

Kionix, Inc. USB Demo Board Kit

User's Manual
Oct 1, 2007

Table of Contents
Kit Contents ..1
I. Kionix Demonstration Board Technical Overview ..1
II. Software Installation..1
III. Configuration..2
IV. Demo Software..2

1. Acceleration_Data..3
2. Oscilloscope...3
3. Data_Logger ..3
4. 3D Ball ...4
5. Cursor ..4
6. Freefall ...4
7. Spaceship ..4
8. Virtual Light Saber ...5
9. Theft_Detection..6
10. Artificial Horizon...6
11. Screen Rotation ...6
12. Bump Alert ...6
PC Tilt Games ..7
Freeware/Shareware/Demos..8

Appendix A: Programmer's Manual ..9
1. Perl API ..9

Usage...9
Sensor Methods...9
Measurements Available From a TriAxis2g Sensor10
Configuration Options ..10

2. Communication...11
Return Values ..11

Appendix B: Basic Concepts of Motion ...12
1. Calculating Velocity and Distance From Acceleration12

Calculating Change in Velocity ..12
Calculating Final Velocity ...12
Calculating Change in Distance ...12
Calculating Final Distance..12
Conclusion ...12

2. Calculating Angle of Tilt From Acceleration..13
3. Free-fall Detection ..13
4. Limitations of These Methods...13

Noise In Acceleration -> Velocity -> Distance Calculations................13
Differentiating Between Tilt and Motion..14
Rotation and Center of Mass in Free-fall Detection14
Free-fall Time When an Object is Thrown..14

Appendix C: Algorithm References...1
1. Converting From Acceleration to Tilt ..1
2. Controlling a Rolling Ball by Tilting ...1
3. Detecting Free-fall ..3
4. Jolt Detection..4

EVALUATION BOARD/KIT IMPORTANT NOTICE

KIONIX provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION
PURPOSES ONLY and is not considered by KIONIX to be a finished end-product fit for general consumer use. Persons
handling the product(s) must have electronics training and observe good engineering practice standards. As such, the
goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-
related protective considerations, including product safety and environmental measures typically found in end
products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall
within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances
(RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives
or other related directives.

Kionix warrants that the evaluation board/kit sold will, upon shipment, be free of defects in materials and workmanship
under normal and proper usage. This warranty shall expire 30 days from date of shipment. Kionix will repair or
replace, at Kionix’s discretion, any defective goods upon prompt written notice from the Customer within the warranty
period. Such repair or replacement shall constitute fulfillment of all liabilities of Kionix with respect to warranty and
shall constitute Customer’s exclusive remedy for defective goods.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user
indemnifies KIONIX from all claims arising from the handling or use of the goods. Due to the open construction of the
product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic
discharge.

IT IS HEREBY EXPRESSLY AGREED THAT KIONIX MAKES AND CUSTOMER RECEIVES NO OTHER WARRANTY,
EXPRESS OR IMPLIED, THAT ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE EXPRESSLY EXCLUDED, AND THAT KIONIX SHALL HAVE NO LIABILITY UNDER ANY
CIRCUMSTANCES FOR CONSEQUENTIAL, INCIDENTAL OR EXEMPLARY DAMAGES ARISING IN ANY WAY FROM
THE MISUSE OF ITS PRODUCTS.

KIONIX assumes no liability for applications assistance, customer product design, software performance, or infringement of
patents or services described herein.

No license is granted under any patent right or other intellectual property right of KIONIX covering or relating to any
machine, process, or combination in which such KIONIX products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION
PURPOSES ONLY and is not considered by KIONIX to be a finished end-product fit for general consumer use. It
generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of
computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against
radio frequency interference. Operation of this equipment in other environments may cause interference with radio
communications, in which case the user at his own expense will be required to take whatever measures may be
required to correct this interference.

Kionix, Inc. 36 Thornwood Drive Ithaca, NY 14850 www.kionix.com

Page 1

Kit Contents

1. Kionix USB demo board
2. USB A male – mini 4 cable
3. USB A male – mini 4 adapter
4. CD with program files and user's manual
5. Quick start guide

I. Kionix Demonstration Board Technical Overview

• Demo boards are available in 1.5g, 2g, 3g, 5g, 10g and 20g sensitivities.
• The demo board is powered by the USB port. It receives a 5V current, and converts it

to the 3.3V Vdd used to power its components.
• The X, Y, and Z axis lines are connected to the analog to digital converters on the

USB chip.
• The sensor runs at a bandwidth of 50Hz.
• The demonstration programs read samples at about 250 samples/second.

II. Software Installation

Connect the Demonstration Board to the mini USB connector on the USB cable.

Connect the USB A end of the cable to the USB port on your PC.

Run the “KionixDemos.exe” program from the CD or from the Kionix website
http://www.kionix.com/sensors/downloads.html

Run the Configuration program from Start Menu -> Kionix Demos to configure
and calibrate the sensor. (See “Configuration” below.)

Demo Kit

Z
Pos

Y
Pos

Y
Neg

X
Neg

X
Pos

Page 2

III. Configuration

The configuration program, shown in the figure below, will allow you to configure
communication with the device.

1. Interface – The method used to communicate with the

device. Currently the method is Gamepad, the USB COM
port of the computer.

2. Device – The driver specific to the Kionix part being used.
Because the tri-axis accelerometer is used through the
gamepad driver, the driver named MiniUSB is accessed.

3. Serial Port – This selects the serial port to which the
device is connected. Press “Scan” to limit the list to ports
that can actually be accessed. A label to the right of the
button will appear showing how many ports were found to
be available. Then select the port to which the device is
connected from the address pull-down above, and press
“Test” to check that the device is connected properly. If it
is, a label will appear to the right of the Test button
confirming that the test was a success.

4. Performance – These boxes show the adjustments made
to readings received. You may enter these manually if you wish, but it is easiest to
lay the device flat, press “Calibrate” and accept the default settings.

Sensitivity – This is a pull down menu for selecting the sensitivity of the demo
board. Sensitivity is set at the factory. You must select the correct g level for your
board or the demos will not function properly. The default sensitivity is 2g.

Adjust X/Y/Z – These are the amounts by which each reading on the relevant
axis is adjusted, in g's, before it is returned. This is to account for any slight
variations in center the device might have.

Dead Zone X/Y/Z – This is the minimum absolute value a reading must reach
before it is registered. If it is below this value, it will be read as zero. Having a
dead zone can filter out noise, but at the cost of losing real readings if they are
very small. The default of 0 is perfect for the demonstration programs.

When you are finished adjusting the settings press “Save” to save and exit the program.

IV. Demo Software
Various demos are included with this distribution to demonstrate the capabilities of the
tri axis accelerometer and to get you started writing your own applications. The demo
programs are written in the Perl scripting language, which is an easy-to-learn and
extensible language for anything from simple tasks to complex programs and web
applications. For more information on Perl, visit www.perl.org.

Several of these demos also use the OpenGL graphics system. For more information
on OpenGL, visit www.opengl.org.

Figure 1 - configure.pl

Page 3

1. Acceleration_Data
The Acceleration_Data demo shows the current readings
of the device in the most raw form as is possible. For
those interested in pure data, a device could be attached
to a piece of memory to store a running log of all
readings. The data could be retrieved later for analysis.
The actual collection and processing of accelerometer
data does not require very much processor power, and
the sample rate of the device is very high, so an
accelerometer can be added to almost any application
while creating minimal overhead.

2. Oscilloscope
The Virtual Oscilloscope demo graphs data in a simple
visual format to give the viewer a general idea of the
pattens present in the motion of the device. By
recognizing these patterns, such a device could
become integral in several kinds of applications. A
free-fall detector could be used to protect important
data by spinning down a hard drive before it hits the
ground. A jolt detector could create a record of
package mishandling during shipping. A vibration
detector could be placed on a piece of machinery to
issue an alert if the pattern of movement changes
significantly, indicating the possible need for
maintenance.

3. Data_Logger
The data logger takes a constant stream of
readings from the device and graphs them in
real-time to the screen. Sampling is done by
setting the time you wish to sample, the rate at
which you wish to sample, and pressing “Go”.
Note that the sample rate you specify is the
target sample rate. If you specify a very high
number, the program may read less samples
than you expect. If you wish to save the data
you collected, press “Save” to write the data to
a CSV (comma-separated values) file. You can
then use Excel, MatLab, etc. to analyze and
graph the data.

Figure 2 - Acceleration_Data

Figure 3 - Oscilloscope

Figure 4 - Date_Logger

Page 4

4. 3D Ball
The 3D Ball demo is a simple demonstration
of accelerometer-based controls in video
games. By tilting the device, the user is able
to roll the ball around the board and roll over
the red target. Additionally, a strong bump
applied to the z axis of the device will cause
the ball to bounce into the air. A game
development team could use this unique
control scheme to add a new level of
playability to games like the classic Marble
Madness by Atari Games, or to create an
entirely new game of their own. Other games
which this could be used with include
motorcycle, racing, snowboarding,
skateboarding, and jet fighter games.

5. Cursor
The mouse cursor is a simple demonstration of the idea of a tilt mouse. After opening
the program, the mouse cursor can be moved by tipping the device. To end this
program press CTRL C.

6. Freefall
The Free-fall Detector demo is an example of the free-fall
detection algorithm described in Appendix B. It registers when it
has been in free-fall for half a foot, then reports how far it fell
when it reaches the bottom of its fall. Logging can be
temporarily paused with the “Stop” button, or the log can be
saved to a CSV (comma-separated values) file with the “Save”
button. For more details on the algorithm, see Free-fall
Detection in Appendix B.

7. Spaceship
This Perl program demonstrates how an accelerometer
can be used as a game controller. The tilt action is
translated to control the movements of a virtual
spaceship. Avoid the asteroids. If you crash into an
asteroid the “game” will end and need to be closed and
restarted to begin again.

Figure 5 - 3D Ball

Figure 6 - Freefall

Figure 7 - Spaceship

Page 5

8. Virtual Light Saber
The virtual light saber shows the unique values
available from a tri axis accelerometer. The light
saber is activated by picking up (or moving) the
demo board. As you move the demo board the light
saber will mimick your moves. Ten seconds of
inactivity will cause the saber to “turn off”. Moving
the demo board will again activate the light saber.

Figure 8 – Virtual Light Saber

Page 6

Demo Software for the Dongle

The following four software demos work best when the demo board is plugged directly
into the USB port of a notebook computer using the mini4 – male A USB adapter. (They
still work with the board on the USB cable)

9. Theft_Detection
Movement detection for laptops. Plug the dongle into the USB
port of the laptop. The accelerometer is set to detect tilt. This
allows the user to type and move the laptop but even a small
tilt will sound an alarm. The sensitivity can be changed and the
password (for unlocking the alarm) can be set. The Lock button
will arm the system so that any tilt will cause an alarm to sound
through the computers speakers. Type your password to Un-
arm the program and change the sensitivity. The default
password is testpass. If you forget the password, close the
program and start again.

10. Artificial Horizon
This demo is meant to show how an accelerometer can be used
to sense tilt and pitch the way an artificial horizon shows roll and
pitch in an airplane.

11. Screen Rotation
Similar to artificial horizon, this demo shows how an
accelerometer sensing roll can keep an image or an object flat
and level on the screen.

12. Bump Alert
Detects even the slightest vibration. Plug the dongle
into the USB port of the laptop and begin the program.
The accelerometer is set to detect any motion. Even
the slightest vibration will trigger the alarm.

Figure 9 – Theft Detection

Figure 10 - Horizon

Figure 12 – Bump Alert

Figure 11 – Screen Rotation

Page 7

PC Tilt Games
A collection of 2D games that have been modified to accept joypad inputs as well as
key strokes. Windows identifies the USB demo board as a gamepad, with the X, Y and
Z axis identified as joystick inputs. This makes the USB demo board a motion enabled
controller. Tilt left to turn left, tilt right to turn right. Tipping it forward will move your
player forward and tipping it back will move your player back. Several of these games
were created with GameMaker 6. (http://www.gamemaker.nl/)

1. 1945

2D scrolling game. X and Y axis move the plane. Use the space bar to shoot.

2. Asteroids

Asteroids game by Mark Overmars. Tipping the demo board forward (Y axis) will
move the ship. There is no backward. Rotate the ship 180° and tip forward to slow
down. Use the space bar to shoot.

3. Breakout

Standard 2D breakout game. Tipping the demo board left and right will move the
bat.

4. Jump

Platform game. Use Y to jump.

5. Labyrinth
Maze game written by Keith Epstein. Hold the demo board with the Y axis up and
the led facing toward the monitor. This game uses the X and Z axis to control the
movement of the ball.

6. Pacman

GameMaker6 demo. This is a very basic version of PacMan.

7. Plop
Written by Keith Epstein. Hold the demo board with the Y axis up and the led
facing toward the monitor. This game uses the X and Z axis to control the
movement of the bear. Bounce the demo board to drop bombs.

8. roll the ball

Written by Keith Epstein. Hold the demo board with the Y axis up and the led
facing toward the monitor. Hit the black ball 10 times, before your time runs out, to
move to the next level.

9. Rotate

Written by Keith Epstein. This game uses all three axis of the accelerometer.
Match the numbers by turning the board in all three axis (in the correct direction).
This is unlike any game you have ever played.

Page 8

10. screen_rotation
Demo by Keith Epstein.

11. Street race

Scrolling game by Mark Overmars. X and Y axis control the car.

Freeware/Shareware/Demos

12. Connman_150

A freeware pacman game from ConnectiX. (http://www.connectix.gr/) Use X
and Y axis to move the player. Freeware

13. FatHead

A Groovy Lime (http://groovylime.com/) platform game by Trevor Simpson. X
axis moves the player left and right. Y axis jumps the player. Freeware.

14. Hamsterball

Demo game available fromRaptisoft.
(http://www.raptisoft.com/hamsterball.shtml)

Page 9

Appendix A: Programmer's Manual

1. Perl API
The Perl API for the Kionix demo board provides an easy, object-oriented interface for a
Perl programmer to access acceleration data. It is invoked in much the same way as
any other Perl module, and returns an object which can be used to interact with the
sensor.

Usage

Create a new Sensor object from scratch:

use Sensor;

my $Sensor = Sensor->new('Serial', 'TriAxis2g', 'Port' =>

'COM1');

$Sensor->open or warn “Failed to open sensor”;

Create a Sensor object from an existing configuration file:

use Sensor;

my $Sensor = Sensor->newFromConfig('default.ini');

$Sensor->open or warn “Failed to open sensor”;

Sensor Methods

The following methods are universal to all Sensor objects.

Sensor->new($Interface, $Device, %Options)

Create a new object based on the interface driver $Interface and the device driver

$Driver. The %Options hash will be used to override default options if it is
included.

Sensor->newFromConfig($File, %Override)

Create a new object, reading configuration options from $File. The

%Override hash can be used to override options read from the configuration file.

$Sensor->loadConfig($File)

Load configuration options from $File and apply them to $Sensor.

$Sensor->configure($Key, $Value)

Sets a configuration option for the object. Valid options are detailed in “Configuration
Options” below.

$Sensor->open()

Opens the sensor and prepares it for reading. Returns true or false, depending on if
the open was successful.

$Sensor->close()

Closes the sensor. Returns true of false, depending on if the close was successful.

$Sensor->canMeasure()

$Sensor->canMeasure($Reading)

$Sensor->canMeasure(@Readings)

Page 10

When called with no parameters, canMeasure returns a list of all the readings a
sensor can return. When called with one parameter, canMeasure returns a true or
false indicating if that reading can be returned. When called with multiple parameters,
canMeasure returns a true or false value indicating if all of the readings can be
returned.

$Sensor->status()

Returns the status of the device, 1 indicating a ready status and 0 indicating a bad
status. If there is no way to determine the status of the device, this command returns
undef.

$Sensor->$Reading()

Return the desired reading, as indicated by $Reading. $Reading can be any of the

measurements returned by $Sensor->canMeasure(). For an example, see
“Measurements Available From a TriAxis2g Sensor” below.

Measurements Available From a TriAxis2g Sensor

$Sensor->AccX()

$Sensor->AccY()

$Sensor->AccZ()

Returns acceleration on the X, Y, or Z axis. This value is in g's, the acceleration due
to the Earth's gravity. That is, 1g = 9.8m/s². For tilt calculations, 1g = 90º. More
information on using the values returned by an accelerometer can be found in
Appendix B: Basic Concepts of Motion.

$Sensor->Acc()

Unlike the other readings, Acc is a calculated value. It is based on AccX, AccY, and
AccZ, using the Pythagorean Theorem in three dimensions1. It is a measurement of
the magnitude of the acceleration currently being applied to the accelerometer,
without the direction. It is useful for applications such as jolt and free fall detection.

$Sensor->AccAll()

Returns an array of the X, Y, and Z accelerations. Note that because all three of
these are sampled anyway each time any one reading is taken, using this method is
three times faster than calling AccX, AccY, and AccZ in succession.

Configuration Options

The following options can be passed to the configure() method.

Port

This option is accepted by any object using the Serial interface driver. It specifies
which COM port the sensor is plugged into.

AdjustX, AdjustY, AdjustZ

These options are accepted by sensors which can return AccX, AccY, and AccZ

1
 Specifically, the calculation used to get overall acceleration is:

222
zyxa ++=

Page 11

respectively. They are the amount by which the reading is adjusted to account for
slight offsets in the “zero” position of the sensor. These are usually set during a
calibration process, like the one in the configure.pl example script.

DeadZoneX, DeadZoneY, DeadZoneZ

These options are accepted by sensors which can return AccX, AccY, and AccZ
respectively. They specify a minimum absolute value above which each reading must
be. If the reading is within the dead zone for the axis, it is simply returned as zero.
These are usually set to filter out noise when the device is level.

2. Communication

For those who wish to communicate with the device in their own program or
programming language of choice, this section details how communication with the demo
board takes place.

The USB demo board communicates with Microsoft Windows as a generic 3-axis game
controller. As such, it will show up in a Game Controller or Gaming Options control
panel. This control panel can be used to test the connection to the USB demo board
and calibrate the response of the X, Y, and Z axis. Note that calibration settings of
another game controller can affect the response of the demo board for Kionix’s
Demonstration Software. When running the Demonstration Software, reset the
calibration to default before running Kionix’s configuration routine.

Windows multimedia joystick API commands can be used to obtain the X, Y, and Z axis
information. In particular, the JOYINFO structure and the getJoyPos query are used in
Kionix’s Perl demos to obtain the data from the demo board. Please see
http://msdn2.microsoft.com/en-us/library/ms709359.aspx for more information
about the JOYINFO structure. Please see http://msdn2.microsoft.com/en-
us/library/ms709352.aspx for more information about the joyGetPos query.

Return Values

The value returned for an axis reading (Xpos, Ypos, or Zpos) is a 16-bit integer. The
resulting value represents a number on an arbitrary scale set by the analog-to-digital
converter taking the reading. To convert this value to acceleration in g’s, subtract the 0g
offset or center (32768 for a 16-bit operation). Then, divide by the sensitivity rating of
the part in g. (The default demo board uses a device with a sensitivity of 2g.) An
adjustment, based on the calibration, can be added to calculation to correct for any
errors in the 0g reading as shown in the following equation:

AccX = ({JoyInfo}{wXpos} - 32768) / (26214.4/{Sensitivity}) + AdjustX

The resulting number is the acceleration value returned by the sensor in g's.

Page 12

Appendix B: Basic Concepts of Motion
The concepts discussed in this section are widely available and are a part of any
Physics course, but they have been reproduced here both as a refresher and as a quick
reference useful to anyone working with accelerometer data. There is also a discussion
of the limitations of these methods when used to determine the position or tilt of a
device using a tri-axis accelerometer.

1. Calculating Velocity and Distance From Acceleration

Given an acceleration (a) and a period of time (t), it is possible to calculate the change
in velocity during the relevant time period. If the original velocity is also available, the
velocity at the end of the time period and the change in position over the time period
can be calculated. Lastly, if the original position is available, the position at the end of
the time period can be calculated. This can be done according to the steps below.

Calculating Change in Velocity

Given a, the acceleration applied on the axis.

Given t, the time period for which the acceleration was applied.

v at

Results in ∆v, the change in velocity during the time period.

Calculating Final Velocity

Given ∆v from the previous equation.

Given v0, the velocity at the start of the time period.

v v0 v

Results in v, the velocity at the end of the time period.

Calculating Change in Distance

Given v0 , v, and t from previous equations.

()
t

vv
d *

2

0 +
=∆

Results in ∆d, the change in distance during the time period.

Calculating Final Distance

Given ∆d from the previous equation.

Given d0, the distance at the start of the time period.

ddd ∆+= 0

Results in d, the distance at the end of the time period.

Conclusion

At the end of these equations, we have both the final velocity (v) and the final distance
(d). This information can be used to determine the same values in the next time period,
resulting in a continuous flow of acceleration, velocity, and distance data.

Page 13

2. Calculating Angle of Tilt From Acceleration

The acceleration data can also be used to find how far the device is tilted. This can be
done because the Earth is always pulling on the device with 1g of acceleration. If the
device is put on a flat surface and is completely still, all of that acceleration is on the Z
axis. The acceleration on the X and Y axes will be zero. If the object is put on its side,
whichever axis is pointed toward the earth will read 1g. Getting the angle from the
readings on an axis can be done two different ways. The simplest way, although it is not
very exact, is to multiply the acceleration on the axis by 90:

rotation acceleration 90

For a much more exact value, take the inverse sine of the acceleration:

rotation asin acceleration

For more information see Kionix Application Note AN005 on Tilt Sensing

http://www.kionix.com/sensors/application-notes.html

3. Free-fall Detection

A tri-axis accelerometer can be used to detect when an object is in free-fall. The first
step is to calculate the overall magnitude of the acceleration being applied to the object.
This is done with the Pythagorean Theorem:

222
zyxa ++=

If the object is in free-fall, the value will be very close to zero. Depending on the rotation
of the object, however, it may be a somewhat higher number (see “Limitations of These
Methods” below for details). The distance the object fell can be calculated by using
gravity (g = 9.8 m/s²) as acceleration (a) in the equation for calculating distance (d) from
acceleration (a) and time (t):

2

2

1
atd =

Note that this calculation will produce the wrong number if the object has been thrown
upward or downward. Again, see “Limitations of These Methods” below for more details.

4. Limitations of These Methods

While these equations are effective for many applications, there are several limitations
and “gotchas” that one has to watch for when using the data returned by the
accelerometer.

Noise In Acceleration -> Velocity -> Distance Calculations

All measurements contain a small amount of background noise. Unfortunately, in an
acceleration reading, noise can disrupt the apparent velocity of the device. This
difference will become more apparent over time as the “phantom” velocity pushes the

Page 14

distance measurements farther and farther from reality. This change will be relatively
slow, however, due to the low-noise nature of the device. The difference can also be
made less visible by taking an average of several readings instead of acting on each
reading as it arrives. A dead zone can also be implemented, risking the possible loss of
the actual readings if they are very small.

Differentiating Between Tilt and Motion

While the ability to measure either motion or tilt is very useful, it comes with the
unfortunate disadvantage of not being able to easily differentiate between the two. The
z-axis of this device may make this distinction possible on the x and y axes by watching
the effect of the acceleration in question on the z axis, and the acquired data could be
applied to future demos. Of course, associated equations will also be made available.

Rotation and Center of Mass in Free-fall Detection

Centripetal acceleration, present if the object is rotating, can throw off free-fall detection
by causing the overall acceleration of the object to be significantly higher than zero even
when the object is actually in free-fall. This effect can be reduced by putting the device
in a heavy casing, positioning the accelerometer as close as possible to the device's
center of mass, and allowing a range of values to represent free-fall. 0.0 to 0.5g is
usually a safe range to use.

Free-fall Time When an Object is Thrown

An object is in free-fall as soon as no forces except for gravity are acting on it. That
means that if you throw the device upward, it will be in free-fall even when it is “falling”
upward. Similarly, being thrown downward will shorten the time the object is in free-fall
before it hits the ground. Either of these events will throw off the equation presented in
“Free-fall Detection” above, which assumes that the object was released into free-fall
with a velocity of zero. This limitation is not an issue for applications such as hard drive
protection, as they are only concerned with the fact that the object has been dropped,
but can adversely affect applications in which the distance the object fell is important. In
these cases, it may be better to use an accelerometer with a higher range and
implement impact detection instead of using a low-range accelerometer for detecting
free-fall.

Page 1

Appendix C: Algorithm References

1. Converting From Acceleration to Tilt

roll:

+

=
22

arctan

ZY

X
φ

pitch:

+

=
22

arctan

ZX

Y
ρ

2. Controlling a Rolling Ball by Tilting

Start

Initialize Ball
with position and velocity at zero

Read accelerations X and Y

Add acceleration X to velocity X Add acceleration Y to velocity Y

Slow velocity X by FRICTION
(The best value for FRICTION depends

on the application)

Slow velocity Y by FRICTION
(The best value for FRICTION depends

on the application)

Add the average of velocity X
to position X

(The average of velocity X is the average of
the X velocity at the beginning of this time period

and the X velocity at the end of this time period.)

Add the average of velocity Y
to position Y

(The average of velocity Y is the average of
the Y velocity at the beginning of this time period

and the Y velocity at the end of this time period.)

Update Screen

ball.positionX = 0

ball.positionY = 0

Page 2

ball.velocityX = 0

ball.velocityY = 0

while running

 (ACCX, ACCY, ACCZ) = sensor.allreadings

 OLDVELX = ball.velocityX

 OLDVELY = ball.velocityY

 // Add acceleration to velocity

 ball.velocityX = ball.velocityX + ACCX

 ball.velocityY = ball.velocityY + ACCY

 // For a better feel, the following implements

 // friction. The best value for FRICTION depends on

 // the application.

 if absolute_value(ball.velocityX) < FRICTION then

 ball.velocityX = 0

 else

 if ball.velocityX > 0 then

 ball.velocityX = ball.velocityX – FRICTION

 else

 ball.velocityX = ball.velocityX + FRICTION

 end if

 end if

 if absolute_value(ball.velocityY) < FRICTION then

 ball.velocityY = 0

 else

 if ball.velocityY > 0 then

 ball.velocityY = ball.velocityY – FRICTION

 else

 ball.velocityY = ball.velocityY + FRICTION

 end if

 end if

 // Add average velocity to position

 ball.positionX = ball.positionX + average(

 ball.velocityX, OLDVELX)

 ball.positionY = ball.positionY + average(

 ball.velocityY, OLDVELY)

end while

Page 3

3. Detecting Free-fall

Start

Read accelerations X, Y, and Z

Calculate total acceleration A
A = sqrt{x^2+y^2+z^2}

Is A greater
than threshold?

Compare A to the freefall threshold
Depending on the application, 0.3g to 0.5g is

usually a reliable threshold.

Freefall Not Freefall

No Yes

FREEFALL = 0.3 g // Threshold under which the object is

 // considered to be in free-fall

IN_FREEFALL = false // Stores whether or not the device is

 // falling

while running

 (ACCX, ACCY, ACCZ) = sensor.allreadings

 TOTAL_ACC = square_root(ACCX ^ 2 + ACCY ^ 2 + ACCZ ^ 2)

 if TOTAL_ACC < FREEFALL then

 IN_FREEFALL = true

 else

 IN_FREEFALL = false

 end if

end while

Page 4

4. Jolt Detection

Start

Read accelerations X, Y, and Z

Calculate total acceleration ACC
A = sqrt{x^2+y^2+z^2}

Store ACC in LAST_ACC

Compare ACC to LAST_ACC

Difference greater than

JOLT_THRESHOLD?

A jolt has occurred

Yes

No

JOLT_THRESHOLD = 1 g // Amount by which the overall

 // acceleration reading must change

 // between readings to be considered a

 // jolt

(ACCX, ACCY, ACCZ) = sensor.allreadings

LAST_ACC = square_root(ACCX ^ 2 + ACCY ^ 2 + ACCZ ^ 2)

while running

 (ACCX, ACCY, ACCZ) = sensor.allreadings

 ACC = square_root(ACCX ^ 2 + ACCY ^ 2 + ACCZ ^ 2)

 JOLT = absolute_value(ACC – LAST_ACC)

 if JOLT >= JOLT_THRESHOLD then

 // A jolt has occurred

 end if

 LAST_ACC = ACC

end while

