
Finiteness conditions and structural construction of automata for allprocess algebrasEric Madelaine �� and Didier Vergamini ���INRIARoute des Lucioles, Sophia Antipolis06565 Valbonne Cedex (France)email: madelain@mirsa.inria.fr �CERICSRue Albert Einstein, Sophia Antipolis06565 Valbonne Cedex (France)email: dvergami@mirsa.inria.frAbstractFinite automata are the basis of many veri�cation methods and tools for processalgebras. It is however undecidable in most process algebras whether the semantics ofa given term is �nite. We give su�cient �niteness conditions derived from the analysisof the operational rules of the algebra operators. From these rules we also generate thefunctions that compute automata from terms of the algebra. These constructions allowone to use our veri�cation tools for programs written in many process algebras.Keywords veri�cation, concurrent systems, process algebra, lotos, structural operational seman-tics, �nite automata.1 IntroductionVeri�cation methods for concurrent systems can be classi�ed in at least three families: theoremproving methods, model-checking, and automata based methods. The �rst family holds the biggesttheoretical power; it may be applied to many sort of undecidable problems and in some sense itcan deal with in�nite objects. However theorem proving methods have usually a high complexityand there is few hope to make these methods purely automatic. The Ecrins system ([MdSV89])uses theorem proving methods, together with specialized algorithms, to check for the validityof bisimulation laws in process algebras. The approach is general enough to consider most usualprocess calculi from the literature; the semantics of the operators is de�ned in user-de�ned calculusdescription �les, and used by the system to generate specialized behaviour-evaluation algorithms.We want to apply this parameterized approach for building tools based on automata analy-sis. The system Auto ([dSV89], [RS89]) is dedicated to veri�cation by reduction of parallel andconcurrent programs. Auto deals only with terms that have �nite automata representations. Itsmain activities are the construction of automata from terms of process algebras and the reductionand comparison of automata along a large family of equivalences. These activities are mostly in-tertwined, according to congruence properties of the equivalences that allow for reducing subtermsof operators before building any global automaton. This approach cuts o� partially the spaceexplosion that causes the well-known limitation of such techniques.The current Auto system is using a subset of the Meije calculus ([Bo85]) as input language.To ensure that terms have �nite representations, we use a two layers structure for input terms. Inthe lower layer, one can write recursive de�nitions directly encoding automata: recursive variablescorrespond to states and transitions are speci�ed through action pre�xing and non-deterministic1

choice (see the example 1 in section 2.2); these are dynamic operators, for they build the behaviourof components of a system. In the upper layer, one builds networks of automata using staticoperators (asynchronous parallel composition, renamings of signals, and a restriction operator).Finiteness of automata is guaranteed by forbidding occurrences of the parallel and renaming op-erators inside the recursive de�nitions. Observational equivalence appears to be a congruence forthe Meije parallel and restriction operators, so lower layer automata can be reduced before beingcomposed.Extending the structural construction of automata to parameterized process algebra, we neednew �niteness conditions, computable from the very de�nitional rules of the operators. Herethe splitting between static and dynamic operators makes less sense, as many operators can beused both in dynamic and static positions. Moreover there are operators that are asymmetric;recursion on the left argument of the enable and disable operators of Lotos may generate in�nitestructures, whereas recursion on their right arguments can be used safely. We shall deduce fromanalysis of their rules which operators may in which position accept a recursive variable as one ofits arguments, and which operators are preserving �niteness of automata. The rules analysis alsoprovides us functions associated with each operator for building the automata.In section 2, we give an overview of the concepts from process calculi theory we need in thepaper, including a description of the syntax we allow for structural operational semantic rules. Insection 3, we discuss �niteness conditions and explain the classi�cation of operators obtained fromthe analysis of the rules. In section 4 we describe the algorithms for structural construction of theautomata, and in the conclusion we describe a prototype system that uses this generic techniqueand discuss current work.2 Process CalculiProcess calculi are now a well-accepted generic notion for designing a class of formalisms whichshare the same de�nitional principles : CCS [Mi80], SCCS [Mi83], MEIJE [Bo85], TCSP [Bro83],ACP [BK86], BasicLOTOS [BB88] to name a few. We shall assume reader's acquaintance with atleast one of these languages and its de�nitional mechanisms.Process calculi are based on two main types : actions and processes. Operators take actions andprocesses arguments into processes, providing a classical algebraic structure. Operational semanticsprovides interpretation of closed terms into transition systems, with actions as transition labels.Operators and non-closed expressions are then interpreted as transition system transformers; thissemantics is de�ned through behaviour rules in a structural operational style, with a particularformat (see [dSi85], [VG88]). We shall describe our format for rules in section 2.4.Special operators are action renamings and recursive de�nitions. They are present in all processcalculi.2.1 ActionsIn all process algebras actions are themselves structured. This structure is what allows for syn-chronization and further communication to be handled in relevant operators rules. Just recall theinverse signals in CCS, which meets in synchronization and produce a hidden action � . In SCCSand MEIJE there is a full commutative monoid of potential simultaneous actions, again containinga group of invertible signals. Actions structure in ACP is more scarce and parametric, while inBasicLOTOS it is only a set of so-called gate names without structure, but for a distinguishedtermination action �.2.2 Recursive de�nitionsMost process algebras have some sort of recursion operator. InAuto and Ecrinswe use a commonrecursive de�nition mechanism for all process algebras. Here is an example of a recursive de�nition,2

written with Meije operators:Example 1let rec {x = a:x + b:x +c:stopand y = a:y + b:zand z = a:z + c:c:y } in x//ySuch recursive de�nitions are used in Auto for building �nite automata, perhaps composedlater on by other operators of the algebra. One can also build in�nite structures, not suitable foranalysis in Auto, such as:Example 2let rec {many-processes = one-process // many-processes}in many-processes2.3 De�nition of process algebrasA calculus description contains the concrete syntax and abstract syntax de�nitions of the calculusoperators, together with structural conditional rules that gives them an operational semantics. TheEcrins calculus compiler uses the �rst part to produce a scanner, a parser and abstract syntaxstructures for expressions of the calculus. From the semantics part, the compiler will produce thefunctions for building and combining automata from terms. We now sketch the allowed syntaxformats using examples. Full documentation will be found in [MdSV89] and is recalled shortlybelow.operator hiding:: Process Label --> Processsyntax \\ left 4semanticshiding p -- a --> p' & (a equal s)-----------------------------p\\s -- tau --> p'\\shiding-not p -- a --> p' & not (a equal s)---------------------------------p\\s -- a --> p'\\sendThe �rst line declares the name and the signature of the operator. Then follows the concretesyntax description, along with associativity and priority declarations aimed at the parser generator.Finally the operational rules are listed. The end right upper part of the rules (e.g. (a equal s))is a predicate over actions conditioning the applicability of the rule. Such predicates implementsynchronization conditions over the actions of the operator subterms. The plain format of thestructural conditional rules will be explain below. Here are two other examples, respectively fromMeije and BasicLotos:operator ticking :: Action Process --> Processsyntax * right 3semanticsticking p -- a --> p'-------------------s*p -- a.s --> s*p'end 3

operator disable :: Process Process --> Processsyntax [> left 4semanticsdisabling_1 p -- a --> p' & not(a equal d)------------------------------p[>q -- a --> p'[>qdisabling_2 p -- a --> p' & (a equal d)---------------------------p[>q -- d --> p'disabling_3 q -- a --> q'----------------p[>q -- a --> q'end2.4 The Conditional Rewrite Rules formatThe rules must obey the following format:fxj uj��! x0jgJ�[1::n] & P (fujgJ ; a1; : : : ; am)Op(x1; : : : ; xn; a1; : : : ; am) F (fujgJ ; a1; : : : ; am)�����������������! T 0(fxkg[1::n]�J ; fx0kgJ ; a1; : : : ; am)Many de�nitions in this paper rely on the syntax allowed for the various elements of conditionalrules. Let us give precise names to these elements.De�nition 1 We call:� premises the upper part of the rule and conclusion its bottom part.� subject the term at the left end part of the conclusion. The head operator Op of the subjecthas process arguments x1; : : : ; xn and action parameters a1; : : : ; am. Inside P , F and T 0 someother actions may appear: they are global constants of the calculus and had to be declared assuch previously.� formal hypothesis the part of the premises on the left of the & and working formal variablesthe xj with j 2 J .� actions predicate the part of the premises on the right of the &. P belongs to boolean operatorsclosure of the following basic predicates : equality, divisibility, set membership.. over actionsterms with synchronization product.� resulting action the label over the arrow of the conclusion. The resulting action F is afunction of the formal hypotheses actions (and of the operator action parameters).� resulting process the right end part of the conclusion. The process arguments that appear asformal hypothesis must be transformed as x0j in the resulting process. This condition does notallow to test a potential future behaviour of a process, without making it explicitly perform itsaction within the considered rule, therefore saving the possibility of choosing another future.This is a restriction to the format in [VG88]. Beside this condition, the resulting processis built from the action and process variables, and the operators of the calculus (excludingrecursive de�nitions). 4

3 Finiteness ConditionsThe preceding conditional rules de�nes in a structural manner the semantics function that computesa transition system from a (closed) term of a process algebra. This de�nition is constructive: youcan compute each transition of the transition system by building proof trees which nodes areinstances of the rules.De�nition 2 A term of a process algebra has transition-system �niteness (TSF) i� the transitionsystem computed from the term using the operators' rules is strongly bisimular to some �nitetransition system (i.e. with a �nite number of states and a �nite number of transitions).In many process algebras with recursion, this property is undecidable. Su�cient syntacticconditions to ensure FTS will be given in this section, for any process algebra de�ned using theconditional rewrite rules from the preceding section. As far as possible, these conditions will beexpressed in terms of the semantic rules of the operators. We shall use the following notions:guarded recursion: It is possible to build in�nite proof trees for terms containing recursivede�nitions. Can we found syntactic conditions to guaranty that all proof trees are �nite?non-growing operators: Making the assumption that the arguments of an operator have �nitesemantics, is it always true that their composition by this operator is a �nite automaton?This property holds for most classical operators, but the rule format allows to de�ne exoticoperators that create in�nitely many states.sieves: Some unary operators have the nice property that the resulting automaton has exactly thesame states than the argument automaton, only some transitions being transformed, erased,or added. We implement their semantics by sieves, that is functions that only modify thetransitions of the system. Which operators may be implemented in this way?switches: Inside a recursive de�nition, the use of recursive variables should be limited in some way,in order to avoid building in�nitely many states, or states with in�nitely many transitions.Clearly, parallel composition operators and non-alphabetical renamings should be somehowforbidden inside recursive de�nitions. At which places (de�ned as occurrences of operatorarguments) is a recursive variable allowed to appear?3.1 Guarded recursionIn order to avoid divergence in the proof tree construction, we introduce as usual a notion ofguarded terms. We de�ne here this notion in a rather abstract way, and we shall give a genericalgorithm that computes it in a further section. The de�nition relies on the fact that if a proof treeis in�nite, then either it contains a pattern that occurs in�nitely, or the subject of its nodes arestrictly growing along the in�nite branches. The guarded property takes care of in�nitely repeatedpatterns, while growing branches will be addressed later.De�nition 3� A proof tree is unguarded i� the subject of its root is equal to the subject of one of its subtree,or if it has an unguarded subtree.� A term of a process algebra is unguarded if it has an unguarded proof tree, or if at least oneof its possible recon�gurations is unguarded.� A term of a process algebra is guarded if it is not unguarded.5

3.2 Non-growing operatorsGrowing operators build in�nite structures from arguments having �nite automata representations.Though no operators of usual process algebras have such a nasty behaviour, we need a syntacticalway to ensure that no growing operator is used in a term. In order to obtain in�nitely manystates in the resulting automaton, one would have to introduce a rule that produces new terms abin�nitum. A natural su�cient condition for ensuring �niteness is to be able to �nd an order onexpressions such that for all rules, the resulting process is not strictly greater than the subject.It is possible to adapt here many results from the term rewrite system theory, with the di�erencethat we are looking for a non-strict order compatible with our rewrite relation, whereas usualrewrite systems need a strict decreasing order. We give here a simple de�nition that covers nearlyall interesting cases:We consider families of operators closed under recon�guration: if an operator belongs to thefamily, then all operators that occur in the resulting processes of all its rules also belong to thefamily.De�nition 4 A family of operators fOpkg is non-growing i� there exist a simpli�cation ordering<< such that:For each rule of each operator, let us denote Opk(xi) the subject of the rule and Tij [x0i=xi] itsresulting process in which all resulting working variables x0i have been replaced by their correspondingxi, then:either Tij [x0i=xi] << Opk(xi)or Tij [x0i=xi] = Opk(xi)where = is the syntactic equality on terms.We say then that all Opk are <<-non-growing.Theorem 1 Given a family of non-growing operators F = fOpkg, an operator Opk(xi) of arityn, and n terms Ti having TSF, then Opk(Ti) has TSF.Lemma 1 Any process expression containing no recursive de�nition has a �nite number of be-haviour rulesThis follows trivially from our format for the operators' rules: building the behaviour prooftrees, the premise at each node is strictly smaller than the subject of the node, w.r.t. the subtermorder. So the depth of the proof tree is bounded by the depth of the expression. Then at eachnode you can choose among a �nite number of rules to apply, the number of proof trees is �nite,so the number of behaviours (= successful proof trees) is �nite.Proof of theorem 1:Consider the set R of all possible recon�gurations R of Opi(Ti). The behaviours of each Rare computed from instances of the rules of the operators fOpkg. As simpli�cation orderings aresubstitutive, the rules of each R are themselves compatible with the ordering. From lemma 1, eachR have only a �nite set of rules. Simpli�cation orderings are well-founded, so R is �nite.Now say the subterms Ti have �nite automata Ai. Then we can build the transition system ofOpk(Ti), with states of the form s =< R; stj1 ; :::; stjn >, where the stji are states from Ak, andinitial state < Opk(Ti); st01 ; :::; st0n >. The number of those states is bounded by jRj�jA1j�:::�jAnj.The transitions of any such s are computed from the rules of R (�nite from lemma 1), and fromall combinations of the transitions of the stji ; they are in �nite number.This proof gives hints toward implementation: A pre-compilation phase can compute the re-con�guration set, and even build the functions that compute the composed transitions. Such apre-compilation is subsumed in the algorithm in section 4.3.6

3.3 SievesDe�nition 5 A sifting operator, or sieve, is an operator with exactly one process argument, whichrules obey the following conditions: each rule has exactly one working formal variable (the processargument), may have predicates and any form of resulting action, and the resulting process isobtained from the subject of the rule by substituting the working formal variable by the correspondingresulting process variable.This de�nition includes the renaming, restriction, and ticking operators of Meije, the hidingoperator of Tcsp and Lotos.Sieves are de�ned in fact as (partial) functions on actions, rather than on automata. Moreprecisely they are functions that map actions to �nite sets of actions, for a sieve may have a (�nite)number of rules that can apply on a a given action. As such, they can be easily composed. Theycan also be combined with the automata building functions, leading to e�cient implementationswhere no intermediate automata are built for such operators. This is especially important whenthe sieve discards some transitions: it is possible to save producing and exploring the correspondingtarget states.Another issue is the introduction of sieves inside recursive de�nitions. We need de�ne here a sub-class of sieves such that the language generated by their compositions, modulo some idempotenceproperty, remains �nite. Then the states of the generated automaton will be obtained as pairs ofa recursive variable and a composition of sieves.This applies e.g. for alphabetical renamings, hiding, and restriction (for the alphabet of actionlabels in a term is �nite, and the set of all restriction compositions is a �nite commutative group).Of course, it does not apply to ticking or to non-alphabetical renamings, and the Meije term:let rec x= a:y and y = b*x in x generates in�nitely many states x, b*x, b*b*x, etc.We need here a non-growing de�nition for resulting action functions:De�nition 6 An operator rule is action-non-growing i� its resulting action is an action term builtonly from the following items: the formal action of the rule, the action parameters of the subject,the constant actions of the calculus, and alphabetical renamings (including renaming a label by aninvisible action).This de�nition is trivially ful�lled by all operators of BasicLotos and Ccs, but not by theticking operator of Meije, nor by non-alphabetical renamings.De�nition 7 A non-growing sieve is a sifting operator which rules are action-non-growing.Proposition 1 Given a �nite alphabet of actions, the algebra of all compositions of non-growingsieves has a �nite model.Proof: Consider the action-sifting functions associated to sieves: Given an action (the label ofa transition), an action-sifting function returns the (�nite) set of possible transformations of theaction by the various rules of the sieve that may be applied to this particular action.It is enough �nding a �nite model for the compositions of action-to-action transformation: theextension to subsets will keep �niteness. By the way, the set of action-to-action transformationslisted in de�nition 6 is closed under composition (up is the formal action of a sieve rule):- up ! up (the identity) is neutral element for the composition,- up ! a with a either an action parameter or constant of the calculus is trivially left absorbingfor the composition,- up ! up < a1=b1; : : : ; an=bn > where ai and bi are action labels (excluding composed actions)form a �nite monoid for the composition. 7

3.4 Switching operatorsThe simplest way to generate an arbitrary �nite automaton using recursive de�nition is to writean equation for each state of the automaton that describe the (�nite) set of transitions, and oftarget states, of this particular state. This is achieved usually using recursive equations whichright-hand-sides contain �nite sums of action pre�x operators (this was the case in the precedingversion of AUTO).For the sake of conciseness of the terms and of generality with respect to the now usual operatorsof process algebras, we want to extend as much as possible the possible language for these recursiveequations, while keeping syntactic conditions on this language for TSF. Such extensions havebeen already published e.g. for Basic Lotos in [Ai86],[GN], allowing for example the followingBasicLotos-like term, where \:" stands for the action pre�xing operator, \[]" for the choiceoperator, and \>>" for the enabling operator:Example 3let rec x = a:exit >> yand y = b:y [] c:x in xDe�nition 8 Given a family of operators O and a well founded simpli�cation ordering << onexpressions generated from O,An operator Op in O is a switching operator (or simply a switch) w.r.t. one of its processarguments \p" i�:- All rules in which \p" is a working formal variable verify the following properties: it has noother premise (\p" works alone) and the resulting process is exactly p0.- All rules where the resulting process contains an occurrence of \p" are non-growing for <<and are their resulting processes are themselves switches for \p".Remarks:- This includes non-growing operators with no premise at all.- The name \switch" may refer to the fact that a switching rule selects (at most) one of itsprocess arguments.- This de�nition could be extended by allowing rules in which \p" is working to have asresulting processes T such that T << Op(:::; p0; :::), with T being also in some sense a switchfor p. However, this would complicate to much both the de�nition and the related proofs,whereas all classical operators �t the restricted de�nition we have just given.The sum operator of Sccs, the binary choice of BasicLotos are switches, but also the delayoperator of Meije and the disabling operator of Lotos for its second argument.Usual pre�xing operators are also switches, including the action pre�x operators ofMeije andLotos, of course, but also the enabling operator of Lotos for its second process argument. Theinternal choice of Tcsp is a switch.Yet the external choice operator of Tcsp is not a switching operator (see its rules in the annex),because for each of its arguments, it has a rule looking as a switching rule, and a rule resembling asieve rule. By the way this operator is one we do not want to be involved in a recursive de�nition:Example 4let rec x = (tau : x) ext-choice a:y in xThis term generates the following sequence of resulting processes:8

let rec {x = tau:x ext-choice a:x}in x ext-choice a:xlet rec {x = tau:x ext-choice a:x}in (x ext-choice a:x) ext-choice a:xlet rec {x = tau:x ext-choice a:x}in (x ext-choice a:x) ext-choice a:x ext-choice a:x...Though this speci�c case could be reduced (to a �nite set of terms) by semantical arguments, the�niteness property may no more be guaranteed at a syntactical level. Semantical arguments for�niteness are out of the scope of this paper.De�nition 9 Given a family of variables V , a term from a process algebra is called a term suitablefor recursion on V i� either1. it is a variable from V ,2. or it does not contain any variable from V and it has a �nite automaton semantics,3. or its head operator is a switching operator for some of its arguments, these arguments aresubterms suitable for recursion on V , and all other arguments contains no occurrences ofvariables in V and have �nite automaton semantics,4. or its head operator is a non-growing sieve and its argument is suitable for recursion on V.Remark: this de�nition can be extended to handle nested recursive de�nitions, by adding an itemfor any recursive declaration \let rec fxi = eig in x0" such that all ei are suitable for recursionon V [fxig. Such an extension preserves the following theorem, though the proof is still moretedious.Theorem 2 Let Proc be a recursive de�nition \let rec fxi = eig in x0".If Proc is guarded, and if all expressions ei are terms suitable for recursion on fxig, then therecursive de�nition has a �nite automaton semantics.Proof: We de�ne a �nite set of states by induction on the structure of the term, then we provethat the transition system of the term maps in this state space, with a �nite number of transitionsfrom each state. The full proof is in the annex.This property allows us to guarantee that some recursive de�nition have a �nite semantics. Inany process algebra, it permits using any combination of nested recursive de�nitions, and arbitraryclosed terms inside recursive de�nitions. In the case of Meije-Sccs, it naturally includes theclassical \well-guarded" condition (sums of action-pre�x operators). In the case of BasicLotos,it allows the occurrence of recursive variables as second arguments of the enabling operator and well-guarded occurrences of recursive variables within the second argument of the disabling operator.3.5 Finite operatorsThis notion is used to ease the application of de�nition 9 for simple cases.De�nition 10 Finite operators are non-growing operators with no process argument.Most process algebras have a constant operator without any possible behaviour (the nil of Ccs,the stop of Lotos). All these are �nite operators. Another example is:9

operator clock : Processsyntax h prefixsemantics ----------------------h(a) -- a --> h(a)Finite operators are trivially accepted by case 1 of de�nition 93.6 AccessibilityAll preceding conditions can be restricted to the accessible parts of the term. This is not onlyan optimization issue: considering only accessible parts allows for rejecting less programs, for anyviolations of a condition inside a non-accessible part of a term will have no consequence on itssemantics.Accessibility is an undecidable property, for it may involves deciding whether some subtermsare dead-locked. We only want to give here a reasonable su�cient characterization of potentiallyaccessible parts of a term. The main idea is that whenever some equation in a recursive de�nitionis not referenced from an accessible part of the term, anything inside this equation has no in
uenceat all on the semantics of the term. We de�ne here by structural induction whether a sub-term, arecursive variable, or a recursive equation is accessible:De�nition 11The root of a term is accessible.If a subterm is accessible and this subterm has the form Op(argi), and if the union of thesets of working formal variables in all the rules of operator Op is fargjg, then all the fargjgare accessible (for all operators of classical process algebras, fargjg = fargig).If a recursive de�nition let rec xi = ti in T is accessible, then all the variables xi thatare free in T and in the accessible right-hand-sides ti are accessible, the corresponding recur-sive equations are accessible, and the right-hand-sides of these equations are accessible.If a local de�nition let x = t in T is accessible, and if x is free in T, then the variable x isaccessible, and the sub-term t is accessible.4 AlgorithmsWe have implemented a new version of AUTO using the preceding results. From the rules of theoperators, and from their classi�cation in �nite, sifting, switching, and non-growing operators, wederive functions that test the syntactical conditions for �niteness, then build the automaton of aterm.More precisely, given a closed term of a given process algebra, the system goes through thefollowing steps:1. Computes the accessible part of the term. This is an opportunity to emit diagnostics onpotential user errors.2. Checks whether the accessible part is guarded. If not, rejects the term.3. Checks whether all accessible recursive de�nitions are suitable for recursion. If not, rejectsthe term.4. Generates the corresponding automaton. This step, as in the original AUTO system, isparameterized by a reduction function (hopefully a congruence) to be applied on each sub-automaton before building their combination.10

4.1 Guarded recursion testWithin the framework of AUTO, the only possibility for building an unguarded proof tree isthrough a recursive declaration: there exist a path in any unguarded proof tree such that thesubjects at both ends of the path are identical, and there is an unfolding of (at least) a recursivede�nition on this path, and all other nodes correspond to rules having at least one premise.Let us test whether a term of is guarded or not. Informally, we look for a cycle through theimmediate dependencies among recursive variables. As such a cycle may appear through severallevels of nested recursive declarations, the dependency graph is to be computed for the wholeaccessible part of the term.The algorithm builds a directed graph whose vertices are either recursive variables or subtermsof the term, and the initial vertices are the accessible recursive variables. There is an arrow betweenstates T1 and T2 if the head operator of T1 has a rule with a premise for its n-th argument, andT2 is the n-th son of T1; there is also an arrow between states T1 and T2 if T1 is a recursivevariable, and T2 is the right-hand-side part of the equation de�ning T1, and between states T1and T2 if T1 is a recursive de�nition let rec xi = ti in T2The term is unguarded i� there exists a cycle in this graph.4.2 Automata Generators and CombinatorsWe describe now the algorithms used for the structural construction of automata.We call tta (standing for term to automaton) the function computing an automaton from aterm of a given process algebra. This function builds automata in a bottom-up fashion. A specialcase raises when a recursive de�nition is encountered: under the hypotheses of de�nition 9, thesemantics of a recursive de�nition is a �nite automaton (theorem 2). The algorithm let-rec:ttachecks for the �niteness hypotheses and build the automaton. On all non-growing operators thealgorithm non-growing:tta builds a resulting automaton from the automata corresponding to theoperator parameters. The tta algorithms make also a special case for sieves: as the states oftta(<sieve>(p)) are included in those of tta(p), we propagate sieves as second argument of tta anduse them each time a transition is generated. This implies that we can compose sieves and thatwe apply them as deep as possible inside the computations. Thus, tta takes two arguments:- a term which is a non-growing operator applied on several subterms,- a composed sieve (inherited from the recursive calls).The basic tta algorithms are generic. They are adapted to each algebra through a speci�c setof functions derived from the operational semantics de�nition of the operators. The followingsections describe the two algorithms non-growing:tta and letrec:tta, and the form of the specializedfunctions.We use the object-oriented convention type:name for naming a generic algorithm and its spe-cialized versions (called methods) depending on the type of its �rst argument.4.3 The residual algorithm for any kind of non-growing operatorWe use the same generic algorithm for all non-growing operator but for sieves. The algorithm forsieves is straightforward: sieve:tta(<sieve>1(p); <sieve>2) = tta(p; <sieve>1 � <sieve>2)For other non-growing operators, we have to compose the argument automata. In a �rst stepwe recursively compute the automata denoted by all subterms. The most di�cult point in thisrecursive application is building the composed sieve to give as second argument for each recursivecall: if we want to optimize the size of the subsystems, we need to be able to compute how acomposed sieve is modi�ed when going through an operator. For the moment, we only treatsimple cases such as the classical sum operator of Ccs for which we transmit the inherited sievewithout modi�cation. Other operators transmit the trivial identity sieve.11

The second step of the algorithm is a classical residual exploration. Each state of the globalsystem is a structure containing the states of each subsystem plus the operator combining them.The initial state of the global system is composed by the operator and the initial states of thesubsystems. The unexplored state list is initialized to this initial state. Then the algorithm is a looptaking one state in the unexplored state list, computing all the transitions of this state using thespeci�c functions associated to its operator and the sieve. This computation may produced somestates that are not yet discovered and thus added to the unexplored state list. The computation�nishes when the unexplored state list is empty. As we only use non-growing operators, the numberof recon�gurations of a given operator is �nite, and the termination of the algorithm stems fromtheorem 2.More formally, we sketch in �gure 1 the residual algorithm that computes tta(Op(t1; : : : ; tn;<actions parameters>); <sieve>) where <sieve> is the inherited composed sieve, and ti are the pro-cess arguments of the operator Op. In this �gure, we call transition a couple of an action and aresulting state. Algorithm fornon-growing:tta(Op(t1; : : : ; tn; <actions parameters>); <sieve>)8i; Ti = tta(ti;mk-sieve(Op; <sieve>; <actions parameters>))state0 = hOp; initial(T1); : : : ; initial(Tn)iStates = fstate0gUnexplored = fstate0gTransitions = ;while (Unexplored 6= ;) looptake s in UnexploredUnexplored = Unexplored � fsgtransitions = ;foreach haction; statei 2 mk-trans(s; <actions parameters>) doaction = <sieve>(action)if action thentransitions = transitions [fhaction; stateigif state 62 States thenStates = States [fstategUnexplored = Unexplored [fstategTransitions = Transitions [fhs; transitionsigreturn hStates; state0;TransitionsiFigure 1: The residual algorithm for non-growing operatorsThe methods mk-trans and mk-sieve are speci�c to each operator. For instance, in Ccs themethod parallel:mk-sieve for the parallel operator simply produces the identity sieve. Themethod parallel:mk-trans is sketched in �gure 2:Here the notation < p0jq > stand for the composed state where the �rst sub-automaton hasadvanced by one step, and the second sub-automaton is still in its original state.foreachmove < p a�! p0 > means that we repeat the same group of operations for eachtransition of p.4.4 The residual algorithm for recursive declarationWe sketch in �gure 3 the algorithm dedicated to recursive declarations.The scan methods uses the classi�cation of operators in variables, switches, and non-growingoperators. The method variable:scan fails, i.e. indicates that there is a non-guarded variable12

Algorithm for parallel:mk-trans(p|q,<actions parameters>)transitions = ;foreachmove < p a�! p0 >transitions = transitions [< a; p0jq >foreachmove < q b�! q0 >if a is inverse of b then transitions = transitions [< �; p0jq0 >foreachmove < q b�! q0 >transitions = transitions [< b; pjq0 >return transitionsFigure 2: parallel:mk-transAlgorithm for let-rec:tta(let rec fxi = tigi=1;n in xk; <sieve>)Equations = fhxi; ti; <sieve>igi=1;nstate0 = hxk; tk; <sieve>iStates = fstate0gUnexplored = fstate0gTransitions = ;while (Unexplored 6= ;) looptake s = hx; t; <sieve>i in UnexploredUnexplored = Unexplored � fsgtransition = ;scan(t; <sieve>)Transitions = Transitions [fhs; transitionsigreturn hStates; state0;TransitionsiFigure 3: The residual algorithm for recursive de�nitionsin the term. The methods <sieve>:scan recursively call scan on its process argument aftermodifying its sieve argument. Last, the methods <switch>:scan call recursively scan on eachallowed subterm, producing some transitions, leading to some subterms: when these subterms donot correspond to some variable in the set Equations, the function check generates new equationsto be added to the set. The function add-transition add a transition to the list transitions, andadd the new states to the States and Unexplored lists. Figure 4 sketches the scan method forsome simple switches and for sieves.5 ConclusionThe Auto system we currently distribute is using speci�c hand-coded algorithms for the operatorsof the Meije0 calculus (stop, pre�xing, sum, parallel, restriction, renaming). These algorithmswere carefully optimized in order to avoid building parts of product automata that were to bedeleted by some restriction operators.We have built a new prototype of the Auto system using the generic algorithms of this paper.Tests have been made both for the Meije0 calculus and for BasicLotos (the prototype hasbeen presented in [MV89]). The Meije0 operators are correctly classi�ed by our de�nitions:the prototype accepts stricty more Meije0 programs than the preceeding Auto system. Someother Meije-Sccs operators (see [dSi85]) can be added easily to this syntax, including ticking,13

operator parameters scan algorithmsequence (<action> : p; <sieve>) action = <sieve>(action)if action thenstate = check(p; <sieve>)add-transition(action, state)sum (p + q; <sieve>) scan(p; <sieve>)scan(q; <sieve>)Sccs delay (delay(p); <sieve>) action = <sieve>(tau-action)if action thenstate = check(p; <sieve>)add-transition(action, state)<sieve> (<sieve>1(p); <sieve>2) scan(p; <sieve>2 � <sieve>1)Figure 4: scan algorithmsinterleaving and the synchronized product as non-growing operators. The results are good also forBasicLotos operators: the usual �niteness conditions are correctly deduced from the rules. Somelimitations of our conditions are listed in the annex. We also obtained e�ciency mesurements:this version appears to have the same order of performances than the old version. Moreover, itshould be clear that in many cases it allows to build a smaller number of automata (for sievesnever require to copy an automaton) and to apply sieves on smaller automata. No optimizationshave been done in the �rst prototype, so the new version is potentially much more e�cient thanthe specialized Meije0 version.The set of programs accepted by the generic version is of course larger than in the former system,and programs may be written in a much more permissive way: for example parallel compositionsmay be done in many di�erent ways using various operators and nested recursive de�nitions areallowed.The congruence properties of some equivalences versus Meije composition operators are alsoto be generalized. It is very important for space e�ciency reasons to apply reductions as deepas possible in the term, in order to create and compose smaller automata. We plan to have theEcrins system proving congruence laws for various equivalences and various operators, so thatthe congruence properties can be automatically used in Auto during the automata construction.6 AnnexesNot all the operators mentionned in this paper are widely known. Let us give the rules of some ofthem.In [Bo85] is de�ned theMeije-Sccs calculus, with operators from both Boudol'sMeije calculusand Milner's Sccs calculus. The operators hiding, ticking, clock that occur in the paper are takenfrom the Meije-Sccs calculus. Let us give other examples:
14

operator delta:: Process --> Processsyntax deltasemanticsdelayed ----------------------------delta(p) -- tau --> delta(p)undelayed p -- a --> p'--------------------delta(p) -- a --> p'endoperator DELTA:: Process --> Processsyntax DELTAsemanticsDELTA_1 p -- a --> p'-----------------------------------DELTA(p) -- a --> delta (DELTA(p'))endoperator desynchro:: Process --> Processsyntax desynchrosemanticsdesynchronised ------------------------------------desynchro(p) -- tau --> desynchro(p)undesynchronised p -- a --> p'-----------------------------------desynchro(p) -- a --> desynchro(p')endThe delta operator is a switch.The DELTA operator does not match our conditions for non-growing operators, though it couldbe managed by had-hoc methods.The desynchro operator is a degenerated form of sieve, that does not match our conditions. Anextension of the sieves de�nition towards this type of operators would be possible.The external-choice of Tcsp, as mentionned in section 8 have both switching and sifting rules.This prevent us from using it in recursive de�nitions:operator external-choice :: Process Process --> Processsyntax ext-choice left 6semanticsp -- a -->p' & (not (a equal tau)) p -- a -->p' & (a equal tau)---------------------------------- -----------------------------------p ext-choice q -- a -->p' p ext-choice q -- a --> p' ext-choice qq -- a -->q' & (not (a equal tau)) q -- a -->q' & (a equal tau)---------------------------------- ------------------------------------p ext-choice q -- a -->q' p ext-choice q -- a --> p ext-choice q'endProof of theorem 2: We de�ne a �nite set of states by induction on the structure of the term, thenwe prove that the transition system of the term maps in this state space, with a �nite number oftransitions from each state.Let us call state a pair St =< P; S > where P is a process expression and S is a (compositionof) sieve.We build recursively the set S of states by: 15

St1: The initial state St0 =< e0; I >, where I is the identity sieve, is in S.St2: Given a state < P; S > in S, with P = xi, then < ei; S > is in S.St3: Given a state < P; S > in S, with P having TSF, then for all states st of the automaton ofP , extending << such that st is smaller than all operators, then < st; S > is in S,St4: Given a state < P; S > in S, with P = Op(pi; qj), Op is a switching operator for the xiarguments corresponding to the pi, and the qj have TSF, let frig be the rules in which the xiare working, frjg the other rules of Op, frpig and frqjg their respective resulting processes,then:St4.1: for all ri, < pi; S > is in S,St4.2: for each rj, call qg the subset of fqjg working in rj , introduce new constants cgk of typeprocess, one for each state of each automaton of qg, stating that these new constantsare smaller than all operators w.r.t. <<, then for all terms q0 << Op(pi; qj)[cgk=qg] forsome combination of the cgk , < q0; S > is in S (if the rule is an axiom, then takeq0 << Op(pi; qj)).St5: Given a state < P; S > in S, with P = <sieve>(P 0), then St0 =< P 0; S � <sieve> > is in S.The set of process expressions in S is �nite, because they all are << to one of the ei (cases 1and 2 introduce some ei, cases 3 and 4 introduce expressions << to some expression in S, case 5introduces subterms of expressions in S, and << is compatible with the subterm ordering). The setof sieves compositions in S is �nite by proposition 1. So S is �nite.Remark that any process expression can be written s1(: : : (sk(P)) : : :), where all si are sieves,and the head operator of P is not a sieve; let us write this decomposition S(P).Now we prove that all recon�gurations of Proc decompose into a S(P) such as < P; S > is inS, and have �nitely many transitions. This will achieve the proof.Let us call subrecon�gurations of Proc the smaller set R of process expressions containing e0,closed under switching argument relation (if Op(pi; qj) 2 R and Op is a switch for the pi, then thepi are in R), and closed under the transition relation (if P 0 2 R and P 0 a�! P 00 then P 00 2 R).Let us prove by induction that:P 0 2 R =) P 0 is suitable for recursion on fxig and P 0 = P �(S0) with < P �; S0 >2 SInd0: e0 veri�es our property: it is suitable for recursion by hypotheses of theorem 2, and itsdecomposition is in S, using construction St1, together with item 5 as many times as thehead operator of e0 is a sieve.Ind1: For an operator Op that is a switch for pi, the subterm corresponding to pi is suitable forrecursion by de�nition 9.3, and from Op 2 R we get < Op; I >2 S, so < pi; I >2 S by St4.Ind2: Consider a transition P 0 a�! P 00, with with P 0 2 R. By induction hypotheses, P 0 issuitable for recursion, and its decomposition < P �; S0 > is in S. Trivially, P � is suitable forrecursion. Let us show that P 00 = P ��(S00) By case analysis on de�nition 9:Ind2.1: P � = xi: then its transitions are those of ei, that is suitable for recursion, and < ei; S0 >is in S by St2 leading to the conclusion by application of the induction step on < e1; S0 >(there may be no loop in the proof here, because of the guarded hypotheses).Ind2.2: P � is closed w.r.t fxig, and has TSF: all its recon�gurations are similarly suitable forrecursion (by de�nition 9.2), and they map to the < sti; S0 > states introduced by ST3.16

Ind2.3: P � = Op(pi; qj) where Op is a switch for the xi arguments corresponding to the pj; itstransitions are built:Ind2.3.1: either using a rule with one of the pi working; the resulting process P �� is gotfrom a transition of pi itself, so it veri�es our property (apply the induction step on< pi; S0 >),Ind2.3.2: or using a rule in which no pi are working; by the de�nition of suitability, all qjhave TSF. Consider the product automaton of the qj working in this rule (if the ruleis an axiom, this is a one state blocked automaton); each state of this compoundautomaton correspond to a recon�guration of Op(pi; qj) that may involve some ofthe pi, but these are unchanged. Those states map to some of the q0 of St4.2. Theirtransitions are those of the compound automaton, plus some new transitions usingri rules, leading to a p0i recon�guration. In the �rst case, < q0; S0 > is in S, and wekeep suitability (for all subsequent recon�gurations are still switches for the pi). Inthe second case, as in Ind2.3.1, we keep our property.Ind2.4: P � = <sieve>(p) is not possible by de�nition of the decomposition.References[Ai86] G. Ailloux, \Veri�cation in Ecrins of Lotos Programs", ESPRIT/SEDOS/C2/N45 (1986)[BB88] T. Bolognesi, E. Brinksma, \Introduction to the ISO Speci�cation Language LOTOS", inThe Formal Description Technique LOTOS, North-Holland, 1988[BK86] J.A. Bergstra, J.W. Klop, \Process Algebra: Speci�cation and Veri�cation in BisimulationSemantics", CWI Monographs, North-Holland, 1986[BS87] T. Bolognesi, S. A. Smolka, \Fundamental Results for the Veri�cation of ObservationalEquivalence: a Survey", proc. of the IFIP 7th Internaional Symposium on Protocol Speci�ca-tion, Testing, and Veri�cation, North-Holland, 1987[Bo85] G. Boudol, \Notes on Algebraic Calculi of Processes", Logics and Models of ConcurrentSystems, NATO ASI series F13, K.Apt ed., 1985[Bro83] S. Brookes, \A Model for Communicating Sequential Processes", PhD Thesis, Universityof Oxford, 1983[dSi85] R. De Simone, \Higher-Level Synchronising Devices in Meije-Sccs", Theoretical ComputerScience 37, p245-267, 1985[dSV89] R. De Simone, D. Vergamini, \Aboard AUTO", Technical Report INRIA RT111, 1989[GN] H. Garavel, E. Najm, \TILT: From LOTOS to Labelled Transition Systems", in The FormalDescription Technique LOTOS, North-Holland, 1988[MV89] E. Madelaine, D. Vergamini, \AUTO, a veri�cation tool for distributed systems usingreduction of automata", in proceedings of Forte'89 conference, Vancouver, North-holland,1989[MdSV89] E. Madelaine, R. de Simone et D. Vergamini, \ECRINS, A Proof Laboratory for ProcessCalculi, User Manual", to appear INRIA, 1990[Mi80] R. Milner, \A Calculus for Communicating Systems", Lectures Notes in Comput. Sci. 92,1980 17

[Mi83] R. Milner, \Calculi for Synchrony and Asynchrony", Theoretical Computer Science 25,p267-310, 1983[RS89] V. Roy, R. De Simone, \AUTO - AUTOGRAPH, submitted to Workshop on Computer-Aided Veri�cation, Princeton, N.J., 1990[VG88] F.W. Vaandrager, J.F. Groote, \Structured operational semantics and bisimulation asacongruence" CWI report CS-R8845, 1988[Ve89] D. Vergamini, \Veri�cation of Distributed Systems: an Experiment", in Formal Propertiesof Finite Automata and Applications, LNCS 386, 1990

18

