
 

 

 

SECURING TEXT CHAT SYSTEM USING KERBEROS AUTHENTICATION 

 

 

 

 

 

 

 

 

 

PRABU A/L JAGANADAN 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 



PSZ 19:16 (Pind. 1/97)

UNIVERSITI TEKNOLOGI MALAYSIA

BORANG PENGESAHAN STATUS TESIS .
JUDUL : SECURING TEXT CHAT SYSTEM USING KERBEROS AUTHENTICATION

SESI PENGAJIAN: 2004 /2005 -II

Saya PRABU AIL JAGANADAN
(HURUF BESAR)

mengaku membenarkan tesis (pSMlSarjana/Doktor Falsafah)* ini disimpan di Perpustakaan Universiti
Teknologi Malaysia dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Teknologi Malaysia.
2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan pengajian

sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

pengajian tinggi.
4. **Silatandakan( ..J )

D SULIT

D TERHAD

o TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan
atau kepentingan Malaysia seperti yang termaktub di
dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan.)

Disahkan oleh

f)!JL
(TANDATANGAN PENULIS)

Alamat Tetap:
80 JALAN PESONA 11.
TAMAN PELANGI INDAH
81800 ULU TIRAM
JOHOR

PM DR. MOHO AlZAINI BIN MAAROF
Nama Penyelia

Tarikh: 29 MAR~H 2005 Tarikh: 29 MARCH 2005

CATATAN: * Potong yang tidak berkenaan.
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis
ini perlu dikelaskan sebagai SULIT atau TERHAD.

. Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara
penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan,
atau Laporan Projek Sarjana Muda (PSM).



 

 

 

 

SECURING TEXT CHAT SYSTEM USING KERBEROS AUTHENTICATION 

 

 

 

 

PRABU A/L JAGANADAN 

 

 

 

 

This thesis is delivered as a requirement for a 

 Degree of Bachelor of Science(Computer Science)  

 

 

 

FAKULTI SAINS KOMPUTER DAN SISTEM MAKLUMAT  

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 

 

MARCH 2005  

 

 

 

 

 

 



"I declare that 1have read the thesis and approve that this thesis has fulfilled the scope

and quality criteria for the degree of Bachelor of Science (Computer Science)"

Signature

Name of Supervisor:

Date

PROF. MADYA DR. MOHDAIZAINI BIN MAAROF
Timbalan Dakan (Akademik)

Fakulti Sains Komputer dan Sistem Maklumat
Universiti Teknologi Malaysia
81310 UTM, Skudal, Johor.

I
",,'



11

"I declare that this project entitled is the result of my own work except as cited in

reference. The report has not been accepted for any degree and is not concurrently

submitted in candidature of any degree."

Signature : 9:!lI: ....
Name of Author. PRABU NL JAGANADAN. ... ... ... ... ............................................

. 29 MARCH 2005. ... ... ...Date



 iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To those who have trusted my capabilities … 



 iv

ACKNOWLEDGEMENT 

 

 

 

 
I would like to take this opportunity to thank my supervisor, PM Dr. Mohd 

Aizaini bin Maarof for accepting me to be under his supervision. I would also like to 

express my gratitude to him for sparing his precious time in giving me constructive 

suggestions and advise regarding my project.  

 

I am also very grateful to my friends who gave me moral support for supporting 

me in finishing this project. I would also like to thank my parents for giving me both 

moral and material support all the way.  

 

I am also greatly indebted to my seniors and friends for spending extra hours 

with me in finishing this project and being there for me whenever I needed their help. 

Words alone cannot express the thanks I owe to all of them who is involved directly or 

indirectly supporting me in the completion of this report. Last but not least, I would want 

to thank God for blessing me and being with me through my toughest times. 

 

 

 



 v

ABSTRACT 

 

 

 

 

Information technology has made it possible for us to communicate through text 

messages in a Local Area Network (LAN). However, transmission of text messages 

through the network has limitation where it can be easily accessed by third party. This 

text messages sent over the networks are prone to security threads such as interruption, 

interception, modification and fabrication. The objective of this project is to secure the 

transmission of text messages from unwanted parties in a chat system and to overcome 

the Public Key Cryptographic disadvantages. Public key encryption probably strikes you 

as complex. In fact, it is. It requires many computers processing cycle to do public key 

encryption and decryption -about 100 times as many as cycle as symmetric key 

encryption required. Besides that, there is problem to exchange the public key among 

two parties even public key is not secret. If a person wan to initiate a connection with 

another party in the network he need to get the public key of the other party who he wish 

to communicate with. So there is a problem to get the public key of the other party to 

start the communication. The approach used to overcome these problems is by using 

Kerberos Network Authentication to distribute the secret key securely among two 

parties. To add more security and secrecy to this system, the text messages are also 

encrypted using the AES algorithm. The parallel development methodology was used in 

this project.  The text messages can only be sent to only one computer at one time 

through the network. By exchanging messages this way, this system ensures the 

messages sent cannot be accessed by an unauthorized person because he only sees an 

encrypted text file being transferred.   

 

 



 vi

ABSTRAK 

 

 

 

 

 Teknologi maklumat telah memudahkan komunikasi melalui mesej berbentuk 

teks dalam rangkaian kawasan setempat. Walaubagaimanapun, pemindahan mesej 

berbentuk teks yang dihantar melalui rangkaian adalah tidak selamat daripada 

penyampukan, pemintasan dan pengubahsuaian. Objektif projek ini adalah untuk 

memastikan mesej yang dihantar di dalam satu sistem komunikasi adalah selamat 

daripada capaian pihak ketiga dan juga untuk mengatasi masalah sistem penyulitan 

awam. Masalah sistem kekunci awam yang paling utama diatasi melalui projek ini 

adalah masalah untuk berkongsi satu kekunci rahsia antara dua komputer atau pengguna 

yang berkomunikasi. Untuk membolehkan seseorang mengimplementasikan sistem 

penyulitan awam ini, beliau perlu mengetahui kekunci awam bagi pihak yang ingin 

beliau berkomunikasi. Menjadi satu masalah untuk memperolehi kekunci awam ini 

walaupun kekunci umum bukan merupakan suatu kekunci yang perlu dirahsiakan. 

Pendekatan yang digunakan untuk mengatasi masalah ini adalah dengan menyulitkan 

text yang dihantar dengan  satu kekunci rahsia yang diagihkan antara pengguna sistem 

melalui mekanisma Kerberos. Untuk menambah keselamatan sistem ini, kaedah 

penyulitan AES juga digunakan. Metodologi yang digunakan adalah metodologi 

pembangunan selari. Projek ini telah dilaksanakan supaya mesej berbentuk teks akan 

disulitkan dan untuk menunjukkan yang kaedah menyembunyikan mesej berbentuk teks 

adalah sangat berkesan. Mesej berbentuk teks ini hanya boleh dihantar ke satu komputer 

pada satu masa melalui rangkaian. Melalui pendekatan ini, dapat memastikan mesej 

yang dihantar adalah selamat daripada pencerobohan orang yang tidak diingini kerana 

dia hanya akan melihat suatu mesej yang tersulit sedang dihantar.  

 



 xi

LIST OF TABLES 

 

 

 

 

TABLE NUM. TITLE                                                                                   PAGE 

 

2.1             Fields of a Ticket                                                24 

2.2            Ticket Flags          25 

2.3            Applications for Asymmetric-key Cryptosystem   33 



 xii

 

 

 

 

LIST OF FIGURES 

 

 

 

 

FIGURE NUM. TITLE                                                                                   PAGE 

 

     2.1    Mutual authentication (Alice-Bob)        11 

     2.2    Key Distribution (in theory)         12 

     2.3    Key Distribution (in practice)         13 

     2.4    Mutual authentication (Client/server)        14 

     2.5   AS Exchange           20 

     2.6   TGS Exchange          21 

     2.7   CS Exchange           22 

     2.8   Analogy of a Symmetric-key Cryptosystems       29 

     2.9   Analogy of an Asymmetric-key Cryptosystems      31 

     2.10  How Asymmetric-key Encryption Works       32 

     3.1   Life cycle of the parallel development methodology      41 

     3.2   The prototyping methodology        42 

     4.1                         Overview of How the System Works        52 

     4.2              Process of sending messages             53 

     4.3   Process of receiving messages           54 

     4.4   Use Case for User          55 

     4.5                          Use Case Diagram for User         56 

     4.6    Sequence diagram sending text message       57 

     4.7   Sequence diagram for encrypted text at receiver’s end     58 

     4.8   The Main User Interface for Chatting        59 

     5.1   Command-line arguments by client        62 



 xiii

     5.2   Command-line arguments by Server        62 

      5.3   Client Code for Socket Connection        63 

      5.4   Server Code for Socket Connection         63 

      5.5   Client GSSContext Instantiation        65 

      5.6   Client Context Establishment         66 

      5.7   Server GSSContext Instantiation        67 

      5.8   Server Context Establishment         68 

      5.9   The Login Configuration File         69 

      5.10  Client. Policy           70 

      5.11  Server.policy                      71 

      5.12  Encrypting the Text Message         72 

      5.13  Decrypting the encrypted text message       72 

      5.14  krb5.conf           73 

      5.15  kdc.conf           74 

      5.16  Encryption output          76 

      5.17  Decryption output          76 

      5.18  Message Validation          79 



 xiv

LIST OF ABBREVATION 

 

 

 

 

KDC  -  Key Distribution Center 

TGT  - Ticket Granting Ticket 

AES  - Advanced Encryption Algorithm 

DCT  - Discrete Domain Transformation 

DFD  - Data Flow Diagram 

DLL  - Dynamic Link Libraries 

ERD  - Entity Relationship Diagram 

FFT  - Fast Fourier Transform 

ICMP  - Internet Message Control Protocol 

JDK  - Java Development Kit 

JCE  - Java Cryptography Extension 

LAN  - Local Area Network 

LPC  - Linear Predictive Coding 

LSB  - Least Significant Bit 

MAN  - Metropolitan Area Network 

RAD  - Rapid Application Development 

SDAM  - System Analysis and Design Method 

SDLC  - System Development Life Cycle 

TCP  - Transmission Control Protocol 

UDP  - User Datagram Protocol 

UML  - Unified Modeling Language 

WAN  - Wide Area Network 



 xv

LIST OF APPENDIX 

 

 

 

 

APPENDIX  TITLE      PAGES 

 

 

A   Gantt Chart           87 

B   User Manual                  90 



 vii

CONTENTS 

 

 

 

 

CHAPTER TITLE PAGE 

   

 TITLE i 

 DECLARATION ii 

 DEDICATION  iii 

 ACKNOWLEDGEMENT iv 

 ABSTRACT v 

 ABSTRAK vi 

 CONTENTS  vii 

 LIST OF TABLES xi 

 LIST OF FIGURES 

LIST OF ABBREVATION 

xii 

xiv 

 LIST OF APPENDIX   

 

   

   

CHAPTER 1 INTRODUCTION 1 

   

 1.1      Introduction 1 

 1.2      Problem Statement 2 

 1.3      Project Purpose 3 

 1.4      Project Objective 4 

 1.5 Project Scope 

1.6 Project Justification 

4 

5 



 vii

CHAPTER 2 LITERATURE REVIEW 6 

   

 2.1 Introduction 

2.2 Chat System 

2.3 Kerberos Authentication Protocol                  

2.3.1 Authenticators  

2.3.2 Key Distribution 

2.3.3 Session Tickets 

2.3.4 Ticket-Granting Tickets 

2.3.5 Authentication Across Domain  

Boundaries 

          2.3.5.1   Sub-protocols 

            2.3.5.2   AS Exchange 

2.3.6    TGS Exchange 

2.3.7    CS Exchange 

2.3.8    Tickets 

             2.3.8.1  What Is in a Ticket 

             2.3.8.2  KDC Ticket’s Lifetime 

             2.3.8.3  Tickets Expire 

             2.3.8.4    Renewable TGTs      

2.4 Cryptographic System 

2.4.1 Symmetric-key Cryptosystems 

2.4.1.1 Implementation of AES 

Rijndael 

           2.4.2   Asymmetric-key Cryptosystems    

2.5 Network Protocols 

2.5.1    Transmission Control Protocol  

                         (TCP) 

2.5.2    User Datagram Protocol (UDP) 

2.6 Java Authentication And Authorization 

2.7 Java Generic Security Service 

2.8 Chatting Software That Are Currently 

Available 

6 

7 

8 

9 

11 

13 

15 

 

17 

19 

19 

20 

22 

23 

23 

26 

26 

27 

28 

29 

 

30 

30 

33 

 

34 

35 

35 

36 

 

37 



 viii

2.9 Conclusion 

 

 

38 

CHAPTER 3 METHODOLOGY  39 

   

 3.1 Introduction 

3.2 Parallel Development Methodology 

39 

40 

 3.3 Prototyping Methodology  42 

 3.4 Comparison Methodologies   

3.5 Phases Of Parallel Development 

43 

43 

 3.5.1  Planning 44 

 3.5.2  Analysis   

3.5.2.1  Programming Language        

3.5.2.2 Encryption Algorithm            

3.5.2.3  Network Protocol                  

45 

45 

45 

46 

 3.5.3 Design 

3.5.4 Implementation 

46 

47 

 3.6 Hardware Requirement  

3.7 Software requirement 

3.8 Input and Output Specification 

3.8.1     Input Specification 

           3.8.2     Output specification 

3.9 Project assumption 

47 

48 

48 

48 

49 

49 

 

   

CHAPTER 4 SYSTEM ARCHITECTURE AND DESIGN 

 

50 

 

 

 

 

 

 

4.1     Introduction 

4.2     System Architecture Design 

4.3     System Overview 

4.4     Unified Modeling Language 

          4.4.1    Use case Diagram 

          4.4.2    Sequence Diagram 

50 

51 

52 

55 

55 

56 



 ix

 

 

 

 

4.5     User Interface Design 

          4.5.1      Buttons and Text field Functions 

 

58 

59 

CHAPTER 5 SYSTEM IMPLEMENTATION 

 

60 

 5.1 Introduction 

5.2 Java Network Programming 

5.2.1    Command-Line Arguments 

5.2.2    Establish Socket Connection 

                        5.2.2.1    Client Code For Socket  

                        5.2.2.2    Server Code For Socket  

 5.3      Establishing a Security Context 

            5.3.1    Client GSSContext Instantiation  

            5.3.2    Client Context Establishment 

            5.3.3    Server GSSContext Instantiation  

            5.3.4    Server Context Establishment 

 5.4      Login Configuration  

 5.5      Policy Files 

            5.5.1     Client Policy 

            5.5.2     Server Policy 

 5.6      Encryption and Decryption of the Text  

            Messages 

 5.7      Settings up a Redhat Linux Kerberos Server 

 5.8     Input / Output Data And Result 

            5.8.1    Input/Output Data 

                        5.8.1.1 Encryption Input/Output Data  

                        5.8.1.2 Decryption Input/Output Data  

            5.8.2    Testing 

                        5.8.2.1 Unit Testing  

                        5.8.2.2 Integration Testing  

                        5.8.2.3 Interface Testing    

   5.9    Summary  

60 

61 

61 

63 

63 

63 

64 

64 

65 

66 

67 

68 

69 

70 

71 

 

71 

72 

75 

75 

75 

76 

76 

77 

78 

78 

79 



 x

      

          

 

  

CHAPTER VI CONCLUSION 

 

80 

 6.1     Introduction 

6.2     Advantages 

6.3     Limitations and Disadvantages 

6.4     Suggestions for Future Work 

6.5     Discussion 

6.6     Conclusion  

80 

80 

81 

81 

82 

83 

  

REFERENCE 

 

85 

  

APPENDIX A – B 

 

87 

 



 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Introduction 

 

 

In this 21st century, information technology and telecommunications has grown 

tremendously. The rapid growth of information technology has made it possible to 

communicate efficiently using text messages through networks. These text transactions 

through networks are not safe from security threats. There are prone to security threats 

such as interruption, interception, modification and fabrication.  

 

In an ideal world we would all be able to openly send encrypted email or files to 

each other. However there are often cases when this is not possible, either because you 

are working for a company that does not allow encrypted email or perhaps the local 

government does not approve encrypted communication.  

 

Considering these security threats and the importance of information security to 

information technology, text transmission in networks should be integrated with the 

services provided by information security. The development of text communication 



 2

system that uses cryptography to secure the text transmission based on Kerberos 

Authentication which is on the idea of integrating information technology and 

information security. This system is able to transmit encrypted information in text 

format through the network. The implementation of this system is divided into two main 

parts. 

 

Firstly, the sender will authenticate with the Kerberos key distribution sender and 

generate token which will contain encrypted senders and receiver’s symmetric key 

which will be used to encrypt the text. The implementation of encryption using the 

shared secret key will provide data origin authentication, data integrity, and non-

repudiation for the text that will be transmitted later. Secondly, the receiver will gain the 

symmetric-key from the token which is encrypted using his/her master key. During the 

transmission, the text message will be encrypted at the senders end and later be 

decrypted at the receivers end. The text message is encrypted so that it is concealed from 

unauthorized parties. 

 

This system was developed using the JAVA programming language, to make it 

cross-platform that is it can be used in many platforms such as Windows and Linux 

platforms. To use this system the user’s computer should be connected to a Local Area 

Network (LAN). 

 

 

 

 

1.2  Problem Statement 

 

 

The development of this system is to overcome the limitations of previous 

similar systems which using Public Key Cryptographic to exchange symmetric key. The 

message sent over the network is exposed to interruption, interception, modification and 

fabrication by unauthorized parties (Stallings, 1998). Such threats are hard to be traced, 

 



 3

and will cause negative effect on both the sender and receiver. Encryption is the most 

effective way to counteract these threats. So, the text will be encrypted before being 

transmitted.  

 

The transmission of text over the network makes the parties involved worry 

about, the assurance of the source that transmitted the text, and assurance that the text 

has not been modified. As an alternative to these worries, the symmetric key will be 

used to encrypt the messages.  

 

Kerberos is an Internet Engineering Task Force (IETF) standard that defines a 

typical key exchange mechanism. Applications can use the Kerberos service to 

authenticate their users and exchange cryptographic keys with them. Kerberos is based 

on the idea of tickets. A ticket is just a data structure that wraps a cryptographic key, 

along with some other bits of information. A key distribution center (KDC) distributes 

Kerberos tickets to authenticated users.  

 

This system can be used to communicate with anybody at regardless of location 

and time assuming that both parties wishing to communicate are connected to a LAN or 

the Internet. 

 

 

 

 

1.3  Project Purpose  

 

 

The purpose of this project is to develop a system which can be used by 

organizations and companies for security purposes and to secure the transmission of text 

messages which are transmitted through the network. This purpose of this project also to 

develop a system which is easy to use and efficient to secure text messages that are sent 

in a chat system and  to overcome the public key cryptographic Infrastructure limitation.    

 



 4

1.4  Project Objective   

 

 

Objectives of this project are as follows:  

i) To learn in detail the implementation of Kerberos authentication. 

ii) To implement encryption to secure text transmission using Kerberos 

authentication mechanism to exchange encryption key. 

iii) To securely transmit the encrypted text between host to host by creating a 

reliable connection using TCP protocol 

iv) To provide data origin authentication, data integrity and confidentiality 

for the transmitted text provide by Generic Security Services API (GSS-

API) 

v) To develop a prototype message exchange system using network 

programming and cryptography techniques. 

 

 

 

 

1.5  Project Scope 

 

 

Scopes of this project are as follows: 

i) The chat system communication can only occur between two hosts at a 

time. 

ii) The characters in a message sent will be limited to a maximum of 50 

characters. 

iii) The development of this system only emphasizes on providing security 

services for the text transmission and to securely exchange the credential 

(symmetrical key) between to parties. 

iv) The symmetrical key management will be done using Kerberos 

Authentication Mechanism V5 in LINUX platform 

 



 5

v) Every user must be authenticated to the Kerberos server (KDC). The new 

user for the Kerberos server is out of scope of this project. 

vi) The development of this system only emphasizes to exchange the 

credential using Kerberos V5 authentication mechanism, not 

implementing the Kerberos authentication protocol.    

vii) The algorithm used for the encryption technique is the Advanced 

Encryption Algorithm (AES). 

viii) The system will be developed using JAVA programming language to 

make it cross-platform. 

 

 

 

 

1.6  Justification 

 

 

 This system is done so that chatting system will be more secure than ever. People 

can exchange important messages feeling more secured with this system. With this 

system, important messages can be transmitted safely and private chatting will have 

more privacy.  Some users may want to chat with their friends privately and in an 

organization, managers may need to exchange important information with their workers 

privately. By exchanging messages this way, the messages is guaranteed that an 

unauthorized person can’t read it because he only sees an encrypted file being 

transferred. So to fulfill their needs, this system was being built. 

 



 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Introduction  

 

 

 In this chapter a detailed study is been done on chat system, Kerberos 

authentication protocol, encryption system and the techniques to implement it. The 

available chat systems and comparisons are explained in this chapter. Methods used 

to share the secret key among two hosts which will communicate securely are 

explained. An explanation of a few techniques and methods in general are also 

explained in this chapter. The suitable methods for Kerberos protocol is selected after 

doing research about this detailed study. In this chapter, a research has been done on 

the encryption techniques also so that encryption could be implemented. Methods 

used to perform the encryption and decryptions are also explained in this chapter. 

 

 

 

 

 

 

 

 



 7

2.2 Chat System 

 

 

 One of the many popular methods of communicating over the network is by 

using a text chat system. "Chat" as we usually use the term refers to a room-style 

environment where many people can gather as a group and talk to one another. Text 

chat system is a text-based communicating system where anyone can connect to a 

system where people are discussing a topic, launch a special program that handles 

the text messages, and read the messages of the participants immediately or send 

immediate messages to the group. Like verbal conversations, once a statement is 

made, it soon scrolls off the screens of the participants and is gone forever unless one 

of them is recording it. You watch the discussion on your screen, and type in your 

own messages whenever you feel like it.  

 

 There are many available chat systems that are currently being used. Some of 

the available chat systems in a LAN are the Win Messenger and Windows 

NetMeeting. Win Messenger is widely used by many users in a LAN environment. 

Windows NetMeeting is also widely used for both text and voice communications. 

Both of these systems provide the basic needs to communicate with other users using 

text messages.  

 

 Although there are many chat systems available such as the Win Messenger 

and Windows NetMeeting, all of them do not provide extra security features other 

than user name and passwords. Even though user name and password need to be 

entered in order to use these systems, hackers could retrieve the messages sent 

through network by intercepting it. This is one of the problems that these systems 

have. The messages sent can also be modified by third party users before it reaches 

its destination. This may cause the receiver to receive a different message from the 

original message sent. 

 

 Because of these problems, extra security features have been implemented in 

this project. In order to secure the messages cryptography system are used.  

 



 8

2.3   Kerberos Authentication Protocol 

 

 

The Kerberos protocol relies heavily on an authentication technique involving 

shared secrets. The basic concept is quite simple: If a secret is known by only two 

people, then either person can verify the identity of the other by confirming that the 

other person knows the secret. 

 

For example, let’s suppose that Alice often sends messages to Bob and that 

Bob needs to be sure that a message from Alice really has come from Alice before he 

acts on its information. They decide to solve their problem by selecting a password, 

and they agree not to share this secret with anyone else. If Alice’s messages can 

somehow demonstrate that the sender knows the password, Bob will know that the 

sender is Alice. The only question left for Alice and Bob to resolve is how Alice will 

show that she knows the password. She could simply include it somewhere in her 

messages, perhaps in a signature block at the end—Alice, OurSecret. This would be 

simple and efficient and might even work if Alice and Bob can be sure that no one 

else is reading their mail. Unfortunately, that is not the case. Their messages pass 

over a network used by people like Carol, who has a network analyzer and a hobby 

of scanning traffic in hope that one day she might spot a password. So it is out of the 

question for Alice to prove that she knows the secret simply by saying it. To keep the 

password secret, she must show that she knows it without revealing it. 

 

 The Kerberos protocol solves this problem with secret key cryptography. 

Rather than sharing a password, communication partners share a cryptographic key, 

and they use knowledge of this key to verify one another’s identity. For the technique 

to work, the shared key must be symmetric—a single key must be capable of both 

encryption and decryption. One party proves knowledge of the key by encrypting a 

piece of information, the other by decrypting it. 

 

 

 



 9

2.3.1 Authenticators 

 

 

A simple protocol that uses secret key authentication begins when someone is 

outside a communications door and wants to go in. To gain entry, this person 

presents an authenticator in the form of a piece of information encrypted in the 

secret key. The information in the authenticator must be different each time the 

protocol is executed, otherwise an old authenticator could be reused by anyone who 

happens to overhear the communication. On receiving an authenticator, the person 

guarding the door decrypts it and knows from what is inside whether decryption was 

successful. If it was successful, the doorkeeper knows that the person presenting the 

authenticator has the correct key. Only two people have the correct key; the 

doorkeeper is one of them, so the person who presented the authenticator must be the 

other. 

 

 If the person outside the door wants mutual authentication, the same protocol 

can be executed in reverse, with a slight difference. The doorkeeper can extract part 

of the information from the original authenticator, encrypt it in a new authenticator, 

and then give the new authenticator to the person waiting outside the door. The 

person outside the door can then decrypt the doorkeeper’s authenticator and compare 

the result with the original. If there is a match, the person outside the door will know 

that the doorkeeper was able to decrypt the original, so he must have the correct key. 

 

 It will help to walk through an example. Suppose Alice and Bob decide that 

before transferring any information between their computers, each will use 

knowledge of a shared secret key to verify the identity of the party at the other end of 

the connection. In situations where Alice is the wary guest and Bob is the suspicious 

host, they agree to follow this protocol: 

 

1. Alice sends Bob a message containing her name in plaintext and an 

authenticator encrypted in the secret key she shares with Bob. In this protocol, 

the authenticator is a data structure with two fields. One field contains 

information about Alice. For simplicity, let’s say this is another instance of her 

name. The second field contains the current time on Alice’s workstation. 



 10

2. Bob receives the message, sees that it is from someone claiming to be Alice, 

and uses the key he shares with Alice to decrypt the authenticator. He extracts 

the field that contains the time on Alice’s workstation, and evaluates the time. 

Bob’s task will be easier if his clock is reasonably synchronized with Alice’s, 

so let’s suppose both Alice and Bob use a network time service to keep their 

clocks fairly close. Let’s say the time skew is never more than five minutes. 

This way, Bob can compare the time from the authenticator with the current 

time on his clock. If the difference is greater than five minutes, he can 

automatically reject the authenticator. If the time is within the allowable skew, 

it’s probable that the authenticator came from Alice, but Bob still does not have 

proof that the authenticator actually came from her. Another person might have 

been watching network traffic and might now be replaying an earlier attempt 

by Alice to establish a connection with Bob. However, if Bob has recorded the 

times of authenticators received from Alice during the past five minutes, he can 

defeat attempts to replay earlier messages by rejecting any message with a time 

that is the same as or earlier than the time of the last authenticator. If this 

authenticator yields a time later than the time of the last authenticator from 

Alice, then this message must be from Alice. 

3. Bob uses the key he shares with Alice to encrypt the time taken from Alice’s 

message and sends the result back to her. Note that Bob does not send back all 

of the information taken from Alice’s authenticator, just the time. If he sent 

back everything, Alice would have no way of knowing whether someone 

posing as Bob had simply copied the authenticator from her original message 

and sent it back to her unchanged. He sends just a piece of the information in 

order to demonstrate that he was able to decrypt the authenticator and 

manipulate the information inside. He chooses the time because that is the one 

piece of information that is sure to be unique in Alice’s message to him. Alice 

receives Bob’s reply, decrypts it, and compares the result with the time in her 

original authenticator. If the times match, she can be confident that her 

authenticator reached someone who knows the secret key needed to decrypt it 

and extract the time. She shares that key only with Bob, so it must be Bob who 

received her message and replied. 



 11

A
lic

e

B
ob

"I'm Alice", KAB{Alice, timestamp}

KAB{timestamp}

1

4

2

3

 

Figure 2.1: Mutual authentication (Alice-Bob) 

 

 

 

 

2.3.2 Key Distribution 

 

 

 One problem with the simple protocol described in the preceding section is 

that it does not explain how or where Alice and Bob got a secret key to use in 

sessions with each other. If they are people, Alice and Bob could meet, perhaps in an 

alley, and agree on a secret key. But that method will not work if Alice is a client 

program that is running on a workstation and Bob is a service that is running on a 

network server. There is also the further problem that the client, Alice, will want to 

talk to many servers and will need keys for each of them. Likewise, the service, Bob, 

will talk to many clients and will need keys for each of them as well. If each client 

needs to have a key for every service, and each service needs one for every client, 

key distribution could quickly become a tough problem to solve. And the need to 

store and protect so many keys on so many computers would present an enormous 

security risk. 

 

 The name of the Kerberos protocol suggests how it solves the problem of key 

distribution. Kerberos (or Cerberus) was a figure in classical Greek mythology, a 

fierce, three-headed dog who guarded the gates of the Underworld. Like Kerberos 

the guard, Kerberos the protocol has three heads: a client, a server, and a trusted third 

party to mediate between them. The trusted intermediary in the protocol is known as 

the Key Distribution Center (KDC). 

 



 12

The KDC is a service that runs on a physically secure server. It maintains a 

database with account information for all security principals in its realm, the 

Kerberos equivalent of a Windows 2000 domain. (We will continue to call them 

domains.) Along with other information about each security principal, the KDC 

stores a cryptographic key known only to the security principal and the KDC. This 

key is used in exchanges between the security principal and the KDC and is known 

as a long-term key. In most implementations of the protocol, it is derived from a 

user’s logon password. When a client wants to talk to a server, the client sends a 

request to the KDC, and the KDC distributes a unique, short-term session key for the 

two parties to use when they authenticate each other. The server’s copy of the session 

key is encrypted in the server’s long-term key. The client’s copy of the session key is 

encrypted in the client’s long-term key. 

 

 

C
lie

nt

S
er

ve
r

Client wants Server

KClient{use SCS for Server}

KDC invents
session key

SCS
KServer{use SCS for Client}

 

Figure 2.2: Key Distribution (in theory) 

 

 

In theory, the KDC could fulfill its role as a trusted intermediary by sending 

the session key directly to each of the security principals involved, as illustrated 

above. But, in practice, that procedure would be extremely difficult to implement. 

For one thing, it would mean that the server would have to retain its copy of the 

session key in memory while it waited for the client to call. Moreover, the server 

would need to remember a key not just for this client but for every client who might 

ask for service. Key management would consume considerable resources on the 

server and would thus limit its scalability. In addition, given the vagaries of network 

traffic, a client’s request for service might reach the server before the KDC’s 

message arrived there with the session key. The server would have to suspend its 

reply to the client while it waited to hear from the KDC. This would require the 



 13

server to save state, imposing still another burden on the server’s resources. What 

actually happens in the Kerberos protocol is considerably more efficient. 

 

 

 

 

2.3.3 Session Tickets 

 

 

 The KDC responds to the client’s request to talk to a server by sending both 

copies of the session key to the client, as shown in Figure 3. The client’s copy of the 

session key is encrypted with the key that the KDC shares with the client. The 

server’s copy of the session key is embedded, along with information about the 

client, in a data structure called a session ticket. The entire structure is then 

encrypted with the key that the KDC shares with the server. The ticket—with the 

server’s copy of the session key safely inside—becomes the client’s responsibility to 

manage until it contacts the server. 

 

 

C
lie

nt

Client wants Server

KClient{use SCS for Server}, ticket = KServer{use SCS for Client}

KDC invents
session key

SCS

 

Figure 2.3: Key Distribution (in practice) 

 

 

Note that the KDC is simply providing a ticket-granting service. It does not 

keep track of its messages to make sure they reach the intended address. No harm 

will be done if the KDC’s messages fall into the wrong hands. Only someone who 

knows the client’s secret key can decrypt the client’s copy of the session key. Only 

someone who knows the server’s secret key can read what is inside the ticket. 



 14

When the client receives the KDC’s reply, it extracts the ticket and the 

client’s copy of the session key, putting both aside in a secure cache (located in 

volatile memory, not on disk). When the client wants admission to the server, it 

sends the server a message that consists of the ticket, which is still encrypted with the 

server’s secret key, and an authenticator, which is encrypted with the session key. 

The ticket and authenticator together are the client’s credentials to the server. 

 

 

C
lie

nt

S
er

ve
r

SCS{Client, time}, ticket = KServer{use SCS for Client}

SCS{time}

 

Figure 2.4: Mutual authentication (Client/server) 

 

 

 When the server receives credentials from a client, it decrypts the session 

ticket with its secret key, extracts the session key, and uses the session key to decrypt 

the client’s authenticator. If everything checks out, the server knows that the client’s 

credentials were issued by a trusted authority, the KDC. If the client has asked for 

mutual authentication, the server uses its copy of the session key to encrypt the 

timestamp from the client’s authenticator and returns the result to the client as the 

server’s authenticator. 

 

 One benefit gained by using session tickets is that the server does not have to 

store the session key that it uses in communicating with this client. It is the client’s 

responsibility to hold a ticket for the server in its credentials cache and present the 

ticket each time it wants access to the server. Whenever the server receives a session 

ticket from a client, it can use its secret key to decrypt the ticket and extract the 

session key. When the server no longer needs the session key, it can discard it. 

 

Another benefit is that the client does not need to go back to the KDC each 

time it wants access to this particular server. Session tickets can be reused. As a 



 15

precaution against the possibility that someone might steal a copy of a ticket, session 

tickets have an expiration time, specified by the KDC in the ticket’s data structure. 

How long a ticket is valid depends on Kerberos policy for the domain. Typically, 

tickets are good for no longer than eight hours, about the length of a normal logon 

session. When the user logs off, the credentials cache is flushed and all session 

tickets—as well as all session keys—are destroyed. 

 

 

 

 

2.3.4 Ticket-Granting Tickets 

 

 

 A user’s long-term key is derived from a password. When Alice logs on, for 

example, the Kerberos client on her workstation accepts her password and then 

converts it to a cryptographic key by passing the text of the password through a one-

way hashing function. (All implementations of Kerberos version 5 must support 

DES-CBC-MD5. Other algorithms are permissible.) The result is Alice’s long-term 

key. 

 

 The KDC gets its copy of Alice’s long-term key from her record in its 

account database. When it receives a request from the Kerberos client on Alice’s 

workstation, the KDC searches its database for Alice, pulls up her account record, 

and takes her long-term key from a field in the record. 

 

 This process—computing one copy of the key from a password, fetching 

another copy of the key from a database—actually takes place only once, when a 

user initially logs on to the network. Immediately after accepting the user’s password 

and deriving the user’s long-term key, the Kerberos client on the workstation 

requests a session ticket and session key that it can use in subsequent transactions 

with the KDC during this logon session. 

  



 16

The KDC responds to the client’s request by returning a session ticket for 

itself. This special session ticket is called a ticket-granting ticket (TGT). Like an 

ordinary session ticket, a TGT contains a copy of the session key that the service (in 

this case the KDC) will use in communicating with the client. The message that 

returns the TGT to the client also includes a copy of the session key that the client 

can use in communicating with the KDC. The TGT is encrypted in the KDC’s long-

term key. The client’s copy of the session key is encrypted in the user’s long-term 

key. 

 

 When the client receives the KDC’s reply to its initial request, it uses its 

cached copy of the user’s long-term key to decrypt its copy of the session key. It can 

then discard the long-term key derived from the user’s password, for it is no longer 

needed. In all subsequent exchanges with the KDC, the client uses the session key. 

Like any other session key, this key is temporary, valid only until the TGT expires or 

the user logs off. For that reason, it is called a logon session key. 

 

 From the client’s point of view, a TGT is just another ticket. Before it 

attempts to connect to any service, the client first checks its credentials cache for a 

session ticket to that service. If it does not have one, it checks the cache again for a 

TGT. If it finds a TGT, the client fetches the corresponding logon session key from 

the cache, uses this key to prepare an authenticator, and sends both the authenticator 

and the TGT to the KDC, along with a request for a session ticket for the service. In 

other words, gaining admission to the KDC is no different from gaining admission to 

any other service in the domain—it requires a session key, an authenticator, and a 

ticket (in this case, a TGT). From the KDC’s point of view, TGTs allow it to shave a 

few nanoseconds off the turnaround time for ticket requests. The KDC looks up the 

user’s long-term key only once, when it grants an initial TGT. For all other 

exchanges with this client, the KDC can decrypt the TGT with its own long-term 

key, extract the logon session key, and use that to validate the client’s authenticator. 

 

 

 

 

 



 17

2.3.5 Authentication Across Domain Boundaries 

 

 

 The functions of the KDC are divided into two distinct services: an 

authentication service whose job is to issue TGTs, and a ticket-granting service 

whose job is to issue session tickets. This division of labor allows the Kerberos 

protocol to operate across domain boundaries. A client can get a TGT from the 

authentication service of one domain and use it to get session tickets from the ticket-

granting service of another domain. 

 

 To see how cross-domain authentication works, let’s first consider the 

simplest case: a network with only two domains, East and West. If administrators for 

these domains are members of the same organization, or if for some other reason 

they are willing to treat the other domain’s users as their own, they can enable 

authentication across domain boundaries simply by sharing an inter-domain key. (In 

Windows 2000 this happens automatically when two domains establish a trust 

relationship.) Once this is accomplished, the ticket-granting service of each domain 

is registered as a security principal with the other domain’s KDC. As a result, the 

ticket-granting service in each domain can treat the ticket-granting service in the 

other domain as just another service, something for which properly authenticated 

clients can request and receive session tickets. 

 

 When a user with an account in East wants access to a server with an account 

in West, the Kerberos client on the user’s workstation sends a request for a session 

ticket to the ticket-granting service in the user’s account domain, East. The ticket-

granting service in East sees that the desired server is not a security principal in its 

domain, so it replies by sending the client a referral ticket. This is simply a TGT 

encrypted with the inter-domain key that the KDC in East shares with the KDC in 

West. The client uses the referral ticket to prepare a second request for a session 

ticket, and this time sends the request to the ticket-granting service in the server’s 

account domain, West. The ticket-granting service in West uses its copy of the inter-

domain key to decrypt the referral ticket. If decryption is successful, it sends the 

client a session ticket to the desired server in its domain. 



 18

 The referral process is more complicated on networks with more than two 

domains. In theory, the KDC in each domain could establish a direct link to the KDC 

in every other domain on the network, in each case sharing a different inter-domain 

key. In practice, the number and complexity of these relationships could easily 

become unmanageable, especially on a large network. The Kerberos protocol solves 

the problem by making direct links unnecessary. A client in one domain can get a 

ticket to a server in another domain by traveling a referral path through one or more 

intermediate domains. 

 

For example, consider a network with three domains, East, West, and PJ. The 

KDC in East does not share an inter-domain key with the KDC in West, but both 

East and West do share inter-domain keys with PJ. In this case, when a user with an 

account in East wants access to a server with an account in West, the referral path 

begins at the KDC for the user’s account domain, East, passes through an 

intermediate domain, PJ, and ends at the KDC for the server’s account domain, West. 

The client must send its request for a session ticket three times, to three different 

KDCs. 

 

1. The client asks the KDC for East to give it a ticket to the server in West. 

 The KDC for East sends the client a referral ticket to the KDC for PJ. This 

ticket is encrypted in the inter-domain key East shares with PJ. 

2. The client asks the KDC for PJ to give it a ticket to the server in West. 

 The KDC for PJ sends the client a referral ticket to the KDC for West. This 

ticket is encrypted in the inter-domain key PJ shares with West. 

3. The client asks the KDC for West to give it a ticket to the server in West. 

 

 

 

 

 

 

 



 19

2.3.5.1 Sub-protocols 

 

 

 The Kerberos protocol is comprised of three sub protocols. The sub protocol 

in which the KDC gives the client a logon session key and a TGT is known as the 

Authentication Service (AS) Exchange. The sub protocol in which the KDC 

distributes a service session key and a session ticket for the service is known as the 

Ticket-Granting Service (TGS) Exchange. The sub protocol in which the client 

presents the session ticket for admission to a service is called the Client/Server (CS) 

Exchange. To see how the three sub protocols work together, let’s look at how Alice, 

a user at a workstation, gets access to Bob, a service on the network. 

 

 

2.3.5.2 AS Exchange 

 

 

 Alice begins by logging on to the network. She types her logon name and her 

password. The Kerberos client on Alice’s workstation converts her password to an 

encryption key and saves the result in its credentials cache. 

 

 The client then sends the KDC’s authentication service a Kerberos 

Authentication Service Request (KRB_AS_REQ). The first part of this message 

identifies the user, Alice, and the name of the service for which she is requesting 

credentials, the ticket-granting service. The second part of the message contains pre-

authentication data that proves Alice knows the password. This is usually a 

timestamp encrypted with Alice’s long-term key, although the protocol permits other 

forms of pre-authentication data. 

 



 20

A
lic

e

Alice wants TGS, KAlice{Alice, time}

KAlice{use SAlice for TGS}, TGT = KTGS{use SAlice for Alice}

KDC
AS invents
session key

SAlice

KRB_AS_REQ

KRB_AS_REP
 

Figure 2.5: AS Exchange 

 

 

 When the KDC receives KRB_AS_REQ, it looks up the user Alice in its 

database, gets her long-term key, decrypts the pre-authentication data, and evaluates 

the timestamp inside. If the timestamp passes the test, the KDC can be assured that 

the pre-authentication data was encrypted with Alice’s long-term key and thus that 

the client is genuine. 

 

 After it has verified Alice’s identity, the KDC creates credentials that the 

Kerberos client on her workstation can present to the ticket-granting service. First, 

the KDC invents a logon session key and encrypts a copy of it with Alice’s long-term 

key. Second, it embeds another copy of the logon session key in a TGT, along with 

other information about Alice such as her authorization data. The KDC encrypts the 

TGT with its own long-term key. Finally, it sends both the encrypted logon session 

key and the TGT back to the client in a Kerberos Authentication Service Reply 

(KRB_AS_REP).When the client receives the message, it uses the key derived from 

Alice’s password to decrypt her logon session key and stores the key in its 

credentials cache. Then it extracts the TGT from the message and stores that in its 

credentials cache as well. 

 

 

 

 

2.3.6 TGS Exchange 

 

 

 The Kerberos client on Alice’s workstation requests credentials for the 

service Bob by sending the KDC a Kerberos Ticket-Granting Service Request 



 21

(KRB_TGS_REQ). This message includes the user’s name, an authenticator 

encrypted with the user’s logon session key, the TGT obtained in the AS Exchange, 

and the name of the service for which the user wants a ticket. 

 

 
A

lic
e

Alice wants Bob, SAlice{Alice, time}, TGT = KTGS{use SAlice for Alice}

SAlice{use SAB for Bob}, ticket = KBob{use SAB for Alice}

KDC
TGS invents
session key

SAB

KRB_TGS_REQ

KRB_TGS_REP
 

Figure 2.6: TGS Exchange 

 

 

 When the KDC receives KRB_TGS_REQ, it decrypts the TGT with its own 

secret key, extracting Alice’s logon session key. It uses the logon session key to 

decrypt the authenticator and evaluates that. If the authenticator passes the test, the 

KDC extracts Alice’s authorization data from the TGT and invents a session key for 

the client, Alice, to share with the service, Bob. The KDC encrypts one copy of this 

session key with Alice’s logon session key. It embeds another copy of the session 

key in a ticket, along with Alice’s authorization data, and encrypts the ticket with 

Bob’s long-term key. The KDC then sends these credentials back to the client in a 

Kerberos Ticket-Granting Service Reply (KRB_TGS_REP). 

 

 When the client receives the reply, it uses Alice’s logon session key to 

decrypt the session key to use with the service, and stores the key in its credentials 

cache. Then it extracts the ticket to the service and stores that in its cache. 

 

 

 

 

 

 

 



 22

2.3.7 CS Exchange 

 

 

The Kerberos client on Alice’s workstation requests service from Bob by 

sending Bob a Kerberos Application Request (KRB_AP_REQ). This message 

contains an authenticator encrypted with the session key for the service, the ticket 

obtained in the TGS Exchange, and a flag indicating whether the client wants mutual 

authentication. (The setting of this flag is one of the options in configuring Kerberos. 

The user is never asked.) 

 

 

A
lic

e 
(c

lie
nt

)

B
ob

 (s
er

ve
r)

SAB{Alice, time}, ticket = KBob{use SAB for Alice}

SAB{time}

KRB_AP_REQ

KRB_AP_REP
 

Figure 2.7: CS Exchange 

 

 

 The service, Bob, receives KRB_AP_REQ, decrypts the ticket, and extracts 

Alice’s authorization data and the session key. Bob uses the session key to decrypt 

Alice’s authenticator and then evaluates the timestamp inside. If the authenticator 

passes the test, Bob looks for a mutual authentication flag in the client’s request. If 

the flag is set, he uses the session key to encrypt the time from Alice’s authenticator 

and returns the result in a Kerberos Application Reply (KRB_AP_REP). 

 

 When the client on Alice’s workstation receives KRB_AP_REP, it decrypts 

Bob’s authenticator with the session key it shares with Bob and compares the time 

returned by the service with the time in the client’s original authenticator. If the times 

match, the client knows that the service is genuine, and the connection proceeds. 

During the connection, the session key can be used to encrypt application data or the 

client and server can share another key for this purpose. 

 



 23

2.3.8 Tickets 

 

 

 So far we have avoided a detailed description of exactly what is in a ticket, 

how expiration times are calculated, and how much of a ticket’s content is known by 

the client. All of these details are important to understanding how to configure 

Kerberos policy, and so they deserve a closer look. 

 

 

 

 

2.3.8.1   What Is in a Ticket 

 

 

For our purpose here, it is enough to list the fields in a ticket and to describe 

the information they contain. The exact data structures for tickets as well as 

messages can be found in RFC 1510. 



 24

Table2.1: Fields of a Ticket 

Field Name Description 

The first three fields in a ticket are not encrypted. The information 

is in plaintext so that the client can use it to manage tickets in its 

cache. 

tkt-vno Version number of the ticket format. In 

Kerberos v.5 it is 5. 

Realm Name of the realm (domain) that issued the 

ticket. A KDC can issue tickets only for 

servers in its own realm, so this is also the 

name of the server’s realm. 

Sname Name of the server. 

The remaining fields are encrypted with the server’s secret key. 

Flags Ticket options. 

Key Session key. 

Crealm Name of the client’s realm (domain). 

Cname Client’s name. 

Transited Lists the Kerberos realms that took part in 

authenticating the client to whom the ticket 

was issued. 

Authtime Time of initial authentication by the client. 

The KDC places a timestamp in this field 

when it issues a TGT. When it issues tickets 

based on a TGT, the KDC copies the 

authtime of the TGT to the authtime of the 

ticket. 

Starttime Time after which the ticket is valid. 

Endtime Ticket’s expiration time. 

renew-till (Optional) Maximum endtime that may be set 

in a ticket with a RENEWABLE flag. 



 25

Table 2.2: Ticket Flags 

Flag Description 

FORWARDABLE (TGT only) Tells the ticket-granting service 

that it can issue a new TGT with a different 

network address based on the presented 

TGT. 

FORWARDED Indicates either that a TGT has been 

forwarded or that a ticket was issued from a 

forwarded TGT. 

PROXIABLE (TGT only) Tells the ticket-granting service 

that it can issue tickets with a different 

network address than the one in the TGT. 

PROXY Indicates that the network address in the 

ticket is different from the one in the TGT 

used to obtain the ticket. 

RENEWABLE Used in combination with the endtime and 

renew-till fields to cause tickets with long 

life spans to be renewed at the KDC 

periodically.  

INITIAL (TGT only) Indicates that this is a TGT. 

 

 

Clients need to know some of the information that is inside tickets and TGTs 

in order to manage their credentials cache. When the KDC returns a ticket and 

session key as the result of an AS or TGS Exchange, it packages the client’s copy of 

the session key in a data structure that includes the information in the ticket fields 

flags, authtime, starttime, endtime, and renew-till. The entire structure is encrypted in 

the client’s key and returned with KRB_AS_REP or KRB_TGS_REP. 

 

 

 

 



 26

2.3.8.2   KDC Ticket’s Lifetime 

 

 

 Tickets have a start time and an expiration time. At any time after the start 

time but before the expiration time, a client holding a ticket for a service can present 

the ticket and gain access to the service, no matter how many times the client has 

used the ticket before. In order to reduce the risk that a ticket or the corresponding 

session key may be compromised, administrators can set the maximum lifetime for 

tickets. This time is an element of Kerberos policy. 

 

 When a client asks the KDC for a ticket to a service, it may request a specific 

start time. If this time is missing from the request or is a time in the past, the KDC 

sets the ticket’s starttime field to the current time. 

 

 Whether or not clients specify a start time, their requests must include a 

desired expiration time. The KDC determines the value of a ticket’s endtime field by 

adding the maximum ticket life fixed by Kerberos policy to the value of the ticket’s 

starttime field. It then compares the result with the requested expiration time. 

Whichever time is sooner becomes the ticket’s endtime. 

 

 

2.3.8.3   Tickets Expire 

 

 

 The KDC does not notify clients when session tickets or TGTs are about to 

expire. In fact, it makes no effort to keep track of transactions with clients beyond 

short-term records needed to prevent replay attacks. 

 

 If a client presents an expired session ticket when requesting a connection to 

a server, the server returns an error message. The client must request a new session 

ticket from the KDC. Once a connection is authenticated, however, it no longer 

matters whether the session ticket remains valid. Session tickets are used only to 

authenticate new connections with servers. Ongoing operations are not interrupted if 

the session ticket used to authenticate the connection expires during the connection. 



 27

 If a client presents an outdated TGT when requesting a session ticket from the 

KDC, the KDC responds with an error message. The client must request a new TGT, 

and to do that it needs the user’s long-term key. If the client did not cache the user’s 

long-term key during the initial logon process, the client may have to ask the user for 

a password and derive the long-term key. 

 

 

2.3.8.4   Renewable TGTs 

 

 

 One defense against attacks on session keys is to force them to change often 

by setting Kerberos policy so that maximum ticket life is relatively short. Another is 

to allow renewable tickets. When tickets are renewable, session keys are refreshed 

periodically without issuing a completely new ticket. If Kerberos policy permits 

renewable tickets, the KDC sets a RENEWABLE flag in every ticket it issues and 

sets two expiration times in the ticket. One expiration time limits the life of the 

current instance of the ticket. A second expiration time sets a limit on the cumulative 

lifetime of all instances of the ticket. 

 

 The expiration time for the current instance of the ticket is held in the endtime 

field. As with non-renewable tickets, endtime is the value of the starttime field plus 

the maximum ticket life specified by Kerberos policy. A client holding a renewable 

ticket must send it to the KDC for renewal before the endtime is reached, presenting 

a fresh authenticator as well. When the KDC receives a ticket for renewal, it checks a 

second expiration time held in the renew-till field. This time is set when the ticket is 

first issued, and the value is the ticket’s starttime plus the maximum cumulative 

ticket life specified by Kerberos policy. When the KDC renews the ticket, it checks 

to see that the renew-till time has not yet arrived. If it has not, the KDC issues a new 

instance of the ticket with a later endtime and a new session key. 

 

 This means that administrators can set Kerberos policy so that tickets must be 

renewed at relatively short intervals—every day, perhaps. When tickets are renewed, 

a new session key is issued, minimizing the value of a compromised key. 

Administrators can also set cumulative ticket life for a relatively long period—one 



 28

week, one month, whatever. At the end of that time, the ticket expires and is no 

longer valid for renewal. 

 

 

 

 

2.4 Cryptographic System 

 

 

Cryptographic systems (or cryptosystems) potentially provide all the three 

objectives of information security: confidentiality, integrity, and availability. In order 

to clarify and demonstrate how cryptosystems are employed, confidentiality and 

integrity are further sub-classified into five services that can be thought of as the 

building blocks of a secure system [Certicom, 00]: 

 

i. Confidentiality that is the concealment of data from all but authorized parties. 

ii. User Authentication that is assurance that the parties involved in a real-time 

transaction are who they say they are. 

iii. Data origin authentication that is the assurance of the source of the message. 

iv. Data integrity, which is the assurance that the data has not been modified by 

unauthorized parties. 

v. Non-repudiation, which prevents either the sender or receiver from denying a 

transmitted message. 

 

Historically cryptographic systems have provided only confidentiality. 

Preparing a message for a secure, private transfer involves the process of encryption. 

Encryption transforms data in user readable form, called the plaintext, to an illegible 

version, called the cipher text. An electronic key K controls the conversion of 

plaintext to cipher text. The key is simply a binary string, which determines the 

effect of the encryption function. The reverse process of transforming the cipher text 

back into the plaintext is called decryption, and is controlled by a related key L.There 

are two broad classes of cryptosystems, known as symmetric-key cryptosystems and 

public-key cryptosystems. The relationship between K and L differentiates the two. 

 



 29

2.4.1 Symmetric-key Cryptosystems 

 

 

In a symmetric-key cryptosystems, the same key is used for both encryption 

and decryption. Figure 2.8 illustrates the analogy of a symmetric-key cryptosystems.  

 

 

 

 

 

 

 

Figure 2.8: Analogy of a Symmetric-key Cryptosystems 

Plaintext

Receiver Sender 

Cipher text Secret-key K Secret-key KPlaintext 

 

 

Since the keys are the same, two users wishing to communicate in confidence 

must agree and maintain a common secret key. Each entity must trust each other not 

to divulge the key. In applications where a limited number of users exist, symmetric-

key cryptography is effective. However, in large networks with users distributed over 

a wide area, key distribution becomes a problem. 

 

Symmetric-key cryptosystems have been used to provide confidentiality for 

thousands of years. One of the first recorded systems was used by Julius Caesar. 

Known as the Caesar Cipher, it involves shifting the letters of the alphabet a 

predetermined number of characters. The number of character shifts is the encryption 

key, and, of course, shifting back the same number of characters reverses this process 

to decrypt. Nowadays, keys that are based on complex mathematical algorithms 

control symmetric-key cryptosystems. Examples of symmetric-key cryptosystems 

are DES, IDEA and RIJNDAEL.   

 

 

 

 



 30

2.4.1.1 Implementation of the RIJNDAEL Algorithm  

 

 

 The RIJNDAEL cryptography has been chosen to encrypt the compressed 

audio stream that will be transmitted over the network. The RIJNDAEL algorithm 

will be used because of its’ criteria such as: 

 

i. RIJNDAEL can be implemented very efficiently on a wide range of 

processors and in hardware. 

ii. RIJNDAEL uses keys with a length of 128, 192, or 256 bits to encrypt blocks 

with a length of 128, 192 or 256 bits (all nine combinations of key length and 

block length are possible). 

iii. The block length and key length can be extended very easily to multiples of 

32 bits 

iv. It is suitable to encrypt audio streams.   

v. The encryption and decryption time consumed by the RIJNDAEL is fast 

enough for real-time application.  

 

 

 

 

2.4.2 Asymmetric-key Cryptosystems 

 

 

Asymmetric-key cryptosystems are contemporary technology, introduced as 

recently as 1976 by two Stanford researchers, Whitfield Diffie and Martin Hellman. 

In an asymmetric-key cryptosystems, the abilities to perform encryption and 

decryption are separated. The encryption rule employs a public key E, while the 

decryption rule requires a different (but mathematically related) private key D. 

Knowledge of the public key allows encryption of plaintext but does not allow 

decryption of the cipher text. If a person selects and publishes their public key, then 

everyone can use that one public key to encrypt messages for that person. The private 

key is kept secret so that only the intended individual can decrypt the cipher text. 



 31

Figure 2.9 shows the analogy of an asymmetric-key cryptosystems. Examples of 

asymmetric-key cryptosystems are RSA and Elgamal. 

 

 

            

           

           

           

           

            

 

Public key Private key 

Plaintext Cipher-
text 

Asymmetric 
cipher 

Asymmetric 
cipher Plaintext 

Figure 2.9:  Analogy of an Asymmetric-key Cryptosystems 

 

 

Asymmetric-key cryptosystems are capable of fulfilling all the main 

objectives of information security. For illustrative purposes, each service is discussed 

in the context of a hypothetical communication between two users, Alice and Bob. 

Bob’s private key will be denoted by Dbob and his public key by Ebob. The 

adversary, trying to subvert secure communication, is Eve. Suppose Alice wishes to 

send a secret message to Bob. During system set-up, Bob makes Ebob, his public 

key, available to all users by publishing it in the public directory. To communicate 

message M to Bob, Alice first looks up Ebob in the public directory. Alice then 

encrypts M by performing the public-key transformation using Ebob, to transform M 

into ciphertext C. This process is denoted by: 

 

C = Ebob (M)    

 

Finally Alice sends C to Bob. Bob retrieves M by transforming C using 

Dbob. Alice and Bob are now assured that no one else can decipher C, since only 

Bob knows his private key, Dbob. Therefore Bob alone can compute: 

 

M = Dbob (C)  

 



 32

Thus performing asymmetric-key encryption in this way provides the service 

of confidentiality. Figure 2.10 illustrates the procedure Alice and Bob undergo 

during asymmetric-key encryption. 

 

 

 

 

 

 

 

 

Bob

Plaintext CiphertextEncryption Decryptio

Bob’s
Public 

key 

Alice 

Bob’s
Private 

key 

Plaintext

Figure 2.10: How Asymmetric-key Encryption Works 

 

 

While the message is confidential, there is no assurance that the message 

came from Alice. A method for achieving the extra service of data origin 

authentication, data integrity and non-repudiation is by implementing digital 

signature using asymmetric-key encryption. 

 

In broad terms, we can classify the use of asymmetric-key cryptosystem into 

three categories: 

 

i. Encryption/decryption: The sender encrypts a message with the recipient’s 

public key. 

ii. Key exchange: two sides cooperate to exchange a session key. Several 

different approaches are possible, involving the private keys of one or both 

parties. 

 

Some asymmetric-key algorithms are suitable for all three applications, 

whereas others can be used only for one or two of these applications. Table 2.10 

shows the applications supported by the RSA, Diffie-Hellman, and DSS algorithm. 

 

 



 33

Table 2.3 Applications for Asymmetric-key Cryptosystem 

Algorithm Encryption/decryption Digital 

Signature 

Key Exchange 

RSA Yes Yes Yes 

Diffie-Hellman No  No Yes 

DSS No  Yes No 

 

 

 

 

2.5 Network protocols 

 

 

 Two entities cannot just send bit streams to each other and expect to be 

understood. For this communication to occur, protocols are used. Protocol is a set of 

rules that is used in communication process through the network. It’s a set of rules 

that has been agreed by many different parties so that the communication between 

them can work. For communication to occur, the two entities must agree on one 

protocol. The end user can control the quality of data in the Transmission Control 

Protocol/Internetworking Protocol (TCP/IP) layer by choosing the better and more 

efficient end to end protocol.   

 

 The TCP/IP is a set of protocols, or a protocol suite, that defines how all 

transmissions are exchanged across the network (LAN, MAN or WAN). 

Transmission Control Protocol (TCP) was developed before the OSI model. 

Therefore, the layers in the TCP/IP protocol do not match exactly with those in the 

OSI model. The TCP/IP protocol is made of five of five layers: physical, data link, 

network, transport, and application. The application layer in TCP/IP can be equated 

with the combination of session, presentation, and application layers of the OSI 

model. 

 

 At the transport layer, TCP/IP defines two protocols: TCP and User 

Datagram Protocol (UDP). The transport layer is very significant to this system 



 34

compared to other layers because it is responsible for source-to-destination (end-to-

end) delivery of the audio stream. The functions that the transport layer provides are: 

i) Service-point addressing 

ii) Segmentation and reassembly 

iii) Connection control 

iv) Flow control 

v) Error control 

 

 

 

 

2.5.1 Transmission Control Protocol (TCP) 

 

 

The Transmission Control Protocol (TCP) provides full transport layer 

services to applications. TCP is reliable stream transport port-to-port protocol. The 

term stream, in this context means connection-oriented: a connection must be 

established between both ends of a transmission before either may transmit data. By 

creating this connection, TCP generates a virtual circuit between sender and receiver 

that is active for the duration of the transmission. TCP begins each transmission by 

alerting the receiver that data grams are on their way (connection establishment) and 

ends each transmission with a connection termination. Reliability is ensured by 

provision for error detection and retransmission of damaged frames; all segments 

must be received and acknowledged before the transmission is considered complete 

and virtual circuit is discarded. 

 

 At the sending of each transmission, TCP divides long transmission into 

smaller data units and packages each into a frame called a segment. Each segment 

includes a sequencing number for reordering after receipt. At the receiving end, TCP 

collects each datagram as it comes in and reorders the transmission based on 

sequence numbers. 

 



 35

 In this project, TCP is chosen because it avoids the lost of packets. TCP also 

is a very reliable protocol compared to UDP. It also does error detection and 

retransmission of damaged frames.  

 

 

 

 

2.5.2 User Datagram Protocol (UDP) 

 

 

The UDP provides uncertain connectionless transmission of data across an IP 

network. Both TCP and UDP split data into packets called data grams. However TCP 

includes extra headers in the datagram to enable retransmission of lost packets and 

reassembly of packets into the correct order if they arrive out of order. UDP does not 

provide this. If a UDP packet is lost, it's lost. It will not be retransmitted. Similarly, 

packets appear in the receiving program in the order they were received, not 

necessarily in the order they were sent. 

 

UDP can be up to three times faster than TCP; and there are many 

applications for which reliable transmission of data is not nearly as important as 

speed. For example lost or out of order packets may appear as static in an audio or 

video feed, but the overall picture or sound could still be intelligible. Communicating 

using UDP or TCP can be treated like communicating using telephone or mail. 

 

 

 

 

2.6 Java Authentication and Authorization Service (JAAS) 

 

 

JAAS is a pluggable framework and programming interface specifically 

targeted for authentication and access control based on the authenticated identities. 

The JAAS framework can be divided into two components: an authentication 

component and an authorization component. 



 36

The JAAS authentication component provides the ability to reliably and 

securely determine who is currently executing Java code, regardless of whether the 

code is running as an application, an applet, a bean, or a servlet. 

 

The JAAS authorization component supplements the existing Java security 

framework by providing the means to restrict the executing Java code from 

performing sensitive tasks, depending on its source code and depending on who is 

executing the code. 

 

 

 

 

2.7 Java Generic Security Service Application Program Interface  

 

 

Enterprise applications often have varying security requirements and deploy a 

range of underlying technologies to achieve this. In such a scenario how do we 

develop a client-server application so that it can easily migrate from one technology 

to another? The GSS-API was designed in the Common Authentication Technology 

working group of the IETF to solve this problem by providing a uniform application 

programming interface for peer to peer authentication and secure communication that 

insulates the caller from the details of the underlying technology. 

 

The API, described in a language independent form in RFC 2743 [5], 

accommodates the following security services: authentication, message 

confidentiality and integrity, sequencing of protected messages, replay detection, and 

credential delegation. The underlying security technology or "security mechanism" 

being used, has a choice of supporting one or more of these features beyond the 

essential one way authentication 1. There are mainly two standard security 

mechanisms that the IETF has defined: Kerberos V5 [5] and the Simple Public Key 

Mechanism (SPKM) [6]. 

 

The API is designed such that an implementation may support multiple 

mechanisms simultaneously, giving the application the ability to choose one at 



 37

runtime. Mechanisms are identified by means of unique object identifier's (OID's) 

that are registered.  

 

Another important feature of the API is that it is token based. i.e., Calls to the 

API generate opaque octets that the application must transport to its peer. This 

enables the API to be transport independent. 

 

The Java API for the Generic Security Service was also defined at the IETF 

and is documented in RFC 2853 [7]. Sun is pursuing the standardization of this API 

under the Java Community Process (JCP) [7] and plans to deliver a reference 

implementation with Merlin. Because the JCP is merely endorsing this externally 

defined API, the IETF assigned package namespace "org.ietf.jgss" will be retained in 

Merlin. Sun's implementation of Java GSS-API, will initially ship with support for 

the Kerberos V5 mechanism only. Kerberos V5 mechanism support is mandatory for 

all Java GSS-API implementations in J2SE, although they are free to support 

additional mechanisms.  

 

The Java GSS-API framework itself is quite thin, and all security related 

functionality is delegated to components obtained from the underlying mechanisms. 

The GSSManager class is aware of all mechanism providers installed and is 

responsible for invoking them to obtain these components. The GSSManager can be 

used to configure new providers and to list all mechanisms already present. The 

GSSManager also serves as a factory class for three important interfaces: GSSName, 

GSSCredential, and GSSContext.  

 

 

 

 

2.8  Chatting softwares that are currently available 

 

 

Briefly, softwares that provide text base message exchange system that are 

currently in the market are: 

 



 38

i)   LAN Messenger 1.1 

 - Suitable for applications using Windows 95/98/NT. 

 - Doesn’t provide any security features. 

 - Suitable for small group of people.  

 

 ii) Win Messenger 2.1 

  - Suitable for applications using Windows 95/98/NT. 

 - Doesn’t provide any security features. 

 

 iii) Net Meeting  

- Software that provide text base message exchange, system, audio 

conference, white board application and application haring facility. 

  - Doesn’t provide any security features 

 

 

 

 

2.9 Conclusion 

 

 

 All the research that has been done has its own importance. The researches 

done on the Kerberos authentication mechanism, allows the suitable method to 

securely exchange the credential among two hosts. The Kerberos mechanism has 

been chosen to securely exchange the secret key between two hosts and to overcome 

the problems with public key crypto system. The AES encryption algorithm was 

chosen after a detailed research was done on many algorithms available. The AES 

algorithm is a new algorithm and is more secured compared to other algorithms. By 

doing this detailed research, it was easier to develop the system.  



 

 

 

 

CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

3.1  Introduction 

 

 

Methodology is defined as a combination of concept and process to be made a 

practical guide. Methodology is a formalized approach to implementing the System 

Development Life Cycle (SDLC). There are a few methodologies that can be used in 

developing a system. Some examples of these methodologies are Waterfall 

Development, Prototyping, Spiral Model, Parallel Development and Object Oriented 

Model. In system development it is used for understanding how an information system 

can support an organization, designing the system, building and delivering it to user. 

Primary goal of methodology is to make sure the system fulfil the objective and is 

developed according the planning. 

 

SDLC describes an overview of the component in a methodology. SDLC has 

four fundamental phases: planning, analysis, design and implementation. Different 

projects may emphasize different approach the SDLC phases in different ways, but all 



 40

projects have elements of these four phases. Systems development can categorize to two 

methodologies that are structure design and Rapid Application Development. 

 

The first category of system development methdologies is structered design. 

Structure design methodology appeared in 1980. Structure design methodology are an 

approach to developing an information system or software product that is characterized 

by a linear sequence of steps that progress from start to finish without revisiting any 

previous step. For example waterfall imply that you do each step in sequence. This is the 

way most older systems were developed. Examples of structured design methdologies 

are Parallel Development and Waterfall Development.In this system, parallel 

development methodology is used.   

  

Rapid Application Development (RAD) methodology appeared in 1990 to solve 

major problem, which was, assumes in structure design methodology. RAD attempts to 

address both weaknesses of the structured development methdologies. This iterative 

methodology implies that you do some analysis, then some design and then some 

implementation. Based on what you learn, you cycle back through and do more analysis, 

design and implementation. This supports human learning a lot better.  

 

 

 

 

3.2 Parallel Development Methodology 

 

 

 Parallel development has been choosen as the methodology to be used in this 

system. This methodology attempts to address the problem of long delays between the 

analysis phase and the delivery of the system. Instead of doing the design and 

implementation in sequence, it performs a general design for the whole system and then 

divides the project into a series of distinct subprojects that can be designed and 

implemented in parallel. Once all subprojects are complete, there is a final integration of 



 41

the separate pieces and the system is completed. Figure 3.1 shows the life cycle of the 

parallel development methodology. 

 

 

Planning 

Analysis 

Design  

Design  Design Design  

Implementation 
Implementation Implementation 

Subproject 1 
Subproject 2 Subproject 3

Implementation 

Figure 3.1: Life cycle of the parallel development methodology 



 42

3.3 Prototyping Methodology 

 

 

The prototyping methodology performs the analysis, design, and implementation 

phases concurrently, and all three phases are performed repeatedly in a cycle until the 

system is completed. With this approach, the basics of analysis and design are 

performed, and work immediately begins on a system prototype, a “quick-and-dirty” 

program that provides and minimal amount features. The first prototype is usually the 

first part that user will be interacting. This is shown to the user and the project sponsor 

for their comments and recommendation on the prototype. Then changes will be done to 

the prototype and reanalyze, redesign, and reimplementation are done to produce a 

second prototype, which will have a few more additional features. This process 

continues in a cycle until the analyst and user agree that the prototype provides enough 

functionality to be installed and implemented as a system. 

 

 

System 

prototype 

ANALYSIS 

DESIGN 

IMPLEMENTATION 

IMPLEMENTATION

System  

PLANNING  

 

 

 

 

 

 

 

 

Figure 3.2: The prototyping methodology 

 

 

 

 

 



 43

3.4  Comparison Methodologies 

 

 

The primary reason this methodology is chosen are : 

i) Parallel development can reduce the schedule time required to complete the 

system. Thus there are less chance of changes in the business environment 

causing rework. 

ii) Instead of doing the design and implementation in sequence, it performs a 

general design for the whole system and then divides the project into a series 

of distinct subprojects that can be designed and implemented in parallel. 

iii) The system can be done part by part and therefore the work can be done 

systematically. 

 

Problems with prototyping methodologies are : 

i) Its fast-paced system releases challenge attempts to conduct careful, 

methodical analysis. 

ii) Often the prototype undergoes such significant changes that many initial 

design decisions become poor ones. 

iii) Problems will occur in complex systems development because fundamental 

issues and problems are not recognized until well into the development 

process. 

 

 

 

 

3.5  Phases Of Parallel Development 

 

 

The parallel development consist of these phases: 

i)   Planning  

ii)   Analysis 



 44

iii)   Design 

iv)   Implementation 

 

 

 

 

3.5.1 Planning 

 

 

The planning phase is the fundamental process of understanding why an 

information system should be built and determining how the system will be built. In the 

first part of planning, research is done and the system is identified and approved. 

Secondly, the objectives and the scope of the system development are set. 

 

 The objective is set after the scope of the project is achieved with all the needed 

information and reference. Only after the objective and scope are identified, all the 

procedures from the beginning of the development till the end of the development is 

stated and arranged according to the time span of the development. This action will be a 

guideline for the development of the system to be in schedule. 

 

  Among the research that has been done in the planning phase: 

i) Whether kerberos can be used to securely exchange the secret key to encrypt the 

text messages. 

ii) Techniques to be used to transmit text messages between two computers 

securely. 

 

 

 

 

 

 



 45

3.5.2 Analysis  

 

 

This phase is implemented to identify the needs and limitation of the system that 

is being developed. These needs and limitations will be valued and analyzed to ensure 

smooth flow in the development of the system. In this phase, emphasis is given in 

choosing the most suitable programming language to be used, the most efficient network 

authentication protocol , the right network protocol to be used, and the tools needed in 

the development. 

 

 

 

 

3.5.2.1 Programming Language 

 

 

The JAVA programming language will be used in the development of this 

system. This language is chosen because: 

i) JAVA is robust, meaning that errors in JAVA don’t cause system to 

crash. 

ii) JAVA is platform independent. 

iii) JAVA is a distributed language, which means that it’s programs can be 

designed to run on computer networks. 

 

 

3.5.2.2 Encryption Algorithm 

 

 

The RIJNDAEL or AES algorithm has been chosen to be implemented in this 

system to secure transmission of files through the network. 

 



 46

3.5.2.3 Network Protocol 

 

 

Comparison has been done during the literature review on the TCP and UDP 

protocol, and the TCP protocol is chosen because it is most suitable for text over a 

network.  

 

 

 

 

3.5.3 Design 

 

 

The design phase decides how the system will operate, in terms of the hardware, 

software, and network infrastructure. Although most of strategic decisions about the 

system were made in the development of the system concept during the analysis phase, 

the steps in the design phase determine exactly how the system will operate. 

 

 In this phase the general design for the whole system is done and then the system 

is divided into distinct subprojects that will be designed and implemented in parallel. 

The development of this system has been divided into five subprojects. These are the 

details of the subprojects: 

  

i) Subproject 1: Creating an application that has reliable host-to-host 

connection that uses the TCP protocol. 

 

ii) Subproject 2: Creating a chat system that sends and receives messages. 

 

iii) Subproject 3: Creating a subsystem that encrypts the text messages before 

sending it to the receiver.  

 



 47

iv) Subproject 4: Set-up a Kerberos server and client machine to securely 

distribute the shared secret key betwen two host.This key will be used to 

encrypt the text massenge will be transfered between two host.  

 

v) Subproject 5: Creating a system that will ritrieve the text messages received 

by doing encryption and decryption process at the receiver’s part.  

 

 

 

 

3.5.4 Implementation 

 

 

The final phase in the parallel development methodology is the implementation 

phase, during which the complete subprojects are finally integrated. It is in this phase the 

system is actually built. This is the phase that usually gets the most attention, because for 

most system it is the longest and most expensive part of the development process. 

 

 The first step in implementation is system construction, during which the system 

is built and tested to ensure it performs as designed. Testing is one of the most critical 

steps in implementation, because the cost of bugs can immense. Once the system has 

passed a series of tests, it is installed. 

 

 

 

 

3.6  Hardware Requirements 

 

 

i) 2 set of personal computer with LAN connection. 

ii) 2 Ethernet card 



 48

3.7 Software Requirements 

 

 

i)    J2SDK 1.4.2_01 as the library for JAVA programming language. 

ii) Rational Rose 98 Enterprise Edition to build the use case, sequence   

diagrams and class diagrams.                

iii) Microsoft Project 2002 to build the Gantt chart. 

 

 

 

 

3.8 Input and Output Specification 

 

 

To use the system developed in this project several input is required.  Those 

inputs will be processed to produce output. 

 

 

 

 

3.8.1 Input Specification 

 

 

For this chat system work it will need several inputs to encrypt and to decrypt. 

Valid inputs for encryption are: 

 

i. Text to be encrypted. 

ii. Shared Kerberos session key  

 

 

 



 49

Valid inputs for decryption are: 

 

i. Encrypted text. 

ii.  Shared Kerberos session key used to encrypt the text. 

 

 

 

 

3.8.2 Output specification 

 

 

The output produced in this chat system will be the encrypted text or cipher text. 

 

 

 

 

3.9 Project assumption 

 

 

Through research and analysis performed, if this project is done according to the 

work plan, it is assumed that this project will be successful. It is because research is 

done in the early stages and with the help of supervisor. 



 

 

 

 

CHAPTER 4 

 

 

 

 

DESIGN 

 

 

 

 

4.1   Introduction 

 

 

 The design phase has of two levels, the first one is constructing the system 

design and the second is constructing the user interface design. The system design 

consists of the system functional design, system data flow control design and system 

protocol design. Meanwhile, the design for user interface involves generating graphical 

user interface for the system. These graphical user interfaces function as the middle tier 

between the user and the system. 

 

 The Unified Modeling Language (UML) method is used in constructing the 

object oriented system development; this is done at the system design level. The Use 

Case View and Logical View of the UML language will be used to bring up the system 

design. 

 

 Java Network Programming concept is used to build most part of core program. 

It is used to develop and establish connection among hosts in this system. Besides that, 



 51

sending and receiving messages from one host to another also relies greatly on stream 

concept proposed in Java Network Programming. 

 

 The Java Swing will be used to construct user interface level. Graphical user 

interfaces will be generated on user friendly basis, this is so that the system is easy to 

utilize. 

 

 

 

 

4.2   System Architecture Design 

 

 

First the request for authentication is sent to the krb5kdc daemon. When the 

daemon received this request, it looks up the client, the principal, trying to authenticate 

in the principal database. It reads the clients secret key from this database and encrypts a 

special ticket called a Ticket Granting Ticket (TGT) which it then sends back the client. 

The client receives this encrypted TGT which contains a session key. If the client knows 

the password (the secret key stored in the principal database) and can successfully 

decrypt the TGT, it can present the ticket encrypted with the enclosed session key to a 

server, the other user of the system. Through the use of encrypted tickets which can only 

be decrypted if the client and server know the secret key, secure authentication takes 

place. Once a connection has been established between the server and the client, than the 

text messages can be sent and received between them. 

 

 

 

 

 

 

 



 52

4.3 System Overview 

 

 

 Figure 4.1 shows the overview of how the system works. This system is only 

from one computer to another computer.  

 

 

 
               (Sender)                                         (KDC)       (Sender) 

 

 

  

                     (Receiver) 

                   

Enter Password 
(Authenticate to KDC) 

Generate Ticket for 
Sender and Receiver 
share security context 

Receive encrypted 
message 

Send Encrypt text messages 
using the shared secret key

Type text 
messages 

 

 

 
Receive and 

display the text 
Decrypt the message using 

the same secret key  

 

  (Receiver)                                                           (Receiver) 

 

Figure 4.1:  Overview of How the System Works 

 

 

 After establishing a connection, the sender enters his/her password. After that the 

text messages to be sent are typed. The amount of messages that can be type is limited. 

After typing the message, the sender sends the message by clicking the send button or by 

pressing Enter button.  

 

 Before transmitting the text messages, the system will encrypt using AES 

algorithm .Then, the message will be sent to the receiver.  

 



 53

 At the receiver’s end, the receiver will receive the encrypted text that was sent by 

the sender. The receiver will use the same key to retrieving the plain text message. Only 

after that, the receiver will be able to read the text message that was sent. So the text 

message that was sent is safe from attacks and is much more secured.  

 

 

Start

Accept/connect 
to other hosts 

Type text 
messages 

Encrypt the text 
messages 

Host sends 
to host

Host receive 
from host

Sending text

Receive text

yes 

yes 

Finish

 
Figure 4.2:  Process of sending messages 

 



 54

 Figure 4.2 shows an overview of the process of sending messages which is 

encrypted using AES algorithm.  

 

 

Start

Accept/connect 
to other hosts 

Read received 
text message 

Cryptanalysis 

Decrypt the 
encrypted message

Host receive 
from host

Receive text
yes 

Finish

 
 

Figure 4.3:  Process of receiving messages 

 

 Figure 4.3 shows an overview of the process of receiving a text message and 

applying the cryptanalysis process to read the message. 

 

 



 55

4.4 Unified Modeling Language 
 

 

The Unified Modeling Language, or the UML, is a graphical modeling language 

that provides us with syntax for describing the major elements of systems. The use case 

model helps us to understand the customer’s requirements, and we can also use the class 

diagram to explore the major concepts our customer understands. The sequence diagram 

used to show interaction between object. 

 

 

 

 

4.4.1 Use Case Diagram 

 

 

 The first module is show an overview of how the system works. There are three 

parts involved in it which are kdc authentication, getting key, communication and the 

encryption/decryption part. Figure 4.4 shows the use case diagram for the first module. 

 

 
 
 
 
 
 
 
 
 
        User 

     Send / R
 

eceive

ecryptio  D n

     Encryption

   Getting session key

 KDC Authentication

 
Figure 4.4: Use Case for User 



 56

The second module is a user module, which the user will enter his Kerberos 

principal name and password to start communication (chatting).  Figure 4.5 shows the 

use case for this user module.   

 

 

 

 

 

 

 

   

                          User 

 

Kerberos Principal Name 

Password 

Figure 4.5: Use Case Diagram for User 

 
 

 

 

4.4.2 Sequence Diagram 

 

 

 Sequence diagram shows how objects interact with one another. It also shows the 

sequence of how messages are sent and received. Figure 4.6, shows the sequence 

diagram of sending the text messages. The scenarios for sending the text messages are: 

 

1. Enter Kerberos principal name. 

2. Enter password (Authenticate to KDC Server and get ticket). 

3. Send the encrypted text message and ticket. 



 57

 : User Password    Name

1. Key in password

ame 2.  Enter n

Authenticate and getting session key

Encrypt and send massage

NetworkKDC Server

 

 

Figure 4.6: Sequence diagram sending text message 

 

 

Figure 4.7, shows the sequence diagram of receiving the text messages. The 

scenarios for receiving the text messages are: 

 

1. Receive the encrypted message and ticket contain session key. 

2. Get the session key by decrypting the ticket using user master key. 

3. Decrypt the message using the session key. 

 



 58

 : User Encrypted 
message

 Decrypt ticket Plain text

1. Receive text message and ticket

2.  Get session key

3. Decrypt encrypted message + ticket 

    
Figure 4.7: Sequence diagram for encrypted text at receiver’s end 

 

 

 

 

4.5  User Interface Design 
 

 

User interface acts as the upper layer in the system. It is the front-end of the 

system, where all the transaction will go through this interface to the back-end of the 

system where all the processing is done. The output of the system will be passed through 

this interface. It is the medium between the user and the system. 



 59

 
Figure 4.8: The Main User Interface for Chatting 

 

 

 

 

4.5.1 Buttons and Text field Functions 

 

 

1. Send – Send the text message in text box. 

2. Exit – To exit from system. 

3. Chatting Area – Area for users to chat. 



 

 

 

 

CHAPTER 5 

 

 

 

 

SYSTEM IMPLEMENTATION 

 

 

 

 

5.1 Introduction 

 

 

 This system is developed according to the system design which was defined 

in the previous chapter. In the coding phase, the list of classes that are identified will 

be coded in Java. The complier being used to develop the system is JDK version 

j2sdk1.4.2_01. As a whole, the coding phase consists of writing codes for the clients 

to perform Kerberos authentication, network connection and encryption. The 

network connection established between these two clients evolves as the base of this 

secured communication system. The Kerberos authentication is performed before the 

system starts, and the encryption and decryption process is done upon sending and 

receiving of the text message. 

 

 

 

 

 

 

 

 



 61

5.2 Java Network Programming 

 

 

In developing this system knowledge on Java network programming is very 

much needed. Knowing the Socket classes and its functions is also very essential to 

construct a network based application. Using socket class, a client can establish a 

stream-based communications channel with a remote host. To communicate with a 

remote host using TCP/IP, the client must first create a Socket to the remote host. To 

connect to the host, you must specify the address on the host that you wish to connect 

on. There must be a server socket actively listening on the specified port, or the 

connection attempt will fail. The methods of class Socket permit identification of the 

remote host, and the local and remote port numbers, as well as extraction of streams 

for the purposes of bidirectional communication.   

 

 In the development of this system, Sockets were used in creating and 

establishing network connection between both the clients who wants to commit a 

secured text communication. All these messages were transformed into bytes before 

being transmitted.  

 

 

 

 

5.2.1 Command-Line Arguments 

 

 

Client expects three arguments:  

i. A service principal name - The name of the Kerberos principal that represents 

Server.  

ii. A host name - The machine on which Server is running.  

iii. A port number - The port number of the port on which Server listens for 

connections. Figure 5.1 shows the code for reading the command-line 

arguments by client   



 62

 

 
if (args.length < 3) { 
    System.out.println("Usage: " 
       + " <servicePrincipal> <hostName> <port>"); 
    System.exit(-1); 
} 
 
String server = args[0]; 
String hostName = args[1]; 
int port = Integer.parseInt(args[2]); 

Figure 5.1: command-line arguments by client 

 

 

Server expects just one argument:  

i. A local port number - The port number used by Server for listening for 

connections with clients. Figure 5.2 shows the code for reading the 

command-line argument by server.  

 

 

 

   if (args.length != 1) { 

      System.out.println( 

         "Usage: <localPort>"); 

      System.exit(-1); 

  } 

  int localPort = Integer.parseInt(args[0]); 

 

Figure 5.2: command-line arguments by Server 

 



 63

5.2.2 Establish Socket Connection 

 

 

5.2.2.1 Client Code For Socket Connection 

 

 

Figure 5.3 shows the client code for the socket connection. 

 

 

   Socket socket = new Socket(hostName, port); 

   DataInputStream inStream =   new   

DataInputStream(socket.getInputStream()); 

   DataOutputStream outStream=new 

DataOutputStream(socket.getOutputStream()); 

Figure 5.3: Client Code for Socket Connection 

 

 

5.2.2.2 Server Code For Socket Connection 

 

 

The ServerSocket can then wait for and accept a connection from a client, 

and then initialize a DataInputStream and a DataOutputStream for future data 

exchanges with the client : Figure 5.4 shows the server code for socket connection. 

 

 

  ServerSocket ss = new ServerSocket(localPort); 
  Socket socket = ss.accept(); 

  DataInputStream inStream =    new 

DataInputStream(socket.getInputStream()); 

  DataOutputStream outStream =  

  new DataOutputStream(socket.getOutputStream()); 

  System.out.println("Got connection from client " + 

socket.getInetAddress()); 

Figure 5.4: Server Code for Socket Connection 

 

 



 64

5.3 Establishing a Security Context 

 

 

Before the chat applications can use Java GSS-API to securely exchange 

messages between them, they must establish a joint security context using their 

credentials. The security context encapsulates shared state information that will 

include cryptographic keys. One use of such keys will be to encrypt messages to be 

exchanged.  

 

The context initiator (Client) is authenticated to the acceptor (Server), and 

may require that the acceptor also be authenticated back to the initiator,for the case 

of  mutual authentication. Both applications create and use a GSSContext object to 

establish and maintain the shared information that makes up the security context. The 

Java GSS-API methods exist for preparing tokens to be exchanged between entities 

of the chatting applications. After the initiator has received a token from its call to 

initSecContext, it sends that token to the acceptor. The acceptor calls 

acceptSecContext, passing it the token. The acceptSecContext method may in turn 

return a token. Each time initSecContext or acceptSecContext returns a token; the 

application that called the method should send the token to its peer and that peer 

should pass the token to its appropriate method (acceptSecContext or 

initSecContext). This continues until the context is fully established.  

 

 

 

 

5.3.1 Client GSSContext Instantiation 

 

 

A GSSContext is created by instantiating a GSSManager and then calling 

one of its createContext methods. The GSSManager class serves as a factory for 

other important GSS API classes. It can create instances of classes implementing the 

GSSContext, GSSCredential, and GSSName interfaces. The argument to the 

GSSManager createContext method is an Oid representing the Kerberos V5 

mechanism to be used for the authentication between the client and the server during 



 65

context establishment and for subsequent secure communication between them. 

Client obtains an instance of the default GSSManager subclass by calling the  

GSSManager static method getInstance Figure 5.5 shows the client GSSContext 

Instantiation 

 

 

  GSSManager manager = GSSManager.getInstance(); 
  GSSContext createContext(GSSName peer, Oid mech,  

            GSSCredential myCred, int lifetime);  

  GSSName createName(String nameStr, Oid nameType); 

  SampleClient passes the server String for the nameStr 

argument.  

  GSSName serverName = manager.createName(server, null); 

  Oid krb5Oid = new Oid("1.2.840.113554.1.2.2"); 

  GSSContext context =  

    manager.createContext(serverName, 

                          krb5Oid, 

                          null, 

                          GSSContext.DEFAULT_LIFETIME); 

 

  context.requestMutualAuth(true);   

  context.requestConf(true);  

  context.requestInteg(true); 

Figure 5.5: Client GSSContext Instantiation 

 

 

 

 

5.3.2 Client Context Establishment 

 

 

After the Client has instantiated a GSSContext and specified the desired 

context options, it can actually establish the security context with Server and a token 

generated by a Server call to acceptSecContext. Figure 5.6 shows the client 

GSSContext Establishment code. 

 



 66

 

  byte[] token = new byte[0]; 

  while (!context.isEstablished()) { 

    token = context.initSecContext(token, 0, token.length); 

    if (token != null) { 

        System.out.println("Will send token of size " 

                   + token.length + " from initSecContext.");

        outStream.writeInt(token.length); 

        outStream.write(token); 

        outStream.flush(); 

    } 

    if (!context.isEstablished()) { 

        token = new byte[inStream.readInt()]; 

        System.out.println("Will read input token of size " 

                   + token.length 

                   + " for processing by initSecContext"); 

        inStream.readFully(token); 

      } 

  } 

  System.out.println("Context Established! "); 

  System.out.println("Client is " + context.getSrcName()); 

  System.out.println("Server is " + context.getTargName()); 

  if (context.getMutualAuthState()) 

    System.out.println("Mutual authentication took place!"); 

Figure 5.6: Client Context Establishment 

 

 

 

 

5.3.3 Server GSSContext Instantiation 

 

 

Like Client, Server obtains an instance of the default GSSManager subclass 

by calling the GSSManager static method getInstance. Figure 5.7 shows the 

GSSManager factory method for creating a context on the acceptor's side.  

 

 



 67

   

GSSManager manager = GSSManager.getInstance(); 

GSSContext createContext(GSSCredential myCred); 

GSSContext context = manager.createContext((GSSCredential)null);

Figure 5.7: Server GSSContext Instantiation 

 

 

 

 

5.3.4 Server Context Establishment 

 

 

After Server has instantiated a GSSContext, it can establish the security 

context with Client. To do so, Server has a loop that continues until the context is 

established. Each loop iteration does the following:  



 68

  byte[] token = null; 
  while (!context.isEstablished()) { 

    token = new byte[inStream.readInt()]; 

    System.out.println("Will read input token of size " 

       + token.length 

       + " for processing by acceptSecContext"); 

    inStream.readFully(token); 

    token = context.acceptSecContext(token, 0, token.length);

    if (token != null) { 

        System.out.println("Will send token of size " 

           + token.length 

           + " from acceptSecContext."); 

        outStream.writeInt(token.length); 

        outStream.write(token); 

        outStream.flush(); 

      } 

  } 

  System.out.print("Context Established! "); 

  System.out.println("Client is " + context.getSrcName()); 

  System.out.println("Server is " + context.getTargName()); 

  if (context.getMutualAuthState()) 

  System.out.println("Mutual authentication took place!"); 

Figure 5.8: Server Context Establishment 

 

 

 

 

5.4        Login Configuration  

 

 

The Java Authentication and Authorization Service  JAAS login 

configuration is required to specify the desired authentication technology. Client and 

Server use the same login configuration file, if that file contains two entries, one 

entry for the client side and one for the server side. Figure 5.9 shows the client and 

the server login configuration file. 

 

 



 69

 

   Client { 
     com.sun.security.auth.module.Krb5LoginModule required; 

   }; 

   Server { 

     com.sun.security.auth.module.Krb5LoginModule required 

storeKey=true  

     principal="prabu/admin@PSM.COM"; 

   }; 

Figure 5.9: The Login Configuration File 

 

 

The name for each entry matches the respective class names Client and 

Server. This name also passed to the Login utility that performs JAAS operations for 

the application. That utility expects the name of the entry to be looked up in your 

login configuration file to be the same as the name it is passed. Both entries specify 

that Sun's Kerberos V5 LoginModule must be used to successfully authenticate the 

user. The Krb5LoginModule succeeds only if the attempt to log in to the Kerberos 

KDC as a specified entity is successful.The Server entry storeKey=true indicates that 

a secret key should be calculated from the password provided during login and it 

should be stored in the private credentials of the Subject created as a result of login. 

This key is subsequently utilized during mutual authentication when establishing a 

security context between Client and Server.  

 

 

 

 

5.5       Policy Files 

 

 

The policy file used when running Client and Server is server.policy. Their 

contents are described below.  

 

 

 



 70

5.5.1 Client Policy 

 

 

Permissions Required by the Login utility Classes.A number of permissions 

are required by the classes in Login.java (Login and MyAction).  

Permissions Required by Client

 

The Client code does two types of operations for which permissions are 

required. It opens a socket connection with the host machine running the Server 

application ,initiates establishment of a security context with Server. The permission 

required to open a socket connection is permission java.net.SocketPermission "*", 

"connect"; Figure 5.10 shows the client policy file. 

 

 

 

grant CodeBase "file:./Login.jar" { 

          permission java.security.AllPermission; 

  }; 

grant CodeBase "file:./Client.jar",  

      Principal javax.security.auth.kerberos.KerberosPrincipal

  "bavani/admin@PSM..COM" { 

      permission javax.security.auth.kerberos.ServicePermission 

  "krbtgt/PSM@PSM.COM", "initiate"; 

 permission javax.security.auth.kerberos.ServicePermission 

  "prabu/admin@PSM.COM", "initiate"; 

 permission java.net.SocketPermission "*", "connect";}; 

 

Figure 5.10: Client. policy 

 

 

 

 

 

 

 

 



 71

5.5.2 Server Policy  

 

 

Permissions Required by the Login Utility Classes The grant statement in the 

server policy file for the Login classes is exactly the same as the one in the client 

policy file.Permissions Required by Server are as in Figure 5.11. 

 

 

 

grant CodeBase "file:./Login.jar" { 

          permission java.security.AllPermission; 

  }; 

  grant CodeBase "file:./Server.jar"  

 Principal javax.security.auth.kerberos.KerberosPrincipal  

  "prabu/admin@PSM.COM" { 

 permission java.net.SocketPermission "*", "accept"; 

 permission javax.security.auth.kerberos.ServicePermission 

  "prabu/admin@PSM.COM", "accept"; 

  }; 

Figure 5.11: Server.policy 

 

 

 

 

5.6  Encryption and Decryption of the Text Messages 

 

 

The text message is encrypted before send it through network. Encryption is 

applied to the message to provide data integrity for the stream that is transmitted. The 

encryption and decryption process uses the same symmetrical encryption-key. Figure 

5.12 and 5.13 shows the encryption and decryption portion of the coding.  

 

 

 

 

 



 72

 

try{ 
 String  cptxt = null; 
 AES Ins = new AES(bits/32); 
            cptxt = Ins.encrypt(mesej,kk,bits); 
 cptxtbuff = cptxt.doFinal(buff); 
 
 
byte[] messageBytes = cptxt.getBytes(); 
MessageProp prop =  new MessageProp(0, true); 
byte[] token =context.wrap(messageBytes, 0, messageBytes.length, prop); 
} 

Figure 5.12 : Encrypting the Text Message 

 

 

 

try{ 
 
byte[] bytes =context.unwrap(token, 0, token.length, prop); 
String str = new String(bytes);      
 
AES Ins = new AES(bits/32); 
pltxt = Ins.decrypt(str,kk,bits); 
pltxtbuff = pltxt.doFinal(buff); 
} 
 

Figure 5.13: Decrypting the encrypted text message 

 

 

 

 

5.7 Setting up a Redhat Linux Kerberos Server 

 

 

With the Redhat 9.0 installation, we ended up with everthing that we needed 

to set up a Kerberos server. In particular, we needed the krb5-server RPM:  
 

<root@prabu>:/etc/rc.d/init.d> rpm -a -q | grep krb 

krb5-workstation-1.2.4-1 

krb5-libs-1.2.4-1 

krb5-devel-1.2.4-1 

krb5-server-1.2.4-1 

krbafs-1.1.1-1 



 73

pam_krb5-1.55-1 

krbafs-devel-1.1.1-1 

krbafs-utils-1.1.1-1 

1. edit /etc/krb5.conf: This provides configuration information needed by the 

Kerberos v5 library. It includes information describing the default realm, and the 

location of its key distribution centers:  

Figure 5.14 :krb5.conf 

[logging] 

 default = FILE:/var/log/krb5libs.log 

 kdc = FILE:/var/log/krb5kdc.log 

 admin_server = FILE:/var/log/kadmind.log 

[libdefaults] 

 ticket_lifetime = 24000 

 default_realm = PSM.COM 

 dns_lookup_realm = false 

 dns_lookup_kdc = false 

[realms] 

 PSM.COM = { 

  kdc = waree.psm.com:88 

  admin_server = waree.psm.com:749 

  default_domain = psm.com 

 } 

[domain_realm] 

 .psm.com = PSM.COM 

[kdc] 

 profile = /var/kerberos/krb5kdc/kdc.conf 

[appdefaults] 

 pam = { 

   debug = false 

   ticket_lifetime = 36000 

   renew_lifetime = 36000 

   forwardable = true 

   krb4_convert = false 

 } 

 



 74

2. edit /var/kerberos/krb5kdc/kdc.conf: We define the realm and what encryption 

keys it supports:  

 

[kdcdefaults] 

 acl_file = /var/kerberos/krb5kdc/kadm5.acl 

 dict_file = /usr/share/dict/words 

 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab 

 v4_mode = nopreauth 

 

[realms] 

 PSM.COM = { 

  master_key_type = des-cbc-crc 

  supported_enctypes = des-cbc-crc:normal  

 } 

Figure 5.15 :kdc.conf 

 

3. Create the database: /usr/kerberos/sbin/kdb5_util create -s  

4. Create the 1st principal: /usr/kerberos/sbin/kadmin.local -q "addprinc 

fredrick/admin"  

5. Add a principle for doe: /usr/kerberos/sbin/kadmin.local -q "addprinc doe"  

6. Start up kerberos server:  

    cd /etc/rc.d/init.d 

    sudo ./krb5kdc start 

    sudo ./kadmin start 

    sudo ./krb524 start 

7. Set for permanent startup:  

    sudo chkconfig --level 345 krb5kdc on 

    sudo chkconfig --level 345 kadmin on 

    sudo chkconfig --level 345 krb524 on 

 

 

 



 75

5.8 Input /Output Data and Result 

 

 

 This section explains the input and output data that was used for 

implementation of this system. Besides that, testing that was done while 

implementation also discussed in detail in this section. 

 

 

 

 

5.8.1 Input/Output Data 

 

 

The input and output data used in the development of this project divided into 

two according to process which is the data for the encryption process and data for 

decryption process.All the valid input and output data for these two processes are 

described below 

 

 

 

 

5.8.1.1 Encryption Input/Output Data  

 

 

 The valid input for the encryption process is the plain text message 

containing the text. The valid output is the cipher text message after the plain text 

message goes through the encryption process. The Figure 5.16shows the sample 

encypted message. 

 

 



 76

 

   Plain text :Hello : how are you 

   MD5 Hash value : 30-208-120-80-42-90-52-155-0-94-9-92-145-90-214-98 

  Ciphertext : 

47d2606c4b7ea24d9ae5ae15b26561c9006c222c89a1e3dd5c6571354be77ba6 

Figure 5.16 Encryption output 

 

 

5.8.1.2 Decryption Input/Output Data 

 

 

The valid input for the decryption process is the cipher text message obtain 

form the encryption process. The valid output is the plain text message after the 

cipher text message goes through the decryption process.The Figure 5.17 shows the 

sample decypted message. 

 

 

Chiper Text : 

47d2606c4b7ea24d9ae5ae15b26561c9006c222c89a1e3dd5c6571354be77ba6 

MD5 Hash value : 30-208-120-80-42-90-52-155-0-94-9-92-145-90-214-98 

Plain text :Hello : how are you 

Figure 5.17 Decryption output 

 

 

 

 

5.8.2 Testing 

 

 

Generally there two type of testing which are the white box testing and the 

black box testing.The white box testing is a detail testing on the internal program 

code related to the logical flow of the system.This testing is used to test the system 

component and also to test the developed system.There are four component in this 



 77

testing which are unit testing where every unit is tested individually, integration 

testing where modules are integrated and tested to ensure module interacts as 

expected, functional testing where module are tested according to its functions . 

 

 The black box testing is to test the system as box whereby its content is 

visible.If given an input, the system should generate the right output.It is an external 

testing which focus on what is expected by the users.It is not focused to development 

but it gives importance t othe output so that it fullfill user requirement 

 

As for this system, three types of testing was involved in this testing phase. 

They are unit testing, integration testing and interface testing. Unit testing is used to 

test classed individually. While integration testing was done to check if classes work 

together correctly.The interface which is the black box testing is done to create a user 

friendly interface which fullfills the users requirement   

 

 

 

 

5.8.2.1 Unit testing 

 

 

In this testing phase each and every classes were tested separately. First, 

classes were tested for syntax and symantec error. Both the above errors were 

identified while compiling the classes. Most common syntax error was missing semi-

column (;) or brace (}) symbols. 

 

At some instances, object creation was not done properly as parameters were 

not inputed correctly. Besides that, exception has to be thrown in some places to 

avoid program having unwanted errors. All the needed exceptions were fixed in 

place to ensure smooth running of the program.  

 

Unit testing was complete when each classes were able to run without error. 

After this, the integration testing comes in. 

 



 78

 

5.8.2.2 Integration testing  

 

 

Integration testing was the most difficult and time consuming process. In this 

system, two hosts are involved. In each hosts there are four classes that should 

cooperate to produce desided output.  Classes integration were mostly done in unit 

testing. Host integration was focused more in this phase.  

 

 The major problem was setting up the “handshaking” process between hosts 

before they can actually communicate with each other for message transfer. Streams 

had to be handled carefully to transmit the transfer 

 

 Another problem that was faced while doing this testing was unavailability of 

network and faulty “handshake” process. Network connection was very much 

physical and couldn’t do much about it besides checking the hardwares to be 

working properly. Meanwhile, “handshake” troubles among host are very dependent 

on the codes that was developed for this system. 

 

 

5.8.2.3 Interface testing 

 

 

This testing is done to check all the validation of the interface when a wrong 

interaction has been performed.All kind of possible data and interaction has been 

tested with the system in this phase.After completion of this testing the system will 

be able to inform the user if an invalid data has been entered or an invalid operation 

has been choosen as shows in Figure 5.18 . 



 79

 
Figure 5.18: Message Validation 

 

 

 

 

5.9 Summary 

 

 

The testing phase in this project has thoroughly made the system to be at its 

best. The codes were changed in order to overcome the errors found in the system. 

Various kinds of inputs were used to test the vulnerability of the system. The 

received outputs are used as the medium to bridge the gap to a successful system. In 

the implementation phase, an error free system is produced. The system is 

implemented and tested until there are no bugs found in the system. To achieve this 

milestone, various methods and techniques used in order to produce the best outcome 

for the system. The system prototype was originally produced to find the maximum 

requirements needed to the system. Based on the results, a thoroughly completed 

system is built. 



 

 

 

 

CHAPTER 6 

 

 

 

 

CONCLUSION 

 

 

 

 

6.1 Introduction  

 

 

The system has been successfully developed in the planned period of time. 

During this period, loads of new problems and obstacles raised and lots of different 

alternatives were considered and carried out to solve the problems. Objectives and 

aim of the system was successfully achieved as proposed. The developed application 

has fulfilled its entire objective and scope outlined in Chapter I. While doing the 

literature review, the potential of Kerberos authentication protocol and integration 

between network chat system was learned.  

 

 

 

 

6.2   Advantages  

 

 

Case studies and researches were made on existing methods that are used in 

the current systems available. Results show that, this prototype system has a few 

advantages over the systems that are currently available. Case studies also show the 



 77

prototype system has some minor constrains compared to other systems in the 

market. The advantages of this system compared to existing systems are as below; 

 

i. This system provides data origin authentication for both the 

communicating hosts. Data origin authentication is assurance that both 

the parties committed in the communication session are who they say 

they are. 

ii. The text message transmission through the network is also concealed 

from unauthorized parties; this is because the message is encrypted 

before it is transmitted. The encryption algorithm being used is 

RIJNDAEL which is also known as the Advanced Encryption Standard 

(AES). For the time being there is no known brute force attack against 

this encryption algorithm. 

iii. This system has user friendly interfaces so that the users can utilize this 

application efficiently. 

 

 

 

 

6.3 Limitations and Disadvantages 

 

 

i. This system can be only used in Unicast mode, where only two hosts can 

communicate at a time. 

ii. There is no additional function like sending files, audio video conference. 

 

 

 

 

6.4 Suggestions for Future Work 

 

 

 A few suggestions have been outlined for future works to make this system 

more efficient and to be equipped with more capabilities. The suggestions made in 



 78

this section were not implemented because of the limited time given to develop this 

system and also because it is out of the scope of this project. The suggestions are as 

below, 

 

i. Make communication available to more than two hosts at a time. 

ii. Users’ should be given choice to choose the encryption algorithm. 

iii. File transfer, audio and video capabilities should also be added to ease 

the file transfer, audio video request if needed by communicating 

hosts. 

iv. Use the Kerberos authentication protocol together with public key 

infrastructure to make the system more secured. 

 

 

 

 

6.5 Discussion 

 

 

 The success of this whole system depends on fulfilling the project objectives 

which has been stated in chapter one. The details below show how each of the 

objectives were achieved, 

 

i. When you run Server you must log in as the appropriate principal 

name. The JAAS authentication (done by the Login utility) asks you 

to specify the password for that service principal. If you specify the 

correct password, the authentication is successful, a Subject is created 

containing a Principal with the server principal name, and that Subject 

is associated with a new access control context. The subsequently- 

executed code is considered to be executed on behalf of the specified 

principal. When you run Client, one of the arguments is the service 

principal name. This is needed so Client can initiate establishment of 

a security context with the server. They must establish a joint security 

context using their credentials. The security context encapsulates 

shared state information that will include cryptographic keys. One use 



 79

of such keys will be to encrypt messages to be exchanged. This shows 

clearly the  first objective that is To learn in detail the implementation 

of Kerberos authentication has been achieved   

 

ii. The text message from the computer input port is encrypted using the 

RIJNDAEL encryption algorithm before being transmitted to the 

network. The text message received is also decrypted with the same 

algorithm upon receiving the transmission from the network. This 

fulfills the second objective that is to implement encryption to secure 

the audio transmission. 

 

iii.  A network connection between two computers was established using 

TCP protocol to transmit the encrypted text in a reliable manner. By 

doing this, the third objective that is to securely transmit the text 

message in a reliable network connection has been achieved. 

 

iv. This system is developed by integrating network programming 

components provided by JAVA with Kerberos authentication. This 

shows clearly the last objective that is to develop a prototype message 

exchange system using network programming and cryptography has 

been achieved. 

 

 

 

 

6.6   Conclusion 

 

 

 The basic need of developing this prototype system is to show that Kerberos 

authentication protocol can securely exchange the cryptography key. Although it 

only supports two hosts at a time, it did fulfill all the objectives and it is fully 

functional. Both the host was involved during the unit testing and integration testing 

as well as white box testing. 

 



 80

 Besides that, network programming capability in Java object-oriented 

programming language has been a great help developing this chat system. Usage of 

socket and stream did avoid low-level network setup troubles. And editing tools were 

handy all the times as compiling and executing could be done without typing in 

commands. 

 

As a whole, this prototype system is expected to expand in future to cater for 

many other needs such as communication between many hosts at a time and many 

more. 

 



 85

 

 

 

 

REFERENCE 

 

 

 

 

1) Neuman, Clifford and Tso, Theodore (1994). Kerberos: An Authentication 

Service for Computer Networks, IEEE Communications, volume 39 pages 33-38  

 

2) J.Kohl and C.Neuman. The Kerberos Network Authentication Service (V5) 

Internet Engineering Task Force, September 1993  

 

3) V. Samar and C. Lai. Making Login Services Independent from Authentication 

Technologies. In Proceedings of the SunSoft Developer's Conference, March 

1996.  

 

4) J. Linn. Generic Security Service Application Program Interface,Version 2. 

Internet Engineering Task Force, January 2000  

 

5) J. Linn. The Kerberos Version 5 GSS-API Mechanism. Internet Engineering 

Task Force, June 1996 C.Adams.  

 

6) The Simple Public-Key GSS-API Mechanism (SPKM). Internet Engineering 

Task Force, October 1996  

 

7) J. Kabat and M.Upadhyay. Generic Security Service API Version 2: Java 

Bindings. Internet Engineering Task Force, January 1997.  

 



 86

8) Behrouz.F, Coombs.C, and Fegan.S (2000). “Data Communications and 

Networking, Second Edition.” McGraw-Hill, United States of America. 

 

9) Couch.J (1999). “Java 2 Networking.” McGraw-Hill, United States of America.  

 

10) Dennis.A, and Wixom.B (2000). “Systems Analysis and Design.” John Wiley 

and Sons, United States of America. 

 

11) Stallings.W (1998). “Cryptography and Network Security: Principles and 

Practice, Second Edition.” Prentice Hall, New Jersey. 

 

12) Duncan Sellars (1999). "Linux Kerberos Authentication" at 

http://www.hut.fi/cc/docs/kerberos/sso.html 

 

13) Nelson.M (2001). “MIT Kerberos at http://web.mit.edu/kerberos 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 
 

GANTT CART 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ID Task Name

1 PHASE 1: PLANNING
2 Research on thesis information

3 To set the objective, scope and purpose of the system

4 PHASE 2: ANALYSIS
5 Choosing the programming language to be used

6 Choosing Authentication Protocol

7 Deciding on techniques to be used for the implementation of Dig

8 Choosing the encryption algorithm 

9 Choosing the right network protocol

10 Choosing the tools to be used

11 PHASE 3: DESIGN
12 Designing the whole system

13 Thesis report

8/8 8/15 8/22 8/29 9/5 9/12 9/19 9/26 10/3 10/10 10/17 10/24 10/31 11/7
September October November

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Gantt Chart PSM I

Page 88

Project: PrabuGantt
Date: Wed 3/30/05



ID Task Name Duration Start Finish

1 PSM 2: Secured Text Chat System Using Ke 79 days Fri 12/10/04 Wed 3/30/05

2 USER INTERFACE DEVELOPMENT 11 days Mon 12/13/04 Mon 12/27/04
3 WHOLE SYSTEM DESIGN 11 days Mon 12/13/04 Mon 12/27/04

4 PHASE 5 : IMPLEMENTATION 39 days Tue 12/28/04 Fri 2/18/05
5 CODING 19 days Tue 12/28/04 Fri 1/21/05

6 HARDWARE TESTING 2 days Fri 1/21/05 Mon 1/24/05

7 SOFTWARE TESTING 2 days Tue 1/25/05 Wed 1/26/05

8 INTEGRATING THE SUBSYSTEMS 7 days Wed 1/26/05 Thu 2/3/05

9 TESTING THE SYSTEM 11 days Fri 2/4/05 Fri 2/18/05

10 DOCUMENTATION PROCESS 38 days Mon 1/3/05 Wed 2/23/05
11 PROCEDURE DOCUMENTATION 10 days Mon 1/3/05 Fri 1/14/05

12 OPERATIONS DOCUMENTATION 10 days Fri 1/14/05 Thu 1/27/05

13 PREPARING THE FULL REPORT 12 days Tue 1/25/05 Wed 2/9/05

14 PREPARING THE DRAFT 10 days Thu 2/10/05 Wed 2/23/05

15 SUPERVISOR EVALUATION 4 days Fri 2/11/05 Wed 2/16/05

16 PRESENTATION 1 day Thu 2/17/05 Thu 2/17/05

17 PRESENTATION MEDIUM PREPARATION 5 days Fri 2/18/05 Thu 2/24/05

18 PRESENTATION WEEK 5 days Mon 2/28/05 Fri 3/4/05

19 DRAFT CORRECTION 7 days Fri 3/4/05 Mon 3/14/05

Nov Dec Jan Feb Mar Apr
November December January February March April

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Gantt Chart PSM II

Page 89

Project: psm2
Date: Wed 3/30/05



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 
 

USER MANUAL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 91

USER MANUAL 

 

 

1.1      Hardware requirement 

 

i. Two set of computers with LAN connection 

ii. Network card 

 

 

1.2      Software requirement 

 

i. Java(TM) 2 SDK, Standard Edition Version 1.4.2 

ii. Operating system: Red Hat 9 

 

 

1.3      Installation process 

 

i. Java(TM) 2 SDK, Standard Edition Version 1.4.2 

ii. Set the class path for the batch file for Chat system. 

 

 

1.4      How to run this application? 

 

 

i. Open new terminal 

ii. Go to the current directory where the client code is placed. 

iii. Run the application by   

  java -java.security.krb5.realm=<PSM>  
  -Djava.security.krb5.kdc=<198.162.3.8>  

  -Djavax.security.auth.useSubjectCredsOnly=false 

  -Djava.security.auth.login.config=bcsLogin.conf  

  Client 7000 

 



 92

1.5      How to utilize this application? 

 

The screen shot and details below show how to use this application efficiently: 

 

 

1.5.1 Main Menu 

 

 

i. The user is prompted to enter his /her principal name and the password 

ii. If login successful, the application is started, the screen in Figure 1 will 

be shown, 

 
Figure 1: Main Menu. 

iii. To exit from the application the user must press the Exit button.  

iv. To start chatting, the user has to type messages and press the Send button.  

 

 

 

 



 93

1.5.2 Exiting from the Application 

 

i. When the user wants to exit from the system he should press the button 

Exit. 

 

 

 

1.6 Installing and Configuring Kerberos Clients on Red Hat 9.0  

  

Install the krb5-libs, krb5-workstation and pam_krb5 packages. On Red Hat 9.0, 

the krb5-libs and pam_krb5 packages install along with the operating system. The krb5-

workstation package can be found on CD number 3.  

 

Configure Kerberos for command line login  

a. Login on the console of your Red Hat machine as root and execute startx to 

bring up the GUI.  

b. Choose menu options System Settings…Authentication.  

c. Select the Authentication tab and check the Enable Kerberos Support   box.  

d. Click on the Configure Kerberos… button.  

e. Enter data in the Realm, KDCs and Admin Servers boxes.  

f. Click OK and you should be set to go.  

 


