X=A/B, where
A number of tasks we choose here more for number of screens for which
correct online help is located = 7. Our impression is that only the basic screens
(tabs) of the application (Explorer, Local Dependencies, Global Dependencies,
Skeleton, What if and Summary has available help, rest of the screens usually
do not have help.

 B total number of screens that can appear=15
X=0,467

Efficiency attributes and metrics

Time behaviour attributes:

- Processing times of functions and operations

 87

Time behaviour metrics:
- Response time to execute application operations derived from [ISO/IEC

9126-2:2001]
Here we can measure a response time for opening an example project and
response time to start the application. On a system with 1GB of Ram and
Pentium 4 CPU on 3 GHz, the response time to open an example project was
2sec, time needed to start the application was 7sec, and these values are
average after 10 measurements.

Task \PC configuration 1 GB RAM, P4 3GHz 500 MB RAM, AMD 2,2
GHz

Start application 7 sec. 7 sec.
Open Project 2 sec. 2 sec.
Table 1 Response times

Resource utilization attributes for code analyzer tool:
 - System Memory

Resource utilization metrics for code analyzer tool:

- Memory usage in use, this metric is similar to maximum memory
utilization. We tried kind of stress usage scenario, opening many different
windows having an open project, in this case. When the project is not open
application uses, about 30MB of memory after opening a project a memory
usage goes to 60MB. Memory usage caused by SA4J processes was about
92 MB with one project open and many options active. We manage to get
a memory usage of 165 MB reopening the same project several times. Our
impression is that this tool can use up to 200 MB of memory or even the
usage can extend further, because application has an indicator that gives
133MB as maximum by default, when we had memory usage of 164 MB
in use this indicator was reporting 113M of 148M.

Figure 7 Memory usage indicator SA4J

Portability attributes and metrics of code analyzer tool
Installability attributes of code analyzer tool

- Supported Software environment
- Other software requirements i.e. Acrobat for reading the documentation

Installability metrics for code analyzer tool:

- Supported Operating System
Here we can have the following metric X=A/B, where:
A=Supported operating systems for this product are Windows, Solaris and
Linux =3
B if we say that total expected OS to be supported are these OS versions and
other UNIX versions we can derive =4
X=0,75
- Supported web browsers

 88

For this metric, we can use the similar approach X=A/B where:
A supported web browsers for this product are Internet Explorer and
Netscape=2
B if we say that total expected browsers to be supported are these browsers
versions A+ Mozilla, that is very popular browser at this moment, so B=3
X=0,667

- Ease of user’s manual install operation [ISO/IEC 9126-2:2001]

Installation is easy as described in [ISO/IEC 9126-2:2001] that is 3 of 4 on [ISO/IEC
9126-2:2001] scale containing very easy, easy, not easy and complicated. So our
grade will be 7,5 of 10 or 0,75 of 1. We can also test further based on [ISO/IEC 9126-
2:2001] to try different installation cases. We executed 4 times setup and one was on
different location on the file system all 4 times were successful
- Ease of uninstallation, on base of the Ease of installation metric of [ISO/IEC 9126-
2:2001] we defined this metric. Based on the scale as defined in [ISO/IEC 9126-
2:2001] we can give 6,5 of 10 or 0,65 of 1 because on the program menu we do not
have uninstall link, so on a windows system we should use Add or Remove Programs
menu to uninstall this application.

- Ease of Setup Retry [ISO/IEC 9126-2:2001]
This metric is defined by [ISO/IEC 9126-2:2001] as X=1-A/B where
A is number of cases in which user fails in re-trying set-up during set-up operations
B total number of cases in which user attempt to re-try setup during set-up operations
We executed 4 cases thus B=4. Only one was unsuccessful when the application was
open setup cannot be executed, so in that case it was unsuccessful this is expected
behavior but we can say A=1 and then X=0, 75.

Microsoft Word

Functionality attributes and metrics of Office application
Functionality attributes of Office application:
Suitability attributes of Office application:

- Documents editing
- Document formatting
- Spelling and grammar checking of documents
- Supporting other files into the documents i.e. jpg pictures, excel sheets
- Convert documents do other format i.e. PDF, XML, rtf

Suitability metrics of Office application:

- Evaluate adequacy of major project functions, metric derived from
functional adequacy [ISO/IEC 9126-2]. Evaluator should verify whether
suitability functions are running properly. The metric is defined as X=1-
A/B where, A is number of functions where problems are detected during
evaluations, B is number of functions evaluated. We evaluated the
following functions:

o Documents editing
o Document formatting
o Spelling and grammar checking of documents
o Supporting other files into the documents i.e. jpg pictures, excel

sheets

 89

o Convert documents to other format i.e. PDF, XML, rtf
We received the following results: A =4,33 B=5 X=0,935. We graded
with 0,33 the document conversion function because evaluated MS Word
version 2003 does not support the conversion to PDF format.

- Completeness of the listed suitability attributes, metric derived from
functional implementation completeness [ISO/IEC 9126-2]. Evaluator
should evaluate if all functions described in the requirement specification
are implemented. This metric is defined same as the previous one X=1-
A/B with the only difference that B is number of functions described in
requirement specifications. In absence of the official requirements
specification document, we cannot evaluate this metric.

- Support of specific/additional text editor features. Evaluator should check
help or product documentation whether these additional features are
supported by Office application. If features are supported then evaluator
should verify that they are running properly. This metric can be defined as
X=A/B, where:

o A is number of text editor features supported
o B is total number of standard text editor feature
We identified the following list of additional text editor features
available on Wikipedia:
o Autocomplete involves the program predicting a word or phrase

that the user wants to type in without the user actually typing it in
completely

o Autoreplace automatic replacement of a particular string with
another one, usually one that is longer and harder to type, as
"myname" with the full name of the author

o Text search for searching a computer-stored document
o Grammar checker design feature or a software program designed to

verify the grammatical correctness or lack of it in a written text
On base of this we can give the grade B=4, A=3,5 because autoreplace
feature is not present as automatic replace of words or names, but it can
be configured using the other tools as macros. Consequently X=0,875

Security attributes of Office application:

- Security vulnerabilities brought as part of the macros
- Confidential sharing of documents

o digital signature,
o documents in reading mode
o assigning permissions on documents

Security metrics of Office application:
All security metrics should be evaluated in a same manner; evaluator should check
help or product documentation whether related features are supported by Office
application. Then he should verify if related features are working properly.

- Assigning permissions of shared documents. We can define this metric as
Boolean. In order to use permission MS Words requests installation of the
latest version of Windows Rights Management Client. Thus, application
cannot be used immediately. After installation of the latest Windows
Rights Management Client, Word requires Sign-up and usage of .Net
Passport for this service.

 90

Figure 23 Sign-up for Information Rights Management Services

Without signing in and providing .NET passport credentials, it is not possible
to use this feature. The whole procedure to use this feature seems to us
complicated and relying on usage of other Microsoft tools, therefore we will
grade it with X=0,5.
- Document corruption prevention, derived from data corruption prevention

[ISO/IEC 9126-2]. We will use the same metric definition as [ISO/IEC
9126-2] X=1-A/N, where A is number of times that a major data
corruption event occurred and N is Number of test cases tried to cause data
corruption event. [ISO/IEC 9126-2] defines additional formula for minor
corruption events that can be the following Y=1-B/N, where B is number
of times that a minor data corruption event occurred. We executed 4 test
cases that were shutting down the application and the complete system
with MS Word application open and document saved and unsaved. In test
cases with saved document did not we have any data corruption events. In
the other two test cases with unsaved document, we have minor data
corruption events. So our numbers will be N=4, A=0 B=2, values for X
and Y will be X=1 Y=0,5.

- Open and Modify document protection. Metric can be defined as X=A/B,
where A is protection that editor support and B is total number protection
= 2.

 91

Figure 24 Open and Modify permission

We tried this protection mechanism and we received the following numbers
A=2 B=2 and X=1
- Macros protection. We will define this metric as Boolean, verifying

whether the product offers a protection from macros. In case of MS Word
2003, macro protection exists,

Figure 25 Macro security of MS Word 2007

 so our grade for this metric will be 1.

 92

Usability metrics of Office application
Understandability attributes:

- Self-descriptiveness of the user interface
- Product demonstrations

Understandability metrics:
- Evident tools initially derived from "Evident functions" of [ISO/IEC

9126-2]. Evaluator should check if toolbar functions are clear to him on
base of the toolbar icons. This metric can be defined as X= A/B, where

o A is number of tools identified by the user
o B is total number of tools.

Figure 26 MS Word 2003 Tools

For MS Word 2003 we calculated the following numbers: A=14, B=19 X=0,736

- Existence of demonstrations explaining the product functions. Evaluator
should check whether demonstration tutorials exist as part of the product
software or on Internet. Three values metric, with values:

o X=0 if demonstration does not exist at all
o X=0,5 if demonstrations exist on Internet, but does not exist as as

part of the product software
o X=1 if demonstration exist as part of the product software

In case of MS Word we will have X=0,5.
- Demonstration accessibility [ISO/IEC 9126-2]. Evaluator should check if

he could access the demonstration tutorials. We will define this metric
same as [ISO/IEC 9126-2] X=A/B, where A is number of demonstrations
that user successfully access and B is number of demonstration available.
MS Word 2003 contains 18 demonstrations (courses) B=18 that connect to
tutorials from Internet. The number A=18 if a user has access to Internet
and 0 if the user does not have access to internet. Therefore we will use the
average value of these two numbers A=9, consequently X=0,5.

Learnability attributes for Office application:

- User Manual
- Online help

Learnability metrics for Office application:

- Effectiveness of user manual [ISO/IEC 9126-2]. Evaluator should try to
execute functions described in the product manual and evaluate if
description is correct. Defined by [ISO/IEC 9126-2] as X=A/B Word
contains a large manual. We were able to execute 8 tasks about templates,
headers described in the manual and all of them were successful, thus A=8
B=8 and X=1

- Help accessibility on application screens, derived from “help accessibility”
[ISO/IEC 9126-2]. Evaluator should check how many of the existing
screens have correct online help. This metric is defined as X=A/B where:

o A is number of task for which correct online help is located
o B is total number of tasks tested

 93

We checked the existence of all the tasks available in the MS Word
menu and we received the following numbers A = 24, B = 96 and
X=0,25. This is surprisingly low grade, probably related to the fact that
Microsoft did not provide help for some common functions like Copy,
Paste or Insert Diagram.

Operability attributes of Office application:

- Grammar error correction
- Can user easily recover his/her input
- Self-explanatory error messages
- Existence of “Undo” operation/feature

Operability metrics of Office application:

- Grammar error correction, specific text editor metric derived from “Error
correction” [ISO/IEC 9126-2]. Evaluator should measure time needed to
correct grammar errors. This metric is defined as T= Tc – Ts, where:

o Tc is time of completing correction of specified type errors of
performed task

o Ts time of starting correction of specified type errors of performed
task

The official [ISO/IEC 9126-2] metric should be used for specific errors
like destroying data, input/output errors or operational situation. We used
the metric for correction of typing errors that belongs to the group
input/output errors. We identified three kinds of errors in this category:

 1) Wrong use of capital letters, in case of these errors correction happens
immediately thus time to correct it is T=0sec
2) Misspelled words, in case of these errors time to correct is T=2sec
3) Grammar errors as usage of passive voice, in case of these errors time to
correct is T=20sec.
- Can user easily recover his/her input, sub-metric of “Error correction in

use” [ISO/IEC 9126-2]. Evaluator should create several errors and then
check whether application is correcting his errors. This metric is defined as
X=A/B, where:

o A is number of screens or forms where the input data were
successfully modified or changed before being elaborated

o B is number of screens or forms where user tried to modify or
change the input data during observed user operating time

We executed this metric also on grammatical errors. So from the three test
cases (wrong use of capital letter, misspelled words and passive voice), we
received the following numbers A=2, B=3 and X=0,667

- Self-explanatory error messages [ISO/IEC 9126-2]. Evaluator should
verify whether error messages propose appropriate recovery action. This
metric requires user test for a longer period and analysis whether user takes
a right action on base of the error message. Therefore, we did not evaluate
the product with this metric.

- Existence of “Undo” operation/feature. Evaluator should verify whether
“Undo” function exists and it is functioning properly. We can define this
metric as Boolean, which verifies whether application contains an undo
operation. In case of MS Word the value will be X=1.

 94

Attractiveness attributes of Office application:
- Attractiveness of the interface

Attractiveness metrics of Office application:

- Attractive interaction [ISO/IEC 9126-2]. The standard [ISO/IEC 9126-2]
recommends assessing attractiveness with questionnaire to users, how they
experience the product and the user interface. In absence of proof users,
evaluator should give a subjective grade.

- Interface appearance customizability [ISO/IEC 9126-2]. Evaluator should
count interface parameters that can be customized and total number of
interface parameters. We will redefine this metric because [ISO/IEC 9126-
2] definition is related to user wishes. Our definition will be X= A/B,
where:

o A is number of user interface elements available for customization
o B total number of user interface elements available

 In case of MS Word, we have toolbar menu:

Figure 27 Toolbar menu of MS Word

 The menu has an option Customize that can customize the commands

 95

Figure 28 Customize option

Where all commands can be customized. Therefore, we will have the following
numbers: A=+-700 B=+-700 X=1

Efficiency attributes and metrics
Time behaviour attributes:

- Time needed to execute system functions/operations

Time behaviour metrics:
- Response time to execute operations derived from [ISO/IEC 9126-2]

o Time needed to start application. Start-up time is relative short on a
today’s standard hardware configuration (system with 1GB of
RAM and CPU frequency of 3GHz) and it is Tsa=1s

o Time needed to close application. Close application time is relative
short on a today’s standard hardware configuration (system with
1GB of RAM and CPU frequency of 3GHz) and it is Tca=1s

o Time needed to open a document. This metric depends of the size
of the document and same configuration (system with 1GB of
RAM and CPU frequency of 3GHz). We received the following
results:

 Document with size of 1,5 MB time to open Tod=1s

Resource utilization attributes:
- System utilization
- System Hardware Requirements

Resource utilization metrics:
- Memory usage. Amount of memory used by the application. Evaluator

should check the amount of memory used by the application processes. In
a normal condition without any files open, MS Word 2003 uses 16MB of
system memory. When we opened a file of 500KB memory usage of MS
Word was 26MB. When a file of 1,5 MB was open, memory usage went to
37MB.

- Hardware requirements. Evaluator should check help or product
documentation about hardware requirements. For Word 2003 we found the
following hardware requirements

 96

o Pentium CPU with minimal frequency of 233 MHz
o Minimum 128 MB of memory plus 8 MB for word application

Portability attributes and metrics for Office application
Installability attributes of Office application:
- Installation of the application

Installability metrics for Office application:

- Ease of manual installation [ISO/IEC 9126-2]. Evaluator should execute
manual installation and give a grade based on complexity of the
installation. This metric is defined with for levels (very easy, easy, not easy
and complicated), in the case of MS Word we can grade it with easy, that
is 3rd of 4 levels, equivalent to 0,75 of 1

- Ease of installation of the Word updates. Evaluator should execute manual
installation of Word updates and give a grade based on complexity of the
installation. We can define this metric with same four levels: very easy,
easy, not easy and complicated. Grade for the ease of installation of
updates will be easy or 0,75 of 1

Replaceability attributes for Office application:

- Upgrade of the office application
- Support of outputs from previous/new versions

Replaceability metrics for Office application:
- Upgradeability to new product software version. Evaluator should check

the product documentation of the newer version to check which older
versions can be upgraded to the newer version. We can define this metric
as Boolean. Upgradeability of MS Word is defined by business strategy of
Microsoft. In case of MS Word 2003, the product can be upgraded to the
only later version available on the market now MS Word 2007. Microsoft
charges about 130 Euros in the Netherland for this upgrade. This upgrade
is not available for older MS Word version like MS Word 97 and MS
Word 6.0. Thus, from technical point of view the grade for our metric will
be 1, if we take in calculation the financial cost than we can give a lower
grade of 0,5.

- Support for files created with previous MS Word versions, derived from
continued use of data [ISO/IEC 9126-2]. Evaluator should check whether
file could be saved in a format of older application versions. We can define
this metric as Boolean. MS Word 2003 supports opening and saving
documents (files) created with previous MS Word versions. Grade for this
metric will be 1.

 97

Entertainment application Minesweeper

Functionality attributes and metrics of entertainment application
Suitability Attributes for entertainment application:

- Random generation of mines on squares within the game defined field of
squares

- Measuring the game duration time. Evaluator should verify that application
measures and displays the playing time properly.

- Supplying the square information of the selected square i.e. field is mine of
number of the mines on the field bordering fields

Suitability metrics of entertainment application:

- Adequacy of major product functions, metric derived from functional
adequacy [ISO/IEC 9126-2]. Evaluator should verify if major product
functions are functioning properly.

o Random generation of mines on squares within the game defined
field of squares

o Measuring the game duration time
o Supplying the square information of the selected square i.e. field is

mine of field is presenting number of the mines on the eight
bordering fields

Metric is defined as X=1-A/B where:
o A is number of attributes in which problems are detected during

the evaluation
o B number of evaluated attributes

We evaluated the following functions for Minesweeper and we received
the following numbers A=0, B=3 X=1.

- Completeness of the listed major functions, metric derived from functional
implementation completeness [ISO/IEC 9126-2]. In the absence of
requirements specification, we cannot assess this metric.

- Providing different complexity levels. Boolean metric verifying whether
the application contains different levels. Evaluator should verify that
application offers different levels of complexity; he should start the
application in any of these levels if check, that application runs in these
levels and that complexity is different. Minesweeper has the following
levels: “Beginner”, “Intermediate”, “Expert” and “Custom” (where the
user can define the complexity of the gaming application). In the case of
minesweeper grade for this metric will be 1.

- Storing/displaying the best scores. Evaluator should verify that application
shows the best scores. Boolean metric checking whether the application
stores and displays the best scores. We reset the scores and played one
complete game, after finishing the game we have right to sign in the best
scores.
In the case of minesweeper grade for this metric will be 1.
Note: Application does not display and stores best scores of the Custom
level, but this is expected behavior because application in the custom
levels does not have strict level of complexity.

 98

Interoperability attributes of entertainment application:

- Support for network entertainment

Interoperability metrics of entertainment application:
These attributes are not applicable for Minesweeper but are applicable for the modern
gaming applications.

- Supported LAN (Local Area Network) gaming. Evaluator should verify
that application could be played in the LAN environment, with multiple
users playing the same game. Boolean metric checking whether the game
can be played in a LAN. In case of Minesweeper application the grade for
this metric will be X=0.

- Supported Internet gaming. Supported Internet gaming. Evaluator should
verify that application could be played on Internet. Boolean metric
checking whether the game can be played on Internet. In case of
Minesweeper application the grade for this metric will be X=0.

Usability attributes and metrics of entertainment application
Understandability attributes of entertainment application:

- Self-descriptiveness of the user interface
- Product demonstration

Understandability metrics of entertainment application:

- Existence of demonstrations. Evaluator should check whether
demonstration tutorials exist as part of the product software or on Internet.
This can be defined as Boolean metric, checking whether application
contains demonstrations. In case of Minesweeper application the grade for
this metric will be X=0.

- Completeness of description [ISO/IEC 9126-2]. Evaluator should try to
understand functions described in the product manual and evaluate if
description is correct. Metric is defined by [ISO/IEC 9126-2] in a
following way X=A/B where:
A is number of functions understood
B total number of functions
We evaluated help of the application and we have the following numbers
A=6, B=6 and X=1

- Evident GUI/toolbar functions derived from [ISO/IEC 9126-2] “Evident
functions”. Evaluator should check if toolbar functions are clear to him on
base of the toolbar icons. The metric is defined as X=A/B where:
A is number of GUI/Toolbar functions identified by user
B total number of GUI/Toolbar functions
In case of Minesweeper, we received the following numbers A=0 B=1 and
X=0 the only GUI/Toolbar:

Figure 29 Minesweeper toolbar GUI

That means start new application cannot be identified in that way from our
sample user.

 99

This low figure is because of the fact that minesweeper is simple application, so the
supplier did not spent much effort in preparing demonstration and evident GUI
functions

Learnability attributes of entertainment application:

- User/product manual
- Application help

Learnability metrics of entertainment application:
- Existence of user manual. Evaluator should check whether user manual

exist as part of the product software or on Internet. In the case of
Minesweeper user manual is provided as part of application package. Thus
grade for this metric is X=1.

- Ease of function learning. Evaluator should evaluate how easy is learning
functions for a test user. In absence of a test user, evaluator should execute
the test user role. The metric is defined by [ISO/IEC 9126-2] is the mean
time to learn the function. We decided to measure giving a subjective
grade in the range from 0 to 1 where, value closer to 1 means that the
functions can be learned very easy and value closer to 0 means that the
functions are difficult to learn. In case of Minesweeper we give a grade
X=0,9.

- Correctness of user documentation, metric derived form “effectiveness of
the user documentation” [ISO/IEC 9126-2]. Evaluator should try to
execute functions described in the product manual and evaluate if
description is correct. The metric is defined as X=A/B where:

o A is number successfully completed tasks after accessing online
help/or documentation

o B total number of tasks tested
In the case of Minesweeper we received the following numbers A=4, B=4
X=1

- Help accessibility on application screens, derived from “help accessibility”
[ISO/IEC 9126-2:2001]. Evaluator should check how many of the
available screens have correct online help. Metric is defined as X=A/B
where:

o A is number of tasks for which correct online help is located
o B is total number of tasks tested

The metric is not applicable for minesweeper because the application contains
one screen only, with only one online help screen not related to the tasks.
However, we find this metric relevant for the complex gaming applications
that contain many different screens.

Attractiveness attributes of entertainment application:
- Appearance of the software
- Design of the user interface
- Application content attractiveness
- Software newness

Attractiveness metrics of entertainment application:

 100

- Attractive interaction [ISO/IEC 9126-2]. This metric is should be
measured by [ISO/IEC 9126-2] using a questionnaire where user can
answer how attractive is the interface to them. In absence of proof users,
we will try to give a subjective grade in the range from 0 to 1, where 1
means very attractive and 0 means no attractive interaction. Our grade will
be X=0,65

- Age of the software. Check when the software was produced; the
assumption is that newer software is more attractive. In case of
Minesweeper, we found information on one gaming site
(http://www.gamesetwatch.com) that it was first time introduced as part of
Microsoft Entertainment Pack for Windows in 1990. Thus, we can say that
this is medium age application from the early PC age. Our grade for this
metric on a 0 to 1 scale will be X=0,5

- Interface appearance customization the name of the metric is from
[ISO/IEC 9126-2]. Evaluator should count interface parameters that can be
customized and total number of interface parameters. We will try to
modify it for this application in a following way X=A/B where:

o A is number of interface parameters that can be customized (size of
the fields and number of mines)

o B is number of interface parameters that the user wishes to
customize

For Minesweeper, we will have the following numbers: A=3, B=4
X=0,75. We expect that the user would like to modify the color of the
application, that customization is not provided. Therefore, number B is
greater than number A.

Efficiency attributes and metrics of entertainment application
Time behaviour attributes of entertainment application:

- Time behaviour of the system

Time behaviour metrics of entertainment application:
- Response time to execute operations, derived from [ISO/IEC 9126-2]. This

metric is not applicable to Minesweeper application because it is quite
light application for today’s hardware configurations. However, we
consider this metric relevant for other entertainment applications, because
the mother gaming applications are CPU and memory consuming.

- Memory usage. We define this metric as amount of memory used by
application process. . Evaluator should check the amount of memory used
by the application processes. In case of Windows application, we use Task
manager to check the amount of memory used by the process. As you can
notice on a figure, bellow Minesweeper uses about 2,7 MB of memory.

 101

Figure 30 Minesweeper memory usage

Portability metrics of entertainment application
Installability attributes of entertainment application:

- Easy installation of the software

Installability attributes of entertainment application:
- Ease of manual installation [ISO/IEC 9126-2]. Evaluator should execute

manual installation and give a grade based on complexity of the
installation. This metric is defined with for levels(very easy, easy, not easy
and complicated), in the case of Minesweeper we can grade it with easy,
that is 3rd of 4 levels, equivalent to 0,75 of 1

- Ease of manual uninstallation [ISO/IEC 9126-2]. Evaluator should execute
manual uninstallation and give a grade based on complexity of the
uninstallation. This metric is defined with for levels(very easy, easy, not
easy and complicated), in the case of Minesweeper we can grade it with
easy, that is 3rd of 4 levels, equivalent to 0,75 of 1

- Ease of Setup Retry [ISO/IEC 9126-2].]. Evaluator should execute
number of reinstallation (retry set-up) cases and count how many of them
were successful. Not applicable for Minesweeper since it is part of
Windows operating system and it is not delivered as separate installation
package.

Co-existence attributes of entertainment application:

- Application does not conflict with standard applications.

Coexistence metrics of entertainment application:
- Available co-existence [ISO/IEC 9126-2], not applicable for Minesweeper

since it is a small application not utilizing system resources and with low hardware

 102

requirements. However, we consider this metric relevant for the modern gaming
applications.

 103

