Finiteness conditions and structural construction of automata for all
process algebras

Eric Madelaine ** and Didier Vergamini *

**INRIA *CERICS
Route des Lucioles, Sophia Antipolis Rue Albert Einstein, Sophia Antipolis
06565 Valbonne Cedex (France) 06565 Valbonne Cedex (France)
email: madelain@mirsa.inria.fr email: dvergami@mirsa.inria.fr

Abstract

Finite automata are the basis of many verification methods and tools for process
algebras. It is however undecidable in most process algebras whether the semantics of
a given term is finite. We give sufficient finiteness conditions derived from the analysis
of the operational rules of the algebra operators. From these rules we also generate the
functions that compute automata from terms of the algebra. These constructions allow
one to use our verification tools for programs written in many process algebras.

Keywords verification, concurrent systems, process algebra, lotos, structural operational seman-
tics, finite automata.

1 Introduction

Verification methods for concurrent systems can be classified in at least three families: theorem
proving methods, model-checking, and automata based methods. The first family holds the biggest
theoretical power; it may be applied to many sort of undecidable problems and in some sense it
can deal with infinite objects. However theorem proving methods have usually a high complexity
and there is few hope to make these methods purely automatic. The ECRINS system ([MdSV89)])
uses theorem proving methods, together with specialized algorithms, to check for the validity
of bisimulation laws in process algebras. The approach is general enough to consider most usual
process calculi from the literature; the semantics of the operators is defined in user-defined calculus
description files, and used by the system to generate specialized behaviour-evaluation algorithms.

We want to apply this parameterized approach for building tools based on automata analy-
sis. The system AuTo ([dSV89], [RS89]) is dedicated to wverification by reduction of parallel and
concurrent programs. AUTO deals only with terms that have finite automata representations. Its
main activities are the construction of automata from terms of process algebras and the reduction
and comparison of automata along a large family of equivalences. These activities are mostly in-
tertwined, according to congruence properties of the equivalences that allow for reducing subterms
of operators before building any global automaton. This approach cuts off partially the space
explosion that causes the well-known limitation of such techniques.

The current AUTO system is using a subset of the MEIJE calculus ([Bo85]) as input language.
To ensure that terms have finite representations, we use a two layers structure for input terms. In
the lower layer, one can write recursive definitions directly encoding automata: recursive variables
correspond to states and transitions are specified through action prefixing and non-deterministic

choice (see the example 1 in section 2.2); these are dynamic operators, for they build the behaviour
of components of a system. In the upper layer, one builds networks of automata using static
operators (asynchronous parallel composition, renamings of signals, and a restriction operator).
Finiteness of automata is guaranteed by forbidding occurrences of the parallel and renaming op-
erators inside the recursive definitions. Observational equivalence appears to be a congruence for
the MELJE parallel and restriction operators, so lower layer automata can be reduced before being
composed.

Extending the structural construction of automata to parameterized process algebra, we need
new finiteness conditions, computable from the very definitional rules of the operators. Here
the splitting between static and dynamic operators makes less sense, as many operators can be
used both in dynamic and static positions. Moreover there are operators that are asymmetric;
recursion on the left argument of the enable and disable operators of LOT0S may generate infinite
structures, whereas recursion on their right arguments can be used safely. We shall deduce from
analysis of their rules which operators may in which position accept a recursive variable as one of
its arguments, and which operators are preserving finiteness of automata. The rules analysis also
provides us functions associated with each operator for building the automata.

In section 2, we give an overview of the concepts from process calculi theory we need in the
paper, including a description of the syntax we allow for structural operational semantic rules. In
section 3, we discuss finiteness conditions and explain the classification of operators obtained from
the analysis of the rules. In section 4 we describe the algorithms for structural construction of the
automata, and in the conclusion we describe a prototype system that uses this generic technique
and discuss current work.

2 Process Calculi

Process calculi are now a well-accepted generic notion for designing a class of formalisms which
share the same definitional principles : CCS [Mi80], SCCS [Mi83], MEIJE [Bo85], TCSP [Bro83],
ACP [BK86], BasicLOTOS [BB88] to name a few. We shall assume reader’s acquaintance with at
least one of these languages and its definitional mechanisms.

Process calculi are based on two main types : actions and processes. Operators take actions and
processes arguments into processes, providing a classical algebraic structure. Operational semantics
provides interpretation of closed terms into transition systems, with actions as transition labels.
Operators and non-closed expressions are then interpreted as transition system transformers; this
semantics is defined through behaviour rules in a structural operational style, with a particular
format (see [dSi85], [V(G88]). We shall describe our format for rules in section 2.4.

Special operators are action renamings and recursive definitions. They are present in all process
calculi.

2.1 Actions

In all process algebras actions are themselves structured. This structure is what allows for syn-
chronization and further communication to be handled in relevant operators rules. Just recall the
inverse signals in CCS, which meets in synchronization and produce a hidden action 7. In SCCS
and MEILJE there is a full commutative monoid of potential simultaneous actions, again containing
a group of invertible signals. Actions structure in ACP is more scarce and parametric, while in
BasicLOTOS it is only a set of so-called gate names without structure, but for a distinguished
termination action §.

2.2 Recursive definitions

Most process algebras have some sort of recursion operator. In AUTO and ECRINS we use a common
recursive definition mechanism for all process algebras. Here 1s an example of a recursive definition,

written with MEIJE operators:
Example 1

let rec {x = a:x + b:x +c:stop
and y a:y + b:z
and z = a:z + c:c:y } in x//y

Such recursive definitions are used in AUTO for building finite automata, perhaps composed
later on by other operators of the algebra. One can also build infinite structures, not suitable for
analysis in AUTO, such as:

Example 2

let rec {many-processes = one-process // many-processest
in many-processes

2.3 Definition of process algebras

A calculus description contains the concrete syntax and abstract syntax definitions of the calculus
operators, together with structural conditional rulesthat gives them an operational semantics. The
EcRrINs calculus compiler uses the first part to produce a scanner, a parser and abstract syntax
structures for expressions of the calculus. From the semantics part, the compiler will produce the
functions for building and combining automata from terms. We now sketch the allowed syntax
formats using examples. Full documentation will be found in [MdSV89] and is recalled shortly
below.

operator hiding:: Process Label --> Process
syntax \\ left 4
semantics
hiding p—a-—>p’ & (aequal s)
P\Ms —- tau -—> p’\\s
hiding-not p-——a-—>p’ & not (a equal s)
P\Ms —— a -—> p’\\s
end

The first line declares the name and the signature of the operator. Then follows the concrete
syntax description, along with associativity and priority declarations aimed at the parser generator.
Finally the operational rules are listed. The end right upper part of the rules (e.g. (a equal s))
is a predicate over actions conditioning the applicability of the rule. Such predicates implement
synchronization conditions over the actions of the operator subterms. The plain format of the
structural conditional rules will be explain below. Here are two other examples, respectively from
MEIJE and BasicLoTos:

operator ticking :: Action Process --> Process
syntax * right 3
semantics
ticking p-——a-->p’
s*p —— a.s ——> s*p’
end

operator disable :: Process Process --> Process
syntax [> left 4
semantics
disabling_1 p —— a -——> p’ & not(a equal d)
pl>q -- a -—>p’[>q
disabling_2 p—a-—>p’ & (a equal d)
pl>q —— 4 -——> p?
disabling_3 qg-—-a-—>gq’
pl>q —a -——> q’
end

2.4 The Conditional Rewrite Rules format

The rules must obey the following format:

uj
{l‘]’ — x}}JC[l..n] & P({uj}Jaala"'aam)
F{ujtg, a1, ..., am)
Op(x1;~~~,$n,a1;~~~,am) T/({xk}[l..n]—Ja{$2;}Jaa1a"'aam)

Many definitions in this paper rely on the syntax allowed for the various elements of conditional
rules. Let us give precise names to these elements.

Definition 1 We call:
e premises the upper part of the rule and conclusion its bottom part.

e subject the term at the left end part of the conclusion. The head operator Op of the subject
has process arguments x1, ..., T, and action parametersay, ..., a,,. Inside P, F' and T" some
other actions may appear: they are global constants of the calculus and had to be declared as
such previously.

e formal hypothesis the part of the premises on the left of the & and working formal variables
the x; with j € J.

e actions predicate the part of the premises on the right of the &. P belongs to boolean operators
closure of the following basic predicates : equality, divisibility, set membership.. over actions
terms with synchronization product.

e resulting action the label over the arrow of the conclusion. The resulting action F s a
function of the formal hypotheses actions (and of the operator action parameters).

e resulting process the right end part of the conclusion. The process arguments that appear as

formal hypothesis must be transformed as x§ wmn the resulting process. This condition does not
allow to test a potential future behaviour of a process, without making it explicitly perform its
action within the considered rule, therefore saving the possibility of choosing another future.
This is a restriction lo the format in [VG88]. Beside this condilion, the resulting process
is built from the action and process variables, and the operators of the caleulus (excluding

recursive definitions).

3 Finiteness Conditions

The preceding conditional rules defines in a structural manner the semantics function that computes
a transition system from a (closed) term of a process algebra. This definition is constructive: you
can compute each transition of the transition system by building proof trees which nodes are
instances of the rules.

Definition 2 A term of a process algebra has transition-system finiteness (TSF) iff the transition
system computed from the term using the operators’ rules is strongly bisimular to some finite
transition system (i.e. with a finite number of states and a finite number of transitions).

In many process algebras with recursion, this property i1s undecidable. Sufficient syntactic
conditions to ensure FTS will be given in this section, for any process algebra defined using the
conditional rewrite rules from the preceding section. As far as possible, these conditions will be
expressed in terms of the semantic rules of the operators. We shall use the following notions:

guarded recursion: It is possible to build infinite proof trees for terms containing recursive
definitions. Can we found syntactic conditions to guaranty that all proof trees are finite?

non-growing operators: Making the assumption that the arguments of an operator have finite
semantics, 1s it always true that their composition by this operator is a finite automaton?
This property holds for most classical operators, but the rule format allows to define exotic
operators that create infinitely many states.

sieves: Some unary operators have the nice property that the resulting automaton has exactly the
same states than the argument automaton, only some transitions being transformed, erased,
or added. We implement their semantics by sieves, that is functions that only modify the
transitions of the system. Which operators may be implemented in this way?

switches: Inside a recursive definition, the use of recursive variables should be limited in some way,
in order to avoid building infinitely many states, or states with infinitely many transitions.
Clearly, parallel composition operators and non-alphabetical renamings should be somehow
forbidden inside recursive definitions. At which places (defined as occurrences of operator
arguments) is a recursive variable allowed to appear?

3.1 Guarded recursion

In order to avoid divergence in the proof tree construction, we introduce as usual a notion of
guarded terms. We define here this notion in a rather abstract way, and we shall give a generic
algorithm that computes it in a further section. The definition relies on the fact that if a proof tree
is infinite, then either it contains a pattern that occurs infinitely, or the subject of its nodes are
strictly growing along the infinite branches. The guarded property takes care of infinitely repeated
patterns, while growing branches will be addressed later.

Definition 3

o A proof tree s unguarded iff the subject of its root is equal to the subject of one of its subtree,
or if it has an unguarded subtree.

o A term of a process algebra is unguarded if it has an unguarded proof tree, or if at least one
of its possible reconfigurations s unguarded.

o A term of a process algebra is guarded if ¢t is not unguarded.

3.2 Non-growing operators

Growing operators build infinite structures from arguments having finite automata representations.
Though no operators of usual process algebras have such a nasty behaviour, we need a syntactical
way to ensure that no growing operator is used in a term. In order to obtain infinitely many
states in the resulting automaton, one would have to introduce a rule that produces new terms ab
infinitum. A natural sufficient condition for ensuring finiteness is to be able to find an order on
expressions such that for all rules, the resulting process is not strictly greater than the subject.

It is possible to adapt here many results from the term rewrite system theory, with the difference
that we are looking for a non-strict order compatible with our rewrite relation, whereas usual
rewrite systems need a strict decreasing order. We give here a simple definition that covers nearly
all interesting cases:

We consider families of operators closed under reconfiguration: if an operator belongs to the
family, then all operators that occur in the resulting processes of all its rules also belong to the
family.

Definition 4 A family of operators {Opy} is non-growing iff there exist a simplification ordering
< such that:

For each rule of each operator, let us denote Opy(x;) the subject of the rule and T, [x}/x;] its
resulting process in which all resulting working variables x} have been replaced by their corresponding
x;, then:

either 15, [x; /2] < Opg(x;)
or Ty, [} /2] = Opp(2;)

where = 1s the syntactic equality on terms.
We say then that all Opy are <-non-growing.

Theorem 1 Given a family of non-growing operators F' = {Opy}, an operator Opy(x;) of arity
n, and n terms T; having TSF, then Op(T;) has TSF.

Lemma 1 Any process expression containing no recursive definition has a finite number of be-
haviour rules

This follows trivially from our format for the operators’ rules: building the behaviour proof
trees, the premise at each node is strictly smaller than the subject of the node, w.r.t. the subterm
order. So the depth of the proof tree is bounded by the depth of the expression. Then at each
node you can choose among a finite number of rules to apply, the number of proof trees is finite,
so the number of behaviours (= successful proof trees) is finite.

Proof of theorem 1:

Consider the set R of all possible reconfigurations R of Op;(T;). The behaviours of each R
are computed from instances of the rules of the operators {Opy}. As simplification orderings are
substitutive, the rules of each R are themselves compatible with the ordering. From lemma 1, each
R have only a finite set of rules. Simplification orderings are well-founded, so R is finite.

Now say the subterms 7; have finite automata A;. Then we can build the transition system of
Opy(T;), with states of the form s =< R, st;,, ..., st;, >, where the st;, are states from Ay, and
initial state < Opy(T5), sto,, ..., sto, >. The number of those states is bounded by [R|*|A1]*...x| Ay|.
The transitions of any such s are computed from the rules of R (finite from lemma 1), and from
all combinations of the transitions of the st;,; they are in finite number.

|

This proof gives hints toward implementation: A pre-compilation phase can compute the re-
configuration set, and even build the functions that compute the composed transitions. Such a
pre-compilation is subsumed in the algorithm in section 4.3.

3.3 Sieves

Definition 5 A sifting operator, or sieve, is an operator with exactly one process argument, which
rules obey the following conditions: each rule has exactly one working formal variable (the process
argument), may have predicates and any form of resulting action, and the resulting process is
obtained from the subject of the rule by substituting the working formal variable by the corresponding
resulting process variable.

This definition includes the renaming, restriction, and ticking operators of MEIJE, the hiding
operator of Tcsp and LoTos.

Sieves are defined in fact as (partial) functions on actions, rather than on automata. More
precisely they are functions that map actions to finite sets of actions, for a sieve may have a (finite)
number of rules that can apply on a a given action. As such, they can be easily composed. They
can also be combined with the automata building functions, leading to efficient implementations
where no intermediate automata are built for such operators. This 1s especially important when
the sieve discards some transitions: it is possible to save producing and exploring the corresponding
target states.

Another issue is the introduction of sieves inside recursive definitions. We need define here a sub-
class of sieves such that the language generated by their compositions, modulo some idempotence
property, remains finite. Then the states of the generated automaton will be obtained as pairs of
a recursive variable and a composition of sieves.

This applies e.g. for alphabetical renamings, hiding, and restriction (for the alphabet of action
labels in a term is finite, and the set of all restriction compositions is a finite commutative group).

Of course, it does not apply to ticking or to non-alphabetical renamings, and the MEIJE term:
let rec x= a:y and y = b*x in x generates infinitely many states x, b*x, b*b*x, etc.

We need here a non-growing definition for resulting action functions:

Definition 6 An operator rule is action-non-growing iff its resulting action is an action term built
only from the following ttems: the formal action of the rule, the action parameters of the subject,
the constant actions of the caleulus, and alphabetical renamings (including renaming a label by an
invisible action).

This definition is trivially fulfilled by all operators of BasicLoTos and Ccs, but not by the
ticking operator of MEILJE, nor by non-alphabetical renamings.

Definition 7 A non-growing sieve is a sifting operator which rules are action-non-growing.

Proposition 1 Given a finite alphabet of actions, the algebra of all compositions of non-growing
steves has a finite model.

Proof: Consider the action-sifting functions associated to sieves: Given an action (the label of
a transition), an action-sifting function returns the (finite) set of possible transformations of the
action by the various rules of the sieve that may be applied to this particular action.

It is enough finding a finite model for the compositions of action-to-action transformation: the
extension to subsets will keep finiteness. By the way, the set of action-to-action transformations
listed in definition 6 is closed under composition (u, is the formal action of a sieve rule):

- up — U, (the identity) is neutral element for the composition,

- up — a with a either an action parameter or constant of the calculus is trivially left absorbing
for the composition,

- Up — Up < a1/ba, ..., an/b, > where q; and b; are action labels (excluding composed actions)
form a finite monoid for the composition.

3.4 Switching operators

The simplest way to generate an arbitrary finite automaton using recursive definition is to write
an equation for each state of the automaton that describe the (finite) set of transitions, and of
target states, of this particular state. This is achieved usually using recursive equations which
right-hand-sides contain finite sums of action prefix operators (this was the case in the preceding
version of AUTO).

For the sake of conciseness of the terms and of generality with respect to the now usual operators
of process algebras, we want to extend as much as possible the possible language for these recursive
equations, while keeping syntactic conditions on this language for TSF. Such extensions have
been already published e.g. for Basic Lotos in [Ai86],[GN], allowing for example the following
BasicLoTos-like term, where “” stands for the action prefixing operator, “[1” for the choice
operator, and “>>” for the enabling operator:

Example 3
let rec x = a:exit >> y
and y = b:y [1 ¢c:x in x

Definition 8 Given a family of operators O and a well founded simplification ordering < on
expressions generated from O,
An operator Op in O is a switching operator (or simply a switch) w.r.t. one of its process
arguments “p” iff:
- All rules tn which “p” is a working formal variable verify the following properties: it has no
other premise (“p” works alone) and the resulting process is exactly p'.

- All rules where the resulting process contains an occurrence of “p” are non-growing for <
and are their resulting processes are themselves switches for “p”.

Remarks:
- This includes non-growing operators with no premise at all.

- The name “switch” may refer to the fact that a switching rule selects (at most) one of its
process arguments.

- This definition could be extended by allowing rules in which “p” is working to have as
resulting processes T such that T < Op(...,p, ...), with T being also in some sense a switch
for p. However, this would complicate to much both the definition and the related proofs,
whereas all classical operators fit the restricted definition we have just given.

The sum operator of Sccs, the binary choice of BAsicLoToS are switches, but also the delay
operator of MEIJE and the disabling operator of LoTos for its second argument.

Usual prefixing operators are also switches, including the action prefiz operators of MEIJE and
LoTos, of course, but also the enabling operator of LoT0s for its second process argument. The
wnternal choice of TCSP is a switch.

Yet the external choice operator of TosP is not a switching operator (see its rules in the annex),
because for each of its arguments, it has a rule looking as a switching rule, and a rule resembling a
steve rule. By the way this operator is one we do not want to be involved in a recursive definition:
Example 4

let rec x = (tau : x) ext-choice a:y in x

This term generates the following sequence of resulting processes:

let rec {x = tau:x ext-choice a:x}
in x ext-choice a:x
let rec {x = tau:x ext-choice a:x}
in (x ext-choice a:x) ext-choice a:x
let rec {x = tau:x ext-choice a:x}
in (x ext-choice a:x) ext-choice a:x ext-choice a:x

Though this specific case could be reduced (to a finite set of terms) by semantical arguments, the
finiteness property may no more be guaranteed at a syntactical level. Semantical arguments for
finiteness are out of the scope of this paper.

Definition 9 Given a family of variables V', a term from a process algebra is called a term suitable
for recursion on V' iff either

1. it 1s a variable from V,
2. or it does not contain any variable from V and it has a finite automaton semantics,

3. or its head operator is a switching operator for some of its arguments, these arguments are
subterms suitable for recursion on V., and all other arguments contains no occurrences of
variables in V' and have finite automaton semantics,

4. or its head operator is a non-growing sieve and its argument is suitable for recursion on V.

Remark: this definition can be extended to handle nested recursive definitions, by adding an item
for any recursive declaration “let rec {#; = e;} in 2¢” such that all ¢; are suitable for recursion
on V U {z;}. Such an extension preserves the following theorem, though the proof is still more
tedious.

Theorem 2 Let Proc be a recursive definition “let rec {x; = e;} in ¢”.
If Proc is guarded, and if all expressions e; are terms sutlable for recursion on {x;}, then the
recursive definition has a finite automaton semantics.

Proof: We define a finite set of states by induction on the structure of the term, then we prove
that the transition system of the term maps in this state space, with a finite number of transitions
from each state. The full proof is in the annex.

This property allows us to guarantee that some recursive definition have a finite semantics. In
any process algebra, it permits using any combination of nested recursive definitions, and arbitrary
closed terms inside recursive definitions. In the case of MEIJE-SccS, it naturally includes the
classical “well-guarded” condition (sums of action-prefix operators). In the case of BasicLoTos,
it allows the occurrence of recursive variables as second arguments of the enabling operator and well-
guarded occurrences of recursive variables within the second argument of the disabling operator.

3.5 Finite operators

This notion is used to ease the application of definition 9 for simple cases.
Definition 10 Finite operators are non-growing operators with no process argument.

Most process algebras have a constant operator without any possible behaviour (the nil of Ccs,
the stop of LoTos). All these are finite operators. Another example is:

operator clock : Process
syntax h prefix
semantics

h(a) -- a -—> h(a)

Finite operators are trivially accepted by case 1 of definition 9

3.6 Accessibility

All preceding conditions can be restricted to the accessible parts of the term. This is not only
an optimization issue: considering only accessible parts allows for rejecting less programs, for any
violations of a condition inside a non-accessible part of a term will have no consequence on its
semantics.

Accessibility is an undecidable property, for it may involves deciding whether some subterms
are dead-locked. We only want to give here a reasonable sufficient characterization of potentially
accessible parts of a term. The main 1dea is that whenever some equation in a recursive definition
is not referenced from an accessible part of the term, anything inside this equation has no influence
at all on the semantics of the term. We define here by structural induction whether a sub-term, a
recursive variable, or a recursive equation is accessible:

Definition 11
The root of a term is accessible.

If a subterm is accessible and this subterm has the form Op(arg;), and if the union of the
sets of working formal variables in all the rules of operator Op is {arg;}, then all the {arg;}
are accessible (for all operators of classical process algebras, {arg; } = {arg;}).

If a recursive definition let rec xi = ti in T is accessible, then all the variables xi that
are free in T and in the accessible right-hand-sides ti are accessible, the corresponding recur-
sive equations are accessible, and the right-hand-sides of these equations are accessible.

If a local definition et x = t in T is accessible, and if x is free in T, then the variable x is
accessible, and the sub-term t is accessible.

4 Algorithms

We have implemented a new version of AUTO using the preceding results. From the rules of the
operators, and from their classification in finite, sifting, switching, and non-growing operators, we
derive functions that test the syntactical conditions for finiteness, then build the automaton of a
term.

More precisely, given a closed term of a given process algebra, the system goes through the
following steps:

1. Computes the accessible part of the term. This is an opportunity to emit diagnostics on
potential user errors.

2. Checks whether the accessible part is guarded. If not, rejects the term.

3. Checks whether all accessible recursive definitions are suitable for recursion. If not, rejects
the term.

4. Generates the corresponding automaton. This step, as in the original AUTO system, is
parameterized by a reduction function (hopefully a congruence) to be applied on each sub-
automaton before building their combination.

10

4.1 Guarded recursion test

Within the framework of AUTO, the only possibility for building an unguarded proof tree is
through a recursive declaration: there exist a path in any unguarded proof tree such that the
subjects at both ends of the path are identical, and there is an unfolding of (at least) a recursive
definition on this path, and all other nodes correspond to rules having at least one premise.

Let us test whether a term of is guarded or not. Informally, we look for a cycle through the
immediate dependencies among recursive variables. As such a cycle may appear through several
levels of nested recursive declarations, the dependency graph is to be computed for the whole
accessible part of the term.

The algorithm builds a directed graph whose vertices are either recursive variables or subterms
of the term, and the initial vertices are the accessible recursive variables. There is an arrow between
states T1 and T2 if the head operator of T1 has a rule with a premise for its n-th argument, and
T2 is the n-th son of T1; there is also an arrow between states T1 and T2 if T1 is a recursive
variable, and T2 is the right-hand-side part of the equation defining T1, and between states T1
and T2 if T1 is a recursive definition let rec xi = ti in T2

The term is unguarded iff there exists a cycle in this graph.

4.2 Automata Generators and Combinators

We describe now the algorithms used for the structural construction of automata.

We call tta (standing for term to automaton) the function computing an automaton from a
term of a given process algebra. This function builds automata in a bottom-up fashion. A special
case raises when a recursive definition is encountered: under the hypotheses of definition 9, the
semantics of a recursive definition is a finite automaton (theorem 2). The algorithm let-rec:tta
checks for the finiteness hypotheses and build the automaton. On all non-growing operators the
algorithm non-growing:tta builds a resulting automaton from the automata corresponding to the
operator parameters. The #ta algorithms make also a special case for sieves: as the states of
tta(<sieve>(p)) are included in those of tta(p), we propagate sieves as second argument of #ta and
use them each time a transition is generated. This implies that we can compose sieves and that
we apply them as deep as possible inside the computations. Thus, tta takes two arguments:

- a term which is a non-growing operator applied on several subterms,
- a composed sieve (inherited from the recursive calls).

The basic tta algorithms are generic. They are adapted to each algebra through a specific set
of functions derived from the operational semantics definition of the operators. The following
sections describe the two algorithms non-growing:tta and letrec:tta, and the form of the specialized
functions.

We use the object-oriented convention type:name for naming a generic algorithm and its spe-
cialized versions (called methods) depending on the type of its first argument.

4.3 The residual algorithm for any kind of non-growing operator

We use the same generic algorithm for all non-growing operator but for sieves. The algorithm for
sieves is straightforward: sieve:tta(<sieve>1(p), <sieve>y) = tta(p, <sieve>; o <sieve>;)

For other non-growing operators, we have to compose the argument automata. In a first step
we recursively compute the automata denoted by all subterms. The most difficult point in this
recursive application is building the composed sieve to give as second argument for each recursive
call: if we want to optimize the size of the subsystems, we need to be able to compute how a
composed sieve is modified when going through an operator. For the moment, we only treat
simple cases such as the classical sum operator of Ccs for which we transmit the inherited sieve
without modification. Other operators transmit the trivial identity sieve.

11

The second step of the algorithm is a classical residual exploration. Each state of the global
system is a structure containing the states of each subsystem plus the operator combining them.
The initial state of the global system is composed by the operator and the initial states of the
subsystems. The unexplored state list is initialized to this initial state. Then the algorithm is a loop
taking one state in the unexplored state list, computing all the transitions of this state using the
specific functions associated to its operator and the sieve. This computation may produced some
states that are not yet discovered and thus added to the unexplored state list. The computation
finishes when the unexplored state list is empty. As we only use non-growing operators, the number
of reconfigurations of a given operator is finite, and the termination of the algorithm stems from
theorem 2.

More formally, we sketch in figure 1 the residual algorithm that computes tta(Op(ty, ..., tn,
<actions parameters>), <sieve>) where <sieve> is the inherited composed sieve, and ¢; are the pro-
cess arguments of the operator Op. In this figure, we call transition a couple of an action and a
resulting state.

Algorithm for
non-growing:tta(Op(ty,. .., {,, <actions parameters>), <sieve>)

Vi, T; = tta(t;, mk-sieve(Op, <sieve>, <actions parameters>))
statep = (Op, initial(71), .. ., initial(7y))
STATEs = {stateg}
UNEXPLORED = {stateg}
TRANSITIONS = {)
while (UNEXPLORED #) loop
take s in UNEXPLORED
UNEXPLORED = UNEXPLORED — {s}
transitions =)
foreach (action,state) € mk-trans(s, <actions parameters>) do
action = <sieve>(action)
if action then
transitions = transitions U {{action, state) }
if state ¢ STATES then
STATES = STATEs U {state}
UNEXPLORED = UNEXPLORED U {state}
TRANSITIONS = TRANSITIONS U {(s, transitions) }
return (STATES, statey, TRANSITIONS)

Figure 1: The residual algorithm for non-growing operators

The methods mk-trans and mk-sieve are specific to each operator. For instance, in Ccs the
method parallel:mk-sieve for the parallel operator simply produces the identity sieve. The
method parallel :mk-trans is sketched in figure 2:

Here the notation < p’|l¢ > stand for the composed state where the first sub-automaton has
advanced by one step, and the second sub-automaton is still in its original state.

a .
foreachmove < p — p’ > means that we repeat the same group of operations for each
transition of p.

4.4 The residual algorithm for recursive declaration

We sketch in figure 3 the algorithm dedicated to recursive declarations.
The scan methods uses the classification of operators in vartables, switches, and non-growing
operators. The method variable:scan fails, 1.e. indicates that there 1s a non-guarded variable

12

Algorithm for parallel :mk-trans(plq,<actions parameters>)
transitions = ()

a ’
foreachmove < p — p' >
transitions — transitions U < a, p'|q >

b
foreachmove < ¢ — ¢ >
if @ is inverse of b then transitions — transitions U < 7, p'|¢’ >

b
foreachmove < ¢ — ¢ >
transitions — transitions U < b, p|q¢’ >
return transitions

Figure 2: parallel:mk-trans

Algorithm for let-rec:tta(let rec {x; =1;} in zy, <sieve>)

i=1ln

Equations = {{z;,;, <sieve>)}
stateg = (&, t), <sieve>)
STATEs = {stateg}
UNEXPLORED = {stateg}
TRANSITIONS = {)
while (UNEXPLORED #) loop

take s = (x,¢, <sieve>) in UNEXPLORED

UNEXPLORED = UNEXPLORED — {s}

transition =

scan(?, <sieve>)

TRANSITIONS = TRANSITIONS U {(s, transitions) }
return (STATES, statey, TRANSITIONS)

i=1ln

Figure 3: The residual algorithm for recursive definitions

in the term. The methods <sieve>:scan recursively call scan on its process argument after
modifying its sieve argument. Last, the methods <switch>:scan call recursively scan on each
allowed subterm, producing some transitions, leading to some subterms: when these subterms do
not correspond to some variable in the set Equations, the function check generates new equations
to be added to the set. The function add-transition add a transition to the list transitions, and
add the new states to the STATES and UNEXPLORED lists. Figure 4 sketches the scan method for
some simple switches and for sieves.

5 Conclusion

The AUTO system we currently distribute is using specific hand-coded algorithms for the operators
of the MEDJEO calculus (stop, prefixing, sum, parallel, restriction, renaming). These algorithms
were carefully optimized in order to avoid building parts of product automata that were to be
deleted by some restriction operators.

We have built a new prototype of the AUTO system using the generic algorithms of this paper.
Tests have been made both for the MEIJEO calculus and for BasicLoTos (the prototype has
been presented in [MV89]). The MEIJEQ operators are correctly classified by our definitions:
the prototype accepts stricty more MEIJEQ programs than the preceeding AUTO system. Some
other MEIJE-Sccs operators (see [dSi85]) can be added easily to this syntax, including ticking,

13

operator parameters scan algorithm
action = <sieve>(action)
if action then

<action> : p, <sieve> .
sequence (action> : p, <sieve) state = Check(p’ <s1eve>)
add-transition(action, state)
. p—
sum (p + q, <sieve>) scan(p, <sieve>)

scan(q, <sieve>)
action = <sieve>(tau-action)
if action then
state = check(p, <sieve>)
add-transition(action, state)
<sleve> (<sieve>1(p), <sieve>3) | scan(p, <sieve>y o <sieve>])

Scos delay | (delay(p), <sieve>)

Figure 4: scan algorithms

wnterleaving and the synchronized product as non-growing operators. The results are good also for
BasicLoTos operators: the usual finiteness conditions are correctly deduced from the rules. Some
limitations of our conditions are listed in the annex. We also obtained efficiency mesurements:
this version appears to have the same order of performances than the old version. Moreover, it
should be clear that in many cases it allows to build a smaller number of automata (for sieves
never require to copy an automaton) and to apply sieves on smaller automata. No optimizations
have been done in the first prototype, so the new version is potentially much more efficient than
the specialized MEIJEQ version.

The set of programs accepted by the generic version is of course larger than in the former system,
and programs may be written in a much more permissive way: for example parallel compositions
may be done in many different ways using various operators and nested recursive definitions are
allowed.

The congruence properties of some equivalences versus MEIJE composition operators are also
to be generalized. It is very important for space efficiency reasons to apply reductions as deep
as possible in the term, in order to create and compose smaller automata. We plan to have the
ECRINS system proving congruence laws for various equivalences and various operators, so that
the congruence properties can be automatically used in AUTO during the automata construction.

6 Annexes

Not all the operators mentionned in this paper are widely known. Let us give the rules of some of
them.

In [Bo85] is defined the MEIJE-Scces calculus, with operators from both Boudol’s MEIJE calculus
and Milner’s Sccs calculus. The operators hiding, ticking, clock that occur in the paper are taken
from the MEIJE-Sccs calculus. Let us give other examples:

14

operator delta:: Process —-> Process
syntax delta

semantics
delayed @ -————————————————————————————
delta(p) -- tau --> delta(p)
undelayed p——a-—>p’
delta(p) -- a ——> p’
end

operator DELTA:: Process —-> Process
syntax DELTA

semantics
DELTA_1 p-——-a-—>p’
DELTA(p) -- a -—> delta (DELTA(p’))
end

operator desynchro:: Process —-> Process
syntax desynchro

semantics
desynchronised @ = —————————————-—mm—————mmmmm
desynchro(p) -- tau --> desynchro(p)
undesynchronised p-——a-->p’
desynchro(p) -- a —--> desynchro(p’)
end

The delta operator is a switch.

The DELTA operator does not match our conditions for non-growing operators, though it could
be managed by had-hoc methods.

The desynchro operator is a degenerated form of sieve, that does not match our conditions. An
extension of the sieves definition towards this type of operators would be possible.

The external-choice of Tosp, as mentionned in section 8 have both switching and sifting rules.
This prevent us from using it in recursive definitions:

operator external-choice :: Process Process —-> Process
syntax ext-choice left 6
semantics
p —— a ——>p’ & (not (a equal tau)) p —— a ——>p’ & (a equal tau)

p ext-choice q -- a -—>p’ p ext-choice q -- a -—> p’ ext-choice g
q -- a ——>q’ & (not (a equal tau)) q -—- a ——>q’ & (a equal tau)

p ext-choice q -- a -—>q’ p ext-choice q -- a ——> p ext-choice q’
end

Proof of theorem 2: We define a finite set of states by induction on the structure of the term, then
we prove that the transition system of the term maps in this state space, with a finite number of
transitions from each state.

Let us call state a pair St =< P, S > where P is a process expression and S is a (composition
of) sieve.

We build recursively the set S of states by:

15

Stl: The nitial state Sty =< eg, I >, where [is the 1dentity sieve, is in S.
St2: Given a state < P,S > in &, with P = x;, then < ¢;,5 > isin §.

St3: Given a state < P,.S > in §, with P having TSF, then for all states st of the automaton of
P, extending < such that st is smaller than all operators, then < st,5 > isin 8,

St4: Given a state < P,S > in §, with P = Op(ps,q;), Op is a switching operator for the z;
arguments corresponding to the p;, and the ¢; have TSF, let {r;} be the rules in which the z;
are working, {r;} the other rules of Op, {rp;} and {r¢;} their respective resulting processes,
then:

St4.1: for all r;, < p;, S >181n S,

St4.2: for each r;, call ¢, the subset of {¢;} working in r;, introduce new constants c,, of type
process, one for each state of each automaton of ¢4, stating that these new constants
are smaller than all operators w.r.t. <, then for all terms ¢’ < Op(pi, ¢;)[cqx/q4] for
some combination of the ¢4, < ¢/,5 > is in § (if the rule is an axiom, then take
q" < Op(pi, 5))-

St5: Given a state < P, S > in 8, with P = <sieve>(P’), then St' =< P’ S o <sieve> > isin S.

The set of process expressions in S is finite, because they all are < to one of the e; (cases 1
and 2 introduce some e;, cases 3 and 4 introduce expressions < to some expression in 8§, case b
introduces subterms of expressions in §, and < is compatible with the subterm ordering). The set
of sieves compositions in § is finite by proposition 1. So & is finite.

Remark that any process expression can be written s1(...(sp(P))...), where all s; are sieves,
and the head operator of P is not a sieve; let us write this decomposition S(P).

Now we prove that all reconfigurations of Proe decompose into a S(P) such as < P, S > isin
S, and have finitely many transitions. This will achieve the proof.

Let us call subreconfigurations of Proc the smaller set R of process expressions containing ey,
closed under switching argument relation (if Op(p;, ¢;) € R and Op is a switch for the p;, then the

a
p; are in R), and closed under the transition relation (if P € R and P/ — P’ then P” € R).
Let us prove by induction that:

P’ € R — P’ is suitable for recursion on {z;} and P’ = P*(S') with < P*, 5" >€ §

Ind0: eq verifies our property: 1t is suitable for recursion by hypotheses of theorem 2, and its
decomposition is in &, using construction Stl, together with item 5 as many times as the
head operator of ey is a sieve.

Ind1l: For an operator Op that is a switch for p;, the subterm corresponding to p; is suitable for
recursion by definition 9.3, and from Op € R we get < Op,I >€ 8§, so < p;, I >€ § by St4.

Ind2: Consider a transition P’ — P’ with with P’ € R. By induction hypotheses, P’ is
suitable for recursion, and its decomposition < P*, S’ > isin §. Trivially, P* is suitable for
recursion. Let us show that P = P**(S"”) By case analysis on definition 9:

Ind2.1: P* = x;: then its transitions are those of e;, that is suitable for recursion, and < ¢;, S >
isin 8 by St2 leading to the conclusion by application of the induction step on < e1,.5" >
(there may be no loop in the proof here, because of the guarded hypotheses).

Ind2.2: P* is closed w.r.t {z;}, and has TSF: all its reconfigurations are similarly suitable for
recursion (by definition 9.2), and they map to the < st;, S > states introduced by ST3.

16

Ind2.3: P* = Op(p;, q;) where Op is a switch for the #; arguments corresponding to the p;; its
transitions are built:

Ind2.3.1: either using a rule with one of the p; working; the resulting process P** is got
from a transition of p; itself, so it verifies our property (apply the induction step on
< Pi, S/ >)a

Ind2.3.2: or using a rule in which no p; are working; by the definition of suitability, all ¢;
have TSF. Consider the product automaton of the ¢; working in this rule (if the rule
is an axiom, this is a one state blocked automaton); each state of this compound
automaton correspond to a reconfiguration of Op(p;, ¢;) that may involve some of
the p;, but these are unchanged. Those states map to some of the ¢’ of St4.2. Their
transitions are those of the compound automaton, plus some new transitions using
r; rules, leading to a p} reconfiguration. In the first case, < ¢/,.5" > isin §, and we
keep suitability (for all subsequent reconfigurations are still switches for the p;). In
the second case, as in Ind2.3.1, we keep our property.

Ind2.4: P* = <sieve>(p) is not possible by definition of the decomposition.

References

[Ai86] G. Ailloux, “Verification in Ecrins of Lotos Programs”, ESPRIT/SEDOS/C2/N45 (1986)

[BB88] T. Bolognesi, E. Brinksma, “Introduction to the ISO Specification Language LOTOS”, in
The Formal Description Techniqgue LOTOS, North-Holland, 1988

[BK86] J.A. Bergstra, J.W. Klop, “Process Algebra: Specification and Verification in Bisimulation
Semantics”, CWI Monographs, North-Holland, 1986

[BS87] T. Bolognesi, S. A. Smolka, “Fundamental Results for the Verification of Observational
Equivalence: a Survey”, proc. of the IFIP 7** Internaional Symposium on Protocol Specifica-
tion, Testing, and Verification, North-Holland, 1987

[Bo85] G. Boudol, “Notes on Algebraic Calculi of Processes”, Logics and Models of Concurrent
Systems, NATO ASI series F13, K. Apt ed., 1985

[Bro83] S. Brookes, “A Model for Communicating Sequential Processes”, PhD Thesis, University
of Oxford, 1983

[dSi85] R. De Simone, “Higher-Level Synchronising Devices in Meije-Sccs”, Theoretical Computer
Science 37, p245-267, 1985

[dSV89] R. De Simone, D. Vergamini, “Aboard AUTO”, Technical Report INRIA RT111, 1989

[GN] H. Garavel, E. Najm, “TILT: From LOTOS to Labelled Transition Systems”, in The Formal
Deseription Technigue LOTOS, North-Holland, 1988

[MV89] E. Madelaine, D. Vergamini, “AUTO, a verification tool for distributed systems using
reduction of automata”, in proceedings of Forte’89 conference, Vancouver, North-holland,

1989

[MdSV89] E. Madelaine, R. de Simone et D. Vergamini, “ECRINS, A Proof Laboratory for Process
Calculi, User Manual”, to appear INRIA, 1990

[Mi80] R. Milner, “A Calculus for Communicating Systems”, Lectures Notes in Comput. Sci. 92,
1980

17

[Mi83] R. Milner, “Calculi for Synchrony and Asynchrony”, Theoretical Computer Science 25,
p267-310, 1983

[RS89] V. Roy, R. De Simone, “AUTO - AUTOGRAPH, submitted to Workshop on Computer-
Aided Verification, Princeton, N.J., 1990

[VG88] F.W. Vaandrager, J.F. Groote, “Structured operational semantics and bisimulation as

acongruence” CWI report CS-R8845, 1988

[Ve89] D. Vergamini, “Verification of Distributed Systems: an Experiment”, in Formal Properties
of Finite Automata and Applications, LNCS 386, 1990

18

