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(57) ABSTRACT 

The invention consists of a neW component called the 
Architecture Generation Engine added to the CAD system 
for implementing circuits into PLD architectures and for 
evaluating performances of different architectures. The 
Architecture Generation Engine converts a high-level, easily 
speci?ed description of a PLD architecture into the highly 
detailed, complete PLD architecture database required by 
the internals of the CAD toolset in order to map a circuit 
netlist into the PLD. The Architecture Generation Engine 
also enables the performance evaluation of a Wide variety of 
PLD architectures for given benchmark circuits. 
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io_rat 2 # 2 l0 pads per row or column 
chan_width_io 1 # All channels the same width. 

chan_width_x uniform 1 
chan_width_y uniform 1 

# 4-input LUT. LUT inputs first, then output, then clock. 
inpin class: 0 bottom # Equivalence class 0 is LUT inputs 
inpin class: 0 left 
inpin class: 0 top 
inpin class: 0 right 
outpin class: 1 bottom # Output. Not equivalent to anything. 
inpin class: 2 global top # Clock. 

switch_block_type subset # Called disjoint switch block by some. 
Fc_type fractional # Fc values are relative to W 
Fc_output 1 
Fc_input 1 
Fc_pad 1 

# Definitions of different types of routing wires. 
segment frequency: 0.2 length: 1wire_switch: 0 opin__switch: 1 Frac_cb: 1.\ 

Frac_sb: 1. Rmetal: 4.16Cmetal: 81e-15 
segment frequency: 0.4 length: 2 wire_switch: 2 opin_switch: 2\ 

Frac_cb: 1. Frac_ab: 1Rmetal: 4.16 Cmetal: 8le-15 
segment frequency: 0.4 length: 4wire_switch: 2opin_switch: 2\ 

Frac_cb: 1. Frac_sb: 1Rmetal: 4.16Cmetal: 81e-15 

# Definitions of different types of routing switches. 
# Pass transistor switch. 
switch 0 buffered: no R: 196.728 Cin: 20.574e-15 Cout: 20.574e-15 Tdel: 0 
# Logic block output buffer used to drive pass transistor switched wires. 
switch 1 buffered: yes R: 393.47 Cin: 7.512e-15 Cout: 20.574e-15 Tdel: 524e-12 
# Switch used as a tri-state buffer within the routing, and also as the 
# output buffer used to drive tri-state buffer switched wires. 
switch 2 buffered: yes R: 786.9 Cin: 7.512e-15 Cout: 10.762e-15 Tdel: 456e-12 

# Used only by the area model. 
R_minW_nmos 1967 
R__minW_pmos 3738 

# Timing info below. See manual for details. 
C_ipin_cblock ‘1.512e-15 
T_ipin_cblock 1.5e-9 
T_ipad 478e-12 # clk_to__Q + 2:1 mux F|G_ 5 
T_opad 295e-12 # Tsetup . 
T_sblk_opin_to_sblk_ipin o. Examplearchltecture 
T_clb_ipin_to_sblk_ipin o. descrlpilon ?le 
T_sblk_opin_to_clb_opin 0. 

subblocks_per_clb 1 
subblock_lut_size 4 
T_subblock T_comb: 546e-12 T_seq_in: 845e-12 T_seq_out: 478e-12 
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FIG. 8(a) 
EXAMPLE CONNECTION BLOCK PATTERN: PATHOLOGICALLY BAD 

NETS STARTING AT OUT2 CAN ONLY REACH IN2, 
NETS STARTING AT OUT1 CAN ONLY REACH IN1. 

FIG. 8(b) 
EXAMPLE CONNECTION BLOCK PATTERN: GOOD. 
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FIG. 9(0) 
ARCHITECTURE SPECIFICATION: SEGMENTATION DISTRIBUTION. 
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AUTOMATIC GENERATION OF 
PROGRAMMABLE LOGIC DEVICE 

ARCHITECTURES 

This invention relates generally to Programmable Logic 
Devices (PLDs), and more particularly to a method and 
system for generation and evaluation of architectures for 
such devices. 

BACKGROUND OF THE INVENTION 

Programmable Logic Devices (PLDs) are a Widely used 
form of integrated circuit due to the ?exibility provided by 
their customiZable nature. In general PLDs include ?eld 
programmable gate arrays (FPGAs), complex program 
mable logic devices (CPLDs), simple programmable logic 
devices and laser programmable devices. Architecturally, a 
PLD includes logic blocks and input/output (I/O) blocks 
Which are connectable through a programmable interconnect 
structure. 

Atypical PLD is an integrated circuit chip that, Wholly or 
in part, consists of an array of one or more logic blocks, I/O 
blocks, and a programmable routing or interconnect net 
Work. The interconnect netWork can be programmed by a 
user to provide a connection betWeen the logic and I/O 
blocks to achieve a desired logic function. A PLD can be a 
standalone device or be embedded in a larger integrated 
circuit such as ASICs or the like. Exemplary forms of such 
embedded PLDs are disclosed in US. Pat. No. 5,825,202 
and US. Pat. No. 5,687,325. 

The logic blocks may be comprised of a ?xed logic 
function or may in turn also have programmable intercon 
nect netWorks and programmable functionality. The logic 
blocks may be ?rer broken doWn into sub-blocks or grouped 
together as a cluster of logic blocks. These blocks may also 
include I/O circuits that enable connection to external cir 
cuits or to other parts of the chip as in the case of an 
embedded PLD. The 1/0 blocks are typically arranged at the 
periphery of a chip. 
A PLD is typically arranged as a regular array of logic 

blocks, each of Which may be identical or may be one of 
several different types (such as memory blocks, look-up 
table based blocks, p-term based blocks etc.). The conduc 
tors of the programmable interconnect netWork are typically 
arranged along roWs and columns de?ed by the array of 
logic blocks, as shoWn schematically in FIG. 1. 

The architecture of a PLD speci?es the structure of its 
logic blocks, I/O blocks and programmable interconnect 
netWork. In order to develop a high-quality PLD 
architecture, the PLD designer must evaluate the impact and 
utility of a Wide range of architectural decisions and trade 
offs. The performance of a PLD is typically judged on the 
basis of operational parameters of circuits implemented in 
the PLD. These operational parameters include speed of 
circuits implemented in the PLD, semiconductor or silicon 
area required to implement a given circuit in the PLD, poWer 
dissipation of the PLD after it has been programmed, 
reliability and routing ?exibility. 

The typical procedure for evaluating different architec 
tures is shoWn in FIG. 2. A set of benchmark circuits is 
implemented in each PLD architecture (or architecture 
variant) of interest, and the operational parameters of the 
circuits are analyZed. Generally, PLD designers Wish to 
experiment With as Wide a variety of PLD architectures as 
possible in order to determine the architecture or class of 
architectures that best meets the operational parameters of 
interest. 
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2 
HoWever, in order to implement circuits in a PLD archi 

tecture of interest, the PLD designer requires a method of 
describing the PLD architecture to the CAD tool set. There 
are tWo basic components of a PLD architecture: the routing 
architecture Which describes the routing resources or the 
programmable interconnect netWork; and the logic (or 
function) block architecture. Consider ?rst the problem of 
describing the PLD routing architecture. 

To specify a PLD architecture in its entirety, one must 
specify Where every sWitch, routing Wire and logic and IO 
block pin is located One must also specify Which routing 
Wires and logic and I/O blocks can be interconnected by 
programmable sWitches, and the delay of every program 
mable sWitch, routing Wire and circuit path through a logic 
block in the entire PLD. This is an enormous amount of 
data—typically tens to hundreds of MB in siZe. Accordingly, 
it is not practical for a PLD architect to specify this data 
directly for every PLD architecture in Which he or she is 
interested. 
The most straightforWard Way of describing a PLD rout 

ing architecture is to create a directed graph (also called a 
routing-resource graph) that fully speci?es all the connec 
tions that may be made in the routing of a circuit in the PLD. 
In essence, this requires the PLD designer to describe Where 
every sWitch, interconnect Wire, logic and 1/0 block con 
nection pin is located. This description must specify Which 
routing Wires, logic blocks and I/O blocks can be intercon 
nected by programmable sWitches. The description must 
also specify the delay of every programmable sWitch, inter 
connect Wire and circuit path through a logic block, in the 
entire PLD. This is a very general representation of a PLD 
and is typically the data structure used internally by the 
routing tool. HoWever, it is not very practical to specify this 
routing-resource graph manually because the routing 
resource graph for a typical PLD requires an enormous 
amount of data—typically in the tens to hundreds of mega 
bytes of memory in siZe. Essentially, this is too loW-level a 
description for a PLD architect to use conveniently. 
A more practical approach is to design a basic tile 

(consisting of a single logic block and its associated routing) 
manually, and create a program to automatically replicate 
and stitch together this tile into a routing-resource graph 
describing the entire PLD routing architecture. HoWever, 
even the manual creation of a basic tile can be too time 
consuming for most PLD architectures. A typical tile con 
tains several hundred programmable sWitches and Wires, so 
it can take hours or days to describe a single tile. 
Furthermore, the hand-crafted tile is severely limited in the 
PLD interconnect or logic block resources that may be 
varied—for example, a hand-crafted tile is generally 
designed for one value of the routing channel Width, W (the 
number of routing tracks in a channel). In many architecture 
experiments, one must vary W in order to see hoW routable 
a given PLD architecture is, or to determine the minimum 
value of W that alloWs some desired faction of application 
circuits (say 95%) to route successfully. With a tile based 
approach, the PLD designer must hand-craft different tiles 
for each different value of W required to be tested. A PLD 
designer Will often Wish to investigate hundreds of different 
PLD architectures and tens of W values for each of these 
architectures. The net result is that the PLD designer is 
required to create thousands or tens of tho of different basic 
tiles. 

There has been some prior Work in describing PLD 
routing at a higher level of abstraction. In [1], BroWn et al 
developed an FPGA router for use With island-style FPGAs. 
In order to quickly investigate FPGAs With different num 
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bers of routing switches, they localized all the code that 

interacted With switch patterns to tWo routines, FC() and By reWriting these tWo routines, the FPGA designer can 

target their router (called CGE) to an FPGA With different 
sWitch pattern. The later SEGA router [2], used the same 
method to alloW re-targetting to different FPGAs. 

In the Emerald CAD system [3], an FPGA’s routing is 
described by means of WireC schernatics—essentially sche 
matics annotated With C-language like code that describes 
sWitch patters. The Emerald system can convert these WireC 
schematics into routing-resource graphs for use by its FPGA 
router. 

While CGE, SEGA and Emerald all reduce the labour 
required to specify a PLD architecture, they still require 
considerable hand-crafting effort. Instead of specifying 
every sWitch in a basic tile of an FPGA, these systems alloW 
PLD designers to Write softWare code (in either C or WireC) 
to generate all the sWitches in a basic tile. If the PLD 
designer Writes suf?ciently general code, it may be possible 
to change some interconnect and logic resources, such as the 
channel Width W, and have the basic tile adapt properly. 
HoWever, it is the user’s task to specify this in often 
non-obvious code. 

The second portion of a PLD architecture description 
details each type of function block (logic or 1/0 block) 
contained in the PLD. Both the interface to the PLD routing 
of each function block (i.e. a list of the inputs and outputs of 
the block) and a description of the logic functions that can 
be implemented by the function block, must be provided. A 
concise method for providing this information is crucial to 
alloW easy experimentation. 
As Well, timing and area model information for both the 

routing and function blocks may be included in the PLD 
architecture description, to alloW the CAD tools to estimate 
the speed achieved by the circuits in this architecture, and 
the layout area consumed by the architecture. 

Accordingly, there is a need for a method and system that 
reduces the labour involved in describing a complete PLD 
architecture and alloWs the easy variation of many intercon 
nect and logic resource parameters of the architecture. 

SUMMARY OF THE INVENTION 

In accordance With this invention there is provided a 
system for generating a PLD architecture comprising: 

an Architecture Generation Engine for converting a high 
level, easily speci?ed description of a PLD architecture 
into the highly detailed, complete PLD architecture 
database; the detailed PLD architecture used by the 
CAD toolset to map a circuit netlist into the PLD. 

In a further embodiment, the Architecture Generation 
Engine also enables the performance evaluation of a Wide 
variety of PLD architectures for given benchmark circuits. 

In a further embodiment of the invention, there is pro 
vided a CAD system for implementing circuits into PLD 
architectures and for evaluating performances of different 
architectures. 

In accordance With a further embodiment of the invention, 
there is provided a method for generating an architecture for 
a programmable logic device (PLD), the method comprising 
the steps of: 

creating a data ?le de?ning a high-level architecture 
description of the programmable logic device; 

creating unique functional elements of the PLD generally 
matching the description in the data ?le; 

replicating and stitching together the functional elements 
to create a complete PLD architecture; and 
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4 
generating a detailed description from the complete PLD 

architecture, for use by a CAD toolset 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features of the preferred embodiments of 
the invention Will become more apparent in the folloWing 
detailed description in Which reference is made to the 
appended draWings Wherein: 

FIG. 1 is a block diagram of a typical PLD architecture; 
FIG. 2 is a PLD architecture evaluation ?oW diagram 

according to the prior art; 
FIG. 3 is a schematic ?oW diagram of shoWing an 

architecture generation system according to an embodiment 
of the present invention; 

FIG. 4 is a schematic diagram shoWing the possible 
connection-block population values for length 5 Wire seg 
ments; 

FIG. 5 shoWs an eXample architecture description ?le; 
FIG. 6 shoWs an hoW an eXample architecture can be 

modelled using a directed graph; 
FIG. 7 shoWs the typical ?oW diagram for the Architecture 

Generation Engine; 
FIG. 8(a) shoWs a connection block pattern that is patho 

logically bad; 
FIG. 8(b) shoWs a connection block pattern that is good; 
FIG. 9(a) is an architecture speci?cation for a disjoint 

sWitch block; 
FIG. 9(b) is an architecture speci?cation for segmentation 

distribution; 
FIG. 10 shoWs hoW replicating one channel causes hori 

Zontal and vertical constraints to con?ict; 
FIG. 11 shoWs hoW adjusting the segment start points 

alloWs both the horiZontal and vertical constraints to be 
satis?ed Within a PLD coordinate system; and 

FIG. 12 shoWs the tiled layout used to implement the PLD 
architecture of FIG. 11 above. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Preferably, the architecture generation engine converts a 
concise high-level description of a PLD architecture into the 
fully detailed description required by the CAD tools to 
implement circuits in the PLD and to estimate the perfor 
mance of the architecture. A preferred implementation of 
hoW to represent a PLD architecture concisely, and to 
automatically generate the fully detailed representation of 
the architecture is described beloW. Many variations on this 
preferred implementation are possible, hoWever, including 
using only a subset of the parameters listed beloW to 
describe a PLD, or using a different set of parameters. 

Using a high-level PLD architecture description language, 
the PLD designer describes the architecture using: 
The various “types” of Wire used in the PLD, including 

the Wire length (number of logic blocks spanned), and 
the Wire resistance and capacitance, or other delay 
metric; 

The various “types” of programmable routing sWitch used 
in the PLD, including Whether each sWitch is a pass 
transistor, tri-state buffer, multiplexer, antifuse, etc.; the 
delay of the sWitch, (Which may be a ?ll delay model, 
such as the Elmore delay or a SPICE delay model, 
rather than a simple delay number); and the area of the 
sWitch, or some parameter such as equivalent resistance 
Which alloWs an area model to estimate the area of the 

sWitch; 
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Each type of logic block and I/O block in the PLD, 
including a list of the input and output pins of each 
block, any logical equivalences betWeen these pins, and 
the physical side(s) from Which each pin is accessible; 

The number of blocks of each type Which can be placed 
at each physical (i,j) location Within the PLD; 

The relative Widths of the various channels Within the 
PLD; 

Either the faction or the absolute number of routing tracks 
in each type of channel that consist of Wires of a given 
type; 

The number and type of sWitches alloWing each logic 
block pin to connect to each channel near it, or option 
ally a more detailed description of the pate of sWitches 
betWeen each logic block pin and the Wires in the 
channels near it; 

The number and type of sWitches used to connect routing 
Wires of each type to each other, or optionally, the set 
of sWitch patterns to be used to connect Wires in the 
routing channels can be speci?ed; 

The delay through each of the combinational and sequen 
tial paths through each type of logic and I/O block. 
Optionally his delay may be a delay model, rather than 
a constant delay number for each path. 

Other parameters Which may be either speci?ed by the 
PLD architect, or Which the CAD toolset can determine 
automatically such that a given application circuit Will ?t 
into the generated PLD architecture are: 

The absolute Width (in routing tracks) of some or all of the 
routing channels; 

The number of logic blocks in the PLD (i.e. the siZe of the 
array of logic blocks). 

The architecture generation engine takes this list of 
parameters or constraints, and generates the highly detailed 
description of the architecture required by the CAD optimi 
Zation tools to map circuits into the architecture. For 
example, this detailed architecture description may consist 
of: 
A directed graph (the routing resource graph) that 

describes every element of a PLD’s programmable 
interconnect. Each node in this graph corresponds to a 
“routing resource”, eg a logic block or I/O block pin, 
a routing Wire, a routing multiplexer or other routing 
element Each edge in this graph corresponds to a 
possible connection (made via a programmable sWitch) 
betWeen routing resources. Some edges may be 
inserted to model non-programmable sWitches or to 
assist delay modelling. Every edge and every node is 
annotated With information concerning its physical 
implementation (e.g. is it a Wire or a pin, hoW long is 
the Wire, etc.) and its delay parameters. 

A directed graph (the timing graph) that explicitly repre 
sents the circuit timing When implemented in this 
architecture. Every edge in this graph represents a 
timing dependency, and every node represents a circuit 
pin or function. 

Alegal slot list that describes Which type(s) of logic or I/O 
block can be assigned to each (i,j) location Within the 
PLD. 

There are numerous difficulties associated With the auto 
matic generation of this fully detailed representation of the 
PLD from the concise, architecture description language 
version. 

One dif?culty is that the speci?ed parameters often do not 
completely specify the entire PLD architecture. Intelligent 
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6 
choices must be made for the unspeci?ed interactions 
betWeen parameters and unspeci?ed portions of the archi 
tecture in order to create a PLD architecture that matches the 
speci?ed parameters and has good area and speed. 

Another dif?culty is that the speci?ed parameters may 
con?ict and overspecify the PLD. In this case the architec 
ture generator must relax the speci?cation (in as small an 
amount as possible) to create a PLD that still matches most 
of the speci?ed parameters. 

In addition to creating the fully speci?ed detailed PLD 
architecture database required by the PLD CAD tools, the 
architecture generation engine can also automatically com 
pute important metrics of the PLD architecture quality. The 
metrics it computes include: 
The estimated area required to build this PLD. The 

architecture generation engine can compute this by 
traversing the detailed PLD description (the routing 
resource graph and the legal slot list), and using built-in 
area models to estimate the area required by each Wire 
and sWitch in the programmable routing, and by each 
logic or I/O block. This area estimate can be based on 
metal area, active area or both. 

The estimated delay of a circuit implemented in this PLD. 
The estimated poWer consumption of a circuit imple 

mented in this PLD. 
The estimated PLD area required by the circuit imple 

mented in the PLD. 
FIG. 3 shoWs the an example of the overall design How 

proposed by this invention for the generation and evaluation 
of PLD architectures. The starting point of the invention is 
the realiZation that in order to make descriptions of PLD 
architectures easy to create, they must be parameteriZed in 
Ways that are intuitive to PLD designers. Essentially, the 
PLD is described in a high-level PLD architecture speci? 
cation language. The architecture generation engine con 
verts the high-level description of the PLD architecture into 
the fully detailed description required by the CAD tools to 
implement circuits in the PLD. The fully detailed description 
can also be used to estimate the operational parameters of 
circuits implemented by this architecture. 

To make this discussion more concrete, a preferred imple 
mentation of hoW to represent a PLD architecture in a 
high-level description language, and to automatically gen 
erate the fully detailed representation of the architecture is 
described here. Many variations on this preferred embodi 
ment are possible, hoWever, including using only a subset of 
the listed parameters or using a different set of parameters. 

For a typical implementation of a PLD (such as that 
shoWn in FIG. 1), the high-level description ?le Would 
include speci?cation of the folloWing parameters: 
The interconnect Wires segments used in the PLD. For 

each Wire segment type, the folloWing parameters can 
be speci?ed: 
The segment length or the number of logic blocks 

spanned by a Wire segment; 
The Wire Width and spacing betWeen adjacent Wires or 

the Wire resistance and capacitance or other delay 
metric; 

The fraction or the absolute number of tracks in a 
channel that are of this segment type; 

The type of sWitch (pass-transistor or tri-state buffer, 
drive strength of the sWitch) used to connect a Wire 
segment of this type to other routing segments; 

The sWitch-block internal population of this segment 
type (discussed beloW); and 

The connection-block internal population of this seg 
ment type (discussed beloW). 
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The programmable routing switches used in the PLD, 
including: 
Type of switch (e.g. pass-transistor, tri-state buffer, 

multiplexer, antifuse, laser programmable, etc.); 
The delay of the sWitch (Which may be a description of 

the delay model such as the Elmore delay or SPICE 
delay model, or a simple delay number); and 

Area of the sWitch or some other parameter such as the 
equivalent resistance that alloWs an area model to 
estimate the area of the sWitch. 

Each type of logic block and I/O block in the PLD, 
including a list of the input and output pins of each 
block, any logical equivalence betWeen these pins, and 
the physical side or sides from Which each pin is 
accessible. Logical equivalence refers to nodes that are 
functionally equivalent, such as all the inputs of a 
look-up table; 

Description of the internal functionality of the logic and 
I/O blocks including: 
Number, type and permissible connections betWeen the 

sub-components of each function block; or 
Abinary decision tree diagram of all logic functions the 

block can implement; or 
Logic library of all the logic functions the block and/or 

sub-components can perform. 
The number of logic or I/O blocks of each type that can 

be placed at each physical location Within a PLD; 
The relative Widths of the various routing channels in the 
PLD; 

The sWitch block topology used to connect the routing 
tracks (i.e. Which tracks connect to Which at a sWitch 
block—a sWitch block is the point Where horiZontal and 
vertical routing channels intersect); 

The number (Fm-Wm) and type of sWitches alloWing each 
logic block input pin to connect to each channel near it, 
or optionally, a more detailed description of the pattern 
of sWitches betWeen each logic block input pin and the 
Wires in the channel near it; 

The number (Fcpmpm) and type of sWitches alloWing each 
logic block output pin to connect to each channel near 
it, or optionally, a more detailed description of the 
pattern of sWitches betWeen each logic block output pin 
and the Wires in the channel near it; 

The number (FCWd) and type of sWitches alloWing each 
I/ O block input or output pin to connect to each channel 
near it, or optionally, a more detailed description of the 
pattern of sWitches betWeen each logic block output pin 
and the Wires in the channel near it; 

The number and type of sWitches used to connect routing 
Wires of each type to each other, or optionally, the set 
of sWitch patterns to be used to connect Wires in the 
routing channels; 

The delay through each of the combinational and sequen 
tial paths through each type of logic and I/O block. 
Optionally, this delay may be a delay model, rather than 
a constant delay number for each path. 

TWo of the parameters listed above, sWitch-block and 
connection-block internal population, may not be familiar to 
many PLD researchers. These tWo terms Were introduced by 
ChoW et al in They indicate Whether or not routing Wires 
and logic blocks, respectively, can connect to the interior of 
a Wire segment that spans multiple logic blocks, or if 
connections to a Wire can be made only at its ends. In [4], 
a Wire segment is either completely internally populated or 
completely depopulated, hoWever, this concept can be 
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8 
expanded to include the notion of partial depopulation. For 
example, a length ?ve segment spans ?ve logic blocks. If We 
specify a connection-block population of 100%, this Wire 
segment can connect to all ?ve logic blocks it passes, so it 
is fully internally populated. If the connection-block popu 
lation is 40%, it can only connect to the tWo logic blocks at 
its ends, so it is internally depopulated. If We specify a 
connection-block population of 60%, hoWever, the Wire can 
connect to the tWo logic blocks at its ends and one logic 
block in its interior, so it is partially internally depopulated. 
FIG. 4 illustrates the four possible values of connection 
block population for a length ?ve Wire. Switch-block popu 
lation is speci?ed in a similar, percentage, form. 

Notice that the distribution of Wire types can be speci?ed 
as factions of the channel Width, W, rather than as an 
absolute number of tracks of each type. For example, the 
PLD designer might specify that there are 20% Wires having 
length 2 and 80% of Wires having length 5. This alloWs a 
user to evaluate architectures With different W values, to 
determine the routability of an architecture, Without chang 
ing the architecture ?le. 

Similarly, the various FC values can be speci?ed either as 
absolute numbers (e. g. 5 tracks), or as a fraction of the tracks 
in a channel (e.g. 0.2*W). 

Other parameters Which may be either speci?ed by the 
PLD designer or Which the CAD tool set can determine 
automatically such that a given application circuit Will ?t 
into the generated PLD architecture are: 
The absolute Width (in routing tracks) of some or all of the 

routing channels; 
The number of logic blocks in the PLD (i.e. the siZe of the 

array of logic blocks). 
FIG. 5 shoWs a high-level architecture description ?le for 

a PLD in Which the logic block is a 4-input look-up table 
plus a register. The description is concise and conveys all the 
information that the PLD designer Would need to completely 
describe the PLD architecture of interest. While this is a 
simple example, even complex PLD architectures can be 
easily described in the same concise, but precise methodol 
ogy. The “VPR User Manual,” incorporated herein by 
reference, explains the design and syntax of the description 
?le. The VPR User Manual also explains the terminology 
used in the architecture description ?le. 

While the architecture parameters listed above are easy 
for PLD designers to understand and specify, they are not 
appropriate for use as an internal architecture representation 
for a router. Internally, the CAD tools use a routing-resource 
graph [5] to describe the PLD; this is more general than any 
parameteriZation, since it can specify arbitrary connectivity. 
It also makes it much faster to determine connectivity 
information, such as the Wires to Which a given Wire 
segment can connect, since this information is explicitly 
contained in the graph. 

Each Wire and each logic block pin becomes a node in this 
routing-resource graph and each sWitch becomes a directed 
edge (for uni-directional sWitches, such as buffers) or a pair 
of directed edges (for bi-directional sWitches, such as pass 
transistors) betWeen the tWo appropriate nodes. FIG. 6 
shoWs the routing-resource graph corresponding to a portion 
of a PLD Whose logic block contains a single 2-input, 
1-output look-up table (LUT). 

Often PLD logic blocks have logically equivalent pins; 
for example, all the input pins to a LUT are logically 
equivalent. This means that a router can complete a given 
connection using any one of the input pins of a LUT; 
changing the values stored in the LUT can compensate for 
any re-ordering of Which connection connects to Which input 
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pin performed by the router. We model this logical equiva 
lence in the routing-resource graph by adding source nodes 
at Which all nets begin, and sink nodes at Which all net 
terminals end. There is one source node for each set of 
logically-equivalent output pins, and there is an edge from 
the source to each of these output pins. Similarly, there is 
one sink node for each set of logically-equivalent input pins, 
and an edge from each of these input pins to the sink node. 

To reduce the number of nodes in the routing-resource 
graph, and hence save memory, We assign a capacity to each 
node. A node’s capacity is the maximum number of different 
nets Which can use this node in a legal routing. Wire 
segments and logic block pins have capacity one, since only 
one net may use each. Sinks and sources can have larger 
capacities. For example, in a 4-input LUT, there is one group 
of four logically-equivalent inputs, so We have one sink of 
capacity four. If We could not assign a capacity of four to the 
sink, We Would be forced to create four logically-equivalent 
sinks and connect them to the four input pins via a complete 
bipartite graph (K4>4), Wasting considerable memory. 

To perform timing-driven routing, ting analysis, and to 
graphically display the architecture We need more informa 
tion than just the raW connectivity embodied in the nodes 
and edges of the routing-resource graph Accordingly, We 
notate each node in the graph With its type (Wire, input pin, 
etc.), location in the PLD array, capacitance and metal 
resistance. Each edge in the graph is marked With the index 
of its “sWitch type,” alloWing retrieval of information about 
the sWitch intrinsic delay, equivalent resistance, input and 
output capacitance and Whether the sWitch is a pass transis 
tor or tri-state buffer. 

As described earlier, there arc compelling reasons to 
alloW PLD designers to specify architectures in an 
understandable, parameteriZed format, and for the routing 
tools to Work With a more detailed (e.g. graph-based) 
description. We therefore need the capability illustrated in 
FIG. 3: a tool that can automatically generate a detailed 
architecture description (including the routing-resource 
graph) from a set of speci?ed architecture parameters. This 
is a dif?cult problem for tWo reasons; 
1. We Want to create a good architecture With the speci?ed 
parameters. That is, the unspeci?ed properties of the archi 
tecture should be set to “reasonable” values. 
2. Simultaneously satisfying all the parameters de?ning the 
architecture is dif?cult. In some cases, the speci?ed param 
eters con?ict and over-specify the FPGA, making it impos 
sible to simultaneously satisfy all the speci?ed constraints. 

FIG. 7 shoWs the typical ?oW diagram for the architecture 
generation engine. Step one consists of simply parsing the 
architecture description ?le into the internal data structures 
of the architecture generation engine. In step tWo, the 
architecture generation engine checks for both semantic 
errors (such as missing or invalid PLD architecture descrip 
tion language keyWords) and functional errors. Functional 
errors are more subtle than semantic errors—they involve 
specifying a PLD Which is either not realiZable, or is 
obviously a very poor (e.g. unroutable) PLD architecture. 
Examples of functional errors include specifying a PLD in 
Which certain logic block input or output pins cannot con 
nect to any Wires, specifying Wires Which cannot be reached 
(via programmable sWitches) from any other Wire or func 
tion block pin, or specifying an architecture in Which there 
are no routing paths betWeen certain function blocks. When 
such functional errors are found, the architecture generation 
tool immediately informs the user to enable the error to be 
corrected before much time is spent analyZing this very poor 
PLD architecture. 
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In step 3, the architecture generation engine determines all 

the unique “basic elements” Which Will have to be generated 
in order to create the speci?ed PLD architecture. Typically, 
the unique basic elements Will be one of each function block 
(IO or logic block) speci?ed, all the unique horiZontal and 
vertical channels (i.e. one of each different type of routing 
channel speci?ed) and all the unique sWitch patterns 
required by the architecture. Typically the unique sWitch 
patterns Will consist of one connection box (function block 
pins to routing Wires sWitch pattern) for each side of each 
type of function block, and one sWitch block (sWitch patter 
governing the connection of routing Wires to other routing 
Wires) for each distinct pair of crossing channels (usually 
vertical and horiZontal channels). 

In step 4, each of the unique basic elements is generated. 
To generate each unique channel, for example, the number 
of Wires in this type of channel is determined, the type 
(length, speed, etc.) of each Wire in this channel is ?xed, and 
the break points at Which Wire segments end are chosen. To 
generate each unique sWitch pattern, heuristic algorithms 
may be used in order to construct a sWitch pattern that meets 
the speci?cations on the number and type of sWitches to be 
used, hoW many sWitches should attach to each Wire or pin 
(and any other speci?cations) and that results in good 
routability (i.e. a good PLD). The problem of generating 
good sWitches patterns is discussed in more detail later in 
this description. Once all the basic elements have been 
generated, the architecture generation engine moves on to 
step 5, Where it replicates variants of these basic elements 
and stitches them together to create a PLD that matches all 
the architectural speci?cations, and that is easy to lay out As 
described later in this description, creating an entire PLD 
from these basic patterns is more complex than simply 
replicating these sWitch patterns and basic channels across 
the PLD—they must be stitched together in a more involved 
Way. 

Finally, in step 6, the architecture generation engine can 
traverse the data structures de?ning the noW fully-detailed 
PLD architecture, and apply built-in area, delay, and poWer 
models to each circuit element making up the architecture. 
The output of this stage is an estimate of the PLD area, and 
an estimate of the PLD delay and poWer, or a delay and 
poWer model of the entire PLD that can be used to estimate 
the speed and poWer consumption of an application circuit 
implemented in this PLD architecture. 
The fully detailed PLD architecture can then be Written 

out to ?les, or transferred through memory, to a CAD tool or 
CAD tool set that can automatically implement application 
circuits in the PLD. 

DIFFICULTIES IN PLD ARCHITECTURE 
GENERATION 

There are tWo major dif?culties that arise in automatically 
generating PLD architectures in this Way. The ?rst dif?culty 
arises because the PLD designer is not required to specify 
every conceivable parameter and every possible interaction 
betWeen all parameters. 

Instead, the focus of the high-level architecture descrip 
tion methodology is to enable the PLD designer to specify 
the important parameters and have the architecture generator 
automatically adjust other parameters of the architecture so 
that a good PLD architecture results. Consider an example 
that occurs in step 4 of FIG. 7. The high-level architecture 
description methodology requires that the PLD designer 
specify the number of tracks to Which input and output pins 
can connect, Fcmpm and Fcpmpm, rather than requiring a user 
to specify the complete connection block sWitch pattern. 
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This certainly simpli?es the task of describing an PLD, but 
it means that the architecture generation engine must gen 
erate a good connection block sWitch pattern automatically. 

Let us consider this connection block problem in more 
detail. We decided that the sWitch pattern chosen should; 

Ensure that each of the W tracks in a channel can be 
connected to roughly the same number of input pins, 
and roughly the same number of output pins, 

Ensure that each pin can connect to a mix of different Wire 
types (eg different length Wires), 

Ensure that pins that appear on multiple sides of the logic 
block connect to different tracks on each side, to alloW 
more routing options, 

Ensure that logically-equivalent pins connect to different 
tracks, again to alloW more routing options, and 

Ensure that pathological sWitch topologies in Which it is 
impossible to route from certain output pins to certain 
input pins do not occur. FIG. 8 shoWs one example of 
a pathologically bad sWitch pattern—some logic block 
output pins cannot drive any tracks that can reach 
certain input pins. 

Clearly this is a complex problem. In essence, the proper 
connection block pattern is a function of FCJ-npm, Fqompm, W, 
the segmentation distribution (lengths of routing Wires), the 
logical equivalence betWeen pins, and the side(s) of a logic 
block from Which each pin is accessible. The last condition 
is also a function of the sWitch block topology. The archi 
tecture generator Would typically use a heuristic algorithm 
that attempts to build a connection block that satis?es the 
?ve criteria above, but it Will not necessarily perfectly 
satisfy them all for all architectures. 

The second dif?culty in generating an architecture auto 
matically is simultaneously meeting all the user-de?ned 
speci?cations. We Will illustrate this dif?culty With an 
example that shoWs it often takes considerable thought to 
simultaneously satisfy the speci?cations. In this example, 
We focus on Step 5 of FIG. 7. Consider an architecture in 
Which: 

Each channel is three tracks Wide. 

Each Wire is of length 3. 
Each Wire has an internal sWitch block population of 50%. 

That is, routing sWitches can connect only to the ends 
of a Wire segment (2 of the 4 possible sWitch block 
locations). 

The sWitch block topology is disjoint [10]. In this sWitch 
block, Wires in track 1 alWays connect only to other 
Wires in track 1, and so on. This is the sWitch block 
topology used in the original Xilinx 4000 FPGAs [11]. 

FIG. 9 shoWs the disjoint sWitch block topology, and a 
channel containing 3 Wires of length 3. Notice that the “start 
points” of the Wire segments are staggered [12]. This 
enhances routability, since each logic block in the PLD can 
then reach a logic block tWo units aWay in either direction 
using only one Wire segment. It also arises naturally in a 
tile-based layout, so staggering the start points of the seg 
ments in this Way makes it easier to lay out the PLD. A 
tile-based PLD layout is one in Which only a single logic 
block and its associated routing (one vertical channel seg 
ment and one horiZontal channel segment) have to be laid 
out—the entire PLD is created by replication of this basic 
tile. 

The most straightforWard Way to create an PLD With this 
architecture is to create one horiZontal channel and one 
vertical channel, and replicate them across the array. 
SWitches are then inserted betWeen horiZontal and vertical 
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Wire segments Which the sWitch block and internal popula 
tion parameters indicate should be connected. FIG. 10 shoWs 
the results of such a technique, Where only a feW of the 
routing sWitches have been shoWn for clarity. Notice that 
this PLD does not meet the speci?cations. By inserting 
routing sWitches at the ends of the horiZontal segments, We 
are alloWing connections into the middle of vertical seg 
ments. HoWever, our speci?cations said that segments 
should have routing sWitches only at their ends. If We do not 
insert sWitches at the ends of the horiZontal segments, 
hoWever, We cannot connect to the ends of the horiZontal 
segments, so the speci?cations are again violated, We call 
this problem a con?ict betWeen the horiZontal constraints 
and the vertical constraints. 
The solution to this problem is shoWn in FIG. 11. Instead 

of simply replicating a single channel, the “start points” of 
the segments in each channel have to be adjusted. As FIG. 
11 shoWs, this alloWs he horiZontal and vertical constraints 
to be simultaneously satis?ed. The speci?cation for the PLD 
has been completely realiZed—every segment connects to 
others only at its ends, and the sWitch block topology is 
disjoint. FIG. 12 shoWs hoW one can implement this archi 
tecture using a single layout tile. This is an additional bonus 
of this “segment start point adjustment” technique—We not 
only meet our speci?cations fully, but create an easily 
laid-out PLD. 

In order to describe the adjustment of the segment start 
points more clearly, let us de?ne a PLD coordinate system. 
Let the logic block in the loWer left corner of the logic block 
array have coordinates (1,1). The logic block to its right has 
coordinates (2,1), and the logic block above it has coordi 
nates (1,2), as FIG. 11 shoWs. A horiZontal channel has the 
same y-coordinate as the logic block beloW it, and a vertical 
channel has the same x-coordinate as the logic block to its 
left. We also number the tracks Within each channel from 0 
to 2, With track 0 being the bottommost track in a horiZontal 
channel, or the leftmost track in a vertical channel. 
The proper adjustment shifts the start point of each 

segment back by 1 logic block, relative to its start point in 
channel j, When constructing channel j+1. For example, in 
FIG. 11, the left ends of the Wire segments in track 0, 
horiZontal channel 0 line up With the logics blocks that 
satisfy: 

(i+2) modulo 3=0 (1.1), 

Where i is the horiZontal coordinate of a logic block. In 
channel 1, track 0, hoWever, the left ends of the Wire 
segments line up With logic blocks that satisfy: 

(i+3) modulo 3=0 (1.2) 

A similar shifting back of start points must be performed 
in the vertical channels—the start point of each segment in 
channel i+1 is moved back one logic block relative to its 
start point in channel i. 
The shifting of segment start points above alloWs the 

horiZontal and vertical constraints on an PLD to be met if 
either of the folloWing tWo conditions is met: 
The disjoint sWitch block topology is used. The segmen 

tation distribution and segment internal populations can 
have any values. Or, 

All segments are fully sWitch-block populate. The seg 
mentation distribution and sWitch block topology can 
have any values. 

If either of these conditions is satis?ed, the shifting of 
segment start points also makes a tile-based layout possible 
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if one additional constant is satis?ed: the number of tracks 
of length L is divisible by L, for all segment lengths L. 
We have not yet found a method to simultaneously satisfy 

the horiZontal and vertical constraints When a sWitch block 
topology other than disjoint is used With internally 
depopulated segments. It is an open question as to Whether 
there is any method of satisfying both sets of constraints in 
this most general case. In cases Where We cannot make the 
horiZontal and vertical constraints agree, there are locations 
in the PLD Where a vertical Wire Wishes to connect to a 
horiZontal Wire, but the horiZontal Wire does not Want a 
sWitch there, or vice versa. We resolve this con?ict by 
inserting the sWitch, preferring to err on the side of too many 
sWitches in the routing, rather than too feW. 

ARCHITECTURE EVALUATION 

Once the detailed architecture description has been 
created, and a circuit has been embedded in it by the CAD 
tool suite, the architecture evaluation engine automatically 
computes important metrics of the PLD architecture quality 
(Step 6 of FIG. 7). The metrics it computes include: 

The estimated area required to build this PLD. The 
architecture evaluation engine can compute this by 
traversing the detailed PLD description (the routing 
resource graph and the legal slot lit), and using built-in 
area models to ate the area required by each Wire and 
sWitch in the programmable routing, and by each logic 
or I/O block. This area estimate can be based on metal 
area, active area or both. Details of hoW the area model 
can be calculated is given in of “Architecture and CAD 
for Deep-Submicron FPGAs” by BetZ et al Chapter 6, 
and incorporated herein by reference. 

The estimated circuit delay When implemented in this 
PLD. After the routing-resource graph is built, the 
architecture evaluation engine can traverse the graph 
and lump all parasitic sWitch capacitance, plus the 
interconnect Wire capacitance, into a total capacitance 
value, Cwml, at each node. Every node in the routing 
resource graph can have a different Cwml, and a differ 
ent distributed resistance, Rwire. Similarly, every sWitch 
in the PLD can have a different sWitch resistance, 
RSWl-[Ch and intrinsic delay. This information is in turn 
used by the delay eXtractor using built-in delay models, 
such as Elmore delay, SPICE-like simulation model, 
AWE analysis model or some other method. This 
process is described in more detail in Chapters 4 and 6 
of “Architecture and CAD for Deep-Submicron 
FPGAs” by BetZ et al, and incorporated herein by 
reference. 

The estimated circuit poWer When implemented in this 
PLD. 

The estimated PLD area required by the circuit When 
implemented in the PLD. 
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The embodiments of the invention in Which an exclusive 

property or privilege is claimed are de?ned as folloWs: 
1. Amethod for generating an architecture for a program 

mable logic device (PLD), said method comprising the steps 
of: 

(a) creating a data ?le de?ning a high-level architecture 
description of the programmable logic device; 

(b) creating unique functional elements of the PLD gen 
erally matching the description in the said data ?le; 

(c) replicating and stitching together the functional ele 
ments to create a complete PLD architecture; and 

(d) generating a detailed description from the complete 
PLD architecture, for use by a CAD toolset. 

2. A method as de?ned in claim 1, said high-level archi 
tecture description including a parameteriZed description of 
prede?ned basic elements for the said architecture. 

3. A method as de?ned in claim 2, said basic elements 
including a PLD function block. 

4. A method as de?ned in claim 3, said function block 
including a logic block. 

5. A method as de?ned in claim 3, said function block 
including an I/O block. 

6. A method as de?ned in claim 3, said function block 
including: 

(a) information about an interface to PLD routing of the 
function block, including a listing of the function block 
input and/or output pins; 

(b) the location of the function block input and/or output 
pins; 

(c) description of logical equivalence betWeen the input 
and output pins of the function block; 

(d) a description of the internal functionality of the 
function block; 

(e) timing information about the function block to be used 
by the CAD toolset to estimate the speed achieved by 
circuits implemented in the PLD; and 

(f) metrics de?ning, or alloWing the calculation of, physi 
cal dimensions and/or semiconductor area of the func 
tion block. 

7. A method as de?ned in claim 1 said high-level archi 
tecture description including constraints for said architec 
ture. 

8. A method as de?ned in claim 7, said constraints 
including: 

(a) overall dimensions of the PLD; 
(b) number of logic blocks Within a portion of the PLD or 

Within the entire PLD. 
9. A method as de?ned in claim 7, said high level 

description does not completely constraint (or is implicit and 
leaves unspeci?ed) the PLD architecture. 




