
 APPLICATION NOTE

R01AN2172EJ0101 Rev.1.01 Page 1 of 28

Jun 1, 2015

Renesas USB MCU

USB Peripheral Mass Storage Class Driver for USB Mini Firmware
Using Firmware Integration Technology

Introduction

This application note describes the USB peripheral mass storage class driver (PMSC), which utilizes Firmware

Integration Technology (FIT). This module operates in combination with the USB-BASIC-F/W FIT module.

Target Device

RX111, RX113, RX231

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

Related Documents

1. USB Revision 2.0 Specification

2. USB Mass Storage Class Specification Overview Revision 1.1

3. USB Mass Storage Class Bulk-Only Transport Revision 1.0, “BOT” protocol

http://www.usb.org/developers/docs/

4. RX111 User’s Manual: Hardware (Document number No. R01UH0365EJ)

5. RX113 User’s Manual: Hardware (Document number No. R01UH0448EJ)

6. RX231 User’s Manual: Hardware (Document number No. R01UH0496EJ)

7. USB Basic Host and Peripheral firmware using Firmware Integration Technology Application Note. (Document No.

R01AN2166EJ.)

8. Block Access Media Driver API. (Document No. R01AN1443EU.)

 Renesas Electronics Website

http://www.renesas.com/

 USB Devices Page

http://www.renesas.com/prod/usb/

R01AN2172EJ0101
Rev.1.01

Jun 1, 2015

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 2 of 28

Jun 1, 2015

Content

1. Overview ... 3

2. Software Configuration .. 4

3. How to Register Class Driver .. 7

4. System Resources .. 7

5. Task ID and Priority Setting .. 7

6. Peripheral Device Class Driver (PDCD).. 8

7. USB Peripheral Mass Storage Class Driver (PMSCD) ... 15

8. Peripheral Mass Storage Device Driver (PMSDD) ... 20

9. Creating an Application ... 25

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 3 of 28

Jun 1, 2015

1. Overview

The USB PMSC FIT module, when used in combination with the USB-BASIC-F/W FIT module, operates as a USB

peripheral mass storage class driver (PMSC). The USB peripheral mass storage class driver (PMSC) comprises a USB

mass storage class bulk-only transport (BOT) protocol. When combined with a USB peripheral control driver and media

driver, it enables communication with a USB host as a BOT-compatible storage device.

This module supports the following functions.

・ Storage command control using the BOT protocol

・ Response to mass storage device class requests from a USB host

・ Response to storage commands which are encapsulated in the bulk-only transport (BOT) protocol

Limitations
The following limitations apply to PMSC.

1. Structures are composed of members of different types.

Terms and Abbreviations
API : Application Program Interface

APL : Application program

BOT : USB mass storage class bulk only transport. See “Universal Serial Bus Mass

Storage Class Bulk-Only Transport” at USB Implementers Forum..

cstd : Prefix of Function and File for Host & Peripheral USB-BASIC-FW

DDI : Device driver interface, or PMSDD API.

H/W : Renesas USB device

MGR : Peripheral device state manager of HCD

PCD : Peripheral control driver of USB-BASIC-FW

PCDC : Communications Devices Class for peripheral

PCI : PCD interface

PMSCD : Peripheral mass storage USB class driver (PMSCF + PCI + DDI)

PMSCF : Peripheral mass storage class function

PMSDD : Peripheral mass storage device driver (sample ATAPI driver)

PP : Pre-processed definition

pstd : Prefix of Function and File for Peripheral USB-Basic-F/W

RSK : Renesas Starter Kits

Scheduler : Used to schedule functions, like a simplified OS.

Scheduler Macro : Used to call a scheduler function.

Task : Processing unit

USB : Universal Serial Bus

USB-BASIC-FW : USB Host and Peripheral Basic Mini Firmware

USB-BASIC-FW FIT : USB Host and Peripheral Basic Firmware using Firmware Integration

Technology

1.1 USB PMSC FIT Module

User needs to integrate this module to the project using r_usb_basic_mini. User can control USB H/W by using this

module API after integrating to the project.

Please refer to the chapter “2.2.8How to add the module” about how to add the module.

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 4 of 28

Jun 1, 2015

2. Software Configuration

As shown in Figure 2-1, PDCD comprises two layers: PMSCD and PMSDD.

PMSCD comprises three layers: PCD API (PCI), PMSDD API (DDI), and BOT protocol control and data sends and

receives (PMSCF).

PMSCD uses the BOT protocol to communicate with the host via PCD.

PMSDD analyzes and executes storage commands received from PMSCD. PMSDD accesses media data via the media

driver.

Figure 2-1 shows the configuration of the modules.

5 Peripheral Mass Storage Device Driver (PMSDD)

4 Device Driver Interface (DDI)

3 Peripheral Mass Storage Class Function (PMSCF)

2 PCD Interface (PCI)

1 USB Peripheral Control Driver (PCD)6 (Media driver)

USB Peripheral H/WMedia
P

e
rip

h
e

ra
l

M
a

s
s
 s

to
ra

g
e

c
la

s
s
 d

riv
e

r

(P
M

S
C

D
)

P
e

rip
h

e
ra

l

 D
e

v
ic

e
 c

la
s
s

d
riv

e
r (P

D
C

D
)

Figure 2-1 Software Configuration Diagram

Table 2-1 Module Function Overview
Module Description

PMSDD

Mass Storage Device Driver

・ Processes storage commands from the PMSCD

・ Accesses media via the media driver

DDI PMSDD-PMSCD interface function

PMSCF

Peripheral Mass Storage Class Function

・ Controls BOT protocol data and responds to class requests.

・ Analyzes CBWs and transmits/receives data.

・ Generates CSWs together with the PMSDD/PCD.

PCI PMSCD – PCD interface function

PCD USB Peripheral H/W Control driver

2.1 Media Driver

This module uses the media driver API of the application note (Block Access Media Driver API: R01AN1443EU). User

needs to use this module with this application note (R01AN1443EU). For details, please refer to this application note

(R01AN1443EU) .

Note: In the USB PMSC FIT module, the media driver is included in the PMSDD.

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 5 of 28

Jun 1, 2015

2.2 API Information

This Driver API follows the Renesas API naming standards.

2.2.1 Hardware Requirements

This driver requires your MCU support the following features:

・ USB

2.2.2 Software Requirements

This driver is dependent upon the following packages:

・ r_bsp

・ r_usb_basic_mini

2.2.3 Supported Toolchains

This driver is tested and working with the following toolchains:

・ Renesas RX Toolchain v.2.02.00

2.2.4 Header Files

All API calls and their supporting interface definitions are located in r_usb_pmsc_mini_if.h.

2.2.5 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These

types are defined in stdint.h.

2.2.6 Compile Setting

In order to use this module, it is necessary to set the USB-BASIC-F/W FIT module as a peripheral. Refer to USB-

BASIC-F/W FIT module application note (Document No. R01AN2166EJ) for information on USB-BASIC-F/W FIT

module settings.

Please modify r_usb_hcdc_config.h when User sets the module configuration option.

The following table shows the option name and the setting value.

Configuration options in r_usb_atapi_driver_config.h

NOT_USE_MEDIA Disable this macro

ATAPI_MEDIA_DEVICE_DRIVER Specify the instance name of media_driver_s structure.
Refer to the media driver API application note (Document number:
R01AN1443EU) about media_driver_s structure.

USB_ATAPI_BLOCK_UNIT Specify the sector size of using the storage media.

2.2.7 Argument

The structure for the arguments of the API functions is shown below. For details, please refer to USB-BASIC-F/W FIT

module application note (Document No.R01AN2166EJ).

 struct usb_utr_t

 {

 usb_strct_t msginfo; /* Message information */

 usb_strct_t pipenum ; /* Sub information(Port No/Pipe No etc） */

 usb_strct_t status; /* USB status */

 usb_strct_t flag; /* Flag */

 usb_cb_t complete; /* Pointer to the callback function */

 usb8_t *tranadr; /* Pointer to USB transfer buffer */

 uint16_t *setup; /* Pointer to Setup packet data */

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 6 of 28

Jun 1, 2015

 uint16_t pipectr; /* PIPECTR register */

 usb_leng_t tranlen; /* USB data length*/

 uint8_t dummy; /* Adjustment of the byte border */

}

2.2.8 How to add the module

This module must be added to an existing e2 studio project. By using the e2 studio plug-in, it is possible to update the

include file path automatically. It is therefore recommended that this plug-in be used to add the project.

For instructions when using e2 studio, refer to RX Family: Adding Firmware Integration Technology Modules to

Projects (document No. R01AN1723EU).

For instructions when using CS+, refer to RX Family: Integration into CS+, Firmware Integration Technology

(document No. R01AN1826EJ).

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 7 of 28

Jun 1, 2015

3. How to Register Class Driver

The class driver which the user created functions as a class driver by registering with a USB driver.

For details, please refer to "Registration method of a class driver" of USB Basic Host and Peripheral firmware using

Firmware Integration Technology application note (Document No. R01AN2166EJ).

4. System Resources

 The resource which PMSC uses is showed in Table 4-1～Table 4-2.

Table 4-1 Task Information
Function Task ID Priority Description

R_usb_pmsc_task USB_PMSC_TSK USB_PRI_1 PMSCD Task

R_usb_pmsc_atapi_task USB_PFLSH_TSK USB_PRI_2 PMSDD Task

Table 4-2 Mailbox Information
Mailbox Task ID Queue Description

USB_PMSC_MBX USB_PMSC_TSK FIFO order for PMSCD

USB_PFLSH_MBX USB_PFLSH_TSK FIFO order for PMSDD

5. Task ID and Priority Setting

Define the setting value for User task ID within the following range. The task priority level is the same as the task ID.

The highest priority level becomes 0.

Task ID : 3 to (USB_IDMAX - 1)

Mailbox ID : Set the same value as Task ID

[Note]

1. USB_IDMAX is the defined by User in r_usb_basic_mini_config.h file.

2. Task IDs 0 to 2 are already defined. When setting task IDs, use values other than 0 to 2.

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 8 of 28

Jun 1, 2015

6. Peripheral Device Class Driver (PDCD)

6.1 Basic Functions

The functions of PDCD are to:

1. Storage command control using the BOT protocol.

2. Respond to mass storage class requests from USB host.

3. Respond to USB host storage commands which are encapsulated in the BOT protocol (Bulk Only Transport), see

below)

6.2 BOT Protocol Overview

BOT (USB MSC Bulk-Only Transport) is a transfer protocol that, encapsulates command, data, and status (results of

commands) using only two endpoints (one bulk in and one bulk out).

The ATAPI storage commands and the response status are embedded in a “Command Block Wrapper” (CBW) and a

“Command Status Wrapper” (CSW).

Figure 6-1 shows an overview of how the BOT protocol progresses with command and status data flowing between

USB host and peripheral.

Ready

Command Block Wrapper
Command Transfer

(Host→Device)

Command Status Wrapper
Status transfer
(Device→Host)

Data-Out
(Host→Device)

Data-In
(Device→Host)

CBW transfer stage
(Command packet)

Data transfer stage
(Data packet)

CSW transfer stage
(Status packet)

Figure 6-1 BOT protocol Overview.
Command and status flow between USB host and peripheral.

6.2.1 CBW processing

When PMSCD receives a command block wrapper (CBW) from the host, it first verifies the validity of the CBW. If the

CBW is valid, PMSCD notifies PMSDD of the storage command contained in the CBW and requests analysis of the

command. PMSCD finally performs processing based on the analysis by PMSDD (command validity, data transfer

direction and size) and the information contained in the wrapper (data communication direction and size).

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 9 of 28

Jun 1, 2015

6.2.2 Sequence for storage command with no data transmit/receive

Figure 6-2 shows the sequence of storage commands without data transfer.

(a). CBW transfer stage

PMSCD issues a CBW receive request to PCD and registers a callback function. When PCD receives the CBW, it

executes a callback function which starts the CBW transfer stage. PMSCD verifies the validity of the CBW and

transfers the storage command (CBWCB) to PMSDD. PMSCD requests PMSDD to execute storage commands.

PMSDD executes the storage command and returns the result to PMSCD.

(b). CSW transfer stage

Based on the execution result at the time of callback, PMSCD creates a command status wrapper (CSW) and transmits

it to the host via PCD.

For details on PCD operation refer to the USB basic firmware Application note.

Host PCD PMSCD PMSDD

CBW transfer stage

CSW transfer stage

Transmit CBW

Ex.)TEST UNIT READY Call-back

(CBW transfer)

(CBW reception preparation)

Verify CBW validity

Verify CBW meaning

13-case identification

usb_pmsc_

SmpAtapiAnalyzeCBWCB()

usb_pmsc_

SmpAtapiCommandExecute()

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage

command

Execute storage

command
Callback function registration

called when storage

command execution is

completed

CBW receive request

(callback function registration

called when CBW is

received)

Figure 6-2 Sequence of Storage Command for No Transmit/Receive Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 10 of 28

Jun 1, 2015

6.2.3 Sequence with storage command for transmit (IN) data

Figure 6-3 shows the sequence of storage command when there is transmit (IN) data from the peripheral side.

(a). CBW transfer stage

PMSCD executes a CBW receive request to PCD, and sets up a callback. When PCD receives the CBW it executes the

callback. PMSCD verifies the validity of the CBW and transfers the storage command (CBWCB) to PMSDD. PMSDD

analyzes the data transmit command and returns the result to PMSCD. PMSCD then reads the CBW and sends an

ATAPI storage command execution request to PMSDD together with a callback registration.

(b). Data IN transfer stage

Based on the execution result at the time of callback, PMSCD notifies PCD of the data storage area and data size, and

data communication with the USB host takes place. When the peripheral PCD issues a transmit end notification (status),

PMSCD once again sends a continuation request to PMSDD, and data transmission is repeated.

(c). CSW transfer stage

When PMSCD receives a command processing end result from PMSDD, PMSCD creates a command status wrapper

(CSW) and transmits it to the host via PCD.

For PCD operation details refer the USB Basic Firmware Application note.

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 11 of 28

Jun 1, 2015

Host PCD PMSCD PMSDD

CSW transfer stage

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage

command

Execute storage

command

Execute storage

command

Execute storage

command

(final data)

Data (IN) transfer stage

IN data

IN data

(transmit status)

Call-back

(transmit data information)

(transmit status)

Call-back

(transmit data information)

Call-back

(transmit data

information transfer)

Call-back

(transmit data

information transfer)

13-case identification

CBW transfer stage

Transmit CBW

Ex.) READ(10)

(CBW transfer)

Call-back
Verify CBW validity

Verify CBW meaning

usb_pmsc_

SmpAtapiAnalyzeCBWCB()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

CBW receive request

Callback function registration

called when storage

command execution is

completed

Callback function registration

called when storage

command execution is

completed

(callback function registration

called when CBW is

received)

Data transfer

Data transfer

Figure 6-3 Sequence of Storage Command for Transmit (IN) Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 12 of 28

Jun 1, 2015

6.2.4 Sequence for storage command with receive (OUT) data

Figure 6-4 shows the sequence of storage command when there is transmit (OUT) data from the peripheral.

(a). CBW transfer stage

In the CBW transfer stage, PMSCD issues a CBW receive request to PCD and sets up a callback.. When PCD receives

the CBW it executes the callback. PMSCD verifies the validity of the CBW and transfers the storage command

(CBWCB) to PMSDD. PMSDD analyzes the data transmit command, and returns the result to PMSCD. PMSCD then

compares the analysis result from PMSDD with the information contained in the CBW and sends an ATAPI storage

command execution request to PMSDD together with a callback registration.

(b). Data OUT transfer stage

Based on the callback execution result, PMSCD notifies PCD of the data storage area and data size, and data

communication with the host takes place. When it receives transmit end notification from PCD, PMSCD once again

sends a common continuation request to PMSDD, and data transmission is repeated.

(c). CSW transfer stage

When it receives a command processing end result from PMSDD, PMSCD creates a command status wrapper (CSW)

and transmits it to the host via PCD.

For PCD operation details refer to the USB Basic Firmware Application note.

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 13 of 28

Jun 1, 2015

Host PCD PMSCD PMSDD

CSW transfer stage

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage

command

Execute storage

command

Execute storage

command

Execute storage

command

(final data)

Data (OUT) transfer stage

OUT data

OUT data

(receive status)

Call-back

(receive data information)

(receive status)

Call-back

(receive data information)

Call-back

(receive data information

transfer)

Call-back

(receive data information

transfer)

13-case identification

CBW transfer stage

Transmit CBW

Ex.) WRITE(10)

(CBW transfer)

Call-back
Verify CBW validity

Verify CBW meaning

usb_pmsc_

SmpAtapiAnalyzeCBWCB()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

CBW receive request

Callback function registration

called when storage

command execution is

completed

Callback function registration

called when storage

command execution is

completed

(callback function registration

called when CBW is

received)

Data transfer

Data transfer

Figure 6-4 Sequence of Storage Command for Receive (OUT) Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 14 of 28

Jun 1, 2015

6.2.5 Access sequence for class request

Figure 6-5 shows the sequence when a mass storage class request is received.

(a). Setup Stage
When PCD receives a class request in the control transfer setup stage, it sends a request received notification to

PMSCD.

(b). Data Stage
PMSCD executes the control transfer data stage and notifies PCD of data stage end by means of a callback function.

(c). Status Stage
PCD executes the status stage and ends the control transfer.

Host PCD PMSCD PMSDD

Setup stage

Status

Ex.) GetMaxLUN

Call-back

Transmit MaxLUN

Data stage

Status stage

R_usb_pstd_ControlRead()

Create MaxLUN

Request notification

Figure 6-5 Sequence for Class Request

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 15 of 28

Jun 1, 2015

7. USB Peripheral Mass Storage Class Driver (PMSCD)

7.1 Basic Functions

The basic interface functions of PMSCD are to register, open, and close the Peripheral Mass Storage Class Driver.

The rest of the functionality inside PMSCD was already described in the sequence charts in chapter "6 eripheral Device

Class Driver (PDCD)".

7.2 List of API Functions

Table 4.10 List of API Functions

Function Name Description

R_usb_pmsc_Open Open PMSC driver

R_usb_pmsc_Close Close PMSC driver

R_usb_pmsc_task PMSC task

R_usb_pmsc_driver_start PMSC driver start

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 16 of 28

Jun 1, 2015

7.2.1 R_usb_pmsc_Open

Open PMSC driver

Format
usb_er_t R_usb_pmsc_Open(uint16_t data1, uint16_t data2)

Argument
data1 Not used

data2 Not used

Return Value
USB_E_OK Processing result : 0

Description
This function is to be called when the USB device has been connected, has enumerated and been configured by the

USB host .

The function sets the CBW reception setting.

Note
1. Call this function in the callback function which is registered in the structure(usb_pcdreg_t)

member (statediagram).

Example

void usb_pmsc_change_device_state(uint16_t data1, uint16_t device_state)

{

 switch (device_state)

 {

 :

 case USB_STS_CONFIGURED:

 R_usb_pmsc_Open(data1, device_state);

 break;

 :

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 17 of 28

Jun 1, 2015

7.2.2 R_usb_pmsc_Close

Close PMSC driver

Format
usb_er_t R_usb_pmsc_Close(uint16_t data1, uint16_t data2)

Argument
data1 Not used

data2 Not used

Return Value
USB_E_OK Processing result : 0

Description
This function is to be called when the USB device has been disconnected.

This function is called at transition to the detached state. There are no operations. Add if necessary.

Note
1. Call this function in the callback function which is registered in the structure(usb_pcdreg_t) member

(statediagram).

Example
void usb_pmsc_change_device_state(uint16_t data1, uint16_t device_state)

{

 switch (device_state)

 {

 case USB_STS_DETACH:

 R_usb_pmsc_Close(data1, device_state);

 break;

 }

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 18 of 28

Jun 1, 2015

7.2.3 R_usb_pmsc_task

PMSC task

Format
void R_usb_pmsc_task(void)

Argument

－ －

Return Value

－ －

Description
This is the PMSC task which processes requests by the application.

Note
1. The function is registered to be scheduled by the scheduler.

2. Refer to the USB-BASIC-F/W Application Notes for more information concerning the scheduling process.

Example
void usb_apl_task_switch(void)

{

 while(1)

 {

 /* Scheduler */

 if(USB_FLGSET == R_usb_cstd_Scheduler())

 {

 R_usb_pstd_PcdTask(); /* PCD Task */

 R_usb_pmsc_task();

 R_usb_atapi_task();

 }

 }

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 19 of 28

Jun 1, 2015

7.2.4 R_usb_pmsc_driver_start

PMSC driver start

Format
void R_usb_pmsc_task(void)

Argument

－ －

Return Value

－ －

Description
This function initializes the global variable (g_usb_pipe_toggle).

Note
1. Call this API from the user application program.

Example
void usb_task_start (void)

{

 :

 R_usb_pmsc_driver_start();

 :

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 20 of 28

Jun 1, 2015

8. Peripheral Mass Storage Device Driver (PMSDD)

8.1 Basic Function

The main functions of the PMSDD are as follows.

1. Analyzing storage commands received from the PMSCD

2. Running storage commands received from the PMSCD

3. After running each storage command, transferring to the PMSCD the communication data information and

execution result

8.2 Function

The main function of PMSDD is to analyze and call for execution of storage commands received from the host via

PMSCD. It supports SFF-8070i(ATAPI). This command set is therefore used by the host to control the storage media.

These are the storage commands:

USB_ATAPI_READ10

USB_ATAPI_INQUIRY

USB_ATAPI_REQUEST_SENSE

USB_ATAPI_MODE_SENSE10

USB_ATAPI_READ_FORMAT_CAPACITY

USB_ATAPI_READ_CAPACITY

USB_ATAPI_WRITE10

USB_ATAPI_WRITE_AND_VERIFY

USB_ATAPI_MODE_SELECT10

USB_ATAPI_FORMAT_UNIT

USB_ATAPI_TEST_UNIT_READY

USB_ATAPI_START_STOP_UNIT

USB_ATAPI_SEEK

USB_ATAPI_VERIFY10

 USB_ATAPI_PREVENT_ALLOW

PMSDD notifies PMSCD of communication data and execution results related to storage command execution.

PMSDD divides the data transfer intp0 pieces when the transfer data length exceeds the user-specified block count.

 A master boot record (FAT12) sample table is provided.

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 21 of 28

Jun 1, 2015

8.3 PMSDD Storage Command Structure

The “storage command structure” is USB_PMSC_CDB_t. The format of a storage command (SFF-8070i) differs

depending on the command category, so a union is used. Four patterns sort out from ten kinds of command type details

as shown in Table 8-1.

Table 8-1 USB_PMSC_CDB_t Structure

Union Member Type Structure Member Bit Count Command Category

s_usb_ptn0 uint8_t uc_OpCode Command determination (common)

uint8_t

s_LUN

b_LUN 3

b_reserved 5

uint8_t uc_data

s_usb_ptn12 uint8_t uc_OpCode INQUIRY /

REQUEST_SENSE uint8_t

s_LUN

b_LUN 3

b_reserved4 4

b_immed 1

uint8_t uc_rsv2[2]

uint8_t uc_Allocation

uint8_t uc_rsv1[1]

uint8_t uc_rsv6[6]

s_usb_ptn378 uint8_t uc_OpCode Not used

uint8_t

s_LUN

b_LUN 3

b_FmtData 1

b_CmpList 1

b_Defect 3

uint8_t ul_LBA0

uint8_t ul_LBA1

uint8_t ul_LBA2

uint8_t ul_LBA3

uint8_t uc_rsv6[6]

s_usb_ptn4569 uint8_t uc_OpCode READ10 /

WRITE10 /

WRITE_AND_VERIFY /

MODE_SENSE /

READ_FORMAT CAPACITY /

MODE SELECT10

uint8_t

s_LUN

b_LUN 3

b_1 1

b_reserved2 2

b_ByteChk 1

b_SP 1

uint8_t ul_LogicalBlock0

uint8_t ul_LogicalBlock1

uint8_t ul_LogicalBlock2

uint8_t ul_LogicalBlock3

uint8_t uc_rsv1[1]

uint8_t us_Length_Hi

uint8_t us_Length_Lo

 uint8_t uc_rsv3[3]

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 22 of 28

Jun 1, 2015

Table 8-2 shows storage commands analysis result .

Table 8-2 The USB_PMSC_CBM_t Structure

- Contains “analysis” result of usb_pmsc_SmpAtapi AnalyzeCbwCb.

 Member PMSDD storage command

analysis RESULT

Remarks

uint32_t ar_rst Data direction. Direction of data transported in last ATAPI

command.

uint32_t ul_size Data size Size of data in last ATAPI command.

8.4 List of PMSDD API

Table 8-3 lists the functions of PMSDD.

Table 8-3 List of PMSDD API

Function Name Description

R_usb_pmsc_atapi_task Main task of PMSDD

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 23 of 28

Jun 1, 2015

8.4.1 R_usb_atapi_task

PMSC task

Format
usb_er_t R_usb_atapi_task(void)

Argument

－ －

Return Value

－ －

Description
ATAPI command processing task.

This API processes to the ATAPI command which is requested from USB HOST.

Note
1. The function is registered to be scheduled by the scheduler.

2. Refer to the USB-BASIC-F/W Application Notes for more information concerning the scheduling process.

Example

void usb_apl_task_switch(void)

{

 while(1)

 {

 /* Scheduler */

 if(USB_FLGSET == R_usb_cstd_Scheduler())

 {

 R_usb_pstd_PcdTask(); /* PCD Task */

 R_usb_pmsc_task();

 R_usb_atapi_task();

 }

 }

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 24 of 28

Jun 1, 2015

8.5 PMSDD Task Description

PMSDD receives storage commands from PMSCD and executes the storage command. PMSDD also receives host data

transfer results from PMSCD. Table 8-4 lists PMSDD command processing. When the transfer data size exceeds

USB_ATAPI_TRANSFER_UNIT, the data is divided into smaller units and transferred.

For commands that do not involve memory access, the transmitted data is created from the response data tables

g_pmsc_atapi_data_size []

g_pmsc_atapi_rd_dat_idx []

g_pmsc_atapi_req_idx []

g_pmsc_atapi_rd_dat_tbl []. (*1)

 (*1)The response data table follows storage command set SFF-8070i, and the index into the table is determined by the

command. Refer to uc_OpCode in Table 8-1 USB_PMSC_CDB_t Structure provided in the subclass.

Table 8-4 Corresponding Function for Each Storage Command

Storage command Corresponding Function Description

READ10 pmsc_atapi_get_read_data () Gets start address and size.

INQUIRY pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

REQUEST_SENSE pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

MODE_SENSE10 pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

READ_FORMAT_CAPACITY pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

READ_CAPACITY pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbll.

WRITE10 pmsc_atapi_get_write_memory () Gets start address and size.

WRITE_AND_VERIFY pmsc_atapi_get_write_memory () Gets start address and size.

MODE_SELECT10 pmsc_atapi_get_write_memory () Gets start address and size.

FORMAT_UNIT pmsc_atapi_get_write_memory () Gets start address and size.

TEST_UNIT_READY usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

START_STOP_UNIT usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

SEEK usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

VERIFY10 usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

PREVENT_ALLOW usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_FAILED

others usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_ERROR

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 25 of 28

Jun 1, 2015

9. Creating an Application

This section describes the initial settings necessary for using the USB PMSC FIT module and USB-BASIC-F/W FIT

module in combination as a USB driver and presents an example of data transfer by means of processing by the main

routine and the use of API functions.

9.1 Initial Settings of USB Driver

The following settings are required in order to use the USB driver.

 MCU pin settings

 USB controller startup and settings

 USB driver settings

Sample settings are shown below.

/* USB Transfer Structure for PMSC */
usb_utr_t usb_gpmsc_utr

void usb_pmsc_apl(void)
{

usb_er_t err;

/* USB module starting and setting (Refer to “9.1.1 USB Module Startup and Settings”） */

err = R_USB_Open();
if(err != USB_SUCCESS)
{

/* Error processing */
}
/* MCU Pin Setting (Refer to “9.1.2 MCU Pin Settings”) */
usb_mcu_setting();

/* USB Driver Setting (Refer to “9.1.3 USB Driver Settings”) */

R_usb_pstd_ChangeDeviceState(USB_DO_INITHWFUNCTION);

R_usb_pstd_PcdOpen();
usb_papl_registration();
R_usb_pmsc_driver_start();
R_MEDIA_Initialize(&g_EepromMediaDriver);
R_MEDIA_Open();

R_usb_pstd_ChangeDeviceState(USB_DO_SETHWFUNCTION);

/* Main routine */
usb_papl_mainloop();

}

9.1.1 USB Module Startup and Settings

The USB module startup and setting procedure is described below.

1. Call R_USB_Open() to launch the USB module. This API function should only be called once, when making

initial settings.

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 26 of 28

Jun 1, 2015

9.1.2 MCU Pin Settings

It is necessary to make USB I/O pin settings in order to use the USB controller. Sample USB I/O pin settings are shown

below.

Table9-1 USB I/O Pin Settings for Peripheral Operation

Pin Name I/O Description

USB_VBUS Input USB VBUS pin

[Note]

The USB PMSC FIT module and USB-BASIC-F/W FIT module do not make microcontroller pin settings. If pin

settings are necessary, refer to the user’s manual of the specific microcontroller and make pin settings to match the

specifications of the evaluation board to be used.

9.1.3 USB Driver Settings

The USB driver settings consist of registering a task with the scheduler and registering class driver information for the

USB-BASIC-F/W FIT module. The procedure for registering the class driver information and registering the task with

the scheduler is described below.

1. Call the USB-BASIC-FW FIT module’s API function (R_usb_pstd_ChangeDeviceState()) to reset the USB-IP.*1

2. Call the USB-BASIC-F/W FIT module’s API functions (R_usb_pstd_PcdOpen()) to register the PCD task with the

scheduler.

3. After setting the information for the members of the class driver registration structure (usb_pcdreg_t) with the

usb_papl_registration() function, call R_usb_pstd_DriverRegistration() to register the class driver information for

the USB-BASIC-FW FIT module.

4. Call the class driver’s API function (R_usb_pmsc_driver_start()) to perform initialization.

5. Call the media driver’s API functions (R_MEDIA_Initialize() and R_MEDIA_Open()) to initialize the media driver.

6. Call the USB-BASIC-FW FIT module’s API function (R_usb_pstd_ChangeDeviceState) to set the USB-IP

functionality to peripheral.*1

[Note]

1. Run USB_DO_INITHWFUNCTION before starting USB-BASIC-F/W, and run USB_DO_SETHWFUNCTION

after registering the UPL.

A sample of information specified in the structure declared by usb_pcdreg_t is shown below.

void usb_papl_registration()
{

usb_pcdreg_t driver; /* Structure for the class driver registration */

/* Pipe information table setting */

 driver.pipetbl = usb_gpmsc_EpPtr[0]; // Note 1
/* Set the Device Descriptor table */
driver.devicetbl = (uint8_t*)&usb_gpmsc_DeviceDescriptor; // Note 2
/* Set the Configuration Descriptor table */
driver.configtbl = &usb_gpmsc_ConfigrationF1[0]; // Note 2, 3
/* Set the String Descriptor */
driver.stringtbl = (uint8_t**)&usb_gpmsc_StrPtr[0]; // Note 2, 4
/* Set the function which is called when a USB state transition occurs */
driver.statediagram = (usb_cbinfo_t)&usb_psmpl_change_device_state;
/* Set the function which is called when processing the control transfer other than the standard request
*/

 driver.ctrltrans = &usb_pmsc_UsrCtrlTransFunction;

/* Register the class driver information to PCD */
R_usb_pstd_DriverRegistration(&driver);

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 27 of 28

Jun 1, 2015

[Note]

1. The pipe information table need to be defined in the application program. Refer to USB Basic Firmware

application note (Document No.R01AN2166EJ) about the pipe information table.

= Example of Pipe Information Table =

uint16_t usb_gpmsc_EpTbl[] =
{
 USB_PIPE4,
 USB_BULK | USB_BFREOFF | USB_DBLBON | USB_SHTNAKON |

USB_DIR_P_IN | USB_EP1,
 USB_MAX_PACKET(64),
 USB_NULL,

 USB_PIPE5,
 USB_BULK | USB_BFREOFF | USB_DBLBON | USB_SHTNAKON |

USB_DIR_P_OUT | USB_EP2,
 USB_MAX_PACKET(64),
 USB_NULL,

 /* Pipe end */
 USB_PDTBLEND
};

2. Create each descriptor based on USB specification.

3. Set the start address of array which is set the configuration descriptor start address in this member.

4. Set the start address of array (Refer to the following) which is set the string descriptor start address in this member.

uint8_t *usb_gpmsc_StrPtr[] =
{
 usb_gpmsc_StringDescriptor0,
 usb_gpmsc_StringDescriptor1,
 usb_gpmsc_StringDescriptor2,
}

9.2 Processing by Main Routine

After the USB driver initial settings, call the scheduler (R_usb_cstd_Scheduler()) from the main routine of the

application. Calling R_usb_cstd_Scheduler() from the main routine causes a check for events. If there is an event, a flag

is set to inform the scheduler that an event has occurred. Also, it is necessary to run processing at regular intervals to get

events and perform the appropriate processing. (Note1)
void usb_papl_mainloop(void)
{

while(1) // Main routine
{

if(USB_FLGSET == R_usb_cstd_Scheduler()) // Judgment whether the event is or not(Note1)
{

R_usb_pstd_PcdTask(); // HCD task
R_usb_pmsc_task(); // MSC task
R_usb_atapi_task(); // ATAPI task

}
pmsc_application(); // User application program

}
}

[Note]

1. If, after getting an event with R_usb_cstd_Scheduler() and before running the corresponding processing,

R_usb_cstd_Scheduler() is called again and gets another event, the first event is discarded. After getting an event,

always call the corresponding task to perform the appropriate processing.

2. Be sure to describe these processes in the main loop for the application program.

9.3 Vendor ID

Please be sure to use your vendor ID.

(Note2)

Renesas USB MCU USB Peripheral Mass Storage Class Driver for USB Mini Firmware Using Firmware Integration Technology

R01AN2172EJ0101 Rev.1.01 Page 28 of 28

Jun 1, 2015

Website and Support

Renesas Electronics Website

 http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/
http://www.renesas.com/inquiry
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 Dec 1, 2014 — First edition issued

1.01 Jun 1, 2015 — RX231 is added in the target device.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	1.1 USB PMSC FIT Module

	2. Software Configuration
	2.1 Media Driver
	2.2 API Information
	2.2.1 Hardware Requirements
	2.2.2 Software Requirements
	2.2.3 Supported Toolchains
	2.2.4 Header Files
	2.2.5 Integer Types
	2.2.6 Compile Setting
	2.2.7 Argument
	2.2.8 How to add the module

	3. How to Register Class Driver
	4. System Resources
	5. Task ID and Priority Setting
	6. Peripheral Device Class Driver (PDCD)
	6.1 Basic Functions
	6.2 BOT Protocol Overview
	6.2.1 CBW processing
	6.2.2 Sequence for storage command with no data transmit/receive
	6.2.3 Sequence with storage command for transmit (IN) data
	6.2.4 Sequence for storage command with receive (OUT) data
	6.2.5 Access sequence for class request

	7. USB Peripheral Mass Storage Class Driver (PMSCD)
	7.1 Basic Functions
	7.2 List of API Functions
	7.2.1 R_usb_pmsc_Open
	7.2.2 R_usb_pmsc_Close
	7.2.3 R_usb_pmsc_ task
	7.2.4 R_usb_pmsc_driver_start

	8. Peripheral Mass Storage Device Driver (PMSDD)
	8.1 Basic Function
	8.2 Function
	8.3 PMSDD Storage Command Structure
	8.4 List of PMSDD API
	8.4.1 R_usb_atapi_task

	8.5 PMSDD Task Description

	9. Creating an Application
	9.1 Initial Settings of USB Driver
	9.1.1 USB Module Startup and Settings
	9.1.2 MCU Pin Settings
	9.1.3 USB Driver Settings

	9.2 Processing by Main Routine
	9.3 Vendor ID

