

Programmer’s Guide ZM020130E Rev.B

XZ130

ACQIRIS
PROGRAMMER’S

GUIDE

Programmer’s Guide Page 2 of 107

January 2006

The information in this document is subject to change without notice and may not be construed in any
way as a commitment by Acqiris. While Acqiris makes every effort to ensure the accuracy and contents
of the document it assumes no responsibility for any errors that may appear.

All software described in the document is furnished under license. The software may only be used and
copied in accordance with the terms of license. Instrumentation firmware is thoroughly tested and thought
to be functional but it is supplied “as is” with no warranty for specified performance. No responsibility is
assumed for the use or the reliability of software, firmware or any equipment that is not supplied by
Acqiris SA or its affiliated companies.

Any versions of this manual which are supplied with a purchased product will be replaced at your request
with the latest revision in electronic format. At Acqiris we appreciate and encourage customer input. If
you have a suggestion related to the content of this manual or the presentation of information, please
contact your local Acqiris representative or Acqiris Technical Support (support@acqiris.com) or come
visit our web site at http://www.acqiris.com.

Trademarks: product and company names listed are trademarks or trade names of their respective
companies

Acqiris Headquarters:

Acqiris SA
18, chemin des Aulx
CH-1228 Plan-les-Ouates
Geneva
Switzerland

Acqiris USA:

Acqiris LLC
234 Cromwell Hill Rd.
P.O. Box 2203
Monroe, NY 10950-1430
USA

Acqiris Asia-Pacific:

Acqiris Pty Ltd
Suite 7, Level 1
407 Canterbury Road,
P.O. Box 13
Surrey Hills 3127
Australia

Tel: +41 22 884 33 90

Fax: +41 22 884 33 99

Tel: 845 782 6544

Fax: 845 782 4745

Tel: +61 3 9888 4586

Fax: +61 3 9849 0861

© Copyright January 2006, Acqiris SA. All rights reserved.

mailto:support@acqiris.com
http://www.acqiris.com/

Programmer’s Guide Page 3 of 107

CONTENTS

1. INTRODUCTION ..7
1.1. Message to the User..7
1.2. Using this Manual...7
1.3. Conventions Used in This Manual ...8
1.4. Warning Regarding Medical Use ...8
1.5. Warranty...8
1.6. Warranty and Repair Return Procedure, Assistance and Support...8
1.7. System Requirements ...8

2. PROGRAMMING ENVIRONMENTS & GETTING STARTED ..9
2.1. Visual C++ ...9
2.2. LabWindows/CVI...9
2.3. LabVIEW ...9

2.3.1. Getting Started VI...10
2.3.2. Example Scope VI ..10
2.3.3. Accumulated Waveform Example VI...11

2.4. Visual Basic..11
2.5. MATLAB ...12

2.5.1. Data Acquisition Toolbox...12
Single Acquisition .. 12
Multiple Acquisition ... 12
Mode Live... 12
Manipulating Attributes.. 13
Loading and Saving a Setup ... 13
Calibration .. 13
Create the AnalogInput object .. 14
View the Instrument Information.. 14
Configure and Add Channels.. 14
Start an Acquisition .. 14
Read the Data.. 14
Free Resources.. 16

2.5.2. MEX Interface ..16
GetStarted ... 16

2.6. Phar Lap ETS ...16
2.7. Wind River VxWorks (Tornado)..17

2.7.1. Compiling ...17
2.7.2. Loading...17
2.7.3. Running the Program..17

2.8. Linux ..17
3. PROGRAMMING AN ACQIRIS DIGITIZER...18

3.1. Programming Hints...18
3.2. Device Initialization ...18

3.2.1. PCI & VXI Identification by Order Found ...19
3.2.2. PCI Identification by Serial Number ..19
3.2.3. PCI Identification by Bus/Slot Number..19
3.2.4. VXI Identification...20
3.2.5. Firmware initialization (AP-FAMILY/12-bit-FAMILY/ACxxx /SCxxx)......................20
3.2.6. Automatic Definition of MultiInstruments ...21
3.2.7. Manual Definition of MultiInstruments..21
3.2.8. AqGeo.map file positioning..22
3.2.9. Simulated Devices ..23
3.2.10. Terminating an Application..23

3.3. Device Configuration ...23
3.4. Configuring Averagers ...25

3.4.1. Basic configuration...25

Programmer’s Guide Page 4 of 107

3.4.2. Dithering...26
3.4.3. ‘Fixed Pattern’ Background Subtraction ..26
3.4.4. Configuring Noise Suppressed Accumulation (NSA) ..28

3.5. Configuring SSR Analyzers ...28
3.5.1. Acquisition Parameters ...28
3.5.2. Readout configuration ..29
3.5.3. Time stamps..30

3.6. Configuring AdvancedTDC Analyzers ..31
3.7. Configuring AP101/AP201 Analyzers ...31
3.8. Data Acquisition...32

3.8.1. Starting an Acquisition ...32
3.8.2. Checking if Ready for Trigger..32
3.8.3. Waiting for End of Acquisition ..33
3.8.4. Stopping/Forcing an Acquisition ..34
3.8.5. Analyzer and AdvancedTDC Autoswitch mode...34

3.9. Data Readout ..36
3.9.1. Reading Digitizer Waveforms with the Universal Read Function.................................36
3.9.2. Reading Sequences of Waveforms ...37
3.9.3. Averaging Waveforms in a Digitizer..39
3.9.4. Reading an Averaged Waveform from an Averager ..39
3.9.5. Reading a RT Add/Subtract Averaged Waveform from an Averager41
3.9.6. Reading SSR Analyzer Waveforms..41
3.9.7. Reading AdvancedTDC Analyzer Data and Histograms..42
3.9.8. Reading AP101/AP201 Analyzer Waveforms..44

3.10. Trigger Delay and Horizontal Waveform Position ...49
3.11. Horizontal Parameters in Acquired Waveforms ...49
3.12. Sequence Acquisitions..50
3.13. Timestamps...50
3.14. External Clock and Reference ..51

3.14.1. External Reference..52
3.14.2. External Clock (Continuous) ..52
3.14.3. External Clock (Start/Stop)...54

3.15. ASBus Operation..55
3.15.1. Channel Numbering with ASBus ...56
3.15.2. Trigger Source Numbering with ASBus...56

3.16. Special Operating Modes..57
3.16.1. Frequency Counter ...57
3.16.2. ‘Start on Trigger’ ..58
3.16.3. ‘Sequence Wrap’ ..59

3.17. Readout of Battery Backed-up Memories...60
3.17.1. Preparations before Power-Off ...60
3.17.2. Recovery after Power-Off...60

3.18. Reading the Digitizer Temperature...60
4. ATTRIBUTES ..62

4.1. Attribute dependencies and coerced values ..62
4.2. Functional grouping of attributes..62
4.3. Traditional API grouping of attributes..64
4.4. Detailed description of attributes (Alphabetically ordered)..65

axDitherRange .. 65
axNbrRoundRobins .. 65
axNbrWaveforms.. 66
axP1Signal .. 66
axP2Signal .. 67
axSamples... 68
axSegments ... 68
axStartDelay ... 69

Programmer’s Guide Page 5 of 107

axStartVetoEnable .. 69
axStopDelay.. 70
axTrigAlways ... 70
axTrigResync.. 71
banks... 71
chAxInvertData... 72
chAxNoiseBase... 72
chAxNoiseBaseEnable.. 73
chAxTDCHistoEnable .. 73
chAxTDCHistoIncr... 74
chAxTDCHistoMinTOT... 74
chAxThreshold ... 75
chAxThresholdEnable .. 75
channelUse.. 76
chAttenuation.. 76
chBandwidthLimit .. 77
chCoupling.. 77
chFullScale ... 78
chImpedance ... 78
chInput .. 79
chOffset .. 79
chScale2ndFactor.. 80
chScaleFactor.. 80
chScaleOffset.. 81
chTime2ndOffset .. 81
chTime3rdOffset... 82
chTimeOffset .. 82
chType .. 83
chUnits.. 83
ckDelay... 84
ckThreshLvl.. 84
ckType .. 85
convertersPerChan.. 85
ctrlIOASignal.. 86
ctrlIOBSignal.. 86
ctrlIOPxiRef10MHz.. 87
ctrlIOPxiStar ... 87
ctrlIOTrOutLevel .. 88
ctrlIOTrOutResync ... 88
extCkRatio .. 89
extInputFreq.. 89
extSamplingRate... 90
extSparsing ... 90
fcApertureTime... 91
fcMeasure ... 91
fcSignalChannel.. 92
fcTargetValue ... 92
input.. 93
memoryUsage ... 93
name ... 94
samples ... 94
samplingFreq .. 95
samplingIntv ... 95
segments ... 96
timeWindow ... 96
trClass ... 97
trCoupling... 97
trDelay .. 98

Programmer’s Guide Page 6 of 107

trRelThres1 ... 98
trRelThres2 ... 99
trSlope... 99
trSrcEnabled ... 100
trThres1... 100
trThres2... 101
trThresUnit.. 101
trTVField .. 102
trTVLine ... 102
trTVStd ... 103

5. APPENDIX A: ESTIMATING DATA TRANSFER TIMES...104
5.1. Principles & Formulas ..104
5.2. Examples ..105
5.3. Comparison Chart for Typical Transfers ..106

Programmer’s Guide Page 7 of 107

1. Introduction

1.1. Message to the User
Congratulations on having purchased an Acqiris data conversion product. Acqiris Digitizers are high-
speed data acquisition modules designed for capturing high frequency electronic signals. To get the most
out of the products we recommend that you read the accompanying product User Manual, this
Programmer's Guide and the Programmer’s Reference manual carefully. We trust that the product you
have purchased as well as the accompanying software will meet with your expectations and provide you
with a high quality solution to your data conversion applications.

1.2. Using this Manual
This guide assumes you are familiar with the operation of a personal computer (PC) running a Windows
95/98/2000/NT4/XP or other supported operating system. In addition you ought to be familiar with the
fundamentals of the programming environment that you will be using to control your Acqiris product. It
also assumes you have a basic understanding of the principles of data acquisition using either a waveform
digitizer or a digital oscilloscope.

The User Manual that you also have received (or have access to) has important and detailed instructions
concerning your Acqiris product. You should consult it first. You will find the following chapters there:

Chapter 1 OUT OF THE BOX, describes what to do when you first receive your new Acqiris
product. Special attention should be paid to sections on safety, packaging and product
handling. Before installing your product please ensure that your system configuration
matches or exceeds the requirements specified.

Chapter 2 INSTALLATION, covers all elements of installation and performance verification.
Before attempting to use your Acqiris product for actual measurements we strongly
recommend that you read all sections of this chapter.

Chapter 3 PRODUCT DESCRIPTION, provides a full description of all the functional elements
of your product.

Chapter 4 RUNNING THE ACQIRIS DEMONSTRATION APPLICATION, describes either

the operation of AcqirisLive 2.15, an application that enables basic operation
of Acqiris digitizers or averagers in a Windows 95/98/2000/NT4/XP environment;

the operation of AP_SSRDemo and in the following chapter APx01Demo,
applications that enable basic operation of Acqiris analyzers in a Windows
95/98/2000/NT4/XP environment;

This Programmer’s Guide is divided into 4 separate sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.

Chapter 2 PROGRAMMING ENVIRONMENTS & GETTING STARTED, provides a
description for programming applications using a variety of software products and
development environments.

Chapter 3 PROGRAMMING AN ACQIRIS DIGITIZER, provides information on using the
device driver functions to operate an Acqiris digitizer.

Chapter 4 ATTRIBUTES, contains reference information about attributes. The attribute interface
to the driver can be used with AcqirisMAQS, the MATLAB interface, and the SP201
Software Development Kit.

Programmer’s Guide Page 8 of 107

The accompanying Programmer’s Reference manual is divided into 2 sections.

Chapter 1 INTRODUCTION, describes what can be found where in the documentation and how
to use it.

Chapter 2 DEVICE DRIVER FUNCTION REFERENCE, contains a full device driver function
reference. This documents the traditional Application Program Interface (API) as it can
be used in the following environments:

LabWindowsCVI, Visual C++, LabVIEW, MATLAB, Visual Basic, Visual
Basic .NET.

1.3. Conventions Used in This Manual
The following conventions are used in this manual:

This icon to the left of text warns that an important point must be observed.

WARNING Denotes a warning, which advises you of precautions to take to avoid being electrically
shocked.

CAUTION Denotes a caution, which advises you of precautions to take to avoid electrical,
mechanical, or operational damages.

NOTE Denotes a note, which alerts you to important information.

Italic text denotes a warning, caution, or note.

Bold Italic text is used to emphasize an important point in the text or a note

mono text is used for sections of code, programming examples and operating system
commands.

Certain features are common to several different modules. For increased readability we have defined the
following families:

DC271-FAMILY DC135/DC140/DC211/DC211A/DC241/DC241A/
 DC271/DC271A/DC271AR/DP214/DP235/DP240

AP-FAMILY AP240/AP235/AP100/AP101/AP200/AP201

12-bit-FAMILY DC440/DC438/DC436/DP310/DP308/DP306

10-bit-FAMILY DC122/DC152/DC222/DC252/DC282

1.4. Warning Regarding Medical Use
The Digitizer cards are not designed with components and testing procedures that would ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of these cards involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by
errors on the part of the user. These cards are not intended to be a substitute for any form of established
process or equipment used to monitor or safeguard human health and safety in medical treatment.

WARNING: The modules discussed in this manual have not been designed for making direct
measurements on the human body. Users who connect an Acqiris module to a human
body do so at their own risk.

1.5. Warranty
Please refer to the appropriate User Manual.

1.6. Warranty and Repair Return Procedure, Assistance and Support
Please refer to the appropriate User Manual.

1.7. System Requirements
Please refer to the appropriate User Manual.

Programmer’s Guide Page 9 of 107

2. Programming Environments & Getting Started
Acqiris supplies sample programs as a starting point for the development of user-specific applications.
For Windows systems there are samples for the Visual C/C++, Visual Basic, LabWindows/CVI,
LabVIEW, and MATLAB. For Phar Lap ETS and VxWorks real-time systems there are sample programs
for Visual Studio and Tornado, respectively. An Application Program Interface (API) hlp file, with a
shortcut named Acqiris Digitizer Driver Help, is available and contains condensed descriptions of all of
the interface functions.

Preliminary remark: it is assumed in the following that the hardware and Acqiris software installations
(see User Manual chapter 2) have already been completed.

NOTE: Visual C/C++, VxWorks, and LabWindows/CVI all rely on the standard VISA types defined by
VXIplug&play Systems Alliance (VISA). The visatype.h include file can be found in the include directory
created at installation.

2.1. Visual C++
• Open either the project file GetStartedVC.dsp or GetStartedAvgVC.dsp in VisualC++ and build

the project.

• Note that you should insert the line #include "AcqirisD1Import.h" at the beginning of
every file that will access Acqiris Device Driver functions.

• The project should link to the AqDrv4.lib file.

2.2. LabWindows/CVI
• Open the project file GetStarted.prj in LabWindows/CVI and build the project.

• Note that you should insert the line #include "AcqirisD1Import.h" at the beginning of
every file that will access Acqiris Device Driver functions.

• The project should include the AqDrv4.lib file.

2.3. LabVIEW

The AqDx (Acqiris Digitizer) driver for LabVIEW conforms to National Instruments' Instrument Driver
Standard. If LabVIEW is installed on the target machine when the Acqiris software is installed, the AqDx
driver interfaces will be copied to the LabVIEW n\Instr.lib directory. The driver function VI’s can then be
found on the Functions palette (block diagram), Instrument Drivers subpalette. There is also a Getting
Started VI, as well as some example VI’s. The standard API help file is available from within LabVIEW.
The Revision Query VI gives information on the current version. There are actually two llb files, the
AqDx.llb containing the routines shown above, and the AqDx_obs.llb with deprecated but still usable
routines.

Programmer’s Guide Page 10 of 107

2.3.1. Getting Started VI

This VI demonstrates how to use some of the basic components of the AqDx Acqiris Digitizer Driver. It
finds and initializes a digitizer, sets the basic parameters according to the controls on the front panel, and
then acquires one waveform. Note that the front panel controls should be set to their desired values before
the VI is run.

2.3.2. Example Scope VI

This VI presents a basic, interactive virtual oscilloscope using the AqDx Digitizer Driver. Not all the
functionality of the Acqiris digitizers is supported in this program, but most of the most-commonly-used
functions are demonstrated in it.

Programmer’s Guide Page 11 of 107

2.3.3. Accumulated Waveform Example VI

This VI demonstrates how to use the Accumulate Waveform function of the Acqiris Digitizer Driver. It
finds and initializes a digitizer, sets the basic parameters according to the controls on the front panel, and
then acquires and accumulates waveforms as the user requests. Note that the front panel controls should
be set to their desired values before the VI is run.

2.4. Visual Basic
Visual Basic support is available for Versions 5.0 or 6.0 with sample programs in the VB directory. Basic
.NET support (AcqrsD1Interface.vb) is also available but there are no sample programs yet.

The Visual Basic sample program comes in 8-bit and 12-bit versions. The 12-bit programs can also be
used for the 10-bit digitizers. They each consist of 3 major parts:

1. The AcqrsD1Interface.bas file that contains the Visual Basic version of the interface to the Acqiris
supplied driver dll’s (installed in the System directory). This file is needed for all Visual Basic
projects involving Acqiris digitizers.

2. The AcqirisShow8.frm (or AcqirisShow12.frm) file that contains all the basic functionality of the
sample program, such as initialization, acquisition control and display.

3. The DevCtrlForm8.frm (or DevCtrlForm12.frm) file with the code for a dialog box for the control
of a complete digitizer.

The Visual Basic sample program is capable of managing several Acqiris digitizers attached to the
computer and of displaying one channel of one digitizer at a time. If no digitizer exists on the computer, it
initializes 3 simulated digitizers (in Sub Form_Initialize()). While it has enough functionality to permit a
fairly complete operation of a digitizer, many possible features were left out in order to keep the program
simple to understand.

In order to run the Visual Basic sample program, you must have installed the Visual Basic Version 5.0 (or
6.0 but not .NET):

• Start Visual Basic

• Use the menu File → Open Project… to point to the AcqirisShow1.vbp project file in the
AcqirisLive\VB directory and choose Open

• After the project is loaded, use the menu Run → Start or F5 to start executing the project. A
waveform display window should pop up, displaying a real (or simulated) waveform.

Programmer’s Guide Page 12 of 107

• Use the button Digitizer Control to make a dialog box appear. The top-most control Digitizer#
permits the choice of one of several digitizers (and to check how many were found). If no physical
digitizer was found, the program initializes 3 simulated digitizers, a DP110, DC240 and a DC110
(with the 2MB option). You can change the simulated digitizers in Sub Form_Initialize().

• The program is stopped by clicking on the Close button (x) on the upper right hand side of the
waveform display window.

The waveform display window can be resized, but the dialog box cannot.

The acquisition mode Norm really is another Auto mode, with a slightly longer timeout period. A real
Norm mode without timeout would require a way for the user to regain control in situations where there
is no trigger.

Simulated digitizers have fixed simulated input signals (sine waves, triangle waves or square waves) that
cannot be modified through the supplied API.

Note: The programming advice in the rest of this manual is given for the C language interface. However,
it is equally valid for Visual Basic. Refer to the file AcqrsD1Interface.bas for the correspondence
between the Visual Basic and C-language names of the Acqiris driver functions.

2.5. MATLAB
MATLAB is a very powerful environment to analyse and display data. Two interfaces from it to the
Acqiris products have been implemented. The first one to be described below uses the Data Acquisition
Toolbox option of MATLAB. The second one offers simple direct access to the Acqiris driver.

2.5.1. Data Acquisition Toolbox
The MathWorks Inc. have developed a Data Acquisition Toolbox that can acquire data from digitizer
cards. The Acqiris Adaptor exchanges messages between the MATLAB Engine and the Acqiris
instrument driver.
The Acqiris Adaptor lets you acquire data directly from the hardware without additional software. It
offers the possibility to start and stop the acquisition as well as to get data. Windows based modules and
command line shortcuts are used to configure the instruments.

2.5.1.1. Examples
These examples are in the directory <AcqirisDxRoot>\MATLAB.

When you execute these examples,

either set the MATLAB current directory (cd Command) to <AcqirisDxRoot>\MATLAB

or copy all of the files from that directory to the directory of your choice.

Single Acquisition
Filename: Aq_SingleAcquisition.m
Argument: No Argument

This first example shows you how to perform a single acquisition.

The desired setup file is loaded. You then create your AnalogInput object, start the acquisition,
and then get and plot the acquired data.

Multiple Acquisition
Filename: Aq_MultipleAcquisition.m
Argument: No Argument

In this m-file, the main difference with the Single Acquisition example is that we put the
acquisition sequence into a loop. In that way, you can manage multiple acquisitions and store
data in the MATLAB Workspace.

Mode Live
Filename: Aq_ModeLive.m
Argument: InstrumentID (Default:0)

Programmer’s Guide Page 13 of 107

Use: >> Aq_ModeLive // Select default digitizer (ID = 0)

 >> Aq_ModeLive(2) // Select digitizer with InstrumentID = 2

This MATLAB program displays your signal in a ‘live’ mode.

An Instrument Settings module that can be used during acquisition has been added. There is also
a menu that gives the possibility to load an existing setup file or to save to a new setup file.

You can modify the function applied to the selected channel. You should look for the function
named ProcessFcn and modify it. You can also add arguments if necessary.

2.5.1.2. Setup and Settings

Manipulating Attributes
In the example called Aq_ModeLive, we offer the possibility to open an Instrument Settings
window through which you can modify your instrument attributes. The available attributes are
presented in chapter 4 ATTRIBUTES. Please note that not all attributes mentioned there are
available for all instruments in all environments. A file with the suffix AqSettings is provided
together with the MATLAB examples and is used to define the format of the Instrument settings
window.

Note that the Instrument Settings window is not a modal window so it can remain open during
acquisitions. Here is the code to display the Instrument Settings window:
>> CallAcqiris('InstrumentSettings');

Attributes can also be read or modified with commands:

To get all instrument attribute names:
>> attributeList = CallAcqiris('AttributeList', ID);

To get an attribute’s range:
>> attrRanges = CallAcqiris('AttributeRange', ID, 'attrName');

To retrieve an attribute value:
>> value = CallAcqiris('GetString', ID, 'attrName');
>> value = CallAcqiris('GetInteger', ID, 'attrName');
>> value = CallAcqiris('GetDouble', ID, 'attrName');

To modify an attribute:
>> CallAcqiris('SetString', ID, 'attrName', 'value');
>> CallAcqiris('SetInteger', ID, 'attrName', value);
>> CallAcqiris('SetDouble', ID, 'attrName', value);

Loading and Saving a Setup
The way offered by MATLAB to set Properties (Settings) is not very user-friendly, so we
decided to offer you the possibility to use our software to configure the settings. Files created
with the AcqirisLive program can be used.

To load a setup:
>> CallAcqiris('LoadConfiguration'); // Prompt for file
>> CallAcqiris('LoadConfiguration', 'Filename');

To save a setup:
>> CallAcqiris('SaveConfiguration'); // Prompt for file
>> CallAcqiris('SaveConfiguration', 'Filename');

Calibration
We added the possibility to do a calibration.
>> CallAcqiris('Calibrate', ID, CalibrationType);

where ID is the module identifier (0,1,2…)

and CalibrationType can take one of the 3 values:

Programmer’s Guide Page 14 of 107

= 0 calibrate the entire instrument

= 1 calibrate only the current channel configuration

= 2 calibrate external clock timing. Requires operation in External Clock (Continuous).

2.5.1.3. Process an acquisition

Create the AnalogInput object
>> AI = analoginput('aq', 0);
>> BUFFER_SIZE = 1000
>> BUFFER_CNT = 30

This command creates an AnalogInput object. The first argument specifies that MATLAB should
use the Acqiris Adaptor. The second argument is the InstrumentID of the digitizer to use. The two
BUFFER constants are initialized for use in 0 below.

Alternatively, the following arguments can be used and even combined with a ‘,’ separator.

• >> AI = analoginput(‘aq’, 0, 'cal=false');

The option added tells the driver to skip the calibration.

• >> AI = analoginput(‘aq’, 0, 'forceTrigAfter=0.25');

The option added tells the driver to generate a forced trigger (forceTrigType = 0) if no
trigger occurs within 0.25 s.

A calibration is necessary when first using an AnalogInput object in a MATLAB session.
However, since the calibration settings remain in effect until the driver is unloaded (e.g. when
closing MATLAB) this can be used to avoid recalibration at each execution of an m-file. For best
measurement quality, the calibration should be repeated after any significant temperature drift.

Note that unless calibration is deactivated, all detected instruments will be calibrated.

View the Instrument Information
>> daqhwinfo(AI);

This call will display information about your digitizer.

Configure and Add Channels
>> AddChannel(AI, i);

where i = 1…n. This command is used to create a channel. You can create as many channel
objects as there are channels on the given instrument.

Start an Acquisition
>> set(AI, 'BufferingConfig', [BUFFER_SIZE, BUFFER_CNT]);

>> start(AI);

>> waittilstop(AI, TIME_OUT);

NOTE: Although you don’t need to understand the first command, be sure that this command is
present for each start(AI) because it is needed for engine buffer allocation and it must be done if
samples or segments have been changed. Appropriate values should be set once and
subsequently reused. The number of buffers must be at least 2!

The second command starts the acquisition and the third waits for the end of the acquisition. You
can specify a timeout. If the timeout occurs, MATLAB terminates the file execution with an
error message.

Read the Data
Support for Adaptor properties is very limited. The following properties are available from the
Adaptor in read mode:

- SampleRate
- SamplesPerTrigger

Programmer’s Guide Page 15 of 107

NOTE: Its value corresponds to samples*segments
- segments
- segmentDescrIndex,

Using the property segmentDescrIndex, you can access:
- horPos
- timeStampLo
- timeStampHi

Refer to the section 3.11, Horizontal Parameters in Acquired Waveforms and section 3.12,
Sequence Acquisitions

For digitizers in Sequence acquisition mode, multiple waveforms are acquired autonomously, with a
single start command AcqrsD1_acquire. Whenever a trigger is received, the current acquisition
segment is normally terminated. The digitizer then automatically initializes another acquisition into
the next memory segment, until all requested segments are filled.
 Timestamps for detailed explanations on the interpretation of these values.
For averagers we provide:

- nbrAveragedWaveforms (from DataDescriptor)

The simplest way to read data for an acquisition with a single channel in a single segment is:

>> [DataArray,Time] = getdata(AI);

>> set(AI.channel(0),'segmentDescrIndex', 0);

>> trDelay = CallAcqiris('GetDouble', ID, 'trDelay');

>> Time = Time + get(AI.channel(0),'horPos') + trDelay;

The first command returns all the data acquired together with a vector containing the time values for
each sample acquired. The DataArray will contain the measured values converted to the user units as
follows:

valueInUserUnit = userGain * voltData + userOffset

voltData = vGain * rawData + vOffset

 where

userGain = chScaleFactor * chScale2ndFactor * 10 chAttenuation/20

userOffset = chScaleOffset

vGain = chFullScale/256 dataSize

dataSize = size in bytes of a rawData sample (1 or 2, depending on the
instrument)

vOffset = chOffset

The original Time vector starts at 0 and increases in steps of 1./SampleRate. The last line above
shows the horPos and trDelay corrections to the Time vector so that the time of the trigger is 0.

For segmented acquisition, we decided to concatenate all segments in the same vector returned by the
method getData(). For multichannel instruments the getData() method returns a vector for each
channel activated. So if you have chosen to acquire on n channels, m segments of p samples, you will
get a matrix with size: [m*p, n]. Using MATLAB commands you can easily extract only one
segment from the matrix. For example, if you would like to extract the segment j on the channel k,
you can write:

>> vectorSeg = DataAcquired(((j-1)*p +1):j*p, k)

The Time vector shown in the simple case above is not appropriate because the adaptor has no
information about horPos correction and t0 value. Note that t0 value is different for each channel and
horPos is different for each segment. So, if you want to access information for segment j on channel
k:

Programmer’s Guide Page 16 of 107

>> set(AI.channel(k),' segmentDescrIndex', j)

>> horPos = get(AI.channel(k),'horPos')

>> timeStampLo = get(AI.channel(k),'timeStampLo')

>> timeStampHi = get(AI.channel(k),'timeStampHi')

Similarly for the t0 value:

>> t0 = get(AI.channel(k), 't0')

where t0 = trDelay + chTimeOffset +chTime2ndOffset + chTime3rdOffset.

You can use these values to create a ‘real’ time vector where the time of the first data point with
resepect to the trigger is given by t0+horPos and the time between samples is as before. The
timeStamp values can be combined and used to measure the time difference between any pair of
triggers in the acquisition.

Free Resources
>> delete(AI);

It’s very important to free allocated resources when they are no longer needed.

2.5.2. MEX Interface
The Acqiris driver can also be used directly in Matlab, without the Data Acquisition Toolbox. This is
done by directly calling the routines that are documented in the Programmer’s Reference Manual.
Entering a command as shown below will give help information for the routine Aq_acquire.

>> help Aq_acquire

2.5.2.1. Examples
This example is in the directory <AcqirisDxRoot>\MATLAB?.

To use it,

either set the MATLAB current directory (cd Command) to <AcqirisDxRoot>\MATLAB

or the file from that directory to the directory of your choice.

GetStarted
Filename: Aq_GetStarted.m
Argument: No Argument

This first example shows you how to perform a single acquisition. The desired configuration is
loaded. You then start the acquisition, and read and plot the acquired data.

2.6. Phar Lap ETS
The sample program is written for the Microsoft Visual Studio environment. Open the project file
GetStartedETS.dsp. The GetStartedETS.cpp file contains a simple user program which:

• finds the Acqiris digitizers on the target machine

• initializes the first (or only) one

• configures some acquisition parameters (and rereads some of them for checking)

• starts the acquisition

• waits for it to terminate

• reads the waveform

• saves a binary disk file on the target with the data

The program can be built, downloaded, and executed/debugged from Visual Studio. If FPGA .bit files are
required for the instruments installed they can be transferred to the target's hard disk using the
pharemb\monitor utility makehd. The current version appears to work for Acqiris PCI modules only.

Programmer’s Guide Page 17 of 107

2.7. Wind River VxWorks (Tornado)
The VxWorks sample program is written for the Tornado environment. The GetStartedVxW.cpp file
contains a simple user program which:

• spawns a process with a large stack as needed by the Acqiris driver

• finds the Acqiris digitizers on the target machine

• initializes the first (or only) one

• configures some acquisition parameters (and rereads them for checking)

• loops (100 times) over a cycle that
- starts the acquisition
- waits for it to terminate
- reads the waveform

2.7.1. Compiling
This file can be compiled 'as is' within the GetStartedVxW.wsp Tornado workspace. However, please
make sure to run an update to the project dependencies. You may need to change the directory paths for
the Tornado include files and the Acqiris include files if you move the Tornado directory or use a
different development environment. In the latter case you must verify that the debug flags

–D_VXWORKS –D_ACQIRIS are present.

2.7.2. Loading
First download the Low-Level (kernel-mode) VxWorks Device Driver file VxWorksDriverPCI.out to
the target machine, followed by the VxWorks Digitizer Driver file AcqirisVxWUMode.out.

Finally, you should download the VxWorks application GetStartedVxW.out.

2.7.3. Running the Program
It is recommended that you follow the code with the debugger, since it is the only way to see the response
of the function calls immediately.

2.8. Linux
The AcqirisDemo program can simply be run from the AcqirisLinux directory by entering:

Demo/AcqirisDemo

The library /usr/lib/libAnDBSLib.a is compiled with the gcc 3.2.

The Linux GetStarted sample program is provided ready to run. It can also be created without the need
of an additional development application.

• Enter the command “cd usr/src”

• Run make to compile and link the program

• Note that the include and library paths are defined in the Makefile.

The GetStarted.cpp file contains a simple user program which:

• has globally allocated buffers to achieve optimal readout performance

• finds the Acqiris digitizers on the target machine

• initializes the first (or only) one

• configures some acquisition parameters (and rereads them for checking)

• loops (100 times) over a cycle that
- starts the acquisition
- waits for it to terminate
- reads the waveform

Programmer’s Guide Page 18 of 107

3. Programming an Acqiris Digitizer

3.1. Programming Hints
When programming an Acqiris digitizer it is important to remember that the Acqiris driver must be
freshly loaded (this is usually automatic) by any process that uses the modules. This means that each
process starts over with a completely clean view of the system and no knowledge of any previously
determined calibration constants or settings. Thus a calibration ought to be done before the modules are
used for any acquisitions. Of course the system may have to be recalibrated later if the temperature of the
modules is changing. Users cannot expect to control Acqiris modules with a succession of process
invocations with each one executing a single command. Only one process on a machine can have loaded
the Acqiris driver at any given moment.

Most of the AcqrsD1 driver functions are reentrant. After initialization, they are protected against
multiple calls from different threads. The unprotected routines are :

AcqirisD1_init AcqirisD1_initWithOptions AcqirisD1_getNbrPhysicalInstruments

AcqirisD1_close AcqirisD1_closeAll

AcqirisD1_multiInstrAutoDefine AcqirisD1_multiInstrDefine AcqirisD1_multiInstrUndefineAll

Be sure to read the comments in the header file AcqirisD1Interface.h or AcqrsD1Interface.bas or the
function parameter discussions in chapter 2, DEVICE DRIVER FUNCTION REFERENCE of the
Programmer's Reference Manual.

The examples below do not check the return value of the AcqrsD1_… functions. In real applications, you
should always check the return values of functions.

3.2. Device Initialization
Before any (real or simulated) device can be used, each device must be initialized with a separate call to
the function AcqrsD1_InitWithOptions. For real devices, you can also use the slightly simpler function
AcqrsD1_Init. Both functions return the instrumentID (whose value will be different for each device),
which must be subsequently used in any other function call. The arguments IDQuery and resetDevice are
currently ignored. The use of the string arguments resourceName and optionsString are explained with
the initialization scenarios in the following sections.

If you use modules that are connected via ASBus, you need to configure them as MultiInstruments. This
lets you treat them as normal instruments with an increased number of channels. E.g. you can connect 3
DC270’s to form a single 12-channel, 1 GS/s digitizer.

If needed, and before initializing the devices, a call to either

 AcqirisD1_getNbrPhysicalInstruments can be used to learn how many instruments have been
 found. However, a side-effect of this call will be to select the use of single instruments.
 This can be manually circumvented as discussed below.

or

AcqrsD1_multiInstrumentAutoDefin can be used to automatically combine as
 MultiInstruments modules that are connected via ASBus and return the total number of
 instruments found, including individual modules without ASBus connections. It
 automatically searches for all sets of modules that are connected with ASBus, and
 configures each such block as a single MultiInstrument.

As an alternative to automatic MultiInstrument definition, you can initialize each module individually
with the function AcqrsD1_InitWithOptions, and then combine some of them with the function
AcqrsD1_multiInstrDefine. This method provides better control over which modules are combined and
in what order, at the expense of careful book keeping of which instrumentID’s are available. For details,
please refer to the section 3.2.7, Manual Definition of MultiInstruments.

Programmer’s Guide Page 19 of 107

3.2.1. PCI & VXI Identification by Order Found
If you don’t know which and/or how many Acqiris digitizers are present on the machine, use this code
fragment:

ViSession instrumentID[10];
long nbrInstruments;
ViStatus status;
ViString options = "";
status = AcqrsD1_getNbrPhysicalInstruments(&nbrInstruments);
// Initialize the digitizers
for (long i = 0; i < nbrInstruments; i++)
{
 char resourceName[20];
 sprintf(resourceName, "PCI::INSTR%d", i);
 status = AcqrsD1_InitWithOptions(resourceName, VI_FALSE,

VI_FALSE, options, &(instrumentID[i]));
}

The resource name must be of the form “PCI::INSTR0”, “PCI::INSTR1”, etc. This is true in spite of the
fact that all PCI, cPCI, and VXI instruments will be found.

If there are several digitizers on the system, the order in which they are found is not obvious. It depends
on the Windows 95/98/NT4/2000/XP Configuration Manager implementation, on the PCI bus topology in
your computer, and possibly on the BIOS.

3.2.2. PCI Identification by Serial Number
All Acqiris digitizers are labeled with a unique serial number. For PCI digitizers you will find it on the
front panel and for CompactPCI digitizers it is on the right injector/ejector handle. This same serial
number is coded into an on-board EEPROM that is read by the Device Driver upon initialization. You can
therefore ask to initialize a specific digitizer by specifying its serial number:

ViSession instrumentID;
AcqrsD1_InitWithOptions("PCI::SER10047", VI_FALSE, VI_FALSE, "",

&instrumentID);

Note that the serial number must be contiguous to the keyword SER; leading zeros are accepted.

3.2.3. PCI Identification by Bus/Slot Number
While initialization by serial number is easy to implement, it has the drawback that anytime a digitizer is
replaced by another one (e.g. if a failure occurred), the program has to be modified. Acqiris offers the
possibility of specifying the logical position of the device at initialization:

ViSession instrumentID;
AcqrsD1_InitWithOptions("PCI::BUS02::SLOT06", VI_FALSE, VI_FALSE,

"", &instrumentID);

Again, the bus and slot numbers must be contiguous to the keywords BUS and SLOT; leading zeros are
accepted.

Unfortunately, it is not obvious at all by simple inspection, which bus and slot number a given PCI device
occupies. One way to find out is to use AcqirisLive and to observe the bus/slot numbers that can be found
under the Help menu selection in Instrument Information. Another way is to use the auto-identification
initialization method and then to interrogate each device with:

Programmer’s Guide Page 20 of 107

ViSession instrumentID;
char name[20];
long serialNbr, busNbr, slotNbr;
AcqrsD1_getInstrumentData(instrumentID, name, &serialNbr, &busNbr,

&slotNbr);

3.2.4. VXI Identification
Digitizers in IX20x VXI Carrier modules will also be found by the driver. The resource name will be in
the form “VXI[board]::[logical_addr]::INSTR” like “VXI0::1::INSTR”.

3.2.5. Firmware initialization (AP-FAMILY/12-bit-FAMILY/ACxxx
/SCxxx)

In these modules the on-board FPGA’s (field-programmable gate arrays) contain processor logic needed
to efficiently execute several crucial functions. For Windows and Linux users, they will be automatically
programmed at startup before calibration. The standard initialization using AcqrsD1_Init can be used.

The name for the FPGA program file is a synthesis of model, FPGA destination, and option information.
The file name suffix is always ".bit". The automatic initialization mentioned above will load the FPGA
files as follows:

• For the first time inititalization of a module needing an FPGA file, the desired file will be
searched for in the working directory of the application.

• Then the working directory will be searched for a file "AqDrv4.ini"

• Finally the directory pointed to by the environment variable "AcqirisDxDir" will be searched for
a file "AqDrv4.ini"

• The "AqDrv4.ini" file should contain the name of a directory which will also be searched for the
appropriate FPGA files. Here is a typical example of its contents:

[Acqiris]
fpgaPath=C:\Program Files\Acqiris\firmware
GeoMapPath=C:\Program Files\Acqiris\bin

The GeoMapPath entry will be described later in this chapter.

• The final path used will be remembered and used for all subsequent demands for this module. In
particular this applies if AcqrsD1_configMode is used to change functionality.

Additional Phar Lap ETS/VxWorks Instructions

For ETS and VxWorks users, the normal mechanism for finding the FPGA .bit files will not work; the
driver has to be told explicitly where to find them. This procedure is also shown in the
GetStartedETS.cpp ETS sample program and the GetStarted.cpp VxWorks sample program. Thus,
AcqrsD1_InitWithOptions has to be called with

ViString options = "cal=0";
status = AcqrsD1_InitWithOptions(resourceName, VI_FALSE, VI_FALSE,

options, &(instrumentID[i]));

Then, before using the desired module in any mode, you should execute code like that shown below:
 ViString FPGADirectoryName = "C:\firmware"; // or "C:\" for ETS
 AcqrsD1_configLogicDevice(instrumentID, NULL,
 FPGADirectoryName, 2);

As a final step you should now calibrate the instrument (which will cause the FPGA files to be loaded):

Status = AcqrsD1_calibrate(instrumentID);

Programmer’s Guide Page 21 of 107

3.2.6. Automatic Definition of MultiInstruments
The function AcqrsD1_multiInstrumentAutoDefine automatically searches for all sets of modules that
are connected with ASBus, and configures each such block as a single MultiInstrument. It then reports the
total number of instruments found, including individual modules without ASBus connections. You still
need to retrieve the instrumentID for each instrument by calling the function
AcqrsD1_InitWithOptions afterwards, as shown below:

ViSession instrumentID[10];
long nbrInstruments;
ViStatus status;
ViString options = "";
status = AcqrsD1_multiInstrAutoDefine(&nbrInstruments);

// Retrieve the digitizer identifiers
for (long i = 0; i < nbrInstruments; i++)
{
 char resourceName[20];
 sprintf(resourceName, "PCI::INSTR%d", i);
 status = AcqrsD1_InitWithOptions(resourceName, VI_FALSE,

VI_FALSE, options, &(instrumentID[i]));
}

The calls to AcqrsD1_InitWithOptions are needed to obtain the instrumentID’s. The physical digitizers
were already initialized when AcqrsD1_multiInstrumentAutoDefine was called.

The digitizers within a single MultiInstrument are numbered from 0 to (NbrModulesInInstrument – 1). In
Acqiris CC10x compactPCI crates, the module 0 is always closest to the controller slot, i.e. module
numbers increase with increasing front panel slot numbers. This statement is also applicable to CC121
crate configurations with both an Acqiris acquisition module in one of the last 7 slots and with the PC
running under Windows 2000, NT, or XP. Users of other systems or crates may need to provide
AqGeo.map files to give the driver needed information. The GeoMapper application described in the
Digitizer User Manuals can create this file. For details on channel and trigger source numbering, please
refer to section 3.15, ASBus Operation.

The master module is automatically chosen, according to these rules:

ASBus

• If modules of different memory lengths are combined, only modules with the shortest memory
length can be master modules

• The master module is chosen as near as possible to the center module, in order to minimize
propagation delays.

ASBus2 6U digitizers

• The master module is chosen as near as possible to the center module, in order to minimize
propagation delays. There can be at most 5 modules in the MultiInstrument.

ASBus2 3U digitizers

• The master module will be the rightmost of up to 3 modules.

The function AcqrsD1_getInstrumentData will return the information about the master module. If you
want control over which module is the master, and in which order they should appear, use the manual
definition, described in the next section.

3.2.7. Manual Definition of MultiInstruments
The function AcqrsD1_multiInstrDefine permits a 'manual' definition of how to combine multiple
digitizers with the ASBus. It cannot be used for ASBus2 instruments.

Programmer’s Guide Page 22 of 107

Use a code fragment like the following one for the manual combination of digitizers:
ViSession instrumentID[10], idList[6];
long nbrInstruments;
ViStatus status;
ViString options = "cal=0"; // since calibration will be performed

explicitly later
status = AcqrsD1_getNbrPhysicalInstruments(&nbrInstruments);

// Initialize the digitizers
for (long i = 0; i < nbrInstruments; i++)
{
 char resourceName[20];
 sprintf(resourceName, "PCI::INSTR%d", i);
 status = AcqrsD1_InitWithOptions(resourceName, VI_FALSE,

VI_FALSE, options, &(instrumentID[i]));
}
// Now combine the first 3 digitizers (in inverse order)
idList[0] = instrumentID[2];
idList[1] = instrumentID[1];
idList[2] = instrumentID[0];
ViSession multiInstrID;
ViSession masterIndex = instrumentID[1];
long nbrInList = 3;
status = AcqrsD1_multiInstrDefine(idList, nbrInList, masterIndex,

&multiInstrID);
status = AcqrsD1_calibrate(multiInstrID);

The first part of the code above finds and initializes all individual digitizers, as shown in section 3.2.1,
PCI & VXI Identification by Order Found. Of course, you could also use one of the other 2 methods of
identifying individual digitizers.

After AcqrsD1_multiInstrDefine has executed successfully, the instrumentID’s in the list idList
become unavailable for further operations. You must use the returned multiInstrID to refer to the newly
defined MultiInstrument.

You are responsible for making sure that

• all participating digitizers are physically connected with ASBus bridges

• the modules are of the same model type

• the master module has no more memory than any other participating digitizer

• an AcqGeo.map file is available if needed by the driver

If the master module has more memory than any other digitizer, the combined instrument will work as
long as you never request more memory than that available in the unit with the shortest memory.

The digitizers within the 'manually' defined MultiInstrument are numbered from 0 to (nbrInList – 1),
exactly as presented in the digitizer list idList. For details on channel and trigger source numbering,
please refer to section 3.15, ASBus Operation.

3.2.8. AqGeo.map file positioning
For ASBus MultiInstruments in some systems the driver will need additional information about the
physical ordering of the modules. This information is stored in a file named AqGeo.map which the driver
will load when an ASBus instrument is defined. The driver will search for the AqGeo.map file as follows:

• First the file will be searched for in the working directory of the application.

• Then the working directory will be searched for a file "AqDrv4.ini"

Programmer’s Guide Page 23 of 107

• Finally the directory pointed to by the environment variable "AcqirisDxDir" will be searched for
a file "AqDrv4.ini"

• The "AqDrv4.ini" file should contain the name of a directory which will also be searched for the
AqGeo.map file. Here is a typical example of its contents:

[Acqiris]
GeoMapPath=C:\Program Files\Acqiris\bin

3.2.9. Simulated Devices
If you want to work with simulated devices, none of the methods above are applicable. Any module
supported by the driver can be simulated in its digitizer mode. Any memory option available for the
module can be used for a call to AcqrsD1_setSimulationOptions as shown in this code fragment:

ViSession instrumentID;
ViStatus status;
status = AcqrsD1_setSimulationOptions("M2M");
// Initialize the digitizer
status = AcqrsD1_InitWithOptions("PCI::DC110", VI_FALSE, VI_FALSE,

"simulate=TRUE", &(instrumentID));

The first function call sets the instrument options that you want to obtain, e.g. “M2M” for the long
memory option of a DC110. In the second call, you must specify “simulate=TRUE” (without any
spaces!). The device driver creates a simulated device of your choice. The resource name string is always
of the form “PCI::aannn”, where aannn is a valid digitizer module name.

The simulation options will apply to all subsequent calls to AcqrsD1_InitWithOptions, until they are
reset with AcqrsD1_setSimulationOptions ("").

3.2.10. Terminating an Application
For an orderly shut down of your application, we recommend the following sequence:

// Stop the digitizers
for (long i = 0; i < nbrInstruments; i++)
{
 status = AcqrsD1_stopAcquisition(instrumentID[i]);
}
AcqrsD1_closeAll();

Stopping the acquisition of all digitizers ensures that there is no further activity that could, for example,
generate an interrupt. The function AcqrsD1_closeAll shuts down the driver components in the correct
order, and thus helps avoid crashes of the application during closing.

3.3. Device Configuration
As a general rule it should be remembered that new values to be used by the modules, as set with the
AcqrsD1_config functions, are remembered by the driver software but not immediately acted upon. They
will only really be loaded into the instrument’s registers at the beginning of an acquisition when
AcqrsD1_acquire is called. At that time all necessary changes will be made and, depending on the type of
changes, the driver will force itself to wait the appropriate settling time before it starts the acquisition.
This is done to ensure that the acquisition will occur in the desired state. The program does not have to
include ad hoc waits to allow the digitizer hardware to settle. The settling times vary from none in the
case of no change, to ~0.5 ms in the case of offset changes and to ~5 ms for relay changes or changes
between normal operation and External Clock Reference. In the special case of switching from DC to AC
coupling, the settling time is 100 ms. Time base setting changes also have associated settling times.

 NOTE: The special case of making transitions from low to high impedance is treated immediately to
avoid the risk of damaging the front-end circuitry of the digitizer. When making transitions from high to
low impedance you must ensure that large voltages are not applied before the change has really
happened. Therefore it is recommended to wait ~5 ms after having asked for an impedance change and
before applying any large voltages. Impedance changes can also affect other devices in the signal path.

Programmer’s Guide Page 24 of 107

Unneeded calls to the AcqrsD1_config functions should be avoided because they can delay the start of the
next acquisition.

NOTE: The AcqrsD1_get functions return the configuration values to be used for the next acquisition.

Use the following short code fragment for a device configuration:
// Configure
double sampInterval = 1.e-9, delayTime = 0.0;
long nbrSamples = 10000, nbrSegments = 1;
long channel = 1, coupling = 1, bandwidth = 0;
double fullScale = 2.0, offset = 0.0;
long trigCoupling = 0, trigSlope = 0;
double trigLevel = 20.0; // in % of vertical Full Scale !
AcqrsD1_configHorizontal(instrID, sampInterval, delayTime);
AcqrsD1_configMemory(instrID, nbrSamples, nbrSegments);
AcqrsD1_configVertical(instrID, channel, fullScale, offset,

coupling, bandwidth);
AcqrsD1_configTrigClass(instrID, 0, 0x00000001, 0, 0, 0.0, 0.0);
AcqrsD1_configTrigSource(instrID, channel, trigCoupling,

trigSlope, trigLevel, 0.0);

Comments:

• Channel numbers run from 1 to nbrChannels, not from 0! Segment numbers, however, run from 0 to
(nbrSegments – 1).

• Specifying more than 1 segment in AcqrsD1_configMemory implies the use of Sequence mode. The
10-bit-FAMILY instruments offer additional functionality through AcqrsD1_configMemoryEx.
For 10-bit units with extended memory there is the possibility of restricting memory use to the
internal memory to reduce the maximum dead time between segments of a sequence acquisition.

• The 5 main configuration functions are protected against illegal or incoherent values. Thus, the
system might adapt the values you ask for. There are 5 'query' counterparts to these functions,
AcqrsD1_getHorizontal, AcqrsD1_getMemory, AcqrsD1_getVertical, AcqrsD1_getTrigClass,
and AcqrsD1_getTrigSource, which you can interrogate.

• The function AcqrsD1_configTrigClass configures the trigger class control parameters of the
digitizer. On current Acqiris products, the edge trigger class is the only class available. For this class,
the available source patterns are Channel 1 through 4 or the external trigger. The
AcqrsD1_configTrigSource function configures the source parameters coupling, slope, and level as
shown in the example above. Notice that the functions AcqrsD1_configTrigClass and
AcqrsD1_configTrigSource must always be used together in order to complete the setup of the
trigger configuration. Refer to chapter 2, DEVICE DRIVER FUNCTION REFERENCE of the
Programmer's Reference Manual for a detailed description of these two functions.

• The helper functions AcqrsD1_bestSampInterval and AcqrsD1_bestNominalSamples are
sometimes useful for deciding on the nominal number of data points and the sampling interval to use
for a given time window to cover. If you ask for a nominal number of samples, the system actually
needs some additional samples for reasons of data alignment, acquisition stop-time overhead and
other reasons. In some cases, the additional 'invisible' samples can exceed the number of 'visible'
ones. The helper functions take such memory overheads into account when advising you on the
recommended sampling interval and number of samples. You are free to ignore the advice, but the
system is likely to adapt your setup values if the requested number of samples does not fit the
available memory.

• Specifying the value 0 for delayTime sets the trigger point to the beginning of the waveform. A
negative value corresponds to pre-trigger, a positive one to post-trigger. Refer to the section 3.10,
Trigger Delay and Horizontal Waveform Position for a detailed explanation of the use of
delayTime.

• For DC coupling the trigger levels in %FS as needed by AcqrsD1_configTrigSource can be
calculated as follows:

Programmer’s Guide Page 25 of 107

TriggerLevelPercent = 100*(TriggerLevelVolts + vOffset)/Fsrange;

• The granularity of a trigger value setting is limited by the hardware that uses an 8-bit DAC covering
somewhat more than the desired range.

• To set the external trigger range for a DC271-FAMILY or a 10-bit-FAMILY module or an
AP240/AP235 signal analyzer platform, add a call to AcqrsD1_configVertical with channel = -1
before the call to AcqrsD1_configTrigSource.

3.4. Configuring Averagers

3.4.1. Basic configuration
The averagers have 2 operational modes, digitizer and averager, controlled with the function:

AcqrsD1_configMode(instrID, mode, 0, 0);

The value mode can be set to 0 (digitizer) or 2 (averager).

The averager mode uses a number of additional configuration parameters, which describe the requested
averaging conditions.

Use the following short code fragment to configure an average of 1000 waveforms of 20’000 data points,
with a dithering range of ± 15 ADC LSB’s and a start delay of 128 samples for an AP100:

// Configure
long channelNbr = 0, nbrSamples = 20000, nbrWaveForms = 1000;
long ditherRange = 15, trigResync = 1;
long startDelay = 128, stopDelay = 0;

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “NbrSamples”, &nbrSamples);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “NbrWaveforms”, &nbrWaveForms);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “DitherRange”, &ditherRange);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “TrigResync”, &trigResync);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “StartDelay”, &startDelay);

 AcqrsD1_configAvgConfig(instrID, channelNbr,
 “StopDelay”, &stopDelay);

Comments:

• The value channelNbr is usually 0. However, for AP240/AP235 Signal Analyzer platforms it can
take on the value of the desired channel for some of the parameters.

• When in averager mode, the following digitizer parameters are ignored:

 delayTime of the function AcqrsD1_configHorizontal is replaced by “StartDelay” and
“StopDelay” (in future software versions, the parameter sampInterval of the function
AcqrsD1_configHorizontal is likely to be replaced by “SampInterval”)

 nbrSamples and nbrSegments of the function AcqrsD1_configMemory are replaced by
“NbrSamples” and “NbrSegments”

• The values nbrSamples, startDelay and stopDelay must be integer multiples of the ‘averaging
block size’, which is always 16 in the AP100 or AP240/AP235 Dual-channel mode, and 32 in
the AP200 or AP240/AP235 Single-channel mode. If the supplied value is not an integer
multiple of the ‘averaging block size’, it is truncated to the next lower integer multiple. Thus,
nbrSamples = 250 will be truncated to 240 (15 * 16) on an AP100, and to 224 (7 * 32) on an
AP200. You can query the actual value with the function AcqrsD1_getAvgConfig.

• The value startDelay controls the time between the trigger and the first data sample that is to be
added to the averager sum. It is expressed in samples and must be an integer multiple of the

Programmer’s Guide Page 26 of 107

‘averaging block size’, which is always 16 in the AP100 or AP240/AP235 Dual-channel mode,
and 32 in the AP200 or AP240/AP235 Single-channel mode.

• The stopDelay permits the addition of an extra delay to the dead time between the averaging of
subsequent waveforms. Its minimum value may be zero. It also is expressed in samples and must
be an integer multiple of the ‘averaging block size’.

• The ditherRange value may be between 0 (no dithering) and 15 (max dithering). Please refer to
the next section for further explanations.

3.4.2. Dithering
Dithering reduces the effect of non-ideal differential non-linearity of the analog-to-digital converter, by
adding or subtracting small offsets to the input signal. The offset is constant during the acquisition of a
single waveform, and then modified to another value during the next waveform.

The dithering range, N is programmable between 0 (no dithering) and 15, with the function
AcqrsD1_configAvgConfig(instrID, channelNbr,

 “DitherRange”, N);

Dithering reduces the range of the ADC by N levels at the top and another N levels at the bottom. In order
to avoid any undesirable effects, you should make sure that the signal range of interest is within the
reduced ADC range.

3.4.3. ‘Fixed Pattern’ Background Subtraction
If an averaging operation is executed while the input is open or no signal is applied, the averaged
waveform should tend to a constant value with a standard deviation σavg = σ / √N, where N is the number
of waveforms in the average, and σ is the standard deviation of a single waveform.

In reality, only random noise sources are averaged out, while those that are coherent with the sampling
clock are not reduced. The open-input averaged waveform thus represents the ‘fixed pattern’ background
of the averager. Subtracting this waveform from each subsequently acquired averaged waveform should
result in more precise data.

In order to facilitate the acquisition of the ‘fixed pattern’ background, the Averager modules offer the
following possibilities:

• disconnection of the input with the value coupling = 0 in the function AcqrsD1_configVertical

• acquisition of an averaged waveform without a trigger signal with the value ‘TrigResync’ = 2 (free
run) in the function AcqrsD1_configAvgConfig. However, you get a better measurement of the
‘fixed pattern’ background if you acquire with the same trigger conditions as the averaged
waveforms that will be corrected. Typically, it is better to continue using an external trigger signal,
rather than ‘TrigResync’ = 2.

The ‘fixed pattern’ background should be acquired in the same conditions as the averaged waveforms that
will be corrected. In particular, the dithering range and the number of waveforms should be the same.

Use the following code fragment to acquire a ‘fixed pattern’ background with a free- running trigger:
const long channelNbr = 0;
double fsr, offset;
long coupl, bwidth, reSync, freeRun = 2;

// Make an acquisition, at the current conditions, but with
// “Grnd” coupling and free running trigger.
AcqrsD1_getVertical(instrID, 1, &fsr, &offset, &coupl, &bwidth);
AcqrsD1_configVertical(instrID, 1, fsr, offset, 0, bwidth);

Programmer’s Guide Page 27 of 107

AcqrsD1_getAvgConfig(instrID, channelNbr, “TrigResync”, &reSync);
AcqrsD1_configAvgConfig(instrID, channelNbr, “TrigResync”,

&freeRun);

AcqrsD1_acquire(instrID);
long timeOut = 1000; // depends on conditions!
AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);

long nbrPoints = ???; // Should be the ‘current’ number of

points!
long timeStampLo, timeStampHi, nbrReturnedSamples;
double horPos, sampTime;

// Read the Waveform directly to the Background buffer
double bckGndWform[nbrPoints];
AcqrsD1_readRealWform(instrID, 1, 0, 0, nbrPoints, bckGndWform,
&nbrReturnedSamples, &horPos, &sampTime, &timeStampLo,

&timeStampHi);

// Restore the settings of the averager
AcqrsD1_configVertical(instrID, 1, fsr, offset, coupl, bwidth);
AcqrsD1_configAvgConfig(instrID, channelNbr, “TrigResync”,

&reSync);

Use the following code fragment to acquire a ‘fixed pattern’ background, assuming that the external
trigger can be used and is already set:

const long channelNbr = 0;
double fsr, offset;
long coupl, bwidth, reSync, freeRun = 2;

AcqrsD1_acquire(instrID);
long timeOut = 1000; // depends on conditions!
AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);

long nbrPoints = ???; // Should be the ‘current’ number of

points!
long timeStampLo, timeStampHi, nbrReturnedSamples;
double horPos, sampTime;

// Read the Waveform directly to the Background buffer
double bckGndWform[nbrPoints];
AcqrsD1_readRealWform(instrID, 1, 0, 0, nbrPoints, bckGndWform,
&nbrReturnedSamples, &horPos, &sampTime, &timeStampLo,

&timeStampHi);

The examples above assume that the background and the averaged waveforms are read in Volts. In this
case, the background data points are simply subtracted from the averaged waveform.

However, if you read the background and the averaged waveforms as 32-bit sums, with the function

Programmer’s Guide Page 28 of 107

long bckGndWform[nbrPoints]; // Background as 32-bit sum
AcqrsD1_readData(instrID, channel, &readParams, waveformArray,

&wfDesc, &segDesc);

you must correct the average as follows:
corrWform[i] = waveformArray[i] - bckGndWform[i] +

128*nbrAvgWforms;

The last term corrects for the fact that the 32-bit data are unipolar and that for display purposes the
corrected waveform should be in the middle of the vertical range if the averaged waveform is the same as
the background.

3.4.4. Configuring Noise Suppressed Accumulation (NSA)
As discussed in the User Manual Family of Averagers the module can be configured to only accept data
above a fixed threshold and, if desired, to shift the data in that case. Since these two values are expressed
in Volts and used as ADC counts they have to be converted before use. The User Manual describes this
transformation that depends on whether Data Inversion has been enabled. The NSA threshold
functionality must be enabled and a threshold defined. If this has been done the NSA base subtraction can
also be enabled and will be activated using the defined base value. The order of the calls to
AcqrsD1_configAvgConfig is not important since the final decision is taken when the acquisition is
started. Here is an example:

const long channelNbr = 0;
double fsr,offset, threshold, base;

threshold = - offset; // place the threshold at the middle of the

screen
base = threshold - fsr/10.; // place the base one division below

the threshold
// set the base and threshold voltage values
AcqrsD1_configAvgConfig(instrID, channelNbr, “Threshold”,

&threshold);
AcqrsD1_configAvgConfig(instrID, channelNbr, “NoiseBase”, &base);

// enable the NSA functionality
AcqrsD1_configAvgConfig(instrID, channelNbr, “ThresholdEnable”,1);
AcqrsD1_configAvgConfig(instrID, channelNbr, “NoiseBaseEnable”,1);

3.5. Configuring SSR Analyzers

3.5.1. Acquisition Parameters
The AP235/AP240 SSR analyzers have 2 operational modes, normal and AutoSwitch, controlled with the
function:
 AcqrsD1_configMode(instrID, mode, 0, 0);

The value mode can be set to 0 (normal) or 7 (AutoSwitch).

The AutoSwitch mode requires a number of additional configuration parameters that describe the
requested acquisition and readout conditions.

Use the following short code fragment to configure a buffered acquisition sequence of 800 waveforms of
5000 data points, with a start delay of 128 samples:

Programmer’s Guide Page 29 of 107

// Common Configure

long nbrSamples = 5000, nbrSegments = 800;

long startDelay = 128, stopDelay = 0;

AcqrsD1_configMode(instrID, 7, 0, 0);
AcqrsD1_configAvgConfig(instrID, 0, “NbrSamples”, &nbrSamples);
AcqrsD1_configAvgConfig(instrID, 0, “NbrSegments”, &nbrSegments);
AcqrsD1_configAvgConfig(instrID, 0, “StartDelay”, &startDelay);
AcqrsD1_configAvgConfig(instrID, 0, “StopDelay”, &stopDelay);

Comments:

• The value of the third and fourth argumenta to AcqrsD1_configMode must always be 0.

• When in AutoSwitch mode, the following digitizer parameters are ignored:

• delayTime of the function AcqrsD1_configHorizontal is replaced by “StartDelay” and
“StopDelay”

• nbrSamples and nbrSegments of the function AcqrsD1_configMemory are replaced by
“NbrSamples” and “NbrSegments” in the function AcqrsD1_configAvgConfig.

• The values nbrSamples, startDelay and stopDelay must be integer multiples of the ‘block size’,
which is always 16 in the AP240/AP235 Dual-channel mode, and 32 AP240/AP235 Single-
channel mode. If the supplied value is not an integer multiple of the ‘averaging block size’, it is
truncated to the next lower integer multiple. Thus, nbrSamples = 250 will be truncated to 240 (15
* 16) for a Dual-channel acquisition, and to 224 (7 * 32) for a Single-channel acquisition. You
can query the actual value with the function AcqrsD1_getAvgConfig.

• The value startDelay controls the time between the trigger and when the first digitized data
sample is stored. It should also be noted that when startDelay is 0, the first few data points, 5 in
the case of Dual-channel mode and 10 in the Single-channel mode, will always be 0.

• The stopDelay permits the addition of an extra delay to the dead time between the acquisition of
subsequent waveforms. Its minimum value may be zero.

• Although not shown here, a call to AcqrsD1_configControlIO can be made in order to set a
trigger veto time to be respected after the receipt of a Prepare for Trigger signal on a Control I/O
connector. This feature is for AP101/AP201 analyzers only.

• Also not shown, is a call to the function AcqrsD1_configAvgConfig to set a timeout value for
the automatic completion of a segment in case the real trigger never arrives. This feature is for
AP101/AP201 analyzers only.

3.5.2. Readout configuration
There are two possible ways of reading the data when in the SSR mode: user gates, and threshold gates.
In all three cases the entire acquisition must be read; you cannot ask for fewer segments or points. If you
want to read all of the data you should define the appropriate gate. These setting are also controlled
through the AcqrsD1_configAvgConfig routine and therefore must be prepared before the acquisition is
started. They can be set independently for each channel if desired.

For user gate readout you have to define the groups of data samples that you want to read for each segment. If needed
new values for the gates can be defined during the acquisition process. They will become effective after the next call
to AcqrsD1_processData or AcqrsD1_acquire. Here is some sample code:

long g_gateLengthSum[3];

long g_lastGate[3];

long channel = 1, gate =1;

AcqrsD1_configAvgConfig(instrID, channel, “GateType”, &gate);

Programmer’s Guide Page 30 of 107

// you can define up to 4095 gates,

// GatePos and GateLength must both be multiples of 4

AqGateParameters configSetupData[100];

long configObj = SSR_Default;

long gateSize = 1000;

// this will be the size we want to read

g_gateLengthSum[channel] = 0;

g_lastGate[channel] = 1; // a very simple example

for(int g=0;g<g_lastGate[channel];g++)

{

 // the first gate starts with the first point

 configSetupData[g].GatePos = g * gateSize;

 configSetupData[g].GateLength = gateSize;

 g_gateLengthSum[channel] += configSetupData[g].GateLength + 8;

}

status = AcqrsD1_configSetupArray(instrID, channel, configObj,
 g_lastGate[channel], configSetupData);

For threshold gate readout you have to define the threshold value in volts. Data values greater than this
will be selected for readout. If desired you can use AcqrsD1_configAvgConfig with the "InvertData"
parameter to choose data values less than the threshold. In addition you can define the number of data
values before and after each selected value that you always want to see. This number is in the range 0 to
16. However, the value will always be rounded up to the next highest multiple of 4. If two consecutive
selected values are 32 or more samples apart a new gate block will be generated. Otherwise, the current
block will be continued. In all cases the data transferred will always be a multiple of 4 samples and it will
start on a sample whose time position is a multiple of 4. Alternatively the number of data values before
and the total number of values can be selected. Furthermore, a limit on the maximum number of gates per
segment can be set.

long channel = 1, gate =2;
AcqrsD1_configAvgConfig(instrID, channel, “GateType”, &gate);
long preSamples = 0, postSamples = 0, maxGates = 1;
double threshold = 0.0; // in Volts
long thresEnable = 1;
status = AcqrsD1_configAvgConfig(instrID, channel,
 "PreSamples", &preSamples);
status = AcqrsD1_configAvgConfig(instrID, channel,
 "PostSamples", &postSamples);
status = AcqrsD1_configAvgConfig(instrID, channel,
 "Threshold", &threshold);
status = AcqrsD1_configAvgConfig(instrID, channel,
 "NbrMaxGates", &maxGates);

3.5.3. Time stamps
The ‘On-board’ 10 MHz reference clock is used to increment a counter. The value of the counter is stored
after the trigger of each new segment. The value of the counter can be read by the software as shown
here:

double SSRtimeStamp;

AcqrsD1_getInstrumentInfo(instrID, "SSRTimeStamp", &SSRtimeStamp);

Since each channel is controlled by its own FPGA the time stamps for the same segment are not
necessarily the same for the two channels. The command above works with the stamp of Channel 2.

In this release if the function is called before the first acquisition has been started the value returned will
be 0!

It is possible to reset the time stamp using a hardware signal on the P1 or P2 connectors. This can be done
with a call like:

Programmer’s Guide Page 31 of 107

Long TSReset = 1;
status = AcqrsD1_configAvgConfig(instrID, channel,
 "P1Control",&TSReset);

3.6. Configuring AdvancedTDC Analyzers
Since AdvancedTDC processing can be viewed as an additional form of processing after SSR acquisition
please refer to the discussion in 3.5 Configuring SSR Analyzers for that part of process. In addition you
will have to

// Configure peak detection
long numberOfTriggersPerSeg = 50, numberOfSegments = 1;

double startDelta=0.1,validDelta = 0.2;

AcqrsD1_configMode(instrID, 5, 0, 0);

AcqrsD1_configAvgConfig(instrID, 0, "NbrRoundRobins",
&numberOfTriggersPerSeg);

AcqrsD1_configAvgConfig(instrID, 0, "NbrSegments", &numberOfSegments);
AcqrsD1_configAvgConfig(instrID, 0, " StartDeltaPosPeakV ", &startDelta);
AcqrsD1_configAvgConfig(instrID, 0, " ValidDeltaPosPeakV ", & validDelta);

// Configure histogram

long tdcMode = 1, tdcDepth = 1, tdcIncr = 2, tdcType = 1;

AcqrsD1_configAvgConfig(instrID, 0, " TdcHistogramMode", &tdcMode);
AcqrsD1_configAvgConfig(instrID, 0, " TdcHistogramDepth", &tdcDepth);
AcqrsD1_configAvgConfig(instrID, 0, " TdcHistogramIncrement", &tdcIncr);
AcqrsD1_configAvgConfig(instrID, 0, " TdcProcessType", &tdcType);

// if the acquisition has segments to be histogrammed independently

long tdcOverlay = 0;

AcqrsD1_configAvgConfig(instrID, 0, " TdcOverlaySegments", &tdcOverlay);

3.7. Configuring AP101/AP201 Analyzers
The models AP101/AP201 have 2 operational modes, normal and buffered (also called dual-memory),
controlled with the function:
 AcqrsD1_configMode(instrID, mode, 0, flags);

The value mode can be set to 0 (normal) or 3 (dual-memory). In mode = 3, the parameter flags sets the
memory bank into which to acquire (0 or 1).

The buffered mode uses a number of additional configuration parameters that describe the requested
buffered acquisition conditions.

Use the following short code fragment to configure a buffered acquisition sequence of 800 waveforms of
5000 data points, with a start delay of 128 samples, into memory bank 1:

// Configure

long nbrSamples = 5000, nbrSegments = 800;

long startDelay = 128, stopDelay = 0;

AcqrsD1_configMode(instrID, 3, 0, 1);

AcqrsD1_configAvgConfig(instrID, 0, “NbrSamples”, &nbrSamples);
AcqrsD1_configAvgConfig(instrID, 0, “NbrSegments”, &nbrSegments);
AcqrsD1_configAvgConfig(instrID, 0, “StartDelay”, &startDelay);
AcqrsD1_configAvgConfig(instrID, 0, “StopDelay”, &stopDelay);

Comments:

Programmer’s Guide Page 32 of 107

• The value of the second argument to AcqrsD1_configAvgConfig must always be 0.

• When in buffered mode, the following digitizer parameters are ignored:

• delayTime of the function AcqrsD1_configHorizontal is replaced by “StartDelay” and
“StopDelay”

• nbrSamples and nbrSegments of the function AcqrsD1_configMemory are replaced by
“NbrSamples” and “NbrSegments” in the function AcqrsD1_configAvgConfig.

• The values nbrSamples, startDelay and stopDelay must be integer multiples of the ‘acquisition
block size’, which is always 16 in the AP101, and 32 in the AP201. If the supplied value is not
an integer multiple of the ‘acquisition block size’, it is truncated to the next lower integer
multiple. Thus, nbrSamples = 250 will be truncated to 240 (15 * 16) on an AP101, and to 224 (7
* 32) on an AP201. You can query the actual value with the function AcqrsD1_getAvgConfig.

• The value startDelay controls the time between the trigger and when the first digitized data
sample is stored. The stopDelay permits the addition of an extra delay to the dead time between
the acquisition of subsequent waveforms. Its minimum value may be zero.

• Although not shown here, a call to AcqrsD1_configControlIO can be made in order to set a
trigger veto time to be respected after the receipt of a Prepare for Trigger signal on a Control I/O
connector.

• Also not shown, is a call to the function AcqrsD1_configAvgConfig to set a timeout value for
the automatic completion of a segment in case the real trigger never arrives.

3.8. Data Acquisition
Digitizer operation is preceded by configuring the instrument parameters and then starting the acquisition
sequence. New settings are only loaded into the module when the acquisition is started; there is one
exception to this rule as discussed for analyzer user gate definition in section 3.5.2 Readout
configuration.

Similarly, you initiate an averaging operation by configuring the instrument parameters, including those
that control the averaging, and then starting the combined acquisition/averaging sequence. The Averager
module resets the accumulation buffers and then acquires the requested number of waveforms, each
preceded by a front-panel trigger signal, without any software intervention. The AcqrsD1_acquireEx
function allows an AP100/AP200 Averager to acquire additional data without resetting the accumulation.

Until the operation is terminated, your application is free to execute other tasks. There are several
methods of detecting when the acquisition/averaging operation has ended. Finally, you read the averaged
waveform with the function AcqrsD1_readData as described below.

If you want to acquire several (averaged) waveforms under the same conditions, there is no need to call
the AcqrsD1_config… functions again. It is sufficient to execute a loop over the “start, wait, read”
functions. In principle a subsequent start will happen considerably faster than the first one that was
required to load the full configuration.

3.8.1. Starting an Acquisition
Use the following line of code for starting an acquisition:

AcqrsD1_acquire(instrID); // start the acquisition

One such command is required for each module in use. However, if several digitizers are combined to a
single MultiInstrument with ASBus, only a single command is needed for the combined instrument.

3.8.2. Checking if Ready for Trigger
If many modules are being used it may be useful to know when they are all ready to accept a trigger. This
can be done by verifying that they are all finished with their pre-trigger phase (PreTrigger = 0) by using
the call below to all instruments (or the last instrument started):

Programmer’s Guide Page 33 of 107

AcqrsD1_getInstrumentInfo(instrID,"IsPreTriggerRunning",&PreTrigger);

3.8.3. Waiting for End of Acquisition
Waveforms cannot be read from the digitizer until the acquisition is terminated. The application may wait
for an acquisition to end either by polling or by waiting for interrupt.

(A) Simple Polling: use the following code fragment for polling the interrupt status:
int done = 0;
long timeoutCounter = 100000;
while ((!done) && (--timeoutCounter > 0))
 AcqrsD1_acqDone(instrID, &done); // poll for status

if (timeoutCounter <= 0) // timeout, stop acquisition
 STOP ACQUISITION

NOTE: The code above has the disadvantage of wasting CPU time while checking the instrument status
during the entire acquisition period. In addition, the timeout counter value should be set according to the
expected acquisition time, but the loop time depends on the CPU speed.

(B) More Efficient Polling: use this code fragment to release the polling thread for short periods:
int done = 0;
long timeoutCounter = 100;
while ((!done) && (--timeoutCounter > 0))
{
 AcqrsD1_acqDone(instrID, &done); // poll for status
 Sleep(1);
}
if (timeoutCounter <= 0) // timeout, stop acquisition
 STOP ACQUISITION

This code puts the polling thread to sleep for periods of 1 ms at a time, letting other threads of the
application or other applications use the CPU time. Setting the timeout counter to 100 means that a total
timeout period of 100 ms is expected.

NOTE: This method still has some drawbacks:

• depending on the operating system, the 'Sleep' method often has a granularity of 10 ms or more,
rounding any smaller number up to this minimum value

• the response time of the application to the end of acquisition is 50% of the sleep time, on average.
With a granularity of 10 ms, the mean latency is therefore 5 ms. Thus, no more than 200 waveforms
per second could be acquired, because the application wastes time waiting for the acquisition to
terminate.

(C) Waiting for Interrupt:
ViStatus status;
long timeOut = 100; // in ms
status = AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);
if (status == ACQIRIS_ERROR_ACQ_TIMEOUT) // timeout, stop

 STOP ACQUISITION

This method combines low CPU usage with very good response time:

The function enables the digitizer’s 'end-of-acquisition' interrupt and sets up a semaphore that waits for
this interrupt. It then releases the thread by 'going to sleep', thus letting other threads of the application or
other applications use the CPU time. The function returns as soon as the interrupt occurs or when the
timeout expires.

Acqiris recommends using AcqrsD1_waitForEndOfAcquisition since it is the most efficient method.
The interrupt latency is of the order of several μs, and no CPU time is wasted.

Programmer’s Guide Page 34 of 107

3.8.4. Stopping/Forcing an Acquisition
The previous section shows a case where an ongoing acquisition must be stopped, typically because there
is no trigger. Also, in some situations you may want to use the digitizer to generate a system trigger under
software control.

If you still would like to have a valid snapshot of the current input signal, you should generate a trigger
signal by software, with the function AcqrsD1_forceTrig or AcqrsD1_forceTrigEx. Typically, the
acquisition does not stop immediately, since the digitizer may continue acquiring some additional data,
depending on the delayTime and the data acquisition time that were initially configured. Thus, the
application should again wait for the acquisition to terminate. Forcing a trigger does not make sense for
averagers and analyzers and should not be done. AcqrsD1_forceTrigEx allows you to generate a trigger
out signal which can be synchronized with the sampling clock if desired.

Use the following code fragment to replace STOP ACQUISITION in the previous section:
{
 AcqrsD1_forceTrig(instrID);
 if (AcqrsD1_waitForEndOfAcquisition(instrID, timeOut) ==
 ACQIRIS_ERROR_ACQ_TIMEOUT)
 {
 AcqrsD1_stopAcquisition(instrID);
 SCREAM, because a major error occurred
 }
}

Note that no timeout should ever occur when waiting for a 'forceTrig' to terminate, provided that the
timeOut value was made large enough. If a timeout does occur, this would indicate a failure in the
digitizer or the entire system.

For users generating triggers under software control it may be desirable to do the data readout in a way
that just gives the acquired data points and ignores the correction of the data gotten from the horPos
measurement of the time from the trigger to the next data sample. This can be done using the flags
parameter of the AqReadParameters structure.

3.8.5. Analyzer and AdvancedTDC Autoswitch mode
If with the AdvancedTDC mode the TdcHistogramMode parameter has been used to enable
histogramming the desired number of acquisitions will be taken automatically. As usual the acquisition
must be initialized with a call to AcqrsD1_acquire(instrID). When the acquisition has terminated the
histogram data and the peak or gate data of the last acquisition will be available for readout. The routines
AcqrsD1_acqDone or AcqrsD1_waitForEndOfAcquisition must be used.

For all other cases the AP Analyzers implement an autoswitch mode that allows the dead time between
acquisitions to be reduced to the minimum consistent with the readout of the data. As usual the first
acquisition must be initialized with a call to AcqrsD1_acquire(instrID). To allow the second acquisition
to start as soon as possible a call to AcqrsD1_processData (instrD,processType,1) follows immediately.
Thereafter data can be read as soon as the processing is terminated and then the go ahead for the next
acquisition can be given as desired.

3.8.5.1. Sequence of actions for Autoswitch with event readout

The AutoSwitch semaphore is set by the software and cleared by the FPGA.
If the readout process is longer than the acquisition process, the AutoSwitch occurs directly after the
software raises the AutoSwitch semaphore.
At the moment that the ProcessingEnd interrupt occurs, the FPGA has already cleared the AutoSwitch.

Programmer’s Guide Page 35 of 107

acq Bank 0

readout

disabled int.

disabled int.

acq Bank 1

Processing0
int

AutoSwitch

Processing1
int

3

4

0

1

2

disabled int

21

S Description Software implementation

0 The software configures the mode, the
acquisition parameters, and the readout.

AcqrsD1_configMode(…);

AcqrsD1_configAvgConfig(…); …

1 The software starts the first acquisition. AcqrsD1_acquire(instrID);

2 The software sets the AutoSwitch semaphore.
To ensure the shortest response time this
arming function should be done on the order
of 10-20 μs before the expected acquisition
end.

AcqrsD1_processData(instrID, processType, 1);

processType = 0 is used for SSR & AdvancedTDC

 = 1,2,3, or 4 are for AP101/AP201 or
 AdvancedTDC

3 When the acquisition has finish, the FPGA
automatically switches the banks, starts a
new acquisition, a new processing and clears
the AutoSwitch semaphore.

4 Once the software receives the
ProcessingEnd interrupt, it can start the
readout.

status = AcqrsD1_waitForEndOfProcessing(instrID,
timeout);

AcqrsD1_readData(instrID, channel, &readParams,
waveformArray, &wfDesc, &segDesc);

 Go to 2 to continue.

Here is a sample bit of code showing this principle:
status=AcqrsD1_acquire(instrID); // Start the acquisition
processType = 0;

for (;;) //loop forever
{
 status=AcqrsD1_processData(instrID, processType, 1);
 status=AcqrsD1_waitForEndOfProcessing(instrID,timeout);
 status=AcqrsD1_readData(instrID, channel, &readPar,

&adcArray, &dataDesc, &segDesc);
}

To keep the same interface for the AP240 as was the case for the AP101/AP201, the processing step is
kept but the “dummy” processing value is used. Actually the software knows which processing is needed
from the setup values sent to AcqrsD1_configAvgConfig. Thus, the software must wait for the end of
processing even if the “processing mode” is set to NO_PROCESSING.

3.8.5.2. What happens when the AutoSwitch semaphore is not set
After the "processing" of an acquisition, if the semaphore is not set, the FPGA waits for further
instructions. This feature ensures that the software has finished with the old buffer and gives full

Programmer’s Guide Page 36 of 107

compatibility with older software implementations. If you make a call to AcqrsD1_stopAcquisition you
shouldn't try to read the last acquisition's data.

3.8.5.3. Changing acquisition settings while acquiring and reading
events

If you want to change any of the acquisition settings you must

o terminate the current acquisition sequence

AcqrsD1_processData(instrID, processType, 2); // do a bank switch but do not start

status = AcqrsD1_waitForEndOfProcessing(instrID, timeout); // usual wait

// finish reading the data associated with the old settings

AcqrsD1_readData(instrID, channel, &readParams, waveformArray, &wfDesc, &segDesc);

o configure the instrument for the new values and start the new set of acquisitions

// go back to step 0 in the table above

AcqrsD1_configAvgConfig(…); …

AcqrsD1_acquire(instrID); …

3.9. Data Readout
For the reading of standard waveforms the AcqrsD1_readData routine should be used. The following
older routines will remain available but will no longer be discussed:

AcqrsD1_readCharWform

AcqrsD1_readCharSequence AcqrsD1_readRealWform

AcqrsD1_readRealSequence AcqrsD1_accumulateWform

You should use the function AcqrsD1_readData for all new programs. The older functions will not give
support for new instruments or new functionality. All variables of the AqReadParameters structure
should be initialized; 0 can be used for the reserved words.

For the readout of the averager data the read function AcqrsD1_readData described in 3.9.1 Reading
Digitizer Waveforms with the Universal Read Function should be used with readMode = 2. For
reading data from analyzers please refer to 3.9.6 Reading SSR Analyzer Waveforms or 3.9.7 Reading
AP101/AP201 Analyzer Waveforms.

3.9.1. Reading Digitizer Waveforms with the Universal Read Function
 For the general case, which includes the reading of more complex waveforms, we provide a universal
read function AcqrsD1_readData.

Control of the read parameters is passed through the input structure AqReadParameters. For the
description of the output data an array of segment descriptors, AqSegmentDescriptor, and a waveform
descriptor, AqDataDescriptor, are returned. These structures are defined in the header file
AcqirisDataTypes.h.

The following parameter setting can be used for reading a single waveform segment in 8-bit
representation.

Programmer’s Guide Page 37 of 107

static long nbrSegments = 1; // readMode = 0 requires this value
const long nbrPoints = 1000;
char dataArray[nbrPoints+32];

AqReadParameters *readPar = new AqReadParameters;
AqDataDescriptor *dataDesc = new AqDataDescriptor;
AqSegmentDescriptor *segDesc = new

AqSegmentDescriptor[nbrSegments];
readPar->dataType = 0; // 0 = byte
readPar->readMode = 0; // 0 = standard waveform
readPar->nbrSegments = nbrSegments;
readPar->firstSampleInSeg = 0;
readPar->segmentOffset = 0; // unused parameter
readPar->firstSegment = 0;
readPar->nbrSamplesInSeg = nbrPoints;
readPar->dataArraySize = sizeof(dataArray);
readPar->segDescArraySize =

sizeof(AqSegmentDescriptor)*nbrSegments;
readPar->flags = 0;
readPar->reserved = 0;
readPar->reserved2 = 0.0;
readPar->reserved3 = 0.0;

status = AcqrsD1_readData(instrID, channel, readPar, dataArray ,

dataDesc, segDesc);

Comments:

• The segment numbers run from 0 to nbrSegments-1.

• The value of segDesc->horPos is the time interval in seconds between the first data point and the
nominal time origin of the trigger delay. It is always in the range [-sampTime, 0]. It is useful for a
very precise positioning, to a fraction of the sampling interval, of the waveform. In many
applications, it can be ignored. Refer to section 3.11, HORIZONTAL PARAMETERS IN
ACQUIRED WAVEFORMS, for a detailed explanation of horPosReturn values have to be
interpreted in the same way as for the other readout functions.

• Refer to the section 3.12, SEQUENCE ACQUISITIONS for detailed explanations on the
interpretation of segDesc->timeStampLo/Hi.

• It is important to zero the unused parameters at the end of the readPar structure. An incorrect value of
flags can be very confusing.

3.9.2. Reading Sequences of Waveforms
In certain situations, see APPENDIX A: ESTIMATING DATA TRANSFER TIMES, it can be more
efficient (in time) to read Sequence Waveforms with readMode = 1. This mode transfers all of the data
from the digitizer to the local memory in a single DMA as opposed to calling AcqrsD1_readData many
times thus using a transfer per segment. The price to be paid is a higher memory requirement. It can also
be used to transfer blocks of segments in the case of very large memories.

For dataType = 0 or 1, the amount of memory needed (in bytes) is

arraySize ≥ segmentOffset * (nbrSegments+1) * (dataType + 1)

with

arraySize ≥ (nbrSamplesNom + currentSegmentPad) * (nbrSegments+1) * (dataType + 1)

Programmer’s Guide Page 38 of 107

and

segmentOffset≥, nbrSamplesInSeg

where

• the currentSegmentPad depends on the acquisition configuration and can be determined using
the following call,
AcqrsD1_getInstrumentInfo(instrID,”TbSegmentPad”,
 ¤tSegmentPad);

• the nbrSamplesNom is the nominal number of samples to record and may be different than what
was asked for! It can be determined using the following call,
AcqrsD1_getMemory(instrID,&nbrSamplesNom,&nbrSegments);

You have to make sure that you ask for this information after the acquisition configuration has been
established.

Similarly, for dataType = 3 the amount of memory needed (in bytes) is

arraySize ≥ 8 * segmentOffset * (nbrSegments+1)

with

segmentOffset≥, nbrSamplesInSeg

and

 arraySize ≥ 8 * segmentOffset + (nbrSamplesNom + currentSegmentPad) * nbrSegments *
(dataTypeADC + 1)

where dataTypeADC is 0 for the 8-bit instruments and 1 otherwise.

The following code can be used for reading a waveform sequence in 8 bit representation.
long nbrSegments = 10;
long nbrPoints = 1000;
char *dataArrayP;
long currentSegmentPad;
long nbrSamplesNom,nbrSegmentsNom;

AqReadParameters *readPar = new AqReadParameters;
AqDataDescriptor *dataDesc = new AqDataDescriptor;
AqSegmentDescriptor *segDesc = new

AqSegmentDescriptor[nbrSegments];
readPar->dataType = 0; // 0 = byte
readPar->readMode = 1; // 1 = sequence waveform
readPar->nbrSegments = nbrSegments;
readPar->firstSampleInSeg = 0;
readPar->segmentOffset = nbrPoints;
readPar->firstSegment = 0;
readPar->nbrSamplesInSeg = nbrPoints;
readPar->flags = 0;
readPar->reserved = 0;
readPar->reserved2 = 0.0;
readPar->reserved3 = 0.0;

Programmer’s Guide Page 39 of 107

status = AcqrsD1_getInstrumentInfo
(instrID,”TbSegmentPad”,¤tSegmentPad);

// in this case the next call doesn’t have any surprises
status = AcqrsD1_getMemory(instrID,
 &nbrSamplesNom,&nbrSegmentsNom);
readPar->dataArraySize =

(nbrSamplesNom+currentSegmentPad)*(1+nbrSegments);

// here we show the malloc explicitly
dataArrayP = (char *)malloc(readPar->dataArraySize);
readPar->segDescArraySize =

sizeof(AqSegmentDescriptor)*nbrSegments;
status = AcqrsD1_readData(instrID, channel, readPar, dataArrayP,

dataDesc, segDesc);

Comments:

The explicit malloc call will normally not be repeated for every acquisition. Obviously, a larger than
needed allocation is perfectly acceptable. Also, any space allocated this way ought to be returned to the
heap at some point.

3.9.3. Averaging Waveforms in a Digitizer
The driver includes 4 functions provided to improve performance when averaging waveforms.

The first pair of functions, AcqrsD1_averagedData for any digitizer (and the older
AcqrsD1_averagedWform for 8-bit digitizers only), are meant only for single channel, single segment
operation. They average a predefined number of waveforms, taking care of the acquisition loop internally.
The client must supply a working array (dataArray or waveformArray, for internal use) and an
accumulation array (sumArray). The accumulation array is reset automatically inside the function at the
beginning of each call. When the function returns successfully, the accumulation array contains the
sample-by-sample sum of the waveforms. To get the average values, the array elements must be divided
by the number of acquisitions nbrAcq. If, for each acquisition, the trigger does not arrive within the
requested timeout after the beginning of the acquisition, the function returns with an error code.

The second pair of functions, AcqrsD1_accumulateData for any digitizer (and the older
AcqrsD1_accumulateWform for 8-bit digitizers only) can be used for multi-channel operation and can
be called for each acquisition the user wants to accumulate. It reads the waveform in the module, and
performs a sample-by-sample accumulation in the client array. Here again, the client must supply a
working array (dataArray or waveformArray, for internal use) and an accumulation array (sumArray).
The client controls the acquisition, and must reset the accumulation array appropriately.

In both cases, the allocation of the memory for the working array (dataArray or waveformArray) has
been left to the client for performance reasons. Its size must be at least the requested number of samples
nbrSamples + 32, for reasons of data alignment. The content of this working array is not meant to be
used by the client.

Please note that in both cases, sub-sample timing information (i.e. horPos, see section 3.11, Horizontal
Parameters in Acquired Waveforms) is not taken into account.

3.9.4. Reading an Averaged Waveform from an Averager
Averaged waveforms can be read out either in Volts, or as 32-bit accumulated sums. In either case,
Acqiris recommends to use the general-purpose read function AcqrsD1_readData, rather than the
‘legacy’ function AcqrsD1_readRealWform.

3.9.4.1. Averaged Waveforms in Volts
You should use the general-purpose function AcqrsD1_readData (or the ‘legacy’ function
AcqrsD1_readRealWform). As long as the mode is still set to averager, either function automatically
divides the accumulated waveform sum by the number of acquired waveforms, and returns the result in

Programmer’s Guide Page 40 of 107

Volts. They also return zero into the variables horPos, tStampLo and tStampHi, since they are irrelevant
in the context of an averaged waveform.

Use this code fragment for the general-purpose function:
AqReadParameters readParams; // Read Definitions
AqDataDescriptor wfDesc; // Returned (common) waveform

values
AqSegmentDescriptorAvg segDesc; // Returned segment values

long channel = 1, nbrSamples = 20000;
double waveformArray[20000];
readParams.dataType = ReadReal64; // Request Volts
readParams.readMode = ReadModeAvgW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(AqSegmentDescriptorAvg);
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, waveformArray,

&wfDesc, &segDesc);

Note: If you call a readout function while the acquisition mode is set to digitizer, it will return the last
acquired single waveform, possibly with some unpredictable results.

Note: The ‘raw’ sums can be read directly with a different function call (see next section). The
relationship between Volts and the raw sum is expressed by the following formula:

sum[i] = (volts[i] + offset + FS/2.0) * 256 * nbrWforms / FS

with the following definitions:

sum[i] 32-bit integer sum at position i, unipolar (i.e. 0 or positive)

volts[i] floating point voltage at position i, as returned by the code fragments above

offset offset in Volts, as set with AcqrsD1_configVertical

FS full scale range in Volts, as set with AcqrsD1_configVertical

nbrWforms number of summed waveforms

The value of ‘nbrWforms’ must be known, i.e. if the averaging process was interrupted before reaching
the requested number of waveforms, the formula above yields wrong results. As a check that the correct
value of ‘nbrWforms’ was used, the value of ‘sum[i]’, before conversion to an integer, must already be
very close to an integer.

Use this code fragment for the ‘legacy’ function:
long channel = 1, segmentNumber = 0, nbrSamples = 20000;
long returnedSamples, tStampLo, tStampHi;
double waveformArray[20000], horPos, sampTime;
AcqrsD1_readRealWform(instrID, channel, segmentNumber, 0,

nbrSamples, waveformArray,&returnedSamples,
&horPos, &sampTime, &tStampLo, &tStampHi);

Programmer’s Guide Page 41 of 107

3.9.4.2. Averaged Waveforms as 32-bit Sums
You must use the general-purpose function AcqrsD1_readData.

Use this code fragment:
AqReadParameters readParams;// Read Definitions
AqDataDescriptor wfDesc; // Returned (common) waveform values
AqSegmentDescriptorAvg segDesc; // Returned segment values

long channel = 1, nbrSamples = 20000;
long waveformArray[20000];
readParams.dataType = ReadInt32; // Request 32-bit sums
readParams.readMode = ReadModeAvgW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.dataArraySize = sizeof(waveformArray);
readParams.segDescArraySize = sizeof(segDesc);
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, waveformArray,

&wfDesc, &segDesc);

The returned data values in waveformArray are unipolar, i.e. the raw ADC values are coded as values
between 0 and 255, so that the summed data values may run between 0 and 255*N (N= number of
waveforms in the sum).

3.9.5. Reading a RT Add/Subtract Averaged Waveform from an
Averager

This case is significantly different than the normal averager case described above.

The ‘raw’ sums now have to be considered as signed values. The relationship between Volts and the raw
sum is expressed by the following formula:

sum[i] = volts[i] * 256 * nbrWforms / FS

with the same definitions as before. However, the user has to understand if the final result corresponds to
the desired signal or just half of it.

3.9.6. Reading SSR Analyzer Waveforms

3.9.6.1. SSR Mode Readout Data Format
In all cases data values are returned in the range [–128, +127]. The relationship between Volts and the
raw data is expressed by the following formula:

data[i] = (volts[i] + offset) * 256 / FS

with the following definitions:

data[i] 8-bit signed ADC value at position i

volts[i] floating point voltage at position i, as returned by the code fragments above

offset offset in Volts, as set with AcqrsD1_configVertical

Programmer’s Guide Page 42 of 107

FS full scale range in Volts, as set with AcqrsD1_configVertical

In all cases you must readout the entire acquisition. You cannot ask for a reduced number of segments.

3.9.6.2. Raw data
The complete data should only be read out using the gated data mode described below. An appropriate
User Gate can be defined to access all of the data.

3.9.6.3. Gated data
Data can be read for both user and threshold gate operation using readMode = ReadModeSSRW (7).

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes
read. A time stamp block, measuring the trigger time, will mark the beginning of each segment. Segment
timestamps are mixed in with the data and not available through the usual segDesc array. The entire time
stamp is a 56-bit integer counting in units of 100 ns.

Here is the Time Stamp format:

Marker block
31..24 (8 bits) 23..0 (24 bits)

Flag = 00000100 (0x04) Time Stamp MSB

TimeStamp LSB

The time stamp may be followed by a variable number of blocks of data with the following format:

Gate block
31..24 (8 bits) 23..0 (24 bits)

Flag = 00000000 Gate position from the origin of the acquisition (not the segment!)
31..0

Gate length (number of Data bytes, always a multiple of 4)
31..24 23..16 15..8 7..0

Data3 Data2 Data1 Data0

… … … Data4

When reading such data you should carefully check that you terminate correctly and do not read beyond
the end of the transmitted data nor generate unphysical time coordinates for the data.

3.9.6.4. Waveform storage requirements
When using the routine AcqrsD1_readData you must allocate waveform storage and inform the driver
about the number of bytes available.

Raw data readout requires exactly the number of bytes corresponding to the number of segments times the
number of data points per segment.

User gate readout for each segment requires 8 bytes for the time stamp and an overhead of 8 bytes for
each gate. This must be added to the total number of samples in all of the gates to get the required length
for each segment and multiplied by the number of segments to get the waveform array length.

For threshold gate readout the program should allocate the space needed for the worst case. This means 8
bytes for the time stamp, 8 bytes for a gate block header and space for the total number of
samples/segment. This must be multiplied by the number of segments to get the waveform array length. It
should be noted that the FPGA will generate a single gate block if there are less than 32 data points
"below" threshold between two desired data points.

3.9.7. Reading AdvancedTDC Analyzer Data and Histograms

3.9.7.1. Reading the gated data
The gated data of the current event can be read out as described in 3.9.6.3 Gated data. This is the only
output format that gives access to the segment time stamps.

Programmer’s Guide Page 43 of 107

3.9.7.2. Reading the data in the peak regions
The data of the peak regions in the current event can be read out using readMode = ReadModePeak (10).

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes
read. There will be a variable number of blocks of data with the following format:

Peak region block 8 points
31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Flag 00010001 0x00 Valid Left Valid Right
31..0 (32 bits)

Peak Position (= tmax)

31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Sample(tmax) Sample(tmax-1) Sample(tmax-2) Sample(tmax-3)

Sample(tmax+4) Sample(tmax+3) Sample(tmax+2) Sample(tmax+1)

Peak region block 16 points
31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Flag 00010010 0x00 Valid Left Valid Right
31..0 (32 bits)

Peak Position (= tmax)

31..24 (8 bits) 23..16 (8 bits) 15..8 (8 bits) 7..0 (8 bits)

Sample(tmax-4) Sample(tmax-5) Sample(tmax-6) Sample(tmax-7)

Sample(tmax) Sample(tmax-1) Sample(tmax-2) Sample(tmax-3)

Sample(tmax+4) Sample(tmax+3) Sample(tmax+2) Sample(tmax+1)

Sample(tmax+8) Sample(tmax+7) Sample(tmax+6) Sample(tmax+5)

The peak position is counted relative to the beginning of the first segment of the acquisition. Thus the
position also gives the segment number of the peak.

The sample data value is the raw data value.

Valid Left and Valid Right give the number of valid data points < tmax and > tmax respectively.
Sample(tmax-validLeft) and Sample(tmax+validRight) are the first and last valid points, respectively.

If you need to know the segment time stamps you can read the gated data. If the user or threshold gate
parameters are set appropriately the amount of unwanted data can be minimized.

3.9.7.3. Reading the peaks
The results for all of the peaks in the current event can be read out using readMode = ReadModePeak (4).

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes
read. There may be a variable number of blocks of data with the following format:

Peak block
31..24 (8 bits) 23 19..4 (16 bits) 3..0 (4 bits)

Flag 00010000
(0x10)

Unused Peak amplitude with ADC resolution Interpolated fractional part of
amplitude (1/16 LSB)

29..4 (26 bits) 3..0 (4 bits)

Peak Position with sample rate resolution Interpolated fractional part of
position (1/16 sample interval)

The peak position is counted relative to the beginning of the first segment of the acquisition. Thus the
position also gives the segment number of the peak.

The peak amplitude is the value acquired after baseline substraction.

Programmer’s Guide Page 44 of 107

When reading such data you should carefully check that you terminate correctly and do not read beyond
the end of the transmitted data nor generate unphysical time coordinates for the data.

If you need to know the segment time stamps you can read the gated data. If the user or threshold gate
parameters are set appropriately the amount of unwanted data can be minimized.

3.9.7.4. Reading the histogram
The accumulated histogram can be read out using readMode = ReadModeHistogram (9). The dataType
and dataArraySize must be selected to correspond to the size of the histogram and its bins.

The waveform descriptor structure contains the value actualDataSize giving the total number of data bytes
read. The individual histogram bins will be able to contains accumulated sums of either 2**32, as
ViUInt32, or 2**16, as ViUInt16.

Histogram bin is 32 bits wide
31..0

Bin0

…

Histogram bin is 16 bits wide

31..16 15..0

Bin 1 Bin 0

… …

3.9.8. Reading AP101/AP201 Analyzer Waveforms

3.9.8.1. Reading a Buffered Waveform Sequence
This section concerns AP101/AP201 Analyzers ONLY. In normal mode, you may read the acquired
waveform(s) in the same way as with any other digitizer, as described in the section 5.14, Data Readout,
in the Standard Manual.

In buffered mode, you must use the functions AcqrsD1_readData to read out the accumulated waveform
sequence, as a single data record. E.g. if you configured nbrSamples = 5000 and nbrSegments = 800, you
should specify segmentNumber = 0 and nbrSamples = 4’000’000.

Before reading the buffered data, you must switch to the other memory bank. Typically, you also would
start a new acquisition before readout, but it is not required. This is done automatically in the autoswitch
mode as a consequence of the call to AcqrsD1_processData with a non-zero flag value. It can also be
done with a call to AcqrsD1_configMode

The read-function returns zero into the dataDesc variables horPos, tStampLo and tStampHi, since they are
unavailable in the context of a buffered waveform sequence.

With the function AcqrsD1_readData, use this code fragment:

Programmer’s Guide Page 45 of 107

AqReadParameters readParams; // Read Definitions
AqDataDescriptor dataDesc; // Returned waveform values
AqSegmentDescriptor segDesc; // Returned segment values

long channel = 1, nbrSamples = 4000000;
char waveformArray[4000000];
readParams.dataType = ReadInt8;
readParams.readMode = ReadModeStdW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

memoryBank = (memoryBank+1)&0x1; // switch to other bank
AcqrsD1_configMode(instrID, 3, 0, memoryBank);
AcqrsD1_acquire(instrID); //essential!!

AcqrsD1_readData(instrID, channel, &readParams, waveformArray,

&dataDesc, &segDesc);

The returned data array contains the acquired waveforms as a contiguous array. E.g. if you configured
nbrSamples = 5000, the data points ‘waveformArray[0…4999]’ correspond to the first waveform, the
data points ‘waveformArray[5000…9999]’ correspond to the second waveform etc.

3.9.8.2. Reading Gated Waveforms
For reading gated waveforms the actual desired gates should be set with the setup function
AcqrsD1_configSetupArray. This function should be called before AcqrsD1_acquire is invoked to
acquire any data that needs to be read using these gates. To read back the gate values,
AcqrsD1_getSetupArray has to be used. An example for the two routines is shown in the following
code:

const int NbrGates = 64;
long channelNbr = 0;
long configObj = AvgGate;
long lastGate = NbrGates;
AqGateParameters gatePara[NbrGates];

for(int i=0;i<NbrGates;i++)
{
 gatePara[i].GateLength = 256;
 gatePara[i].GatePos = i*gatePara[i].GateLength;
}
AcqrsD1_configSetupArray(instrID, channelNbr, configObj, gatePara,

lastGate);

The condition GateLength >= 4 is required. Both GateLength and GatePos must be multiples of 4.

You can read the gate parameters back, with this code:

Programmer’s Guide Page 46 of 107

const int NbrGates = 64;
long channelNbr = 0;
long configObj = AvgGate;
long lastGate;
AqGateParameters gatePara[NbrGates];

AcqrsD1_getSetupArray (instrID, channelNbr, configObj, gatePara,
&lastGate);

Make sure to use a pointer to the last argument, since it returns the number of gates. lastGate cannot
exceed the number of gates being written.

To read the gated waveforms, use the function AcqrsD1_readData.
AqReadParameters readParams; // Read Definitions
AqDataDescriptor dataDesc; // Returned waveform values
AqSegmentDescriptor segDesc; // Returned segment values

long channel = 1, nbrSamples = 20000;
char waveformArray[20000];
readParams.dataType = ReadInt8;
readParams.readMode = ReadModeGateW;
readParams.nbrSegments = 1;
readParams.firstSampleInSeg = 0;
readParams.segmentOffset = nbrSamples;
readParams.firstSegment = 0; // Read first segment
readParams.nbrSamplesInSeg = nbrSamples;
readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

AcqrsD1_readData(instrID, channel, &readParams, waveformArray,

&dataDesc, &segDesc);

The returned data array contains the acquired waveforms as a contiguous array of
 dataDesc–>returnedSamples bytes.

Note: Make sure that the waveformArray is large enough to hold the sum of all GateLength’s times the
nbrSegments. As a rule, the waveformArray has to have as a minimum size the sum of all the gate sizes
times nbrSegments (waveformArray > (∑ GateLength)* nbrSegments) .

Note: If, for each gate, the sum (GatePos + GateLength) exceeds the nbrSamplesInSeg, GatePos is
reduced to satisfy (GatePos + GateLength) <= nbrSamplesInSeg. If this is not sufficient, GateLength is
shortened to satisfy that condition.

3.9.8.3. Data Processing before Readout
In buffered mode. the AP101 offers the capability of processing the acquired data before readout. This
operation must be explicitly requested by the application, after the data acquisition has terminated.

Depending on the processing algorithms used, you may have to prepare the data processing by setting the
appropriate parameters with the function AcqrsD1_configSetupArray.

In the ‘peak-detect’ mode, the AP101 will return for each gate exactly 2 peaks, first the positive and then
the negative one (some of which might be marked as ‘invalid’ if no valid peak exists!). Thus, you should
define the gates in the same way as described in the previous section.

A typical acquisition/processing/readout sequence in autoswitch buffered mode would be:

1. Configure the APXXX for appropriate channel, timebase, trigger, and gate parameters.

Programmer’s Guide Page 47 of 107

2. Start the first acquisition.

3. Give the order to switch banks and start the next acquisition and data processing on the current
acquisition as soon as possible. The processing can overlap with the data acquisition since it
automatically deals with the memory bank that is not selected for acquisition. If you need to
read the original data choose the "no processing" option.

4. Wait for the processing to be terminated, read the processed result. Note that the processing will
not destroy the originally acquired data.

5. You may now do any additional processing in your computer. However, you cannot read the
original data at this point without perturbing the acquisition.

6. Now that you have finished all work with the current data you can loop to (3) above.

A typical acquisition/processing/readout sequence in explicit buffered mode would be:

7. Configure the APX01 for appropriate channel, timebase, trigger, and gate parameters.

8. Start the first acquisition.

9. Wait for the first acquisition to terminate.

10. Switch the memory bank and start a new acquisition in the second bank. Note that you must
start the new acquisition to make the memory bank switch happen.

11. Start data processing. This can overlap with the data acquisition since it automatically deals with
the memory bank that is not selected for acquisition.

12. After processing has terminated, read the processed result. Note that the processing will not
destroy the originally acquired data.

13. You may now do any additional processing in your computer. However, you cannot read the
original data at this point without perturbing the acquisition.

14. Wait for the new acquisition to terminate.

15. If you need to read the original data, e.g. for diagnostics on the processing algorithm, you may
now do so.

16. Loop to (4.) above.

You need to implement a method to interrupt the infinite loop whenever required. However, you should
make sure that you leave the acquistion in a well-determined state for future operation.

The explicit acquisition/processing/readout sequence described above is shown in the following code:
AqReadParameters readParams; // Read Definitions
AqDataDescriptor dataDesc; // Returned waveform values
long channel = 1, segmentNumber = 0;
long nbrPeaks = 2 * nbrGates; // nbrGates is defined by user
long waveformArray[2 * nbrPeaks];
long memoryBank = 0, timeout = 5000; // timeout = 5 seconds
// Insert whatever is required for Vertical
// and Trigger configuration

AcqrsD1_configMode(instrID, 3, 0, memoryBank);
AcqrsD1_acquire(instrID); // Acquire into bank 0
AcqrsD1_waitForEndOfAcquisition(instrID, timeout);
// At this point, you should check the return value!

Programmer’s Guide Page 48 of 107

bool finished = false;
while(!finished)
{
 memoryBank = (memoryBank + 1)&0x1;// switch to other bank
 AcqrsD1_configMode(instrID, 3, 0, memoryBank);
 AcqrsD1_acquire(instrID); // start new acquisition
 AcqrsD1_processData(instrID, 0, 0);// start processing
 AcqrsD1_waitForEndOfProcessing(instrID, timeout);
 // At this point, you should check the return value!

 readParams.dataType = ReadReal64;
 readParams.readMode = ReadModePeak;
 readParams.nbrSegments = 1;
 readParams.firstSampleInSeg = 0;
 readParams.segmentOffset = 0;
 readParams.firstSegment = 0; // Read first segment
 readParams.nbrSamplesInSeg = 2* nbrPeaks; // pos and neg peak
 readParams.dataArraySize = 2 * sizeof(double) * nbrPeaks;
 readParams.segDescArraySize = 0;

readParams.flags = 0;
readParams.reserved = 0;
readParams.reserved2 = 0.0;
readParams.reserved3 = 0.0;

 AcqrsD1_readData(instrID, channel, &readParams,

waveformArray, &dataDesc, NULL);
 //...analyse and store data

 AcqrsD1_waitForEndOfAcquisition(instrID, timeout);
 //...read original data if desired
 //...check on loop termination conditions and set ‘finished’
}

The returned waveformArray contains exactly 2*nbrGates peaks, each of which is described by 2
double precision floating-point values. The first pair of doubles contains the positive peak position, within
the gate (in units of samples), and the amplitude (in codes). The second pair of doubles contains the
negative peak position and its amplitude. The peak amplitude is a signed number in the range
[–128.0,+127.0] with the two extreme values indicating underflow/overflow conditions. The peak
position is normally positive. Negative values are used for warnings. In particular, the value –DBL_MAX
indicates that no peak was found. The #define of DBL_MAX can be found in the float.h include file.
Each peak contains the following two words:

0 – 63

Peak Position (in samples from start of gate)

0 – 63

Peak Amplitude (in ADC units)

Use the following code to obtain the peak positions for the i'th gate:
double *positivePeakPos = &waveformArray[0+8*i];
double *negativePeakPos = &waveformArray[4+8*i];

Programmer’s Guide Page 49 of 107

3.10. Trigger Delay and Horizontal Waveform Position
When using a digitizer the user has 3 instrument setup variables with which to position the acquired
waveform in time:

• sampInterval: the sampling interval (inverse of the sampling frequency)

• nbrSamples: the number of samples to acquire

• delayTime: the nominal trigger delay

 sampInterval

Trigger

delayTime

nbrSamples

By convention, the nominal trigger delay is taken relative to the beginning of the trace, i.e. relative to the
left edge of a real or virtual display grid. It can be interpreted as the time from the trigger to the start of
waveform recording. If this number is positive, recording starts after the trigger (post-trigger acquisition).
If it is negative, recording starts before the trigger (pre-trigger acquisition). In reality, the acquisition
always runs before any trigger occurs, and delayTime controls the time between the trigger and the
stopping of the acquisition:

delayTime Time until Acquisition Stop Comments

- sampInterval
* nbrSamples

0 Trigger point is at the right edge of grid, i.e. at the end of
the nominal waveform (100 % pre-trigger)

< 0 sampInterval * nbrSamples
+ delayTime

Trigger point is at the desired point within the grid

0 sampInterval * nbrSamples Trigger point is at the left edge of grid, i.e. at the
beginning of the nominal waveform (0 % pre-trigger)

> 0 sampInterval * nbrSamples
+ delayTime

Trigger point is to the left of the grid, i.e. before the
beginning of the nominal waveform (post-trigger)

Note that delayTime is not allowed to become more negative than - sampInterval * nbrSamples,
because it is impossible to stop the acquisition before the trigger occurs.

3.11. Horizontal Parameters in Acquired Waveforms
Triggers usually occur asynchronously with respect to the sampling clock. Thus, between similar events,
the time from the trigger to the next sampling clock varies randomly in the range [0 … sampInterval].

The true time reference for any waveform is the trigger point, not the sampling times, because the trigger
is attached to a given feature of the waveform (e.g. a transition at a predetermined level). For highly

Programmer’s Guide Page 50 of 107

stable displays, it is important to know the time between the trigger and the next sampling clock to within
a fraction of the sampling interval, and to place the displayed data points in such a way that the trigger
point stays at a constant position. This is particularly important for persistence displays or highly zoomed
random-interleaved displays, as generated from overlaid segments, where a single waveform (or
waveform segment) contributes only a few data points to the display.

Acqiris digitizers feature a Trigger Time Interpolator (TTI), which measures the time between the trigger
event and the next sampling clock to a fraction of the sampling interval. It permits very precise
positioning of the acquired trace in highly zoomed displays, particularly when multiple acquisitions of the
same signal are used. In many other applications, this value can be ignored.

The following drawing completes the description of a 'real-life' waveform:

delayTime

Trigger

hOffset horPos

sampInterval First data point
Time Origin

 nbrSamples

• The value of delayTime positions exactly the left edge of the display (or the exact nominal beginning
of the waveform) with respect to the “stable” trigger time, which is the real reference point. We
define the time 'trigger time + delayTime' as the time origin for the waveform, which is equivalent to
saying that the trigger always occurs exactly at the time -delayTime.

• The first data point of the waveform is defined as the last acquired data point before the time origin.
It is indexed with i = 0 in the formula below.

NOTE: It is important to realize that if a single segment is read (e.g. with AcqrsD1_readData) the first
data point will be dataArray[readPar.indexFirstPoint] and that this is not necessarily the first point
given.

• The exact position of the first data point with respect to the time origin is a negative number horPos.
It is by definition in the range [-sampInterval, 0].

• The time between the trigger and the first data point hOffset need not be recorded since it can always
be computed as delayTime + horPos. Note: delayTime + horPos < delayTime by definition.

• In order to obtain a very stable image, even in a highly zoomed display, the user only needs to
position the acquired data points with the aid of horPos, by using the following formula for the x-
position of point i with respect to the left edge of the display:

x[i] = horPos + i * sampInterval

3.12. Sequence Acquisitions
For digitizers in Sequence acquisition mode, multiple waveforms are acquired autonomously, with a
single start command AcqrsD1_acquire. Whenever a trigger is received, the current acquisition segment
is normally terminated. The digitizer then automatically initializes another acquisition into the next
memory segment, until all requested segments are filled.

3.13. Timestamps
The 10-bit-Family of digitizers implements a timestamp to measure the time of the trigger for each
acquisition segment. These timestamps can be used to calculate the time between any two triggers for any
pair of triggers over multiple acquisitions.

Programmer’s Guide Page 51 of 107

The other, older Acqiris digitizers feature a 'timestamp' in order to measure the time between the triggers
of consecutive segments in the same acquisition. In fact, the timestamp counter is started when the
Sequence acquisition is started, and keeps counting during the entire sequence. The difference between
the timestamps of any pair of (not necessarily adjacent) segments is the time between their respective
triggers.

The timestamp value is returned as a 64-bit integer, in units of picoseconds, with a resolution identical to
that of the trigger time interpolator (see the appropriate product User manual). The waveform readout
function AcqrsD1_readData returns the timestamp value as 2 32-bit values. In order to do time
differences, you should transform them into a 64-bit integer:

• In Visual C/C++, use the 64-integer __int64 as follows:

__int64 timeStamp = timeStampHi;
timeStamp = timeStamp<<32 + (unsigned long)timeStampLo;

Arithmetic operations between such integers can be done as with shorter integers.

You also can convert a timestamp difference to an extended floating point number, and do arithmetic
operations as with other variables:

double deltaTime = (double)(timeStamp – previousStamp);

• In Visual Basic, use a decimal Variant variable as follows:

Const Two16 As Variant = 65536
Const Two32 As Variant = Two16 * Two16
Dim timeStamp As Variant, previousStamp as Variant
Dim timeDiff as Variant, xStampLo as Variant
...
If (tStampLo < 0) Then
 xStampLo = Two32 – Abs(tStampLo)
Else
 xStampLo = tStampLo
End If
timeStamp = CDec(tStampHi * Two32) + xStampLo
...
timeDiff = timeStamp – previousStamp

Arithmetic operations between such decimal variants can be done as with other integer variables.
The manipulation of tStampLo is somewhat complicated because this variable is a signed 32-bit
integer, but must be added as an unsigned integer to the (shifted) tStampHi.

• In LabVIEW, convert the timestamp to an extended floating point number, and do arithmetic
operations as with other variables.

• In LabWindows/CVI, the easiest way to manipulate timestamps is to convert them first to doubles:
ViReal64 dlow, dhigh, tstamp;
dlow = (ViReal64)low;
dhigh = (ViReal64)high;
tsamp = dlow + 4294967296.0 * dhigh;

3.14. External Clock and Reference
The external reference mode replaces the internal 10 MHz reference clock with an external one at the
same or a similar frequency, from which the actual sampling clock is derived.

In the external clock mode, a waveform is sampled either on transitions of the external clock signal
through the user-defined threshold. We distinguish between continuous external clock operation and
start/stop external clock operation.

All external clock/reference modes are configured with the function AcqrsD1_configExtClock.

The external clock/reference signal should have a peak-peak amplitude of at least

• 0.5 V for the DC135/DC140/DC211A/DC241A/DC271A/DC271AR and 10-bit-FAMILY,

Programmer’s Guide Page 52 of 107

• 1 V for the other DC271-Family digitizers, the 12-bit-Family, the AC/SC Analyzers, and the AP
Averagers and Analyzers,

• 2 V peak to peak for all other models.

. The inputThreshold value should be set to the center of the signal.

3.14.1. External Reference
This external reference mode (clockType = 2) simply replaces the internal 10 MHz reference clock with
an external one at the same or a similar frequency. Alternatively, for the
DC135/DC140/DC211/DC211A/DC241/DC241A/DC271/DC271A/DC271AR, the AC/SC and the 10-
bit-FAMILY, the PXI 10 MHz System Clock can be used as the reference.

If you need a more precise timebase, or want to ensure that the timebases of several modules are at
exactly the same frequency, you should use clockType = 2 in the function, and apply an external 10 MHz
signal. All other settings of the digitizer are exactly the same as with an internal reference clock.

If you need to sample at a rate that deviates from the nominal values, you may apply an external reference
signal with a constant frequency in the range of

• [9.97, 10.03] MHz for the 10-bit-FAMILY

• [9.0, 11.0] MHz for the 12-bit-FAMILY

• [9.0, 10.2] MHz for all other modules.

You need to correct for the reference frequency difference in your application since the digitizer and the
driver do not take the deviations into account.

NOTE: A square wave with better than 5 ns risetime should be used. This is needed to avoid false or
multiple transitions on a slower risetime signal. Alternatively, a >2 V amplitude signal could be used.

3.14.2. External Clock (Continuous)
The continuous external clock mode (clockType = 1) permits the application to the digitizer of a
continuous, constant frequency, external clock in order to sample at an arbitrary frequency. This mode
uses normal triggering, from the input signal or through the external trigger input

We need to distinguish between first generation digitizers (models DP105, DP106, DP110, DP111,
DP210, DP211, DP212, DC110, DC240, DC265, DC270), second generation digitizers of the DC271-
FAMILY (models DC135, DC140, DC211, DC211A, DC241, DC241A, DC271, DC271A, DC271AR,
DP214, DP235, DP240), the AP240/AP235 signal analyzer platforms, the AC210/AC240/SC210/SC240
analyzers, and the 12-bit-FAMILY (DC440, DC438, DC436, DP310, DP308, DP306), and third
generation digitizers (models DC122, DC152, DC222, DC252, DC282) since their behavior in this mode
is quite different. AP200/AP201/AP100/AP101 Averagers and Analyzers are considered to be first
generation modules.

The horizontal control parameters sampInterval and delayTime as defined by
AcqrsD1_configHorizontal are ignored. You need to give the driver the current input frequency and the
requested sampling frequency with the variables inputFrequency and sampFrequency of the function
AcqrsD1_configExtClock.

The input frequency inputFrequency must be between 10 MHz and 500 MHz in the first generation
models, while it must be between 20 MHz and 2000 MHz for the second generation DC271-FAMILY or
AP240/AP235 signal analysis platforms or, for the 12-bit-FAMILY, between 100 MHz and the value for
the maximum allowed sampling frequency. Note that for normal operation of the 12-bit-FAMILY
digitizers the sFmax for each converter should be kept above 50 MHz.

The acceptable values for sampFrequency are dividers (sFmax/n) of the maximum allowed sampling
frequency, sFmax, where n = 1,2,4,8,20,40,80,200,… The sFmax depends on the model and on the
number of combined channels nbrConvertersPerChannel of AcqrsD1_configChannelCombination:

Programmer’s Guide Page 53 of 107

Model Input
Frequency

range (MHz)

sFmax vs. nbrConvertersPerChannel

 1 2 4

DC122 100 – 2000 2 × inputFrequency

DC135 20 – 2000 ¼ × inputFrequency ½ × inputFrequency

DC140 20 – 2000 ½ × inputFrequency 1 × inputFrequency

DC152 100 – 2000 1 × inputFrequency 2 × inputFrequency

DC211/DC211A 20 – 2000 2 × inputFrequency

DC222 100 – 2000 4 × inputFrequency

DC241/DC241A 20 – 2000 1 × inputFrequency 2 × inputFrequency

DC252 100 – 2000 2 × inputFrequency 1 × inputFrequency

DC271/DC271A
 / DC271AR

20 – 2000 ½ × inputFrequency 1 × inputFrequency 2 × inputFrequency

DC282 100 – 2000 1 × inputFrequency 2 × inputFrequency 4 × inputFrequency

DC436 100 – 200 ½ × inputFrequency

DC440/DC438 100 – 220 1 × inputFrequency

DP214 20 – 2000 1 × inputFrequency

DP235/AP235 20 – 1000 ½ × inputFrequency 1 × inputFrequency

DP240/AP240 20 – 2000 ½ × inputFrequency 1 × inputFrequency

DP306 100 – 200 ½ × inputFrequency

DP308 100 – 200 1 × inputFrequency

DP310 100 – 220 1 × inputFrequency

AC210/SC210 20 – 2000 ½ × inputFrequency

AC240/SC240 20 – 2000 ½ × inputFrequency 1 × inputFrequency

1st generation 100 – 500 1 × inputFrequency

Example: When using a DC241 with 2 combined channels, and an external clock frequency of 1800 MHz
(= inputFrequency), the possible sampling frequencies are 3.6 GS/s, 1.8 GS/s, 900 MS/s and 450 MS/s.

The ratio of sFmax to inputFrequency can also be learned at run-time by using a call to
AcqrsD1_getInstrumentInfo(instrID," ExtCkRatio", &ratio).

The system computes the required memory overhead (in data samples) on the basis of the current
sampFrequency and nbrConvertersPerChannel. Use the function AcqrsD1_bestNominalSamples to
obtain the maximum available memory, after setting these parameters.

The equivalent of delayTime is defined with the value delayNbrSamples, which only applies to external
clock operation. The actual delay value is easily computed as follows:

 delay = (delayNbrSamples – nbrSamples) / sampFrequency

Example: In a 1st generation module with an external clock running at 200 MHz, if you wanted to acquire
2000 data points at 50 MS/s with the trigger point at the end of the first quarter of the time window, you
would use the code:

AcqrsD1_configMemory(instrID,2000,1);
AcqrsD1_configExtClock(instrID,1,threshold, 1500, 2.0e+8, 5.0e+7);
AcqrsD1_acquire(instrID); // start the acquisition
AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);

The value of delayNbrSamples is 1500 because 500 points need to be acquired before and 1500 points
after the trigger, in order to position the trigger point at the 1st quarter of the time window.

Programmer’s Guide Page 54 of 107

Equivalently, you could have computed the time window to be 2000 x 20 ns = 40 μs. The delay would
therefore have to be -10 μs to get the trigger point to the 1st quarter of the time window. Since
nbrSamples = 2000 and sampFrequency = 5.0e+7, you would obtain delayNbrSamples = 1500.

Since the sampling frequency is known in this clock mode, through the variable sampFrequency, any
read functions correctly return the value of the sampling interval.

In addition, if the user-supplied clock frequency inputFrequency is > 800 MHz on DC271-FAMILY
digitizers or in all cases for 10-bit and 12-bit digitizers, the system correctly measures the value horPos
and returns it with any waveform read function, such as AcqrsD1_readData. Thus, the time position of
the sampled data points can be known to within a small fraction of the sampling interval, permitting very
precise timing measurements as with the internal clock. However, the digitizer must be calibrated at the
external clock frequency in use, whenever inputFrequency or sampFrequency are changed. Use this
code:

// We assume that a normal calibration has been done, either
// during initialization, or explicitly
AcqrsD1_configExtClk(..) // Set to (cont) Ext Clk
// Make sure to apply the same external frequency as the value
// ‘inputFrequency’, set in the function call above
AcqrsD1_calibrateEx(instrID, 2, 0, 0);

The function AcqrsD1_calibrateEx with calType = 2 readjusts some timing calibration constants, but
does not modify any vertical adjustment values, such as gain or offset.

In first generation digitizers, or when inputFrequency is ≤ 800 MHz in the second generation digitizers
(or AP/AC/SC analyzers in the digitizer mode), the data read functions will return horPos = 0.0,
equivalent to a timing uncertainty of ± 0.5 samples. For implementation reasons, the acquired waveform
in fact has a timing uncertainty that is twice as large, i.e. ± 1 samples. In this case, the trigger timestamps
of the sequence acquisition mode are not available.

Depending on the ratio of sampFrequency/inputFrequency , a waveform is sampled either on negative-
going transitions of the external clock signal through the user-defined threshold or, when the ratio is > 1,
on both of the transitions.

NOTE: First generation digitizers that have more than one converter/channel (DC240, DP210, and
DP211) will generate two data samples for each sampling interval. You must dimension your acquisition
and readout for twice the normal amout of data and can then either, drop every other data sample from
the record, or average the two data values which could enhance the signal to noise ratio.

3.14.3. External Clock (Start/Stop)
The start/stop external clock mode (clockType = 4) permits the application of a (variable) external clock.
It should not be used for the 10-bit or 12-bit digitizers. The clock can be setup to give bursts during which
the frequency is between 10 MHz and 500 MHz. The first sample of each burst may have to be ignored.
The waveform is sampled on positive-going transitions of the external clock signal through the user-
defined threshold. Thus, the sampling rate is equal to the input frequency. There is no concept of trigger
for this mode and, therefore, all trigger parameters will be ignored. This also means that there is no
concept of sequence acquisition. Operation in a channel combined mode is not possible.

The AC/SC Analyzers can be used in this mode. A continuous clock frequency of up to 800 MHz, to give
800 MS/s sampling, will work.

In this mode, the horizontal control parameters sampInterval and delayTime are completely ignored, as
well as the value of delayNbrSamples. The waveform length is, as usual, controlled by the number of
samples in the function AcqrsD1_configMemory. Careful synchronization between the function calls to
the driver and the generation of the clock burst is required.

There are 2 ways of terminating an acquisition in the start/stop mode:

1. Generate a number of clock transitions that corresponds exactly to the requested number of
samples, and stop the acquisition with the function AcqrsD1_stopAcquisition. This requires
that the host computer obtain some external signal when the clock sequence is terminated.

2. Generate some extra clock transitions, which will fully terminate the acquisition. You can then
use the functions AcqrsD1_acqDone or AcqrsD1_waitForEndOfAcquisition to detect the end
of acquisition.

Programmer’s Guide Page 55 of 107

Example for Termination (1): if you wanted to acquire 20 waveforms of 2000 data points each, at a
sampling rate of 33.3 MHz, and a time distance of 5 µs between the waveforms, you would use:

AcqrsD1_configMemory(instrID, 40000, 1);
AcqrsD1_configExtClock(instrID, 4, threshold, 0, 33.3e6, 33.3e6);
AcqrsD1_acquire(instrID); // start the acquisition

 Generate 20 bursts of 2000 clock pulses at 33.3 MHz. At the end, you
need to inform the host computer to terminate the acquisition and:

AcqrsD1_stopAcquisition(instrID);
AcqrsD1_readXXXWform(instrID, . . .);

Note that the sampling rate and the time between bursts have no incidence on the configuration
parameters of the digitizer, i.e. they appear nowhere.

Example for Termination (2): if you wanted to acquire 5000 waveforms of 200 data points each, you
would write:

AcqrsD1_configMemory(instrID, 100000, 1);
AcqrsD1_configExtClock(instrID, 4, threshold, 0, 0.0, 0.0);
AcqrsD1_acquire(instrID); // start the acquisition

 Generate 5000 bursts of 200 clock pulses at the required frequency.
At the end, you need to generate ≥ 160/320/640 additional clock
pulses.

AcqrsD1_waitForEndOfAcquisition(instrID, timeOut);
AcqrsD1_readXXXWform(instrID, . . .);

The 320 (640 on 2 GS/s, or 1280 on 4 GS/s digitizers) extra clocks could be generated by 1 or more extra
bursts of 200 clock cycles or a special burst. There is no risk of overwriting the earliest data, since the
memory is not circular in this mode.

Comments valid for both termination mechanisms:

Although the function AcqrsD1_acquire sets it to the ready state, the digitizer cannot actually record data
while the external clock is idle. The clock burst must start after the digitizer has been started, and it must
start in a very clean way, i.e. the first pulse must be already well over the threshold and its width must be
≥ 1 ns.

The digitizer sees the multiple clock bursts as a single acquisition. It knows neither the sampling
frequency, nor the time difference between the waveforms. It simply acquires a number of data points. In
termination mechanism (2) it also records the extraneous points and then stops.

When reading the data, the multiple waveforms appear as a contiguous waveform. The only way of
distinguishing one waveform from the other is by counting samples, i.e. the first 2000 samples belong to
the 1st waveform, the next 2000 to the 2nd etc. It is therefore imperative to exactly control the number of
clocks in a burst.

 NOTE: If the time difference between 2 bursts is > 100 ns, the digitizer tends to drift into saturation,
from which it has to recover when the next burst resumes. The first data sample of such a burst is thus
invalid. In many cases, this first data sample is sufficiently different from the rest of the waveform that it
can serve as a ‘segment marker’.

NOTE: Digitizers that have more than one converter/channel (DC211, DC240, DC241, DP210, DP211,
and DP214) will generate two (four-for theDC211) data samples for each sampling interval. You must
dimension your acquisition and readout for twice (4x) the normal amout of data and can then either, drop
the extra data sample from the record, or average the data values which could enhance the signal to
noise ratio.

3.15. ASBus Operation
The ASBus and ASBus2 are intended to synchronize a number of similar CompactPCI modules, in order
to make them appear as a single instrument with more channels. After a number of digitizers have been

Programmer’s Guide Page 56 of 107

combined with the functions AcqrsD1_multiInstrAutoDefine (or AcqrsD1_multiInstrDefine for
ASBus only), each combined instrument can be controlled, when using its instrumentID, with the same
functions as single digitizers. Acqiris recommends the use of the automatic function, unless you need
special control over the order in which the digitizers are numbered within the MultiInstrument. Please
refer to the function AcqrsD1_multiInstrAutoDefine, for details.

If you mix modules (of the same model number) with different memory lengths, you must make sure that
you never use more than the shortest memory length available. Otherwise, you will get invalid data on the
short memory modules. Under ASBus, the automatic function always assigns the clock master role to a
module with the shortest memory, with the result that the function AcqrsD1_configMemory refuses to
accept memory lengths beyond the shortest. When configuring manually, you might want to do the same.
Otherwise, you need to explicitly check your requested memory lengths.

3.15.1. Channel Numbering with ASBus
In a MultiInstrument, input channels are numbered from 1 to nbrChannels. The number of channels can
be retrieved with the function call:

AcqrsD1_getNbrChannels(instrID, &nbrChannels);

Channel 1 corresponds to channel 1 of module 0. Channel numbers increase first through module 0, then
through modules 1, 2 etc.

For Acqiris CC10x crates when a MultiInstrument is defined with AcqrsD1_multiInstrAutoDefine,
module 0 is always closest to the controller slot (), whereas with AcqrsD1_multiInstrDefine, it
corresponds to the first module in the initializing list. The Acqiris CC121 crates have a different ordering;
please refer to the Acqiris CC121 CompactPCI Crate User Manual.

E.g. when combining 3 DC270 4-channel digitizers, you would use channel number 10 in the function
calls config/get_MultiInput, config/get_Vertical and readChar/RealWform, if you wanted to refer to
Input 2 of the third DC270.

Channel numbering does not depend on which module is the actual clock or trigger master.

3.15.2. Trigger Source Numbering with ASBus
Acqiris digitizers do not necessarily have as many internal triggers as channel inputs, nor exactly one
external trigger. You should retrieve, for every MultiInstrument, additional information with the
following calls:

AcqrsD1_getInstrumentInfo(instrID, "NbrInternalTriggers", &nbrIntTrigs);
AcqrsD1_getInstrumentInfo(instrID, "NbrExternalTriggers", &nbrExtTrigs);
AcqrsD1_getInstrumentInfo(instrID, "NbrModulesInInstrument",

&nbrModules);

nbrIntTrigsPerModule = nbrIntTrigs /nbrModules;

nbrExtTrigsPerModule = nbrExtTrigs /nbrModules;

In a MultiInstrument composed of 4 DC240 (2 channel, 2 GS/s digitizers), you would get 8 internal
trigger sources, 4 external trigger sources and 4 for the value of nbrModules. Thus,
nbrIntTrigsPerModule would be 2 and nbrExtTrigsPerModule would be 1, as expected for a DC240.

Internal triggers are associated to the input channels, and follow the same numbering rules.

External triggers follow similar rules, i.e. extTrig = 1 corresponds to external trigger 1 of the first module,
extTrig = 2 corresponds to external trigger 2 of the first module (if nbrExtTrigsPerModule > 1) or to
external trigger 1 of the second module etc. The externalTrigger 2 is the name used for the PXI Bus Star
Trigger.

The functions AcqrsD1_configTrigSource and AcqrsD1_getTrigSource use the explicit trigger channel
number, with the internal trigger channel running from 1 to nbrIntTrigs, and the external trigger running
from –1 to –nbrExtTrigs. Note that 0 is an invalid trigger source, resulting in an error code.

The functions AcqrsD1_configTrigClass and AcqrsD1_getTrigClass encode the trigger source in a 32-
bit source pattern:

31 30 20 - 29 16 – 19 5 - 15 4 3 2 1 0
Ext 1 Ext 2 Other Ext Trigs Module Other Int Trigs In 5 In 4 In 3 In 2 In 1

[0] IN 1 Internal trigger channel 1

Programmer’s Guide Page 57 of 107

[1] IN 2 Internal trigger channel 2

[2..4] IN 3, IN 4, IN 5 Internal trigger channels 3, 4, 5

[5..15] OTHER INT
TRIGS

Other internal trigger channels within a module, up to 16.

[16..19] MODULE Module Number, running from 0 to (nbrModules – 1).
In single digitizers, this field must be zero.
In MultiInstruments, the trigger source number must be broken into a
module number and a trigger channel number within the module.

[20..29] OTHER EXT
TRIGS

Other external trigger channels within a module, up to 12.

[30] EXT 2 External trigger channel 2

[31] EXT 1 External trigger channel 1

In future digitizers with trigger pattern capabilities, several trigger bits could be set simultaneously.
However, no trigger pattern capabilities between different modules can be coded, i.e. only a single module
in a MultiInstrument can be the trigger source, although the source in the single module might be a
pattern. For these reasons, the module number must be coded explicitly.

To translate a trigger channel number trigChan into a trigger source pattern, use the following code:
 if (trigChan > 0) // Internal Trigger
 {
 long moduleNbr = (trigChan - 1) / nbrIntTrigsPerModule;
 long inputNbr = (trigChan - 1) % nbrIntTrigsPerModule;
 srcPattern = (moduleNbr<<16) + (0x1<<inputNbr);
 }
 else if (trigChan < 0) // External Trigger
 {
 trigChan = -trigChan;
 long moduleNbr = (trigChan - 1) / nbrExtTrigsPerModule;
 long inputNbr = (trigChan - 1) % nbrExtTrigsPerModule;
 srcPattern = (moduleNbr<<16) + (0x80000000>>inputNbr);
 }
 else
 PROBLEM!

Note that moduleNbr and inputNbr start from 0. An 'industrial strength' implementation should contain
some checks on the range of trigChan and/or inputNbr.

3.16. Special Operating Modes
Some Acqiris digitizers offer alternative operating modes, which are controlled with the function
AcqrsD1_configMode. The default state of any digitizer is mode = 0 and flags = 0, corresponding to the
normal digitizer operation, as described in the other sections of this manual.

3.16.1. Frequency Counter
This is an option available for the DC140 and DC135 digitizers. It is implemented with a signal counter
that counts trigger signals from the user-requested channel. A time counter generates the user-
programmed aperture time, during which the measurement is performed.

The user-requested signal channel has to be programmed for the expected signal characteristics; the
standard config functions should be used to set the full-scale, coupling, offset and trigger threshold. The
HF trigger mode may be set by the driver software on the basis of the user-supplied target frequency
value. In order to obtain the best results, it is recommended to adjust the full scale and offset so that they
span the expected input signal. In addition, the trigger threshold should be set to approximately the center
of the signal voltage range. Calls to AcqrsD1_configVertical and AcqrsD1_configTrigClass are
needed. If an external time base reference is desired, AcqrsD1_configExtClock should be called. If the

Programmer’s Guide Page 58 of 107

totalize in gate functionality is desired the source of the gate must be set with the function
AcqrsD1_configControlIO, with the parameters connector = 1 (I/O A) or 2 (I/O B) and signal = 9. Note
that when this mode is in use the Enable trigger input (signal = 6) functionality of
AcqrsD1_configControlIO cannot be used.

The function AcqrsD1_configFCounter sets the parameters specific to the frequency measurements.
 AcqrsD1_configFCounter(instrID, channel, type, targetValue,

apertureTime, 0.0, 0);

Comments:

• Channel numbers run from 1 to the available number of signal channels in the digitizer.

• The value type is 0 for Frequency, 1 for Period, 2 for Totalize by Time and 3 for Totalize by
Gate.

• The targetValue is an estimator of the expected result. If no estimate is possible, use the value
0.0. This value is only used to activate the HF trigger mode which extends the useable frequency
range. By default, the frequency range is extended except:

type Measurement Divide by 1

0 Frequency if targetValue is smaller than 1 kHz (1000.0) and larger than 0.0

1 Period if targetValue is larger than 1ms (0.001)

2 Totalize by Time always (the HF mode is never used)

3 Totalize by Gate always (the HF mode is never used)

• The apertureTime defines the minimum time for a frequency measurement (it may be longer if
the frequency is very low!). In the Totalize by Time mode, the value of apertureTime determines
the time window during which the input pulses are counted.

The frequency counter mode is set with the function AcqrsD1_configMode, with mode = 6.

After configuring the instrument parameters, the measurement sequence is started with the function
AcqrsD1_acquire. This function returns before the measurement is terminated. The user must wait until
it is terminated with the functions AcqrsD1_acqDone or AcqrsD1_waitForEndOfAcquisition. For the
case of Totalize by Gate the program must stop the acquisition by making a call to the function
AcqrsD1_stopAcquisition.

FC results can be readout with the function AcqrsD1_readFCounter. The result is always a single
double precision number whose units are those appropriate for the type of measurement chosen.

3.16.2. ‘Start on Trigger’
The ‘Start on Trigger’ mode begins data recording only upon receipt of a trigger signal, and stops after
nbrSamples data points are acquired. Not all digitizers are capable of this mode;

those that never have it are the DC110, DC240, DC265, DC270, and the 12-bit digitzers ;

others (DP105, DP106, DP110, DP111, DP210, DP211, DP212) can have it as an option only.

It is useful in the special case where the sampling rate is less than the maximum possible and where an
optimum time correlation between the trigger and the sampling clock is required (typically when
averaging waveforms). This mode also requires that the trigger is available before the waveform of
interest.

In the ‘Normal’ mode, data recording begins at the time of arming, with the function AcqrsD1_acquire.
The trigger occurs asynchronously to the sampling clock, and thus will fall randomly anywhere within a
sampling interval. When averaging waveforms, this will result in an effective bandwidth reduction since
the waveforms are randomly shifted with respect to each other by up to ± ½ sampling interval.

In ‘Start on Trigger’ mode, the trigger occurs before recording starts. It still occurs asynchronously with
respect to the internal VCO (which is always running). However, if the requested sampling rate is less
than the VCO frequency (e.g. 100 MS/s, while the clock runs at 500 MHz), then the time correlation

Programmer’s Guide Page 59 of 107

between the trigger and the effective sampling clock is within ± ½ VCO time interval, not ± ½ sampling
interval. Therefore when averaging, the bandwidth reduction will be less than in the ‘normal’ mode.

The value delayTime in the function AcqrsD1_configHorizontal is ignored. As usual, the digitizer
requires some memory overhead for additional samples. The function AcqrsD1_bestNominalSamples
returns the maximum number of available samples.

Use this code to use the ‘Start on Trigger’ mode:
AcqrsD1_configXXX(..); // configure other parameters
AcqrsD1_configMode(instrID, 0, 0, 1);
AcqrsD1_acquire(instrID);
AcqrsD1_waitForEndOfAcquisition(instrID, timeout);
// Read out data etc. before calling again “AcqrsD1_acquire”

Note that the function AcqrsD1_acquire is still needed. However, it behaves somewhat differently in that
is does not start data recording but waits until a trigger signal is received.

Due to some circuit delays, the waveform recording starts approximately 20ns after the receipt of the
trigger signal. Furthermore the first data points may be invalid. For the DC271 family, this means that the
first 8 ns worth of data should be ignored for sampling rates 4 GS/s > SR > 500 MS/s and the first 4 ns, 16
points, for SR = 4 GS/s.

3.16.3. ‘Sequence Wrap’
The normal operation of the digitizer requires that it stop recording waveforms when the pre-defined
number of segments has been acquired. Thus, nbrSegments triggers are needed to acquire the requested
number of segments into the same number of different memory sections. After the acquisition has
terminated, all of the waveform segments are finally available for readout.

The ‘Sequence Wrap’ mode also pre-defines the desired number of different memory sections, but it
permits a larger number of triggers. After the first nbrSegments waveform segments are acquired, the
digitizer ‘wraps’ around to the first memory segment and keeps on recording waveforms. This sequence
can go on indefinitely, since no hardware condition will stop it. The only way to terminate this infinite
loop is to stop it with the function AcqrsD1_stopAcquisition.

This mode is useful when only the last N out of many occurrences of a signal are of interest. E.g. if you
search for a rare event out of many occurrences, and you only can determine its interest after the event
has occurred, then the ‘Sequence Wrap’ mode is applicable.

While this mode even ‘works’ for nbrSegments = 1, in practice the value of nbrSegments should be at
least 2. It is important to note that after the acquisition of a segment, the digitizer automatically advances
to the next memory section and immediately (with a dead time of ~ 1 μs) starts recording into it. Thus, the
very last memory segment will necessarily contain uninteresting data, since it will not be stopped with a
trigger, but be terminated with the software command AcqrsD1_stopAcquisition.

Use this code to use the ‘Sequence Wrap’ mode:
AcqrsD1_configXXX(..); // configure other parameters
AcqrsD1_configMode(instrID, 0, 0, 2);
AcqrsD1_acquire(instrID);
.
.
AcqrsD1_stopAcquisition(instrID);

The time at which the sequence is terminated with the function AcqrsD1_stopAcquisition depends on an
external event, e.g. operator intervention.

When reading the segments, the segment number should take on the values 0,…(nbrSegments-1). They
correspond to the memory section numbers in the digitizer, not the time order of the acquired segments.

Example: if nbrSegments = 8, the time order of the acquired segments might be (depending on when the
sequence was stopped) 5, 6, 7, 0, 1, 2, 3, 4. Here, the ‘oldest good’ segment is the 5th segment, followed
by the 6th, 7th, 8th, 1st etc. The ‘youngest’ useful segment is the 3rdone, while the 4th segment corresponds
to the segment that was being recorded when the stop-command was received. The 4th segment (in this
example) typically does not contain any useful data.

Programmer’s Guide Page 60 of 107

3.17. Readout of Battery Backed-up Memories
Acqiris digitizers with the battery back-up option permit retaining acquired waveforms during periods of
time when the power might be interrupted.

3.17.1. Preparations before Power-Off
A digitizer only remembers the digitized data array, but not all of the parameters that are needed to
interpret the waveform. These parameters are normally retained in the driver, but are typically lost when
power is lost or when the controlling application is terminated.

It is therefore necessary for the application to transfer the relevant parameters before power-off, typically
to a disk, in such a way that they are again available when restarting the application after power is
restored. The following parameters must be transferred to persistent storage, for each instrument:

• Parameters of AcqrsD1_configHorizontal, i.e. sampling interval and delay

• Parameters of AcqrsD1_configMemory, i.e. number of samples and number of segments

• Parameters of AcqrsD1_configVertical, i.e. Full Scale and offset (the coupling is not relevant!), for
each channel of interest

• Two calibrated delay parameters, as obtained with the function calls
 Double delayOffset, delayScale;
 AcqrsD1_getInstrumentInfo(ID, "DelayOffset", &delayOffset);
 AcqrsD1_getInstrumentInfo(ID, "DelayScale", &delayScale);

The functions AcqrsD1_getInstrumentInfo should be called just before the start of the acquisition, i.e.
before calling AcqrsD1_acquire, but after all AcqrsD1_config… functions.

3.17.2. Recovery after Power-Off
In order to read a battery backed-up waveform, you need to execute a special sequence of initialization
functions

1. Initialize the digitizer with the following function call:
AcqrsD1_InitWithOptions(resourceName, false, false, "CAL=FALSE",

 & instrID);

It is important to specify “CAL=FALSE” to prevent any calibration in the digitizer, which would
destroy any retained data.

2. Call the functions AcqrsD1_configHorizontal, AcqrsD1_configMemory, AcqrsD1_configVertical
(for each channel!) with the same parameters that were used in the original acquisition.

3. Call the function AcqrsD1_restoreInternalRegisters, with the parameters delayOffset and
delayScale. In case these parameters are not available (e.g. due to earlier software versions), you
should use the values –20.0e-9 for delayOffset and 5.0e-12 for delayScale.

4. Call the function AcqrsD1_readData to read the battery backed-up data.

Failing to restore the originally used digitizer parameters may result in erroneous data. After data
recovery, and before using the digitizer for any new acquisitions, don’t forget to calibrate the instrument
with the function AcqrsD1_calibrate.

3.18. Reading the Digitizer Temperature
The temperature of a digitizer can be obtained with the following code:

long temperature; // will be in degrees C
AcqrsD1_getInstrumentInfo(instrID, "Temperature", &temperature);

When multiple digitizers are combined via ASBus to a MultiInstrument, use the strings "Temperature
0", "Temperature 1"… to refer to the individual modules.

NOTE: The returned temperature value corresponds to the ambient temperature on the main printed-
circuit board, typically near the timebase circuit. It cannot represent all possible temperature values that
are present on the circuit. Values ≥ 60 oC indicate that the circuit is near its operational limit, and a
cooling failure occurred or better cooling should be installed.

Programmer’s Guide Page 61 of 107

Acqiris recommends keeping the temperature as low as possible, since a 10oC reduction in circuit
temperature is expected to improve the mean-time-between-failures (MTBF) by a factor of 2.

Acqiris also recommends reading the temperature when the digitizer is stopped. The read operation may
generate small signal perturbations through cross talk, if it is executed while an acquisition is in progress.

Programmer’s Guide Page 62 of 107

4. Attributes
Module settings can be read and/or changed through the use of attributes. The attribute interface to the
driver can be used with AcqirisMAQS, the MATLAB interface, and the SP201 Software Development
Kit. This section of the manual will give details on all of the available attributes.

The full name of an attribute is often composed of a prefix before the name of the simple attribute itself.
In other words,

full_attribute_name := [<prefix>]attribute

prefix := channel_prefix|external_prefix

channel_prefix := "ch1"|"ch2"|"ch3"|"ch4"|"ch5"| … |"chnn"

where nn is the last channel number of the instrument.

external_prefix := "ext1"|"ext2"| … |"extm"

 where m is the last external trigger channel of the instrument. The number of channels can be
found from the channels keyword of the instrument identity. Similarly, the number of external triggers
can be found from the confExtTr keyword.

Examples:

 Full scale for channel 2: <ch2>chFullScale

 Number of samples: samples

 External trigger slope for single module (noASBUs): <ext1>trSlope

Attributes can either be modifiable or read-only. This is shown by the Access characteristic that is either
RW (read-write) or RO (read-only), respectively. Only the RW-client of an instrument can actually
write/modify an RW attribute.

The type of an attribute shows what kind of value will be employed when an attribute is queried or
modified. Although the argument is always a string, the string will be a representation of an integer, a
double precision real, or a string. It also indicates whether the range of values will be described as discrete
or not. If the range is discrete the allowed values will be enumerated explicitly; otherwise the full range
will be described as a collection of triplets, {low value, high value, increment}. In the case where the
increment is non-zero, a triplet defines allowed values of the attribute as follows:

low value, low value + increment, low value + 2 * increment, …, high value

If the increment is 0 all values between the low and high values are allowed.

4.1. Attribute dependencies and coerced values
Changing certain attribute values can affect the ranges of other attributes. This can cause the value of the
dependent attribute to change. For example, changing the chFullScale of a channel can change the ranges
for chOffset and trThres1. Similarly, requested attribute values will not always be available. In order to
verify that all changes are consistent with your expectations you can always check final attribute values
with the GetAttributeValue method.

4.2. Functional grouping of attributes
Channel (vertical) settings

 chAttenuation chBandwidthLimit chCoupling

chFullScale chImpedance chInput

 chOffset chScale2ndFactor chScaleFactor

 chScaleOffset chUnits

Programmer’s Guide Page 63 of 107

Horizontal timebase settings

 banks chTime2ndOffset chTime3rdOffset

chTimeOffset ckDelay ckThreshLvl

ckType extCkRatio extInputFreq

extSamplingRate extSparsing memoryUsage

samples samplingFreq samplingIntv

segments timeWindow trDelay

Trigger settings

chBandwidthLimit chFullScale trClass

trCoupling trRelThres1 trRelThres2

trSlope trSrcEnabled trThres1

TrThres2 trThresUnit trTVField

trTVLine trTVStandard

Control IO settings

 ctrlIOASignal ctrlIOBSignal ctrlIOPxiRef10MHz

 ctrlIOPxiStar ctrlIOTrOutLevel ctrlIOTrOutResync

Others

 channelEnable channelName channelUse

 chType convertersPerChan fcApertureTime

 fcMeasure fcSignalChannel fcTargetValue

 input name

Averager settings

 axDitherRange axNbrRoundRobins axNbrWaveforms

 axP1Signal axP2Signal axSamples

 axSegments axStartDelay axStartVetoEnable

 axStopDelay axTrigAlways axTrigResync

 chAxInvertData chAxNoiseBase chAxNoiseBaseEnable

 chAxTDCHistoEnable chAxTDCHistoIncr chAxTDCHistoMinTOT

 chAxThreshold chAxThresholdEnable

Not applicable

 chComment chSetupName instrComment

 instrSetupName mode modeOption

 tbComment trComment trSrcComment

Programmer’s Guide Page 64 of 107

4.3. Traditional API grouping of attributes
Old API Uage (AcqrsD1…) Attribute equivalent

axDitherRange axNbrRoundRobins axNbrWaveforms
axP1Signal axP2Signal axSamples
axSegments axStartDelay axStartVetoEnable
axStopDelay axTrigAlways axTrigResync
chAxInvertData chAxNoiseBase chAxNoiseBaseEnable
chAxTDCHistoEnable chAxTDCHistoIncr chAxTDCHistoMinTOT

_configAvgConfig

chAxThreshold chAxThresholdEnable
_configChannelCombination input

ctrlIOASignal, ctrlIOBSignal, ctrlIOPxiRef10MHz, _configControlIO
ctrlIOPxiStar, ctrlIOTrOutLevel, ctrlIOTrOutResync
ckDelay, ckThreshLvl, ckType, _configExtClock
extInputFreq, extSamplingRate

fcApertureTime fcMeasure fcSignalChannel _configFCounter

fcTargetValue

_configHorizontal trDelay, samplingFreq, samplingIntv

_configMemory samples segments

samples segments banks _configMemoryEx
memoryUsage

_configMultInput chInput

_configTrigClass trClass, trSrcEnabled

trCoupling, trRelThres1, trRelThres2, _configTrigSource
trSlope, trThres1 trThres2

_configTrigTV trTVField, trTVLine trTVStd

chCoupling, chBandwidthLimit, chFullScale, _configVertical
chImpedance, chOffset

_getChannelCombination convertersPerChan, input

ctrlIOASignal, ctrlIOBSignal, ctrlIOPxiRef10MHz, _getControlIO
ctrlIOPxiStar, ctrlIOTrOutLevel, ctrlIOTrOutResync
ckDelay, ckThreshLvl, ckType, _getExtClock
extInputFreq, extSamplingRate

_getHorizontal trDelay samplingFreq samplingIntv

_getMemory samples segments

samples segments banks _getMemoryEx
memoryUsage

_getMultInput chInput

_getTrigClass trClass, trSrcEnabled

trCoupling trRelThres1 trRelThres2 _getTrigSource
trSlope trThres1 trThres2

Programmer’s Guide Page 65 of 107

_getTrigTV trTVField, trTVLine trTVStd

chCoupling, chBandwidthLimit, chFullScale, _getVertical
chImpedance, chOffset

4.4. Detailed description of attributes (Alphabetically ordered)

axDitherRange

Purpose

 Defines the range of offset dithering, in ADC LSB’s

Prefixes Access Type Values

 RW integer [0,15] in LSB's

Models

AP235 and AP240 with Averager option, AP100,AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "DitherRange", &vdither)

Discussion
 The offset is dithered over the range [-v, + v] in steps of ~1/8 LSB.

axNbrRoundRobins

Purpose

 Number of times to perform the full segment cycle during data accumulation

Prefixes Access Type Values

 RW integer 1 to 65536

Models

AP235 and AP240 with Averager option

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "NbrRoundRobins", &robin)

Discussion

Programmer’s Guide Page 66 of 107

axNbrWaveforms

Purpose

 Number of waveforms to average before going to next segment

Prefixes Access Type Values

 RW integer 1 to 65535

Models

AP235 and AP240 with Averager option, AP100,AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "NbrWaveforms", &triggers)

Discussion

axP1Signal

Purpose

 Define how the P1 Control signal should be used.

Prefixes Access Type Values

 RW String "Disabled",
"In-AddSubCh1",
"In-AddSubCh2",
"In-AddSubCh1Ch2",
"In-AvgrTrigEnable",
"In-AvgrStartVetoEnable",
"Out-Average"

Models

AP235 and AP240 with Averager option

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "P1Control", &function)

Discussion
The "In-AddSub…" choices allow the control of real time add/subtract functionality for either or
both of the channels. The " In-AvgrStartVetoEnable " configures the signal as a trigger enable.

If P1Signal and/or P2 Signal are enabled for the Add/Subtract mode then the data will be added if
the signal, or the or of both signals, is in the high state. The same rule holds if they are used for
trigger enable.

The "Out-Average" signal goes high after the first trigger is accepted for an average and drops
back down when the last trigger's acquition is complete.

Programmer’s Guide Page 67 of 107

axP2Signal

Purpose

 Define how the P2 Control signal should be used.

Prefixes Access Type Values

 RW string "Disabled",
"In-AddSubCh1",
"In-AddSubCh2",
"In-AddSubCh1Ch2",
"In-AvgrTrigEnable",
"In-AvgrStartVetoEnable",
"Out-Average"

Models

AP235 and AP240 with Averager option

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "P2Control", &function)

Discussion
The "In-AddSub…" choices allow the control of real time add/subtract functionality for either or
both of the channels. The "In-Average" configures the signal as a trigger enable.

If P1Signal and/or P2 Signal are enabled for the Add/Subtract mode then the data will be added if
the signal, or the or of both signals, is in the high state. The same rule holds if they are used for
trigger enable.

The "Out-Average" signal goes high after the first trigger is accepted for an average and drops
back down when the last trigger's acquition is complete.

Programmer’s Guide Page 68 of 107

axSamples

Purpose

 Number of data samples per waveform segment in Averager mode

Prefixes Access Type Values

 RW integer

Models

AP235 and AP240 with Averager option, AP100,AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "NbrSamples", &samples)

Discussion
May assume values between 16 or 32 and the available memory length, in multiples of 16 (32).
The granularity is 16 for the AP100/AP101 and the AP240/AP235 in Dual-Channel mode and 32
for the AP200/AP201 and the AP240/AP235 in Single-Channel mode.

axSegments

Purpose

 Number of waveform segments to acquire

Prefixes Access Type Values

 RW integer

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "NbrSegments", &segments)

Discussion
 May assume values between 1 and 8192.

Programmer’s Guide Page 69 of 107

axStartDelay

Purpose

 Start delay in samples

Prefixes Access Type Values

 RW integer

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "StartDelay", &start)

Discussion
 May assume values between 0 and 33554400(16777216) in steps of 16 (32) as explained below.
The limit is StepSize*(1024*1024-1). The granularity is 16 for the AP100/AP101 and the
AP240/AP235 in Dual-Channel mode and 32 for the AP200/AP201 and the AP240/AP235 in
Single-Channel mode.

axStartVetoEnable

Purpose

 Select the functionality for the Control I/O Trigger enable Input

Prefixes Access Type Values

 RW string "Trigger enable",
"Start Veto"

Models

AP100, AP200 ONLY

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "StartVetoEnable", &start)

Discussion

 This must be used in conjunction with ctrlIOASignal or ctrlIOBSignal being set to

"Trigger enable".

If set to "Start Veto" an Average Accumulation will only start after the computer starts the
acquisition if the signal is high or if it goes high.

Programmer’s Guide Page 70 of 107

axStopDelay

Purpose

 Stop delay in samples

Prefixes Access Type Values

 RW integer

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "StopDelay", &stop)

Discussion
 May assume values between 0 and 2097120(1048560) in steps of of 16 (32) as explained below.
The limit is StepSize*(64*1024-1). The granularity is 16 for the AP100/AP101 and the
AP240/AP235 in Dual-Channel mode and 32 for the AP200/AP201 and the AP240/AP235 in
Single-Channel mode.

axTrigAlways

Purpose

Control whether the trigger out signal should be generated only for accepted triggers or
for all of them.

Prefixes Access Type Values

 RW string "Off" or "On"

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "TrigAlways", &always)

Discussion

Programmer’s Guide Page 71 of 107

axTrigResync

Purpose

 Controls whether the trigger should be used to resynchronize the sampling clock.

Prefixes Access Type Values

 RW string "NoResync", "Resync",
or "FreeRun"

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "TrigResync", &sync)

Discussion
The "TrigResync" values "NoResync" and "Resync" require a valid trigger, while "FreeRun"
requires no trigger (useful for background acquisition).

banks

Purpose

 Controls whether multiple banks of data are to be used in some of the 10-bit-FAMILY
digitizers.

Prefixes Access Type Values

 RW integer 1 to 12500

Models

DC222, DC252, DC282

Traditional API equivalent

 AcqrsD1_configMemoryEx(id, nbrSamplesHi, nbrSamplesLo, nbrSegments, nbrBanks,
 flags)

Discussion

This attribute is needed to access the new features of some of the 10-bit-FAMILY digitizers.

The SSR mode can be activated by setting banks > 1.

Programmer’s Guide Page 72 of 107

chAxInvertData

Purpose

 Indicate whether the data of the channel should be inverted

Prefixes Access Type Values

channel RW string "Off" or "On"

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "InvertData", &invert)

Discussion
 If the data is inverted the most significant bit of the raw data will be flipped; the threshold will
select data values with voltages below the desired value.

chAxNoiseBase

Purpose

Value in Volts of the value to be added in Noise Supressed Averaging

Prefixes Access Type Values

channel RW double In Volts

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "NoiseBase", &base)

Discussion
 The value will be transformed into the ADC raw data equivalent of the voltage value.

Programmer’s Guide Page 73 of 107

chAxNoiseBaseEnable

Purpose

Allows the Noise Base value to be added to the data in Noise Supressed Averaging

Prefixes Access Type Values

channel RW string "Off" or "On"

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "NoiseBaseEnable", &enable)

Discussion

chAxTDCHistoEnable

Purpose

 Enable the simple TDC mode for the channel

Prefixes Access Type Values

channel RW string "Off" or "On"

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "HistoTDCEnable", &enable)

Discussion

Programmer’s Guide Page 74 of 107

chAxTDCHistoIncr

Purpose

Define the increment to be used in accumulating a simple TDC histogram

Prefixes Access Type Values

channel RW Integer 1 or 2

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "TdcHistogramIncrement", &style)

Discussion
1 means increment by 1,
2 means increment by the ADCvalue – NoiseBase equivalent.

chAxTDCHistoMinTOT

Purpose

 Controls the desired minimum width of a peak in the waveform

Prefixes Access Type Values

channel RW integer 1, 2, 3, or 4

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "TdcMinTOT", &width)

Discussion
A peak is accepted if there are at least n consecutive data samples above the Threshold. For
SimpleTDC mode ONLY.

Programmer’s Guide Page 75 of 107

chAxThreshold

Purpose

Value in Volts of the threshold for Noise Supressed Averaging

Prefixes Access Type Values

channel RW double In Volts

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "Threshold", &thresh)

Discussion

chAxThresholdEnable

Purpose

 Control whether the threshold test will be applied to the data of the channel before
accumulation

Prefixes Access Type Values

channel RW string "Off" or "On"

Models

AP235 and AP240 with Averager option, AP100, AP200

Traditional API equivalent

 AcqrsD1_configAvgConfig(id, channel, "ThresholdEnable", &enable)

Discussion

Programmer’s Guide Page 76 of 107

channelUse

Purpose

 Allows the RW-client to activate/de-activate a channel

Prefixes Access Type Values

channel RW string "on" or "off"

Models

ALL

Traditional API equivalent

 NONE

Discussion
Deactivation of a channel can speed-up clients and the server. Deactivated channels do not have
to have their data read out nor transmitted over the network.

chAttenuation

Purpose

Functions as an additional multiplier for the conversion of raw ADC values to volts or
other user units

Prefixes Access Type Values

channel RW double In dB

Models

ALL

Traditional API equivalent

 NONE

Discussion
The raw integer data will be converted into a real value using several factors. This one is in dB.

Programmer’s Guide Page 77 of 107

chBandwidthLimit

Purpose

Control the setting of the bandwidth limiter of a channel or external trigger input

Prefixes Access Type Values

channel & ext RW double, discrete In Hz (0.0 = off)

Models

ALL

Traditional API equivalent
 AcqrsD1_configVertical(id, …, bandwidth)
 AcqrsD1_getVertical(id, …, &bandwidth)

Discussion
The bandwidth is either given as 0.0 for no limit or a frequency value corresponding to the upper
limit.

chCoupling

Purpose
Control the coupling of a channel or external trigger

Prefixes Access Type Values

channel & ext RW string "Gnd","AC","DC"

Models

ALL

Traditional API equivalent
 AcqrsD1_configVertical(id, …, coupling, …)
 AcqrsD1_getVertical(id, …, &coupling, …)

Discussion
The chCoupling is only part of the coupling of the old API. chImpedance is also needed.

Programmer’s Guide Page 78 of 107

chFullScale

Purpose
Control the full scale of a channel

Prefixes Access Type Values

channel & ext RW double, discrete In V

Models

ALL

Traditional API equivalent
 AcqrsD1_configVertical(id, channel, fullScale, …)
 AcqrsD1_getVertical(id, channel, &fullScale, …)

Discussion
For a channel, the gain/LSB is the full scale divided by the number of bits in the output data
representation. This is not always the same as the ADC gain that is calculated using the actual
number of bits of the ADC. For an external trigger, this attribute is used to control the full scale
range of the allowed trigger level. Studying the current range of the attribute may be needed to
understand all of the possible values.

chImpedance

Purpose

Control the input impedance of a channel

Prefixes Access Type Values

channel & ext RW string "50","1M","Gnd"

Models

ALL

Traditional API equivalent
 AcqrsD1_configVertical(id, …, coupling, …)
 AcqrsD1_getVertical(id, …, &coupling, …)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

Programmer’s Guide Page 79 of 107

chInput

Purpose

Control the choice of input BNC for some single channel units

Prefixes Access Type Values

channel RW string "A" or "B"

Models

DP111, DP211

Traditional API equivalent
 AcqrsD1_configMultInput(id, channel, input)
 AcqrsD1_getMultInput(id, channel, &input)

Discussion
This command is only of interest for single channel units allowing the choice of A or B inputs.

chOffset

Purpose

Control the DC offset of a channel

Prefixes Access Type Values

channel RW double In V

Models

ALL

Traditional API equivalent
 AcqrsD1_configVertical(id, channel, …, offset,…)
 AcqrsD1_getVertical(id, channel, …, &offset,…)

Discussion
The mid-range ADC value corresponds to the offset. This is the opposite of the convention in the
traditional API.

Programmer’s Guide Page 80 of 107

chScale2ndFactor

Purpose

Functions as an additional multiplier for the conversion of raw ADC values to volts or
other user units

Prefixes Access Type Values

channel RW double

Models

ALL

Traditional API equivalent

 NONE

Discussion
See the MATLAB discussion in the Programmer's Guide section 2.5 or section 6.2.4 of the
SP201 Manual.

chScaleFactor

Purpose

Functions as an additional multiplier for the conversion of raw ADC values to volts or
other user units

Prefixes Access Type Values

channel RW double

Models

ALL

Traditional API equivalent

 NONE

Discussion
See the MATLAB discussion in the Programmer's Guide section 2.5 or section 6.2.4 of the
SP201 Manual.

Programmer’s Guide Page 81 of 107

chScaleOffset

Purpose

Functions as an additive constant for the conversion of raw ADC values to volts or other
user units

Prefixes Access Type Values

channel RW double

Models

ALL

Traditional API equivalent

 NONE

Discussion
See the MATLAB discussion in the Programmer's Guide section 2.5 or section 6.2.4 of the
SP201 Manual.

chTime2ndOffset

Purpose

Functions as an additive constant to adjust the time of the data points of an acquisition

Prefixes Access Type Values

 RW double In seconds

Models

ALL

Traditional API equivalent

 NONE

Discussion
See the MATLAB discussion in the Programmer's Guide section 2.5 or section 6.2.4 of the
SP201 Manual.

Programmer’s Guide Page 82 of 107

chTime3rdOffset

Purpose

Functions as an additive constant to adjust the time of the data points of an acquisition

Prefixes Access Type Values

 RW double In seconds

Models

ALL

Traditional API equivalent

 NONE

Discussion
See the MATLAB discussion in the Programmer's Guide section 2.5 or section 6.2.4 of the
SP201 Manual.

chTimeOffset

Purpose

Functions as an additive constant to adjust the time of the data points of an acquisition

Prefixes Access Type Values

 RW double In seconds

Models

ALL

Traditional API equivalent

 NONE

Discussion
See the MATLAB discussion in the Programmer's Guide section 2.5 or section 6.2.4 of the
SP201 Manual.

Programmer’s Guide Page 83 of 107

chType

Purpose

Allows the client to learn the kind of hardware available in the channel

Prefixes Access Type Values

channel RO string "Trigger", "1GHz"
"1GHz 2 input"
"2GHz 2 input"
"12Bits"
"1GHz 50/1M Ohm"
"2GHz", "HighFreq"
"Std"

Models

ALL

Traditional API equivalent

 NONE

Discussion
Identifies the kind of hardware available for the channel

chUnits

Purpose

Allows the RW-client to set the vertical units string for data values of a channel for the
use of all clients

Prefixes Access Type Values

channel RW string any string

Models

ALL

Traditional API equivalent

 NONE

Discussion
Digitizer data in volts can be subject to a linear transformation, which also changes the units of
the result. This attribute stores the string associated with the new unit so that it is available to all
client applications. See the discussion in section 2.5 MATLAB or section 6.2.4 of the SP201
Manual.

Programmer’s Guide Page 84 of 107

ckDelay

Purpose

Control the total number of samples digitized in a Continuous External clock acquisition

Prefixes Access Type Values

 RW integer

Models

ALL

Traditional API equivalent
 AcqrsD1_configExtClock(id, …, delayNbrSamples, …)
 AcqrsD1_getExtClock(id, …, &delayNbrSamples, …)

Discussion
See section 3.11 of the Programmer's Reference manual.

ckThreshLvl

Purpose

Control the threshold level for External clock or Reference operation

Prefixes Access Type Values

 RW double

Models

ALL

Traditional API equivalent
 AcqrsD1_configExtClock(id, …, inputThreshold, …)
 AcqrsD1_getExtClock(id, …, &inputThreshold, …)

Discussion
See section 3.11 of the Programmer's Reference manual.

Programmer’s Guide Page 85 of 107

ckType

Purpose

Control the type of External clock or Reference operation

Prefixes Access Type Values

 RW string "Internal",
"ExtCkContinuous",
"ExtRef10MHz",
"ExtCkStartStop"

Models

ALL

Traditional API equivalent
 AcqrsD1_configExtClock(id, clockType, …)
 AcqrsD1_getExtClock(id, &clockType, …)

Discussion
See section 3.11, External Clock and Reference, of the Programmer's Reference manual.

convertersPerChan

Purpose

Returns the number of ADC converters used for each channel

Prefixes Access Type Values

 RO integer 1,2,4

Models

DC135, DC140, DC152, DC241, DC241A, DC252, DC271, DC271A, DC271AR,
DC282, DP235, DP240, AP235, AP240

Traditional API equivalent
 AcqrsD1_getChannelCombination(id, &nbrConvertersPerChannel,…)

Discussion
Use input to control both this number and the choice of active channels.

Programmer’s Guide Page 86 of 107

ctrlIOASignal

Purpose

Control the functionality of the CtrlI/O A connector

Prefixes Access Type Values

 RW string

Models

DC271-FAMILY, 10-bit-FAMILY, 12-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configControlIO(id, 1, …)
 AcqrsD1_getControlIO(id, 1, …)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

ctrlIOBSignal

Purpose

Control the functionality of the CtrlI/O B connector

Prefixes Access Type Values

 RW string

Models

DC271-FAMILY, 10-bit-FAMILY, 12-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configControlIO(id, 2, …)
 AcqrsD1_getControlIO(id, 2, …)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

Programmer’s Guide Page 87 of 107

ctrlIOPxiRef10MHz

Purpose

Control the use of the PXI Reference clock

Prefixes Access Type Values

 RW string "Off", "On"

Models

DC135, DC140, DC211, DC211A, DC241, DC241A, DC271, DC271A, DC271AR,
10-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configControlIO(id, 11, …)
 AcqrsD1_getControlIO(id, 11, …)

Discussion
The value “On” will set the instrument to use the PXI 10 MHz reference as the internal clock
reference.

ctrlIOPxiStar

Purpose

Control the use of the PXI Star trigger

Prefixes Access Type Values

 RW string "Off", "TrigIn",
"TrigOut"

Models

DC135, DC140, DC211, DC211A, DC241, DC241A, DC271, DC271A, DC271AR,
10-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configControlIO(id, 12, …)
 AcqrsD1_getControlIO(id, 12, …)

Discussion
The value “TrigOut” should be chosen when the instrument is the PXI Star Trigger generator.

To trigger on the PXI Star signal, the value “TrigIn” should be chosen.

Programmer’s Guide Page 88 of 107

ctrlIOTrOutLevel

Purpose

Control the offset of the Trigger Out signal

Prefixes Access Type Values

 RW double In mV

Models

DC271-FAMILY, 10-bit-FAMILY, 12-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configControlIO(id, 9, signal …)
 AcqrsD1_getControlIO(id, 9, &signal …)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

ctrlIOTrOutResync

Purpose

Control the synchronization of the trigger out signal with respect to the sampling clock

Prefixes Access Type Values

 RW string "Off", "On"

Models

DC271-FAMILY, 10-bit-FAMILY, 12-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configControlIO(id, 9, …, qualifier1, …)
 AcqrsD1_getControlIO(id, 9, …, &qualifier1, …)

Discussion
Use this attribute to control if the trigger output is resynchronized to the clock or maintains a
precise timing relation to the trigger input.

Programmer’s Guide Page 89 of 107

extCkRatio

Purpose

Give the ratio of the maximum external (continuous) clock sampling rate to the external
clock input frequency

Prefixes Access Type Values

 RO double 4.0, 2.0, 1.0, 0.5

Models

ALL

Traditional API equivalent

 NONE

Discussion
This number can depend on the model and the convertersPerChan value.

extInputFreq

Purpose

Inform the driver of the external (continuous) clock frequency

Prefixes Access Type Values

 RW double In Hz

Models

ALL

Traditional API equivalent
 AcqrsD1_configExtClock(id, …, inputFrequency, …)
 AcqrsD1_getExtClock(id, …, &inputFrequency, …)

Discussion
See section 3.11, External Clock and Reference, of the Programmer's Reference manual.

Programmer’s Guide Page 90 of 107

extSamplingRate

Purpose

Control the desired sampling rate when in external (continuous) clock mode

Prefixes Access Type Values

 RW double In Hz

Models

ALL

Traditional API equivalent
 AcqrsD1_configExtClock(id, …, sampFrequency)
 AcqrsD1_getExtClock(id, …, &sampFrequency)

Discussion
See section 3.11, External Clock and Reference, of the Programmer's Reference manual.

extSparsing

Purpose

Alternate to control the desired sampling rate when in external (continuous) clock mode

Prefixes Access Type Values

 RW double

Models

ALL

Traditional API equivalent
 AcqrsD1_configExtClock(id, …, sampFrequency)
 AcqrsD1_getExtClock(id, …, &sampFrequency)

Discussion
The values are such that extSamplingRate = extCkRatio * extInputFreq / extSparsing.

See also section 3.11, External Clock and Reference, of the Programmer's Reference manual.

Programmer’s Guide Page 91 of 107

fcApertureTime

Purpose

Control the minimum measurement time (in Frequency/Period modes) or the time gate
(in Totalize by Time mode)

Prefixes Access Type Values

 RW double in seconds

Models

Those with “FreqCntr” option

Traditional API equivalent
 AcqrsD1_configFCounter(id, …, apertureTime, …)
 AcqrsD1_getFCounter (id, …, &apertureTime, …)

Discussion
A call to getAttrRanges may be needed to understand all of the possible values.

fcMeasure

Purpose

Control the type of measurement

Prefixes Access Type Values

 RW string "Frequency","Period"
"TotalizeByTime",
"TotalizeByGate"

Models

Those with “FreqCntr” option

Traditional API equivalent
 AcqrsD1_configFCounter(id, …, typeMes, …)
 AcqrsD1_getFCounter (id, …, &typeMes, …)

Programmer’s Guide Page 92 of 107

fcSignalChannel

Purpose

Control the signal input channel

Prefixes Access Type Values

 RW integer

Models

Those with “FreqCntr” option

Traditional API equivalent
 AcqrsD1_configFCounter(id, …, signalChannel, …)
 AcqrsD1_getFCounter (id, …, & signalChannel, …)

Discussion
Typical values are 1 for channel 1 and 2 for channel 2.

A call to getAttrRanges may be needed to understand all of the possible values.

fcTargetValue

Purpose

Control the estimate of the expected result

Prefixes Access Type Values

 RW double

Models

Those with “FreqCntr” option

Traditional API equivalent
 AcqrsD1_configFCounter(id, …, targetValue, …)
 AcqrsD1_getFCounter (id, …, &targetValue, …)

Discussion
See discussion in section 3.1, Configuration.

Programmer’s Guide Page 93 of 107

input

Purpose

Control the active channels and number of converters per channel

Prefixes Access Type Values

 RW string discrete

Models

DC135, DC140, DC152, DC241, DC241A, DC252, DC271, DC271A, DC271AR,
DC282, DP235, DP240, AP235, AP240

Traditional API equivalent
 AcqrsD1_configChannelCombination(id, …, usedChannels)
 AcqrsD1_getChannelCombination(id, …, &usedChannels)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

memoryUsage

Purpose

Allows the user to force the acquisition into internal memory

Prefixes Access Type Values

 RW string “Internal”,”External”

Models

10-bit-FAMILY digitizer with Optional memory

Traditional API equivalent

 AcqrsD1_configMemory(id, …, flags)

Discussion
Allows the user to select internal memory and profit from the lower intersegment delay time.

Programmer’s Guide Page 94 of 107

name

Purpose

Allows the RW-client to set the name of the instrument for the use of all clients

Prefixes Access Type Values

 RW string any string

Models

ALL

Traditional API equivalent

 NONE

Discussion
The RW-client can set a name that can then be known by all the other clients, e.g. for better
(human) identification of the instrument.

samples

Purpose

Control the number of valid data points (per segment) in an acquisition

Prefixes Access Type Values

 RW integer

Models

ALL

Traditional API equivalent
 AcqrsD1_configMemory(id, nbrSamples, …)
 AcqrsD1_configHorizontal(id, &nbrSamples, …)

Discussion
The maximum number of samples depends on the current number of segments in a sequence
acquisition. Studying the current range of the attribute may be needed to understand the current
range.

Programmer’s Guide Page 95 of 107

samplingFreq

Purpose

Control the time between two data points in an acquisition

Prefixes Access Type Values

 RW double In Hz

Models

ALL

Traditional API equivalent
 AcqrsD1_configHorizontal(id, delayTime, sampInterval)
 AcqrsD1_configHorizontal(id, &delayTime, &sampInterval)

Discussion
The samplingFreq is the inverse of the sampInterval. Studying the current range of the attribute
may be needed to understand all of the possible values.

samplingIntv

Purpose

Control the time between two data points in an acquisition

Prefixes Access Type Values

 RW double In seconds

Models

ALL

Traditional API equivalent
 AcqrsD1_configHorizontal(id, delayTime, sampInterval)
 AcqrsD1_configHorizontal(id, &delayTime, &sampInterval)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

Programmer’s Guide Page 96 of 107

segments

Purpose

Control the number of segments in an acquisition

Prefixes Access Type Values

 RW integer

Models

ALL

Traditional API equivalent
 AcqrsD1_configMemory(id, …, nbrSegments)
 AcqrsD1_getMemory(id, …, &nbrSegments)

Discussion
The number of segments chosen may coerce the number of samples per segment in the
acquisition.

timeWindow

Purpose

Control the total time spanned by a segment in an acquisition.

Prefixes Access Type Values

 RW double In seconds

Models

ALL

Traditional API equivalent

 NONE

Discussion
timeWindow = samples * samplingIntv

Programmer’s Guide Page 97 of 107

trClass

Purpose

Control the type of trigger

Prefixes Access Type Values

 RW string "Edge", "TV"

Models

ALL

Traditional API equivalent
 AcqrsD1_configTrigClass(id, trigClass, …)
 AcqrsD1_getTrigClass(id, &trigClass, …)

Discussion
Studying the current range of the attribute may be needed to understand the current range.

trCoupling

Purpose

Control the trigger coupling of a trigger source signal

Prefixes Access Type Values

channel RW string "DC", "AC", "HFRej"

Models

ALL

Traditional API equivalent
 AcqrsD1_configTrigSource(id, channel, trigCoupling, …)
 AcqrsD1_getTrigSource(id, channel, &trigCoupling, …)

Discussion
This attribute controls the coupling of the trigger source signal to the trigger discriminator.

Studying the current range of the attribute may be needed to understand the current range.

Programmer’s Guide Page 98 of 107

trDelay

Purpose

Control the pre- or post-trigger delay time for an acquisition

Prefixes Access Type Values

 RW double In seconds

Models

ALL

Traditional API equivalent
 AcqrsD1_configHorizontal(id, delayTime, …)
 AcqrsD1_getHorizontal(id, &delayTime, …)

Discussion
Studying the current range of the attribute may be needed to understand the current range.

trRelThres1

Purpose

Control the trigger discriminator level for triggering

Prefixes Access Type Values

channel RW double in % of full scale

Models

ALL

Traditional API equivalent
 AcqrsD1_configTrigSource(id, channel, …, trigLevel1, …)
 AcqrsD1_getTrigSource(id, &delayTime, …, &trigLevel1, …)

Discussion
The values for this attribute must be given in %FS, and where 0.0 corresponds to the middle of
the input range.

The trigger discriminator level can also be set in volts. This is done with trThres1.

Programmer’s Guide Page 99 of 107

trRelThres2

Purpose

Control the second trigger discriminator level for window triggering

Prefixes Access Type Values

channel RW double in % of full scale

Models

DC271-FAMILY, 10-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configTrigSource(id, channel, …, trigLevel2)
 AcqrsD1_getTrigSource(id, &delayTime, …, &trigLevel2)

Discussion
The values for this attribute must be given in %FS, and where 0.0 corresponds to the middle of
the input range.

The second trigger discriminator level can also be set in volts. This is done with trThres2.

trSlope

Purpose

Control the slope or type of the transition to be used for the trigger

Prefixes Access Type Values

channel & ext RW string "Pos", "Neg",
"WindowIn",
"WindowOut",
"HFDiv4",
"SpikeStretcher"

Models

ALL

Traditional API equivalent
 AcqrsD1_configTrigSource(id, channel, …, trSlope, …)
 AcqrsD1_getTrigSource(id, &delayTime, …, &trSlope, …)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

Programmer’s Guide Page 100 of 107

trSrcEnabled

Purpose

Control which input should be used for the trigger

Prefixes Access Type Values

channel & ext RW string "Off", "On"

Models

ALL

Traditional API equivalent
 AcqrsD1_configTrigClass (id, …, sourcePattern, …)
 AcqrsD1_getTrigClass(id, …, &sourcePattern, …)

Discussion
The current trigger source can only be changed by turning “On” another source.

trThres1

Purpose

Control the trigger discriminator level for triggering

Prefixes Access Type Values

channel & ext RW double In V

Models

ALL

Traditional API equivalent
 AcqrsD1_configTrigSource(id, channel, …, trigLevel1, …)
 AcqrsD1_getTrigSource(id, &delayTime, …, &trigLevel1, …)

Discussion
For channels, the trigger discriminator level can also be controlled relative to the current input
range (as defined by the full scale and offset). This is done with trRelThres1, which takes values
in %FS, and where 0.0 corresponds to the middle of the input range.

Programmer’s Guide Page 101 of 107

trThres2

Purpose

Control the second trigger discriminator level for window triggering

Prefixes Access Type Values

channel & ext RW double In V

Models

DC271-FAMILY, 10-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configTrigSource(id, channel, …, trigLevel2)
 AcqrsD1_getTrigSource(id, &delayTime, …, &trigLevel2)

Discussion
For channels, the second trigger discriminator level can also be controlled relative to the current
input range (as defined by the full scale and offset). This is done with trRelThres2, which takes
values in %FS, and where 0.0 corresponds to the middle of the input range.

trThresUnit

Purpose

Control whether the relative or the absolute trigger discriminator level attributes should
be conserved when changing the input range (fullscale and/or offset)

Prefixes Access Type Values

channel & ext RW double "V", "%FS"

Models

DC271-FAMILY, 10-bit-FAMILY

Traditional API equivalent

 NONE

Discussion
When the value “V” is set for this attribute, changing the input range of a channel (i.e. changing
the full scale and/or the offset) will keep the value in volts set for the trThres1/2 levels constant,
and adjust the corresponding relative values, trRelThres1/2.

On the other hand, if the value “%FS” is chosen, a change in input range will imply a change in
the value in volts set for the trThres1/2 levels.

Programmer’s Guide Page 102 of 107

trTVField

Purpose

Control the field choice for the TV trigger

Prefixes Access Type Values

ext RW string "Odd", "Even", …

Models

12-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configTrigTV (id, channel, …, field, …)
 AcqrsD1_getTrigTV(id, channel, …, &field, …)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

trTVLine

Purpose

Control the line choice for the TV trigger

Prefixes Access Type Values

ext RW long

Models

12-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configTrigTV (id, channel, …, line)
 AcqrsD1_getTrigTV(id, channel, …, &line)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

Programmer’s Guide Page 103 of 107

trTVStd

Purpose

Control the standard to be used for the TV trigger

Prefixes Access Type Values

ext RW string "650-50Hz",
"525-60Hz"

Models

12-bit-FAMILY

Traditional API equivalent
 AcqrsD1_configTrigTV (id, channel, standard, …)
 AcqrsD1_getTrigTV(id, channel, &standard, …)

Discussion
Studying the current range of the attribute may be needed to understand all of the possible values.

Programmer’s Guide Page 104 of 107

5. Appendix A: Estimating Data Transfer Times
The time to transfer a waveform may be a significant part of the execution time of a program, and thus
becomes an important design consideration for new applications. We present here a simple timing model
with the aim of predicting the transfer time for digitizer readout as a function of the number of segments,
number of samples, CPU speed and the operating system.

5.1. Principles & Formulas
The function AcqrsD1_readData for readMode = 0 executes a direct waveform transfer from the
digitizer memory to the user-allocated buffer, for a single segment at a time. Since direct-to-memory
access (DMA) is used, this is the most time-efficient method for segments of 10'000 or more samples.
However, each segment requires its own DMA setup. When segments are very short, the transfer
overhead starts to dominate the overall transfer time. After the transfer the data in the buffer is ready to be
used.

The function AcqrsD1_readData for readMode = 1 reduces the overhead time by transferring with a
single DMA a complete digitizer memory image to the host computer memory. The memory image is
composed of a number of segments, each of which is a circular buffer. The first data point of interest in
the circular buffer may be anywhere, and its position usually changes randomly between acquisitions.
Thus, after the DMA is terminated, the driver must copy data from the image to the final linear buffer for
each segment. This method is therefore only interesting for relatively short segments. However, if timing
is not an important consideration, it offers the convenience of a single function call for the complete
transfer of a waveform sequence.

Formulas for estimating the transfer times in μs are:

• AcqrsD1_readData for readMode = 0:

XfrNMOvhdMT DMA ⋅⋅+⋅=1

• AcqrsD1_readData for readMode = 1:

() CpyNMXfrExtraNMOvhdMOvhdT bufferDMA ⋅⋅+⋅+⋅+⋅+=2

with the following definitions:

M Number of segments

N Number of samples per segment

Xfr Transfer time per sample in μs, typically 0.01 ??

DMAOvhd

DMA overhead time (per segment) in μs

bufferOvhd

Circular buffer analysis overhead time (per segment) in μs

Extra Number of 'overhead' data points per segment

Cpy Time to copy a sample in μs

The formulas above assume that M and N correspond to the number segments and samples set with the
function AcqrsD1_configMemory. If fewer segments or samples are transferred, the timing might be
somewhat less favorable than estimated by the formula.

1. The transfer time Xfr is typically 0.009 to 0.01 μs (9 - 10 ns) per 8-bit sample for digitizers directly
inserted on the PCI bus of the host computer or connected through the SBS-Bit3 interface (Acqiris
model number IC200). If a digitizer is connected through the National Instruments MXI-3 interface,
Xfr is typically 0.012 μs (12 ns). Of course, these times would get larger, if there was considerable
additional I/O traffic on the PCI bus.

2. The DMA overhead time OvhdDMA is approximately (50'000 μsec) / (Pentium CPU speed in MHz).
Thus, for a 250 MHz Pentium OvhdDMA is ~ 200 μs, and for a 500 MHz Pentium it is ~ 100 μs.
With applications running under Windows 95 or 98, OvhdDMA has been observed to be ~ 20% lower.

Programmer’s Guide Page 105 of 107

3. The circular buffer analysis overhead time Ovhdbuffer is ~ (2'500 μs) / (Pentium CPU speed in MHz).
Thus, for a 250 MHz Pentium Ovhdbuffer is ~ 10 μs, and for a 500 MHz Pentium ~ 5 μs.

4. An Extra number of data samples must be transferred to the host computer with the memory image.
It depends on the sampling interval (in ns) and on the digitizer type. Here are some rough values:

Extra Type

300 / sampInterval + 98 digitizers with ≤ 1 GS/s maximum sampling rates

300 / sampInterval + 194 digitizers with 2 GS/s maximum sampling rates or DC271-FAMILY
instruments set for a combine channel mode allowing 2 GS/s

300 / sampInterval + 386 DC271-FAMILY instruments set for a 4 GS/s combine channel mode

5. The copying time Cpy per 8-bit sample is ~ (5 μs) / (Pentium CPU speed in MHz).
Thus, for a 250 MHz Pentium Cpy is ~ 0.02 μs, and for a 500 MHz Pentium it is ~ 0.01 μs.

Benchmarks were run on 266 and 550 MHz Pentiums, running under Windows 98 and NT. The observed
transfer times agreed with the formula within better than 20%.

• dataType=3:

Add the conversion time T3 for conversion from ADC codes to Volts, to T2 or T1 respectively:

ConvNMT ⋅⋅=3

where Conv is the conversion time per sample in microseconds. It is ~ (35 μs) / (Pentium CPU
speed in MHz). Thus, for a 250 MHz Pentium Conv is ~ 0.14 μs, and for a 500 MHz Pentium ~
0.07 μs.

5.2. Examples
(A) DP210 in a 800 MHz Pentium:

Transferring single records of 100'000 samples, recorded at 2 GS/s:

672192480125.35.62
00625.001.00001001

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ106310005.621 =+=⋅⋅+⋅=

()
s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ169800625.000010001.0672100125.35.62
2

=⋅+⋅++=

⋅⋅+⋅+⋅+⋅+=

It is therefore more favorable to use the function AcqrsD1_readData for readMode = 0.

Transferring 100 segments of 1000 samples, recorded at 2 GS/s:

672192480125.35.62
00625.001.00001100

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ725001.010001005.621001 =⋅⋅+⋅=⋅⋅+⋅=

()
s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ267200625.0000110001.06721100125.31005.62
2

=⋅⋅+⋅⋅+⋅+=

⋅⋅+⋅+⋅+⋅+=

The function AcqrsD1_readData for readMode = 1 is about 2.7 times faster.

Programmer’s Guide Page 106 of 107

(B) DC270 connected to a 500 MHz Pentium with a MXI-3 interface:

Transferring single records of 100'000 samples, recorded at 100 MS/s:

12096102405100
01.0012.00001001

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ130012001001 =+=⋅⋅+⋅=

()
s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ230601.0000100012.01201005100
2

=⋅+⋅++=

⋅⋅+⋅+⋅+⋅+=

It is therefore more favorable to use the function AcqrsD1_readData for readMode = 0.

Transferring 1000 segments of 500 samples each, recorded at 500 MS/s:

2169622405100
01.0012.05000001

=+===
====

ExtraOvhdOvhd
CpyXfrNM

bufferDMA

sXfrNMOvhdMT DMA μ00010600060001001 =+=⋅⋅+⋅=

()
s

CpyNMXfrExtraNMOvhdMOvhdT bufferDMA

μ6921801.05000001012.0716000150001100
2

=⋅⋅+⋅⋅+⋅+=

⋅⋅+⋅+⋅+⋅+=

The function AcqrsD1_readData for readMode = 1 is about 5 times faster.

5.3. Comparison Chart for Typical Transfers

Time in ms 250 MHz Pentium 500 MHz Pentium 800 MHz Pentium

of
Segments

Samples/
Segment

T1 T2 R T1 T2 R T1 T2 R

1 200 0.20 0.22 1.10 0.10 0.12 1.13 0.06 0.08 1.17
1 1 K 0.21 0.25 1.17 0.11 0.13 1.20 0.07 0.09 1.22
1 10 K 0.30 0.52 1.72 0.20 0.31 1.56 0.16 0.23 1.45
1 100 K 1.20 3.22 2.68 1.10 2.11 1.92 1.06 1.70 1.60
1 1 M 10.2 30.2 2.96 10.1 20.1 1.99 10.0 16.3 1.62

10 200 2.02 0.43 0.21 1.02 0.26 0.25 0.65 0.19 0.30
10 1 K 2.10 0.67 0.32 1.10 0.42 0.38 0.73 0.32 0.45
10 10 K 3.00 3.37 1.12 2.00 2.22 1.11 1.63 1.79 1.10
10 100 K 12.0 30.4 2.53 11.0 20.2 1.84 10.6 16.4 1.54
10 1 M 102 300 2.94 101 200 1.98 101 163 1.62

100 200 20.2 2.47 0.12 10.2 1.67 0.16 6.45 1.37 0.21
100 1 K 21.0 4.87 0.23 11.0 3.27 0.30 7.25 2.67 0.37
100 10 K 30.0 31.9 1.06 20.0 21.3 1.06 16.2 17.3 1.06
100 100 K 120 302 2.52 110 202 1.83 106 164 1.54

1000 200 202 22.9 0.11 102 15.8 0.16 64.5 13.2 0.20
1000 1 K 210 46.9 0.22 110 31.8 0.29 72.5 26.2 0.36
1000 10 K 300 317 1.06 200 212 1.06 163 170 1.06
8000 200 1616 182 0.11 816 126 0.15 516 105 0.20

Programmer’s Guide Page 107 of 107

Time in ms 250 MHz Pentium 500 MHz Pentium 800 MHz Pentium
8000 1 K 1680 374 0.22 880 254 0.29 580 209 0.36
8000 2 K 1760 614 0.35 960 414 0.43 660 339 0.51

Comments:

• We assume a 2 GS/s digitizer running at the highest sampling rate, direct connection of the digitizer
to the host PCI bus or through the SBS-Bit3 interface (Acqiris model number IC200), Windows NT.

• 12 TTR =
If R > 1.0, a loop over AcqrsD1_readData for readMode = 0 is faster than AcqrsD1_readData for
readMode = 1.

Time in ms 866 MHz Pentium

of
Segments

Samples/
Segment

T1 T2 R

1 200 0.03 0.04 1.22
1 1 K 0.04 0.05 1.21
1 10 K 0.12 0.17 1.45
1 100 K 0.98 2.12 2.15
1 1 M 9.85 25.5 2.59

10 200 0.3 0.14 0.46
10 1 K 0.35 0.27 0.76
10 10 K 1.21 1.61 1.33
10 100 K 11.6 16.2 1.40
10 500 k 45.4 94.4 2.08
100 200 3.00 0.92 0.31
100 1 K 4.27 2.37 0.56
100 10 K 16.1 15.0 0.93
100 50 K 44.7 74.2 1.66

1000 200 47.2 13.5 0.29
1000 1 K 44.3 23.4 0.53
1000 5 K 85.9 87.8 1.02
8000 200 457 64.8 0.14
8000 500 496 202 0.41

Comments: Measured under the Linux OS.

	1. Introduction
	1.1. Message to the User
	1.2. Using this Manual
	1.3. Conventions Used in This Manual
	1.4. Warning Regarding Medical Use
	1.5. Warranty
	1.6. Warranty and Repair Return Procedure, Assistance and Support
	1.7. System Requirements

	2. Programming Environments & Getting Started
	2.1. Visual C++
	2.2. LabWindows/CVI
	2.3. LabVIEW
	2.3.1. Getting Started VI
	2.3.2. Example Scope VI
	2.3.3. Accumulated Waveform Example VI

	2.4. Visual Basic
	2.5. MATLAB
	2.5.1. Data Acquisition Toolbox
	2.5.1.1. Examples
	2.5.1.2. Setup and Settings
	2.5.1.3. Process an acquisition

	2.5.2. MEX Interface
	2.5.2.1. Examples

	2.6. Phar Lap ETS
	2.7. Wind River VxWorks (Tornado)
	2.7.1. Compiling
	2.7.2. Loading
	2.7.3. Running the Program

	2.8. Linux

	3. Programming an Acqiris Digitizer
	3.1. Programming Hints
	3.2. Device Initialization
	3.2.1. PCI & VXI Identification by Order Found
	3.2.2. PCI Identification by Serial Number
	3.2.3. PCI Identification by Bus/Slot Number
	3.2.4. VXI Identification
	3.2.5. Firmware initialization (AP-FAMILY/12-bit-FAMILY/ACxxx /SCxxx)
	3.2.6. Automatic Definition of MultiInstruments
	3.2.7. Manual Definition of MultiInstruments
	3.2.8. AqGeo.map file positioning
	3.2.9. Simulated Devices
	3.2.10. Terminating an Application

	3.3. Device Configuration
	3.4. Configuring Averagers
	3.4.1. Basic configuration
	3.4.2. Dithering
	3.4.3. ‘Fixed Pattern’ Background Subtraction
	3.4.4. Configuring Noise Suppressed Accumulation (NSA)

	3.5. Configuring SSR Analyzers
	3.5.1. Acquisition Parameters
	3.5.2. Readout configuration
	3.5.3. Time stamps

	3.6. Configuring AdvancedTDC Analyzers
	3.7. Configuring AP101/AP201 Analyzers
	3.8. Data Acquisition
	3.8.1. Starting an Acquisition
	3.8.2. Checking if Ready for Trigger
	3.8.3. Waiting for End of Acquisition
	3.8.4. Stopping/Forcing an Acquisition
	3.8.5. Analyzer and AdvancedTDC Autoswitch mode
	3.8.5.1. Sequence of actions for Autoswitch with event readout
	3.8.5.2. What happens when the AutoSwitch semaphore is not set
	3.8.5.3. Changing acquisition settings while acquiring and reading events

	3.9. Data Readout
	3.9.1. Reading Digitizer Waveforms with the Universal Read Function
	3.9.2. Reading Sequences of Waveforms
	3.9.3. Averaging Waveforms in a Digitizer
	3.9.4. Reading an Averaged Waveform from an Averager
	3.9.4.1. Averaged Waveforms in Volts
	3.9.4.2. Averaged Waveforms as 32-bit Sums

	3.9.5. Reading a RT Add/Subtract Averaged Waveform from an Averager
	3.9.6. Reading SSR Analyzer Waveforms
	3.9.6.1. SSR Mode Readout Data Format
	3.9.6.2. Raw data
	3.9.6.3. Gated data
	3.9.6.4. Waveform storage requirements

	3.9.7. Reading AdvancedTDC Analyzer Data and Histograms
	3.9.7.1. Reading the gated data
	3.9.7.2. Reading the data in the peak regions
	3.9.7.3. Reading the peaks
	3.9.7.4. Reading the histogram

	3.9.8. Reading AP101/AP201 Analyzer Waveforms
	3.9.8.1. Reading a Buffered Waveform Sequence
	3.9.8.2. Reading Gated Waveforms
	3.9.8.3. Data Processing before Readout

	3.10. Trigger Delay and Horizontal Waveform Position
	3.11. Horizontal Parameters in Acquired Waveforms
	3.12. Sequence Acquisitions
	3.13. Timestamps
	3.14. External Clock and Reference
	3.14.1. External Reference
	3.14.2. External Clock (Continuous)
	3.14.3. External Clock (Start/Stop)

	3.15. ASBus Operation
	3.15.1. Channel Numbering with ASBus
	3.15.2. Trigger Source Numbering with ASBus

	3.16. Special Operating Modes
	3.16.1. Frequency Counter
	3.16.2. ‘Start on Trigger’
	3.16.3. ‘Sequence Wrap’

	3.17. Readout of Battery Backed-up Memories
	3.17.1. Preparations before Power-Off
	3.17.2. Recovery after Power-Off

	3.18. Reading the Digitizer Temperature

	4. Attributes
	4.1. Attribute dependencies and coerced values
	4.2. Functional grouping of attributes
	4.3. Traditional API grouping of attributes
	4.4. Detailed description of attributes (Alphabetically ordered)

	5. Appendix A: Estimating Data Transfer Times
	5.1. Principles & Formulas
	5.2. Examples
	5.3. Comparison Chart for Typical Transfers

