DN5000k10 User's Manual VERSION 0.61

October 8, 2003

October 8, 2003

The information contained within this manual and the accompanying software program are protected by copyright; all rights are reserved by the DINI Group. Therewith, the DINI group reserves a the right to make periodic modifications to this project without obligation to notify any person or entity of such revision. Copying, duplicating, selling, or otherwise distributing any part of this product without the prior written consent of an authorized representative of the DINI Group is prohibited.

DN5000K10, DN3000k10SD and DNPCIEXT-S3 are trademarks of the DINI Group.

1010 Pearl Street, Suite #6 La Jolla, CA 92037-5165 www.dinigroup.com info@dinigroup.com (858) 454-3419 FAX: (858) 454-1728 Copyright ©2003 The DINI Group. All Rights Reserved.

Table of Contents

Chapter 1	Getting Started	
	The DINI Group Technical Support	1-1
	Belevant Information	1-1
	Conventione	1 2
		1-3
Chapter 2	DN5000k10 Features, Overview and General scription	al De-
	DNE000k10 Eastures	0.1
		2-1
	DN5000k10 Description	2-2
	Easy Configuration via SmartMedia	2-3
	FPGA — Stratix (U11, U12, U15, U19, U20—F, A, I 2-3	E, B, D)
	Flip-Flops and LUTs	2-5
	Embedded Memory	2-6
	Multipliers	2-6
	I/O Issues	2-9
	Bitstream Encryptions	2-9
	μ P and FPGA Configuration	2-10
	The μ P: Some Details	2-10
	J6: Unused μ P Connections	2-11
	ATmega128L JTAG Interface	2-12
	Programming the ATmega128L (U8)	2-13
		2-13
	CPLD—EPM3256A	2-15
	Notes on Header J7	2-17
	Fast Passive Parallel Configuration Instructions .	2-18
	Creating RBF Files for Fast Passive Parallel Setting up the Serial Port (J3 — RS232 Port) Creating Main Configuration File main.txt Starting Fast Passive Parallel Configuration Description of Main Menu Options	2-18 2-19 2-20 2-22 2-23
	SmartMedia	2-24
	Synthesis and Emulation Issues	2-26
	Synthesis Notes	2-26

Chapter 3 PCI

	Overview	3-1
	PCI Mechanical Specifications	3-1
	Some Notes on the DN5000k10 and PCI/PCI-X	3-1
	JP1: Present Signals for PCI/PCI-X JP2: M66EN—66MHz Enable TP7: PME–, Power Management Enable. JP3: PCI/PCI-X Capability JP3—PCIXCAP	3-5 3-5 3-6 3-6 3-6
Chapter 4	Clocks and Clock Distribution	
	Functional Overview	4-1
	Clock Grid	4-3
	Orientation and Description	4-3
	Jumper Control for the Most Common Applications	4-4
	Ribbon Cable: Providing an Off-Board Clock to the DN5000k10	4-6
	Roboclock PLL Clock Buffers	4-7
	Jumper Descriptions.	. 4-7
	General Control.	4-11
	Feedback and Clock Multiplication	4-11
	Clock Division	4-11
	Clock Skew	4-12
	Differential Clocks	4-13
	Useful Notes and Hints	4-14
	Customizing the Oscillators	4-14
	DN5000k10 PCI_CLK Operation	I-16
	PCI_CLK Details	4-16
	BCLKOUT and FCLKOUT	4-17
	Header Clocks	4-17
	DCLK[7](R)	4-17
Chapter 5	Memories	
	SSRAMs	5-1
	SSRAM Notes	5-1
	Pipeline, Flowthrough, ZBT	5-8
	SDRAM	5-10
	SDRAM On-Board Options	5-12

Chapter 6	Power Supplies and Power Distribution			
	+3.3 V Power			
	+1.5 V Power			
	Stand-Alone Operation			
Chapter 7	Daughter Connections to DN3000k10SD—Obser- vation Daughter Card for 200-pin Connectors			
	Purpose			
	Features			
	Daughter Card LEDs			
	Power Supply			
	Options 7-5			
	Power Rating			
	Connector J8			
	LVDS			
	Connector J5. J6. J7			
	Buffered I/O			
	Active			
	Test Interface			
	Connector J1 7-7			
	Daughter Card I/O Connections			
Chapter 8	Reset Schemes, LEDs, Bus Bars and 200 Pin Connectors			
	Reset Schemes			
	LEDs			
	Bus Bars			
	The 200 Pin Connectors: J9, J10, J16 8-4			
	The Signals 8-5			

Chapter 9 Utilities

PCI Debug—General Pontificating	9-1
PC-Based—AETEST.EXE	9-1
AETEST Utility Installation Instructions	9-2
Installation Instructions for DOS.	. 9-2
Installation Instructions for Windows NT	. 9-2
Installation Instructions for Windows 2000	. 9-2
Installation Instructions for LINUX	. 9-3
Installation Instructions for Solaris	. 9-3
Installation Instructions for Windows 98/ME	. 9-4
AETEST Options: Description and Definitions	9-4
Startup	. 9-4
AETEST Main Screen	9-6
Options	. 9-6
PCI Menu	9-7
Memory Menu	9-9

1

Chapter A Berg Connector Datasheets

List of Figures

FIGURE	TITLE	PAGE
2-1	DN5000k10 Block Diagram	2-2
2-2	DN5000k10 Stuffing Option Comparison	2-4
2-3	General LE Diagram	2-5
2-4	Dual-Port Data Flows	2-6
2-5	DSP Block Diagram	2-7
2-6	Multiplier Sub-Component Block Diagram	2-8
2-7	DN5000k10Block Diagram of ATmega128L and DN5000k1 faces	0 Inter- 2-11
2-8	J6: Unused μ P Connections	2-12
2-9	J5 JTAG Interface	2-12
2-10	J2 Schematic	2-13
2-11	Location of J4 on the DN5000k10	2-16
2-12	J3 Serial Port Locations	2-19
2-13	Delkin 32 MB 3.3 V Smart Media Card	2-25
3-1	FPGA Pin Connections for PCI Signals	3-2
3-2	PCI/PCI-X Edge Connector	3-3
3-3	DN5000k10 Dimensions	3-4
3-4	JP1 PCI-X Present Header	3-5
3-5	PCI-X Capability Header	3-6
4-1	Clock Distribution Block Diagram	4-2
4-2	Clock Grid	4-4
4-3	Common Clock Configurations	4-5
4-4	PECL Clock Input and Termination	4-6
4-5	External Ribbon Cable Connections	4-7
4-6	Functional Diagram of Roboclock 1 and Roboclock 2	4-8
4-7	Header Layout	4-9
4-8	Clock OE Pin Jumper Settings	4-15
4-9	PCI_CLK PLL Circuit	4-17
5-1	FPGA Interconnect Block Diagram	5-2
5-2	SSRAM FB (U22) Bus Signals	5-3
5-3	SSRAM AD (U23) Bus Signals	5-4
5-4	SSRAM AB (U21) Bus Signals	5-5
5-5	SSRAM ED (U18) Bus Signals	5-6
5-6	Syncburst FT	5-8
5-7	Syncburst PL	5-8
5-8	Syncburst ZBT FT	5-9
5-9	Syncburst ZBT PL	5-9

List of Figures (Continued)

FIGURE	TITLE	PAGE
5-10	Syncburst and ZBT SSRAM Timing	5-9
5-11	SDRAM (J19) Bus Signals (Page 1 of 2)	5-11
5-12	SDRAM (J19) Bus Signals (Page 2 of 2)	5-12
6-1	DN5000k10 Power Distribution	6-1
6-2	Molex Connector P1—Auxiliary Power	6-3
6-3	Example ATX Power Supply	6-4
7-1	DN3000k10SD Daughter Card Block Diagram	7-2
7-2	DN3000k10SD Daughter Card	7-3
7-3	DN3000k10SD Daughter Card Assembly Drawing	7-4
8-1	Reset Functionality	8-2
8-2	DN5000k10 LEDs	8-3
8-3	DN5000k10 LED Diagram	8-3
8-4	91294-003 Pin Numbering	8-5
8-5	200 Pin Connectors — Signal Connections	8-7
9-1	DN5000k10AETEST Startup Screen, DN5000k10 Recogniz	zed 9-4
9-2	AETEST Startup Screen, No PCI Peripheral Recognized .	9-5
9-3	AETEST Main Screen	9-6
9-4	AETEST PCI Menu	9-7
9-5	AETEST Memory Menu	9-9
9-6	AETEST Write to Memory Test	9-10
9-7	AETEST Read Memory Test	9-10
9-8	AETEST Write/Read Test	9-11
9-9	AETEST Memory Fill	9-11
9-10	AETEST Memory Display	9-12
9-11	AETEST Write Memory Byte	9-12
9-12	AETEST Read Memory Byte	9-13
9-13	AETEST Write/Read Memory Byte	9-13
A-1	Berg 91403-003 Datasheet Page 1 of 2	A-2
A-2	Berg 91403-003 Datasheet Page 2 of 2	A-3
A-3	Berg 91294-003 Datasheet Page 1 of 3	A-4
A-4	Berg 91294-003 Datasheet Page 2 of 3	A-5
A-5	Berg 91294-003 Datasheet Page 3 of 3	A-6

List of Tables

TABLE	TITLE	PAGE
2-1	Signals and Connections to J4	2-17
2-2	FPGA Serial/JTAG Configuration Header	2-18
2-3	J2 Configuration Jumper Settings	2-22
2-4	Stratix FPGA Approximate File Sizes	2-24
3-1	Present Signal Definitions	3-5
3-2	M66EN Jumper Descriptions	3-5
3-3	PCIXCAP Jumpers	3-6
3-4	M66EN and PCIXCAP Encoding	3-7
4-1	Clock Grid Signal Descriptions	4-3
4-2	Header Classification	4-7
4-3	Jumper Definitions	4-10
4-4	Frequency Range Settings	4-11
4-5	Output Divider Settings	4-12
4-6	Time Unit N-factor	4-12
4-7	Clock Skew Settings	4-13
4-8	LVPECL Input Specifications	4-13
4-9	Clock OE Pin Jumper Settings	4-15
5-1	Requirements for Non-Standard SSRAMs	5-7
5-2	Syncburst and ZBT SSRAM Timing	5-10
6-1	Specification for +3.3 V Power	6-2
6-2	Specification for +1.5 V Power	6-2
7-1	Connector J8 Pins External Power	7-5
7-2	DN3000k10SD Daughter Card I/O Interconnects	7-8

Chapter 1

Getting Started

The DN5000k10 is sensitive to static electricity, so treat the PWB accordingly. The target market for this product is engineers that are familiar with FPGAs and circuit boards, so a lecture in ESD really isn't appropriate (and wouldn't be read anyway). However, we have sold some of these units to people who are not as familiar with this issue. The following web page has an excellent tutorial on the Fundamentals of ESD for those of you who are new to ESD-sensitive products:

http://www.esda.org/basics/part1.cfm.

The DINI Group Technical Support

The following means of technical support are available:

- 1. **The DN5000k10 User's Manual.** This is the main source of technical information. We strive to produce excellent documentation, and this manual should contain most of the answers to your questions.
- The DINI Group Web Page. The web page will contain the latest manual, application notes, FAQ, articles, and any device errata and manual addenda. Please visit and bookmark: http://www.dinigroup.com/index.php?product=5000k10
- 3. **E-Mail** to **support@dinigroup.com**. You may direct questions and feedback to The DINI Group using this e-mail address.
- 4. **Phone Support.** We are happy to help. Call us at (858) 454-3419 during the hours of 8:00 A.M. to 5:00 P.M. Pacific Time. Some of us get in early and stay late, so you might try us outside of these hours also.
- 5. Frequently Asked Questions. In the downloads section of our web page you can find a document called DN5000k10/S Frequently Asked Questions (FAQ). We will update this document occasionally with information that may not be in the User's Manual.

Relevant Information

Information about PCI can be obtained from the following sources:

The PCI Special Interest Group has a web page that has lots of good stuff. Copies of the latest PCI specification may be ordered here.

> http://www.pcisig.com/ PCI Special Interest Group 2575 NE Kathryn St. #17 Hillsboro, OR 97124 FAX: (503) 693-8344

As of October 2001, the most current versions of the PCI Specifications are:

PCI Local Bus Specification, Revision 2.2 PCI Hot-Plug Specification, Revision 1.0 PCI Power Management Interface Specification, Revision 1.1 PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0a

Other recommended specifications include:

PCIMG 2.0 Compact PCI Specification, Revision 2.1 (or greater) PCI Industrial Computer Manufacturers Group (PICMG) 401 Edgewater Place, Suite 500 Wakefield, MA 01880, USA TEL: 781-224-1100 FAX: 781-224-1239 http://www.picmg.org

The best book to get if you need an introduction to PCI is:

PCI System Architecture Fourth Edition MindShare, Inc. Tom Shanley and Don Anderson

Ignore some of the ignorant statements made in the Customer Review section at http://www.amazon.com/. This is an excellent book for PCI and well worth the money.

The best book to get if you need an introduction to PCI-X is:

PCI-X System Architecture MindShare, Inc. Tom Shanely and Karen Gettman

You are going to need to know Verilog or VHDL to use the Stratix FPGA. If you need a reference, we recommend the following book for Verilog:

Verilog HDL: A Guide to Digital Design and Synthesis Samir Palnitkar ISBN: 0-13-451675-3

If you are one of those people that actually like VHDL, we feel sorry for you. The following books may be helpful:

Essential VHDL: RTL Synthesis Done Right Sundar Rajan

The IQ Booster: Improve Your IQ Performance Dramatically Edwin Breecher

Conventions

This manual uses the following conventions. An example illustrates each convention.

- The term PCI-X will be used generically unless there is a specific instance where PCI applies.
- This design guide generically refers to PCI-X protocol. When the PCI-X HalfBridge core is in PCI mode, PCI protocol will be followed.
- Courier font denotes the following items:
 - Signals on PCI Bus side of the PCI-X Interface

FRAME_IO (PCI-X Interface signal name)

FRAME# (PCI-X Bus signal name)

Signals within the user application

BACK_UP, START

- Command line input and output

setenv XIL_MAP_LOC_CLOSED

HDL pseudocode

assign question = to_be | !to_be;

```
assign cannot = have_cake & eat_it;
```

Design file names

pcim_top.v, pcim_top.vhd

- **Courier bold** denotes the following items:
 - Signals on the user side of the LogiCORE PCI-X Interface

ADDR_VLD

- Menu selections or button presses

FILE -> OPEN

- Italic font denotes the following items:
 - Variables in statements which require user-supplied values

ngdbuild design_name

- References to other manuals

See the Libraries Guide for more information.

- Emphasis in text

It is not a bug, it is a *feature*.

• Dark shading indicates items that are not supported or reserved:

• Square brackets "[]" indicate an optional entry or a bus index:

ngdbuild [option_name] design_name

DATA[31:0]

• A vertical or horizontal ellipsis indicates repetitive material that has been omitted.

A B C... X Y Z

• The use of "fn(SIG1. . . SIGn)" in an HDL pseudocode fragment should be interpreted as "combinational function of signals SIG1 through SIGn.

SUM = fn(A, B, Cin);

• The prefix "0x" or the suffix "h" indicate hexadecimal notation.

A read of address 0x00110373 returned 45524943h.

• A "#" an "_n" , an "n" or a "-" means the signal is active low

INT# is active low.

fpga_inta_n is active low.

SRAMCS- is active low.

FPGA_GRSTn is active low.

Chapter 2

DN5000k10 Features, Overview and General Description

DN5000k10 Features

The DN5000k10 features include:

- 32/64-bit, +3.3V, PCI/PCI-X-based PWB with up to five Altera Stratix[™] FPGAs (FBGA1508).
 - Device availability: EP1S80 (EP1S60 to follow with slightly reduced features).
- ~3.5 million ASIC gates per PWB (with EP1S80 LSI standard)

Dovico	10	Elin Elong	19 x 19 Multipliors	Embedded Memory			
Device	1/0	гир-гюрз		M512 RAM	M4K RAM	M-RAM	
EP1S60	1022	57,120	72	574	292	6	
EP1S80	1203	79,040	88	767	364	9	

- Fast/Easy FPGA configuration via standard SmartMedia FLASH card
 - Microprocessor controlled (ATmega128L)
 - RS232 port for configuration/operation status and control
 - Fastest possible configuration speed (via Passive Parallel method)
- 10A on-board linear regulator for +3.3V and +1.5V
 - Standalone operation via separate power connector
 - +3.3V not needed on backplane
- 6 low skew clocks distributed to all FPGA and test connectors:
 - 2 CY7B993/4 RoboclockII PLLs
 - 2 socketed oscillators
 - PCI Clock
 - 1 dividable clock via CPLD
- Direct support for Synplicity's Certify TDM interconnect multiplexing.
- Robust observation/debug with 488 connections for logic analyzer observability or for pattern generator stimulus.
- Status LEDs.

- User-designed daughter PWB for custom circuitry and interfaces.
- SignalTap and Identify (from Synplicity) fully supported via JTAG interface.

Figure 2-1 shows a block diagram of the DN5000k10.

DN5000k10 Description

The DN5000k10 is a complete logic emulation system that enables ASIC or IP designers a vehicle to prototype logic and memory designs for a fraction of the cost of existing solutions. The DN5000k10 can be hosted in a 32/64-bit PCI/PCI-X slot, or can be used as a stand-alone device. A single DN5000k10 stuffed with five EP1S80s can emulate up to 3.5 million gates of logic as measured by LSI. High I/O-count, 1508-pin, flip-chip BGA packages are employed. The F1508 package has 1203 I/Os, which allows for abundant connections to daughter connectors and external memories. A total of 488 test pins are provided on the top of the PWB via high-density connectors for logic analyzer-based debugging, or for pattern generator stimulus. Custom daughter cards such as the DN3000k10SD can be mounted to these connectors as a means of interfacing the DN5000k10 to application-specific circuits. A reference 32-bit PCI target design and test bench is provided in Verilog at no additional cost.

Easy Configuration via SmartMedia

The configuration bit files for the FPGA are copied onto a 32-megabyte SmartMedia FLASH card (provided) and an on-board microprocessor controls the FPGA configuration process. Visibility into the configuration process is enhanced with an RS232 port. Sanity checks are performed automatically on the configuration bit files, helping to avoid the timeconsuming process of debugging the configuration process. FPGA configuration runs quickly at 48 MHz. Eight LEDs provide instant status and operational feedback. Four of these LEDs are connected to the CPLD and can be user-configured.

FPGA — Stratix (U11, U12, U15, U19, U20—F, A, E, B, D)

The DN5000k10 contains two to five Stratix[™] FPGAs. They are called A, B, D, E, and F. The package is a flip chip fine-pitch BGA with 1508 pins (F1508). The pitch on the pins is 1 mm. This isn't important, but this pin density makes the PWB a bitch to layout. Keep that in mind if you try to make one of these at home. Most of the 1203 I/O pins are utilized on the F1508 package. The DN5000k10 can be stuffed with EP1580 devices in any combination of locations. The EP1S60 does come in an F1508, but since it has fewer I/O pins, it should not be used. The standard speed grade we stuff is −7. We can use the −6 speed grade, but don't fall out of your chair when you get the price. Note that Altera seems to have cancelled plans for the EP1S120. Although this part appears in some Altera literature, we haven't seen any scheduled release date or other documentation for it. Don't expect to see anything larger than the EP1S80 until at least the 2004 time frame. Figure 2-2 shows the stuffing options for the DN5000k10.

What happened to C? We struggled with the layout for many months, which gave the buffoons in marketing time to rethink what they asked for. As is normally the case with marketing, after a few drinks they decided to change the requirements. The FPGA that originally was in the C position was eliminated and replaced with the four SSRAMs and a SDRAM DIMM. So much work had been done to that point that those of us in engineering didn't think it wise to re-label the FPGAs. That is why no FPGA_C exists.

The following is a very brief overview of the Stratix family. More information can be gleaned from the Stratix Datasheet (ds_stx.pdf). This file is on the CD-ROM supplied with the DN5000k10, but you are better off getting the latest version from the Altera Web page (http://www.altera.com/). Make sure to get the latest errata sheet also.

DN5000K10 STUFFING OPTION COMPARISON									
Stuffod		Memory	Access	Total Chip to	Non-Memory	Non-Header, Non-Memory Chin to Chin	TOTAL	Single-FPGA	Single-
FPGAs	PCI	SDRAM	SSRAMs	Connections	Connections	Connections	Connections	Connections	SSRAMs
ABDEF	YES	YES	4	1867	1591	1367	488	0	0
ABDE	NO	YES	4	1300	1093	908	488	171	1
ABDF	YES	YES	4	1264	1057	767	488	0	1
ABEF	YES	NO	4	1300	1162	956	488	150	2
ADEF	YES	YES	4	1125	987	879	488	314	2
BDEF	YES	YES	4	1124	986	899	488	335	2
ABD	NO	YES	4	855	717	532	488	171	2
ABE	NO	NO	4	733	664	563	488	321	3
ABF	YES	NO	3	855	717	511	488	150	1
ADE	NO	YES	3	711	573	486	338	185	1
ADF	YES	YES	4	665	596	488	488	314	3
AEF	YES	NO	4	814	814	790	488	464	4
BDE	NO	YES	4	813	744	741	467	464	3
BDF	YES	YES	4	665	596	509	488	335	3
BEF	YES	NO	3	710	641	554	338	185	2
DEF	YES	YES	3	572	503	500	324	321	2
AB	NO	NO	3	446	377	276	488	321	2
AD	NO	YES	3	409	340	253	338	185	2
AE	NO	NO	3	400	400	397	338	335	3
AF	YES	NO	3	512	512	488	488	464	3
BD	NO	YES	3	512	512	509	467	464	3
BE	NO	NO	3	399	399	396	317	314	3
BF	YES	NO	2	409	340	253	338	185	1
DE	NO	YES	2	414	345	342	153	150	1
DF	YES	YES	3	256	256	253	324	321	2
EF	YES	NO	2	414	414	411	174	171	2
А	NO	NO	2	0	0	0	338	338	2
В	NO	NO	2	0	0	0	317	317	2
D	NO	YES	2	0	0	0	153	153	2
E	NO	NO	1	0	0	0	3	3	1
F	YES	NO	1	0	0	0	174	174	1

Figure 2-2 DN5000k10 Stuffing Option Comparison

Flip-Flops and LUTs

Figure 2-3 shows what Altera calls a Logic Element, or LE. Each LE contains a flip-flop and a 4x1 look-up table (LUT). LEs are arranged in groups of 10, called Logic Array Blocks (LAB). The EP1S80 is an array of LABs with 91 rows and 101 columns, but there are 9 RAM blocks which appear in place of 13-row by 11-column sections of the grid, leaving a total of 7904 LABs and 19040 LEs. (Other blocks, such as DSP/multiplier blocks and smaller RAM, are arranged in entire columns squeezed between two LAB columns.)

Each LUT can implement any Boolean function of four inputs. An LUT can also be configured as a two-input adder/subtractor with a carry chain coming from the adjacent LE and going to the next LE. In order to reduce delays caused by long carry chains, each set of 5 LEs computes two adder results simultaneously, then uses the carry result from the previous set of 5 to select which result is correct. For more information, check www.altera.com for the Stratix datasheet.

The flip-flop in each LE includes a clock enable input, an asynchronous preset and reset, synchronous set and reset logic, and an asynchronous load function. Data input can come from the LUT in the same LE to register addition or boolean outputs, or the LUT and FF can be used independently of each other. For more information, check www.altera.com for the Stratix datasheet.

Figure 2-3 General LE Diagram

Embedded Memory Stratix has boatloads of embedded memory. The EP1S80 contains 767 blocks of 576 bits, 364 blocks of 4.5 Kbits, and 9 blocks of 576 Kbits. The smallest memory blocks (called M512 RAM) can be configured for data widths ranging from 32 x 18 bits to 512 x 1 bit; medium-sized blocks (M4K RAM) can be configured ranging from 128 x 36 bits to 4K x 1 bit; and the largest blocks (M-RAM) can be configured anywhere from 4K x 144 bits to 64K x 9 bits. The embedded memory is dual-ported, and can be used to construct almost any type of memory - FIFOs, dual-port RAMs, single-port RAMs, etc.

The two largest blocks, M-RAM and M4K RAM, are fully dual-ported memory, with read and write functions available on two separately clocked ports. M512 RAM is a "simple dual-port" memory, meaning that one port is write-only and the other is read-only. Any of the memory blocks can be configured as simple dual-port or single-port memory. See Figure 2-4 for a diagram of the memory.

Multipliers Stratix devices feature a large number of multipliers grouped into what Altera calls DSP blocks (see Figure 2-5). The EP1S80 contains 22 DSP blocks, each of which can provide one 36x36 bit multiplier, four 18x18 bit multipliers, or eight 9x9 bit multipliers. Each block also contains adder/subtractor/accumulator registers which can be configured to provide many common DSP functions, such as FIR or IIR filters, FFT, or DCT, without the use of LAB resources. The Stratix datasheet (available at

Figure 2-4 Dual-Port Data Flows

Figure 2-5 DSP Block Diagram

www.altera.com) has more detailed information on how the multipliers and adders are configured for some common functions.

Figure 2-5 shows a DSP block configured for four 18x18 bit multipliers. A DSP block can be configured as two parallel systems of 9x9 bit multipliers, each of which is also described by Figure 2-5. The adder blocks can be used to add or subtract two or four multipliers, such as in complex multiplication, or to add a new result each clock cycle to an accumulated sum. They are also used to configure the DSP block as a 36x36 bit multiplier, with or without an accumulator.

All registers in Figure 2-5 are optional, as shown by Figure 2-6, which is a detailed view of a single 18x18 bit or 9x9 bit multiplier. Any or all of the registers may be used to pipeline the multiplier logic and improve the clock speed, or the alternate path may be used to bypass the register. Figure 2-6 also shows more detail about the optional shift register path, which makes FIR or IIR filters easy to implement.

Most synthesis tools will accept Verilog or VHDL descriptions of multpliers and infer a DSP block with the appropriate configuration. For those that don't, Altera provides a megafunction generator to help with direct instantiation of the hardware resources. See "Synthesis and Emulation Issues" on page 2-26 for more detail.

Figure 2-6 Multiplier Sub-Component Block Diagram

I/O ISSUES Terminator technology is supported on all pins. The resistors used for RDN and RUP should be 250 ohms for series termination or impedance matching I/O standards. Parallel termination requires 1000 ohm resistors for RDN and RUP. Terminator technology is a very nice feature and we recommend you use it on all I/O signals. The default IO_STANDARD attribute for the CSF file is LVTLL.

All VCCO pins are connected to +3.3 V. The VREF pins are connected to +1.5 V, so the DN5000k10 does not support I/O standards that require other values of VREF. So the I/O standards supported are:

LVTTL — Low-Voltage TTL

The low-voltage TTL, or LVTTL, standard is a general-purpose EIA/JESDSA standard for 3.3 V applications that use the LVTTL input buffer and a Push-Pull output buffer. The standard requires a 3.3 V input and output source voltage (V_{CCO}) but does not require the use of a reference voltage (V_{REF}) or a termination voltage (V_{TT}).

LVCMOS33 — 3.3 Volt Low-Voltage CMOS

This standard is an extension of the LVCMOS standard (JESD8. –5). It is used in general-purpose 3.3 V applications. The standard requires a 3.3 V input/output source voltage (V_{CCO}) but does not require the use of a reference voltage (V_{REF}) or a termination voltage (V_{TT}).

PCI-X — Peripheral Component Interface

The PCI standard specifies support for 33 MHz, 66 MHz and 133 MHz PCI bus applications. It uses a LVTTL input buffer and a Push-Pull output buffer. This standard does not require the use of a reference voltage (V_{REF}) or a board termination voltage (V_{TT}); however, it does require 3.3 V input output source voltage (V_{CCO}).

SSTL-3 class I and II

SSTL-3 uses a series termination resistor on output signals and a parallel termination resistor on input signals. Stratix devices use a VREF of +1.5V to enable the appropriate resistors internally. Because SSTL-3 requires parallel termination, it is only available on banks 3, 4, 7 and 8, and on clock output signals.

CTT

CTT uses a parallel termination resistor on input signals, with no termination resistors on output signals. Stratix devices use a VREF of +1.5V to enable the appropriate resistors internally. Because CTT requires parallel termination, it is only available on I/O banks 3, 4, 7 and 8, and on clock output signals.

Differential Termination Standards

Stratix devices provide several differential I/O standards, available only in I/O banks 1, 2, 5 and 6, and on differential clock output signals. However, the DN5000k10 is not routed for differential signaling, so these features are not likely to be very useful.

Bitstream Encryptions

Stratix devices have no special bitstream encryption function. The Dini Group may be able to assist with scrambling bitfiles to protect IP on the SmartMedia card, which would then be descrambled in the programming CPLD. Users should be aware, however, that the bitstream would be unprotected between the CPLD and FPGA, so they could still be examined and reverse-engineered. Our DN3000k10 products use Xilinx FPGAs which can be used to decrypt the bitstream inside the FPGA, providing complete design protection. If you are interested in this feature, please be aware that there are some issues with the Xilinx encryption feature, described in the DN3000k10 FAQ on our website.

μP and FPGA Configuration

The DN5000k10 has an ATmega128L microprocessor (μ P) that is used to control the configuration process (**U8**). The amount of internal SRAM (4 Kbytes) was not large enough to hold the FAT needed for SmartMedia, so an external 32 k x 8 SRAM was added. The address latching function is done via an LVT373 (**U3**).

The microprocessor has the following responsibilities:

- Reading the SmartMedia card
- Configuring the Stratix FPGA
- Executing DN5000k10 self tests.

Other than FPGA configuration, the μ P has no responsibilities. Less than 25% of the 128 Kbytes of FLASH is used for FPGA configuration and utilities, so you are welcome to use the rest of the resources of the μ P for your own purposes. Instructions for customizing the μ P are contained in the file Custom_ATmega128L.pdf. This file is on the CD-ROM, or it can be downloaded from the DINI Group web page.

REMEMBER: You can use the microprocessor for your own purposes!

We ship a programming cable for the ATmega128L with the DN5000k10. Updates to the code will be posted on our web site. If you wish to do your own development you will need the compiler, which we do not ship with the product. The compiler is available from IAR (http://www.iar.com/). The part number is EWA90PCUBLV150.

Note that if you are willing to program the FPGA with the JTAG or serial cable, the CLPD and the μ P have **no** function. In this case you can use all of the resources of the μ P for your own purposes.

The µP: Some Details

Some The ATmega128L is gross overkill for the FPGA configuration function. The datasheet and user's manual are on the CD-ROM that was shipped with the DN5000k10. The file names are ATmega128_UM.pdf and ATmega128_DS.pdf. But if you intend to use the μP for your own purposes, you should check the Atmel web page to get a copy of the latest user's manual, datasheet, and erratas. The Atmel web page is http://www.eu.atmel.com/atmel/. The ATmega128L is under the section called "Flash Microcontroller, AVR 8-Bit RISC." Most of the features are unused. A variety of test headers allow for possible use of these features. Each header and the various possible functions are described in the

Figure 2-7 DN5000k10Block Diagram of ATmega128L and DN5000k10 Interfaces

sections that follow. Figure 2-7 is a block diagram of the ATmega128L and its various interfaces on the DN5000k10.

J6: Unused µP Connections

J6 contains connections to the ATmega128L that were not used elsewhere. These ten connections can be used for external TTL connections to the μ P, externally generated interrupts, or any other function that the ATmega128L supports on these pins. Remember that the ATmega128L is not +5 V tolerant, so if you attach external TTL signals to these pins, the voltage level of these signals must not exceed +3.3 V. The J6 schematic is shown in Figure 2-8.

Figure 2-8 J6: Unused µP Connections

Figure 2-9 J5 JTAG Interface

ATmega128L JTAG Interface The ATmega128L processor has a JTAG interface that can be used for onchip debugging, real-time emulation, and programming of FLASH, EEPROM, fuses, and Lock Bits. In order to take advantage of the JTAG interface, you must have the Atmel AVR JTAG ICE kit (part number ATAVR-JTAGICE) and AVR studio software that Atmel provides free at www.atmel.com. The JTAG interface for the ATmega128L can be accessed through header J5 of the DN5000k10 (see Figure 2-9).

Programming the ATmega128L (U8)

A cable used to reprogram the ATmega128L is shipped with the DN5000k10. You will need to reprogram the ATmega128L if we update the code or you intend to use the processor for your own application. **J2** is used for this purpose.

Figure 2-10 illustrates J2.

Figure 2-10 J2 Schematic

Detailed Instructions

- 1. Download the latest update for the processor and CPLD at www.dinigroup.com (file uP_CPLD.zip).
- You will first need to reprogram the CPLD. Please see "CPLD— EPM3256A" on page 2-15 for instructions (use the file DNk10S_CPLD.jed that can be found in the downloaded zip file.
- 3. Next, you will program the processor (ATmetga128L). Connect the AVR cable that was shipped with the DN5000k10 to header J2 with the red/purple wire on the cable connected to pin 1 and connect the other end to the serial port of your PC.
- In order to program the processor, you will need to install AVR Studio that is included on the Atmel CD that was shipped with the DN5000k10. This software can also be downloaded at www.atmel.com.
- 5. From the Windows START menu, choose PROGRAMS->Atmel AVR Studio x.xx (where x.xx is the version number).
- Once AVR Studio is open, select TOOLS->STK500/AVRISP/JTAG ICE and a new window should appear with the title STK500. At the bottom of the STK500 window, if you see:

Detecting...FAILED!

that means either there is no power on the DN5000k10, there is another program open that is using the serial port, or the serial cable connecting the AVR tool is not connected properly. If this happens, you should close down the window titled **STK500**, correct the situation, and then select **TOOLS->STK500/AVRISP/JTAG ICE** again. You will not be able to continue unless you see something very similar to the following at the bottom of the **STK500** window:

Detecting...AVRISP found on COM1: Getting revisions...HW: 0x01, SW Major: 0x01, SW Minor: 0x07...OK

7. On the **PROGRAM** tab, select the **ATmega128** under the **DEVICE** drop down menu, and in the **FLASH** section where it says **INPUT HEX FILE**, browse and select the file DN5000k10_128.a90 that can be found in the downloaded zip file (uP_CPLD.zip) from the Dini Group website. To program the device all you need to do is hit the **PROGRAM** button in the **FLASH** section. When the programming is complete (it takes about 45 seconds) you should see a message at the bottom of the window that looks something like this:

```
Detecting...AVRISP found on COM1:
Getting revisions...HW: 0x01, SW Major 0x01, SW
Minor: 0x07...OK
Reading FLASH input file...OK
Setting device parameters, serial programming
mode...OK
Entering programming mode...OK
Erasing device...OK
Programming FLASH using block mode...100% OK
Leaving programming mode...OK
```

- 8. After programming the processor, close all AVR Studio windows and setup the serial port according to the section titled "Setting up the Serial Port (J3 RS232 Port)" on page 2-19. Please note that in this situation, connecting the serial port is mandatory and the FPGA cannot be configured via the SmartMedia card until you have completed all the instructions in this section.
- 9. Reset the DN5000k10 by pressing S1. After about 5 seconds, you should see the following in the HyperTerminal window:

*********NEED FPGA STUFFING INFORMATION********

Enter number of FPGAs on Board (1-6):

Using the keyboard, enter the number of FPGAs on the board (should be between 1 and 5 for the DN5000k10). After you have entered this, you should see the following query:

Please select the FPGA on the board (F, A, E, B, or D):

Enter one of the FPGA locations on your board that contains an FPGA, and you should see the following menu:

Virtex II 1000 (FG456)
 Virtex II 6000 (FF1152)
 Virtex II 4000 (FF1152)
 Virtex II 3000 (FG676)
 Virtex II 8000 (FF1152)

```
6) Altera Apex II (2A40)
7) Altera Apex II (2A70)
8) Altera Stratix (EP1S80F1508C7)
Please enter selection (1-6): for FPGA D:
```

Enter option 8 for Stratix FPGAs. Then, repeat these two steps for each FPGA location that contains an FPGA. If you enter the wrong number of FPGAs, or the wrong types or locations, you will need to reprogram the processor and follow these steps again. If you enter the same location twice, you'll probably need to start again also.

10. The processor and the CPLD are now ready to configure the FPGA(s). Please see the section titled "Starting Fast Passive Parallel Configuration" on page 2-22 for further instructions.

CPLD— **EPM3256A** Some non-volatile logic is needed to handle the counters and state machines associated with the high-speed interface to the SmartMedia card. We used an EPM3256A CPLD from Altera for this function. The datasheet is on the CD-ROM and is titled epm3256a.pdf. Approximately 90% of the resources of this device are utilized, so 10% are available for your own purposes. The Verilog source for the CPLD is provided on the CD-ROM. The file name is CPLD.V.

The CPLD performs the following functions:

- Interface to ATmega128L µP and SRAM
 - Clock Output to µP: BUP_CLK
 - Data/Lower Address: UPAD[7:0]
 - Upper Address:UPPADDR[15:8]
 - Control Signals: UP_ALE, UP_RDn, UP_WRn
 - SRAM Select: SRAM_CSn
- Data Retrieval from SmartMedia Card
 - Data Bus: SM_D[7:0]
 - Control: SM_CLE, SM_ALE, SM_WEn, SM_WPn, SM_CEn, SM_REn, SM_RDYBUSYn
- Configuration and Clock Status Reporting:
 CPLD_LED[3:0], ROBO_LOCK1, ROBO_LOCK2
- Control of FPGA Parallel Configuration (names with the letter "X" indicate one signal for each FPGA, for example: FPGA_CSnA, FPGA_CSnB, FPGA_CSnD, etc.)
 - Clock: FPGA_DCLK
 - Chip Select: FPGA_CSnX, FPGA_CEnX
 - Control: FPGA_nCONFX, FPGA_CDONEX, FPGA_IODONEX, FPGA_RDYnBUSYX
 - Data Bus: {FPGA_D[7:1], FPGA_D0X}
 - Mode Selector Switches: FPGA_MSEL[2:0], DIP1_0
- Pass-Through of Serial/JTAG Cable Signals
 - Cable: DCLK/TCK, CONF_DONE/TDO, nCONFIG/TMS, nSTA-TUS, DATA0/TDI

- FPGA Chain: CPLD_TMS, CPLD_TDO, CPLD_TDI, CPLD_TCK, CPLD_TRST
- Support for Clocking Schemes:
 - CPLD Clock Input: CLK [48]
 - Inputs from Clock Buffers: ACLK[8], BCLK[8]
 - Output to Clock Grid: BCPLD_CLKOUT
- Interface to Reset Schemes:
 - FPGA_GRSTn, PWR_RSTn

We may periodically update the CPLD. The CPLD can be reprogrammed using the Altera JTAG cable supplied with the DN5000k10. The connections are on header **J4**. The relevant signals and the connections to **J4** are listed in Table 2-1. Figure 2-10 shows the location of **J**4.

Figure 2-11 Location of J4 on the DN5000k10

JTAG Cable	J4 Signal Name	J4 Pin
VCC	+3.3 V	4, 6
GND	GND	2, 10
тск	JTAG_CPLD_TCK	1
TDO	JTAG_CPLD_TDO	3
TDI	JTAG_CPLD_TDI	9
TMS	JTAG_CPLD_TMS	5

Table 2-1 Signals and Connections to J4

Some Miscellaneous Notes on the CPLD

X1 is a 48 MHz oscillator. This part is soldered down to the PWB and is not intended to be user-configurable. The 48 MHz is divided down to 8 MHz in the CPLD to provide the clock for the ATmega128L μ P. The processor clock signal is labeled CPUCLK (and BCPUCLK) on the schematic.

The 48 MHz is used directly for the state machines in the CPLD for controlling the interface to the SmartMedia card. The frequency of 48 MHz is interesting because it is the closest frequency to 50 MHz that can be divided by an integer to get 8 MHz. The frequency 50 MHz is the fastest that the Altera Stratix parts can be configured with SelectMap without wait states. So FPGA configuration using Fast Passive Parallel occurs at very nearly the fastest theoretical speed.

Serial and JTAG configuration of the Stratix FPGA are back off positions only—that is why those signals are connected to the CPLD. Fast Passive Parallel is the quickest configuration method, but we wanted to provide the user as many options as possible.

If you want to use 100% of the CPLD and μP for your own purposes, you can configure the FPGA using the JTAG cable.

The 48 MHz clock can be divided down in the CPLD and used to drive the PWB clock network. See Chapter 4 for a more detailed description of this option.

Notes on Header J7

Fast Passive Parallel using the SmartMedia card is the best way to configure the FPGA. Two other options exists if, for some reason, the SmartMedia card method is not applicable.

 Serial Programming Using the Cable. Header J7 has the 5 serial connections that are used to configure the FPGA using the serial method. Table 2-2 has the pinouts. Note that this is a back-off position to SmartMedia and JTAG and should only be used in dire circumstances. Note also that the switches on J2 will need to change to reflect "slave-serial" configuration.

2. JTAG Programming.

The JTAG connection can be used to configure the FPGA and can also be used to connect the SignalTap Logic Analyzer (See Application Note 175 at www.altera.com/literature/lit-qts.html) or other solutions such as the Bridges2silicon system, which was recently acquired by Synplicity (see www.bridges2silicon.com). The JTAG method of configuration should be used if the SmartMedia method isn't working. Remember that programming a Stratix part through JTAG uses a .sof file, not a .rbf file. Table 2-2 has the pinouts.

Name on	Name o	Head or Pin	
Schematic	Serial Mode	JTAG Mode	(J7)
DCLK/TCK	DCLK	тск	1
CONF_DONE/TDO	CONF_DONE	TDO	3
DATA0/TDI	DATA0	TDI	9
nCONFIG/TMS	nCONFIG	тмѕ	5
nSTATUS	nSTATUS	(none)	7
GND	GND	GND	2, 10
VCC	VCC	VCC	4, 6

	Table 2-2	FPGA S	Serial/JTAG	Configuratio	on Header
--	-----------	--------	-------------	--------------	-----------

Fast Passive Parallel Configuration Instructions

The FPGA on the DN5000k10 can be configured in Fast Passive Parallel mode using a Smart Media card. Fast Passive Parallel configuration is the easiest and quickest way to configure the FPGA. The DN5000k10 is shipped with two 32 MB Smart Media cards. One of these Smart Media cards contains reference design bit files produced for Fast Passive Parallel configuration, and files main.txt and iotst.txt that sets options for the configuration process (for description of options, see "Creating Main Configuration File main.txt" on page 2-20). This Smart Media card has been labeled with a sticker marked "reference design." The other Smart Media card is empty and is for use with your own designs. To configure the FPGA with the reference design, please skip to "Starting Fast Passive Parallel Configuration" on page 2-22.

Creating RBF Files for Fast Passive Parallel

To create an RBF file with QuartusII software:

Go to Assignments menu and drag down to Settings. Click on Device under Compiler Settings on the left, then click the Device & Pin Options button on the right. Go to the Configuration tab, select Configuration Scheme = Fast Passive Parallel, and disable the option to Use Configuration Device. Go to the Programming Files tab, turn on Raw Binary File (.rbf), and turn off all other options. (Note: the .sof file for JTAG programming will also be created.)
The easy way to assign pins is to create your project, then open the .csf file created in a text editor. If your pinlist is formatted correctly, you can copy it and paste it into the .csf file in the section labeled "CHIP (design_name)". Sample files on the software CD provided, found in the folder labeled Verilog, show how to format the information and provide the correct pinlist for the signal names used on the board.

Setting up the Serial Port (J3 — RS232 Port)

J3 is for an RS232 connection to a terminal. An ICL3221 (U2) provides voltage translation to RS232 levels. A cable that converts the 10-pin header to a DB9 is shipped with the DN5000k10. This cable comes packaged with a bracket attached. Remove the bracket to eliminate the possibility of it falling on the DN5000k10, which could short signals and damage the board. After you have removed the bracket, plug the cable into J3. J3 is not keyed—so make sure you get the orientation correct. Pin 1 is identified with the number 1 and a dot. Figure 2-12 is a cutout from the assembly drawing, and shows the location of J3 and Pin 1.

Figure 2-12 J3 Serial Port Locations

A female-to-female RS232 cable is provided with the DN5000k10. This cable will attach directly to the RS232 port of a PC. We get our cables from Jameco (http://www.jameco.com). The part number is 132345. Male-to-female extension cables are part number 25700.

The RS232 port is configured with the following parameters:

Bits per second:9600 Data bits:8 Parity:None Stop Bits:1 FLow control:None Terminal Emulation:VT100

We use the Windows-based program HyperTerminal (Hypertrm.exe). The configuration file DN5000k10.ht is supplied on the CD-ROM or can be downloaded from our web page.

Users have the option of connecting the serial port if they wish to see any messages during the configuration process.

NOTE: It is NOT mandatory to have the serial port connection in order to configure the FPGA in SelectMAP mode. However, if an error occurs during the configuration, then without a serial port connection the user will not be able to see any error messages. In addition, without a serial port connection, a user cannot select any Main Menu options after the configuration process is complete.

Creating Main Configuration File main.txt

To control which bit file on the Smart Media card is used to configure the FPGA in SelectMAP mode a file named main.txt must be created and copied to the root directory of the Smart Media card. The configuration process cannot be performed without this file. Below is a description of the options that can be set in the file, a description of the format this file needs to follow, and an example of a main.txt file.

Options:

Verbose Level — During the configuration process, there are three different verbose levels that can be selected for the serial port messages:

- Level 0:
 - Fatal error messages
 - Sanity Check errors (e.g., RBF file was created for the wrong part, RBF file was created with wrong version of Altera tools, or Quartus options are set incorrectly)
 - Initializing message will appear before configuration
 - A single message will appear once the FPGA is configured
- Level 1:
 - All messages that Level 0 displays
 - Displays configuration type (should be Fast Passive Parallel
 - Displays current FPGA being configured if the configuration type is set to Fast Passive Parallel
 - Displays a message at the completion of configuration for each FPGA configured.

- Level 2:
 - All messages that Level 1 displays
 - Options that are found in main.txt
 - RBF file names for each FPGA as entered in main.txt
 - Maker ID, Device ID, and size of Smart Media card
 - All files found on Smart Media card
 - If sanity check is chosen, the RBF file attributes will be displayed (part, package, date, and time of the RBF file)
 - During configuration, a "." will be printed out after each block (16 KB) has successfully been transferred from the Smart Media to the current FPGA.

Sanity Check — The Sanity Check if enabled, verifies that the RBF file was created for the right part, the right version of Altera was used, and the Quartus options were set correctly. If any of the settings found in the RBF file are not compatible with the FPGA, a message will appear from the serial port, and the user will be asked whether or not they want to continue with the RBF file. Please see the section "Creating RBF Files for Fast Passive Parallel" on page 2-18 for details on which Quartus options need to be changed from the default settings.

Format:

The format of the main.txt file is as follows:

• The first nonempty/uncommented line in main.txt should be:

Verbose level: X

where "X" can be 0, 1 or 2. If this line is missing or X is an invalid level, then the default verbose level will be 2.

• The second nonempty/uncommented line in main.txt tells whether or not to perform a sanity check on the bit files before configuring an FPGA:

Sanity check: y

where "y" stands for yes, "n" for no. If the line is missing or the character after the ":" is not "y" or "n" then the sanity check will be enabled.

• For each FPGA that the user wants to configure, there should be exactly one entry in the main.txt file with the following format:

FPGA F: example.rbf

In the above format, the "F" following FPGA is to signal that this entry is for FPGA F, and FPGA F would then be configured with the bit file example.rbf. The DN5000k10 has one to five FPGAs, which are FPGA A, B, D, E and F. The example has only one FPGA, which is FPGA F. There can be any number of spaces between the ":" and the configuration file name, but they need to be on the same line.

- Comments are allowed with the following rules:
 All comments must start at the beginning of the l
 - 1. All comments must start at the beginning of the line.
 - 2. All comments must begin with //
 - 3. If a comment spans multiple lines, then each line must start with //

Commented lines will be ignored during configuration, and are only for the user's purpose.

• The file main.txt is NOT case sensitive.

IMPORTANT: All configuration file names have a maximum length of eight (8) characters, with an additional three (3) for the extension. Do not name your configuration files with long file names. In addition, all file names should be located in the root directory of the Smart Media card—no subdirectories or folders are allowed. Since the main.txt file controls which file is used to configure the FPGA, the Smart Media card can contain other files.

Example of main.txt:

```
//start of file "main.txt"
Verbose level: 2
Sanity check: y
FPGA F: fpgaF.rbf
//the line above configures FPGA F a file "fpgaF.rbf"
```

```
//end of main.txt
```

Given the above example file:

- Verbose level is set to 2
- A sanity check on the bit files will be performed
- FPGA F will be configured with file fpgaF.rbf.

Starting Fast Passive Parallel Configuration

If using the reference design SmartMedia card that came with the DN5000k10 then no files need to be copied to the card. Otherwise, copy your RBF file and main.txt to the root directory of the SmartMedia card using the FlashPath floppy adapter. Make sure the switches on **S2** are set for Fast Passive Parallel as shown in Table 2-3.

Switch 0 MSEL[2]	Switch 1 MSEL[1]	Switch 2 MSEL[0]	Configuration Mode
off	off	off	Fast Passive Parallel
off	on	off	Passive Serial

Table 2-3 J2 Configuration Jumper Settings

Set up the serial port connection as described above in "Setting up the Serial Port (J3 — RS232 Port)" on page 2-19. Next, place the SmartMedia card in the SmartMedia socket on the DN5000k10 and turn on the power (NOTE: the card can only go in one way). The SmartMedia card is hotswappable and can be taken out or put into the socket even when the power is on. Once the power has been turned on, the configuration process will begin as long as there is a valid SmartMedia card inserted properly in the socket. If there is not a valid SmartMedia card in the socket, then UP_LED[3:0] will flash (see Figure 8-2 on page 8-3 for LED descriptions) and the Main Menu will appear from the serial port. A SmartMedia card is determined to be invalid if either the format of the card does not follow the SSFDC specifications, or if it does not contain a file named main.txt in the root directory. If the configuration was successful, a message stating so will appear and the Main Menu will come up. Otherwise, an error message will appear.

The LEDs on **DS1** and **DS2** give feedback during and after the configuration process; see "LEDs" on page 8-3 for further details.

After the FPGA has been configured, the following **Main Menu** will appear on the serial port:

- 1. Configure FPGA(s) using main.txt
- 2. Interactive FPGA configuration menu
- 3. Check Configuration status
- 4. Select file to use in place of main.txt
- 5. List files on SmartMedia
- 6. Select FPGA to program via JTAG

Description of Main Menu Options.

- 1. **Configure FPGAS Using "main.txt" as the Configuration File** By selecting this option, the FPGA will configure in Fast Passive Parallel mode. You can also press the reset button (**S1**) to reconfigure the FPGA in Fast Passive Parallel mode.
- Interactive FPGA configuration menu This option takes you to a menu titled "Interactive Configuration Menu" and allows the FPGA to be configured through a set of menu options instead of using the main.txt file. The menu options are described below.

Description of Interactive Configuration Menu options:

- 1. Select a bit file to configure FPGA(s) This menu option allows the user to select a file from a list of files found on the SmartMedia card to use to configure the FPGA.
- Set verbose level (current level = 2) This menu option allows the user to change the verbose level from the current setting. Please note: if the user goes back to the main menu and configures the FPGA(s) using main.txt, the verbose level will be set to whatever setting is specified in main.txt.
- 3. Disable/Enable sanity check for bit files This menu option either allows the user to disable or enable the sanity check, depending on what the current setting is. Please note: if the user goes back to the main menu and configures the FPGA(s)

using main.txt, the sanity check will be set to whatever setting is specified in main.txt.

- M) Main menu This menu option takes the user back to the Main Menu described above.
- 3. Check Configuration status This option checks the status of the DONE pin and prints out whether or not the FPGA(s) have been configured along with the file name that was used for configuration.
- 4. Select file to use in place of main.txt By default, the processor uses the file main.txt to get the names of the files to be used for configuration as well as options for the configuration process. However, a user can put several files that follow the format for main.txt on the SmartMedia card that contain different options for the configuration process. By selecting the main menu option 4, the user can select a .txt file from a list of files that should be used in place of main.txt. After selecting a new file to use in place of main.txt, the user should select Main Menu option 1 to configure the FPGA(s) according to this new file. If the power is turned off or the reset button (S1) is pressed, the configuration file is changed back to the default, main.txt.
- 5. List files on SmartMedia This option prints out a list of all the files found on the SmartMedia card.
- 6. Select FPGA to Program with JTAG This option must be set to enable an FPGA before it can be programmed through JTAG.
- **SmartMedia** The configuration file for the FPGA is copied to a SmartMedia card using the SmartDisk FlashPath Floppy Disk Adapter. The approximate file size for each possible Stratix FPGA is shown below in Table 2-4. Note that several files can be put on a 32-megabyte card. We supply two 32-megabyte SmartMedia cards with the DN5000k10. SmartMedia is a standard, so you can get more SmartMedia cards if you want. The DN5000k10 requires a +3.3 V card. Card sizes of 16, 32, 64, and 128 megabytes have been tested on the DN5000k10. We have not seen 256 MB or larger cards for sale yet, but when we do there will probably be an update to the CPLD and processor on our website to support them.

Stratix FPGA	Number of Configuration Bytes
SOF for EP1S80	2,954,672
RBF for EP1S80	2,992,071

Table 2-4 Stratix FPGA Approximate File Sizes

We get our SmartMedia cards from http://www.computers4sure.com/. A Delkin Devices 16-megabyte card (part number DDSMFLS2-16) sells for about \$15. A 32-megabyte card (part number DDSMFLS2-32) will set you

back about \$20 (see Figure 2-13). New SmartMedia cards do not require formatting before use.

NOTE: SmartMedia cards do not need to be formatted before they are used. The Windows format command **does not work**—it is necessary to use the FlashPath utility to format a SmartMedia card.

Figure 2-13 Delkin 32 MB 3.3 V Smart Media Card

Do not press down on the top of the SmartMedia Connector J1 if a Smart-Media card is not installed. The metal case shorts to the +3.3 V power supply and the case gets hot enough to burn your finger. We suggest that you leave a SmartMedia card in the connector to prevent this from occurring. A polyswitch fuse (F1) has been added so that the PWB and the SmartMedia connector are protected if you do accidently press on the top of the connector.

> NOTE: Do NOT press on the SmartMedia Connector J28 if a card is not installed!

WARNING:

Do NOT format a SmartMedia card using the default Windows format program. All Smart Media cards come preformatted from the factory, and files can be deleted from the card when they are no longer needed. If for some reason you absolutely need to format a SmartMedia card, you must use the format program that is included in the FlashPath (Smart-Media floppy adapter) software.

Synthesis and Emulation Issues

The QuartusII[™] software from Altera is able to synthesize directly from Verilog or VHDL code. However, third-party synthesis tools provide an advantage: to create a memory block or multiplier, all you need to do is describe them functionally, and the tool will infer the appropriate DSP and RAM megafunctions for Quartus to place and route. On the other hand, if you are using Quartus to synthesize, and you try to infer an M-RAM block using a functional description, Quartus will attempt to route 200,000 LEs as a memory array. So, if you don't have any other synthesis tool, you will need to become familiar with Quartus megafunctions.

We have tried the following tools for synthesis:

Synplicity Synplify (http://www.synplicity.com/)

Synopsys FPGA Express (http://www.synopsys.com/)

Synopsys FPGA Compiler II

Exemplar LeonardoSpectrum (http://www.exemplar.com/products/leonardospectrum.html)

Of the four listed here, we find that Synplicity offers the best performance, followed by Exemplar. The Synopsys products are not the easiest products to use, and probably should be avoided until Synopsys decides that they want to be in this market. It is generally not worth your time to preserve your Synopsys ASIC compiler directives and scripts by using the FPGA synthesis products from Synopsys. The time you save using Snopsys products is offset by other hassles.

Synthesis Notes

- The FPGAs used on your DN5000k10 are EP1S80s in an F1508 package (EP1S60s available on request). Unless you paid for a faster speed grade, the –6 is what you will be getting.
- 2. Assuming you have a synthesis tool other than Quartusll, memories are best implemented by describing them behaviorally in your RTL. All four synthesis products are sophisticated enough to map your behavioral descriptions into the memory blocks. It is **NOT** necessary to instantiate memories manually, unless you are synthesizing with Quartus. Make sure, however, to check the report files to make sure that your memories were implemented in memory blocks (if this is possible). If input and output registers in your RTL don't match the behavior of the embedded memory blocks, the synthesis program may not recognize what you intended, and give you arrays of LEs instead.
- 3. Much to our surprise, the synthesis programs recognized RTL multiplier code and used the embedded multipliers without any trouble. So, like the memories, RTL description of your multipliers is all that is necessary unless you are synthesizing with Quartus. Make sure to check the report files—multipliers that are implemented using logic blocks (as opposed to the embedded memory blocks) take huge amounts of FPGA resources.

4. Clocks are the biggest problem when converting ASIC code to FPGA code. FPGAs only have a limited number of clock arrays. This is far too complicated to describe here, so get the *Stratix Data Sheet* and read about the clocks.

Chapter 3

PCI

PCI

Overview

The DN5000k10 can be hosted in a 32-bit, or 64-bit PCI slot. PCI-X is also supported. Stand-alone operation is described in "Stand-Alone Operation" on page 6-3. An EP1580-7, with care, should be able to support a 64-bit, 66 MHz PCI or PCI-X controller. We have not tested the PWB at PCI-X speeds of 100 MHz and 133 MHz. We suspect, but won't guarantee, that the DN5000k10 can support these high frequencies, provided the speed grade of the FPGA is adequate. Figure 3-1 shows the FPGA pin connections for the PCI signals. This data is provided on the CD-ROM in a CSF file titled pins_F.csf, for your convenience.

The PCI/PCI-X edge connector is shown in Figure 3-2.

Stratix parts cannot tolerate +5 V TTL signaling, so the DN5000k10 must be plugged into a +3.3 V PCI slot. PCI-X, by definition, is +3.3 V signaling. The PWB is keyed so that it is not possible to mistakenly plug the board into a +5 V PCI slot. Do NOT grind out the key in the PCI host slot, and Do NOT modify the DN5000k10 to get it to fit into the slot. If you need a +3.3 V PCI slot, the DNPCIEXT-S3 Extender card can do this function. The link is http://www.dinigroup.com/products/pciextender.html. This extender also has the capability to slow the clock frequency of the PCI bus by a factor of two—a function that is very useful when prototyping ASICs.

NOTE: +5 V Signaling on Stratix parts causes them to smoke! This is quite BAD! Do NOT Modify the DN5000k10 board to fit into your pci slot.

PCI Mechanical Specifications

The DN5000k10 is **not** a standard sized PCI card—it is too tall and slightly too long. This is sometimes an issue in servers that have a bracket installed over the top of the PCI cards. If you need to close the case on a DN5000k10, some tower configurations may work. Figure 3-3 shows the exact dimensions of the DN5000k10.

Some Notes on the DN5000k10 and PCI/PCI-X +3.3 V power is not needed on the host PCI connector. +3.3 V power is derived from +5 V using an on-board 10 A switching regulator. Power distribution for the DN5000k10 is described in "Power Supplies and Power Distribution" on page 6-1.

LOCK# has a pull-up. This is technically a violation of the PCI specification, but we have seen systems (from SUN!) that have the LOCK# pin floating. Remember that the function of this pin was deleted in the 2.2 version of

FPGA F (U22)		PCI Pin (P2)
C24		A58
A20	←PCI_AD[1]>	B58
D25	• PCI_AD[2]	A57
B21	PCI_AD[3]	B56
A21		B55
D26	• PCI_AD[6]	A54
A22	PCI_AD[7]	B53
A23 D27		B52 ∆49
B24	←PCI_AD[10]	B48
C27	+PCI_AD[11]	A47
B25	PCI_AD[12]	B47
B26	PCI_AD[13]	B45
C28	←PCI_AD[15] ▶	A44
C30	+ PCI_AD[16]	A32
A30	PCI_AD[17]	B32
B31	PCI_AD[10]	B30
C31	←PCI_AD[20]	A29
A32	PCI_AD[21]	B29
D32 B33		A26 B27
D33	PCI_AD[24]	A25
B34	←PCI_AD[25]	B24
C33		A23
A34 D34		A22
B35	PCI_AD[29]	B21
C34	←PCI_AD[30]	A20
A35	←PCI_AD[31]	B20
C26	← C/BE[0]# ─ →	A52
A26	← C/BE[1]# ─ →	B44
B30	C/BE[2]#	B33
A33	C/BE[3]#	B26
D30	← FRAME#	A34
G18	✓ IRDY#	B35
B22		B16
E21 A29		A36 B37
C29	✓ STOP#	A38
C32		A26
C36	REQ#	B18
D24 B20	REQ64#	A60 B60
D23	← PAR64 →	A67
C35	✓ INTA#	A6
B28	PERR#	B40
W29	PCI RST#	A15
A28	← LOCK#>	B39
D29	PAR	A43
D35	GN I#	A17
C8	←PCI_AD[32]	A91
B10	+ PCI_AD[33]	B90
C11	PCI_AD[34]	A89
A10 C12	PCI_AD[35]	A88
B11	←PCI_AD[37]	B87
C13	PCI_AD[38]	A86
A11	PCI_AD[39]	A85
B12	PCI_AD[41]	B84
C14	PCI_AD[42]	A83
A12	PCI_AD[43]	B83 A82
B13	PCI AD[44]	B81
C15	PCI_AD[46]	A80
B14	←PCI_AD[47]	B80
D15	PCI_AD[48]	B78
D16	PCI_AD[50]	A77
B15	PCI_AD[51]	B77
D17	PCI_AD[52]	A76 B75
E18	PCI_AD[53]	A74
B16	←PCI_AD[55]	B74
C19	PCI_AD[56]	A73
A16		B/2 A71
B17	PCI_AD[59]	B71
C20	PCI_AD[60]	A70
A17		B69
D21 C18		B68
510		
A18	C/BE[4]#	B66
C22	C/BE[5]#	A65
C23	C/BE[7]#	A64

Figure 3-1 FPGA Pin Connections for PCI Signals

Figure 3-2 PCI/PCI-X Edge Connector

Figure 3-3 DN5000k10 Dimensions

the PCI Specification. The pull-up is 1M, which should not adversely impact PCI functionality in any way.

The PCI JTAG signals TDI, TDO, TCK, TMS, TRST#, are not used. TDI and TDO are connected together per the PCI Specification to maintain JTAG chain integrity on the motherboard. The signals TMS, TCK, and TRST# are left unconnected.

The Stratix FPGAs are not +5 V tolerant, so you must plug the DN5000k10 into a +3.3 V PCI slot. Do NOT modify the connector to get the board to fit. If you need +5 V to +3.3 V PCI voltage translation, get one of our extenders. The link is:

http://www.dinigroup.com/products/pciextender.html.

The FPGA is volatile, meaning it loses its brains when power is off. The SmartMedia method takes about 1 second to configure an EP1580 after power is stable. It takes about 5 seconds to configure five EP1580s. It is likely that FPGA F will finish the configuration process before RST# is deasserted. If your system has an unusually fast RST#, it is possible that the FPGA will not be configured when RST# deasserts. A RST# that deasserts before the FPGA has finished cannot properly configure the PCI/PCI-X mode latch.

The signal 3.3Vaux is not connected.

The signals INTE#, INTC#, and INTD# are not connected.

JP1: Present Signals for PCI/PCI-X

The present signals indicate to the system board whether an add-in card is physically present in the slot and, if one is present, the total power requirements of the add-in card.

The JP1 PCI-X Present Header is shown in Figure 3-4.

Figure 3-4 JP1 PCI-X Present Header

Table 3-1 shows the Present Signal Definitions for PCI/PCI-X.

Table 3-1 Present Signal Definitions

PRSNT1#	PRSNT2#	Expansion Configuration
Open	Open	No expansion board present
Ground	Open	Expansion board present, 25W maximum
Open	Ground	Expansion board present, 15W maximum
Ground	Ground	Expansion board present, 7.5W maximum.

We have never seen the present signals used anywhere, but we have heard of systems that will not PNP (Plug-and-Play) configure a PCI board if both the present pins are left open. We recommend installing a jumper in location 1-2 (for PRSNT1-), or 3–4(for PRSNT2-), or both.

JP2: M66EN—66MHz Enable

The 66MHZ_ENABLE pin (M66EN) indicates to the host whether the device can operate at 66 MHz or 33 MHz. Section 7.5.1 in the *PCI Specification 2.2* provides the gory details. For 33 MHz only FPGA designs, install a jumper between pins 3 and 4. For 66 MHz capable designs, install a jumper between pins 1 and 2 instead. Table 3-2 shows the jumper descriptions for M66EN.

Table 3-2 M66EN Jumper Descriptions

	Jumper	Description
M66EN	Pins 3-4	33 MHz
	Pins 1-2	66 MHz

PCI

TP7: PME–, Power Management Enable

This board does not have built-in support for **PME**– (power management enable). Connecting **PME**– to an FPGA that is not powered is a bad idea— the system powers up as the board is installed. **PME**– is connected to **TP7**. This test pin allows the user to connect external circuitry to **PME**– if this functionality is desired.

JP3: PCI/PCI-X Capability

Figure 3-5 shows the PCI-X Capabilities Header. Add in PCI-X boards tell the system what speed they are capable of running by the correct setting of this header.

Figure 3-5 PCI-X Capability Header

Add-in cards indicate at which frequency they support PCI-X, using a pin called **PCIXCAP**. If the card's maximum frequency is 133 MHz, this pin is left unconnected (except for a decoupling capacitor **C141**). If the card's maximum frequency is 66 MHz, it connects **PCIXCAP** to ground through a resistor **R93** (and decoupling capacitor **C141**). Conventional PCI cards connect this pin to ground.

JP3—PCIXCAP

For PCI only (not PCI-X capable), jumper between pins 5 and 6.

For PCI-X 133 MHz capable, jumper between pins 3 and 4.

For PCI-X 66 MHz capable, jumper between pins 1 and 2 and pins 3 and 4.

The **PCIXCAP** jumpers are detailed in Table 3-3.

Table 3-3 PCIXCAP Jumpers

PCIXCAP	Jumper(s) Installed
PCI Only	5–6
PCI-X 133 MHz	3–4
PCI-X 66 MHz	1-2, 3–4

The M66EN and PCIXCAP Encodings are shown in Table 3-4.

M66EN	PCIXCAP	Conventional Device Frequency Capability	PCI-X Device Frequency Capability
Ground	Ground	33 MHz	Not Capable
Not Connected	Ground	66 MHz	Not Capable
Ground	Pull-down	33 MHz	PCI-X 66 MHz
Not Connected	Pull-down	66 MHz	PCI-X 66 MHz
Ground	Not Connected	33 MHz	PCI-X 133 MHz
Not Connected	Not Connected	66 MHz	PCI-X 133 MHz

 Table 3-4
 M66EN and PCIXCAP Encoding

Chapter 4

Clocks and Clock Distribution

Functional Overview

The DN5000k10 ASIC emulation board has a flexible and configurable clock scheme. Figure 4-1 is a block diagram showing the clocking resources and connections.

The clocking structures for the DN5000k10 include the following features:

- 2 user-selectable socketed oscillators (X2, X3)
- 1 48 MHz oscillator (X1)
- 2 CY7B993 (or CY7B994) RoboclockII™ Multi-Phase PLL Clock Buffers
- 2 FCT3807 Low-Skew Clock Buffers

The Clock Grid, **J13**: a 5X3 0.1 in. header distributes clock signals to two FCT3807 clock buffers and two RoboclockII[™] PLL clock buffers (CY7B993 or CY7B994). The clock outputs from the buffers are dispersed throughout the board.

Two 3.3 V half-can oscillator sockets (X2 and X3) and the signal CLKOUT from the CPLD provide on-board input clock solutions. The DN5000k10 is shipped with both a 14.318 MHz (X2) and a 33 MHz (X3) oscillator. Neither X2 nor X3 are used by the configuration circuitry, so the user is free to stuff any standard 3.3 V half-can oscillator in the X2 and X3 positions (more detail later in "Customizing the Oscillators" on page 4-14). The Clock Grid can also accept a 5X2 ribbon cable. This cable can provide input clocks to both of the RoboclockII's and one of the 3807 buffers.

The FCT3807 clock buffer provides a high speed 1-to-10 buffer with low skew (0.35 ns) allowing clocks A (ACLK[9:0]) and B (BCLK[9:0]) to be distributed point-to-point. The two RoboclockII PLL clock buffers (**U14** and **U16**) offer functional control of clock frequency and skew, among other things. They are configured via header arrays (**J11, J12, J15** and **J18**). The DN5000k10 comes from the factory stuffed with CY7B994V, which can operate at frequencies from 24 MHz to 200 MHz. They can also be stuffed with CY7B993V which operate from 12 MHz to 100 MHz. (Note: Output frequency can be as low as 1 MHz, depending on the operating frequency—see below for details.) Each chip has 16 output clocks along with 2 feedback output clocks. Two sets of eight output clocks are jumper selectable for each chip. The feedback clocks are controlled separately.

The PLL clock buffers can accept either 3.3 V LVTTL or LV Differential (LVPECL) reference inputs. The devices can operate at up to 12x the input frequency while the output clocks can be divided up to 12x the operating

Figure 4-1 Clock Distribution Block Diagram

frequency. Phase adjustments can be made in 625 ps or 1300 ps steps up to ± 10.4 ns. All adjustments are jumper selectable.

Clock Grid

Orientation and Description

The clock grid, **J13**, gives the user the ability to customize the clock scheme on the DN5000k10. A brief description of each pin is given in Table 4-1. The physical orientation of the pins is diagrammed in Figure 4-2.

Signal	Description
CLKOUT	Clock signal from CPLD. Typically 12 MHz.
PLL1A	Input to RoboclockII #1
CLOCKA	Clock signal of oscillator #1 (X1)
BUFINB	Clock input to 3807 #2
CLOCKB	Clock signal of oscillator #2 (X2)
PLL2B_PRE	Secondary clock input to RoboclockII II #2. Differential pair with PLL2BN_PRE.
PLL2BN_PRE	Secondary clock input to RoboclockII II #2. Differential pair with PLL2B_PRE.
BUFINA	Clock input to 3807 #1
PLL1BN_PRE	Secondary clock input to RoboclockII #1. Differential pair with PLL1B_PRE.
PLL1B_PRE	Secondary clock input to RoboclockII #1. Differential pair with PLL1BN_PRE.
GND	Ground signals to provide signal integrity for ribbon cables.

 Table 4-1
 Clock Grid Signal Descriptions

Three main configurations are the most common.

Jumper Control for the Most Common Applications

First, the grid may be jumpered as follows:

Configuration #1: CLKOUT <->PLL1A, CLOCKA <->BUFINA and CLOCKB <-> BUFINB

Both 3807s receive their inputs from the oscillators. RoboclockII #1 receives a clock input from the CPLD. Also, RoboclockII #2 can use DCLK[7] from RoboclockII #1 as an input. This is explained in "Roboclock PLL Clock Buffers" on page 4-7. The common clock configurations are diagrammed in Figure 4-3.

Second, the input clock distribution can be configured as:

Configuration #2: CLKOUT <->PLL2BN_PRE, CLOCKA <->PLL1A and CLOCKB <-> BUFINB

In this configuration, a 3807 #2 receives an oscillator input. RoboclockII #1 receives an oscillator input while RoboclockII #2 receives the CPLD output clock signal. 3807 #1 is unused.

Finally, the grid may be configured as:

Configuration #3: CLKOUT <->BUFINB, CLOCKA <->BUFINA, and CLOCKB <-> PLL1BN_PRE

The 3807 #1 receives an oscillator input, and the 3807 #2 receives a CPLD input. Meanwhile, RoboclockII #1 receives the other oscillator input. The user can wire-wrap a clock to the unused driver(s) as needed. This enables full use of the timing devices on the DN5000k10.

Also, the destination of the output clocks might dictate some other configuration. This manual and other documentation should provide more than enough information to satisfy the user's needs (See Figure 4-4).

Figure 4-3 Common Clock Configurations

Figure 4-4 PECL Clock Input and Termination

NOTE: C375, C393, C396 and C400 are stuffed with 0-ohm resistors!

Note that the schematic shows capacitors in positions C375, C393, C396 and C400. The DN5000k10 has 0-ohm resistors in these capacitor positions. The termination resistors R182-R183, R190–R191, R197–198 and R200– R201 are not stuffed.

Ribbon Cable: Providing an Off-Board Clock to the DN5000k10

The DN5000k10 gives the user a simple means to bring off-board clocks onto the board. The user can attach 10-pin ribbon cable to rows B and C of the Clock Grid. **J13-B** consists of an input to 3807 #1 and differential pair inputs to both RoboclockII's. **J13-C** consists of ground pins for signal integrity. These signals are described in Table 4-1 on page 4-3. BUFINA is a standard 3.3 V TTL input.

Both differential pairs provide some flexibility. The user can provide a single 3.3 V TTL input. It can be attached to either input. However, the other input must be left open. The user can provide a differential clock input to the pair. The differential clock inputs must obey the electrical specifications listed in Table 4-8 on page 4-13.

While attaching a ribbon cable, the user can jumper oscillator signal CLOCKB to BUFINB (3807 #2) on J24. This results in full use of all of the timing devices on the DN5000k10 (See Figure 4-5).

J13-A	J13-B	J-13C
СLОСКВ	PLL1BN	GND 3
BUFINB	PLL1B	GND 6
	PLL2BN	GND 9
PLL1A	PLL2B	
	BUFINA	

WITHOUT 10-PIN RIBBON CABLE					
Option	CLKOUT (J13.7) goes to:	CLOCKA (J13.13) goes to:	CLOCKB (J13.1) goes to:	Notes	
1	PLL1A (J13.10)	BUFINA (J13.14)	BUFINB (J13.4)	Roboclock 2 may be driven by Roboclock 1	
2	BUFINB (J13.4)	BUFINA (J13.14)	PLL1BN (J13.2)	Roboclock 2 may be driven by Roboclock 1	
3 PLL2BN (J13.8)		BUFINA (J13.14)	PLL1BN (J13.2)	Buffer B is undriven	
		PLL1A (J13.10)	BUFINB (J13.4)	Duller B is ununven	
4	BUFINB (J13.4)	PLL2B (J13.11) (requires wire wrap)	PLL1BN (J13.2)	Buffer A is undriven	
BUFINA -	→ Buffer A	ACLK			
BUFFINB -	Buffer B	BCLK			
PLL1A —		CCLK, DCLK	(PLLSEL1 low)		
PLL1B —		> CCLK, DCLK	(PLLSEL1 high)		
PLL2B —	> Roboclock2 -	> ECLK	(PLLSEL2 high)		
Roboclock	Roboclock1 — Roboclock2 with PLLSEL2 low, J27 installed, and FCKLOUT unused.				

WITH 10-PIN RIBBON CABLE		
Option	(Connected to J21 and J22)	
3 external clocks	PLL1B, PLL2B and BUFINA are driven from cable. BUFINB can be jumpered to CLKOUT or CLOCKB, or left undriven.	
2 external clocks	PLL2B and BUFINA are driven from cable, with PLL1A jumpered to CLKOUT or CLOCKA. Same options as above for BUFINB.	
PECL clocks	The board can be set up for PECL inputs in PLL1B and PLL1BN, and in PLL2B and PLL2BN. PECL-ready boards cannot function without the cable except as in options 3 and 4 above.	

Figure 4-5 External Ribbon Cable Connections

Roboclock PLL Clock Buffers

Figure 4-6 is a functional diagram of Roboclock 1 and Roboclock 2.

Jumper Descriptions

Headers **J11**, **J12**, **J15** and **J18** are used to control the PLLs. Each header consists of GND pins in row A, various PLL inputs in row B, and +3.3 V pins in row C. The layout of the headers is shown in Figure 4-7.

The Header Classifications are shown in Table 4-2.

Table 4-2 Header Classification

Controls	Header
Group I: General Control	J18

Figure 4-6 Functional Diagram of Roboclock 1 and Roboclock 2

Figure 4-7 Header Layout

Table 4-2 Header Classification	Table 4-2	Header	Classification
---------------------------------	-----------	--------	----------------

Controls	Header
Group 2: PLL1 Divider Control	J12
Group 3: PLL2 Divider Control	J15
Group 4: Feedback and f _{NOM} Control	J11

The input pins are either LVTTL or 3-level input pins. The LVTTL pins need to be jumpered HIGH or LOW, which is achieved by connecting the input pin to the neighboring +3.3 V or GND pin, using a jumper. The 3-level input pins can be in a HIGH, MID, or LOW state. The HIGH and LOW states are achieved in the same way as the LVTTL pins. The MID state is reached by leaving the input pin unjumpered. The RoboclockII's have internal circuitry to bring the pin to 1.5 V when left open. The Jumper Definitions are shown in Table 4-3.

Name	Туре	Default	Description
PLLSEL2[1]	LVTTL	LOW	Input Clock Select: If LOW, U16:DCLK[7] or FCLKOUT (U14:PLL1A or HDR_CLKOUT) is selected as the input clock. If HIGH, the U16:PLL2B_N (U14:PLL1B_N) pair is selected as the input clock.
MODE[2:1]	3-Level	HIGH	Output Mode: If HIGH, clock outputs disable to high-Z state. If LOW, clock outputs disable to "HOLD-OFF' mode. If MID, clock outputs disable to factory test mode.
INV2[1]	3-Level	MID	Invert Mode: When HIGH, clocks CCLK[3:0] (ECLK[3:0]) are inverted. When MID, these clock outputs are non-inverting. When LOW, the pairs CCLK[1:0] and CCLK[3:2] (ECLK[1:0] and ECLK[3:2]) will be complementary.
FBDIS[2:1]	LVTTL	LOW	Feedback Disable: When HIGH, feedback is disabled. When LOW, feedback is enabled.
RB[C-F]F[1:0]	3-Level	MID	Output Phase Function: Each pair controls the phase function of the respective group of outputs. See "Clock Skew" on page 4-12 for more information.
[C-F]DS[1:0]	3-Level	LOW	Output Divider Function: Each pair controls the divider function of the respective group of outputs. See "Clock Division" on page 4-11 for more information.
FS[2:1]	3-Level	LOW	Frequency Select: The input specifies the operating range of the nominal frequency (f _{NOM}). See "General Control" on page 4-11 for more information.
FBF0[2:1]	3-Level	LOW	Feedback Output Phase Function: The input controls the phase function of the feedback outputs. See "Feedback and Clock Multiplication" on page 4-11 for more information.
FBDS[1:0][2:1]	3-Level	MID	Feedback Output Divider Function: Each pair controls the divider function of the feedback outputs. See "Feedback and Clock Multiplication" on page 4-11 for more information.

General Control

FS[2:1] is a 3-Level input which determines the allowable range for the operating frequency f_{NOM} of the device. Depending on the chip grade, the PLL can operate between 12–100 MHz or 24–200 MHz. The actual f_{NOM} frequency can be determined by setting all jumpers to their defaults. Thus, f_{NOM} will be seen on all of the "divide-by-one" clock outputs. The user can set **FS** accordingly. The Frequency Range Settings are shown in Table 4-4.

	СҮ7В	993V	CY7B994V		
FS[2:1]	f _{NOM} (MHz)		f _{NOM} (ı (MHz)	
	MIN	МАХ	MIN	МАХ	
LOW	12	26	24	52	
MID	24	52	48	100	
HIGH	48 100		96	200	

Table 4-4 Frequency Range Settings

Feedback and Clock Multiplication

First of all, FBDIS[2:1] must be set LOW, enabling feedback. The feedback output is looped back to the feedback input. When a divided output is applied to the feedback input, the VCO (voltage controlled oscillator) of the PLL aligns the feedback input with the original input clock. Thus, with a 10 MHz input clock and the feedback outputs set to divide by 2, f_{NOM} must be 20 MHz. Consequently, 10 MHz is seen on the feedback output clocks and can be aligned with the input clocks. The feedback clock divider function actually serves as a clock multiplication mechanism for the operating frequency f_{NOM} . The divider function and the clock skew function are set in the same manner for the feedback and the normal clock outputs. See "Clock Division" on page 4-11 and "Clock Skew" on page 4-12, respectively.

Clock Division The three pairs of DS inputs per chip are used to control the two groups of clock outputs and the feedback outputs of each PLL. The user can simply follow the Divider Function Table to acquire the desired output frequency. There are two things to remember. First, FS[2:1] must be set properly according to fNOM. Second, the FBDS feedback inputs act as operating clock frequency multipliers. The Output Divider Settings are shown in Table 4-5.

Input Signals		Output Divider Function		
[C-fF]DS1 and FBDS1[2:1]	[C-F]DS0 and FBDS0[2:1]	Output Signals	Feedback Output Signals	
LOW	LOW	/1	/1	
LOW	MID	/2	/2	
LOW	HIGH	/3	/3	
MID	LOW	/4	/4	
MID	MID	/5	/5	
MID	HIGH	/6	/6	
HIGH	LOW	/8	/8	
HIGH	MID	/10	/10	
HIGH	HIGH	/12	/12	

Table 4-5 Output Divider Settings

Clock Skew

Clock skew is controlled by the "F" inputs. The clock skew may be any integer value from 0 to ±8 times the RoboclockII time unit t_U . The time unit value is derived from the operating frequency f_{NOM} and the FS[2:1] setting. The following equation yields the time unit t_U .

$$t_U = \frac{1}{f_{NOM} \cdot N}$$

The possible values for N are given in Table 4-6. The available skew for each RoboclockII derived clock is given in Table 4-7. Based on the following information, the user will be able to adjust the skew for any of the RoboclockII outputs.

Table 4-6 Time Unit N-factor

	CY7B993V		CY7B	994V
FS	N	f _{NOM} (MHz) at which t _U = 1 ns	N	f _{NOM} (MHz) at which t _U = 1 ns
LOW	64	15.625	32	31.25
MID	32	31.25	16	62.5
HIGH	16	62.5	8	125

Input	Signals	Output Skew Function				
RB[C-F]F1	RB[C-F]F0 and FBF0[2:1]	DCLK[3:0] or ECLK[11:8]	DCLK[7:4] or ECLK[15:12]	CCLK[3:0] or ECLK[3:0]	CCLK[7:4] or ECLK[7:4]	Feedback Output Signals
LOW	LOW	-4t _U	-4t _U	-8t _U	-8t _U	-4t _U
LOW	MID	-3t _U	-3t _U	-7t _U	-7t _U	N/A
LOW	HIGH	-2t _U	-2t _U	-6t _U	-6t _U	N/A
MID	LOW	-1t _U	-1t _U	COL1*	COL1*	N/A
MID	MID	0t _U	0t _U	0t _U	0t _U	0t _U
MID	HIGH	+1t _U	+1t _U	COL2**	COL2**	N/A
HIGH	LOW	+2t _U	+2t _U	+6t _U	+6t _U	N/A
HIGH	MID	+3t _U	+3t _U	+7t _U	+7t _U	N/A
HIGH	HIGH	+4t _U	+4t _U	+8t _U	+8t _U	+4t _U
*The clock skew is equivalent to the skew on DCLK[3:0] or ECLK[11:8] **The clock skew is equivalent to the skew on DCLK[7:4] or ECLK[15:12]						

Table 4-7 Clock Skew Settings

Differential Clocks

In addition to LVTTL clock signals, the RoboclockII clock buffers can handle LV Differential (LVPECL) clocks. The user can cable in an acceptable differential signal to PLL1B and PLL1BN, or PLL2B and PLL2BN through the clock grid **J13**. The signals must obey the specifications given in Table 4-8. Onboard circuitry is available to center the signals about the proper voltage, if needed.

Description	Min	Мах		
Differential Voltage	0.4	3.3		
Highest HIGH Voltage	1.0	3.3		
Lowest LOW Voltage	GND	2.9		
Common Mode range (crossing voltage)	0.8	3.3		

The clock input of the RoboclockII can accept a superset of PECL. PECL involves a 1 V swing about $V_{CC}/2$. The RoboclockII clock input can accept a swing of up to 3.3 V about $V_{CC}/2$, which gives the user another dimension of flexibility.

The CY7B993V/4V can output LVTTL complementary (differential) signals, too. Setting INV1 (INV2) LOW will result in clocks CCLK[1:0] and CCLK[3:2] (ECLK[1:0] and ECLK[3:2]) becoming complementary pairs. A network of series and parallel resistors could be used to reduce the nominal swing of the clock signals.

Useful Notes and Hints

The CYB993V consistently outputs ~32.5 MHz signals in cases of improper settings or unacceptable clock inputs. This was observed when:

- The CY7B993V part was operating at a nominal frequency $f_{\rm NOM}$ of 36.4 MHz with ${\rm FS}$ set LOW.
- Identical clocks were sent to PLL2B and PLL2BN.

For the CY7B994V part, the operating frequency can reach up to 200 MHz. However, the maximum output frequency is 185 MHz. This means when 185 MHz $\leq f_{NOM} \leq 200$ MHz, the output divider must be set to at least 2. Otherwise, the RoboclockII's will output garbage.

Customizing the Oscillators

The user can customize the frequency of the clock networks by stuffing oscillators in **X2** and **X3**. The DN5000k10 is shipped with a 14.318 MHz oscillator in location **X2** and a 100 MHz oscillator in **X2**. The RoboclockII's are **not** +5 V tolerant, so +3.3 V oscillators are necessary.

NOTE: If you stuff your own oscillators, +3.3 V CMOS outputs are necessary since the RoboclockII's are not +5 V signalling tolerant!

We get our oscillators from Digi-Key (http://www.digikey.com/). Of note is an Epson line of oscillators called the SG-8002 Programmable Oscillators. Any frequency between 1.00 MHz–106.25 MHz can be procured in the normal Digi-Key shipping time of 24 hours. A half-can, +3.3 V CMOS version is needed with a tolerance of 50 ppm. The part number for an acceptable oscillator from this family would be:

- SG-8002DC-PCB-ND
- package SG-531
- output enable
- 3.3 V CMOS
- 50 ppm

If the order is placed via the web page, the requested frequency to two decimal places is placed in the Web Order Notes. The datasheet is on the CD-ROM for this oscillator. The file name is SG8002DC.pdf.

Any polarity of output enable for each oscillator (on pin 1) is acceptable. Make sure that you have the proper jumper settings at positions 9 and 10 of **J14**, **J15** and **J16**. See Figure 4-8 and Figure 4-9 for a description.

Figure 4-8 Clock OE Pin Jumper Settings

Table 4-9	Clock	OE P	in Jumpei	r Settings
-----------	-------	------	-----------	------------

Clock OE	Jumper Settings
Active High OE for X1	Jumper J11.26 to J11.27
Active Low OE for X1	Jumper J11.26 to J11.25
Active High OE for X2	Jumper J11.29 to J11.30
Active Low OE for X2	Jumper J11.29 to J11.28

DN5000k10 PCI_CLK Operation

The DN5000k10 ASIC emulation board has the ability to run all FPGAs, all SRAMs, and all the SDRAM off of PCI_CLK. PCI_CLK is a single destination clock which is routed to FPGA F (**U11**) from the PCI connector. The user can input PCI_CLK to one of the Stratix Enhanced PLLs in FPGA F. The resulting PLL output can be sent to the Roboclocks via the signal FCLKOUT. All of the aforementioned devices receive one of the ECLK clock outputs from Roboclock 2. Consequentially, the DN5000k10 can be clocked exclusively by PCI_CLK

PCI_CLK Details

PCI_CLK is connected to one of FPGA F's global clock inputs from the PCI connector. Then, a PLL must be instantiated. The PLL will require a minimum of three connections. For further information on Stratix[™] PLL operation, see the Altera website at http://www.altera.com. The Stratix[™] Datasheet (ds_stx.pdf), which can be found on the DN5000k10 CD-ROM, also provide useful information on PLLS. PCI_CLK must be connected to the "INCLK[0]" input of the DCM. The DCM output, "EXTCLK[0]" will be connected to the output signal FCLKOUT. One more connection must be made to the PLL. This will come up later in this section.

The FCLKOUT signal is connected to one of the four input pins on Roboclock 2. FCLKOUT's complementary input is DCLK[7](R). FCLKOUT and DCLK[7](R) are both single ended TTL inputs. When either of them is being used, the other one must be left open. For complete PCI_CLK operation, jumper **J14** must be unstuffed leaving DCLK[7](R) open.

If set to the default configuration, Roboclock 2 will drive a one-to-one PCI_CLK derived clock on its outputs. See "Roboclock PLL Clock Buffers" on page 4-7 for more information. Roboclock 2 has 16 clock outputs (ECLK[15:0]). Each FPGA (ECLK[4:0]), each SSRAM (ECLK[9:6]), and the SDRAM (ECLK[13:10]) receive ECLK signals.

To complete this setup, a feedback signal must be connected to the PLL in FPGA F. Roboclock 2 sends ECLK[15] to the feedback input of FPGA F. ECLK[15] needs to be connected to the "fbin" input signal of the PLL. Using ECLK[15] as feedback allows the PLL to properly synchronize the DN5000k10 PCI_CLK network which completes the setup (see Figure 4-9 for a diagram of the PCI_CLK PLL circuit).

The DN5000k10 can be run off any single-ended TTL clock signal which is sent to the Roboclocks. The ECLK distribution provides the DN5000k10 this flexibility. PCI_CLK has special implications for DN300k10 PCI operation.

Figure 4-9 PCI_CLK PLL Circuit

BCLKOUT and FCLKOUT atu

FCLKOUT is assigned to a dedicated clock output pin in the Stratix architecture, and can be used to drive Roboclock 2 (see the section "DN5000k10 PCI_CLK Operation" on page 4-16 for details). The DN5000K10 differs from previous Dini Group emulator boards because the Stratix architecture assigns each PLL to specific clock pins. In the case of FCLKOUT, the only possible source is from PLL5, which has only one possible input, PCI_CLK. So, the sole purpose of FCLKOUT is to provide the means to run the whole board with PCI_CLK.

Header Clocks

(S Each header receives a clock signal from each of the five clock groups, except that J9 does not receive DCLK or ECLK. The last available DCLK signal was needed to drive Roboclock 2, and the last ECLK signal was needed to drive the feedback loop for the PCI_CLK function. Instead, J9 has a signal, HDR_CLKOUT, which connects to an input of Roboclock 1, providing another way to drive CCLK and DCLK from an off-board source. This can be used for systems where additional hardware on a daughter-card needs to communicate with the FPGAs on the DN5000K10. Note that HDR_CLKOUT and PLL1A are connected to a differential pair of inputs on Roboclock 1, so if HDR_CLKOUT is being used, pin 10 on J13 must not be connected to anything so that there is no interfering signal.

DCLK[7](R)

The signal DCLK[7](R) is routed from one of the Roboclock 1 outputs to one of the Roboclock 2 inputs. Jumper J14 lies along this connection route. J14 must be installed in order to utilize DCLK[7](R). DCLK[7](R) and FCLKOUT are complementary input on Roboclock 2, and are both single-ended TTL inputs. When either of them is being used, the other one must be left open. Thus, FCLKOUT must be undriven on FPGA F for DCLK[7](R) to operate.

DCLK[7](R) provides two useful results. First, any clock signal or some derivation sent to Roboclock 1 can be driven onto RoboclockII #2 for full distribution.

Second, running a clock through Roboclock 1 to Roboclock 2 gives the user more divide and multiply options for the clock frequencies. Here is an

example. If you have a 40MHz input clock, the user cannot output a 30MHz clock with a single RoboclockII's multiply and divide options. However, the user can input a 40MHz to RoboclockII #1 and divide it by 4. By installing the **J27** jumper, a 10MHz clock will be driven onto RoboclockII #2. Setting RoboclockII #2's feedback outputs to divide by 3, the operating frequency will become 30MHz. Thus, a 30MHz could be driven onto the RoboclockII #2 output signals.

NOTE: The signal **FCLKOUT** must be left open in order to utilize **DCLK[7](R)**
Memories

The DN5000k10 has five external memories: four 36-bit SSRAMs, and one 72-bit SDRAM DIMM. The four SSRAMS are referred to as SSRAM FB (U22), SSRAM AD (U23), SSRAM AB (U21), and SSRAM ED (U18). **SSRAMs** The SSRAMs can be stuffed with ZBT, non-ZBT, pipeline, or flowthrough parts. We believe we have anticipated the additional address lines for the 1 M x 36 and 2 M x 36 parts when they are available. The DN5000k10 is stuffed at the factory with 512 K x 36-bit Synchronous Pipeline Burst SRAM. Samsung K7A163600M-QC1400 are probably the parts you will have stuffed into your DN5000k10. The datasheet is on the CD-ROM in the file DS_K7A1636(18)00M.pdf. The SSRAMs are tested at 100 MHz. **SSRAM Notes** All SSRAMs use ECLK for their clock. SSRAMs FB, AB, and AD share most of their I/Os with the 200 pin connectors. The exceptions that are not on the connectors are pins ZZ, OE, and CE. So, if an SSRAM is not needed, one of the FPGAs connected to it may drive ZZ high, putting the SSRAM to sleep so that it does not interfere with the 200-pin connector. Alternatively, the 200-pin connector is available to probe SSRAM signals for debugging purposes. However, if someone wanted to design a system where hardware on a daughtercard can access an SSRAM directly, some rework would be needed to connect it to the OE and CE pins. The connections between the FPGAs and the SSRAMS is shown in Figure 5-1.

The signal connections for SSRAM FB are shown in Figure 5-2.

The signal connections for SSRAM AD are shown in Figure 5-3.

The signal connections for SSRAM AB are shown in Figure 5-4.

The signal connections for SSRAM ED are shown in Figure 5-5.

Flowthrough SSRAMs are functionally the closest to ASIC-style memories. Pipeline SSRAMs can be clocked at faster frequencies. ZBT SSRAMs are typically one generation behind in density. The subtle differences between the styles of memories are described in the next section.

Figure 5-1 FPGA Interconnect Block Diagram

FPGA F (U11)]	SSRAM FB (U22		FPGA B (U19)
L32	← FB[1] →	SA0	← FB[1] →	H9
K25	← FB[2] →	SA1	← FB[2] →	J8
M32	← FB[3] →	SA2	← FB[3] →	L8
M31	FB[4]	SA3		U11
N32 N31	FB[5]	5A4 SA5	FB[5]	MB
P32	FB[7] →	SA6	FB[7]	N8
P31	← FB[8] →	SA7	FB[8] →	N9
R32	← FB[9] →	SA8 dr	← FB[9] →	P8
R31	← FB[10] →	SA9 Š	← FB[10] →	P9
T32	← FB[11] →	SA10	FB[11]	R8
131	FB[12]	SA11 D	FB[12]	R9 To
032	FB[13]	SA12	FB[13]	10
V32	← FB[15] →	SA14	← FB[15] →	U8
V31	← FB[16] →	SA15	← FB[16] →	U9
W31	← FB[17] →	SA16	← FB[17] →	V8
AA36	← FB[18] →	SA17	← FB[18] →	V9
AA27	FB[19]	SA18	FB[19]	V12
P24	FB[129]	SA19 (expansion) —	FB[129]	014
AB32	← FB[20] →	ADV#	FB[20]	AA 9
AB31	FB[21]	ADSP#	FB[21]	AB8
AC32	← FB[22] →	ADSC#	← FB[22] →	AB9
AC31	← FB[23] →	BWA# O	← FB[23] →	AC8
AD31	← FB[24] →	BWB# S	← FB[24] →	AC9
AE32	← FB[25] →	BWC#	← FB[25] →	AD8
AE31	FB[26]	BWD# 2	FB[26]	AD9
AF32 AF31	FB[27]		FB[27]	ΔG8
AG32	FB[29]	MODE	FB[29]	AG9
AG31	FB[30]	CE#	FB[30]	AH8
AH32	← FB[31] →	OE#	← FB[31] →	AH9
AH31	← FB[32] →	zz	← FB[32] →	AJ8
Kaa		D0		144
K32 G30	FB[40]	D0	FB[40]	K8
K29	← FB[42] →	D2	FB[42]	K11
J28	← FB[43] →	D3	← FB[43] →	M6
M30	← FB[44] →	D4	← FB[44] →	M4
N33	← FB[45] →	D5	← FB[45] →	M10
N30	FB[46]	D6	FB[46]	N7
N24	FB[47]	D7 D8		N10
P30 R33	FB[48]	D8	FB[49]	P10
R30	← FB[50] →	D10	← FB[50] →	R7
U29	← FB[51] →	D11	← FB[51] →	R10
Т30	← FB[52] →	D12	← FB[52] →	N16
T29	← FB[53] →	D13	← FB[53] →	T10
U30	FB[54]	D14 1	FB[54]	T11
V30 W30	FB[55]	D15 m	FB[55]	V10
AB30	FB[57]	D17 51	FB[57]	AA10
AC30	← FB[58] →	D18	← FB[58] →	AB10
AD30	← FB[59] →	D19 00	← FB[59] →	AC10
AD29	← FB[60] →	D20	← FB[60] →	AD10
AE30	FB[61]	D21	FB[61]	AD11
AF33	FB[62]	D22		AE10
AC29	FB[63]	D23	FB[63]	AF10
AG30	FB[651 →	D25	FB[65]	AF8
AB29	← FB[66]→	D26	← FB [66] →	AG10
AH30	FB[67] →	D27	→ FB[67]	AE14
AJ33	FB[68]	D28	FB[68]	AH10
AR35	FB[69]	D29	FB[69]	AF14
AR36 AT26	FB[71]	D30	FB[71]	AC10 AG16
2K20	FB[72]	PARO	FB[72]	AK8
AL30	← FB [73] →	PAR1	← FB [73] →	AK11
AL29	└ FB [74] →	PAR2	← FB [74] →	AL10
AV37	└─── FB[75] ───→	PAR3	← FB [75] →	AL11

Figure 5-2 SSRAM FB (U22) Bus Signals

FPGA A (U12)		SSRAM AD (U2	23)			FPGA D (U20)
L32	← AD[1] →	SA0		← AD[1]	\longrightarrow	Н9
K32	← AD[2] →	SA1		← AD[2]	\longrightarrow	J8
M32	← AD[3] →	SA2		← AD[3]	\rightarrow	L8
M31		SA3		AD[4]	\rightarrow	H13
N32		SA4		AD[5]	\rightarrow	M8
N31		SA5		AD[6]		M9 No
F 32 P 31						NG
R32					\longrightarrow	P8
R31		SA9		AD[10]	\longrightarrow	P9
T32	← AD[11] →	SA10 0		← AD[11]	\rightarrow	R8
T31	← AD[12] →	SA11 🚽		AD[12]	\longrightarrow	R9
U32	← AD[13] →	SA12 0		← AD[13]	\longrightarrow	Т8
U31	← AD[14] →	SA13		AD[14]	\rightarrow	Т9
V32	AD[15]	SA14		AD[15]	\rightarrow	U8
V31	AD[16]	SA15		AD[16]	\rightarrow	U9
W31	AD[17]	SA16		AD[17]	\rightarrow	V8
AF31		SA17		AD[18]		V9
AD32	AD[19]	SAI8 SAI0 (ornancion)		AD[19]		
330	AD[36]	SATS (expansion) —		AD[30]		65
AB32	AD[20]	ADV#		AD[20]	>	AA9
AB31	AD[21]	ADSP#		AD[21]	\longrightarrow	AB8
AC32	AD[22]	ADSC#		AD[22]	\rightarrow	AB9
AC31	← AD[23] →	BWA#		AD[23]	\longrightarrow	AC8
AD31	← AD[24] →	вwв# ဋ		← AD[24]	\longrightarrow	AC9
AE32	← AD[25] →	BWC# IT		← AD[25]	\longrightarrow	AD8
AE31	← AD[26] →	BWD# <mark>2</mark>		← AD[26]	\longrightarrow	AD9
AF33	← AD[27] →	BWE#		▲ AD[27]	\rightarrow	AF9
AG32		GW# S		← AD[28]	\rightarrow	AG8
AF32	AD[29]	MODE		AD[29]	\rightarrow	AG9
AG31	AD[30]	OE#		AD[30]		
A031 AH31	AD[31]	77		AD[31]		A.18
Allol					-	700
K33	← AD[39] →	D0		AD[39]	\longrightarrow	H11
J29	← AD[40] →	D1		← AD[40]	\longrightarrow	J10
K29	← AD[41] →	D2		← AD[41]	\longrightarrow	J11
T29	← AD[42] →	D3		← AD[42]	\longrightarrow	K8
U29	← AD[43] →	D4		← AD[43]	\rightarrow	K11
M30	AD[44]	D5		AD[44]	\rightarrow	M6
N33		D6		AD[45]	\rightarrow	M4
N30				AD[46]		M10
P34 P30		00		AD[47]		N10
R33		D10		ΔD[40]	\longrightarrow	P7
R30	AD[50]	D11		AD[50]	\longrightarrow	P10
V29	AD[51]	D12		AD[51]	\rightarrow	R7
T30	← AD[52] →	D13		AD[52]	\longrightarrow	R10
W29	AD[53] →	D14		AD[53]	\longrightarrow	N16
U30	▲ AD[54] →	D15 🖸		← AD[54]	\longrightarrow	T10
V30	▲ AD[55] →	D16 ដែ		AD[55]	\longrightarrow	T11
W30	← AD[56] →	D17 P.		← AD[56]	\rightarrow	U10
AB30	AD[57]			AD[57]	\rightarrow	V10
AC30		D19		AD[58]	\rightarrow	AA10
AD30		D20		AD[59]		AB10
AE33		D21		AD[60]		
ΔE35	AD[61]	D22		AD[01]		AD10 AD11
ΔE30		D23		AD[62]	\longrightarrow	ΔF8
AB29	AD[64]	D25		AD[64]	\longrightarrow	AE10
AG30	← AD[65] →	D26		AD[65]	\rightarrow	AF8
AC29	← AD[66] →	D27		AD[66]		AF10
AH30	▲ AD[67]	D28		AD[67]	\longrightarrow	AG10
AD29	▲ AD[68] →	D29		AD[68]	\longrightarrow	AC11
AD26	▲ AD[69] →	D30		← AD[69]	\longrightarrow	AH10
AE26	AD[70]	D31		AD[70]	\rightarrow	AB11
AU38	AD[71]	PAR0		AD[71]	\rightarrow	AE14
AK29	AD[72]	PAR1		AD[72]	\rightarrow	AG16
AL30	AD[73]	PAR2		AD[73]		AK11
AL29	AD[74]	PAR3		AD[74]	\rightarrow	AL12

Figure 5-3 SSRAM AD (U23) Bus Signals

FPGA A (U12)		SSRAM AB (U2	1)	FPGA B (U19)
AW36	← AB[1] →	SA0	← AB[1] →	AV4
AV36	← AB[2] →	SA1	← AB[2] →	AU4
AW35	← AB[3] →	SA2	← AB[3] →	AW5
AV35	← AB[4] →	SA3	← AB[4] →	AV5
AU35	← AB[5] →	SA4	← AB[5] →	AU5
AW34	← AB[6] →	SA5	← AB[6] →	AW6
AV34	← AB[7] →	SA6 Þ	▲ AB[7] →	AV6
AU34	← AB[8] →	SA7 O	← AB[8] →	AU6
AW33	← AB[9] →	SA8 0	← AB[9] →	AW7
AV33	← AB[10] →	SA9 0	AB[10]	AV7
AU33	AB[11]	SA10		AU7
AW32	AB[12]	SA11 5		AW8
AV32	AB[13]	SA12 0		AV8
AU32		SA13		AU8
AVV31	AB[15]	SA14	AB[15]	AW9
AV31		5A15 6A16		AV9
AU31 AW30		SA10		AU9 AW10
AV/30		SA18		AV10
AU12	AB[70]	SA19 (expansion)		AU128
A012		OATS (capalision)		AULU
AU30	▲ AB[20] →	ADV#	▲ AB[20] →	AU10
AW29	▲ AB[21] →	ADSP#	AB[21]	AW11
AV29	▲ AB[22] →	ADSC#	AB[22]	AV11
AU29	← AB[23]	BWA#	▲ AB[23] →	AU11
AW28	← AB[24] →	вwв# ⊻	→ AB[24] →	AW12
AV28	← AB[25]	BWC# H	← AB[25] →	AV12
AU28	← AB[26] →	BWD# Ó	← AB[26] →	AU12
AV27	← AB[27] →	BWE# D	← AB[27] →	AV13
AU27	← AB[28] →	GW# 7	← AB[28] →	AU13
AW26	← AB[29] →	MODE	← AB[29] →	AW14
AV26	← AB[30] →	CE#	← AB[30] →	AV14
AU26	← AB[31] →	OE#	← AB[31] →	AU14
AV25	← AB[32] →	ZZ	▲ AB[32] →	AV15
41105	4 4 17 (201	-		A114 F
AU25	AB[33]	D0	AB[33]	AU15
AW24	AB[34]			AW16
AV24	AB[35]	D2	AB[35]	AV16
AU24	AB[30]	D3	AB[30]	AU10 AW17
AW23		D5	AB[37]	AW17 AV17
AV23		D5 D6		AV 17 AU17
A023		D7		AV37
AT2	AB[41]	D8		AV18
AU22	AB[42]	D9	AB[42]	AU18
AW21	▲ AB[43] →	D10	AB[43] →	AU36
AV21	← AB[44] →	D11	→ AB[44] →	AV19
AU21	← AB[45] →	D12	← AB[45] →	AU19
AW20	← AB[46] →	D13	← AB[46] →	AW20
AV20	← AB[47] →	D14	← AB[47] →	AV20
AU20	← AB[48] →	D15 🜄	← AB[48] →	AU20
AT3	I←─── AB[49] ────►	D16 ត្រី	▲ AB[49] →	AW21
AV19	← AB[50] →	D17 <u>P</u>	▲ AB[50] →	AV21
AU19	← AB[51] →	D18	▲ AB[51] →	AU21
AT4	← AB[52] →	D19	▲ AB[52] →	AW22
AV18	← AB[53] →	D20	AB[53]	AT36
AU18	AB[54]	D21	AB[54]	AU22
AW17	AB[55]	D22	AB[55]	AW23
AV17	AB[56]	D23		AV23
AU17		D24		AU23
AVV IO	AB[50]	D25	AB[58]	AVV24
AV16		D20		AV 24 A1104
AU 10		D28		ΔV25
Δ1115		D29		AU25
ΔW14		D30		AW26
ΔV14		D31		AV26
Δ1/14		PARO		AU26
AV13		PAR1		AV27
AU13	< AB[67]>	PAR2	▲ AB[67] →	AU27
AW12	← AB[68] →	PAR3	 ←─── AB[68] ────→	AW28
			^{, ,} L	

Figure 5-4 SSRAM AB (U21) Bus Signals

FPGA E (U15)		SSRAM ED (U1	8)			FPGA D (U20)
A18	← ED[1] →	SA0		←───	ED[1]	E39
D23		SA1		I ∢	ED[2]>	E38
C18		SA2		┥	ED[3]	F39
A17	← ED[4] →	SA3		←	ED[4]	F38
B17		SA4		I <u>∢</u>		F37
C17		SA5		 ⊶		G39
A16		SA6		↓		G38
B16		SA7		↓	ED[8]	G37
C16	ED[9]	SA8 9		`	ED[9]	H39
B15		SA9 0		2	ED[10]	H38
C15		SA10 0		2	ED[10]	H37
A14	ED[12]				ED[12]	E27
B14	ED[12]	SA11 5			ED[12]	E20
014	ED[13]	SA12 .			ED[13]	127
C14 B12		SA13			ED[14]	- 337 - K20
B13 012	ED[15]	SA14			ED[15]	K39
C13	ED[16]	SAIS			ED[16]	K38
AIZ		SAID				K37
B12	ED[18]	SA17			ED[18]	L39
C12	ED[19]	SA18			ED[19]	L38
D16	← ED[83] →	SA19 (expansion)		◄	ED[83]	J34
	<i>(</i>)					
A11	← ED[20] →	ADV#			ED[20]	L37
B11	← ED[21] →	ADSP#		←	ED[21]	► M39
C11	← ED[22] →	ADSC#		←───	ED[22]	► M38
\ A10	← ED[23] →	BWA# O		←───	ED[23]	M37
B10	← ED[24] →	BWB# 9		←───	ED[24]	N38
C10	← ED[25] →	BWC# 📑		←───	ED[25]	N37
A9	← ED[26] →	BWD# ♀		←───	ED[26]	▶ P39
B9	← ED[27] →	BWE# 🖸		←───	ED[27]	► P38
C9	← ED[28] →	GW#		←───	ED[28]	G32
A8	← ED[29] →	MODE		←───	ED[29]	R38
B8	← ED[30]>	CE#		←───	ED[30]	R37
C8	← ED[31] →	OE#		↓	ED[31]	т39
A7	← ED[32] →	zz		 ⊶	ED[32]	т38
					/	
B7	← ED[33]>	D0		←───	ED[33]>	+ тз7
C7	← ED[34] →	D1		 ←	ED[34]	U37
A6	← ED[35]	D2		↓	ED[35]	V39
B6	← ED[36] →	D3		 ←	ED[36]	V38
C6		D4			ED[37]	D35
45	ED[38]	D5		 ∡	ED[38]	D36
B5	ED[39]	D6		`	ED[39]	D34
C5		D7		`	ED[40]	AB39
84		07			ED[40]	AB39
64	ED[41]				ED[41]	AD30
C4 E1	ED[42]	D9			ED[42]	A037
EI	ED[43]	D11			ED[43]	A000
EZ	ED[44]					AAC30
F1		D12			ED[45]	AU3/
F2		D13			ED[40]	AD39
F3					ED[47]	AD30
GI		D15 at				AD37
G2		<u>מ</u> הוח				AF39
G3		P1/ P				AF38
H1	ED[51]	D18 S			ED[51]	AG25
H2	← ED[52] →	D19			ED[52]	AG38
H3	← ED[53] →	D20			ED[53]	AG37
F5	← ED[54] →	D21		—	ED[54]	AH39
F6	← ED[55] →	D22		 ←	ED[55]	AH38
J3	← ED[56] →	D23		←───	ED[56]	AH37
K1	← ED[57] →	D24		←───	ED[57]	► AJ39
K2	← ED[58] →	D25		←───	ED[58]	► AJ38
K3	← ED[59] →	D26		←───	ED[59]	AJ37
L1	← ED[60] →	D27		←───	ED[60]	AK39
L2	← ED[61] →	D28		←───	ED[61]	► AK38
L3	← ED[62] →	D29		←───	ED[62]	AK37
M1	← ED[63] →	D30		←───	ED[63]	AT36
M2	← ED[64] →	D31		←───	ED[64]	AR37
M3	← ED[65] →	PAR0		←───	ED[65]	AL37
N2	← ED[66] →	PAR1		←───	ED[66]	► AM39
N3	← ED[67] →	PAR2		←───	ED[67]	AM38
P1	← ED[68] →	PAR3		←───	ED[68]	AM37

Figure 5-5 SSRAM ED (U18) Bus Signals

Pin 14 of each SSRAM may be pulled high, pulled low, or left unconnected. Table 5-1describes which 0-ohm resistors must be used for each type of SSRAM to function correctly.

	FB	AD	AB	ED
ZBT Pipeline	Install R290 R291 R296	Install R293 R294 R298	Install R286 R287 R288	Install R219 R220 R221
ZBT Flowthrough	Install R289 R291 R295	Install R292 R294 R297	Install R284 R285 R288	Install R219 R222 R223
Syncburst Flowthrough or Pipeline		No Extra I	Resistors	

Table 5-1 Requirements for Non-Standard SSRAMs

Pipeline, Flowthrough, ZBT

Syncburst FT (Flowthrough) (Figure 5-6) is the most straightforward type of SSRAM available for the DN5000k10. Write data may be accepted on the same clock cycle as the activation signal and address, and read data is returned one clock cycle after it is requested. Syncburst is designed to allow two controllers to access the same SSRAM, using two activation signals, ADSC# and ADSP#; an activation with ADSP# requires data and byte enables one clock cycle after the address and activation. Syncburst PL (Pipelined) (Figure 5-7) is identical except for registered outputs, which delay read data an additional clock cycle but may be necessary for high-speed designs.

Zero-Bus-Turnaround (ZBT) SSRAMs are designed to eliminate wait states between reads and writes by synchronizing data. Thus, ZBT FT SSRAMs

Figure 5-7 Syncburst PL

(Figure 5-8) accept and return data one clock cycle after the address phase, and ZBT PL SSRAMs (Figure 5-9) accept and return data two clock cycles after the address phase. This allows the user to begin a write burst immediately after the last word of a read burst, because read data will be returned before the first write data is required. The timing is illustrated in Figure 5-10 and Table 5-2.

Figure 5-10 Syncburst and ZBT SSRAM Timing

	Syncburst	ZBT			
Address Phase	CE#, CE2#, CE ADSC#, or ADSP# address	CE#, CE2#, CE R/W#, LD# ² , BWx# address			
	or	or			
	ADV# ¹	ADV^2 , $BWx\#^3$			
Write Phase	BWE#, BWx#, or GW# ⁴ data	data			
Read Phase	Valid Data	Valid Data			
 ¹To continue a burst. ²ADV/LD# is low to load a new address, high to continue bust. ³For write access only. ⁴Writes to all four bytes. 					

Table 5-2	Syncburst and ZBT SSRAM	Timing
-----------	-------------------------	--------

SDRAM

The DN5000k10 has a socket for a +3.3 V 168-pin SDRAM DIMM. Either registered or unbuffered modules fit in the socket (U7). The same PC100/PC133 SDRAM modules that you put into your PC are used here. Your DN5000k10 will be stuffed and tested with a 1 Gbyte PC133 SDRAM DIMM, unless otherwise requested.

All DIMM pins are connected to the FPGA and the pins are shown in Figure 5-11 and Figure 5-12. We aren't quite sure what the largest size SDRAM DIMM is that will work in the DN5000k10, but here is the math as best we understand it:

14 Address lines A[13:0]	
(multiplexed between RAS* and CAS*, address 10 not used	
for CAS*)	27
2 bank address BA[1:0]	2
4 chip selects (S[3:0]*) used in pairs	1

So, we think that there are 29 address bits (27 + 2) and 2 possible chips selects, which add one more address bit. This totals 30 address bits — 1 G of 72-bit long words, which is 8 Gbytes. Please tell us if this math is wrong.

SDRAM modules require 4 clocks — CK[3:0]. These clocks are driven by the RoboclockII 2 and the signal names are ECLK.

The CD-ROM has a datasheet of an acceptable 1 Gbyte SDRAM module from Micron. The file name is SDF36C64_127x72G_B.pdf.

FPGA D (U20)		SDRAM (J19)
G17	← CKE[0]	
A8	← CKE[1] − R50 − M − SDRAM_CKE[1] − →	CKE1
B14	← CSN[0] R42 SDRAM_CSN[0]	► S0#
A22	← CSN[1] − R37 − MAA SDRAM_CSN[1] − →	► S1# Ğ
D16	← CSN[2] − R266 − VV − SDRAM_CSN[2] − →	S2# 1
A16	← CSN[3] − R39 − VV − SDRAM_CSN[3] − →	► S3# <u>○</u>
D13	$ = R270 - VV - SDRAM_BA[0] -$	
H16	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
G10 H17	$\begin{array}{c c} \hline \\ \hline $	
F15	BASN BASN BASN B268 M SDRAM BASN	BAS#
215		11.40#
A11	← ADD[0] - R48 - M - SDRAM ADD[0] - +	A0
A9	← ADD[1] - R49 - M - SDRAM_ADD[1] - +	► A1
A12	← ADD[2] R46 SDRAM_ADD[2]	A2
B12	← ADD[3] R47 SDRAM_ADD[3]	A3 🔉
C13	← ADD[4] R45 SDRAM_ADD[4]	► A4 d
D11	ADD[5] R271 SDRAM_ADD[5]	► A5 70
A14	← ADD[6] R43/VV SDRAM_ADD[6]	► A6 S
B13	ADD[7] R44/VV SDRAM_ADD[7]	
C14	ADD[8] R41 VV SDRAM_ADD[8]	
C11	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A9
C15	$ \begin{array}{c} \hline \\ \hline $	
D12 B15	ADD[11] R209 V V SDRAM_ADD[11]	A11 A12
B35		A12
500		
C5		
A7	← DQMB[1] R51SDRAM_DQMB[1]	DQMB1 U
D18	← DQMB[2] R261SDRAM_DQMB[2]	DQMB[2]
B25	← DQMB[3] R36SDRAM_DQMB[3]	DQMB[3]
A5	← DQMB[4] R53SDRAM_DQMB[4]	► DQMB[4]
D8	← DQMB[5] R273/VVSDRAM_DQMB[5]	
D20	← DQMB[6] R259 / V V SDRAM_DQMB[6])	DQMB[6]
C25	Comparison of the second se	DQMB[7]
E94		
C33		
G24		SA0
F25	← SA[1] − R238 − M − SDRAM SA[1] − →	SA1 O
B32	← SA[2]	► SA2
B4	SDRAM_CB[0]	CB0
B7	SDRAM_CB[1]	CB1 U
E17	SDRAM_CB[2]	► CB2
B23		
60	SDRAM_CB[4]	
G14 E22		
Δ29	SDRAM_CB[7]	CB7
	••••••••••••••••••••••••••••••••••••••	
C4	SDRAM_DATA[0]	DQ0
E7	SDRAM_DATA[1]	DQ1
F7	SDRAM_DATA[2]	DQ2
E8	SDRAM_DATA[3]	DQ3
F8	SDRAM_DATA[4]	DQ4
E9		DQ5
F9 E10		
E10 B8		
C12		
D9		DQ10
B9	SDRAM_DATA[11]	DQ11 0
C9	SDRAM_DATA[12]	DQ12
C10	SDRAM_DATA[13]	DQ13
D10	SDRAM_DATA[14]	DQ14
E11	SDRAM_DATA[15]	DQ15
F17	SDRAM_DATA[16]	DQ16
C17	SDRAM_DATA[17]	DQ17
D17	SUKAM_DAIA[18]	
D21		

Figure 5-11 SDRAM (J19) Bus Signals (Page 1 of 2)

FPGA D (U20)	(Continued)	SDRAM (J19)
E18	SDRAM DATA[21]	DQ21
F18	SDRAM DATA[22]	DQ22
C18	SDRAM DATA[23]	DQ23
A23	SDRAM DATA[24]	DQ24
C23	SDRAM DATA[25]	DQ25
F23	SDRAM_DATA[26]	DQ26
E23	✓ SDRAM_DATA[27]	DQ27
B24	SDRAM_DATA[28]	DQ28
D24	SDRAM_DATA[29]	DQ29
C24	SDRAM_DATA[30]	DQ30
B26	✓ SDRAM_DATA[31]	DQ31
C6	✓ SDRAM_DATA[32]	DQ32
D6	✓ SDRAM_DATA[33]	DQ33
A4	✓ SDRAM_DATA[34]	DQ34
B5	✓ SDRAM_DATA[35]	DQ35
C7	✓ SDRAM_DATA[36]	DQ36
D7	✓ SDRAM_DATA[37] →	DQ37
B6	← SDRAM_DATA[38]	DQ38 20
A6	SDRAM_DATA[39]	DQ39 លី
B11	SDRAM_DATA[40]	DQ40 🖳
B10	← SDRAM_DATA[41] →	DQ41 7
F12	✓ SDRAM_DATA[42] →	DQ42
E13	✓ SDRAM_DATA[43]	DQ43
F13	✓ SDRAM_DATA[44]	DQ44 T
E14	✓ SDRAM_DATA[45]	DQ45 D
F14	✓ SDRAM_DATA[46]	DQ46 0
G15	✓ SDRAM_DATA[47]	DQ47 9
B21	✓ SDRAM_DATA[48]	DQ48
A21	✓ SDRAM_DATA[49]	DQ49
C21	SDRAM_DATA[50]	DQ50
G22	SDRAM DATA[51]	DQ51
E21	SDRAM DATA[52]	DQ52
B20	SDRAM DATA[53]	DQ53
H23	SDRAM_DATA[54]	DQ54
C22	SDRAM_DATA[55]	DQ55
C26	SDRAM_DATA[56]	DQ56
B27	SDRAM DATA[57]	DQ57
A26	SDRAM DATA[58]	DQ58
D27	SDRAM DATA[59]	DQ59
C27	← SDRAM_DATA[60]	DQ60
B36	SDRAM DATA[61]	DQ61
A28		DQ62
B29	SDRAM DATA[63]	DQ63
C19	SDRAM_REGE (See REGE below)	

Figure 5-12 SDRAM (J19) Bus Signals (Page 2 of 2)

SDRAM On-Board Options

R189 and R193 are connected to the **WP** (Write Protect) input of the SDRAM EEPROM. Stuffing a 0-ohm resistor in R193 will keep the **WP** signal high, whereas stuffing it in R189 drives the signal low. The default configuration is RS193 stuffed. **NEVER** stuff both resistors at the same time.

The EEPROM holds data describing the size, configuration, and timing characteristics of the SDRAM. The data is write-protected when the **WP** signal is high. There should be little or no reason to want to overwrite the EEPROM data. Some SDRAM manufacturers simply connect the **WP** pin of the EEPROM chip to the power supply of the SDRAM, in which case the **WP** resistors have no effect whatsoever.

Header **J17** is connected to the **REGE** (Register Enable) input of the SDRAM and to ground. A pull-up resistor keeps the **REGE** signal high when the header is unconnected; adding a jumper between the two pins drives the signal low. The default configuration is no jumper. **REGE** is also connected

to FPGA D, intended as an input so that the design can check the status of **REGE**. Do **NOT** drive this signal high when **J17** is jumpered.

On some SDRAMs, the **REGE** input may be used to select Registered or Non-Registered behavior. If **REGE** is high, the control signals will go through registers before being sent to the individual DRAMs, delaying access by one clock cycle but improving fanout; if it is low, the signals will be passed directly to the DRAMs.

Power Supplies and Power Distribution

The DN5000k10 can be hosted in a +3.3 V PCI slot, or it can be used standalone. Figure 6-1 shows the various supplies used on the DN5000k10 and the connections of these supplies on the circuit board. The supply, +5 V, from the PCI connector (or **P1**) supplies the basic power to the DN5000k10. The +3.3 V power from the PCI connector is **not** used, nor is it connected to any circuitry on the DN5000k10.

The DN5000k10, when plugged into a PCI slot, has the following different power rails:

- +5 V
- +3.3 V

- +1.5 V
- -12 V
- +12 V

The power rails +3.3 V and +1.5 V are created using a switching regulator with +5 V as the input. +3.3 V from the PCI fingers is **not** used. **U7** is for +3.3 V and **U6** is for +1.5 V. Heat is not an issue with this style of switching regulator. Each regulator should be able to supply the minimum 10 A of current without strain. The most demanding application of the DN5000k10 should fit within the 10 A budget on these two power rails.

+3.3 V Power

The specification for the +3.3 V power is shown in Table 6-1. The +3.3 V supply is used by the following components on the DN5000k10:

- Stratix FPGA I/O (U11, U12, U15, U19, U20)
- Roboclocks U14, U16
- 2 Clock buffers U13, U17
- CPLD (U9)
- Microprocessor (U8)
- Microprocessor SRAM (U1)
- 4 SSRAMs (U18, U21, U22, U23)
- SDRAM DIMM (J19)
- 3 Oscillators **X1**, **X2**, **X3**

We do run +3.3 V a little hot. At worst case for all components, the +3.3 V power supply should never fall below +3.30 V.

Table 6-1	Specification	for +3.3	V Power
-----------	---------------	----------	---------

	Minimum	Typical	Maximum
Voltage	+3.35 V	+3.39 V	+3.44 V
Current	N/A	N/A	12 A

+1.5 V Power

The specification for the +1.5 V power is shown in Table 6-2. The +1.5 V supply is used by the following component on the DN5000k10:

• Stratix FPGA V_{cc}INT (**U11**, **U12**, **U15**, **U19**, **U20**)

We also run +1.5 V a little hot. At worst case for all components, the +1.5 V power supply should never fall below +1.50 V.

 Table 6-2
 Specification for +1.5 V Power

	Minimum	Typical	Maximum		
Voltage	+1.55 V	+1.56 V	+1.58 V		
Current	N/A	N/A	12 A		

If you use the DN5000k10 in a lab environment, the Stratix FPGA will never see worst case power and temperature—so you can use typical, commercial timing.

NOTE: In a lab environment, the FPGA never sees the worst-case temperature and power. You can use typical, commercial timing!

Stand-Alone Operation

The DN5000k10 can be used stand-alone, meaning it doesn't have to be plugged into a PCI slot. Connector **P1** is used to provide power to the DN5000k10 in this configuration. **P1** is a Molex drive power connector and will connect to any standard ATX power supply (see Figure 6-2). The power supply that we used is shown in Figure 6-3, but any ATX or AT style power supply will work. We use a 250-watt ATX supply. Since the DN5000k10 does not draw enough current to meet the minimums required by the supply, we plug an old disk drive into another one of the Molex connectors. The current drawn by the disk drive sinks enough current to make the switchers in the power supply happy.

The **P1** connector is rated to 13 A, far more current than the DN5000k10 can use.

The DN5000k10, when used stand-alone, has the following different power rails:

- +5 V
- +3.3 V
- +1.5 V
- +12 V

NOTE: If you use the DN5000k10 stand-alone with an ATX power supply, the DN5000k10 may not draw enough current to meet the minimum current required by the switchers in the supply. Connecting a disk drive to another connector will solve this problem!

Figure 6-2 Molex Connector P1—Auxiliary Power

Figure 6-3 Example ATX Power Supply

By specification, a PCI board may consume a maximum of 25 watts from the fingers of the PCI connector. This power limit is below that the DN5000k10 is capable of consuming, even if daughter cards and/or large SDRAM banks are installed. The **P1** connector can be used to augment the power obtained from the PCI fingers. **P1** can be used provided that the +5 V and +12 V power rails on the connector are supplied by the same power source as the PCI fingers.

NOTE: P1 and PCI may provide power at the same time, but ONLY if the same power source used to supply P1 is also supplying power to PCI.

Daughter Connections to DN3000k10SD— Observation Daughter Card for 200-pin Connectors

The traditional approach to experiment with new devices involving wiring together some ICs on a breadboard is fast becoming impractical and ineffective. Instead, designers using new high-density devices need custom PC boards representing a substantial investment of time and money.

Prototype boards from manufacturers can meet this demand for experimentation while eliminating the expense and time involved with custom PC boards. Additionally, such prototype boards facilitate the understanding and advantages of new device features.

Purpose

The DN3000k10SD daughter card allows external connection to the signals present on the DN5000k10 series ASIC prototyping boards. The DN5000k10 allows logic emulation with Stratix[™] devices prior to committing to using them for specific applications. It allows designers to try Stratix features such as BlockRAM, DLLs, and SelectI/O[™] resource, with an off-the-shelf resource.

Features

The DN3000k10SD Daughter Card has the following features:

- Buffered I/O, Passive and Active Bus Drivers
- Unbuffered I/O
- Differential LVDS pairs (Note: Not available on DN5000k10 ASIC prototyping board)
- Headers for Test Points

The daughter card contains headers that may be useful with certain types of oscilloscope probes, or when wiring pins to prototype areas.

Figure 7-1 is a block diagram of the DN3000k10SD Daughter Card.

The DN3000k10SD Daughter Card is pictured in Figure 7-2.

Figure 7-3 shows the assembly drawing of the DN3000k10SD Daughter Card.

The DN3000k10SD Daughter Card provides 16 differential pairs, 48 buffered (passive/active) I/O, and 66 unbuffered I/O signals. The

Figure 7-1 DN3000k10SD Daughter Card Block Diagram

Тор

Bottom

Figure 7-2 DN3000k10SD Daughter Card

• **D3** — LED indicating +12 V present

Under normal operating conditions, all LEDs should be on.

Power Supply

A linear power supply (U4) is present to provide level shift/translation functions when the board is populated with bus switches.

Options Resistors R10 and R11 can be used to select different voltage sources, +5 V or +3.3 V, respectively. When used, **U4** must be removed in order to prevent contention.

NOTE: Never populate **R10/R11** simultaneously: this will result in a shorted power supply.

Power Rating

- +5 V power supply is rated for 1 A.
- +3.3 V power supply is rated for 1 A.
- +1.5 V power supply is rated for 1 A.
- +12 V power supply is rated for 0.5 A.
- -12 V power supply is rated for 0.5 A.

Connector J8 Table 7-1 shows the connections of J8.

Pin	Function	Pin	Function
1	GND	11	GND
2	+5 V	12	+1.5 V
3	GND	13	GND
4	+5 V	14	+12 V
5	GND	15	GND
6	+3.3 V	16	+12 V
7	GND	17	GND
8	+3.3 V	18	–12 V
9	GND	19	GND
10	+1.5 V	20	–12 V

LVDS

Low-voltage differential signaling (LVDS) is a signaling method used for high-speed transmission of binary data over copper. It is well recognized that the benefits of balanced data transmission begin to outweigh the costs over single-ended techniques when the signal transmission times approach 10 ns. This represents signaling rates of about 30 Mbps or clock rates of 60 MHz (in single-edge clocking systems) and above. LVDS is defined in the TIA/EIA-644 standards.

NOTE: Not available on the DN5000k10 ASIC prototyping board.

Connector J2 This is a Mini D Ribbon (MDR) connector (50 pin) manufactured by 3M, used specifically for high speed LVDS signaling. The connector mates with a standard off-the-shelf 3M-cable assembly:

P/N 14150-EZBB-XXX-OLC

where XXX is:	050 = 0.5 m
	150 = 1.5 m
	300 = 3.0 m
	500 = 5.0 m

Please contact 3M for further details: http://www1.3m.com/.

Unbuffered I/O

The DN3000k10SD Daughter Card provides 66 unbuffered I/O signals, including 5 single ended clock signals. The function of these signals is position dependent.

NOTE: SIgnals P4NX7 and P4NX6 are also used for direction select and output enable on U2 and U3 respectively.

Connectors J3, J3, J4— Buffered Interface header
 IDC headers (50 pin) providing 48 buffered I/O signals.
 See Table 7-2 on page 7-8.
 J5, J6, J7 — Unbuffered Interface Header
 IDC headers (50 pin) providing 66 buffered I/O signals.

See Table 7-2 on page 7-8.

Buffered I/O

The DN3000k10SD Daughter Card provides 48 buffered I/O signals. The function of these signals is position dependent. **U1**, **U2**, and **U3** allow for different populating options, and devices can be active or passive.

Active

The LCV162245A is used for asynchronous communication between data buses. It allows data transmission from the A to the B or from the B to the A bus, depending on the logic level at the direction-control (**DIR**) input. The output-enable (**OE#**) input can be used to disable the device so that the busses are effectively isolated.

Passive

The FST163245 bus switches are used to connect or isolate two ports without providing any current sink or source capabilities. Thus, they generate little or no noise of their own while providing a low resistance path for an external driver. The output-enable (**OE#**) input can be used to disable the device so that the busses are effectively isolated.

Test Interface

The DN3000k10SD Daughter Card provides a 200-pin connector to interface to one of three test connectors on the DN5000k10 ASIC prototyping board: **J9**, **J10** and **J16**.

Connector J1 J1—Test Interface Connector

Micropax connector (200 pin) used as a standard interface to all the DINI Group development boards. This connector has a specified current rating of 0.5 amps per contact. See Table 7-2 on page 7-8.

Daughter Card I/O Connections

Table 7-2 shows the DN3000k10SD Daughter Card I/O Interconnects to connectors **J25**, **J26** and **J28**.

Da	ughter C	ard	DN5000k10 I/O Connector								
Co	onnectio	ns	J9, J10,	Head	ler J9	Head	er J10	Head	er J16		
J1	Signal	Conn	or J16 Pin No.	Signal	FPGA Pin	Signal	FPGA Pin	Signal	FPGA Pin		
1	+12 V		1	+12 V		+12 V		+12 V			
2	GND		2	GND		GND		GND			
3	ACLK[1]	J5.1	3	ACLK[7]		ACLK[6]		ACLK[5]			
4	+5 V		4	+5 V		+5 V		+5 V			
5	BCLK[1]	J5.3	5	BCLK[7]		BCLK[6]		BCLK[5]			
6	+5 V		6	+5 V		+5 V		+5 V			
7	CCLK[1]	J5.5	7	CCLK[7]		CCLK[6]		CCLK[5]			
8	GND		8	GND		GND		GND			
9	+3.3 V		9	+3.3 V		+3.3 V		+3.3 V			
10	P2N[3]	J3.1	10	HDR_ CLKOUT		ECLK[14]		ECLK[13]			
11	GND		11	GND		GND		GND			
12	P2N[2]	J3.3	12	AD[149]	U20.AH15	FB[135]	U11.AN27	AB[172]	U19.AT33		
13	P2N[1]	J2.8	13	AD[148]	U20.AH14	FB[141]	U11.AH22	AB[171]	U19.AP32		
14	P2N[0]	J2.9	14	AD[151]	U20.AM15	FB[140]	U11.AF21	AB[170]	U19.AR32		
15	P2NX[7]	J3.5	15	AD[150]	U20.AL15	FB[139]	U11.AC26	AB[169]	U19.AT32		
16	P2NX[6]	J3.7	16	AD[152]	U20.AK14	FB[138]	U11.AB26	AB[168]	U19.AP31		
17	P2NXP5[J3.9	17	AD[0]	U20.AL14	FB[137]	U11.AR34	AB[167]	U19.AR31		
18	P2NX[4]	J3.11	18	AD[115]	U20.AM12	FB[136]	U11.AP34	AB[166]	U19.AT31		
19	P2NX[1]	J2.10	19	AD[114]	U20.AL13	FB[36]	U11.AV36	AB[165]	U19.AP30		
20	P2NX[0]	J2.11	20	AD[112]	U20.AK13	FB[35]	U11.AU38	AB[164]	U19.AR30		
21	P3NX[9]	J2.40	21	AD[111]	U20.AK12	FB[34]	U11.AK32	AB[163]	U19.AT30		
22	GND		22	GND		GND		GND			
23	P3NX[8]	J2.41	23	AD[110]	U20.AA13	AF[252]	U11.AR19	AB[162]	U19.AP29		
24	P3NX[5]	J3.13	24	AD[109]	U20.AA12	FB[33]	U11.AJ32	AB[161]	U19.AR29		
25	P3NX[4]	J3.15	25	AD[108]	U20.AH13	AF[161]	U11.AT19	AB[160]	U19.AT29		
26	P3N[89]	J3.17	26	AD[107]	U20.AH12	AF[40]	U11.AP19	AB[159]	U19.AP28		

Table 7-2 DN3000k10SD Daughter Card I/O Interconnects

Daughter Card				DN5000k	10 I/O C	onnecto	r		
Ca	onnectio	ns	J9, J10, Header J9		Head	er J10	Header J16		
J1	Signal	Conn	or J16 Pin No.	Signal	FPGA Pin	Signal	FPGA Pin	Signal	FPGA Pin
27	P3N[88]	J3.19	27	AD[106]	U20.AG13	FB[28]	U11.AF31	AB[158]	U19.AR28
28	P3N[87]	J3.21	28	AD[105]	U20.AG12	FB[29]	U11.AG32	AB[157]	U19.AT28
29	P3N[86]	J3.23	29	AD[104]	U20.AF13	FB[27]	U11.AF32	AB[156]	U19.AP27
30	P3N[83]	J3.25	30	AD[103]	U20.AF12	FB[25]	U11.A32	AB[155]	U19.AR27
31	P3N[82]	J3.27	31	AD[102]	U20.AE13	FB[26]	U11.AE31	AB[154]	U19.AT27
32	P3N[77]	J3.29	32	AD[101]	U20.AE12	FB[24]	U11.AD31	AB[153]	U19.AP26
33	GND		33	GND		GND		GND	
34	P3N[76]	J3.31	34	AD[100]	U20.AD13	AF[252]	U11.AR19	AB[162]	U19.AP29
35	P3N[75]	J3.33	35	AD[99]	U20.AD12	FB[33]	U11.AJ32	AB[161]	U19.AR29
36	P3N[74]	J3.35	36	AD[93]	U20.U13	AF[161]	U11.AT19	AB[160]	U19.AT29
37	P3N[69]	J2.42	37	AD[98]	U20.AC13	AF[40]	U11.AP19	AB[159]	U19.AP28
38	P3N[68]	J2.43	38	AD[92]	U20.U12	FB[28]	U11.AF31	AB[158]	U19.AR28
39	P3N[67]	J3.37	39	AD[97]	U20.AC12	FB[29]	U11.AG32	AB[157]	U19.AT28
40	P3N[66]	J3.39	40	AD[91]	U20.T13	FB[27]	U11.AF32	AB[156]	U19.AP27
41	P3N[63]	J3.41	41	AD[96]	U20.AB13	FB[25]	U11.AE32	AB[155]	U19.AR27
42	P3N[62]	J3.43	42	AD[90]	U20.T12	FB[26]	U11.AE31	AB[154]	U19.AT27
43	P3N[57]	J3.45	43	AD[95]	U20.W13	FB[24]	U11.AD31	AB[153]	U19.AP26
44	GND		44	GND		GND		GND	
45	P3N[56]	J3.47	45	AD[94]	U20.V13	FB[13]	U11.U32	AB[142]	U19.AT23
46	P3N[55]		46	AD[89]	U20.R13	FB[12]	U11.T31	AB[141]	U19.AP22
47	P3N[54]		47	AD[87]	U20.P13	FB[11]	U11.T32	AB[140]	U19.AR22
48	P3N[49]	J4.1	48	AD[88]	U20.R12	FB[10]	U11.R31	AB[139]	U19.AN22
49	P3N[48]	J4.3	49	AD[86]	U20.P12	FB[9]	U11.R32	AB[138]	U19.AT21
50	P3N[47]	J2.19	50	AD[85]	U20.N13	FB[8]	U11.P31	AB[137	U19.AN18
51	P3N[46]	J2.20	51	AD[84]	U20.N12	FB[7]	U11.P32	AB[136]	U12.AT19
52	P3N[43]	J4.5	52	AD[83]	U20.M13	FB[6]	U11.N31	AB[135]	U19.AT20
53	P3N[42]	J4.7	53	AD[82]	U20.M12	FB[5]	U11.N32	AB[134]	U19.AP19
54	P3N39	J4.9	54	AD[81]	U20.K16	FB[4]	U11.M31	AB[133]	U12.AT20
55	GND		55	GND		GND		GND	
56	P3N[38]	J4.11	56	AD[79]	U20.K13	FB[3]	U11.M32	AB[132]	U12.AT21

 Table 7-2
 DN3000k10SD
 Daughter
 Card
 I/O
 Interconnects

Daughter Card		DN5000k10 I/O Connector								
Co	onnectio	ns	J9, J10,	Head	ler J9	Head	er J10	Head	er J16	
J1	Signal	Conn	or J16 Pin No.	Signal	FPGA Pin	Signal	FPGA Pin	Signal	FPGA Pin	
57	P3N[35]	J4.13	57	AD[80]	U20.K15	FB[2]	U11.K25	AB[131]	U19.AP18	
58	P3N[34]	J4.15	58	AD[77]	U20.J13	FB[1]	U11.L32	AB[130]	U19.AR18	
59	P3N[29]	J4.17	59	AD[78]	U20.K12	FB[129]	U11.P24	AB[129]	U19.AT18	
60	P3N[28]	J4.19	60	AD[76]	U20.J12	FB[130]	U11.U26	AB[128]	U19.AM18	
61	P3N[27]	J4.21	61	AD[55]	U20.T11	FB[127]	U11.J27	AB[127]	U19.AR17	
62	P3N[26]	J4.23	62	AD[75]	U20.H12	FB[128]	U11.T26	AB[126]	U19.AT17	
63	P3N[23]	J2.21	63	AD[54]	U20.T10	FB[125]	U11.J29	AB[125]	U19.AP16	
64	P3N[22]	J2.22	64	AD[116]	U20.K14	FB[126]	U11.R26	AB[124]	U19.AR16	
65	P3N[19]	J4.25	65	AD[53]	U20.N16	FB[60]	U11.AD29	AB[123]	U19.AT16	
66	GND		66	GND		GND		GND		
67	P3N[18]	J4.27	67	AD[52]	U20.R10	FB[59]	U11.AD30	AB[122]	U19.AP15	
68	P3N[15]	J4.29	68	AD[56]	U20.U10	FB[58]	U11.AC30	AB[121]	U19.AR15	
69	P3N[14]	J4.31	69	AD[51]	U20.R7	FB[57]	U11.AB30	AB[120]	U19.AT15	
70	P3N[9]	J2.23	70	AD[117]	U20.G7	FB[56]	U11.W30	AB[119]	U19.AP14	
71	P3N[8]	J2.24	71	AD[50]	U20.P10	FB[55]	U11.V30	AB[118]	U19.AR14	
72	P3N[7]	J4.33	72	AD[118]	U20.G6	FB[54]	U11.U30	AB[117]	U19.AT14	
73	P3N[6]	J4.35	73	AD[49]	U20.P7	FB[53]	U11.T29	AB[116]	U19.AP13	
74	P3N[3]	J4.37	74	AD[48]	U20.N10	FB[52]	U11.T30	AB[115]	U19.AR13	
75	P3N[2]	J4.39	75	AD[9]	U20.P8	FB[51]	U11.U29	AB[114]	U19.AT13	
76	P4N27	J4.41	76	AD[47]	U20.N7	FB[50]	U11.R30	AB[113]	U19.AP12	
77	GND		77	GND		GND		GND		
78	P4N[26]	J4.43	78	AD[46]	U20.M10	FB[49]	U11.R33	AB[112]	U19.AR12	
79	P4N[21]	J4.45	79	AD[6]	U20.M9	FB[48]	U11.P30	AB[111]	U19.AT12	
80	P4N[20]	J4.47	80	AD[4]	U20.H13	FB[47]	U11.N24	AB[110]	U19.AP11	
81	P4N[19]		81	AD[5]	U20.M8	FB[46]	U11.N30	AB[109]	U19.AR11	
82	P4N[18]		82	AD[3]	U20.L8	FB[45]	U11.N33	AB[108]	U19.AT11	
83	P4N[13]		83	AD[2]	U20.J8	FB[44]	U11.M30	AB[107]	U19.AP10	
84	P4N[12]		84	AD[1]	U20.H9	FB[43]	U11.J28	AB[106]	U19.AR10	
85	P4N[11]		85	AD[39]	U20.H11	FB[42]	U11.K29	AB[105]	U19.AT10	
86	P4N[10]		86	AD[38]	U20.W14	FB[41]	U11.G30	AB[104]	U19.AP9	

Table 7-2 DN3000k10SD Daughter Card I/O Interconnects

Daughter Card		DN5000k10 I/O Connector								
Co	onnectio	ns	J9, J10,	Head	ler J9	Header J10		Header J16		
J1	Signal	Conn	or J16 Pin No.	Signal	FPGA Pin	Signal	FPGA Pin	Signal	FPGA Pin	
87	P4N[7]		87	AD[133]	U20.W14	FB[40]	U11.K32	AB[103]	U19.AR9	
88	GND		88	GND		GND		GND		
89	P4N[6]		89	AD[134]	U20.G5	FB[39]	U11.K33	AB[102]	U19.AT9	
90	P4N[3]		90	AD[131]	U20.V14	FB[38]	U11.G31	AB[101]	U19.AP8	
91	P4N[2]		91	AD[132]	U20.F5	FB[37]	U11.J32	AB[100]	U19.AR8	
92	P4NX[11]		92	AD[129]	U20.U14	FB[123]	U11.F34	AB[99]	U19.AT8	
93	+1.5 V		93	+1.5 V		+1.5 V		+1.5 V		
94	P4NX[10]		94	AD[130]	U20.E3	FB[124]	U11.F35	AB[98]	U19.AP7	
95	P4NX[7]	J7.45	95	AD[125]	U20.R14	FB[121]	U11.M25	AB[97]	U19.AR7	
96	P4NX[6]	J7.47	96	AD[126]	U20.D2	FB[122]	U11.N26	AB[96]	U19.AT7	
97	P4NX[5]		97	AD[127]	U20.T14	FB[119]	U11.H27	AB[95]	U19.AT6	
98	P4NX[4]		98	AD[128]	U20.C2	FB[120]	U11.M26	AB[94]	U19.AT5	
99	GND		99	GND		GND		GND		
100	–12 V		100	–12 V		–12 V		-12 V		
101	GND		101	GND		GND		GND		
102	MBCK[1]	J2.27	102	MB[156]	U11.AV8	AD[84]	U19.AV33			
103	+1.5 V		103	+1.5 V		+1.5 V		+1.5 V		
104	MBCK[0]	J2.28	104	MB[154]	U11.AW6	AB[174]	U19.AP33			
105	+3.3 V		105	+3.3 V		+3.3 V		+3.3 V		
106	MBCK[6]	J5.9	106	DCLK[6]		DCLK[5]				
107	GND		107	GND		GND		GND		
108	ECLK[1]	J5.7	108	MB[153]	U11.AW5	AB[173]	U19.AR33			
109	GND		109	GND		GND		GND		
110	GND		110	GND		GND		GND		
111	P2N[5]	J5.15	111	AD[57]	U20.V10	FB[149]	U11.AH25	AB[85]	U19.AU33	
112	P2N[4]	J5.17	112	AD[58]	U20.AA10	FB[148]	U11.AH26	AB[80]	U19.AW32	
113	P2NX[11]	J2.2	113	AD[59]	U20.AB10	FB[147]	U11.AG25	AB[81]	U19.AV32	
114	P2NX[10]	J2.1	114	AD[60]	U20.AC10	FB[146]	U11.AG26	AB[82]	U19.AU32	
115	P2NX[9]	J5.19	115	AD[61]	U20.AD10	FB[145]	U11.AF25	AB[77]	U19.AW31	
116	P2NX[8]	J5.21	116	AD[62]	U20.AD11	FB[144]	U11.AF26	AB[78]	U19.AV31	

Table 7-2 DN3000k10SD Daughter Card I/O Interconnects

Daughter Card		DN5000k10 I/O Connector								
Co	onnectio	ns	J9, J10,	Head	ler J9	Header J10		Head	er J16	
J1	Signal	Conn	or J16 Pin No.	Signal	FPGA Pin	Signal	FPGA Pin	Signal	FPGA Pin	
117	P2NX[3]	J5.23	117	AD[63]	U20.AE8	FB[143]	U11.AE26	AB[79]	U19.AU31	
118	GND		118	GND		GND		GND		
119	P2NX[2]	J5.25	119	AD[64]	U20.AE10	FB[142]	U11.AD26	AB[74]	U19.AW30	
120	P3NX[11]	J2.29	120	AD[65]	U20.AF8	FB[75]	U11.AV37	AB[75]	U19.AV30	
121	P3NX[10]	J2.30	121	AD[66]	U20.AF10	FB[74]	U11.AL29	AB[76]	U19.AU30	
122	P3NX[7]	J2.31	122	AD[67]	U20.AG10	FB[73]	U11.AL30	AB[71]	U19.AW29	
123	P3NX[6]	J2.32	123	AD[68]	U20.AC11	FB[72]	U11.AK29	AB[72]	U19.AV29	
124	P3NX[3]	J5.27	124	AD[69]	U20.AH10	FB[71]	U11.AT36	AB[73]	U19.AU29	
125	P3NX[2]	J5.29	125	AD[70]	U20.AB11	FB[70]	U11.AR36	AB[68]	U19.AW28	
126	P3NX[1]	J5.31	126	AD[71]	U20.AE14	FB[69]	U11.AR35	AB[69]	U19.AV28	
127	P3NX[0]	J5.33	127	AD[72]	U20.AG16	FB[68]	U11.AJ33	AB[70]	U19.AU28	
128	P3N[85]	J5.35	128	AD[73]	U20.AK11	FB[67]	U11.AH30	AB[66]	U19.AV27	
129	GND		129	GND		GND		GND		
130	P3N[84]	J5.37	130	AD[74]	U20.AL12	FB[66]	U11.AB29	AB[67]	U19.AU27	
131	P3N[81]	J5.39	131	AD[113]	U20.AM13	FB[65]	U11.AG30	AB[63]	U19.AW26	
132	P3N[80]	J5.41	132	AD[144]	U20.AF14	FB[64]	U11.AC29	AB[64]	U19.AV26	
133	P3N[79]	J2.3	133	AD[145]	U20.AF15	FB[63]	U11.AF30	AB[65]	U19.AU26	
134	P3N[78]	J2.4	134	AD[146]	U20.AG14	FB[62]	U11.AF33	AB[61]	U19.AV25	
135	P3N[73]	J2.6	135	AD[147]	U20.AG15	FB[61]	U11.AE30	AB[62]	U19.AU25	
136	P3N[72]	J2.7	136	AD[143]	U20.AR5	FB[151]	U11.AM25	AB[58]	U19.AW24	
137	P3N[71]	J2.33	137	AD[142]	U20.AR4	FB[150]	U11.AL25	AB[59]	U19.AV24	
138	P3N[70]	J2.34	138	AD[141]	U20.AR6	FB[0]	U11.AL26	AB[60]	U19.AU24	
139	P3N[65]	J5.43	139	AD[140]	U20.AD14	FB[152]	U11.AK26	AB[55]	U19.AW23	
140	GND		140	GND		GND		GND		
141	P3N[64]	J5.45	141	AD[139]	U20.AP6	FB[115]	U11.AM27	AB[56]	U19.AV23	
142	P3N[61]	J5.47	142	AD[138]	U20.AC14	FB[114]	U11.AM28	AB[57]	U19.AU23	
143	P3N[60]	J5.49	143	AD[137]	U20.AN6	FB[113]	U11.AL27	AB[52]	U19.AW22	
144	P3N[59]	J6.1	144	AD[136]	U20.AB14	FB[112]	U11.AL28	AB[53]	U12.AV18	
145	P3N[58]	J6.3	145	AD[135]	U20.AA14	FB[111]	U11.AK27	AB[54]	U19.AU22	
146	P3N[53]	J6.5	146	AD[37]	U20.AM9	FB[110]	U11.AK28	AB[49]	U19.AU22	

Table 7-2 DN3000k10SD Daughter Card I/O Interconnects

Daughter Card		DN5000k10 I/O Connector								
Co	onnectio	ns	J9, J10,	Head	ler J9	Head	er J10	Head	er J16	
J1	Signal	Conn	or J16 Pin No.	Signal	FPGA Pin	Signal	FPGA Pin	Signal	FPGA Pin	
147	P3N[52]	J6.7	147	AD[36]	U20.AK7	FB[109]	U11.AK25	AB[50]	U19.AV21	
148	P3N[51]	J2.17	148	AD[35]	U20.AL8	FB[108]	U11.AJ24	AB[51]	U19.AU21	
149	P3N[50]	J2.18	149	AF[77]	U11.F36	FB[107]	U11.AH27	AB[46]	U19.AW20	
150	P3N[45]	J6.9	150	AD[34]	U20.AK8	FB[106]	U11.AH28	AB[47]	U19.AV20	
151	GND		151	GND		GND		GND		
152	P3N[44]	J6.11	152	AD[33]	U20.AA11	FB[105]	U11.AG27	AB[48]	U19.AU20	
153	P3N[41]	J6.13	153	AF[78]	U11.G36	FB[104]	U11.AG28	AB[43]	U12.AW21	
154	P3N[40]	J6.15	154	AF[79]	U11.H36	FB[103]	U11.AF27	AB[44]	U19.AV19	
155	P3N[37]	J6.17	155	AD[28]	U20.AG8	FB[102]	U11.AF28	AB[45]	U19.AU19	
156	P3N[36]	J6.19	156	AD[29]	U20.AG9	FB[101]	U11.AE27	AB[40]	U12.AW22	
157	P3N[33]	J6.21	157	AD[27]	U20.AF9	FB[100]	U11.AE28	AB[41]	U19.AV18	
158	P3N[32]	J6.23	158	AD[26]	U20.AD9	FB[99]	U11.AD27	AB[42]	U12.AU22	
159	P3N[31[J2.44	159	AD[25]	U20.AD8	FB[98]	U11.AD28	AB[37]	U19.AW17	
160	P3N[30]	J2.45	160	AD[24]	U20.AC9	FB[97]	U11.AC27	AB[38]	U19.AV17	
161	P3N[25]	J6.25	161	AD[23]	U20.AC3	FB[134]	U11.W26	AB[39]	U19.AU17	
162	GND		162	GND		GND		GND		
163	P3N[24]	J6.27	163	AD[22]	U20.AB9	FB[133]	U11.V29	AB[34]	U19.AW16	
164	P3N[21]	J6.29	164	AD[21]	U20.AB8	FB[132]	U11.V26	AB[35]	U19.AV16	
165	P3N[20]	J6.31	165	AD[20]	U20.AA9	FB[131]	U11.P26	AB[36]	U19.AU16	
166	P3N[17]	J6.33	166	AD[19]	U20.V11	FB[96]	U11.AC28	AB[33]	U19.AU15	
167	P3N[16]	J6.35	167	AD[18]	U20.V9	FB[95]	U11.AB27	AB[29]	U19.AW14	
168	P3N[13]	J6.37	168	AD[17]	U20.V8	FB[94]	U11.AB28	AB[176]	U19.AT35	
169	P3N[12]	J639	169	AD[16]	U20.U9	FB[93]	U11.W27	AB[175]	U19.AT34	
170	P3N[11]	J2.47	170	AD[15]	U20.U8	FB[92]	U11.V27	AB[27]	U19.AV13	
171	P3N[10]	J2.48	171	AD[14]	U20.T9	FB[91]	U11.V28	AB[28]	U19.AU13	
172	P3N[5]	J6.41	172	AD[13]	U20.T8	FB[90]	U11.U27	AB[24]	U19.AW12	
173	GND		173	GND		GND		GND		
174	P3N[4]	J6.43	174	AD[12]	U20.R9	FB[89]	U11.U28	AB[25]	U19.AV12	
175	P3N[1]	J6.45	175	AD[11]	U20.R8	FB[88]	U11.T27	AB[26]	U19.AU12	
176	P3N[0]	J6.47	176	AD[10]	U20.P9	FB[87]	U11.T28	AB[21]	U19.AW11	

Table 7-2 DN3000k10SD Daughter Card I/O Interconnects

Daughter Card		DN5000k10 I/O Connector								
Co	onnectio	ns	J9, J10,	J9, J10, Header J9		Header J10		Header J16		
J1	Signal	Conn	or J16 Pin No.	Signal	FPGA Pin	Signal	FPGA Pin	Signal	FPGA Pin	
177	P4N[25]	J7.1	177	AD[8]	U20.N9	FB[86]	U11.R27	AB[22]	U19.AV11	
178	P4N[24]	J7.3	178	AD[7]	U20.N8	FB[85]	U11.R28	AB[23]	U19.AU11	
179	P4N23	J7.5	179	AD[45]	U20.M4	FB[84]	U11.P27	AB[18]	U19.AW10	
180	P4N[22]	J7.7	180	AD[44]	U20.M6	FB[83]	U11.P28	AB[19]	U19.AV10	
181	P4N[17]	J7.9	181	AD[43]	U20.K11	FB[82]	U11.N27	AB[20]	U19.AU10	
182	P4N[16]	J7.11	182	AD[42]	U20.K8	FB[81]	U11.N28	AB[15]	U19.AW9	
183	P4N[15]	J7.13	183	AD[41]	U20.J11	FB[80]	U11.M27	AB[16]	U19.AV9	
184	GND		184	GND		GND		GND		
185	P4N[14]	J7.15	185	AD[40]	U20.J10	FB[79]	U11.M28	AB[17]	U19.AU9	
186	P4N[9]	J7.17	186	AD[123]	U20.P14	FB[78]	U11.K27	AB[12]	U19.AW8	
187	P4N[8]	J7.19	187	AD[124]	U20.P15	FB[77]	U11.L34	AB[13]	U19.AV8	
188	P4N[5]	J7.21	188	AD[121]	U20.N14	FB[76]	U11.K28	AB[14]	U19.AU8	
189	P4N[4]	J7.23	189	AD[122]	U20.N15	FB[116]	U11.J26	AB[9]	U19.AW7	
190	P4N[1]	J7.25	190	AD[119]	U20.M14	FB[117]	U11.K26	AB[10]	U19.AV7	
191	P4N[0]	J7.27	191	AD[120]	U20.M15	FB[118]	U11.H34	AB[11]	U19.AU7	
192	P4NX[13]	J7.29	192	AF[1]	U11.E39	AF[38]	U11.AN30	AB[6]	U19.AW6	
193	P4NX[12]	J7.31	193	AF[2]	U11.E38	AF[39]	U11.AN24	AB[7]	U19.AV6	
194	P4NX[9]	J7.33	194	AF[3]	U11.F39	AF[37]	U11.AM31	AB[8]	U19.AU6	
195	GND		195	GND		GND		GND		
196	P4NX[8]	J7.35	196	AF[4]	U11.F38	AF[83]	U11.J34	AB[3]	U19.AW5	
197	P4NX[3]	J7.37	197	AF[5]	U11.F37	AF[80]	U11.H35	AB[4]	U19.AV5	
198	P4NX[2]	J7.39	198	AF[6]	U11.G39	AF[82]	U11.J35	AB[5]	U19.AU5	
199	P4NX[1]	J7.41	199	AF[7]	U11.G38	AB[1]	U19.AV4			
200	P4NX[0]	J7.43	200	AF[8]	U11.G37	AF[81]	U11.J36	AB[2]	U19.AU4	

Table 7-2 DN3000k10SD Daughter Card I/O Interconnects

Reset Schemes, LEDs, Bus Bars and 200 Pin Connectors

Reset Schemes

A LTC1326 chip from Linear Technology controls reset functionality for the DN5000k10. Figure 8-1 shows the distribution of the reset signal PWRRST-. In addition to controlling the reset, the power supplies rails +5 V, +3.3 V, and +1.5 V are threshold detected by the LTC1326. Undervoltage conditions will case the assertion of the reset signal.

The LTC1326 has a push-button. Momentarily depressing this button causes a 200 ms reset pulse on the signal PWRRST-. If the push-button is depressed for 2 seconds and held, PWRRST- is asserted continuously. LED5, when lit, means that reset is asserted, so if you press and hold **S1**, you should see LED5 illuminate after a few seconds. If LED5 illuminates for any reason during normal operation, this indicates that PWRRST- is active and that something is wrong. Note that if you press **S1** and release it quickly, you probably won't see LED5 since the 200 ms reset pulse is not strong long enough for the eye to observe.

Depressing the push-button S1 causes the following sequence of events:

- 1. Reset of the CPLD and μP
- 2. FPGA configuration is cleared
- 3. If the switches on **S2** are set for Fast Passive Parallel and there is a valid SmartMedia card inserted into the socket, then the FPGA will be configured. A SmartMedia card is valid if it complies with the SSFDC specification and contains a file named main.txt in the root directory. If the card is invalid or there is no card present, then the FPGA will not be configured.
- 4. The Main Menu will appear.

The identical sequence of events occurs at power-up.

Figure 8-1 Reset Functionality

LEDs

The DN5000k10 has eight LEDs that are used to visually communicate the status of circuitry (Figure 8-2).

Figure 8-2 DN5000k10 LEDs

From left to right, the LEDs are labeled: CPLD_LED0, CPLD_LED1, CPLD_LED2, CPLD_LED3, UP_LED0, UP_LED1, UP_LED2, UP_LED3 (see Figure 8-3).

UP_LED3 Lights when the configuration process from the SmartMedia was successful.

UP_LED[2:0]These three LEDs have multiple meanings:

- When all 3 LEDs are blinking, then the μP has been reprogrammed and is waiting for the user to enter FPGA stuffing

information via serial port or there is not a valid SmartMedia card present and the FPGA has been configured.

 During configuration, the combination of LEDs lit tells the user which FPGA is currently being configured (UP_LED2, UP_LED1, UP_LED0):

• • -	,		
	off, off, on	=	FPGA F
	off, on, off	=	FPGA A
	off, on, on	=	FPGA E
	on, off, off	=	FPGA B
	on, off, on	=	FPGA D

- CPLD_LED3 lights when any of the FPGAs are NOT configured
- CPLD_LED2 lights when reset is asserted (PWRRST-)
- CPLD_LED1 lights when the PLL in RoboclockII 1 is LOCKED
- CPLD_LED0 lights when the PLL in RoboclockII 2 is LOCKED

You are free to reprogram the CPLD and/or microprocessor to use any or all of the LEDs for your own purposes.

Bus Bars The two bus bars, **B1** and **B2**, are installed to prevent flexing of the PWB and serve no other purpose. They are connected quite solidly into the ground plane of the DN5000k10 at every hole, and you can use the metal bars to ground-test equipment such as oscilloscopes and pattern generators. Be careful not to short any power rails or signals to these metal bars—they can carry a lot of current. The PCI bracket, **BRK1**, is also connected to the ground plane at each of the screw mounts.

The 200 Pin Connectors: J9, J10, J16

The DN5000k10 contains three 200-pin connectors, **J9**, **J10** and **J16**. Daughter cards of any sort may be plugged into these connectors. The relative pin location of the powers, grounds, and signals is identical for each of the three connectors, with the exception of a clock output on **J9**. A hole that can be used to attach a standoff is located at the same relative position from each connector (seeFigure 8-4). This hole is grounded on the DN5000k10, so connect this mounting hole to digital ground on your daughter card.

The mechanical position of the 200-pin connectors on the DN5000k10 is shown in Figure 8-4. The 200-pin connector used on the DN5000k10 is a Berg Electronics 91294-003 in the Micropax[™] family. This link will take you to the Berg website: http://www.berg.com/. This Berg connector was chosen because of its high pin density, performance, and availability. The part number for the mating connector is 91403-003. We stock the mating connector at our offices in La Jolla, CA, so if you are designing a daughter card and are having trouble getting this part, call us. We would be happy to send you a few at our cost. Appendix A contains a mechanical datasheet for both the Berg 91403-003 and 91294-003 connectors.

This style of connector has four mounting holes—two screw holes at each end and two alignment holes between pins 50–51 and after pin 100 (see Figure 8-4). These mounting holes are part of the metal shell of the

connector and make an important connection to the mating connector. All four of these mounting holes are connected to digital ground on the DN5000k10—therefore, the shell of the connector is grounded.

We used the pin numbering shown in Figure 8-4 for the 200-pin, 91294-003 connectors.

The Signals

Each of the three 200-pin connectors has the following:

- 162 signals connected to the FPGA
 - All 162 are connected to the FPGA
 - A subset of the 162 are also connected to the memories
- 7 clocks

_

- The following power rails:
 - +12V (1 pin)

-	-12V	(1 pin)
_	+5V	(2 pins)
-	+3.3V	(2 pins)
_	+1.5V	(2 pins)
_	GND	(23 pins + case)

Regarding the amount of current that the power pins can carry, the following text is lifted directly from the specification for the Micropax[™] family of connectors:

6.1 Current Rating. Current rating shall be evaluated in still air at 25°C ambient temperature. Under the following conditions, the temperature rise shall be no greater than 30°C: All contacts powered at 0.5 amp One contact powered at 3.0 amps

Most of the signals are TTL (or some low current variation such as LVDS), so you can reasonably expect to get up to 3 amps per power pin through this connector. Remember that the +3.3V and +1.5V power supplies are limited to 5 amps total—the memories, the FPGA and the clock circuitry on the DN5000k10 consume +3.3V. The FPGA only consumes +1.5V.

If you use the DN5000k10 stand-alone (meaning that it is *not* plugged into a PCI slot), the auxiliary power connector has +5V and +12V, but does not have -12V. So unless you provide -12V to the DN5000k10 via another connection, -12V will not be available for use by a daughter card.

NOTE: -12V is not required by the DN5000k10. The DN5000k10 will operate normally without a -12V power supply.

Some of the interconnect with the 200-pin connectors is shared with the memories. See Figure 5-1 on page 5-2 to see which signals are shared. The 200-pin connectors are shown in Figure 8-5.

Notes:

• The signal labeled HDR_CLKOUT on J9 is connected to a Roboclock input, and may be used to supply a clock to the FPGAs. The same pin on J10 and J16 is connected to a Roboclock output, so if a daughtercard is built to supply a clock output to HDR_CLKOUT it should not be put on J10 or J16. All other clock, data, and power pin locations are the same on each header, so a daughtercard designed for J10 can be put on J16 instead with no problems. Cards designed for J9 may be built with a jumper between their clock source and the HDR_CLKOUT pin, in which case they can be put on J10 or J16 if the jumper is disconnected.

Chapter 9

Utilities

PCI Debug—General Pontificating

Debugging of PCI-based hardware can be troublesome, so it is best to do so with a tiered approach. The following sequence of events needs to occur for a PCI-based peripheral to start working:

- 1. The hardware must boot itself at power-up in the case of the DN5000k10:
 - a. The μ P must boot.
 - b. Recognize the SmartMedia card.
 - c. Configure the FPGA. (Hopefully, all this occurs before RST# on the PCI bus is deasserted.)
- 2. The PCI BIOS executes the PNP routines and configures the BARs on all PCI peripherals.
- 3. The operating system driver initializes the card.
- 4. The application initiates communication with the driver and the application executes.

The steps are dependant. Each of the steps must start and execute flawlessly before the next step occurs. When you get a PCI card for the first time, it is necessary to debug each step before attempting to go to the next. We provide utilities to help with each step.

Steps 1 and 2 are best done without an operating system in place. Windows NT-based systems take minutes to reboot after a crash (the-BLUEscreen-of-death) and an NT driver won't work unless the hardware is debugged. Since crashing is a regular occurrence in a PCI hardware debug environment, we find it easiest to do our debug and manufacturing test in the old DOS environment. Virtually all PCI peripherals get configured with addresses beyond the IM boundary. On a PC, C programs cannot access memory locations beyond IM unless special programs called DOS extenders are used. Several freeware DOS extenders are available. We use a free DOSextender called DJGPP. More information can be found at http://www.delorie.com/DJGPP.

PC-Based—AETEST.EXE

A utility program called AETEST is provided with the DN5000k10. AETEST can be run under DOS, Windows 98/ME, Windows NT/2000, or LINUX. When used under DOS, you must boot your PC with a DOS disk. We ship one with the DN5000k10 in case you don't know how to make one on your own. All features work in the native mode of AETEST, which is DOS.

All source code for AETEST is provided, so you are welcome to customize the program to your own applications.

AETEST is not a stable program. We add and subtract features when we need to for debug and verification purposes, so don't be concerned if the screens that you see aren't exactly replicated here.

In a nutshell, AETEST lets you do the following:

- Determine if PCI recognizes the DN5000k10
- Read/write/loop any memory location
- Read/write/loop configuration space
- Display all configured PCI devices
- Display memory setting from any locations
- Fill memory with various patterns
- Run various tests on the DN5000k10
 - SSRAM Test
 - Multiplier Test
 - SDRAM Test
 - Interconnect Test
 - Daughter Card Test

AETEST Utility Installation Instructions

Installation Instructions for DOS

- 1. The files aetestdj.exe and cwsdpmi.exe (the DOS extender) need to be in the same directory.
- 2. Run aetestdj.exe.

Installation Instructions for Windows NT

- 1. Install the device driver: install.exe and qldriver.sys must be in the same directory.
- Type "install"
- After the driver is installed, start the driver by selecting Control Panel->Devices->find "QLDriver" ->click "Start"
- 4. Run aetestnt.exe.

Installation Instructions for Windows 2000

- Install the device driver: qldriver2000.inf and the driver file
 (qldriver.sys) should be in the same directory.
- Open Control Panel, click on "Add/Remove Hardware" and then go to "Next->."
- Choose Add/Troubleshoot a device (the default option) and click on "Next->."
- Wait until it finishes new hardware device searching; choose "Add a new device," and click on "Next->."
- Choose "No, I want to select the hardware from a list," and press "Next->."
- 6. Choose "Other Devices" from Hardware Types list and press "Next->"
- 7. Click on "Have Disk..."

- 8. In "Copy Manufacturer's Files From:" window, find the directory where qldriver.sys is located, then press "OK."
- 9. You should see "dn2000k10 driver" under Models; click on "Next->."
- 10. Press "Next->" and then "Finish."
- 11. Run aetestnt.exe.

Installation Instructions for LINUX

This has been tested on Red Hat Linux 7.2 (kernel version 2.4.x).

Note that all the text files, including the scripts, are DOS text format (with an extra carriage return character after every new line), so you need to convert them.

- You must be root to start the driver and the program. "dndev_load" and "dndev_unload" are scripts that load and unload the driver; "dndev.o" is the driver file.
- 2. Load the driver; type "sh dndev_load"
- 3. Unload the driver; type "sh dndev_unload"
- 4. After driver is loaded, run the utility aetest_linux.
- 5. Note: You might need to run chmod on aetest_linux to make it executable: type "chmod u+x aetest_linux."

Installation Instructions for Solaris

The utility and driver are tested on Solaris 7.0/Sparc, with the 32-bit kernel.

Note that all the text files, including the scripts, are DOS text format (with an extra carriage return character after every new line), so you need to convert them.

- To install the driver, go to the driver directory, make sure the driver file "dndev" is in the sparc sub-directory, and run "sh dndev_uninstall.sh"
- 2. To uninstall the driver, run "sh dndev_uninstall.sh"
- To run the test utility, run "aetest_solaris" as root after the driver is loaded.

The driver is compiled with the gcc compiler.

aetest_solaris is compiled with "gmake." You can download it from the GNU website. The "make" from the Solaris installation does not work with our makefile format.

You may need to make aetest_solaris executable; run "chmod u+x aetest_solaris."

Installation Instructions for Windows 98/ME

There are two ways to run AETEST: You can run the DOS version "aetestdj.exe" directly, or you can run AETEST with a device driver.

To run AETEST with a device driver follow the steps below.

- Choose a default PCI driver for the device. When Windows first starts with the device plugged in, it should ask for a device driver. Select "Specify the location of the driver."
- 2. Select "Display a list of the drivers in a specific location ... "
- 3. Select "Other devices."
- 4. Under "Manufacturers" tab, select "unknown device."
- 5. Under "Models" select "unsupported device."
- 6. The driver file (pcifg.vxd) and aetest98.exe must be in the same directory. Run aetest98.exe.

NOTE: To re-compile the driver file pcicfg.vxd, you need the VtoolsD compiler from www.numega.com.

T Startup

AETEST Options: Description and Definitions

When AETEST is first started, it tries to find a device that it recognizes. We have arbitrarily defined the DN5000k10 with a DEVICE_ID of 0x1250 or 0x1251 and a VENDOR_ID of 0x17DF. We have arbitrarily defined the DN5000k10S with a DEVICE_ID of 0x1240 and a VENDOR_ID of 0xABCD or 0x17DF. The DN2000k10 series has a DEVICE_ID of 0x1234, 0x1235, 0x1236 or 0x1237 and VENDOR_ID of 0xABCD. You should see the following screen if AETEST recognizes a DN5000k10 (Figure 9-1):

```
searching for "DN2000K10 Asic Emulator (1000E)" VENDOR ID==abcd, DEVICE ID==1236
searching for "DN2000K10 Asic Emulator (1600E)" VENDOR ID==abcd, DEVICE ID==1237
searching for "DN3000K10S Asic Emulator (6000)" VENDOR ID==abcd, DEVICE ID==1240
found device ---- vabcd, d1240 name="DN3000K10S Asic Emulator (6000)"
Configuration space:
00: 1240abcd 04: 0000001f
08: ff000047 0c: 0000000
              14: e0000000
1c: 00000000
24: 00000000
10: fd800000
18: 00000000
20: 00000000
                 2c: 90ab5678
28: 00000000
30: 00000000
                  34: 00000000
38: 00000000
                  3c: 00000000
BAR0: base: 0xfd800000, size: 0x00800000
BAR1: base: 0xe0000000, size: 0x10000000
BAR2: base: 0x00000000, size: 0x00000000
BAR3: base: 0x0000000, size: 0x0000000
BAR4: base: 0x00000000, size: 0x00000000
BAR5: base: 0x00000000, size: 0x0000000
press any key
```

Figure 9-1 DN5000k10AETEST Startup Screen, DN5000k10 Recognized

Most of this initial display is debug information. The program is looking for a Vendor and Device ID that it recognizes, and finds vendor=abcd and device=1240, which is a DN5000k10 stuffed with a 2V60000. The lines after Configuration space: show what is in the configuration space and how the BARs are configured.

If AETEST does **not** see a PCI peripheral it recognizes, you will see the following (Figure 9-2):

```
searching for "Quad Sharc" VENDOR ID==5045, DEVICE ID==1
searching for "DN2000K10 Asic Emulator" VENDOR ID==abcd, DEVICE ID==1234
searching for "DN2000K10 Asic Emulator (2000E)" VENDOR ID==abcd, DEVICE ID==1235
searching for "DN2000K10 Asic Emulator (1000E)" VENDOR ID==abcd, DEVICE ID==1236
searching for "DN2000K10 Asic Emulator (1600E)" VENDOR_ID==abcd, DEVICE_ID==1237
searching for "DN3000K10S Asic Emulator (6000)" VENDOR ID==abcd, DEVICE ID==1240
searching for "q15064 interface test" VENDOR_ID==1234, DEVICE_ID==5678
searching for "q15064 64MB dram+LFSR" VENDOR_ID==1234, DEVICE_ID==5679
searching for "q15064 PowerPC bridge" VENDOR ID==11e3, DEVICE ID==6
searching for "q15064 PowerPC bridge (old VID/DID)" VENDOR ID==1010, DEVICE ID==5064
searching for "q15064 AntiFuse test #1" VENDOR ID==71f3, DEVICE ID==2454
searching for "q15064 AntiFuse test #2" VENDOR_ID==507, DEVICE_ID==2367
searching for "q15064 AntiFuse test #3" VENDOR ID==bc92, DEVICE ID==2e6c
searching for "g15064 AntiFuse test #4" VENDOR ID==e125, DEVICE ID==c38c
searching for "q15064 AntiFuse test #5" VENDOR ID==e62c, DEVICE ID==ca76
searching for "q15064 AntiFuse test #6" VENDOR_ID==448b, DEVICE_ID==e6a
searching for "q15064 Emulated with 8051" VENDOR ID==1243, DEVICE ID==4321
searching for "Greg's PCI Device" VENDOR ID==5143, DEVICE ID==2
searching for "Cohu's PCI Device (sensor board)" VENDOR ID==dead, DEVICE ID==beef
searching for "LYNX 9610" VENDOR ID==10b5, DEVICE ID==9610
Didn't find known device in the following list:
   vendor id=5045, device id=1
   vendor id=abcd, device_id=1234
   vendor id=abcd, device id=1235
   vendor_id=abcd, device_id=1236
   vendor_id=abcd, device_id=1237
  vendor_id=abcd, device_id=1240
   vendor_id=1234, device_id=5678
   vendor_id=1234, device_id=5679
   vendor id=11e3, device id=6
   vendor id=1010, device id=5064
   vendor_id=71f3, device_id=2454
   vendor id=507, device id=2367
  vendor_id=bc92, device_id=2e6c
   vendor id=e125, device id=c38c
   vendor_id=e62c, device_id=ca76
   vendor id=448b, device id=e6a
   vendor id=1243, device id=4321
   vendor_id=5143, device_id=2
   vendor_id=dead, device_id=beef
   vendor id=10b5, device id=9610
Hit a key to continue
```

Figure 9-2 AETEST Startup Screen, No PCI Peripheral Recognized

AETEST will still run, but many DINI product-specific options will not be available.

AETEST Main The AETEST Main Screen is shown in Figure 9-3. Screen

-=-= ASIC Emulator PCI Controller Driver =-=- v8	
0) Read FPGA revision 1) PCI Menu 2) Memory Menu 3) Flash Menu 4) Clock Menu 5) Dedicated Multiplier Test 0) Quit	
-=-= PCI BASE ADDRESS =-=- 0 : fd800000 1 : e0000000 2 : 00000000 3 : 00000000 4 : 00000000 5 : 00000000	
Please select option:	

Figure 9-3 AETEST Main Screen

Options

Read FPGA Revision. Display the revision ID of the FPGA. We will update the revision ID of the FPGA every time we change the reference design.

PCI Menu. Display the PCI utilities menu.

Memory Menu. Display the Memory Menu.

Flash Menu. Display the Flash Utilities Menu (DN2000k10 series only!).

Clock Menu. Display the Clock Utilities Menu.

Dedicated Multiplier Test. Execute the multiplier test.

Q. Quit and return to the DOS prompt

The selections are sometimes case sensitive, so be aware of the status of the CAPS LOCK on your keyboard. The base addresses for each of the configured BARs is displayed on all screens. You will need these addresses if you want to manually read and write to address locations within the PCI reference design. In this example (Figure 9-3, above), BAR0 is configured to 0xFD800000 and BAR1 is configured to 0xE0000000. BAR[5:2] are not configured so they show up as 0x0.

PCI Menu The AETEST PCI menu is shown in Figure 9-4.

```
-=-= ASIC Emulator PCI Controller Driver =-=- v8
     PCI Device/Function Num: 0x7F, 0x00
S) Set PCI Device Number
F) Set PCI Function Number
D) Display all Configured PCI Devices
1) Display Vendor and Device ID for PCI device-function: 7f-0
2) Loop on PCI device-fun: 7f-0 and Display Vendor and Device ID
3) Loop on PCI device-fun: 7f-0 and Don't Display Vendor and Device ID
4) Loop on all PCI device numbers and Display Device/Vendor ID's
5) Display all PCI information for PCI device-function: 7f-0
6) Write config dword
7) Read config dword
C) Configure BAR's from File
V) Save BAR Configuration to File
M) Main Menu
Q) Quit
                 ---- PCI BASE ADDRESS ----
        0 : fd800000 1 : e0000000 2 : 0000000
        3 : 00000000 4 : 00000000
                                     5 : 00000000
Please select option:
```

Figure 9-4 AETEST PCI Menu

Set PCI Device Number. Sets a PCI device number of your choice as the "active" device (hex input). This option lists the available Device Numbers to help you match up your device IDDevice ID and Vendor ID with the device number.

Set PCI Function Number. Sets a PCI function number of your choice as the "active" function of a multi-function device (hex input). This option lists the Device ID and Vendor ID of each function within the "active" device number to help you to choose the desired function.

Display all Configured PCI Devices. Displays the PCI Device Numbers and corresponding Device ID and Vendor ID of all devices seen on the bus. This does not display device numbers with a Device ID and Vendor ID of all ones (OxFFFF).

Display Vendor and Device ID for PCI device-function.

Displays the Vendor ID and Device ID of the active device and function number. In the example above, this would display the Vendor ID and Device ID of the PCI device at device number $0 \ge 7F$, function number $0 \ge 0.00$.

Loop on PCI device-fun: 7f-0 and Display Vendor and Device ID. Reads and displays the Vendor ID and Device ID of the "active" device number and function number. Repeats this action until the user hits a key to stop it.

Loop on PCI device-fun: 7f-0 and Don't Display Vendor and

Device ID. Same as previous menu option, except doesn't display results. This menu option is useful when using an oscilloscope to debug configuration reads.

Loop on all PCI device numbers and Display Device/Vendor

ID's. Loops on each device number, reading the Vendor ID and Device ID for each. It moves onto the next device number when you press any key. That is, it continually reads the Vendor ID and Device ID from device number 0 until you hit a key, at which point it continually reads the Vendor ID and Device ID from device number 1. It moves all the way through device number 0 to device number 0x7F (in case there are any bridges on your PCI bus).

Display all PCI information for PCI device-function: 7f-0.

Reads and displays all of the configuration space for the "active" device and function number. Use options "S" and "F" to change between the "active" device number and function number, and then use this option to view the entire configuration space.

Write config(uration) DWORD. Allows write to configuration space. The following text will appear to remind you what is in configuration space for a PCI device:

PCI_CS_VENDOR_ID	0×00
PCI_CS_DEVICE_ID	0x02
PCI_CS_COMMAND	0×04
PCI_CS_STATUS	0x06
PCI_CS_REVISION_ID	0x08
PCI_CS_CLASS_CODE	0x09
PCI_CS_CACHE_LINE_SIZE	0x0c
PCI_CS_MASTER_LATENCY	0x0d
PCI_CS_HEADER_TYPE	0x0e
PCI_CS_BIST	0x0f
PCI_CS_BASE_ADDRESS_0	0x10
PCI_CS_BASE_ADDRESS_1	0x14
PCI_CS_BASE_ADDRESS_2	0x18
PCI_CS_BASE_ADDRESS_3	0x1c
PCI_CS_BASE_ADDRESS_4	0x20
PCI_CS_BASE_ADDRESS_5	0x24
PCI_CS_EXPANSION_ROM	0x30
PCI_CS_INTERRUPT_LINE	0x3c
PCI_CS_INTERRUPT_PIN	0x3d
PCI_CS_MIN_GNT	0x3e
PCI_CS_MAX_LAT	0x3f
<pre>Input config offset (hex 0x00-0xff):</pre>	
word to write (in hex):	
Loop indefinitely? (y or n)?	

If looping was selected, any keypress will stop the loop.

Read config(uration) DWORD. Allows read from configuration space. Has options for single read, loop read with display, and loop read without display.

Configure BARs from File. Reloads the PCI configuration of the "active" device from a file. It writes 0x001F to the command register, and writes the 6 bars with the values from the file. This is useful for hot-swapping devices (power switch still required on extender), or reinitializing a device when its configuration has been altered.

WARNING: Because the PCI BIOS is not assigning the BARs for this device, you may induce a memory conflict by using this option. This option is for advanced users only!

Save Bar Configuration to File. Writes PCI Device ID, Vendor ID and the BARs into a file (from the "active" device). This option is for advanced users only!

Memory Menu The memory menu (Figure 9-5) allows you to perform a variety of tests of PCI memory along with some DN5000k10 specific tasks.

_	=-= ASIC Emulator PCI Control	ller Driver =-=- v8
1)	Write To Memory Test	2) Read Memory Test
3)	Write/Read Test	4) Memory Fill
0)	Memory Display	
9)	write Memory Byte	
a)	Read Memory Byte	
b)	Write/Read Memory Byte	
c)	memory test on SSRAM 1	
d)	memory test on SSRAM 2	
e)	memory test on SSRAM 3	
f)	memory test on SDRAM	
g)	full memory test (including	blockram)
n)	memory test on FPGA block me	emory
(q	bar memory range test	
u)	SRAM memory test	
M)	Main Menu	Q) Quit
	PCI BASE ADDRESS	=-=-
0	: fd800000 1 : e0000000	2 : 0000000
3	: 00000000 4 : 00000000	5 : 00000000

Figure 9-5 AETEST Memory Menu

Write to Memory Test. Write a selected number of long words to a specific PCI memory location (Figure 9-6).

```
Memory location (hex) :fb000000
Numbers of long words to write (in decimal) ? 2
long word to write (in hex) :aaaaaaaa
long word to write (in hex) :5555555
Loop indefinitely? (y or n)?
Hit a key to continue....
```

Figure 9-6 AETEST Write to Memory Test

You will be prompted for the memory location (in hex). The physical address is needed. All 4 gigabytes of PCI memory can be accessed. A minimum of 1 to a maximum of 1024 long words can be written, in sequential order, to the same address. A looping option is available if you want to use an oscilloscope. If you are in a scope loop, any keypress will terminate the loop and return you to the main menu.

Read Memory Test. Read a single long word from a specific PCI memory location (Figure 9-7).

```
-----Input address :fb000000
fb000000
1.Display result
2.Display result and loop indefinitely
3.Don't display result and loop indefinitely
Please select:
```

Figure 9-7 AETEST Read Memory Test

You will be prompted for the memory location (in hex). The physical address is needed. All 4 gigabytes of PCI memory can be read. Three options are available:

- 1. Read once and display.
- 2. Read indefinitely and display.
- 3. Read indefinitely and don't display.

Write/Read Test. Write a long word to a specific PCI memory location and immediately read what was written. Repeat for a selected number of long words (Figure 9-8).

Figure 9-8 AETEST Write/Read Test

You will be prompted for the memory location (in hex). The physical address is needed. All 4 gigabytes of PCI memory can be read. The program will prompt for the number of long words you with to write (1 to 1024). Three options are available:

- 1. Read once and display.
- 2. Read indefinitely and display.
- 3. Read indefinitely and don't display.

Option 3 is a very useful scope loop.

Memory Fill. Fill memory with a selected pattern (Figure 9-9).

```
Input starting address (hex and 32 bit aligned): fb000000
Input number of bytes (divisible by 4): 1000
1 -- Fill with 0
2 -- address=data
3 -- 0x55555555, 0xaaaaaaaa
4 -- 0xfffffff
5 -- data=~address
```

Figure 9-9 AETEST Memory Fill

You will be prompted for the memory location (in hex). The physical address is needed. All 4 gigabytes of PCI memory can be written. The program will prompt for the number of bytes (in hex) you wish to fill (4 to $0 \times fffffffc$). The following fill options are available:

- fill with 0 fill all the locations with 0x00000000 (clear the memory)
- 2. address=data fill each long word with its address
- 3. alternating 0x55555555, 0xAAAAAAA
- 4. 0xffffffff set all of memory
- data=~address fill each long word with the address (each bit inverted).

Memory Display. Display 160 long words of memory. You are prompted for the starting address (in hex):

Input starting address (hex and 32 bit aligned):

The following screen is displayed (Figure 9-10):

	0	4	8	С	10	14	18	1c
000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000020	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000040	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000060	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000080	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
0000a0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
0000c0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
0000e0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000100	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000120	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000140	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000160	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000180	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
0001a0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
0001c0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
0001e0	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000200	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000220	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000240	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
000260	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
(f)orwa	ard (b)ad	ck (j)ump	goto(0)	(q)uit				

Figure 9-10 AETEST Memory Display

(f) forward — pages the screen forward in memory.
(b) back — pages the screen backwards in memory.
(j) jump — jump to a specific location (in hex).
(0) goto — jump back to the original address location specified at the beginning.
(d) delay and display loop — display, wait for a second, and display again. Loop until a key is struck.

Write Memory Byte. Write a specific number of bytes to a single memory address (Figure 9-11).

Figure 9-11 AETEST Write Memory Byte

You will be prompted for the memory location (in hex). The physical address is needed. All 4 gigabytes of PCI memory can be accessed. A minimum of 1 to a maximum of 1024 bytes will be written, in sequential order, to the same address. A looping option is available if you want to use

an oscilloscope. If you are in a scope loop, any keypress will terminate the loop and return you to the main menu.

Read Memory Byte. Read a single byte from a specific PCI memory location (Figure 9-12).

```
Input address :fb000000
fb000000
            1.Display result
            2.Display result and loop indefinitely
            3.Don't display result and loop indefinitely
Please select:
```

Figure 9-12 AETEST Read Memory Byte

You will be prompted for the memory location (in hex). The physical address is needed. All 4 gigabytes of PCI memory can be read. Three options are available:

- 1. Read once and display.
- 2. Read indefinitely and display.
- 3. Read indefinitely and don't display.

Write/Read Memory Byte. Write and read a single DWORD from a specific PCI memory location. After entering a memory address (hex, 32 bits), you specify how many DWORDS you want written and read back, and the data. Then, you choose from the 3 options as above. The menu option does not perform any data checking. (Figure 9-13)

```
Numbers of long words to write (in decimal) ? 2
byte to write (in hex) :88888888
byte to write (in hex) :99999999
1.Display result
2.Display result and loop indefinitely
3.Don't display result and loop indefinitely
Please select:
```

Figure 9-13 AETEST Write/Read Memory Byte

Memory test on SSRAM1. Tests one of the SSRAM chips on the DN5000k10.

Memory test on SSRAM2. Tests one of the SSRAM chips on the DN5000k10.

Memory test on SSRAM3. Tests one of the SSRAM chips on the DN5000k10.

Memory test on SDRAM. Tests the SDRAM chip on the DN5000k10.

Full Memory Test (Including BlockRAM). Tests all of the memories. This includes the SSRAM chips, the SDRAM, and the BlockRAM internal to the FPGA. **Memory test on FPGA block memory.** Tests the BlockRAM inside the FPGA. On the DN2000k10, the BlockRAM is only in FPGA F.

BAR memory range test. Generic memory test that prompts the user for BAR number, starting address offset, DWORD count, and number of iterations. The user is also prompted if the program should stop if error occurs, or if the program should display any errors that occur. This allows for maximum flexibility when debugging a design with an oscilloscope, or debugging any memories or memory locations on your PCI bus. The memory test is very complete, performing a write then a read to every location, a read from every location, and then a read/write/read test to every location. All other memory test options listed in the memory menu are based on this generic memory test function.

Appendix A

Berg Connector Datasheets

Figure A-1 and Figure A-2 contain the schematics for the Berg 91403-003 Connector.

Figure A-3 through Figure A-5 contain the schematics for the Berg 91294-003 connector.

Figure A-1 Berg 91403-003 Datasheet Page 1 of 2

Figure A-2 Berg 91403-003 Datasheet Page 2 of 2

Figure A-3 Berg 91294-003 Datasheet Page 1 of 3

Figure A-4 Berg 91294-003 Datasheet Page 2 of 3

All rights strictly reserved. Reproduction or issue to third parties in any for whatever is not permitted without written authority from the proprietor. Property of ©BERG ELECTRONICS Copyright BERG ELECTRONICS INC. BERG

Tous droits strictement reserves. Reproduction ou communication a des tiers interdite sous quelque forme que ce soit sans autorisation ecrite du propietaire. Propriete de © BERG ELECTRONICS. Droits de reproduction BERG ELECTRONICS INC.

Figure A-5 Berg 91294-003 Datasheet Page 3 of 3

Glossary and Acronyms

μP	microprocessor	LVDS	Low-Voltage Differential
BAR	Base Address Register		Signaling
BGA	ball grid array	LVTTL	low voltage transistor-transistor logic
BIOS	Basic Input/Output Services	MDR	Mini D Ribbon
CMOS	complementary metal-oxide semiconductor	PCI	peripheral component interconnect
CPLD	Complex Programmable Logic Device	PCI-X	peripheral component interconnect (extended)
CSF	Configuration Settings File	PL	pipelined
DSP	digital signal processing	PLL	phase lock loop
EEPROM	Electrically Erasable PROM	PNP	plug-and-play
EIA	Electronic Industries Association	PWB	printed wire board
ESD	Electro-Static Discharge	RBF	Raw Binary File
FAQ	frequently asked questions	RISC	reduced instruction set
FAT	file allocation table	SDRAM	synchronous dynamic random
FPGA	field programmable gate array	0010	access memory
FT	flowthrough	SRAM	shadow random access
HDL	Hardware Description		memory
	Language	SSRAM	synchronous static random
I/O	input/output		
IP	intellectual property	TTL	transistor-transistor logic
LED	light emitting diode	VHDL	VHSIC Hardware Description Language
LSI	large scale integration	VREF	reference voltage
LVCMOS	low voltage complementary metal-oxide semiconductor	ZBT	zero-bus-turnaround

Index

Symbols

[C-F]DS 4-10, 4-12 µP. Seemicroprocessor

Α

ACLK 4-1, 7-8 ADSC# 5-8, 5-10 ADSP# 5-8, 5-10 ADV# 5-10 AETEST 9-1 to 9-14 ASIC 2-1 to 2-2, 2-26 to 2-27, 4-1, 4-16, 5-1, 7-1, 7-6 to 7-7 ATmega128L 2-1, 2-10 to 2-11, 2-15

B

BCLK 4-1, 7-8 BCLKOUT 4-17 BCPUCLK 2-17 Berg A-1 to A-6 Berg connectors A-1 to A-6 BIOS 9-1, 9-9 BlockRAM 7-1, 9-13 to 9-14 board termination voltage 2-9 Bridges2silicon 2-18 BUFINA 4-3 to 4-4, 4-6 BUFINB 4-3 to 4-4, 4-7 bus bars 8-1, 8-4 BWE# 5-10 BWx# 5-10

С

carry chains 2-5 CCLK 4-10, 4-13 to 4-14, 4-17, 7-8 CE# 5-10 Certify TDM 2-1 CLKOUT 4-1, 4-3 to 4-4 clock 2-9, 4-1, 4-11 clock buffer 4-1, 4-7, 4-13, 6-2 clock distribution 4-1 to 4-2, 4-4 clock divider function 4-11 clock division 4-11 clock enable 2-5 clock frequency 3-1, 4-1 clock frequency multipliers 4-11 **clock grid** 2-16, 4-1, 4-3 to 4-4, 4-6, 4-13 **clock inputs** 4-3 to 4-4, 4-6, 4-13 to 4-14, 4-16 clock menu 9-6 clock multiplication 4-11 clock multiplication mechanism 4-11 **clock output** 2-9, 4-1, 4-10 to 4-11, 4-16 to 4-17 clock signals 2-17, 4-1, 4-3, 4-13 to 4-14, 4-16 to 4-17, 7-6 **clock skew** 4-11 to 4-13 **CLOCKA** 4-3 to 4-4 **CLOCKB** 4-3 to 4-4, 4-7 configuration μP 2-10 μ P and FPGA 2-10 clock grid 4-4, 4-16 FPGA 2-1, 2-3, 2-10, 2-17, 2-23, 3-4, 8-1 JTAG 2-17 to 2-18 SDRAM 5-12 serial 2-17 SmartMedia 2-1, 2-3, 2-20, 2-24, 8-3 stand-alone 6-3 via Fast Passive Parallel 2-17 to 2-18, 2-22 via Fast passive Parallel 2-1 configuration space 9-2, 9-5, 9-8 to 9-9 **CPLD** 2-1, 2-3, 2-9 to 2-10, 2-13, 2-15, 2-17, 2-24, 4-1, 4-3 to 4-4, 6-2, 8-1 **CPLD TCK** 2-17 **CPLD_TDI** 2-17 **CPLD_TDO** 2-17 **CPLD_TMS** 2-17 **CPUCLK** 2-17 **CSF** 2-9, 2-19, 3-1 custom daughter cards 2-2 **CY7B993V** 4-1, 4-11 to 4-12, 4-14

D

daughter 2-2 daughter cards 2-2, 6-4 to 7-4, 7-6 to 7-14 DCLK 4-4, 4-10, 4-13, 4-16 to 4-18, 7-11 debug 2-1 to 2-3, 2-12, 5-1, 9-1 to 9-14 analyzer-based 2-1 to 2-3, 2-12, 9-1 to 9-14 Device ID 2-21, 9-5, 9-7 differential LVDS pairs 7-1 DIMM 2-3, 5-1, 5-10, 6-2 divider function 4-11 to 4-12

DLL 7-1 DN3000k10 2-24 DN3000k10S 2-24 DN3000k10SD 2-2, 7-1 to 7-4, 7-6 to 7-8 **DN5000k10** 1-1 block diagram 2-2 description 2-2 to 2-3 features 2-1 to 2-2 frequently asked questions 1-1 technical support 1-1 **DNPCIEXT-S3** 3-1 **DOS** 9-1 to 9-4, 9-6 **DOS extender** 9-2 **DOS extenders** 9-1 drive 6-3 drive power connector 6-3 **DSP** 2-6, 2-8 dual-port 2-6

Ε

ECLK 4-10, 4-13 to 4-14, 4-16 to 4-17, 5-1, 5-10, 7-8, 7-11 EEPROM 2-12, 5-12 embedded memory 2-1, 2-6, 2-26 EP1S60 2-1, 2-3 EP1S80 2-1, 2-3, 2-5 to 2-6, 2-24 EPM3256A 2-15 ESD 1-1 esd 1-1 extender card 3-1 external 2-2, 5-1 external memories 2-2, 5-1

F

Fast Passive Parallel 2-17 to 2-18, 2-20, 2-22 to 2-23, 8-1 FBDIS 4-10 to 4-11 FBDS 4-10 to 4-11 FBF0 4-10, 4-13 FCLKOUT 4-10, 4-16 to 4-18 feedback disable 4-10 feedback output divider function 4-10 feedback output phase function 4-10 FIFO 2-6 FLASH 2-1, 2-3, 2-10, 2-12, 2-14, 2-22, 2-24 to 2-25, 9-6

FlashPath 2-22, 2-24 to 2-25 **FPGA** 1-1, 2-1, 2-3, 2-10, 2-14 to 2-15, 2-17 to 2-18, 2-20 to 2-21, 2-24, 2-26, 3-1 to 3-2, 3-4, 3-6, 4-16 to 4-17, 5-1 to 5-2, 5-10, 6-2 to 6-3, 7-8, 8-1, 8-3 to 8-4, 9-1, 9-6, 9-13 to 9-14 configuration 2-1, 2-3, 2-10, 2-14 to 2-15, 2-17 to 2-18, 2-20 to 2-24, 3-4, 8-1 interconnect block diagram 5-2 **FPGA A** 2-21, 8-4 **FPGA B** 2-21, 8-4 **FPGA C** 2-3 **FPGA D** 2-15, 2-21, 5-13, 8-4 **FPGA E** 2-21, 8-4 **FPGA F** 2-21 to 2-22, 3-4, 4-16 to 4-17, 8-4, 9-14 **FPGA C** 2-3 frequency select 4-10 **FS** 4-10 to 4-12, 4-14

G

GW# 5-10

Η

HyperTerminal 2-14, 2-20

impedance 2-9 input clock select 4-10 interconnect 2-1, 5-2, 7-8, 9-2 INV1 4-14 INV2 4-10, 4-14

J

JTAG 2-2, 2-10, 2-12 to 2-13, 2-17 to 2-18, 2-24, 3-4 configuration 2-17 to 2-18 interface 2-2, 2-12 to 2-13 jumper settings 2-17 programming 2-18, 2-24 signals 3-4

L

LD# 5-10 LED 2-23, 7-4, 8-3 logic analyzer 2-1 to 2-2, 2-18 LTC1326 8-1 LUT 2-5 LVCMOS33 2-9 LVDS 7-1, 7-6 LVPECL 4-1, 4-13

Μ

M66EN 3-5, 3-7 main configuration file 2-20 main configuration file. See main.txt main.txt 2-18, 2-20 to 2-24, 8-1 MDR 7-6 memories 2-2, 2-26, 5-1 to 5-13, 9-13 to 9-14 microprocessor 2-1, 2-3, 2-10, 2-15, 6-2 MODE 4-10 multiplexing 2-1, 5-10 multiplication 4-11 multiplier 2-1, 2-5 to 2-6, 2-26, 4-11, 9-2, 9-6 multiplier blocks 2-5 multiplier logic 2-8

0

oscillator 2-1, 2-17, 4-1, 4-3 to 4-4, 4-7, 4-11, 4-14 to 4-15, 6-2 oscilloscope 7-1, 9-8, 9-10, 9-13 to 9-14 output divider function 4-10, 4-12 output mode 4-10 output phase function 4-10 output-enable 7-7

Ρ

pattern generator 2-1 to 2-2 **PCI** 3-1 to 3-7 bus 3-1 bux 2-9 capability 3-6 capability header 3-6 connector 3-1, 4-16, 6-1, 6-4

controller 3-1 debug 9-1 edge connector 3-3 fingers 6-2, 6-4 FPGA pin connections 3-2 JTAG Signals 3-4 present signals 3-5 slot 2-2, 3-1, 6-1, 6-3 specification 3-1, 3-4, 6-4 Specifications 1-2 specifications 3-1 target design 2-2 PCI Clock 2-1 **PCI Menu** 9-6 to 9-7 PCI CLK 4-16 to 4-17 **PCI-X** 3-1 capability 3-6 to 3-7 capability header 3-6 component interface 2-9 controller 3-1 edge connector 3-3 present signals 3-5 slot 2-2 Specifications 1-2 **PCIXCAP** 3-6 to 3-7 PCLK. See PCI CLK **PECL** 4-6, 4-13 **PLL** 4-1, 4-7, 4-11, 4-16 to 4-17 **PLL1A** 4-3 to 4-4, 4-10, 4-17 **PLL1B** 4-13 **PLL1B N** 4-10 **PLL1B PRE** 4-3 **PLL1BN** 4-13 **PLL1BN PRE** 4-3 to 4-4 **PLL2B** 4-13 to 4-14 **PLL2B_N** 4-10 **PLL2B PRE** 4-3 **PLL2BN** 4-4, 4-13 to 4-14 **PLL2BN PRE** 4-3 to 4-4 **PLLSEL2** 4-10 PMEpolarity 4-15 power 2-13, 2-22, 2-24, 3-1, 3-4 to 3-5, 6-1, 7-4, 9-1 power connector 2-1 power distribution 6-1 to 6-4 power management 1-2 Power Management Enable. See PMEpower rails 6-1 to 6-4 power rating 7-5 power supply 5-12, 6-1 to 6-4, 7-4 to 7-5, 8-1 power switch 9-9

power-up 8-1, 9-1 prototyping boards 7-1 PWB 1-1, 2-1 to 2-3, 2-17, 2-25, 3-1

Q

Quartus 2-20

R

R/W# 5-10 RB[C-F]F 4-10, 4-13 reference design 2-18, 2-22, 9-6 regulator 2-1, 3-1, 6-2 reset 2-5, 2-14, 8-1 to 8-2 reset button 2-23 to 2-24 Roboclock 4-7 to 4-8, 4-16 to 4-17 RoboclockII 2-1, 4-1, 4-3 to 4-4, 4-6, 4-9, 4-12 to 4-14, 4-17 to 4-18, 5-10 RST# 3-4, 9-1

S

SDRAM 2-3, 4-16, 5-1, 5-10 to 5-13, 6-2, 6-4, 9-2, 9-13 Selectl/O 7-1 Serial Port 2-19 serial port 2-13 to 2-14, 2-20 to 2-23, 8-4 Signals ACLK 4-1, 7-8 ADSC# 5-8, 5-10 ADSP# 5-8, 5-10 ADV# 5-10 BCLK 4-1, 7-8 BCLKOUT 4-17 BCPUCLK 2-17 BUFINA 4-3 to 4-4, 4-6 BUFINB 4-3 to 4-4, 4-7 BWE# 5-10 BWx# 5-10 CCLK 4-10, 4-13 to 4-14, 4-17, 7-8 CE# 5-10 CE2# 5-10 CLKOUT 4-1, 4-3 to 4-4 Clock Signals ACLK 4-1, 7-8

BCLK 4-1, 7-8 BCLKOUT 4-17 BUFINA 4-3 to 4-4, 4-6 BUFINB 4-3 to 4-4, 4-7 CCLK 4-10, 4-13 to 4-14, 4-17, 7-8 CLKOUT 4-1, 4-3 to 4-4 CLOCKA 4-3 to 4-4 CLOCKB 4-3 to 4-4, 4-7 CPUCLK 2-17 DCLK 4-4, 4-10, 4-13, 4-16 to 4-18, 7-11 ECLK 4-10, 4-13 to 4-14, 4-16 to 4-17, 5-1, 5-10, 7-8, 7-11 FCLKOUT 4-10, 4-16 to 4-18 MODE 4-10 CLOCKA 4-3 to 4-4 CLOCKB 4-3 to 4-4, 4-7 CPLD_TCK 2-17 CPLD TDI 2-17 CPLD TDO 2-17 CPLD TMS 2-17 CPUCLK 2-17 DCLK 4-4, 4-10, 4-13, 4-16 to 4-18, 7-11 ECLK 4-10, 4-13 to 4-14, 4-16 to 4-17, 5-1, 5-10, 7-8, 7-11 FBDIS 4-10 to 4-11 FBDS 4-10 to 4-11 FBF0 4-10, 4-13 FCLKOUT 4-10, 4-16 to 4-18 FS 4-10 to 4-12, 4-14 GW# 5-10 INV1 4-14 INV2 4-10, 4-14 JTAG TCK 2-17 to 2-18, 3-4 TDI 2-17 to 2-18, 3-4 TDO 2-17, 3-4 TMS 2-17, 3-4 TRST# 3-4 LD# 5-10 **MODE 4-10** PCI RST# 3-4, 9-1 PCI Signals CE# 5-10 CE2# 5-10 PCI_CLK 4-16 to 4-17 PLL1A 4-3 to 4-4, 4-10, 4-17 PLL1B 4-13 PLL1B N 4-10 PLL1B_PRE 4-3

PLL1BN 4-13 PLL1BN PRE 4-3 to 4-4 PLL2B 4-13 to 4-14 PLL2B N 4-10 PLL2B_PRE 4-3 PLL2BN 4-13 to 4-14 PLL2BN PRE 4-3 to 4-4 PLLSEL2 4-10 Processor Signals BCPUCLK 2-17 R/W# 5-10 RB[C-F]F 4-10, 4-13 RST# 3-4, 9-1 TCK 2-17 to 2-18, 3-4 TDI 2-17 to 2-18, 3-4 TDO 2-17, 3-4 TMS 2-17, 3-4 TRST# 3-4 SmartMedia 2-1, 2-3, 2-9 to 2-10, 2-14 to 2-15, 2-17 to 2-18, 2-22 to 2-24, 9-1 configuration 2-1, 2-3, 2-20, 2-24, 8-3 speed 2-1, 2-15, 2-17, 3-6, 4-1, 5-8, 7-6 **speed grade** 2-3, 3-1 speeds 3-1 **SRAM** 2-10, 2-15, 5-1, 6-2 **SSRAM** 4-16, 5-1, 5-3 to 5-10, 9-2, 9-13 **ssram** 5-1 Startup 9-4 static electricity 1-1

Stratix 1-2, 2-1, 2-3, 2-5 to 2-6, 2-9 to 2-10, 2-15, 2-17 to 2-18, 2-24, 2-27, 3-1, 3-4, 4-16 to 4-17, 6-2 to 6-3, 7-1 Synopsys 2-26 Synplicity 2-1 to 2-2, 2-18, 2-26 synthesis 1-2, 2-26 synthesis tools 2-26

Т

target design 2-2 TCK 2-17 to 2-18, 3-4 TDI 2-17 to 2-18, 3-4 TDO 2-17, 3-4 technical support 1-1 terminator technology 2-9 TMS 2-17, 3-4 TRST# 3-4

V

Vendor ID 9-7 to 9-9 verbose level 2-20 to 2-23 Verilog 1-2, 2-2, 2-8, 2-15, 2-19, 2-26 VHDL 1-2, 2-8, 2-26 voltage 2-9, 2-11, 2-19, 3-4, 4-11, 4-13, 6-2, 7-5 to 7-6