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Abstract—The Constrained Random (CR) portion in any verification environment is a significant contributor to 

both the coding effort and the simulation overhead. Often, verification engineers waste a significant amount of time 

debugging problems related to CR in their SystemVerilog‎[1], and UVM‎[4], testbenches. The paper illustrates the top 

most common SystemVerilog CR gotchas, which when carefully studied and addressed would help decrease debug 

times related to CR, reduce random instabilities, and boost productivity. 
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I.  INTRODUCTION 

Over the years, Constrained Random Verification (CRV) became the market focus. CRV, in its most ideal 

form, is seen as an effective way in improving the verification process; it is easier to build a single Constrained 

Random (CR) test that is equivalent to many directed tests (despite the fact that building a CRV environment 

would be more complex than its Directed counterpart would be). However, CRV cannot be used in a standalone 

manner; it needs to go hand-in-hand with a measurement strategy to assess the Design Under Verification (DUV) 

verification progress. Here, the term Coverage Driven Verification (CDV)
1
 arose, in which a coverage model that 

represents different features of the DUV to be verified is built, and coverage is collected during CR tests run. 

Although CR stimuli provide a tremendous value towards faster functional coverage closure over directed tests, 

yet modeling and debugging constraints, and random stimuli, is not trivial and suffer many challenges. 

In programing, a “gotcha” is a documented language feature, which, if missed, causes unexpected or 

unintuitive behavior. This paper illustrates the top most common SystemVerilog and UVM constrained random 

gotchas, which when carefully studied and addressed would help: 1) eliminate/reduce unnecessary debug times 

when encountering unexpected randomization failures, 2) eliminate/reduce unexpected randomization results, 3) 

eliminate/reduce random instability, and 4) ensure efficiency when coding random constraints. 

II. SYSTEMVERILOG CONSTRAINED RANDOM OVERVIEW 

This section provides a very basic knowledge about the SystemVerilog constrained random
2
. A given 

randomization problem consists of a set of random variables and a set of randomization constraints. A constraint 

solver is the engine attempting to solve the randomization problem at hand following pre-known steps. 

A. SystemVerilog randomization methods 

The SystemVerilog language provides multiple methods to generate and manipulate random data: 

 $urandom(): System function can be called in a procedural context to generate a pseudo-random number. 

 $urandom_range(): System function returns an unsigned random integer value within a specified range. 

 randomize(): Built-in class method used to randomize class fields with rand/randc qualifiers according to 

predefined constraints. It can accept inline constraints using the “with” clause in addition to the 

constraints defined in a class context. It can be called to recursively randomize all random variables of a 

class, or to randomize specific variable(s) as well (either defined with the rand qualifier or not), keeping 

all pre-defined constraints satisfiable. 

 std::randomize(): Can be called outside the class scope to randomize non-class members. Can accept 

inline constraints using the “with” clause. 

                                                           
1 Metric Driven Verification is a more general term. 
2
 For more detailed information, refer to the IEEE Std P1800™-2012, IEEE Standard for SystemVerilog language‎[1]. 
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The IEEE 1364 Verilog language provided other randomization system functions like $random and $dist_*, 

these functions should not be used in SystemVerilog as they are not part of the random stability model. 

B. SystemVerilog randomization constraints 

 Constraints are expressions that need to be held true by the constraint solver when solving a 

randomization problem. Constraint expressions may include random variables, non-random state 

variables, operators, distributions, literals, and constants. 

 Constraints can be defined as explicit properties of a class, or specified in-line with randomize() calls. 

 Constraints can be hard (default) or soft according to their declaration. 

 Constraints special operators: inside (set membership), -> (implication), dist (distribution/weighting), 

foreach (iteration), if..else (conditional), and solve..before (probability and distribution). 

 Constraints can be switched on/off using the constraint_mode(1)/constraint_mode(0) built-in method. 

C. How does the constraint Solver work? 

In an attempt to solve a specific randomization problem, the Solver takes the following steps when it 

encounters a randomize() call as dictated by the SystemVerilog LRM‎[1]: 

1. Calls the pre_randomize() virtual function recursively in a top-down manner. 

2. Scans the entire randomization cluster enclosing all random variables and constraints. 

3. Solves random variables with simple equality constraints (e.g. constraint c {x ==5;};). 

4. Executes simple functions called in constraints; functions with no arguments or whose arguments are 

constants or variables that do not belong to the current randomization cluster. Remember that the 

Solver does not look into functions’ contents, and so even if functions access random variables in their 

body, they are still going to be called and evaluated substituting random variables with their current 

values. 

5. Updates constraints of the current randomization cluster by substituting with values deduced in steps 

#3 and #4 (also non-random variables used in constraints are substituted with their current values). 

6. Groups random variables and constraints into independent randsets. A randset holds random variables 

that share common constraints; i.e. variables that their solution depends on each other because of 

common constraints, together with their constraints. This step is useful for performance as well as 

random stability reasons. 

7. Orders randsets. The order of randsets depends on the nature of random variables or constraints. 

Generally they are ordered as follows: 

a. Randsets holding cyclic random variables (declared with the randc modifier)
3
. Because randc 

cycles operate on single variables, this implies that each randc variable must be evaluated 

separately (even from other dependent randc variables). 

b. Randsets holding random variables passed as arguments to functions used in constraints. 

c. Remaining randsets. 

8. Picks the appropriate engine for each randset to solve the problem of random variables and constraints 

at hand. 

9. Attempts to solve a randset satisfying all enclosed constraints, taking any number of iterations it needs. 

10. Following a randset solution, records the solution within the Solver and then proceeds to the next 

randset. Take into account that there is no going-back strategy if a subsequent randset fails (i.e. There is 

no loop back to pick other solutions for previously solved randsets when following randsets fail). 

11. If the Solver fails to solve a specific randset, it aborts the entire randomization process and flags a 

randomization failure (i.e. the randomize () function shall return zero) without updating any of the 

successfully solved random variables. 

12. If all randsets are successfully solved, the Solver will: 

a. Generate random values for any unconstrained random variables remaining. 

b. Updates all random variables with the newly generated solution. 

c. Calls the post_randomize() virtual function recursively in a top-down manner. 

D. What are the different types of Solvers? 

Binary Decision diagram (BDD), Boolean Satisfiability (SAT), Finite Domain (FD), and others are all types 

of constraint solvers. Each has its own pros and cons; an efficient Solver is usually a hybrid of different engines. 

                                                           
3 Note that the solution order of different randc variables is undefined. 
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III. UNEXPLAINED RANDOMIZATION FAILURES 

Typically, randomization failures occur when constraints contradictions occur. However, often spotting out 

the constraints contradictions root cause is not a straightforward task. This section highlights the root causes of 

common unexpected randomization failures gotchas during simulation runtime, and the means to resolve them. 

A. My randomization attempt failed and I was not notified 

Problem Description 

The randomize() method by default returns 1 if it has successfully set all the random variables and objects to 

valid values; otherwise, it returns 0. Also, a randomization attempt is atomic all-or-none procedure. That means 

for any constraint that cannot be satisfied, randomize() does not update any random variable and returns a status 

of 0. If the return status of randomize() was not captured/checked, then you force the simulator to void cast the 

result of randomize(). This can result in a silent failure, which could waste your time trying to figure it out. 

 

 

 

 
 

Illustration & Remedy 

Always capture the randomization attempt result. There are many ways to do so, one of the best ways is to 

wrap your randomization with an if condition. For example: 

 

 
 

The second method is to wrap your randomization with an immediate assert statement. This is easy to add and 

makes your code more compact. However, sometimes it could also result in unexpected scenarios; e.g. if you 

forgot and used $assertoff() that was applied to these kind of assertions, or if you switched off immediate 

assertions firing via your simulator settings‎[2]. 

 

 

This third method is to go for a simulator-dependent way to capture randomization failures. Generally, this is 

not the recommended method as it is dependent on simulator configurations that could be easily missed, and 

hence cause unexpected behaviors. 

B. I am only randomizing a single variable in a class, yet I am encountering a randomization failure  

Problem Description 

Randomization failures occur after constructing your object and randomizing a single variable of it. 

 

 

 

 

 

 

 

 

Illustration & Remedy 

There is a common misconception about single variable randomization, or randomization of a small subset of 

the entire randomization cluster, that the Solver will focus on randomizing only this variable and ignore 

everything else. This is NOT true. The Solver will randomize the variable while keeping into consideration all 

 

class instr_burst; 

  rand bit [15:0] addr, start_addr, end_addr; 

  rand bit [3:0]  len; 

  constraint addr_range {addr >= start_addr; addr <= end_addr – len;} 

endclass 

instr_burst i1 = new; 

i1.randomize() with {start_addr != 0; end_addr == 16'h0008; len == 4'h8;}; 

 

if (! i1.randomize()) 

  $error ("Randomization of object c1 failed!"); 





assert(i1.randomize()); 

class trans; 

  rand bit [7:0] a, b, c ; 

  constraint constr { b < a; } 

endclass 

initial begin  

  trans t1 = new; 

  assert (t1.randomize (b)); //Randomization failure! 

end 

 





 
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other constraints in the cluster.  In the previous example, one of the constraints denotes that “b” is smaller than 

“a”. Initially, “a” has a value “0”, and since “b” cannot hold a negative value (unsigned bit data type), the 

randomization fails. Think of it as if the Solver is generating current values for all random variables not passed to 

randomize(). So, before initially randomizing a single variable, randomize the entire cluster first. This way, the 

remaining random variables will take values that satisfy all constraints rather than holding initial values. Also 

note that you can still get randomization failures if your constraints depend on non-random variables that change 

dynamically in a way not to satisfy any of the constraints enclosed in the randomization cluster. 

 

 

 

 

C. I am encountering cyclic dependency errors between random variables and constraints 

Problem Description 

Cyclic (or circular) dependency errors occur when using functions in constraints, or using the solve..before 

constraint. 

 

 

 

 

 

Illustration & Remedy 

Random variables passed as function arguments are forced to be solved first by the Solver. In the preceding 

example, the entire “a” vector is solved first by the Solver. The Solver does not look into the details of the 

functions or how it evaluates its output. Once it picks a random value of “a,” it will substitute with this value in 

the function to get the required value for the LHS, namely, “a[0]”. There is a 50% probability that the function 

would return a value that matches the value the Solver picked for “a[0]”. Otherwise, it would be a randomization 

error. There are many ways to solve this; for instance: 1) only pass “a[7:1]” as a function input argument. 2) Or a 

much better solution, remove the constraint altogether and use post_randomize() to assign “a[0]”. 

 

 

 

D. I am encountering cyclic dependency errors between randc variables 

Problem Description 

Cyclic (or circular) dependency errors occur when using randc variables in constraints. 

 

 

 

 

 

Illustration & Remedy 

Variables declared as randc are solved before other rand variables in the randomization cluster. The 

SystemVerilog LRM only describes the cyclic nature of the values produced by individual randc variables, while 

it says nothing about any kind of cyclic behavior of solutions from multiple related randc variables. Because 

randc cycles operate on single variables, this implies that each randc variable must be evaluated separately (even 

from other dependent randc variables).  Taking this into consideration, in the example above, if “a” is solved 

before “b” then value chosen for “a” may not fit into 4 bits to match “b”. A randomization failure would occur as 

it will be impossible for the Solver to satisfy the above constraint. The best remedy is to beware equality between 

assert (t1.randomize); 

assert (t1.randomize (b)); 

 

class instr; 

  rand bit [7:0] a ; 

  constraint c { a[0] == foo (a) ;} 

endclass 

class instr; 

  rand bit [7:0] a, b, c ; 

  constraint prob{solve a before b; 

                  solve b before c; 

                  solve c before a;} 

endclass 

 

constraint c {a[0] == foo (a[7:1]);} 

 

function void post_randomize(); 

  a[0] = foo (a); 

endfunction 

class instr; 

  randc bit [7:0] a ; 

  randc bit [3:0] b ; 

  constraint c { a == b; } 

endclass 

instr i = new; 

assert(i.randomize()); 

 













  

 
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unmatched size randc variables. This theory also holds true for any other explicit solving order inferred from 

constraints, e.g. using methods in constraints. 

 

 

E. I am getting randomization failures when using array.sum()/array.product() reduction methods in 

constraints 

Problem Description 

Using array.sum(), or array.product(), to constrain the summation of all array elements generated values, 

results in a randomization failure. 

 

 

 

 

Illustration & Remedy 

Array reduction methods such as sum() and product() specify that the sum/product is performed using the 

width of the array elements. If the array in question is an array of bits, the sum/product is computed with a width 

(precision) of 1-bit. Not taking this into consideration often leads to unexpected results and randomization 

failures. Take the above example, a correct way to write the above constraint is to explicitly cast the array 

element (i.e. item) to an int data type. This ensures the expected behavior, avoiding size reduction and overflow.  

 

 

IV. UNEXPLAINED RANDOMIZATION RESULTS 

In real life, figuring the root cause of unexpected random results is not trivial; typically unexpected random 

results are observed from a testcase failure or a functional mismatch, denoting a long time wasted during debug. 

This section highlights some of the scenarios that result in unexpected randomization results. 

A. Random values generated change from run to run; I could not reproduce a test failure or validate a fix 

Problem Description 

Minimal code modifications change the random values generated from run to run, although running with same 

code revision, simulator revision, seed, simulation commands, and environmental settings. 

Illustration & Remedy 

Random stability is a major issue when it comes to day-by-day development; we normally seek (and expect) 

identical generated random values upon minimal code changes. Random stability is crucial in order to: 1) Get 

consistent results that are important for analysis, development, and verification closure. 2) Replicate bugs, 

eliminate their escape, and test bug fixes. The element responsible for generating random values in 

SystemVerilog is called Random Number Generator, abbreviated RNG. Each thread, package, module instance, 

program instance, interface instance, or class instance has a built-in RNG. Thread, module, program, interface 

and package RNGs are used to select random values for $urandom() (as well as $urandom_range(), 

std::randomize(), randsequence, randcase, and shuffle()), and to initialize the RNGs of child threads or child 

class instances. A class instance RNG is used exclusively to select the values returned by the class’s predefined 

randomize() method‎[3]. 

Whenever an RNG is used either for selecting a random value, or for initializing another RNG, it will “change 

state” so that the next random number it generates is different. Therefore, the random value a specific 

randomization call generates depends on the number of times the RNG has been used, and on its initialization. 

Initializing the RNG, in turn, depends on the number of times its parent RNG has been used and on the parent 

RNG initialization. The top most RNG is always a module, program, interface or package RNG, and all of these 

RNGs are initialized to the same value, which is chosen by the simulator according to the simulation seed. For a 

constraint c { a[3:0] == b; } 

 

class trans; 

  rand bit descr []; 

  constraint c { 

    descr.sum()  == 50; 

    descr.size() == 100; 

  } 

endclass 

 

    descr.sum() with (int'(item)) == 50; 

 









 
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given randomize() call, the process is essentially the same up to the point where the object is allocated. Once the 

object is allocated, it gets its own RNG which, unlike package, module, program, interface or thread RNGs, 

changes state only when randomize() is called. Therefore, from instantiation point onwards, the only instructions 

that affect the results of a given randomize() call are earlier randomize() calls. In the example below, the random 

scenarios generated by randomizing the “rw_s” sequence will totally change when instantiating a new sequence 

object “rand_s” before the “rw_s” sequence object instantiation. 

 

 

 

 

 

 

 

Instead of depending on the absolute execution path for a thread, or on the ordering of an object construction, 

the RNG of a given thread or an object can be manually set to a specific known state. This makes the execution 

path up to a point “don’t care”. This is known as manual seeding, which is a powerful tool to guarantee random 

stability upon minimal code changes. Manual seeding can be performed using: 

 srandom(): Takes an integer argument acting as the seed. Once called on a process id or a class object, it 

manually sets the process (or object) RNG to a specific known state, making any subsequent random 

results depend only on the relative execution path from the manual seeding point onwards. 

 get_randstate()/set_randstate(): Used together to shield some code from subsequent randomization 

operations. 

 

 

 

 

Random stability is addressed carefully in the Universal Verification Methodology (UVM)‎[4]: a) UVM 

components are re-seeded during their construction based on their type and full path names. b) Sequences are re-

seeded automatically before their actual start. 

B. Unexpected negative values are generated upon randomize 

Problem Description - 1 

Randomization attempts do what you ask them to do. If you gave them signed types, their solution space will 

accommodate for negative values as well. This rule applies to any variable declared as signed, as well as variables 

of type int or byte. Not taking this into consideration can result in performance penalty, unexpected results, and 

sometimes randomization failures. 

Illustration & Remedy - 1 

Always check the sign nature of your random variables and make sure you are not mistakenly defining 

variables as signed, and vice versa. I.e. 1) Do not use the signed modifier when not needed, 2) For 7-bit variables 

of unsigned nature, use “bit [7:0]” instead of byte data type, 3) For 32-bit variables of unsigned nature, use “bit 

[31:0]” instead of int data type. 

Problem Description - 2 

Issues may also arise the other way around, that is, when using unsigned data types to hold negative values. 

Take a look at the following example: 

   

 

 

virtual task body; 

  random_seq rand_s = new; //Affects random stability of Line A 

  simple_seq rw_s   = new;   

  fork begin 

      assert (rw_s.randomize()); //Line A: Randomize "rw_s" test sequence 

      rw_s.start(); //Drive the sequence 

    end 

    ... 

  join 

endtask 

static int global_seed = $urandom; //Static global seed 

... 

   fork begin 

      rw_s.srandom(global_seed + "rw_s"); //Reseed sequence 

      assert (rw_s.randomize()); //Line A: Randomize "rw_s" test sequence 

      rw_s.start(); 

    end 

 





 
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Illustration & Remedy - 2 

The constraint “c” above is intended to eliminate overlapping of address ranges between successive 

randomization attempts. The only exception of the above constraint is when “length” is greater than “i+1” (e.g. 

Imagine the case where a “start_addr” of a previous randomization attempt was picked to be smaller than the  

address range “length”). In this case, the constraint will always hold TRUE. The reason is that negative numbers 

are represented as 2’s complement when assigned to unsigned data types (like “start_addr” above). So in the 

case demonstrated above, the constraint would be of the form “!(start_addr inside {[<HIGH-

VALUE> : <LOW-VALUE>]});” which always holds to TRUE and hence the Solver could generate 

overlapping address ranges below the “length” value. To prevent this type of error occurrence, you need to 

anticipate these corner cases and add guard expressions to avoid them. 

 

 

 

 

 

 

 

C. My rand dynamic array is not constructed after randomization 

Problem Description 

Dynamic arrays can be declared as rand. Take the following example: 

 

 

 

 

 

 

You would expect that after the randomize() call the dynamic array will be generated with an arbitrary size 

and its elements will be randomized; however, this is not the case! The randomize call here will exit with no error 

or warning, and the dynamic array will not be resized, retaining its previous size, 0. 

Illustration & Remedy 

The SystemVerilog LRM states that the size of a dynamic array or queue declared as rand or randc can also 

be constrained. In that case, the array shall be resized according to the size constraint. If a dynamic array’s size is 

not constrained, then the array shall not be resized. Initially the size of the dynamic array is zero. 

 

  

Another important aspect is that the Solver will NOT instantiate new class objects when resizing a dynamic 

array of class handles, this sometimes result in unexpected runtime fatal errors especially to people with other 

HVLs background. It has to be carefully kept in mind that randomize() does not instantiate class objects. 

D. Output random distribution is not expected when using the “dist” operator 

Problem Description 

  rand bit [31:0] start_addr; 

  rand bit [5:0] length; 

  bit [31:0] start_end_addr_hash [bit[31:0]]; 

  constraint c {   //Generate Non-Overlapping address ranges 

    if (start_end_addr_hash.num()) { 

      foreach (start_end_addr_hash [i]) { 

        !(start_addr inside {[i-length+1 : start_end_addr_hash [i]]}); 

      } 

    } 

    length == 6'h10; 

  } 

  ... 

  start_end_addr_hash [start_addr] = start_addr + length - 1; 

 

 

      foreach (start_end_addr_hash [i]) { 

        if (i >= length ) { 

          !(start_addr inside {[i-length+1 : start_end_addr_hash [i]]}); 

        } else { 

          !(start_addr inside {[0 : start_end_addr_hash [i]]}); 

        } 

      } 

 

 

class c; 

  rand bit [7:0] dyn_arr[]; 

endclass 

c c1 = new; 

assert(c1.randomize()); 

 

assert(c1.randomize() with {dyn_arr.size() < 10;}); 

 









 

 
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When using dist constraints on the following form, the Solver always generates some values (“12” and “31”) 

and never generates others. 

    

Illustration & Remedy 

The intention of the above constraint will not be fulfilled by the user coding. The intention of the constraint is 

to specify a probability of “1” to be shared across elements “[0:10]” (11 elements) and “[13:30]” (18 elements). 

However, what happens is that due to integer division operation, results are truncated to 0. Hence, the Solver 

would only generate values “12” and “31”. The correct coding to implement the intended constraint is already 

supported by the SystemVerilog language as follows: 

 

 

E. Output random distribution is not perfectly cyclic although I am using randc 

Problem Description 

Even though I defined some variables as randc, the generated random results are not perfectly cyclic. Take the 

following example: 

 

 

 

 

Illustration 

Even when variables are explicitly defined with the randc modifier, their intended cyclic random behavior can 

be compromised upon constraints dependencies. The order in which randc variables are solved is tool dependent 

as not defined by the SystemVerilog LRM, so if the tool chooses to solve one of the variables first, it can 

compromise the cyclic nature of the second variable. So the Solver here has two options: either to throw a 

randomization failure, or to compromise the intended cyclic random behavior of one of the randc variables for the 

randomization attempt to be successful. 

F. My inline constraints are not applied 

Problem Description 

The following example shows an attempt to randomize a transaction that constrains the transaction address to 

be equal to the calling sequence address. However, “t.addr” and “seq.addr” are not equal after the randomization 

attempt! 

 

    

 

 

 

 

 

Illustration & Remedy 

The SystemVerilog P1800-2012 LRM states, “Unqualified names in an unrestricted in-lined constraint block 

are then resolved by searching first in the scope of the randomize() with object class followed by a search of the 

scope containing the method call—the local scope”. So the above constraint was actually constraining “t.addr” to 

be equal to itself. The local:: qualifier modifies the resolution search order. When applied to an identifier within 

an in-line constraint, the local:: qualifier bypasses the scope of the [randomize() with object] class and resolves 

the identifier in the local scope. The correct coding of the above example would be: 

   

 

constraint c { x dist {[0:10]: 1/11, 12: 1, [13:30]: 1/18, 31}; } 

 

 

constraint c { x dist {[0:10] \:1, 12:1, [13:30]\:1, 31}; } 

 

class c; 

  randc bit [1:0]   a ; 

  randc bit [4:0]   b ; 

  constraint c_trans { 

    (a != 2'b01) -> (b <  5'h10); //#1 

    (a == 2'b01) -> (b >= 5'h10); //#2 

  } 

endclass 

 

 

? 

class trans; 

  rand bit [31:0] addr; 

endclass 

class seq; 

  rand bit [31:0] addr; 

  trans t; 

  assert(t.randomize() with {t.addr == addr;}); 

endclass 

 

assert(t.randomize() with { addr == local::addr; }); 

 









 

 
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G. Base class constraints are not applied to the extended class 

Problem Description 

The following example shows an attempt to randomize an object of class “ext_c.” The constraint “c1” in 

“base” is not applied to the random variable “a”, i.e. “a” takes values greater than 256. 

   

 

 

 

 

 

 

 

 

 

Illustration & Remedy 

The “ext_c” class defines a variable with the same name “a” as the “base” class. This is perfectly legal in 

SystemVerilog, each variable will have its own context in objects of type “ext_c” (i.e. “ext.a” will access “a” 

defined in “ext_c”, while “ext.super.a” will access “a” defined in “base”). The constraint “c1” in this case will 

always be applied to “a” defined in “base”, and will not be applied to “a” defined in “ext_c”.  It is usually not a 

good idea to define variables with the same name in extended and base classes; it makes your code prone to many 

runtime errors and/or unexpected behaviors, also debugging these kinds of problems may not be trivial. 

 

 

 

 

 

 

Other scenarios with the same symptom (a constraint being ignored), could occur when: 

 Constraint c1 is a soft constraint that is contradicted/overridden in an extended class or inline constraint.  

 Calling this.randomize() from the “base” class new() method. Since randomize() is a virtual function, one 

may expect that constraints defined in the extended class would take effect in this case however this may 

not necessarily be the case. When calling virtual methods in constructor, extended class properties are not 

allocated yet. The behavior of a virtual method call in a constructor is undefined in the LRM, and hence 

is tool implementation dependent. As a remedy, avoid calling randomize() in classes’ constructors. 

H. Random values generated change from run to run when running with different simulators. 

Problem Description 

The simulation runtime random variables generated are different when running on different simulators, 

although running the same source code revision with the same seed, environment, and equivalent commands. 

Illustration & Remedy 

Different simulators use different constraint solvers that cannot be compared to each other; a simulator A 

invoked with initial seed S, would probably generate totally different random stimulus than simulator B invoked 

with the same initial seed S. This might even be true for different versions of the same simulator. So if you tend to 

use different simulators in your daily verification tasks make sure to: 1) Build reference models and self-checking 

testbenches so that different constrained random values generated during simulation may not be troublesome. 2) 

Build Coverage models to assess tests’ effectiveness. 3) Stick to the same version of the same simulator and the 

same seed during debug times or when reproducing failures. 4) Leverage manual seeding for random stability. 

I. I am getting unexpected random results when using default constraints 

Problem Description 

Although a default constraint is defined, random values generated are not compliant with the constraint. Take 

a look at the below example, sometimes values generated for “y” are smaller than “z”. 

class base; 

  rand bit [31:0] a; 

  constraint c1 {a < 256;} 

endclass 

class ext_c extends base; 

  rand bit [15:0] a; 

  constraint c2 { a > 32;} 

endclass 

ext_c ext = new; 

ext.randomize(); //"ext.a" takes values > 256  

 

class base; 

  rand bit [31:0] a; 

  constraint c1 {a < 256;} 

endclass 

class ext_c extends base; 

  constraint c2 { a > 32;} 

endclass 

 

 





 
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Illustration & Remedy 

Default constraints are not part with the SystemVerilog P1800-2012 LRM; they come from the Vera 

language. Several simulators allow them as a sort of an extension to the SystemVerilog language. Default 

constraints can be specified by placing the keyword default ahead of a constraint block definition. They are 

constraints acting as soft contracts between the user and the Solver. However, once any variable used in them is 

used in another constraint (it does not matter if this constraint contradicts the default constraint or not), the entire 

default constraint is ignored. In the example above, the constraint “c2” does not contradict the default constraint 

“c1”. However, the entire default constraint “c1” is ignored by the Solver since the variable “x” that appears in 

constraint “c1” appears in constraint “c2” as well. This can be a serious problem, since the constraint of “y > z” 

will be ignored too, although no other constraints access “y” or “z” random variables. 

As a rule of thumb, do NOT use default constraints. They provide no additional value over what is already 

defined in the SystemVerilog language. On the other hand, they could cause unexpected results. Instead, use soft 

constraints or enable/disable constraints via the constraint_mode() method. 

 

 

J. My foreign language random generation is not affected by the initial simulation seed change 

Problem Description 

Imagine a design that contains some C code that performs some random generation while the C 

implementation is connected to the SystemVerilog implementation using the Direct Programming Interface (DPI-

C). However, the initial simulation seed is not affecting random numbers generated by the C code. 

Illustration & Remedy 

Normally, the initial SystemVerilog simulation seed, set by the simulator or by the user via simulation 

plusargs, affects the SystemVerilog code only; it does not affect the foreign language code. This can be resolved 

by passing the simulation initial seed to the foreign language (e.g. C/C++) code as follows: 

1. Import in SystemVerilog code a C function that takes a seed as an argument. 

2. Call the C function in the SystemVerilog code at the beginning of simulation passing the initial seed (or a 

random value seeded by the initial seed). 

3. The C function will call srand() passing the initial seed (or a random value seeded by the initial seed). 
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default constraint c1 {x < 10; y > z;} 

... 

constraint c2 {x < 5;} 

 

constraint c1 {soft x < 10; y > z;} 

constraint c2 {x < 5;} 

 

// C/C++ side 

static int sim_seed; 

void set_foreign seed(int seed){ 

  sim_seed = seed; 

} 

int stimgen () { 

  int desc; 

  ...         

  srand(sim_seed); 

  desc = rand(); 

  ... 

  return 0; 

} 

// SystemVerilog side 

import "DPI-C" context function void  

                 set_foreign_seed(int seed); 

int global_seed = $urandom; 

initial 

  set_foreign_seed (global_seed); 

 






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http://goo.gl/71yQX
uvmworld.org
http://www.verificationacademy.com/
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