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ABSTRACT

Kinetic Monte Carlo (KMC) is a non-deterministic computational technique for

simulating atomistic motion. These simulations can be used to predict the formation

of substances at the atomic level. This work describes a graphical user interface for

a variant of the KMC simulation technique called Self-Learning Kinetic Monte Carlo

(SLKMC) which is currently under development. We look at the SLKMC algorithm

as well as the steps users take to extract useful information from the simulation data.

Then we look at potential ways to enhance accuracy and productivity during the

model description and analysis phases of simulations. The user interface described in

this work includes support for the creation of initial condition data via mesh gener-

ation and global constant editing. It also provides improved support for simulation

results analysis. Analysis features include animated 3D model visualization and statis-

tical data representation. The architecture and implementation of software designed

to carry out these enhancements is also discussed. We assess the usefulness of the

implementation of the software using reviews conducted by developers and users of

the SLKMC simulator. These reviews verify that the unified interface contributes to

both the usefulness of the underlying simulation code and user productivity.
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Chapter 1

Introduction

Physicists are increasingly using computational techniques to simulate the growth

of substances under different conditions[1]. Many of these techniques are complex

and sharing the underlying software tools is not always enough to share the process

itself. However, user interfaces allow us to control the level of detail presented to the

users, to provide graphical feedback to assist user input, and to optionally automate

complex analysis jobs – all without reducing the power of the underlying software.

This research explores a pre- and post-processor for a atomistic motion simulator

written in the FORTRAN programming language. The user interface was written in

Java and is completely separate from the computational software. Communication

is accomplished via the same text files the FORTRAN software uses to read input

and produce output. This means the physicists could continue work on their simula-

tion code without having to learn a new programming language or worry about any

graphical techniques.

Development and adoption of the user interface was completely successful. In the

following chapters, we will discuss the specification, features, and architecture of this
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work. Verification of the success of this project has come in the form of reviews by

users in the KSU physics department and their experiences with the software during

normal use and during a conference presentation. The full text of these reviews can

be found in Appendix C.

The particular technique used by the underlying software for modeling atomistic

motion is called Self-Learning Kinetic Monte-Carlo (SLKMC). This chapter discusses

the atomistic modeling concepts and some of the details of this particular implemen-

tation of SLKMC.

1.1 KMC Background

The branch of atomistic motion we are concerned with is the growth and movement

of a substance on a substrate. In order to produce materials according to certain

specifications, we must understand how individual atoms and atom clusters interact

with one another on a substrate. There are three approaches to modeling atomistic

behavior. Macroscopic modeling uses statistical descriptions of atomistic behavior to

simulate atom cluster movement[1]. Modeling can also be carried out at the atomic

level by methods that simulate the movement of individual atoms. There are also

hybrid models that attempt to combine macroscopic and microscopic techniques[2].

In this work, we are only concerned with a model that simulates the interactions and

processes of individual atoms.

Atomistic modeling has its roots in molecular dynamics (MD) simulations [3]. MD

simulations are based on Newton’s laws and are totally deterministic. The internal

computations are straightforward, but do not scale well to surface cluster modeling[1].

Techniques have been developed that allow researchers to focus on “interesting” mo-
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ments in the evolution of a system when clusters of atoms begin to merge or separate.

One of these relatively young methods is Kinetic Monte-Carlo (KMC).

1.1.1 Kinetic Monte-Carlo

Kinetic Monte-Carlo simulations use a non-deterministic approach to model the move-

ment of individual atoms on a substrate. The simulation proceeds in a series of

Monte-Carlo (MC) steps. At each step, the simulation selects one process to apply

to the model. A process (or transition) represents a transformation that the sim-

ulator will apply to a particular configuration of atoms, the energy threshold that

the transformation would have to overcome, and the change in time represented by

the application of the process . A configuration is a group of active atoms on the

substrate. When a configuration of atoms undergoes a process, the positions of the

atoms within that configuration are updated according to the rules defined in the

process.

Figure 1.1 is an example of a configuration an a KMC simulation. In the KMC

model shown, the central atom has a 36 atom neighborhood arranged in a hexagon.

The empty circles represent locations in the configuration that could contain atoms

but do not; the dark circles represent other atoms within the configuration. The light

gray circles in Figure 1.1 represent the underlying substrate. Because the central atom

lies above the substrate in such a way that the substrate forms a triangle pointing

upward, this atom is said to be lying on an face-centered cubic (FCC) site – as well

as all of the other active atoms in this example. More complex models can represent

atoms lying on different kinds of sites within one configuration.

Figure 1.2 is an example of a process in a KMC simulation. This process is one of
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Figure 1.1: Example of a KMC configuration

potentially numerous transitions the configuration in Figure 1.1 could undergo. The

arrow in this figure represents the movement the atom at its root will undergo. In

this particular example, the central atom will move along the edge of the other atoms.

It is not uncommon for many atoms to move in a particular process.

At every MC step, a process is selected in a weighted-random fashion based on

the energy thresholds of each potential process in the simulation. This process will

transform a small portion of the model and then the next process will be selected.

As there is no notion of convergence, the simulation will run until a desired number

of MC steps have been calculated.

As the atoms shift their positions, the cluster shape, its energy, and dynamics

change. Tracking these changes is one of several ways to analyze atomistic simulations.

Using this information, scientists can learn how different materials form and how to

create desired behaviors.

The constant motion of these entities prevents the stagnation found in the older,
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Figure 1.2: Example of a KMC process

more rigid atomistic models. Unfortunately, this comes at the price of higher compu-

tational complexity and the need to specify more accurately the details of the system.

Efforts are continually underway to refine existing KMC approaches by increasing the

resolution of the computational model. The validation section later in this chapter

discusses a coalescence problem used to verify the version of KMC underlying this

research.

1.2 SLKMC Technical Overview

In order to understand the flow and data structures used by SLKMC, it is first

necessary to define a few terms.

Definition: Let HashSet be a data structure with the following properties:

• Maintains a list of Key → V alue pairs

• Provides get and put methods which access and modify the data structure
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• Does not allow duplicate keys

• Each V alue in the HashSet is a non-empty Set of values

Definition: Let a Configuration be the arrangement of a central atom and its 36

neighboring sites.

Definition: Let a Transition be the triple of initial configuration, energy threshold,

and end configuration.

With those definitions it is possible to describe the behavior of the SLKMC soft-

ware. Note that many other things are going on in the simulation, but these algo-

rithms capture the core of the SLKMC implementation. Figure 1.3 shows pseudocode

for the algorithm that initializes the simulation. In essence, initialization simply pop-

Let tTable be an empty HashSet
Let A be the set of all active atoms in the simulation
for each atom a in A

T = getPossibleTransitions( a )
for each transition t in T

add the mapping (t, a) to tTable

Figure 1.3: Pseudocode for simulation initialization

ulates the process list (tTable) with all of the possible processes that can occur.

Because tTable can map a single key (or transition) to many values (in this case

atoms), the important data are the processes – not the central atoms. It is done in

this way because we calculate the probability of a process independent of how many

places it can occur. We will discuss the getPossibleTransitions function later.

Once the simulation has been properly initialized, the main loop will repeat until

the desired number of MC steps have been calculated. Figure 1.4 shows pseudocode

for the main simulation loop. At each MC step, we select a weighted-random tran-

6



Let transition chosenTrans = getWeightedRandomTransition( tTable )
Let atomList = tTable.get( chosenTrans )
Let centralAtom be a random atom from atomList
perform chosenTrans on centralAtom’s configuration
for each active atom a in centralAtom’s configuration

remove all mappings to a from tTable
ts = getPossibleTransitions( a )
for each transition t in ts

add (t, a) to tTable

Figure 1.4: Pseudocode for main simulation loop

sition from our table of possible transitions. The weighting is determined by the

energy threshold of that transition. Once we have a transition, it is possible to ex-

tract the list of atoms whose configurations are valid candidates for that transition

from tTable. A random atom (and its respective configuration) is selected from the

list of candidate atoms. That configuration is transformed and the transition table is

updated to reflect the new configuration.

In both pseudocode examples, the getPossibleTransitions function was invoked.

This function is the subject of scrutiny in the project because it is responsible for most

of the up-front computation and often much of the time consumption. If a particular

configuration has already been seen in the simulation, getPossibleTransitions will

simply return the set of transitions that can be applied to the configuration. This

behavior is the “Self-Learning” aspect of SLKMC. It is very powerful because there

are only a finite number of configurations, and even fewer reasonable configurations.

The database used to maintain information about past configuration to transition set

mappings can also be reused between simulations, so this presents an excellent oppor-

tunity to avoid the expense of the external function used to calculate the transition

set for unknown configurations.
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If a configuration shows up that has not previously been seen in the simulation,

it is necessary to invoke an external function to calculate the possible transition set.

This function uses techniques described in [1] and I will not discuss them in detail

here. The external function calculates all of the possible transitions that could arise

from a particular configuration and it inherently takes a long time (on the order of

minutes) to execute[7]. The accuracy of the entire simulation is dependent on the

resolution of this calculation. Unfortunately, this resolution is directly proportional

to external function execution time.

1.2.1 Running Simulations

This section will give an overview of each required file. It is not intended to serve as

a complete user’s manual for the SLKMC software. To run a SLKMC simulation, the

user must create four files. A top-level configuration file provides some global values

and provides the names of other configuration and results files. This configuration

file references the other three required files. These files are the:

• Process Database

• Initial Mesh Configuration

• Substrate Configuration

These three files can be seen as representing the state of the simulation. As the

simulation runs, checkpoint files are output at a preset interval. The simulation

can be rerun from any of these checkpoints, or modified to create new simulations.

However, since Kinetic Monte-Carlo simulations are inherently non-deterministic, two

simulations initialized from the same state are not guaranteed to follow the same path
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or reach the same final state. Even though the main configuration file provides an

initial random number generator seed, there is not currently any way to capture the

state of the internal random number generator at each checkpoint.

Main Configuration File

This file sets a variety of global variables for the simulation, and gives the names of

other input and output files. An example of the main configuration file is shown in

Figure 1.5. The first line is a title for the simulation. Each following line represents

KINETIC MONTE_CARLO ,STEP16m ,ON Cu/CU111 11/11/2003 new gen
initial configuration file clust9i.abk
file of results clust92.r
file with movie (name or none) clust92.m
file for result configuration clust92f.abk
file with config database baza_c92
output sample for NEB and current config no
update database yes
analysis of 3d index in pattern recognition no
file for output event_stack ( name or none) stack_c92
output of config ( yes or no ) yes
file with control parameters output clust92.con
file with substrate config for NEB cu111r.sub
file with event statistics clust92.st
file with energy distribution clust92.en
output information about nonzero classes (YES or NO) yes
number of time steps 1.e7
interval of information output in one run 1.1e4
number of static layers 2.
temper (K) 500.
interval for event_stack output (<10000) 9000.
initial seed for random generator (ISEED - any integer) 6543.

Figure 1.5: The main configuration file (step16.dt)

a global parameter in the SLKMC simulation. The text in the first 60 columns of

each line is not used by the software. This allows users to enhance the readability of

the input file. The values starting at column 61 and extending to the carriage return
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are read in a specific order by the simulation software. Notably, this configuration

file references “clust9i.abk” as an initial configuration file, “baza c92” as a database

file, and “cu111r.sub” as a substrate configuration file. These are the three required

additional input files and we will briefly discuss each one.

Database File

This file maintains the running record of all calculated database processes. A portion

of an example database file is shown in Figure 1.6. The first four lines allow the user

baza for 7 atom at 500K cluster 7/1/2004

35 2051 0 1 0.670 1 1 4
32 3073 196608 1 0.052 1 1 2
37 2051 0 1 0.312 1 1 3
7 22 0 0
59 32 0 1 0.322 4 1 4 2 3 3 11 7 1
14 40 128 1 0.647 1 1 2
...

Figure 1.6: The databasefFile (baza c92)

to insert comments describing the database and the simulation it was used in. The

entry format is shown in Figure 1.7.

shellA shellB shellC n ∆Ei mi posj
init posj

final

Figure 1.7: Database entry format

The first three entries (shellA, shellB, shellC) in each line of the database refer

to a particular configuration of an atom cluster. Binary encoded integers are used

for this representation to conserve space. The next entry (n) gives the number of
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different processes that can occur from that particular configuration. Each process is

fully described by the following entries. The entry ∆Ei is the threshold energy for the

ith process. The entry mi is how many atoms within the shell configuration moved

in the process. The value of mi will always be non-zero. For each moving atom, we

have an initial location and a final location. These are given as posj
init and posj

final

respectively. Notice that no value is given for the duration of a process. The same

process can be applied over different periods of time.

Process descriptions are appended to the database any time the external function

is required to generate them. If a simulation is run using an initially empty database

file, a large part of the initial runtime is devoted to building up the database. However,

two simulations with a common substrate configuration can share a database file. In

theory, this would allow the databases to be linked to the substrate configurations in a

technique that would eventually give a “complete” database. However, this technique

has not yet been fully explored. Unfortunately, more complex models make exploring

the configuration state space an increasingly difficult problem.

Initial Configuration File

This file provides the simulator with the starting locations of each substrate atom

and active atom. A portion of an example initial configuration file is given in Figure

1.8. The first three lines in the initial configuration file allow users to add suitable

documentation to the file. They are not used by the simulation software. Each

following line represents a single atom in the simulation. The first three fields contain

floating-point values that describe the position of the atom in R3. The next three

fields describe a velocity vector for the atom. In the initial configuration file, this

velocity vector is always zero. The final field is a flag to indicate that an atom is

11



INITIAL CONFIGURATION 3214 14
102.2476 88.54905 8.348480 0

1600 3
0.00000 0.00000 0.00000 0. 0. 0. 0
1.27810 2.21373 0.00000 0. 0. 0. 0
2.55619 0.00000 0.00000 0. 0. 0. 0
...

Figure 1.8: The initial configuration file (step16i.abk)

either “active” or “inactive”. Active atoms use a value of ‘1’ for the flag. They will

be moved around by simulation processes. Currently, active atoms only reside on

the top layer (above the substrate atoms). Inactive atoms use a value of ‘0’. They

represent the substrate and occupy the lower two layers of the simulation – in a three

layer model.

Substrate Configuration File

This file provides the previously mentioned external function with information about

the current substrate. Its format is identical to the initial configuration file. The only

noteworthy difference between this file and the initial configuration file is that the

velocity vectors are frequently non-zero in the substrate configuration file because of

the molecular dynamics equations used in that computation.

1.2.2 Validation

The SLKMC software has been validated against experimental data in a coalescence

simulation. In this simulation, a large island of atoms is placed near a smaller island

of atoms. In time, the smaller island will merge with the larger one[5]. Figure 1.9 is

a visual history of this simulation. The results of this validation are exciting because
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Figure 1.9: Coalescence validation simulation results snapshots(from Rahman et.
al[1])

they agree with previously collected experimental evidence[1]. A detailed discussion

of the validation simulation can be found in Rahman et. al[5].
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Chapter 2

Problem Description

The existing Self-Learning Kinetic Monte-Carlo (SLKMC) software is evolving in

three key areas:

• Simulation Accuracy

• Simulation Performance

• Usability

Efforts to increase simulation accuracy by increasing model resolution are continu-

ally underway. In order to provide suitable performance for finer-grained simulations,

optimizations are needed both in results data size and simulation running time. Cur-

rent simulations produce 1-3 gigabytes of data, and take hours to run. This time can

extend to weeks if the process database must be discovered by the system. Usability

is important if we intend to share not only the simulation results, but the process

itself. Other scientists will find it much easier to pick up a simulation package if they

do not need to concern themselves with the details of file formats, or are forced to

recompile the software to make minor changes.
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A key idea in this project is that physicists should continue to develop and main-

tain the core computational engine within the SLKMC software. Their backgrounds

give them tremendous insight into the underlying problem and shifting ownership of

the code into the hands of computer scientists for greater convenience in enhancing

performance and usability would not be ideal. For this reason, the coupling of any

software modules that address either of the second two areas must be very loose. The

remaining sections in this chapter will discuss areas of the SLKMC software that need

to be improved. This thesis focuses on the effect of enhancing the software usability,

thus usability improvements are given considerable emphasis.

2.1 Simulation Performance

The development of more accurate simulation technology is entirely dependent on

the performance of the system. Currently, the accuracy of SLKMC is fully scaleable,

but growth in this area is stunted because simulations can take weeks to run. From

the main simulation loop described in Chapter 1, we can isolate the two performance

bottlenecks in the software.

The first in computation of the external function. Calculating the possible processes

that a particular configuration can undergo takes a matter of minutes with the present

computing technology. The good news is, this computation never needs to be repeated

for a particular configuration. This is the “Self-Learning” nature of SLKMC – as the

database grows, the external function is needed less often. One technique that is

currently being applied to this problem is pattern recognition[1].

In the 36-neighbor configuration model demonstrated in this work, it is possible

to simply explore the entire configuration space and add each mapping to the process
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database. Pattern recognition schemes can be used to greatly reduce the space via

configuration symmetries. This reduction will become invaluable in the next gener-

ation of SLKMC which will use a 210-neighbor configuration model. Some pattern

detection technology currently exists in the software, but a project is underway to

add far more sophisticated artificial intelligence to the pattern recognition engine. It

is also important to mention that the symmetry detection must be perfect since even

a small margin of error expanded over billions of Monte-Carlo steps would seriously

degrade simulation accuracy. Assuming an effective system was in place, no amount

of symmetry detection could prevent occasional calls to the external function. For

this reason, work is being done to parallelize the simulation.

Combinations of pooled and distributed technologies have been considered to

off-load the computation of potential processes[8]. Because the computation of the

process list for a particular configuration is both extremely expensive and completely

independent of other computations it is a natural candidate for distribution. How-

ever, as previously discussed, being forced to compute the external function is ideally

a temporary problem. The long-term goal of any parallelization effort must be to im-

prove the performance of the individual time steps. An interesting approach currently

being explored is to execute parallel updates localized to particular atom clusters[6].

This technique promises to overcome the inherently serial nature of the single process

per MC step simulation at the cost of very complicated division of labor.

2.2 A Unified User Interface

From a user’s perspective, there are three important tasks when running a simula-

tion. The first is to describe the problem to the simulator. This is accomplished by
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generating the input files discussed in Chapter 1. The second step is to actually run

the simulation and await the results. As the simulation is running, data is being gen-

erated. Once the user has the required data, the results must be analyzed in a useful

way. The following sections will discuss different elements of those three processes.

2.2.1 Simulator Input

A problem description consists of four input files:

• main configuration file

• substrate configuration file

• initial mesh configuration

• process database (substrate specific)

In general, the substrate configuration file and the process database can be reused

from existing sources. Because the KMC project has not yet advanced to a point

where users are creating custom substrates, both of these files are assumed to predate

the simulation. The pre- and post-processing software is then focused on the main

configuration file and the initial mesh configuration.

The main configuration file is a plain text file consisting of a number of key value

pairs. While any user with a text editor can manipulate this file, there are a number

of problems with generating input in this way. The first problem has to do with

assumptions. Without a knowledge of the underlying software system, a user might

assume that the input file was actually a sequence of key-value pairs. This is not the

case. The first sixty characters of each line provide a description of possible values

to guide the user, but these values are read by the simulator which assumes they are
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in the proper order. Even more disturbing is the realization that once the proper

ordering of these lines is lost, it could require a backup example or a knowledge of

the underlying code to repair the error.

Another issue when directly interacting with the text file is validation. Details

like the valid width and format of floating-point values, entering boolean values, and

knowing what strings are valid input all require thorough documentation and expe-

rience to avoid potentially time-consuming headaches. Also, simple typographical

errors can occur in directly edited text files.

A final complaint against direct text editing is presentation. Issues such as logical

grouping and warning against underdeveloped options can only be addressed in the

most rudimentary fashion within rigidly defined text input file. However, techniques

are available to address all of these issues with a modern graphical user interface.

2.2.2 Mesh Generation

In the main configuration file, each entry represented a conscious decision by the user.

This does not hold true for the mesh configuration file. It is not realistic to expect

a user to enter the locations of every atom in a 30x50x3 grid by hand (4500 lines

of numerical text). In determining the initial configuration for a simulation, users

should be able to provide a higher level description of a mesh, then have a tool build

it for them. Tools such as this predated my research, but there were a number of

features that did not yet exist.

Users wanted the ability to populate meshes using pre-existing “island” patterns[7].

Ideally there would be a library of predefined islands that could be drawn from and

added at particular locations, or new shapes could be created. Features that allow
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creative control over the positions of individual atoms create a new layer of func-

tionality that wasn’t present in existing tools. They also require some form of visual

feedback for the placement of the atoms.

2.2.3 Problem Execution

Once the correct input files are in place, running the simulation is quite simple. A

compiled, executable version of the KMC software will seek out the input files in the

working directory, read in the data, and run the simulation. Invalid input files will

cause the simulation to prematurely halt. As the simulation runs, results data is

continuously written to output files. This data can be analyzed either immediately,

or after the simulation is finished. This approach is straightforward, but it has some

limitations related to parallelism and usability.

There are two unavoidable problems that will occur when running a KMC simu-

lation. The first is a heavy CPU load, and the second is the amount of output that

will be generated. The computational load is a product of the algorithms described

in Chapter 1. The volume of output data is proportional to the number of MC steps

requested in the simulation. Small simulations produce hundreds of megabytes of out-

put, large simulations produce gigabytes. Ideally, we want a way to execute problems

quickly, without losing the ability to analyze results as they become available.

2.2.4 Simulation Results

From the standpoint of results, a KMC simulation is a stream of processes applied to

particular atoms. This information can be used in several ways:

• Visualizing the motion of atom clusters
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• Analyzing the process statistics to “explain” the simulation

• Numerical analysis of the motion of the atom clusters

Meaningful data is collected using a combination of these three techniques. The

following sections will discuss the use of each of these techniques and the challenges

that must be addressed for the KMC software to be more useful and accessible.

Visual Simulation History

Despite the constant motion of a KMC simulation, the key moments occur during a

relatively small fragment of the simulation timeline[7]. It is important to be able to

monitor the simulation in a way that allows researchers to view progressively finer-

grained data and identify these important moments. The mechanism used for this

purpose (prior to this research) was a “movie” file that contains the positions of the

active atoms within the simulation. The position of each active atom was written

to the movie file after a number of MC steps specified in the main configuration

file. Unfortunately, this system fixed the granularity of movie output for an entire

simulation. Unless the user guesses correctly the first time, finer granularity could

only be obtained via additional executions of the software.

Process Statistics Analysis

There are a variety of different types of database processes. Rahman, et al[5] contains

a listing of 27 unique process variants discovered in a single experiment. Identifying

what kind of processes the system underwent and their frequency acts as an explana-

tion for the changes that occur within the simulation model during the key moments

described above.
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A major part of analyzing this statistical data is identifying symmetrical processes[7].

An example of two symmetrical processes is given in Figure 2.1. Since these two

Figure 2.1: Two symmetrical SLKMC processes

processes are rotated versions of one another, they represent the exact same underly-

ing physical process. Accurate process frequency information can only be obtained by

coalescing symmetrical processes into individual, unique processes. Analysis is carried

out by building a list of all common processes, then visually comparing them to search

for symmetries. Because of the extremely tedious and error prone nature of this work,

some sort of computational filtering prior to the need for human intervention would

be very helpful.

Island Motion Analysis

One highly useful result from an atomistic motion simulation is the mean square

displacement (MSD) of the center of mass (CM) of an island of atoms[1]. Running

multiple simulations with slightly different initial conditions can lead to interesting

results (e.g. Raman et. al[1] shows that clusters displace at dramatically different

rates when they contain different numbers of atoms). In SLKMC simulations, this

data is tracked via a binary “stack” file that has the format shown in Figure 2.2.
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A description of each of the fields in the stack file are given in Figure 2.3. In this

∆t katom n posinit
1 posfinal

1 ... posinit
n posfinal

n

Figure 2.2: Stack file format

representation, the byte length of floating-point data is 8 bytes, and the length of

∆t (real) Elapsed time during this Monte-Carlo step
katom (real) Central atom’s position in k-space

n (int) Number of moving atoms
atomi (int) Initial position of the ith moving atom
posi (int) New position of the ith moving atom.

Figure 2.3: Stack file format key

integer data is 4 bytes. Entries in this stack file are written out every time step and

custom data reader software has been created to perform analysis on the data. After

growing for millions of MC steps, this simulation stack file becomes quite large.

Custom readers for the file format have been written by the developers of SLKMC,

but they do not allow users to target particular interesting portions of the data.

Ideally, users should be able to plot the MSD for an island at the particular time

window that is significant for the simulation without resorting to trial and error.

Also, it would be very helpful if users were allowed to perform different calculations

on this step-wise data to generate a variety of graphs.
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Chapter 3

Software Description

3.1 KMC-Vis

This chapter will discuss the features in an application designed to address many

of the productivity and usability issues raised in previous chapters. The software is

called KMC-Vis because it represents a visual interface to the KMC package. The

objective of KMC-Vis is to allow a user to prepare, execute, and analyze an atomistic

simulation all within a single program. Following that assumption, there are a several

important guiding characteristics:

• It must be possible to run all data preparation and analysis tools from within

the KMC-Vis interface.

• KMC-Vis will be the client in a client-server architecture. A high-performance

simulation server will handle computation.

• To accommodate the scientific community, the software must run on both Linux

and Windows operating systems.
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• Retrieval and execution of the client application via the Internet must be as

simple as possible.

The remainder of this section will discuss each of these features and how KMC-Vis

addresses them. Following sections provide details on the different components of the

user interface. A tutorial for KMC-Vis is available in Appendix A.

Prior to this work, their were a variety of FORTRAN programs written by the

designers of SLKMC. These programs allow their authors to automate some of the

pre- and post-processing tasks involved in a simulation. Unfortunately, while this

system brings enormous power to a small group of developers, it creates a very sharp

learning curve for new users. KMC-Vis is intended to be a single application that

brings together all of the tools that the simulation software users need in such a way

that their use is intuitive. The implementation of KMC-Vis in this research represents

a first pass at this goal, and was intended to demonstrate the feasibility of such a

project. Due to time constraints on this phase of the project, it is not possible for

the user interface to provide complete functionality.

A pressing issue is the performance of the SLKMC simulation engine. Research

is underway to apply a parallel solution to this performance problem. Since most

users do not work on a multi-processor computer, it has been predicted that the

final system will be a client-server style architecture with the server commanding the

power of many computational nodes. The client software must then submit work

and retrieve results from the server. KMC-Vis represents the client element of this

architecture.

In recognition of the increasing popularity of the Linux operating system, KMC-

Vis would ideally be available to users of both Windows and Linux-based operating
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systems. This is easily accomplished using a cross-platform language such as Java.

In order to smooth over interoperability issues in the future, C++ may become a

language of choice, and in that case a multi-platform toolkit for 3D visualization and

windowing would be ideal.

The client software has been designed to make it as easy as possible to launch

via the web. Because mature versions (those that interact with a simulation server)

will require an Internet connection, this does not impose any penalties and enhances

usability. Java applications can take advantage of Java Web Start technology which

allows the software to install and run with a single click. Installers would have to be

created for other forms of the client software.

3.1.1 Pre-Processing

Main configuration files can be loaded into KMC-Vis using the File|New... tech-

nique common in modern software. Once loaded, all the properties within the main

configuration file can be edited from within the user interface. Figure 3.1 shows the

input options editor. Every parameter in the main configuration file related to sim-

ulation input (as opposed to those related to simulation results) is editable within

this view. Categories such as Simulation Input, Simulation Options, and Database

Options have been created to help guide the user. The editor also validates all inputs

prior to saving the file. Figure 3.2 shows what happens if the user neglects to enter a

mesh configuration file. The software issues a specific error message, and highlights

the offending field. To simplify the process of entering file names, small folder icons

next to fields requiring file names allow the user to open a file chooser and select a file.

This provides both convenience and protection against entering invalid file names.
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Figure 3.1: Editing input options

Figure 3.2: Validation of input options
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A button labeled “Run KMC-Mesh” can be seen among the input options. KMC-

Mesh is a program specifically designed to assist in the creation of initial mesh con-

figuration files (those ending with .abk). KMC-Mesh can be executed from within

KMC-Vis or as a stand-alone application. Section 3.2 will cover this tool in more

detail.

Similarly, all parameters related to a KMC simulation’s output can be edited via

the “Output Options” view as shown in Figure 3.3. This view allows the user to

Figure 3.3: Editing output options

choose file names for output files, and select optional output options. Validation

similar to that found in the input options view protects the user from entering invalid

output options. Folder icons are not present to assist the user’s file selection in this

view because output files do not necessarily exist prior to execution of the simulation.

Once the user has edited the current configuration, it can be saved using the

File|Save As... technique common in modern software. At this time, the data

will be validated and (assuming the data survived validation) the “Simulate” option

will become available on the left editor selection panel.
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Notably absent from the pre-processing feature list is creating three of the four

required files from scratch. This support has not been included in the version of the

code discussed in this work. Clearly, this feature is important and must be added

before the client software is ready to be used outside the KMC research group. Section

5.2 discusses this and other future work for the project.

3.1.2 Running the Simulation

Once a valid main configuration file is in place, the client software can retrieve simu-

lation data. Figure 3.4 shows the “Simulate” editor. Since this version of the software

Figure 3.4: The simulation execution view

pre-dates any simulation server, only the option to load results data from local files

in available. Options designed to assist the user in connecting to a simulation server

are left disabled.

Clicking the button labeled “Start” (shown in Figure 3.4) causes the software to

attempt to load data from the database and results files listed in the main config-

uration files. Attempting to load data that does not exist will result in an error.
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Progress messages are displayed to keep the user informed during what may be a

lengthy loading process.

Once the simulation database is loaded and the other results information is avail-

able, the “Results” option will become available in the left editor selection panel. It

is possible to view results while only a fragment of the simulation data is available to

allow users to track the progress of simulations and view data as it emerges.

3.1.3 Simulation Analysis

Progressively more results data becomes available as a KMC simulation runs. KMC-

Vis provides two major modes of analyzing this data. Figure 3.5 shows the top-level

results view. Database process analysis is available on the top-level screen. 3D

Figure 3.5: The results view

simulation history visualization is also available in a sub-window.

Database processes are presented in a tree configuration as shown in Figure 3.5.
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The roots of these trees are the atomic configurations from which processes may occur.

One level down is a complete list of transitions (or processes) that were initiated by

the root atomic configuration. Only those processes that have occurred during the

simulation are listed. The shown configurations are ordered by the frequency of their

aggregate processes. Because there is no natural labeling other than that applied by

a human analyst, the most meaningful label available for the tree is the aggregate

frequency of a configuration, or the frequency of a process.

One time consuming research task is identifying symmetrical processes. KMC-Vis

implements a novel tool to assist in the discovery of such processes. By selecting a

process, then clicking on the “Find Symmetries” button, a user can launch the sym-

metry detection tool (Figure 3.6). Within the symmetry detection tool, the reference

Figure 3.6: Detecting process symmetries in KMC-Vis

process is indicated at the top of the process list, and candidate processes are listed

underneath. Candidates are selected using the following qualifications:
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• The threshold energy (∆E) must be within 0.01 of the reference process’s thresh-

old energy.

• Only processes that occurred at least 1% of the time are considered.

Selecting a candidate symmetry brings up a visualization of the candidates process

in the tool’s window. Comparison information is displayed at the top of the window.

Because the reference process is still displayed in the results view of the main appli-

cation window, it is possible to view both the candidate process and the reference

process at the same time. A checkbox can be clicked to specify that a process is sym-

metrical. Once the user has checked all relevant processes and dismissed the dialog,

the database statistics tree rebuilds itself with a process’s symmetries as child nodes.

This affects the overall frequency of the parent configuration and the root nodes are

reordered.

Figure 3.7 shows an example of the 3D results view. Viewing an animated movie

Figure 3.7: 3D simulation history analysis

of simulation progress allows researchers to identify windows in time where major

changes occur, as well as simply understand the progress of the simulation. These
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windows help to focus other types of analysis such as center of mass tracking. Movie-

like buttons such as stop, play, and step are available to allow the user to easily move

back and forth through the simulation movie.

Users have full control over the viewing angle and zoom within the 3D window.

It is also possible to change the resolution of the atoms in the movie. Figure 3.8

shows the difference between the low, medium, and high settings for atom resolution.

The lowest available setting allows low-end machines to render the 3D visualization

Figure 3.8: Low, medium, and high resolution atoms

with acceptable performance, where as the highest setting is useful for presentation

graphics. The default resolution is medium.

It is possible to export presentation graphics of a particular 3D scene using the

“Save Image...” button. This will open a file chooser where users can name and save

their images. Atom sizes can be adjusted via a drop-down menu similar to the one

for resolution.

3.2 KMC-Mesh

KMC-Mesh is a mesh generation program available as either a stand-alone appli-

cation or from within the KMC-Vis software. It allows users to create and modify

configurations of atoms in a visual interface. Figure 3.9 is a screen shot of the ap-

32



plication in action. The following sections will discuss the features supported by the

Figure 3.9: KMC-Mesh screen shot

version of KMC-Mesh used in this work. A walk-through of the software is available

in Appendix B.

3.2.1 Mesh Creation

A “mesh” in a KMC simulation is two complete substrate layers underneath a third

layer that contains some number of active atoms. The correct definition of a mesh

requires the correct relative placement of each atom in every layer. There are two ways

to begin working with a mesh in KMC-Mesh. Figure 3.10 shows the File|New...

dialog which allows the user to create a custom mesh from scratch. This method of

mesh creation allows the user to specify the atom spacing and the number of atoms

in the x, y, and z (layers) directions.

It is also possible to work with an existing simulation mesh. Any valid initial

configuration or final configuration of a SLKMC simulation can be loaded into KMC-

Mesh using the File|Open... command. This makes it possible to create slightly

different versions of the same simulation without directly editing a text file.
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Figure 3.10: Creating a new mesh

Any time a user would like to create a mesh suitable for a SLKMC simulation the

File|Save As... option provides a simple way to write the mesh files. The user is

prompted for a file name, and the current mesh is stored at that location. Since the

same format is used by SLKMC and the File|Load... option, there is no need for

a separate export function.

3.2.2 Mesh Editing

Any atom in the mesh can have only one of three states:

• Empty/Disabled

Disabled atoms will be ignored at file write time

• Inactive

Inactive atoms will be written at file write time with active flag value “0”.

• Active

Active atoms will be written at file write time with active flag value “1”.

Editing a mesh is manipulating the activity state information for the atoms within a

mesh. To support this function, the mesh editor view (right hand side of Figure 3.9)
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provides several tools:

• Layer Up

Changes the current editing layer to the next available layer in the z+ direction.

This option is disabled when the top layer is selected.

• Layer Down

Changes the current editing layer to the next available layer in the z− direction.

This option is disabled when the bottom layer is selected.

• Reset View

Resets the zoom and drag settings to the defaults.

• Zoom In

Increases the zoom factor within the editor view.

• Zoom Out

Decreases the zoom factor within the editor view.

• Drag Tool (Default)

Allows the user to translate the editor view. This is convenient when the current

zoom obscures portions of the current layer.

• Make Layer Inactive

Sets all cells in the current layer to the “inactive” state. This is useful for

creating substrate layers.

• Make Layer Empty

Sets all cells in the current layer to be ignored.
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• Empty Atom Tool

Allows the user to set individual atoms to the “empty” state.

• Inactive Atom Tool

Allows the user to set individual atoms to the “inactive” state.

• Active Atom Tool

Allows the user to set individual atoms to the “active” state.

These tools allow the user to quickly create custom simulation configurations without

ever looking at the mesh configuration input file.

3.2.3 Mesh Visualization

As the user edits the mesh in the editor view, those changes are immediately applied

to the mesh visualization shown in the left of Figure 3.9. This view provides a 3D

representation of active mesh. Atoms in the mesh are color-coded according to state.

Active atoms are yellow, inactive atoms are blue, and disabled atoms are shown in

a semi-transparent white. This side-by-side arrangement provides the user with a

sense of perspective and orientation while working with a mesh. Users have complete

control over the camera position and zoom factor used in the 3D view via the mouse.

A “Reset View” button is available on the toolbar to return the camera and zoom to

its default position.

Another feature of the 3D view is a highlighted box indicating the current editing

layer. As the user changes the editing layer using the “Layer Up” and “Layer Down”

tools within the layer editor, a translucent yellow box travels up and down the visu-

alization indicating the selected layer. This option can be toggled on and off using a
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toolbar button.
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Chapter 4

Software Architecture

This chapter is a high-level discussion of implementation details of the KMC-Vis and

KMC-Mesh tools. A section describing the Internet deployment scheme will follow

the architectural discussion. All of the code for this project was written using version

1.5 of the Java Development Environment. The 3D data visualization libraries were

written in C++. The interaction between the two was handled via the Java Native

Interface (JNI) package provided by the 3D library provider.

4.1 KMC-Vis

KMC-Vis consists of 66 Java source files collected into six packages. Rather than

document the detailed interactions between each of these files, this section will dis-

cuss the data model used by the software and explain the communication paradigm.

Because the SLKMC software is a living project (the 36 neighbor version became ob-

solete during this work), there are particular portions of the code that were designed

with scalability in mind. This section will focus on those places in the software ar-
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chitecture. Finally, the 3D subsystem used in KMC-Vis is the same as the one used

in KMC-Mesh. A section is dedicated to explaining that system.

4.1.1 Data Model

The data model contains all of the data needed to write out the supported input

files, keep track of simulation progress, and analyze the results. Data internal to

KMC-Vis such as the preferred window size is also maintained in the data model, but

in the interest of clarity will not be described in this section. Figure 4.1 shows an

overview of the runtime data model used by the software. The model is composed of

Figure 4.1: The data model used by KMC-Vis

three components: Config, Run Data, and Results. Config maintains a record of all

information related to the main configuration file for the simulation. This includes

the file names of the simulation input and output files. The Run Data maintains

information about the current simulation status. Notably, this component contains

the data source for the simulation that will be used to generate the results information.

The results section of the model contains the mesh and movie data. Strangely absent

from the results data is the simulation database. The database is actually stored at

the top level within the model. Statistics are applied directly to the database when

the results are read in.
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Because of the need for loosely coupled communication within KMC-Vis, a publisher-

subscriber[9] design pattern was used to notify dependent components of changes to

the model. Within the Java language, a framework for this pattern already exists in

the Observable class and the Observer interface. Figure 4.2 shows how this pattern

was used within KMC-Vis. Any class extending the Observable class can be listened to

Figure 4.2: Use of the publisher-subscriber pattern in KMC-Vis

by a class implementing the Observer interface. In KMC-Vis, only the top level of the

data model was made observable. The alternative was to make every element of the

data model observable and then each editor and view component could subscribe only

for relevant updates. Such a fine-grained solution would be very desirable if the data

model were frequently changing, but this performance benefit never outweighed the

simplicity of a single publisher (KMC-Mesh does implement a fine-grained solution).

Any change to the model is accompanied by a message or Event as listed in Figure 4.2.

These events are essentially an enumeration within the kmcvis.model.Event class. By

refraining from updating after irrelevant events, subscribers can significantly reduce

any performance penalty they may have incurred from hearing irrelevant messages.

Figure 4.3 shows an example of the producer-consumer pattern within KMC-Vis. The

code shown in Figure 4.3 opens a configuration file. The configuration file is loaded

and then inserted into the model. Notice that the notifyObservers call is made at this

level rather than within model itself. If numerous modifications need to be made to
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URL res = jfc.getSelectedFile().toURL();
Config cfg = Config.load(res);
Model.getModel().setConfig(cfg);
Model.getModel().notifyObservers(Event.CONFIG_OPEN);

Figure 4.3: The publisher-subscriber pattern: Opening a configuration file

the model at the same time, this technique prevents a serious performance penalty

by waiting until all changes have been made, then notifying listeners. Unfortunately,

this approach weakens the abstraction somewhat by exposing the behavior to a modi-

fying class. Figure 4.4 is an example of the consumer end of the communication. The

public void update(Observable o, Object arg)
{

if (arg == Event.CONFIG_OPEN ||
arg == Event.CONFIG_SAVE)

{
setEnabled(Model.getModel().getConfig().isValid());

}
else if (arg == Event.CONFIG_CLOSE)
{

setEnabled(false);
}

}

Figure 4.4: The publisher-subscriber pattern: Updating a button’s status

code shown in Figure 4.4 is the update method for the action controlling the button

that launches the “Simulate” view. This button should only be enabled if a valid

configuration file is loaded. The code demonstrates how event filtering can be used

to respond only to relevant events.

An understanding of the data model and the underlying communication mech-

anism should provide a programmer with the necessary understanding to read and

modify the KMC-Vis code. Unfortunately, this will be necessary for the user interface
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software to keep pace with the constantly evolving SLKMC system. The next section

will explain two of the places where we know the software will need to be enhanced,

lest it quickly become obsolete.

4.1.2 Planned Scalability

There are two obvious places to extend KMC-Vis. The first in the configuration

model. The 36-neighbor configuration scheme is already obsolete. Current versions

of SLKMC use a 210 atom neighborhood. Also, the data source for a simulation will

certainly have to be expanded to include support for a simulation server. Despite the

emphasis placed on these two items, the rest of the software was designed to be as

convenient as possible to extend. The only difference is the abstraction is already in

place for these two components.

Implementing a new atomic configuration scheme requires two steps. First a class

extending the IConf interface must be written. This class must provide a mechanism

to manipulate and retrieve the shells of atoms surrounding the central atom. The

second step is to create a version of the GridSiteView class that understands how to

work with the definitions of shells found in the new configuration. Since there is no

plan to continue supporting older versions of SLKMC (since the hosted executable

can be kept up to date) there is currently no motivation to maintain older versions

of atomic configurations.

Simulation execution support will need to be expanded to provide several different

variants. The current technique simply loads data files from the user’s hard drive.

Additional support for a remote server and local execution would be useful features.

Figure 4.5 shows the architecture of the simulation run data (the java class is RunSim-
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Data). The data source for a simulation is an abstraction that can be implemented

Figure 4.5: Simulation execution data model

in any number of ways. The interface is called ISimDataSource within the code and

requires the following methods:

• getStatus(): String

Return the current status of the simulation.

• start(): void

Begin the simulation.

• stop(): void

Cancel the current simulation.

Changes to the KMC-Vis data model are performed internally using the producer-

consumer relationship described earlier. This simple model allows great freedom in

the implementation of a data source and exists to enable user interaction and feedback

rather than to provide any hidden behaviors.

4.1.3 3D Subsystem

The 3D subsystem used in KMC-Vis is an open-source scientific data visualization

package called the Visualization Toolkit[10] (VTK) released by Kitware[11]. Because
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of platform independence restrictions, the Java language is poorly suited to directly

implement any 3D toolkit. VTK provides a Java Native Interface (JNI) layer to

communicate with C++ code that in turn drives the user’s high-performance video

hardware. This relationship is illustrated in Figure 4.6. The Java code that connects

Figure 4.6: The 3D pipeline

to the native VTK libraries is generated automatically by VTK’s build. This code is

stored in “vtk.jar” and included on the project class path. A strength of KMC-Vis is

lazy loading of the native libraries referenced by the code in this jar. Because of how

the Java Virtual Machine (JVM) loads classes into memory[14], the static loadLibrary

calls in the VTK code would have two undesirable effects. First, the application would

start slowly because the libraries would be loaded immediately. Worse, if there was

a problem with the native libraries, the application would not start at all. KMC-Vis

is designed to use reflection to load all editors as they are requested to avoid the

problems associated with loading the native libraries as well as decouple individual

editors from the main application.

A common disadvantage of working with JNI libraries is the performance overhead.

Native method calls in Java are significantly slower than non-native calls[13]. VTK

overcomes this problem by allowing the programmer to set up a scene once on the

Java-side, then perform most of the computation within the native implementation.

This coarse-grained architecture minimizes the JNI calls and provides tolerable 3D

performance within Java.

Another advantage of working with VTK is the high-level library support for
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scientific data. No code within the software created for this project uses primitives

like triangle strips to render surfaces. Rather it uses a data mapping and rendering

pipeline defined by the VTK libraries that is optimized for scientific data. Before

attempting to modify the 3D code within KMC-Vis (or KMC-Mesh) developers would

be well advised to examine the documentation at VTK’s web site[10] because very

few of the OpenGL variety of primitives that may seem familiar are present.

4.2 KMC-Mesh

KMC-Mesh is an extension of the KMC-Vis software. It consists of 16 additional

source code files in two packages. It also relies on code within other KMC-Vis pack-

ages. Because of the editor-intensive nature of KMC-Mesh, it requires the finer-

grained data model observer system alluded to earlier. The following section will

discuss the data model used in KMC-Mesh and also provides a rough guide to a

simple extension.

4.2.1 KMC-Mesh Architecture

The KMC-Mesh software consists of a data model, peers for each object in the data

model, and a set of actions that modify the data. An overview of the data and visual-

ization system is shown in Figure 4.7. KMC-Mesh uses three data model components:

• Model

The model contains at least one (commonly three) Layer object. In addition to

maintaining the list of layers, spacing information and transient view informa-

tion (e.g. the currently selected layer) is also in the model.
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Figure 4.7: The KMC-Mesh data model

• Layer

The layer structure contains an array of Element objects that represent all of

the atoms in that layer. It also maintains what type of layer to control x and y

offsets.

• Element

The element structure represents atoms in the simulation. Each atom has a

position on the x, y plane and a type. The type can hold one of three values:

empty, inactive, or active. These values correspond to the type of atom.

Each of these components has a visual peer object within the VTK scene hierarchy.

These peers listen to their counterparts in the data model via the producer-consumer

relationship indicated in Figure 4.7. Any time a data element changes, the visual

peer is updated to reflect the changes to the user.

Currently, the only data contained within the element structures is the state of the

atom. If the editor were updated to support right-click context menus to allow the

editing of individual element properties, the model could easily be updated to include

additional information. In particular, the velocity data in the substrate configuration

file could be added in this way.
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KMC-Mesh is designed to be independent of KMC-Vis to allow stand-alone exe-

cution. This allows users to create, view, and modify mesh files without the overhead

of running KMC-Vis. Of course, the software is also available from within KMC-Vis

during main configuration file generation. While the implementation of this feature

is straightforward when Java is run normally, it is unfortunately complex when the

software is loaded from Java Web Start. The code to correctly configure the class path

and native library directories is in kmcvis.actions.MeshGenTool. This code should be

reviewed when considering any changes to the launch paradigm.

4.3 Deployment

KMC-Vis is available in two forms. The first is a Java Web Start[15] enabled version

of the software that can be launched from the web. The second is a zip file containing

all of the required jars and a batch file. Versions for both Windows and Linux exist

in both cases. The benefit of the web start distribution is that the software will

automatically update the user’s version of the Java Runtime Environment[12] during

launch; unfortunately configuring such a system can be non-trivial. This section will

describe the files used to provide this service in this research.

Figure 4.8 is the Java Web Start file that launches the KMC-Vis application from

within a web browser. This text is in a file named “kmcgui.jnlp” and is used simply by

publishing this file and the dependent jars on the web. In order to package java class

files and native libraries they must be placed in signed jars. The process for creating

web start-ready jar files is described in the Java Web Start Developer Guide[16].

Java Web Start-enabled programs are launched using a java virtual machine within

the user’s web browser. If that JVM is not in tact, user’s will need to fall back on
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<?xml version="1.0" encoding="UTF-8"?>
<jnlp
spec="1.0+"
codebase="http://www.cis.ksu.edu/~clt3955/kmcgui"
href="kmcgui.jnlp">
<information>

<title>Kinetic Monte Carlo -- GUI</title>
<vendor>Charlie Thornton</vendor>
<homepage href="index.html"/>
<description>Kinetic Monte Carlo -- GUI</description>
<description kind="short">A visualization for kmc stuff</description>
<offline-allowed/>

</information>
<security>

<all-permissions/>
</security>
<resources>

<j2se version="1.5+"/>
<jar href="kmcvis.jar"/>
<jar href="vtk.jar"/>

</resources>
<resources os="Windows">

<nativelib href="libs_win32.jar"/>
</resources>
<resources os="Linux">

<nativelib href="libs_linux.jar"/>
</resources>
<application-desc main-class="kmcvis.Run"/>

</jnlp>

Figure 4.8: The JNLP file for KMC-Vis

the zip files provided on the same web page.

There are a few options in “kmcgui.jnlp” that are worth emphasizing. It is a

XML-formatted text file. The codebase option at the top tells the JVM where to

find the jars listed in the resources section; this value must be correct or they will

not be found. Within the security section the “all-permissions” option is listed. This

option allows the application to interact with the user’s hard disk at the expense of a

launch time warning message. In the field: < j2seversion = “1.5+′′ > the plus sign
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indicates that any higher version of the Java VM is acceptable; however if the user has

a lower version, the listed version will be downloaded. The resources section allows us

to specify what jars are downloaded for specific operating systems. Details for these

options and everything else in the file can be found in the developer guide[16].
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Chapter 5

Results

The most important factor to determine the success of this work was that the users

of the KMC-Vis software would accept and use the software. This software was

introduced to users that were already experienced in managing their data load. They

had software data analysis tools that already provided a means of computing any

of the information accessible through KMC-Vis. In order to measure the success of

KMC-Vis, reviews of the software were solicited from users of SLKMC and KMC-

Vis. The results were very encouraging. Not only did the users believe that the

software was a time-saving tool, but these reviews confirmed that users of the KMC-

Vis software were excited about the project and wanted to see it carried through

to the next level. Section 5.1 will provide details about the user feedback and how

that validates this work. Section 5.2 will discuss a variety of features that could be

included in future versions of the software.
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5.1 User Acceptance

Three researchers provided evaluations of this work. The entire text of these letters

appears in Appendix C of this document. The first letter (the text of which is in

Figure C.1) was provided by Altaf Karim. Altaf is a graduate research assistant at

the Kansas State University (KSU) physics department. His formal area of research is

condensed matter physics and he is actively using the SLKMC software to examine the

behavior of atomic islands on substrates. The second letter of support (Figure C.2)

was provided by Abdelkader Kara Ph.D. Dr. Kara is a research professor at KSU

specializing in solid state physics. He is also an active researcher in the SLKMC

project. In addition to traditional usage of the KMC-Vis software, he has used

it during a conference presentation to enhance a talk about the SLKMC system.

The third evaluation (Figure C.3) was written by Talat Rahman. Dr. Rahman is

also a professor at KSU; she specializes in atomistic modeling and high performance

supercomputing.

In their reviews, all three users spoke highly of the KMC-Mesh tool for generating

initial mesh configuration files. In support of KMC-Mesh’s visualization and editing

tools, Altaf wrote, “...I had been using another code that generates a crystal structure

but it does not have the ability to create customized ad atom islands on atomic

substrates.” Similarly, Dr. Kara wrote, “...before the building of this software, every

system for KMC simulations had to be built by hand and takes up much more of

the researchers time.” Additionally, Dr. Rahman wrote, “The ability to visualize the

initial positions of the atoms and to change them at will, in an instant, is very handy

and will be very helpful for our future work in the area.” Section 5.2.2 discusses a

variety of features that could be added to the KMC-Mesh software.
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The analysis phase of KMC-Vis also did quite well in the reviewing process. In

support of the analysis options offered by the software, Altaf wrote the following:

Our SLKMC software generates a pile of large data files. Analysis of

these files is a tedious and time consuming task for a user. This job of

data analysis becomes more complicated when the user has to deal with

files containing information like occurrence frequencies of atomic events.

Indeed, this was a big problem until recently. Now it is being solved to

some extent by making use of the SLKMC User Interface. It offers the

user an essential tool to accumulate and categorize atomic processes on

the basis of their energy barriers.

Dr. Rahman also provided, “We are also very impressed by ability of the software

to analyze the results of the simulations and to quantify the frequencies of various

events, together with visualizations of the processes/events that participate in system

dynamics.” Given the importance of the analysis function of the software, this support

was vital to validate the success of the project.

The non-mesh data generation features, and the simulation execution were not ad-

dressed in the reviews. These features provided less functionality within the software

than the mesh generation and data analysis tools. More work needs to be done to

determine the specific needs of users in these area, as well as create an infrastructure

to support software support of items such as remove simulation execution. Details

concerning future features are discussed in the following section.
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5.2 Future Work

There is plenty of room for improvement in KMC-Vis and KMC-Mesh. This section

will discuss some of the features which ideally should be added to the project in order

to more fully support SLKMC.

5.2.1 Enhancing KMC-Vis

Currently, it is necessary to use the results from a previous simulation to create input

files using KMC-Vis. Ideally, a user should be able to create an entire simulation

model from only a default set of configuration data (stored within the software). The

two input files that can be generated via the user interface are the main configuration

file and the initial mesh configuration. Both of these files are fully editable from the

user interface, but the simulation database and the substrate configuration are not.

Support for managing both of these files could actually be provided through heavy re-

use of the existing code base – a database manager would be similar to the statistics

view and a substrate configuration tool would be almost identical to KMC-Mesh.

Once these features were added, users could reasonably expect to create the entire

set of simulation input files.

KMC-Vis supports one of three potential ways to run a SLKMC simulation: load-

ing results from existing files. It should also be possible to run the simulation on a

SLKMC simulation server or simply execute a local SLKMC process and await the re-

sults. Unfortunately, this work was done prior to the existence of a simulation server

and such support does not exist. However, even with that limitation it would still be

possible to run simulations in a reduced performance mode using a local process. A

complete version of the software should support all three of these features (unless the
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local process is made impossible by the new architecture of the SLKMC executable).

The most fertile ground for improvement is in the simulation analysis stage. As

the software evolves both the users and developers find better understanding for how

they can use it more effectively. One key feature that is missing from the analysis

stage is 2D graphing of equations such as MSD of the center of mass. Another is

results filtering to allow only a particular window of the simulation to be available for

analysis. Also, the computer assisted process symmetry detection tool would benefit

from a variety of features including process naming, loading and saving processes to

a file, and statistical sorting tools for the database with and without symmetries.

Analysis features such as these are what makes the software truly useful and require

the most attention.

5.2.2 Enhancing KMC-Mesh

One of the strengths of KMC-Mesh is that it can be generalized to many different

mesh types (rather than just 111), and many different formats. It should be possible

to modify the mesh type at any time during editing. It should also be possible to

plug in different file formats to allow the software to work with other applications

that use a very similar MD-style input file.

Another potential feature is property management for atoms in the mesh. Cur-

rently, an atom can have one of three states. Extending KMC-Mesh to also support

substrate configuration files would be a matter of keeping track of velocity vectors in

the x, y, and z directions. Since this functionality would require more user interac-

tion than the mouse clicks currently required, it would be a small matter to generalize

atom parameters and allow the user to customize how they are written out.
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The visualization window in KMC-Mesh would benefit greatly from a few small

enhancements. The x, y, and z axes are not currently labeled on the 3D axis. This

can create confusion when rotating the view. A related enhancement would be to

include certain preset views for resetting the camera position. Currently users can

return to a (0,0,1) viewing angle using the “Reset View” toolbar option, but it would

also be nice to be able to reset the view to a (1,0,0) camera position.

5.2.3 Extending the Core Simulation Code

A detailed discussion of a distributed SLKMC simulation server is outside the scope of

this document. This section will discuss some of the features that would be desirable

in such a software tool for optimal integration with the user interface software.

Ideally, the computational node responsible for execution of the simulation would

not be present on a user’s workstation. This allows the computationally heavy element

to be executed on specialized hardware and prevent the user from undergoing the

overhead of database files and results storage. It should be possible to submit and

track simulation jobs from within the KMC-Vis software. This requires that the

server provide querying mechanisms for the current state of a user’s simulation.

It should also be possible for the user to control the simulation database used in

a given run. This would allow both open (Self-Learning) and closed databases to be

used. Also, it should be possible to work with and contribute to an ever-growing

database of processes to improve future performance.

Pattern recognition plays an important role both in simulation performance and

in database statistics analysis. These techniques improve the performance of the sim-

ulation engine by preventing unnecessary calls to the external function. The current
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SLKMC implementation applies some rudimentary pattern recognition techniques,

but does not identify all symmetrical processes[7]. As a result, symmetrical processes

leak into the database statistics necessitating the computer-assisted symmetry detec-

tion tool discussed in Section 3.1.3. A computational layer that could quickly and

accurately detect symmetrical processes would both improve simulation performance

and completely eliminate a very time-consuming analysis job.
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Appendix A

KMC-Vis Walkthrough

This walkthrough will demonstrate how to use the KMC-Vis software. This document

is appropriate for both the Windows and Linux operating systems.

A.1 Overview

Before we begin, it is important to know exactly what role KMC-Vis plays in the

simulation. A SLKMC simulation requires the following files (the file names shown

are those found in the sample data):

• Main Configuration File (step16m.dt)

A configuration file that specifies global parameters and the names of the other

input files.

• Database (baza c92)

The simulation database consisting of mappings between configurations and

processes.
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• Substrate Configuration (cu111r.sub)

Configuration file for the substrate used in this simulation.

• Initial Mesh Configuration (clust9i.abk)

An initial mesh configuration.

Using these files, the SLKMC software performs its simulation and dumps out a

number of output files:

• Updated Database (baza c92)

The updated simulation database.

• Database Statistics (clust92.st)

Database process statistics for this simulation run.

• Event Stack (stackc 92)

A complete trace of all simulation processes. This file is huge, not currently

used by KMC-Vis, and not included in the sample data.

• 3D Movie (clust92.m)

A file containing snapshots of the positions of the active atoms.

• Final Mesh (clust92f.abk)

A mesh configuration file suitable to be used as the input for another simulation.

KMC-Vis does not perform any computation for the simulation, rather it assists in

the creation of input files and the analysis of output files.
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A.2 Getting Started

We will need some sample data for KMC-Vis. A suitable zip file is available on

the Internet at http://www.cis.ksu.edu/~clt3955/research.php. Download and

extract the zip file at the link labeled “sample data.zip”. Remember where this data

is; we will need it later.

We can install and run the software from that same web page. Click the link

labeled “kmcgui.jnlp” under the “Run the Software” heading. This is a Java Web

Start file and will run automatically. Figure A.1 shows the application downloading

necessary files at launch time.

Figure A.1: Running KMC-Vis using Java Web Start

Because KMC-Vis requires access to your hard drive (to read and write SLKMC

files), you will need to grant the application permission to run. Do this by clicking

“yes” in the dialog shown in Figure A.2.

Figure A.2: Grant the application permission to run
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A.3 Opening a Main Configuration File

You will be greeted by the blank screen shown in Figure A.3. We can now load the

Figure A.3: You will be greeted by a blank screen

sample data we retrieved earlier. Click the File|Open... menu item and browse

to where you extracted the sample data directory. Open the main configuration file

(step16m.dt).

Once the main configuration file is loaded, a variety of data is displayed in the

tabbed panel on the right (shown in Figure A.4). All of the data in the main config-

Figure A.4: The main configuration file editing view

uration file can be edited in the “Input Options” and “Output Options” tabs of this
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view. Take a moment to flip back and forth between the views by clicking on the

different tabs.

If you change any of the input or output data, a modified main configuration file

can be written using the File|Save As... menu option. In this case, we will be

using the results from a previously run simulation so any changes will not affect the

output (however, modifying any of the input or output filenames make it impossible

for KMC-Vis to load the results).

A.4 Loading Simulation Results

Click the button labeled “Simulate” in the left pane. This will bring up the simulation

execution view shown in Figure A.5. No simulation server is currently available, so

Figure A.5: The simulation execution view

the only option is to load results from files. Click on the button labeled “Start” to

begin reading results data into memory. The status field and progress bar will provide

feedback about the status of data retrieval.
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A.5 Simulation Analysis

As soon as the database is loaded, the button labeled “Results” in the editor selector

pane will become enabled. Click the “Results” button. The results view shown in

Figure A.6 will be shown in the editor view. From this view we can launch the 3D

Figure A.6: The simulation results and analysis view

results view or analyze the database statistics.

Click the button labeled “3D Results” to bring up another dialog. While the 3D

subsystem prepares the scene a “Rendering” message is displayed, however once the

view is ready to use the message will be replaced by the simulation model. Figure

A.7 shows the progression of the 3D results view. Once the view is ready we can

Figure A.7: 3D results view

manipulate it using the mouse. We can rotate the camera angle by left clicking on

64



the 3D window and dragging the mouse. We can translate the camera position using

the shift key along with a click and drag of the mouse. Finally, it is possible to zoom

in and out using the right mouse button and dragging forward (zoom in) or dragging

backward (zoom out). Take a moment to experiment with the mouse controls. The

zoom and focal point can be reset to default by pressing the ‘R’ key.

Play the simulation moving using the controls at the bottom of the 3D windows.

Playback can be paused at any time using the “Pause” button. When a playback

is paused it is possible to use the “Step Forward” and “Step Back” controls. These

allow you to advance or rewind the simulation one step at a time. The “Stop” button

causes the simulation playback to cease and the current frame to be reset to the first

frame in the simulation movie. Other controls are available on the right side of the

window to control visualization quality and atom size.

Close the 3D results window and return to the top-level results view. Common

database processes (in terms of frequency) are listed in a tree. If you click on an

entry in the tree you will not see a process, rather you will see a configuration that

can result in several processes. If you expand the tree for that configuration and

click on one of its children, you will see arrows added to the previously clear view of

the configuration. These arrows show where atoms within the simulation are moving

during that process. Also, the threshold energy for the process is shown in the “Delta

E” field.

Now that a process has been selected, the “Find Symmetries” button is enabled.

Clicking on this button will produce the dialog shown in Figure A.8; Select one of

the candidate symmetries for the current process and click the “Symmetrical” check

box. For now, don’t worry if the processes are actually symmetrical. Click the “Ok”

button to exit the dialog. The database process list will update to reflect the new
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Figure A.8: Finding process symmetries

information. If you open up the same process you will see that it now has a child

process. This was the symmetry we just added. The symmetry can be removed by

selecting the parent process, opening the “Find Symmetries” dialog and removing the

check from the candidate process.
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Appendix B

KMC-Mesh Walkthrough

This walk through will demonstrate how to use the KMC-Mesh software. KMC-Mesh

is a graphical initial mesh configuration generation utility for KMC-Vis. The files

generated by KMC-Mesh are directly useable in SLKMC simulations. This document

is appropriate for both the Windows and Linux operating systems.

B.1 Getting Started

We can install and run KMC-Mesh with a single click. Open a web browser and

go to the web page at http://www.cis.ksu.edu/~clt3955/research.php. Under

the “Run the Software” heading there is a link labeled “kmcmesh.jnlp”. This link

points to a Java Web Start file that will trigger the application launch. Click on the

“kmcmesh.jnlp” link.

Java will automatically download the required libraries to run the application.

Figure B.1 shows the progress indicator for this action.

Because KMC-Mesh requires access to your hard drive, Java Web Start requires
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Figure B.1: Running KMC-Mesh using Java Web Start

that you permit it to run. Click “yes” in the dialog shown in Figure B.2.

Figure B.2: Grant the application permission to run

B.2 Creating a Mesh

Once KMC-Mesh is open, you will be presented with the (initially blank) split view

interface shown in Figure B.3.

Figure B.3: The initial KMC-Mesh interface

Click File|New.... This will open the “Create Mesh” dialog shown in Figure B.4.
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This dialog allows you to specify the number of layers, atoms in the x and y directions,

Figure B.4: The mesh creation dialog

and the atom spacing in each direction. The default values will be sufficient for this

example. Click “Ok.” A dialog will display the progress of the operation.

Now that the mesh has been generated, we can experiment with the 3D view and

2D editor. KMC-Mesh allows you to edit a single layer at a time while visualizing

the entire mesh. A yellow box highlights the layer that is currently displayed in the

editor. The 3D view can be manipulated in the same was as the 3D view in KMC-Vis.

Feel free to rotate the view so you can get a better look at the mesh. If thinks get

out of control, you can always press the “Reset View” button on top of the 3D view.

Figure B.5 shows KMC-Mesh after generating the mesh. Notice that in this state, no

Figure B.5: An empty mesh

atoms are active or inactive; they are all set to disabled (or “Empty”). Recall that
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disabled atoms will not be written to the input file.

We are going to generate two substrate layers and then add some active atoms to

the top layer. To fill an entire layer with inactive (substrate) atoms, click the “Make

Layer Inactive” button in the 2D editor toolbar. Is is a blue circle with an inset

infinity symbol. The result of clicking this button is shown in Figure B.6.

Figure B.6: Filling the bottom layer with inactive atoms

Now use the “Layer Up” 2D editor toolbar button (denoted by an upward pointing

arrow) to shift to the next layer in the z+ direction. Notice that the yellow box in

the 3D view is now in the center layer of the mesh. Set all of the atoms in this layer

to inactive using the “Make Layer Inactive” button and shift to the top layer. The

current state of your mesh should be similar to that shown in Figure B.7.

Figure B.7: A complete substrate

Now it is time to add some active atoms to the simulation. Select the “Make Atom

Active” tool (denoted by a circle around a yellow dot) from the toolbar. This tool
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will allow you to “paint” active atoms onto the layer one atom at a time. Experiment

with this by adding some atoms to the current layer. You may notice that active

atoms are difficult to see underneath the highlighting rectangle in the 3D view. You

can disable the layer highlight using the 3D view toolbar button denoted by blue and

yellow layers. Figure B.8 shows an example of the finished mesh.

Figure B.8: A complete mesh

The 2D editor toolbar also provides tools to zoom in, zoom out, and translate the

view. The translation tool requires you select it, then drag the layer representation

into the desired position. The zoom buttons simply increment or decrement the zoom

each time they are clicked. There are also toolbar buttons to do variants of the tasks

we performed during this walkthough.

B.3 Saving Mesh Data

To write out the mesh we have created, use the File|Save As... menu option. A

file chooser will allow you to specify the location of the file. This file can be used as

an initial mesh configuration file in SLKMC. Any valid initial mesh configuration file

can also be loaded using the File|Open... menu option.
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Appendix C

GUI Evaluation by Users

This appendix contains the full text of reviews solicited from the users of KMC-Vis

and KMC-Mesh. They support the claims found in Chapter 5 of this document.

72



Dear Prof. Wallentine,

I am writing this letter to express my views about the software, Self Learning
Kinetic Monte Carlo (SLKMC) User Interface, developed by Mr. Charlie Thornton.
This software is equipped with almost all essential tools required for the 3D
visualization of atomistic processes on surfaces.

This nice and beautiful interface also enables a user to create customized
crystal structures or atomic layers having ad atom islands and vacancies.
Prior to Charlies software, I had been using another code that generates a
crystal structure but it does not have the ability to create customized ad
atom islands on atomic substrates.

Our SLKMC software generates a pile of large data files. Analysis of these
files is a tedious and time consuming task for a user. This job of data
analysis becomes more complicated when the user has to deal with files
containing information like occurrence frequencies of atomic events. Indeed,
this was a big problem until recently. Now it is being solved to some extent
by making use of the SLKMC User Interface. It offers the user an essential
tool to accumulate and categorize atomic processes on the basis of their
energy barriers.

In short, Charlie’s work has expanded computational resources and computer
graphics directed at users needs and users interaction with our SLKMC
software.

Sincerely,

Altaf Karim

Figure C.1: Review from Altaf Karim
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Professor Virgil Wallentine
Computing and Information Sciences Head
Kansas State University
Manhattan KS 66502

Dear Professor Wallentine,

This letter is to report on my experience using the software KMC-GUI developed
by Charlie Thornton as part of his masters thesis. Let me say first that the
final product is very much useful for the researchers involved with kinetic
Monte Carlo (KMC) simulations. In these simulations, the researcher spends
quite sometime in the pre- and post-simulation either preparing the system to
be tackled or analyzing the various products spilled out by the simulation.
Note that in a typical KMC simulation, the evolution of a system, containing
from a few to hundreds of thousands of particles, is evaluated millions to
hundreds of millions of times. The KMC-GUI consists actually of several
components. For the pre-processing of the simulation, the researcher can
automatically generate a system and store it. Note that before the building
of this software, every system for KMC simulations had to be built by hand and
takes up much more of the researchers time. The main advantage of having the
KMC-GUI software comes during the post-processing phase. The researcher may
want to see a movie of the time evolution of the system during the whole or a
part of the simulation. Detailed analysis of correlation functions averages and
distributions of a variety of physical properties have to be performed and the
KMC-GUI allows the research to access this information automatically at a
significant gain in time and accuracy.

Finally, I would like this software grow to satisfy other demands, including
extraction of information as the simulations go.

Sincerely,

Abdelkader Kara
Research Assistant Professor
Department of Physics
Kansas State University

Figure C.2: Review from Abdelkader Kara
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Professor Virgil Wallentine
Head, Computing and Information Sciences
Kansas State University
Manhattan, Kansas.

May 1, 2005

Dear Professor Wallentine,

I am delighted to write this letter in support of the software KMC-GUI that
Charles Thornton has created as part of his Masters thesis project. The
software reflects a successful collaborative effort between members of two
research groups, one in CIS and the other in Physics. We in Physics are
excited at the final product because it enables us to create initial
configurations for our simulations without the need to create a huge input
file. The ability to visualize the initial positions of the atoms and to
change them at will, in an instant, is very handy and will be very helpful for
our future work in the area. It will also be very useful for external users
of our code, once it is ready to be placed on a dedicated web site. But that
is not all. We are also very impressed by ability of the software to analyze
the results of the simulations and to quantify the frequencies of various
events, together with visualizations of the processes/events that participate
in system dynamics.

In short, I am impressed with the software that Charlie has produced and we
expect to be using it for a long time to come. It has certainly made our work
much easier in terms of both input of data and understanding of the results.
We also expect the software to be very useful in our outreach activities and
in broad dissemination of our results.

Sincerely,

Talat Rahman

University Distinguished Professor
Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
e-mail: rahman@phys.ksu.edu; | Phone: +1-785-532-1611
http://www.phys.ksu.edu/~rahman/ | FAX: +1-785-532-6806

Figure C.3: Review from Talat Rahmon

75


