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Errata Sheet
This Errata Sheet describes the deviations from the current user documentation.
The module oriented classification and numbering system uses an ascending sequence 
over several derivatives, including already solved deviations. So gaps inside this 
enumeration can occur.

Current Documentation
• TC1100 User’s Manual System Units V1.0 Jul. 2004
• TC1100 User’s Manual Peripheral Units V1.0 Jul. 2004
• TC1100 Data Sheet V1.0 Feb. 2005
• TriCore Architecture Manual V1.3.5 V1.3.5 Feb. 2005

Note: Devices marked with EES or ES are engineering samples which may not be 
completely tested in all functional and electrical characteristics, therefore they 
should be used for evaluation only.

Note: This device is equipped with a TriCore “TC1.3” Core. Some of the errata have a 
workaround which is possibly supported by the compiler tool vendor. Some 
corresponding compiler switches need possibly to be set. Please see the 
respective documentation of your compiler. 

The specific test conditions for EES and ES are documented in a separate Status Sheet.
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1 History List / Change Summary

 

Table 1 Functional Deviations

Functional 
Deviation

Short Description Change Pg

CPU_TC.004 CPU can be halted by writing DBGSR with OCDS 
Disabled

7

CPU_TC.008 IOPC Trap taken for all un-acknowledged Co-
processor instructions

7

CPU_TC.012 Definition of PACK and UNPACK fail in certain 
corner cases

7

CPU_TC.013 Unreliable context load/store operation following 
an address register load instruction

8

CPU_TC.014 Wrong rounding in 8000*8000<<1 case for certain 
MAC instructions

9

CPU_TC.046 FPI master livelock when accessing reserved 
areas of CSFR space

9

CPU_TC.048 CPU fetches program from unexpected address 10
CPU_TC.052 Alignment Restrictions for Accesses using PTE-

Based Translation
10

CPU_TC.053 PMI line buffer is not invalidated during CPU halt 11
CPU_TC.056 Incorrect probe.i operation in MMU UTLB 11
CPU_TC.059 Idle Mode Entry Restrictions 12
CPU_TC.060 LD.[A,DA] followed by a dependent LD.[DA,D,W] 

can produce unreliable results
13

CPU_TC.061 Error in emulator memory protection override 14
CPU_TC.062 Error in circular addressing mode for large buffer 

sizes
14

CPU_TC.063 Error in advanced overflow flag generation for 
SHAS instruction

15

CPU_TC.064 Co-incident FCU and CDO traps can cause 
system-lock

16

CPU_TC.065 Error when unconditional loop targets 
unconditional jump

16
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CPU_TC.066 Incorrect forwarding when dependent CACHEA 
follows LD.[D]A

17

CPU_TC.067 Incorrect operation of STLCX instruction 18
CPU_TC.068 Potential PSW corruption by cancelled DVINIT 

instructions
18

CPU_TC.069 Potential incorrect operation of RSLCX instruction 19
CPU_TC.070 Error when conditional jump precedes loop 

instruction
20

CPU_TC.071 Error when Conditional Loop targets 
Unconditional Loop

21

CPU_TC.072 Error when Loop Counter modified prior to Loop 
instruction

21

CPU_TC.073 Debug Events on Data Accesses to Segment E/F 
Non-functional

22

CPU_TC.074 Interleaved LOOP/LOOPU instructions may 
cause GRWP Trap

22

CPU_TC.075 Interaction of CPS SFR and CSFR reads may 
cause livelock

23

CPU_TC.077 CACHEA.I instruction executable in User Mode 24
CPU_TC.078 Possible incorrect overflow flag for MSUB.Q 

instructions
24

CPU_TC.079 Possible invalid ICR.PIPN when no interrupt 
pending

25

CPU_TC.080 No overflow detected by DVINIT instruction for 
MAX_NEG / -1

26

CPU_TC.081 Error during Load A[10], Call / Exception 
Sequence

26

CPU_TC.082 Data corruption possible when Memory Load 
follows Context Store

27

CPU_TC.083 Interrupt may be taken following DISABLE 
instruction

28

CPU_TC.085 CPS module may error acknowledge valid read 
transactions

29

Table 1 Functional Deviations

Functional 
Deviation

Short Description Change Pg
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CPU_TC.086 Incorrect Handling of PSW.CDE for CDU trap 
generation

29

CPU_TC.087 Exception Prioritisation Incorrect 30
CPU_TC.088 Imprecise Return Address for FCU Trap 32
CPU_TC.089 Interrupt Enable status lost when taking 

Breakpoint Trap
33

CPU_TC.090 MMU Page Table Entry Mapping Restrictions 33
CPU_TC.091 Incorrect privilege handling of MMU instructions 34
CPU_TC.092 Upper Memory Segments accessible in User-0 

Mode with MMU enabled
35

CPU_TC.093 MMU Instruction Usage Restrictions 35
CPU_TC.094 Potential Performance Loss when CSA 

Instruction follows IP Jump
36

CPU_TC.095 Incorrect Forwarding in SAT, Mixed Register 
Instruction Sequence

37

CPU_TC.096 Error when Conditional Loop targets Single Issue 
Group Loop

38

PMI_TC.001 Deadlock possible during Instruction Cache 
Invalidation

38

DMI_TC.005 DSE Trap possible with no corresponding flag set 
in DMI_STR

39

FPU_TC.001 FPU flags always update with FPU exception 39
BCU_TC.002 SBCU does not give bus error 39
SSC_TC.008 SSC shift register not updated in fractional divider 

mode
40

SSC_TC.011 Unexpected phase error 40
OCDS_TC.007 DBGSR writes fail when coincident with a debug 

event
41

OCDS_TC.008 Breakpoint interrupt posting fails for ICR 
modifying instructions

42

OCDS_TC.009 Data access trigger events unreliable 42
OCDS_TC.010 DBGSR.HALT[0] fails for separate resets 42

Table 1 Functional Deviations

Functional 
Deviation

Short Description Change Pg
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OCDS_TC.011 Context lost for multiple breakpoint traps 42
OCDS_TC.012 Multiple debug events on one instruction can be 

unpredictable
43

DMA_TC.004 Reset of registers OCDSR and SUSPMR is 
connected to FPI reset

43

DMA_TC.005 Do not access MExPR, MExAENR, MExARR with 
RMW instructions

43

DMA_TC.007 CHSRmn.LXO bit is not reset by channel reset 44
DMA_TC.010 Channel reset disturbed by pattern found event 44
DMA_TC.011 Pattern search for unaligned data fails on certain 

patterns
44

DMA_TC.012 No wrap around interrupt generated 45
MLI_TC.006 Receiver address is not wrapped around in 

downward direction
45

MLI_TC.007 Answer frames do not trigger NFR interrupt if 
RIER.NFRIE=10 and Move Engine enabled

46

MLI_TC.008 Move engines can not access address 
F01E0000H

46

MLI_TC.009 MLI0B and internal loopback option not available 
for TC1130.

NEW 46

Table 2 Deviations from Electrical- and Timing Specification

AC/DC/ADC 
Deviation

Short Description Change Pg

-

Table 3 Application Hints 

Hint Short Description Change Pg
INT_TC.H001 Multiple SRNs can be assigned to the same SRPN 

(priority)
48

Table 1 Functional Deviations

Functional 
Deviation

Short Description Change Pg
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SSC_TC.H002 Enlarged leading delay in master mode 48

Table 4 Documentation Update

Update Short Description Change Pg

Table 5 Changes from Step BA (Errata BA V1.0)
Erratum Short Description Change
DMI_TC.012 Data corruption during load from data cache Fixed
DMI_TC.013 Data corruption possible when accessing data cache Fixed
PORT_TC.H003 Internal pull up is not working during reset Fixed
SSC_TC.006 Leading delay for SLSOx stalls SSCx Fixed
SSC_TC.007 Unintended switching of slave-selects in SSC0 Fixed
MLI_TC.003 MLI handles RETRY on FPI bus incorrectly Fixed
MLI_TC.004 Read frame data may be corrupt when FPI error 

occured 
Fixed

Table 3 Application Hints (cont’d)

Hint Short Description Change Pg
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2 Functional Deviations

CPU_TC.004   CPU can be halted by writing DBGSR with OCDS Disabled
Contrary to the specification, the TriCore1 CPU can be halted by writing "11" to the 
DBGSR.HALT bits, irrespective of whether On-Chip Debug Support (OCDS) is enabled 
or not (DBGSR.DE not checked).

Workaround:
None.

CPU_TC.008   IOPC Trap taken for all un-acknowledged Co-processor instructions
When the TriCore1.3 CPU encounters a co-processor instruction, the instruction is 
routed to the co-processor interface where further decoding of the opcode is performed 
in the attached co-processors. If no co-processor acknowledges that this is a valid 
instruction, the CPU generates an illegal opcode (IOPC) trap.
Revisions of the TriCore Architecture Manual, up to and including V1.3.3, are unclear 
regarding whether Un-Implemented OPCode (UOPC) or Invalid OPCode (IOPC) traps 
should be taken for un-acknowledged co-processor instructions. However, the required 
behaviour is that instructions routed to a given co-processor, where the co-processor is 
present but does not understand the instruction opcode, should result in an IOPC trap. 
Co-processor instructions routed to a co-processor, where that co-processor is not 
present in the system, should result in a UOPC trap. 
Consequently the TriCore1.3 implementation does not match the required behaviour in 
the case of un-implemented co-processors.

Workaround: 
Where software emulation of un-implemented co-processors is required, the IOPC trap 
handler must be written to perform the required functionality.

CPU_TC.012   Definition of PACK and UNPACK fail in certain corner cases
Revisions of the TriCore Architecture Manual, up to and including V1.3.3, do not 
consistently describe the behaviour of the PACK and UNPACK instructions. Specifically, 
the instruction definitions state that no special provision is made for handling IEEE-754 
denormal numbers, infinities, NaNs or Overflow/Underflow situations for the PACK 
instruction. In fact, all these special cases are handled and will be documented correctly 
in further revisions of the TriCore Architecture Manual.
However, there are two situations where the current TriCore1.3 implementation is non-
compliant with the updated definition, as follows:
1. Definition and detection of Infinity/NaN for PACK and UNPACK
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In order to avoid Infinity/NaN encodings overlapping with arithmetic overflow situations, 
the special encoding of un-biased integer exponent = 255 and high order bit of the 
normalized mantissa (bit 30 for UNPACK, bit 31 for PACK) = 0 is defined.
In the case of Infinity or NaN, the TriCore1.3 implementation of UNPACK sets the un-
biased integer exponent to +255, but sets the high order bit of the normalized mantissa 
(bit 30) to 1. In the case of PACK, input numbers with biased exponent of 255 and the 
high order bit of the normalized mantissa (bit 31) set are converted to Infinity/NaN. 
Unfortunately, small overflows may therefore be incorrectly detected as NaN by the 
PACK instruction special case logic and converted accordingly, when an overflow to 
Infinity should be detected.
2. Special Case Detection for PACK
In order to detect special cases, the exponent is checked for certain values. In the current 
TriCore1.3 implementation this is performed on the biased exponent, i.e. after 128 has 
been added to the un-biased exponent. In the case of very large overflows the addition 
of 128 to the un-biased exponent can cause the exponent itself to overflow and be 
interpreted as a negative number, i.e. underflow, causing the wrong result to be 
produced.

Workaround
The corner cases where the PACK instruction currently fails may be detected and the 
input number re-coded accordingly to produce the desired result.

CPU_TC.013   Unreliable context load/store operation following an address 
register load instruction

When an address register is being loaded by a load/store instruction LD.A/LD.DA and 
this address register is being used as address pointer in a following context load/store 
instruction LD*CX/ST*CX it may lead to unpredictable behavior.

Example
        ... 
         LD.A A3, <any addressing mode> ; load value into A3 
         LDLCX [A3] ; context load 
         ...

Workaround
Insert one NOP instruction between the address register load/store instruction and the 
context load/store instruction to allow the "Load Word to Address Register" operation to 
be completed first.
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        ... 
        LD.A  A3, <any addressing mode> 
        NOP 
        LDLCX [A3] 
         ...

CPU_TC.014   Wrong rounding in 8000*8000<<1 case for certain MAC instructions
In the case of "round(acc +/- 8000H * 8000H << 1)" the multiplication and the following 
accumulation is carried out correctly. However, rounding is incorrect.
Rounding is done in two steps: 
1. Adding of 0000 8000H 
2. Truncation
For the before mentioned case the first step during rounding (i.e. the adding operation) 
is suppressed - which is wrong - while truncation is carried out correctly.

This bug affects all variants of MADDR.Q, MADDR.H, MSUBR.Q, MSUBR.H., 
MADDSUR.H and MSUBADR.H instructions.

Workaround
None.

CPU_TC.046   FPI master livelock when accessing reserved areas of CSFR space
The Core Special Function Registers (CSFRs) associated with the TriCore1 CPU are 
accessible by any FPI bus master, other than the CPU, in the address range F7E1 0000H
- F7E1 FFFFH. Any access to an address within this range which does not correspond 
to an existing CSFR within the CPU may result in the livelock of the initiating FPI master.
Accesses to the CPU CSFR space are performed via the CPU’s slave interface (CPS) 
module, by any FPI bus master other than the CPU itself. In the case of such an access 
the CPS module initially issues a retry acknowledge to the FPI master then injects an 
instruction into the CPU pipeline to perform the CSFR access. The initial access is retry 
acknowledged to ensure the FPI bus is not blocked and instructions in the CPU pipeline 
are able to progress. The CPS module will continue to retry acknowledge further 
attempts by the FPI master to read the CSFR until the data is returned by the CPU.
In the case of an access to a reserved CSFR location the CPU treats the instruction 
injected by the CPS as a NOP and never acknowledges the CSFR access request. As 
such the CPS module continues to retry the CSFR access on the FPI bus, leading to the 
lockup of the initiating FPI master.
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Workaround
Do not access reserved areas of the CPU CSFR space.

CPU_TC.048   CPU fetches program from unexpected address
There is a case which can cause the CPU to fetch program code from an unexpected 
address. Although this code will not be executed the program fetch itself can cause side 
effects (performance degradation, program fetch bus error trap).
If a load address register instruction LD.A/LD.DA is being followed immediately by an 
indirect jump JI, JLI or indirect call CALLI instruction with the same address register as 
parameter, the CPU might fetch program from an unexpected address.

Workaround
Insert a NOP instruction or any other load/store instruction between the load and the 
indirect jump/call instruction. (See also note "Pipeline Effects", below)

Example
... 
LD.A    A14, <any addressing mode> 
NOP       ; workaround to prevent 

; program fetch from 
; undefined address 

<one optional IP instruction> 
CALLI   A14 
...

Pipeline Effects
The CPU core architecture allows to decode and execute instructions for the integer 
pipeline (IP) and the load/store pipeline (LS) in parallel. Therefore this bug hits also if 
there is only (one) IP instruction after the offending LS instruction ("CALLI A14" in above 
example). A detailed list of IP instructions can be found in the document "TriCore DSP 
Optimization Guide - Part 1: Instruction Set, Chapter 13.1.3, Table of Dual Issue 
Instructions".

CPU_TC.052      Alignment Restrictions for Accesses using PTE-Based Translation
Additional alignment restrictions exist for TriCore load-store accesses which undergo 
PTE-based translation.
For devices which include the optional Memory Management Unit (MMU), accesses to 
a virtual address in one of the lower 8 segments of the address space, where the 
processor is operating in virtual mode (MMU enabled), undergo PTE-based translation. 
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For such accesses, the cacheability of the resultant memory access depends upon both 
the cacheability attribute of the resultant physical address and the cacheability flag of the 
PTE used to perform the translation. Only when the resultant physical address is 
cacheable and the PTE cacheability flag is set will the access be cacheable.
For load-store accesses undergoing PTE-based translation the assumption is made that 
the resultant access is to a cacheable location and that no special handling of the mis-
aligned access is required. If the resultant access, after PTE transaltion, is non-
cacheable and not naturally aligned, then a Data Address Alignment (ALN) trap will be 
generated.

Workaround:
Natural alignment must be used for accesses undergoing PTE-based translation which 
may result in a non-cacheable memory access.

CPU_TC.053   PMI line buffer is not invalidated during CPU halt
Some debug tools provide the feature to modify the code during runtime in order to 
realize breakpoints. They exchange the instruction at the breakpoint address by a 
’debug’ instruction, so that the CPU goes into halt mode before it passes the instruction. 
Thereafter the debugger replaces the debug instruction by the original code again.
This feature no longer works reliably as the line buffer will not be invalidated during a 
CPU halt. Instead of the original instruction, the obsolete debug instruction will be 
executed again.

Workaround
Debuggers might use the following macro sequence:
1. set PC to other memory address (> 0x20h, which selects new cacheline-refill buffer)
2. execute at least one instruction (e.g. NOP) and stop execution again (e.g. via debug 

instruction)
3. set PC back to former debug position
4. proceed execution of user code

CPU_TC.056      Incorrect probe.i operation in MMU UTLB
The TLBPROBE.I instruction takes a data register, D[a], as a parameter and uses it to 
probe the MMU Translation Lookaside Buffer (TLB) at a given index. The D[a] register 
contains the index for the probe. The results of the TLBPROBE.I instruction are placed 
in the TVA and TPA Core Special Function Registers (CSFRs). Under certain 
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circumstances the TLBPROBE.I instruction may fail and return the result from an 
incorrect index.
The problem occurs if the unused fields of D[a] match a VPN for a different index in the 
TLB. In this case the TLB hit logic is incorrectly activated and the attributes from the 
index with the matching VPN read.

Workaround:
The unused fields of D[a] should be set to ’1’ to avoid any erroneous VPN matches in the 
UTLB. For example, if the index required to be probed is 0x80, the actual value 
0x00000080 should not be placed in D[a], rather 0xFFFFFF80 should be used.

CPU_TC.059    Idle Mode Entry Restrictions
Two related problems exist which lead to unreliable idle mode entry, and possible data 
corruption, if the idle request is received whilst the TriCore CPU is in certain states. The 
two problems are as follows:
1) When the TriCore CPU receives an idle request, a DSYNC instruction is injected to 
flush any data currently held within the CPU to memory. If there is any outstanding 
context information to be saved, the clocks may be disabled too early, before the end of 
the context save. The CPU is then frozen in an erroneous state where it is instructing the 
DMI to make continuous write accesses onto the bus. Because of the pipelined 
architecture, the DMI may also see the wrong address for the spurious write accesses, 
and therefore memory data corruption can emerge. Another consequence of this is, that 
the DMI will not go to sleep and therefore the IDLE-state will not be fully entered.
2) If the idle request is asserted when a DSYNC instruction is already being executed by 
the TriCore CPU, the idle request may be masked prematurely and the idle request 
never acknowledged.

Workaround
The software workaround consists of ensuring that there is no unsaved context 
information within the CPU, and no DSYNC instruction in execution, when receiving an 
idle request. This precludes any attempt at sending the TriCore to sleep by third parties 
(i.e. Cerberus, PCP). The CPU can only be sent to idle mode by itself by executing the 
following code sequence:

... 
DISABLE                  ; Disable Interrupts 
NOP
DSYNC                    ; Flush Buffers, background context 
ISYNC                    ; Ensure DSYNC completes 
<Store to SCU to assert idle request> 
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NOP                      ; Wait on idle request 
NOP                      ; Wait on idle request 
...

CPU_TC.060   LD.[A,DA] followed by a dependent LD.[DA,D,W] can produce 
unreliable results

An LD.A or LD.DA instruction followed back to back by an unaligned LD.DA, LD.D or 
LD.W instruction can lead to unreliable results. This problem is independent of the 
instruction formats (16 and 32 bit versions of both instructions are similarly affected)
The problem shows up if the LD.DA, LD.D or LD.W uses an address register which is 
loaded by the preceding LD.A or LD.DA and if the LD.DA, LD.D or LD.W accesses data 
which leads to a multicycle execution of this second instruction.

A multicycle execution of LD.DA, LD.D or LD.W will be triggered only if the accessed 
data spans a 128 bit boundary in the local DSPR space or a 128 bit boundary in the 
cached space. In the non cached space an access spanning a 64 bit boundary can lead 
to a multicycle execution.
The malfunction is additionally dependent on the previous content of the used address 
register - the bug appears if the content points to the unimplemented DSPR space.
In the buggy case the upper portion of the multicycle load is derived from a wrong 
address (the address is dependent on the previous content of that address register) and 
the buggy case leads to a one cycle FASTER execution of this back to back case. (one 
stall bubble is lacking in this case)
The 16 and 32 bit variants of both instructions are affected equally. A single IP instruction 
as workaround is NOT sufficient, as it gets dual issued with the LD.[DA,D,W] and 
therefore no bubble is seen by the LS pipeline in such a case.
Example:

... 
LD.A A3,<any addressing mode> ; load pointer into A3 
LD.W D1,[A3]<any addressing mode> ; load data value from pointer 
...

Workaround
Insert one NOP instruction between the address register load/store instruction and the 
data load/store instruction to allow the "Load Word to Address Register" operation to be 
completed first. This leads to a slight performance degradation.

... 
LD.A A3, <any addressing mode> 
NOP 
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LD.W D1, [A3] <any addressing mode> 
...

Alternative Workaround
To avoid the slight performance degradation, an alternative workaround is to avoid any 
data structures that are accessed in an unaligned manner as then the described 
instruction sequence does NOT exhibit any problems.

CPU_TC.061   Error in emulator memory protection override 
TriCore1 based systems define an area of the system address map for use as an 
emulator memory region. Whenever a breakpoint trap is taken, the processor jumps to 
the base of this emulator region from where a debug monitor is executed.
In order to allow correct execution of this monitor, in the presence of an enabled 
protection system, this emulator region is granted implicit execute permission. Execution 
of code from this region is allowed whether the current settings of the memory protection 
ranges specifically permit this or not, and no MPX trap will be generated.
In TriCore1.2 based systems, this emulator memory region existed at addresses 
0xBExxxxxx. In TriCore1.3 based systems, this emulator region initially was moved to 
addresses 0xDExxxxxx before being made fully programmable. 
The erroneous behaviour occurs because as this emulator region was moved from 
addresses 0xBExxxxxx, the implicit execute permission to this address range was not 
moved also. As a result:
1. Code execution from addresses in the range 0xBE000000 - 0xBEFFFFFF is always 

permitted, irrespective of the settings of the protection system.
2. Execution of a breakpoint trap may result in the generation of an MPX trap if execution 

from the new emulator region is dis-allowed by the current settings of the protection 
system.

Workaround
None

CPU_TC.062   Error in circular addressing mode for large buffer sizes 
A problem exists in the circular addressing mode when large buffer sizes are used. 
Specifically, the problem exists when:
1. The length, L, of the circular buffer is >=32768 bytes, i.e. MSB of L is '1'
AND
2. The offset used to access the circular buffer is negative.
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In this case the update of the circular buffer index may be calculated incorrectly and the 
addressing mode fail.
Each time an instruction using circular addressing mode occurs the next index for the 
circular buffer is calculated as current index + offset, where the signed offset is supplied 
as part of the instruction. In addition, the situation where the new index lies outside the 
bounds of the circular buffer has to be taken care of and the correct wrapping behaviour 
performed. In the case of negative offsets, the buffer underflow condition needs to be 
checked and, when detected, the buffer size is added to the index in order to implement 
the required wrapping. 
Due to an error in the way the underflow condition is detected, there are cases where the 
buffer size is incorrectly added to the index when there is no buffer underflow. This false 
condition is detected when the index is greater than or equal to 32768 and the offset is 
negative.

Example: 
... 
MOVH.A A1, #0xE001 ; 
LEA A1, [A1]-0x4000 ; Buffer Length 0xE000, Index 0xC000 
LEA A0, 0xA0000000 ; Buffer Base Address 
LD.W D9, [A0/A1+c]-0x4 ; Circular addressing mode access, 

; negative offset 
...

Workaround
Either limit the maximum buffer size for circular addressing mode to 32768 bytes, or use 
only positive offsets where larger circular buffers are required.

CPU_TC.063   Error in advanced overflow flag generation for SHAS instruction 
A minor problem exists with the computation of the advanced overflow (AV) flag for the 
SHAS (Arithmetic Shift with Saturation) instruction. The TriCore1.3 architecture defines 
that for instructions supporting saturation, the advanced overflow flag shall be computed 
BEFORE saturation. The implementation of the SHAS instruction is incorrect with the AV 
flag computed after saturation.
Example:

... 
MOVH D0, #0x4800 ; D0 = 0x48000000 
MOV.U D1, #0x2 ; D1 = 0x2 
SHAS D2, D0, D1 ; Arithmetic Shift with Saturation 
...
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In the above example, the result of 0x4800_0000 << 2 = 0x1_2000_0000, such that the 
expected value for AV = bit31 XOR bit30 = 0. However, after saturation the result is 
0x7FFF_FFFF and the AV flag is incorrectly set.

Workaround
None

CPU_TC.064   Co-incident FCU and CDO traps can cause system-lock
A problem exists in the interaction between Free Context Underflow (FCU) and Call 
Depth Overflow (CDO) traps. An FCU trap occurs when a context save operation is 
attempted and the free context list is empty, or when the context operation encounters 
an error. A CDO trap occurs when a program attempts to make a call with call depth 
counting enabled and the call depth counter was already at its maximum value.
When an FCU trap occurs with call depth counting enabled (PSW.CDE = ’1’) and the call 
depth counter at a value such that the next call will generate a CDO trap, then the FCU 
trap causes a co-incident CDO trap. In this case the PC is correctly set to the FCU trap 
handler but appears to freeze in this state as a constant stream of FCU traps is 
generated.
A related problem occurs when call trace mode is enabled (PSW.CDC = 0x7E). If in call 
trace mode a call or return operation encounters an FCU trap, either a CDO (call) or Call 
Depth Underflow (CDU, return) trap is generated co-incident with the FCU trap, either of 
which situations lead to a constant stream of FCU traps and system lockup.
Note however that FCU traps are not expected during normal operation since this trap is 
indicative of software errors.

Workaround
None

CPU_TC.065   Error when unconditional loop targets unconditional jump 
An error in the program flow occurs when an unconditional loop (LOOPU) instruction has 
as its target an unconditional jump instruction, i.e. as the first instruction of the loop. Such 
unconditional jump instructions are J, JA, JI, JL, JLA and JLI.
In this erroneous case the first iteration of the loop executes correctly. However, at the 
point the second loop instruction is executed the interaction of the unconditional loop and 
jump instructions causes the loop instruction to be resolved as mis-predicted and the 
program flow exits the loop incorrectly, despite the loop instruction being unconditional.
Example:
TC1100, BB 16/49 V1.1, 01.02.2006



Errata Sheet

Functional Deviations 
... 
loop_start_: ; Loop start label 
J jump_label_ ; Unconditional Jump instruction 
... 
LOOPU loop_start_ 
...

Workaround
The first instruction of a loop may not be an unconditional jump. If necessary, precede 
this jump instruction with a single NOP.

... 
loop_start_: ; Loop start label 
NOP 
J jump_label_ ; Unconditional Jump instruction 
... 
LOOPU loop_start_ 
...

CPU_TC.066   Incorrect forwarding when dependent CACHEA follows LD.[D]A
An error can occur when an LD.A or LD.DA instruction is followed back to back by a data 
cache management instruction (CACHEA.W, CACHEA.WI or CACHEA.I). The problem 
occurs if the addressing mode of the cache management instruction uses the address 
register which is being loaded by the preceding LD.A or LD.DA instruction. A problem 
exists in the logic required to detect the read after write hazard between these two 
instructions, which may lead to the old value of the address register being used 
erroneously for the CACHEA instruction.
Example:
...
LD.AA3, <any addressing mode>
CACHEA.W[A3] <any addressing mode>
...

Workaround
Insert one NOP instruction between the address register load instruction and the data 
cache management instruction to allow the "Load Word to Address Register" operation 
to be completed first.
...
LD.AA3, <any addressing mode>
NOP
CACHEA.W[A3] <any addressing mode>
...
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CPU_TC.067   Incorrect operation of STLCX instruction
There is an error in the operation of the Store Lower Context (STLCX) instruction. This 
instruction stores the current lower context information to a 16-word memory block 
specified by the addressing mode associated with the instruction (not to the free context 
list). The architectural definition of the STLCX instruction is as follows:
Mem(EA, 16-word) = {PCXI, A[11], A[2:3], D[0:3], A[4:7], D[4:7]}
However, there is an error in the implementation of the instruction, such that the following 
operation is actually performed:
Mem(EA, 16-word) = {PCXI, PSW, A[2:3], D[0:3], A[4:7], D[4:7]}
i.e. the PSW is incorrectly stored instead of A11.
During normal operation, the lower context information that has been stored by an 
STLCX instruction would be re-loaded using the Load Lower Context (LDLCX) 
operation. The architectural definition of the LDLCX instruction is as follows:
{-, -, A[2:3], D[0:3], A[4:7], D[4:7]} = Mem(EA, 16-word)
i.e. the value which is incorrectly stored by STLCX is not re-loaded by LDLCX, such that 
the erroneous behaviour is not seen during normal operation.
However, any attempt to reload a lower context stored with STLCX using load 
instructions other than LDLCX will exhibit the incorrect behaviour.

Workaround
Any lower context stored using STLCX should only be re-loaded using LDLCX, 
otherwise the erroneous behaviour will be visible.

CPU_TC.068   Potential PSW corruption by cancelled DVINIT instructions
A problem exists in the implementation of the Divide Initialisation instructions, which, 
under certain circumstances, may lead to corruption of the advanced overflow (AV), 
overflow (V) and sticky overflow (SV) flags. These flags are stored in the Program Status 
Word (PSW) register, fields PSW.AV, PSW.V and PSW.SV. The divide initialisation 
instructions are DVINIT, DVINIT.U, DVINIT.B, DVINIT.BU, DVINIT.H and DVINIT.HU.
The problem is that the DVINIT class instructions do not handle the instruction 
cancellation signal correctly, such that cancelled DVINIT instructions still update the 
PSW fields. The PSW fields are updated according to the operands supplied to the 
cancelled DVINIT instruction. Due to the nature of the DVINIT instructions this can lead 
to:
• The AV flag may be negated erroneously.
• The V flag may be asserted or negated erroneously.
• The SV flag may be asserted erroneously.
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No other fields of the PSW can be affected. A DVINIT class instruction could be 
cancelled due to a number of reasons: 
• the DVINIT instruction is cancelled due to a mis-predicted branch
• the DVINIT instruction is cancelled due to an unresolved operand dependency
• the DVINIT instruction is cancelled due to an asynchronous event such as an interrupt

Workaround
If the executing program is using the PSW fields to detect overflow conditions, the 
correct behaviour of the DVINIT instructions may be guaranteed by avoiding the 
circumstances which could lead to a DVINIT instruction being cancelled. This requires 
that the DVINIT instruction is preceded by 2 NOPs (to avoid operand dependencies or 
the possibility of mis-predicted execution). In addition, the status of the interrupt enable 
bit ICR.IE must be stored and interrupts disabled before the 2 NOPs and the DVINIT 
instruction are executed, and the status of the ICR.IE bit restored after the DVINIT 
instruction is complete.

Alternative Workaround
To avoid the requirement to disable and re-enable interrupts an alternative workaround 
is to precede the DVINIT instruction with 2 NOPs and to store the PSW.SV flag before a 
DVINIT instruction and check its consistency after the DVINIT instruction. In this case 
the values of the PSW flags affected may be incorrect whilst the asynchronous event is 
handled, but once the return from exception is complete and the DVINIT instruction re-
executed, only the SV flag can be in error. In this case if the SV flag was previously 
negated but after the DVINIT instruction the SV flag is asserted and the V flag is negated, 
then the SV flag has been asserted erroneously and should be corrected by software.

CPU_TC.069   Potential incorrect operation of RSLCX instruction
A problem exists in the implementation of the RSLCX instruction, which, under certain 
circumstances, may lead to data corruption in the TriCore internal registers. The problem 
is caused by the RSLCX instruction incorrectly detecting a dependency to the following 
load-store (LS) or loop (LP) pipeline instruction, if that instruction uses either address 
register A0 or A1 as a source operand, and erroneous forwarding paths being enabled.
Two failure cases are possible:
1. If the instruction following the RSLCX instruction uses A1 as its source 1 operand, the 

PCX value updated by the RSLCX instruction will be corrupted. Instead of restoring 
the PCX value from the lower context information being restored, it will restore the 
return address (A11). 

2. If the instruction following the RSLCX instruction uses either A1 or A0 as source 2 
operand, the value forwarded (for the second instruction) will not be the one stored in 
the register but the one that has just been loaded from memory for the context restore 
(A11/PCX).
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Note that the problem is triggered whenever the following load-store pipeline instruction 
uses A0 or A1 as a source operand. If an integer pipeline instruction is executed between 
the RSLCX and the following load-store or loop instruction, the problem may still exist.
Example:

... 
RSLCX 
LEA A0, [A0]0x158c 
...

Workaround
Any RSLCX instruction should be followed by a NOP to avoid the detection of these false 
dependencies.

CPU_TC.070   Error when conditional jump precedes loop instruction
An error in the program flow may occur when a conditional jump instruction is directly 
followed by a loop instruction (either conditional or unconditional). Both integer pipeline 
and load-store pipeline conditional jumps (i.e. those checking the values of data and 
address registers respectively) may cause the erroneous behaviour.
The incorrect behaviour occurs when the two instructions are not dual-issued, such that 
the conditional jump is in the execute stage of the pipeline and the loop instruction is at 
the decode stage. In this case, both the conditional jump instruction and the loop 
instruction will be resolved in the same cycle. The problem occurs because priority is 
given to the loop mis-prediction logic, despite the conditional jump instruction being 
semantically before the loop instruction in the program flow. In this error case the 
program flow continues as if the loop has exited: the PC is taken from the loop mis-
prediction branch. In order for the erroneous behaviour to occur, the conditional jump 
must be incorrectly predicted as not taken. Since all conditional jump instructions, with 
the exception of 32-bit format forward jumps, are predicted as taken, only 32-bit forward 
jumps can cause the problem behaviour.
Example:

... 
JNE.A A1, A0, jump_target_1_ ; 32-bit forward jump 
LOOP A6, loop_target_1_ 
... 
jump_target_1_: 
...

Workaround
A conditional jump instruction may not be directly followed by a loop instruction 
(conditional or not). A NOP must be inserted between any load-store pipeline conditional 
jump (where the condition is dependent on an address register) and a loop instruction. 
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Two NOPs must be inserted between any integer pipeline conditional jump (where the 
condition is dependent on a data register) and a loop instruction

CPU_TC.071   Error when Conditional Loop targets Unconditional Loop
An error in the program flow may occur when a conditional loop instruction (LOOP) has 
as its target an unconditional loop instruction (LOOPU). The incorrect behaviour occurs 
in certain circumstances when the two instructions are resolved in the same cycle. If the 
conditional loop instruction is mis-predicted, i.e. the conditional loop should be exited, 
the unconditional loop instruction is correctly cancelled but instead of program execution 
continuing at the first instruction after the conditional loop, the program flow is corrupted.
Example:

... 
cond_loop_target_: 
LOOPU uncond_loop_target_ ; Unconditional loop 
... 
LOOP A6, cond_loop_target_ ;Conditional loop targets 

;unconditional loop 
...

Workaround
The first instruction of a conditional loop may not be an unconditional loop. If necessary, 
precede this unconditional loop instruction with a single NOP.

CPU_TC.072   Error when Loop Counter modified prior to Loop instruction
An error in the program flow may occur when an instruction that updates an address 
register is directly followed by a conditional loop instruction which uses that address 
register as its loop counter. The problem occurs when the address register holding the 
loop counter is initially zero, such that the loop will exit, but is written to a non-zero value 
by the instruction preceding the conditional loop. In this case the loop prediction logic 
fails and the program flow is corrupted.
Example:

... 
LD.A A6, <any addressing mode> 
LOOP A6, loop_target_1_ 
...
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Workaround
Insert one NOP instruction between the instruction updating the address register and the 
conditional loop instruction dependent on this address register.

CPU_TC.073   Debug Events on Data Accesses to Segment E/F Non-functional
The generation of debug events from data accesses to addresses in Segments 0xE and 
0xF is non-functional. As such the setting of breakpoints on data accesses to these 
addresses does not operate correctly.
In TriCore1 the memory protection system, consisting of the memory protection register 
sets and associated address comparators, is used both for memory protection and 
debug event generation for program and data accesses to specific addresses. For 
memory protection purposes, data accesses to the internal and external peripheral 
segments 0xE and 0xF bypass the range protection system and are protected instead 
by the I/O privilege level and protection mechanisms built in to the individual peripherals. 
Unfortunately this bypass of the range protection system for segments 0xE and 0xF also 
affects debug event generation, masking debug events for data accesses to these 
segments.

Workaround
None.

CPU_TC.074   Interleaved LOOP/LOOPU instructions may cause GRWP Trap
If a conditional loop instruction (LOOP) is executed after an unconditional loop 
instruction (LOOPU) a Global Register Write Protection (GRWP) Trap may be 
generated, even if the LOOP instruction does not use a global address register as its 
loop counter.
In order to support zero-overhead loop execution the TriCore1 implementation caches 
certain attributes pertaining to loop instructions within the CPU. The TriCore1.3 CPU 
contains two loop cache buffers such that two loop (LOOP or LOOPU) instructions may 
be cached. One of the attributes cached is whether the loop instruction writes to a global 
address register (as its loop variable). For LOOP instructions this attribute is updated 
and read as expected. For LOOPU instructions this attribute is set but ignored by the 
LOOPU instruction when next encountered.
The problem occurs because there is only one global address register write flag shared 
between the two loop caches. As such if LOOP and LOOPU instructions are interleaved, 
with the LOOPU instruction encountered and cached after the LOOP instruction, then 
the next execution of the LOOP instruction will find the global address register write flag 
set and, if global register writes are disabled (PSW.GW = 0), a GRWP trap will be 
incorrectly generated.
Example:
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...
loopu_target_
...
loop_target_
...
LOOP A5, loop_target_
...
LOOPU loopu_target_
...

User Workaround
Enable global register write permission, PSW.GW = 1.

Tool Vendor Workaround
The LOOPU instruction sets the global address register write flag when its un-used 
opcode bits [15:12] are incorrectly decoded as global address register A0. The problem 
may be avoided by assembling these un-used bits to correspond to a non-global register 
encoding, such as 0xF.

CPU_TC.075   Interaction of CPS SFR and CSFR reads may cause livelock
Under certain specific circumstances system lockup may occur if the TriCore CPU 
attempts to access a Special Function Register (SFR) within the CPS module around the 
same time as another master attempts to read a Core Special Function Register (CSFR), 
also via the CPS module.
In order to read a CSFR the CPS module injects an instruction into the CPU pipeline to 
access the required register. In order for this injected instruction to complete successfully 
the CPU pipeline must be allowed to progress. To avoid system lockup the CSFR read 
access is initially retry acknowledged on the FPI bus to ensure the FPI bus is not blocked 
and any CPU read access to an address mapped to the FPI bus is able to progress. The 
CPS then continues the CSFR read in the background, and, once complete, returns the 
data to the originating master when the read access is performed again.
The problem occurs if the CPU is attempting to access an SFR accessed via the CPS 
module around the time another master is attempting a CSFR read access. Under 
normal circumstances this causes no problem since the SFR access is allowed to 
complete normally even with an outstanding CSFR access in the background. However, 
if the SFR access is pipelined on the FPI bus behind the CSFR access and the CSFR 
access is still in progress then the interaction of the two pipelined transactions may 
cause the SFR access to be retry acknowledged in error. Thus the CPU pipeline is still 
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frozen and the CSFR access cannot complete. As long as the two transactions, when 
re-initiated by their respective masters, continue to be pipelined on the FPI bus then this 
livelock situation will continue.
Note however that the only FPI master expected to access the CSFR address range via 
the CPS would be the Cerberus module under control of an external debugger. As such 
this livelock situation should only be possible whilst debugging, not during normal system 
operation. 

Workaround
None.

CPU_TC.077   CACHEA.I instruction executable in User Mode
The CACHEA.W and CACHEA.WI instructions which writeback and optionally invalidate 
enties from the data cache are user mode executable instructions. The CACHEA.I 
instruction which invalidates data cache entries without writeback should be executable 
in supervisor mode only. However the current implementation is such that the CACHEA.I 
instruction  is executable in user mode also. 

Workaround

None.

CPU_TC.078   Possible incorrect overflow flag for MSUB.Q instructions
Under certain conditions, certain variants of the MSUB.Q instruction can fail and produce 
an incorrect overflow flag, PSW.V. When the problem behaviour occurs, the overflow 
flag is always generated incorrectly: if PSW.V should be set it will be cleared, and if it 
should be cleared it will be set.

The problem affects two variants of the MSUB.Q instruction, specifically:
  msub.q Dc,Dd,Da,Db, #0x1
  msub.q Dc,Dd,Da,DbL,#0x1
These instructions are those that match all of the following criteria:

• the instruction has a 32-bit result,

• the instruction has at least one 32-bit multiplicand,

• the instruction is non-saturating (MSUBS.Q not affected),
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• the instruction includes re-alignment (n=1)
Note: Only the lower half-word variant of the 32*16 bit msub.q instruction is affected.

The conditions under which the erroneous behaviour occurs are as follows:

Case 1) msub.q Dc,Dd,Da,Db, #0x1
If both Da[31:16] and Db[31:16] = 0x8000, then PSW.V will be incorrect.

Case 2) msub.q Dc,Dd,Da,DbL, #0x1
If both Da[31:16] and DbL = 0x8000, then PSW.V will be incorrect.

Workaround
If appropriate to the algorithm, the MSUB.Q instruction may be replaced by the 
saturating variant, MSUBS.Q, which is not affected by this erratum.

CPU_TC.079   Possible invalid ICR.PIPN when no interrupt pending
Under certain circumstances the Pending Interrupt Priority Number, ICR.PIPN, may be 
invalid when there is no interrupt currently pending. When no interrupt is pending the 
ICR.PIPN field is required to be zero.
There are two circumstances where ICR.PIPN may have a non-zero value when no 
interrupt is pending:
1. When operating in 2:1 mode between CPU and interrupt bus clocks, the ICR.PIPN

field may not be reset to zero when an interrupt is acknowledged by the CPU.
2. During the interrupt arbitration process the ICR.PIPN is constructed in 1-4 arbitration 

rounds where 2 bits of the PIPN are acquired each round. The intermediate PIPN 
being used to construct the full PIPN is made available as ICR.PIPN. This is a 
potential problem because reading the PIPN can indicate a pending interrupt that is 
not actually pending and may not even be valid. e.g. if interrupt 0x81 is the highest 
priority pending interrupt, then ICR.PIPN will be read as 0x80 during interrupt 
arbitration rounds 2,3 and 4. Only when the arbitration has completed will the valid 
PIPN be reflected in ICR.PIPN.

The hardware implementation of the interrupt system for the TriCore1 CPU actually 
comprises both the PIPN and a separate, non-architecturally visible, interrupt request 
flag. The CPU only considers PIPN when the interrupt request flag is asserted, at which 
times the ICR.PIPN will always hold a valid value. As such the hardware implementation 
of the interrupt priority scheme functions as expected. However, reads of the ICR.PIPN
field by software may encounter invalid information and should not be used.
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Workaround
None.

CPU_TC.080   No overflow detected by DVINIT instruction for MAX_NEG / -1
A problem exists in variants of the Divide Initialisation instruction with certain corner case 
operands. Only those instruction variants operating on signed operands, DVINIT, 
DVINIT.H and DVINIT.B, are affected. The problem occurs when the maximum 
representable negative value of a number format is divided by -1.
The Divide Initialisation instructions are required to initialise an integer division sequence 
and detect corner case operands which would lead to an incorrect final result (e.g. 
division by 0), setting the overflow flag, PSW.V, accordingly.
In the specific case of division of the maximum negative 32-bit signed integer 
(0x80000000) by -1 (0xFFFFFFFF), the result is greater than the maximum 
representable positive 32-bit signed integer and should flag overflow. However, this 
specific case is not detected by the DVINIT instruction and a subsequent division 
sequence returns the maximum negative number as a result with no corresponding 
overflow flag.
In the cases of division of the maximum negative 16/8-bit signed integers (0x8000/0x80) 
by -1 (0xFFFF/0xFF), the result is greater than the maximum representable positive 16/
8-bit signed integer and should again flag overflow. These specific cases are not 
detected by the DVINIT.H/.B instructions with no corresponding overflow flag set. In this 
case the result of a subsequent division sequence returns the value 0x00008000/
0x00000080 which is the correct value when viewed as a 32-bit number but has 
overflowed the original number format.

Workaround
If the executing program is using the PSW fields to detect overflow conditions, the 
specific corner case operands described above must be checked for and handled as a 
special case in software before the standard division sequence is executed.

CPU_TC.081   Error during Load A[10], Call / Exception Sequence
A problem may occur when an address register load instruction, LD.A or LD.DA, 
targeting the A[10] register, is immediately followed by an operation causing a context 
switch. The problem may occur in one of two situations:
1) The address register load instruction, targeting A[10], is followed immediately by a call 
instruction (CALL, CALLA, CALLI).
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2) The address register load instruction, targeting A[10], is followed immediately by a 
context switch caused by an interrupt or trap being taken, where the interrupt stack is 
already in use (PSW.IS = 1).
In both these situations the value of A[10] is required to be maintained across the context 
switch. However, where the context switch is preceded by a load to A[10], the address 
register dependency is not detected correctly and the called context inherits the wrong 
value of A[10]. In this case the value of A[10] before the load instruction is inherited.
Example:

...
LD.A A10, <any addressing mode>
CALL call_target_
...

Workaround
The problem only occurs when A[10] is loaded directly from memory. The software 
workaround therefore consists of loading another address register from memory and 
moving the contents to A[10].
Example:

...
LD.A A12, <any addressing mode>
MOV.AA A10, A12
CALL call_target_
...

CPU_TC.082   Data corruption possible when Memory Load follows Context Store
Data corruption may occur when a context store operation, STUCX or STLCX, is 
immediately followed by a memory load operation which reads from the last double-word 
address written by the context store. 
Context store operations store a complete upper or lower context to a 16-word region of 
memory, aligned on a 16-word boundary. If the context store is immediately followed by 
a memory load operation which reads from the last double-word of the 16-word context 
region just written, the dependency is not detected correctly and the previous value held 
in this memory location may be returned by the memory load.
The memory load instructions which may return corrupt data are as follows:
  ld.b, ld.bu, ld.h, ld.hu, ld.q, ld.w, ld.d, ld.a, ld.da
Example:
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...
STLCX 0xD0000040
LD.W D15, 0xD0000078
...

Note that the TriCore architecture does not require a context save operation (CALL, 
SVLCX, etc.) to update the CSA list semantically before the next operation (but does 
require the CSA list to be up to date after the execution of a DSYNC instruction). As such 
the same problem may occur for context save operations, but the result of such a 
sequence is architecturally undefined in any case.

Workaround
One NOP instruction must be inserted between the context store operation and a 
following memory load instruction if the memory load may read from the last double-word 
of the 16-word context region just written.
Example:

...
STLCX 0xD0000040
NOP
LD.W D15, 0xD0000078
...

CPU_TC.083   Interrupt may be taken following DISABLE instruction
The TriCore V1.3 architecture requires that the DISABLE instruction gives deterministic 
behaviour, i.e. no interrupt may be taken following the execution of the DISABLE 
instruction.
However, the current implementation allows an interrupt to be taken immediately 
following the execution of the DISABLE instruction, i.e. between the DISABLE and the 
following instruction. Once the first instruction after the DISABLE instruction has been 
executed its is still guaranteed that no interrupt will be taken.

Workaround
If an instruction sequence must not be interrupted, then the DISABLE instruction must 
be followed by a single NOP instruction, before the critical code sequence.
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CPU_TC.085   CPS module may error acknowledge valid read transactions
A bug exists in the CPS module, which may result in the CPS incorrectly returning an 
error acknowledge for a read access to a valid CPS address.
The problem occurs when a read access to a CPS address, in the range 0xF7E00000 - 
0xF7E1FFFF, is followed immediately on the FPI bus by a User mode write access to an 
address with FPI address[16] = 1. The problem occurs due to an error in the FPI bus 
decoding within the CPS which incorrectly interprets the second transaction, even if to 
another slave, as an illegal User mode write to a TriCore CSFR and incorrectly error 
acknowledges the valid read. Write accesses to the CPS module are not affected.

Workaround
For devices in which multiple FPI bus masters may operate in User mode, but only the 
TriCore CPU and Debug Interface (Cerberus) are expected to access the CPS address 
range, the workaround consists of 3 parts:
Tool Vendor
1) The Cerberus module must be configured to operate in Supervisor mode, to reduce 
the probability of the TriCore CPU from receiving false error acknowledges.
2) If the Cerberus FPI Master receives an error acknowledge it enters error state, which 
is detected by the debugger as a timeout. In this case the debugger should release the 
Cerberus from the error state with the io_supervisor command and read out the cause 
of the error. Where an error acknowledge is determined to be the cause for a read in the 
CPS address range the read request should be re-issued.
User
3) If the TriCore CPU reads from a CPS address, via the LFI bridge, which results in an 
error acknowledge being incorrectly generated, the TriCore CPU will take a synchronous 
DSE trap. In order to workaround this potential problem the following sequence is 
recommended:
i) A flag is set in a specific memory location immediately before the TriCore CPU 
attempts a load from a CPS SFR address, and cleared immediately afterwards.
ii) The DSE trap handler is modified to check the status of the flag set in (i). If the flag is 
set the DSE handler should clear the error capture mechanisms of the FPI BCU and 
LBCU which will have captured the error acknowledge, and then execute an RFE 
instruction. This will cause the original load instruction to be re-executed and allow the 
program to continue normally.

CPU_TC.086   Incorrect Handling of PSW.CDE for CDU trap generation
An error exists in the CDU (Call Depth Underflow) trap generation logic. CDU traps are 
architecturally defined to occur when "A program attempted to execute a RET (Return) 
instruction while Call Depth Counting was enabled, and the Call Depth Counter was 
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zero". Call depth counting is enabled when PSW.CDC /= 1111111 and PSW.CDE = 1. 
However, the status of PSW.CDE is currently not considered for CDU trap generation, 
and CDU traps may be generated when PSW.CDE = 0.
Call depth counting, and generation of the associated CDO and CDU traps, may be 
disabled by one of two methods. Setting PSW.CDC = 1111111 globally disables call 
depth counting and operates as specified. Setting PSW.CDE = 0 temporarily disables 
call depth counting (it is re-enabled by each call instruction) and is used primarily for call/
return tracing.

Workaround
In order to temporarily disable call depth counting for a single return instruction, 
PSW.CDC should be set to 1111111 before the return instruction is executed.

CPU_TC.087   Exception Prioritisation Incorrect
The TriCore architecture defines an exception priority order, consisting of the relative 
priorities of asynchronous traps, synchronous traps and interrupts, and the prioritisation 
of individual trap types. 
The current implementation of the TriCore1.3 CPU complies with the general principle 
that the older the instruction is in the instruction sequence which caused the trap, the 
higher the priority of the trap. However, the relative prioritisation of asynchronous and 
synchronous events and the prioritisation between individual trap types does not fully 
comply with the architectural definition.
The current TriCore1.3 CPU implements the following priority order between an 
asynchronous trap, a synchronous trap, and an interrupt:
1. Synchronous traps detected in Execute pipeline stage (highest priority).
2. Asynchronous trap.
3. Interrupt.
4. Synchronous trap detected in Decode pipeline stage (lowest priority).
Within these groups the following priorities are implemented:

Table 6 Synchronous Trap Priorities (Detected in Execute Stage)
Priority Type of Trap
1 VAF-D
2 VAP-D
3 MPR
4 MPW
5 MPP
6 MPN
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7 ALN
8 MEM
9 DSE
10 OVF
11 SOVF
12 Breakpoint Trap (BAM)

Table 7 Asynchronous Trap Priorities
Priority Type of Trap
1 NMI
2 DAE

Table 8 Synchronous Trap Priorities (Detected in Decode Stage)
Priority Type of Trap
1 FCD
2 VAF-P
3 VAP-P
4 PSE
5 Breakpoint Trap (Virtual Address, BBM)
6 Breakpoint Trap (Instruction, BBM)
7 PRIV
8 MPX
9 GRWP
10 IOPC
11 UOPC
12 CDO
13 CDU
14 FCU
15 CSU
16 CTYP

Table 6 Synchronous Trap Priorities (Detected in Execute Stage)
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Although the implemented trap priorities do not match those defined by the TriCore 
architecture, this does not cause any problem in the majority of circumstances. The only 
circumstance in which the incorrect priority order must be considered is in the individual 
trap handlers, which should not be written to be dependent on the architecturally defined 
priority order. For instance, according to the architectural definition, a PSE trap handler 
could assume that any PSE trap received was as a result of a program fetch access from 
a memory region authorised by the memory protection system. However, as a result of 
the implemented priorities of PSE and MPX traps, this assumption cannot be made. 

Workaround
Trap handlers must be written to take account of the implemented priority and not rely 
upon the architecturally defined priority order.

CPU_TC.088   Imprecise Return Address for FCU Trap
The FCU trap is taken when a context save operation is attempted but the free context 
list is found to be empty, or when an error is encountered during a context save or restore 
operation. In failing to complete the context operation, architectural state is lost, so the 
occurrence of an FCU trap is a non-recoverable system error. 
Since FCU traps are non-recoverable system errors, having a precise return address is 
not important, but can be useful in establishing the cause of the FCU trap. The current 
TriCore1 implementation does not generate a precise return address for FCU traps in all 
circumstances.
An FCU trap may be generated as a result of 3 situations:
1. An instruction caused a context operation explicitly (CALL, RET etc.), which failed. 

The FCU return address should point to the instruction which caused the context 
operation.

2. An instruction caused a synchronous trap, which attempted to save context and 
encountered an error. The FCU return address should point to the original instruction 
which caused the synchronous trap.

3. An asynchronous trap or interrupt occurred, which attempted to save context and 
encountered an error. The FCU return address should point to the next instruction to 
be executed following a return from the asynchronous event.

In each of these circumstances the return address generated by the current TriCore1 
implementation may be up to 8 bytes greater than that intended.

17 NEST
18 SYSCALL

Table 8 Synchronous Trap Priorities (Detected in Decode Stage)
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Workaround
None

CPU_TC.089   Interrupt Enable status lost when taking Breakpoint Trap
The Breakpoint Trap allows entry to a Debug Monitor without using user resources, 
irrespective of whether interrupts are enabled or not. 
According to the current TriCore1.3 architecture definition, the actions pertaining to the 
ICR.IE bit upon taking a breakpoint trap are:
• Write PCXI to DCX + 0H.
• ICR.IE = 0H.
Upon returning from a breakpoint trap, the corresponding action taken is:
• Restore PCXI from DCX + 0H.
Unfortunately, during such a breakpoint trap, return from monitor sequence the original 
status of the interrupt enable bit, ICR.IE, is lost. ICR.IE is cleared to disable interrupts by 
the breakpoint trap, but the previous value of ICR.IE is not stored. The desired behaviour 
is to store ICR.IE to PCXI.PIE on taking a breakpoint trap, and restore it upon return from 
the debug monitor. The current TriCore1.3 implementation matches the current 
architecture definition whereby the interrupt enable status is lost on taking a breakpoint 
trap.

Workaround
If breakpoint traps are used in conjunction with code where the original status of the 
ICR.IE bit is known, then the debug monitor may set ICR.IE to the desired value before 
executing the return from monitor. 
If the original status of ICR.IE is not known and cannot be predicted, an alternative debug 
method must be used, such as an external debugger or breakpoint interrupts.

CPU_TC.090   MMU Page Table Entry Mapping Restrictions 
The TriCore V1.3 architecture defines a number of restrictions regarding Page Table 
Entries (PTEs) which should not be installed in the MMU (using the TLBMAP instruction).
In addition to these documented restrictions, the current TriCore1.3 implementation 
imposes further restrictions on PTEs that should not be installed. Installing a PTE in 
contravention of these restrictions will result in undefined behaviour.
General restrictions are as follows:
• A PTE must not contain a VPN where the virtual address is in the upper half of the 

address space.
• A PTE must not contain a PPN where the physical address is in a peripheral segment 

(segment E or F).
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• A PTE where the physical address obtained from the PPN is in a non-cacheable 
memory region must not have the PTE Cacheability bit (C) set. 

Where the physical address obtained from the PPN is in a cacheable memory region and 
the PTE Cacheability bit (C) is set, additional restrictions are imposed as follows:
• For a 4KByte cache, either a page size greater than 1KByte must be used, or VPN[0] 

must match PPN[0].
• For an 8KByte cache, either a page size greater than 1KByte must be used, or 

VPN[1:0] must match PPN[1:0].
• For a 16KByte cache, either a page size greater than 4KByte must be used, or 

VPN[2:0] must match PPN[2:0] (assuming 1KByte page size).
For example, the TC1130 device has a 16KByte program cache and a 4KByte data 
cache. Any PTE used exclusively for data accesses (PTE.XE = 0) must comply with the 
restriction for a 4K cache, whilst any PTE used for program access must comply with the 
restriction for a 16KByte cache.
The MMU may also be used to map virtual addresses to physical addresses which are 
in the range of the data and program scratchpad memories. In this case a further 
restriction applies as follows:
• Either a page size greater than the scratchpad memory size must be used, or for those 

address bits used to access the scratchpad memory, the corresponding VPN bits 
must equal the PPN bits.

For example, the TC1130 device contains 32KByte Program Scratchpad RAM (PSPR) 
and address bits [14:0] are used to access a location within this memory. For a 1KByte 
page size, the VPN and PPN contain 22 bits, with VPN/PPN[21:0] mapping to address 
bits [31:10]. In order to access the program scratchpad RAM via a PTE-based translation 
using a 1KByte page size, VPN[4:0] (address [14:10]) must equal PPN[4:0].

CPU_TC.091   Incorrect privilege handling of MMU instructions 
The TriCore V1.3 architecture defines the MMU instructions (TLBMAP, TLBDEMAP etc.) 
to be privileged instructions, executable in Supervisor mode only. Any attempt to execute 
an MMU instruction in a User mode should result in a PRIV trap.
However, the current TriCore1.3 implementation allows the MMU instructions to be 
executed in User-1 mode. Any attempt to execute an MMU instruction in User-0 mode 
will result in an MPP trap

Workaround

None.
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CPU_TC.092   Upper Memory Segments accessible in User-0 Mode with MMU 
enabled

The TriCore V1.3 architecture defines that for any system with an MMU, which is 
operating in virtual mode (MMU_CON.V = 1), then any User-0 mode access to a virtual 
address in the upper segments (which is not a peripheral segment) should result in a 
VAP trap.
The current TriCore1.3 implementation does not enforce this restriction and accesses to 
such upper memory segments in User-0 mode, with the TriCore operating in virtual 
mode, will be permitted.

Workaround
In order to prevent User-0 mode tasks from accessing the upper memory segments 
directly, the range-based memory protection system should be used to enforce the 
required behaviour.

CPU_TC.093   MMU Instruction Usage Restrictions
The TriCore Memory Management Unit (MMU) contains arbitration logic to handle the 
situation where multiple requests to access the UTLB occur concurrently, by instruction 
fetches, load-store instructions and/or MMU instructions. In the case of concurrent 
instruction fetch and load-store instruction accesses, this arbitration logic operates as 
required. However, when MMU instructions (TLBMAP, TLBDEMAP, etc.) require access 
to the MMU UTLB concurrent with either instruction fetch or load-store instruction 
accesses, the UTLB arbitration logic can fail and give undefined results.

Workaround
In order to avoid the problems in the UTLB arbitration logic, any MMU instruction, which 
is not followed by another MMU instruction, must be followed by a NOP and an ISYNC 
instruction. Multiple MMU instructions may be executed back-to-back without the need 
for intermediate NOP+ISYNC. In addition, all MMU instructions should be executed from 
addresses undergoing direct translation, such that instruction fetches do not require the 
UTLB.
Example:

...
TLBMAP E0
TLBMAP E2
NOP
ISYNC
...
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CPU_TC.094   Potential Performance Loss when CSA Instruction follows IP Jump
The TriCore1 CPU contains shadow registers for the upper context registers, to optimise 
the latency of certain CSA list operations. As such, the latency of instructions operating 
on the CSA list is variable dependent on the state of the context system. For instance, a 
return instruction will take fewer cycles when the previous upper context is held in the 
shadow registers than when the shadow registers are empty and the upper context has 
to be re-loaded from memory.
In situations where the CSA list is located in single cycle access memory (i.e. Data 
Scratchpad RAM), instructions operating on the upper context (such as call, return) will 
have a latency of between 2 and 5 cycles, dependent on the state of the context system. 
In the case where the CSA list instruction will take 4 or 5 cycles, the instruction will cause 
the instruction fetch request to be negated whilst the initial accesses of the context 
operation complete.
A performance problem exists when certain jump instructions which are executed by the 
integer pipeline are followed immediately by certain CSA list instructions, such that the 
instructions are dual-issued. In this case, where the jump instruction is predicted taken, 
the effect of the CSA list instruction on the fetch request is not immediately cancelled, 
which can lead to the jump instruction taking 2 cycles longer than expected. This effect 
is especially noticeable where the jump instruction is used to implement a short loop, 
since the loop may take 2 cycles more than expected. In addition, since the state of the 
context system may be modified by asynchronous events such as interrupts, the 
execution time of the loop before and after an interrupt is taken may be different.
Integer pipeline jump instructions are those that operate on data register values as 
follows: 
JEQ, JGE, JGE.U, JGEZ, JGTZ, JLEZ, JLT, JLT.U, JLTZ, JNE, JNED, JNEI, JNZ, 
JNZ.T, JZ, JZ.T
CSA list instructions which may cause the performance loss are as follows:
CALL, CALLA, CALLI, SYSCALL, RET, RFE

Workaround
In order to avoid any performance loss, in particular where the IP jump instruction is used 
to implement a loop and as such is taken multiple times, a NOP instruction should be 
inserted between the IP jump and the CSA list instruction.
Example:

...
JLT.U D[a], D[b], jump_target_
NOP
RET
...
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CPU_TC.095   Incorrect Forwarding in SAT, Mixed Register Instruction Sequence
In a small number of very specific instruction sequences, involving Load-Store (LS) 
pipeline instructions with data general purpose register (DGPR) operands, the operand 
forwarding in the TriCore1 CPU may fail and the data dependency between two 
instructions be missed, leading to incorrect operation. The problem may occur in one of 
two instruction sequences as follows:
Problem Sequence 1) 
LS instruction with DGPR destination {mov.d, eq.a, ne.a, lt.a, ge.a, eqz.a, nez.a, mfcr}(1)
SAT.H instruction (2)
LS instruction with DGPR source {addsc.a, addsc.at, mov.a, mtcr} (3)
If the DGPR source register of (3) is equal to the DGPR destination register of (1), then 
the interaction with the SAT.H instruction may cause the dependency to be missed and 
the original DGPR value to be passed to (3).

Problem Sequence 2)
1) Load instruction with 64-bit DGPR destination {ld.d, ldlcx, lducx, rslcx, rfe, rfm, ret} (1)
2) SAT.B or SAT.H instruction (2)
3. LS instruction with DGPR source {addsc.a, addsc.at, mov.a, mtcr} (3)
In this case if the DGPR source register of (3) is equal to the high 32-bit DGPR 
destination register of (1), then the interaction with the SAT.B/SAT.H instruction may 
cause the dependency to be missed and the original DGPR value to be passed to (3).

Example:
...
MOV.D D2, A12
SAT.H D7
MOV.A A4, D2
...

Note that for the second problem sequence the first instruction of the sequence could be 
RFE and as such occur asynchronous with respect to the program flow.

Workaround
A single NOP instruction must be inserted between any SAT.B/SAT.H instruction and a 
following Load-Store instruction with a DGPR source operand {addsc.a, addsc.at, 
mov.a, mtcr}.
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CPU_TC.096   Error when Conditional Loop targets Single Issue Group Loop
An error in the program flow may occur when a conditional loop instruction (LOOP) has 
as its target an instruction which forms part of a single issue group loop. Single issue 
group loops consist of an optional Integer Pipeline (IP) instruction, optional Load-Store 
Pipeline (LS) instruction and a loop instruction targeting the first instruction of the group. 
In order for the problem to occur the outer loop must first be cancelled (for instance due 
to a pipeline hazard) before being executed normally. When the problem occurs the loop 
counter of the outer loop instruction is not decremented correctly and the loop executed 
an incorrect number of times.
Example:

... 
loop_target_:
ADD D2, D1 ; Optional IP instruction
ADD.A A2, A1 : Optional LS instruction 
LOOP Ax, loop_target_ ; Single Issue Group Loop 
...
LD.A Am, <addressing mode>
LD.W Dx, [Am] ; Address dependency causes cancel 
LOOP Ay, loop_target_ ; Conditional loop targets 

; single issue group loop 
...

Workaround
Single issue group loops should not be used. Where a single issue group loop consists 
of an IP instruction and a loop instruction targeting the IP instruction, two NOPs must be 
inserted between the IP and loop instructions. Where a single issue group loop consists 
of an optional IP instruction, a single LS instruction and a loop instruction targeting the 
first instruction of this group, a single NOP must be inserted between the LS instruction 
and the loop instruction. Since single issue group loops do not operate optimally on the 
current TriCore1 implementation (not zero overhead), no loss of performance is incurred.

PMI_TC.001   Deadlock possible during Instruction Cache Invalidation
Deadlock of the TriCore1 processor is possible under certain circumstances when an 
instruction cache invalidation operation is performed. Instruction cache invalidation is 
performed by setting the PMI_CON1.CCINV special function register bit, then clearing 
this bit via software. Whilst PMI_CON1.CCINV is active the instruction Tag memories 
are cleared and new instruction fetches from the LMB are inhibited. Dependent upon the 
state of the instruction fetch bus master state machine this may lead to system deadlock, 
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since it may not be possible to fetch the instruction to clear the PMI_CON1.CCINV bit if 
this sequence is executed from LMB based memory.

Workaround
The set and clear of the PMI_CON1.CCINV bit must be performed by code executing 
from program scratchpad memory.

DMI_TC.005   DSE Trap possible with no corresponding flag set in DMI_STR
Under certain circumstances it is possible for a DSE trap to be correctly taken by the 
CPU but no corresponding flag is set in the DMI Synchronous Trap flag Register 
(DMI_STR). The problem occurs when an out-of-range access is made to the Data 
ScratchPad RAM (DSPR), which would ordinarily set the DMI_STR.LRESTF flag.
If an out-of-range access is made in cycle N, but cancelled, and followed by a second 
out-of-range access in cycle N+1, the edge detection logic associated with the DMI_STR 
register fails and no flag is set.

Workaround
If a DSE trap occurs with no associated flag set in the DMI_STR register, software should 
treat this situation as if the DMI_STR.LRESTF flag was set.

FPU_TC.001    FPU flags always update with FPU exception
SCU_STAT latches the value of the FPU flags each time there is an FPU exception. This 
will overwrite the information stored in the SCU_STAT, which correspond to the first 
exception before the user read the information.
Workaround:
None.

BCU_TC.002 SBCU does not give bus error

SBCU does not give bus error when the following memory 
segment is accessed:
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0-7
9,B & C
and memory address range of:
0xD0000000 - 0xD0007FFF

Workarounds:
None.  

SSC_TC.008   SSC shift register not updated in fractional divider mode
Transmitted data might be corrupted, if the SSC is used together with the fractional 
divider mode and a former transmission is not yet finished while new transmission data 
is written into the buffered transmit register. Data corruption only may occur, if write 
access with new data to the transmit buffer is performed in the last bit time slice, which 
is shifting out the last  data bit at the end of the previous transmission.

Workaround
1.) Do not use the fractional divider
2.) Wait for the receive interrupt instead of the transmit interrupt for sending the next data

SSC_TC.011   Unexpected phase error
If SSCCON.PH = 1 (Shift data is latched on the first shift clock edge) the data input of 
master should change on the second shift clock edge only. Since the slave select signals 
change always on the 1st edge and they can trigger a change of the data output on the 
slave side, a data change is possible on the 1st clock edge.
As a result of this configuration the master would activate the slave at the same time as 
it latches the expected data. Therefore the first data latched might be wrong.

To avoid latching of corrupt data, the usage of leading delay is recommended. But even 
so a dummy phase error can be generated during leading, trailing and inactive delay, 
since the check for a phase error is done with the internal shift clock, which is running 
during leading and trailing delay even if not visible outside the module.
If external circuitry (pull devices) delay a data change in slave_out/master_in after 
deactivation of the slave select line for n*(shift_clock_perid/2) then a dummy phase error 
can also be generated during inactive delay, even if SSCCON.PH = 0.
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Workaround
Don't evaluate phase error flag SSCSTAT.PE. This is no restriction for standard 
applications (the flag is implemented for test purpose).

OCDS_TC.007   DBGSR writes fail when coincident with a debug event
When a CSFR write to the DBGSR occurs in the same cycle as a debug event, the write 
data is lost and the DBGSR updates from the debug event alone.
CSFR writes can occur as the result of a MTCR instruction or an FPI write transaction 
from an FPI master such as Cerberus.

Workaround:
Writes to the DBGSR cannot be guaranteed to occur. Following a DBGSR write the 
DBGSR should be read to ensure that the write was successful, and take an appropriate 
action if it was not. The action of the simultaneous debug event will have to be 
considered when determining whether to repeat the DBGSR write, do nothing, or 
perform some other sequence.
Writes to the DBGSR are almost always to put the TriCore either into, or out of, halt 
mode. Since the TriCore can not release itself from halt mode, and only rarely puts itself 
into halt mode, DBGSR writes are usually made by Cerberus.
Example 1 The processor executes a MFCR instruction when a DBGSR write from 
Cerberus occurs that attempts to put the core into halt mode. The core register debug 
event occurs and CREVT.EVTA = 001B so the breakout signal is pulsed. The write from 
Cerberus is unsuccessful and TriCore continues executing. Implementing the 
workaround, Cerberus reads the DBGSR to check that halt mode has been entered. 
Since this time it has not, the DBGSR write is repeated as is the read. If the read now 
indicates that the second DBGSR write was successful and TriCore is now in halt mode, 
the process driving Cerberus may continue.
Example 2 The processor executes a DEBUG instruction when a DBGSR write from 
Cerberus occurs that attempts to put the core into halt mode. The software debug event 
occurs and SWEVT.EVTA = 010B so TriCore enters halt mode and the breakout signal 
is pulsed. The write from Cerberus did not occur, but the TriCore does enter halt mode. 
Cerberus reads DBGSR and continues since the TriCore is now halted.
Example 3 The processor is halted, an external debug event occurs when a DBGSR 
write from Cerberus occurs that attempts to release the core from halt mode. The 
external debug event occurs and EXEVT.EVTA = 001B so the breakout signal is pulsed. 
The write from Cerberus does not occur and TriCore remains in halt mode. Cerberus 
reads DBGSR to determine if its write was successful, it was not, so it repeats the write. 
This time the write was successful, and TriCore is released from halt. Cerberus reads 
the DBGSR to confirm that the second write succeeded and moves on.
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OCDS_TC.008   Breakpoint interrupt posting fails for ICR modifying instructions
BAM debug events with breakpoint interrupt actions which occur on instructions which 
modify ICR.CCPN or ICR.IE can fail to correctly post the interrupt. The breakpoint 
interrupt is either taken or posted based on the ICR contents before the instruction before 
the instruction rather than after the instruction, as required for a BAM debug event. The 
breakpoint interrupt may be posted when it should be taken or vice versa.
BAM breakpoint interrupts occurring on an MTCR, SYSCALL, RET, RFE, RSLCX, 
LDLCX and LDUCX instructions may be affected.
Workaround
None.

OCDS_TC.009   Data access trigger events unreliable
Trigger events set on data accesses do not fire reliably. Whilst they may sometimes 
successfully generate trigger events, they often will not.
Workaround:
None.
Debug triggers should only be used to create trigger events on instruction execution.

OCDS_TC.010   DBGSR.HALT[0] fails for separate resets
When TriCore’s main reset and debug reset are not asserted together DBGSR.HALT[0] 
can fail to indicate whether the CPU is in halt mode or not. This is because the halt mode 
can be entered or exited when a main reset occurs, depending on the boot halt signal. 
However DBGSR is reset when debug reset is asserted.
Example 1 TriCore is in halt mode and DBGSR.HALT[0] = ’1’. The main reset signal is 
asserted, and boot halt is negated, so TriCore is released from halt mode. However, 
because debug reset was not asserted DBGSR.HALT[0] = ’1’ incorrectly.
Example 2 TriCore is executing code (not in halt mode) and DBGSR.HALT[0] = ’0’. The 
main reset signal is asserted, and boot halt is asserted, so TriCore enters halt mode. 
However, because debug reset was not asserted DBGSR.HALT[0] = ’0’ incorrectly.
Example 3 TriCore is in halt mode and DBGSR.HALT[0] = ’1’. The debug reset signal is 
asserted, whilst the main reset is not. TriCore remains in halt mode, however, 
DBGSR.HALT[0] = ’0’ incorrectly.
Workaround
None.

OCDS_TC.011   Context lost for multiple breakpoint traps
On taking a debug trap TriCore saves a fast context (PCX,PSW,A10,A11) at the location 
defined by the DCX register.  The DCX location is only able to store a single fast context.  
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When a debug event has occurred which causes a breakpoint trap to occur TriCore 
executes the monitor code. If another debug event with a breakpoint trap action occurs, 
a new fast context will be written to the location defined in the DCX and the original fast 
context will be lost.
Workaround:
There are two parts of this workaround.  Both parts must be adhered to.
4. External debug events must not be setup to have breakpoint trap actions.
5. Do not allow non-external (trigger, software and core register) debug events with 

breakpoint trap actions to occur within monitor code.  So trigger events, software 
debug events,  with breakpoint trap actions should not be set on the monitor code.  So 
long as the debug events have non breakpoint actions they may be set to occur in the 
monitor code.

OCDS_TC.012   Multiple debug events on one instruction can be unpredictable

When more than one debug event is set to occur on a single instruction, the 
debug event priorities should determine which debug event is actually 
generated. However these priorities have not been implemented consistently.
Note: This only affects events from the trigger event unit and events from DEBUG, 

MTCR and MFCR instructions. The behaviour of the external debug event is not 
modified by this erratum.

Workaround
Trigger events must not be set to occur on DEBUG, MTCR and MFCR instructions, or 
on instructions which already have a trigger event set on them.

DMA_TC.004   Reset of registers OCDSR and SUSPMR is connected to FPI reset
The reset of the debug related registers OCDSR and SUSPMR should be connected to 
OCDS reset according to the specification. Instead of this, their reset is connected to the 
normal FPI reset, i.e. these registers get reset with a normal FPI reset.

Workaround
Re-initialize the (modified) OCDSR and SUSPMR register contents whenever a FPI 
reset has been performed.

DMA_TC.005    Do not access MExPR, MExAENR, MExARR with RMW instructions
The DMA registers MExPR, MExAENR and MExARR are showing a misbehaviour when 
being accessed with LDMST or ST.T instructions.
TC1100, BB 43/49 V1.1, 01.02.2006



Errata Sheet

Functional Deviations 
Workaround
Do not access these registers with RMW-instructions (Read/Modify/Write). Use normal 
write instructions instead.

DMA_TC.007   CHSRmn.LXO bit is not reset by channel reset
The software can request a channel reset with register bit CHRSTR.CHmn. In contrast 
to the specification the bit CHSRmn.LXO (pattern search result flag) is not reset.

Workaround
Perform a dummy move with a known non-matching pattern to clear it.

DMA_TC.010   Channel reset disturbed by pattern found event
There is a corner case where a software triggered channel reset request collides with a 
concurrently running pattern found event. If both operations occur at the same time, the 
channel will be reset as usual, but the pattern found event will cause the destination 
address in DADR register to be incremented/decremented once more.

Workaround
a) When using pattern matching always issue two channel reset operations.
b) The occurrence of this corner case can be detected by software (incorrect DADR 

value). In this case a second channel reset request is needed. 

DMA_TC.011   Pattern search for unaligned data fails on certain patterns
The DMA can be programmed to search for a pattern while doing a DMA transfer. It can 
search also for pattern which are distributed across 2 separate DMA moves, so called 
unaligned pattern. In this case the DMA stores the match result of a move in the bit 
CHSRmn.LXO.

Example: search unaligned for byte 0x0D followed by byte 0x0A 
first move found 0x0D   => CHSRmn.LXO is set to '1' 
second move found 0x0A   => found & LXO='1' => pattern found 

Problem description:
Once LXO is set it will be cleared with the next move, no matter if there is another match 
or not. This causes pattern not to be found when the first match occurs twice in the DMA 
data stream.
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Example: search unaligned for byte 0x0D followed by byte 0x0A 
first move found 0x0D   => CHSRmn.LXO is set to '1' 
second move found 0x0D   => LXO cleared 
third move found 0x0A   => pattern NOT found !!

Workaround
Search only for the second half of the pattern. If a match occurs check by software if it is 
preceded by the first half of the pattern.

DMA_TC.012   No wrap around interrupt generated
If the buffer size of a DMA channel is set to its maximum value (=32kbytes, bit field 
ADRCRmn.CBLx = 0xF), then no address wrap around interrupts will be generated for 
this channel.

Workaround
None.

MLI_TC.006   Receiver address is not wrapped around in downward direction
Overview:
• A MLI receiver performs accesses to an user defined address range, which is 

represented as a wrap around buffer.
• "Optimized frames" are frames without address information. The built-in address 

prediction defines the target address which is based on the previous address delta.
• If a buffer boundary is exceeded, the address has to be wrapped around to the 

opposite boundary, so that the accessed space is always within the buffer.
• A MLI transmitter will stop generating optimized frames if a user performs a wrap 

around access sequence in a transfer window. 
Problem:
Only if a non-MLI transmitter (for example, software implemented) sends an optimized 
frame to a MLI receiver, but crossing the buffer boundaries, the MLI receiver will:

a) Wrap around if the top limit is exceeded (upward direction).
b) Access an address out of the buffer if the bottom limit is exceeded (downward 

direction).
The second behaviour is erroneous, as a wrap around should be performed.
Note: The hardware implemented MLI transmitter in the existing Infineon devices will not 

use optimized frames if a user performs a wrap around access sequence in a 
transfer window.
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Workaround
A (software implemented) non-MLI transmitter should use non-optimized frames when 
crossing buffer boundaries.

MLI_TC.007   Answer frames do not trigger NFR interrupt if RIER.NFRIE=10 and 
Move Engine enabled
If RIER.NFRIE=10, a NFR interrupt is generated whenever a frame is received but, if 
Move Engine is enabled (RCR.MOD=1, "automatic mode"), the NFR interrupt is 
suppressed for read/write/base frames. However, this interrupt is actually also 
supressed for answer frames, which are not serviced by Move Engine.

Workaround
To trigger NFR interrupts for read answer frames, having Move Engine enabled, then:
• Set RIER.NFRIE=00 when no read is pending.
• Set RIER.NFRIE=01 when a read is pending. Any read/write/base/answer frame will 

trigger the NFR interrupt. Then, by reading RCR.TF in the interrupt handler, it can be 
detected whether the received frame was the expected answer frame or not.

MLI_TC.008   Move engines can not access address F01E0000H

DMA/MLI move engines are not able to access the address F01E0000H, which 
represents the first byte of the small transfer window of pipe 0 in MLI0 (MLI0_SP0). If a 
DMA/MLI move engine access to this address is performed, the move engine will be 
locked.

Workaround
• Use the large transfer window (MLI0_LP0) when performing DMA/MLI accesses to 

pipe 0 in MLI0.
• Use a different bus master (TriCore, PCP) to access the small transfer window.

MLI_TC.009   MLI0B and internal loopback option not available for TC1130.

It is mentioned that MLI0B and internal Loopback mode for both MLI0 and MLI1 are
available for TC1130.
However, the pin RxCLK[3], RVALID[3] and RDATA[3] are wired to '0' and thus loopback
mode is not possible.
Likewise, the MLI0_RREADY[1] and MLI0_TVALID[1] are not connected to P4_5 and 
P4_2 and thus MLI0B is not available.
.
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Workarounds:

none.

3 Deviations from Electrical- and Timing Specification
No deviations from Electrical and Timing specification are known for this step.
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4 Application Hints

INT_TC.H001     Multiple SRNs can be assigned to the same SRPN (priority)

Some customers may want to stay with the 3 cycle arbitration they use at the moment, 
but more than 63 different interrupt nodes are needed. In this case, multiple SRNs can 
be assigned to the same SRPN (priority). As the hardware can only arbitrates the high-
est priority and its clear that not multiple SRNs can win. 
But most peripherals have interrupt flags to show which interrupt occurs inside the sta-
tus registers. These flags can be used for the software arbitration.
So there are two options:
• Either it doesn't care which SRN wins inside a group with the same priorities.
• Or such groups are built only out of SRNs from peripherals, which have interrupt flags 

and perform some kind of software arbitration.

SSC_TC.H002   Enlarged leading delay in master mode
If leading delay > 0 is selected in master mode, the SSC module generates slightly 
enlarged leading delay (< 1 shift clock cycle additional time) for a new word transfer if its 
TB is loaded with new data just when the former transfer ends.
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