
KLFA USER MANUAL

USE OF KLFA FROM THE COMMAND LINE

Contents

1 Introduction 3

2 Installing and Compiling KLFA 5
2.1 Installing a compiled version of KLFA 5

2.2 Compiling KLFA from a source distribution 6

2.3 Compiling KLFA from CVS . 7

3 Tools 9
3.1 Monitoring . 9

3.2 Model Generation . 9

3.3 Failure Analysis . 11

4 Examples 13
4.1 Glassfish deployment failure . 13

4.1.1 Monitoring . 13

4.1.2 Model Generation . 14

4.1.3 Failure analysis . 22

5 Developers Guide 31
5.1 Model Inference and Anomaly Detection 31

5.1.1 Monitoring . 31

5.1.2 Model Generation . 32

5.1.3 Failure analysis . 40

Bibliography 48

1

Chapter 1

Introduction

This document describes kLFA the kBehavior Log File Analysis technique

described in [?] and [?].

Figure 1.1 shows the three steps of the technique, while Figure 1.2 focus

on the model generation. Detailed information about the technique can be

found in [?].

The following chapters describe for every step of the technique the tools

involved and give examples of usage of the tools.

target system

test cases in-the-field
uses

log

log

0 1 2 3
4

5

0 1 2 3
4

5

target system

in-the-field
uses

log
tester

0 1 2 3
4

5

suspicious
sequences

Failure

automated
analysis

step 1: Monitoring step 2: Model Generation step 3: Failure Analysis

model
inference

monitoring models

model
inference

models

Figure 1.1: Automated log analysis.

3

Introduction

log file Parser

log file
(1 event
per line)

Splitter

Simple
Logfile

Clustering
Tool

log file
(1 event
per line)

log file
(1 event
per line)

application level analysis

action level
analysis

component
level analysis

1 log for each
component

1 annotated
log file

detected
event types

mappings:
event-component
and event-actions

Rule
Matcherlogs

log file
(clustered

events)

1. Event
Detection

Data
Analysis

Data
ReWriting

rewriting
strategy

log file
(with data-
flow info)

2. Data Transformation

Inference
Engine

modelsmodels
models

3. Model
Inference

Legend
sw module

llog file

data

Figure 1.2: Model generation.

4

Chapter 2

Installing and Compiling
KLFA

2.1 Installing a compiled version of KLFA

If you received the KLFA compiled distribution zip (something like klfa-201010141601.zip),

just uncompress it in the location you prefer, e.g. /home/fabrizio/Pro-

grams/klfa201010141601.

Once you uncompressed it you just need to do the following commands:

1) (if using Linux or OSX) make scripts executables e.g.

chmod a+x /home/fabrizio/Programs/klfa-201010141601/bin/*

2) (for any OS) set the environment variable KLFA_HOME to point to the

folder where you installed klfa, e.g. /home/fabrizio/Programs/klfa-201010141601/

If you are using Linux or OSX with the BASH shell you could add the

following line to file .bashrc (change the path according to your path):

export KLFA_HOME=/home/fabrizio/Programs/klfa-201010141601/

3) (for any OS) add the bin folder in KLFA_HOME to the PATH environ-

ment variable.

If you are using Linux or OSX with the BASH shell you could add the

following line to file .bashrc (change the path according to your path):

export PATH=$PATH:/home/fabrizio/Programs/klfa-201010141601/bin/

5

Installing and Compiling KLFA

You can check if the previous command succeeded by running the follow-

ing command and checking that you have an output similar to the one re-

ported below:

$ which klfaCsvAnalysis.sh

/home/fabrizio/Programs/klfa-201010141601/bin//klfaCsvAnalysis.sh

Check if klfa is correctly installed by running:

$ klfaCsvAnalysis.sh

The command will output klfa command help. Like in the following para-

graph:

This program builds models of the application behavior by analyzing a trace

file. The trace file must be a collection of lines, each one in the format

COMPONENT,EVENT[,PARAMETER].

Multiple traces can be defined in a file, to

separate a trace from another put a line with the | symbol.

Usage :

it.unimib.disco.lta.alfa.klfa.LogTraceAnalyzer [options] <analysisType> <phase>

<valueTranformersConfigFile> <preprocessingRules> <traceFile>

KLFA includes several programs and utilities described in the following

Sections. The most common utilities can be run by using the shell scripts in

KLFA_HOME/bin

We suggest to go through the examples in folder KLFA_HOME/examples

to understand how to use KLFA. Some examples are described in Chapter 4,

others are described in the file README.txt that you find in each example

folder.

2.2 Compiling KLFA from a source distribution

If you received a source distribution zip of klfa (something like klfa-src-201010141601.zip),

uncompress it in the location you prefer, e.g. /home/fabrizio/Programs/klfa-

src-201010141601.

In order to compile an installable version of klfa from sources run the

following command within the folder where you uncompressed klfa:

6

2.3 Compiling KLFA from CVS

ant distribution

so you could do:

cd /home/fabrizio/Programs/klfa-src-201010141601

ant distribution

The command will create the KLFA distribution zip in the dist folder. e.g.

/home/fabrizio/Programs/klfa-src-201010141601/dist/klfa-201010141601.zip

After creating the distribution zip you can follow the commands described

in Section ??.

2.3 Compiling KLFA from CVS

In order to install the head version of klfa stored on the UniMiB CVS reposi-

tory you need to download the following CVS modules:

• LogFileAnalysis-LFA

• BCT (you need to download the TPTPIntegration branch)

LogFileAnalysis-LFA is klfa. BCT provides the libraries to infer automata.

The first step is the compilation of klfa dependencies. To do so run

ant buildDependencies

The command will create the library bct.jar in folder lib.

Next step is to run the command

ant distribution

This command builds the klfa distribution zip. Follow the instructions

described in Section ?? to install klfa.

Other klfa ant compilation options are described by the build.xml help. To

see the other compilation options just run

ant

7

Chapter 3

Tools

3.1 Monitoring

In the monitoring phase the user is supposed to collect log files relative to

correct system executions. These log files can be collected at testing time

during functional system tests or during correct runs of the system. We do

not provide any logging tool because the system can work with any of the

existing logging systems.

3.2 Model Generation

In this phase the log files collected are analyzed by the system to derive a

model that generalizes the application behavior. In this phase the initial logs

files are preprocessed with different tools in order to:

• have a complete event in a single line

• automatically detect event types and associated parameters

• detect rewriting strategies for parameters

• infer a model of the log files structure

Figure 3.1 shows the components involved in this phase. All the compo-

nents must be called from command line and the user has to set parameters

according to the analysis type and the log file analyzed. Following sections

describe the functionality of each component.

9

Tools

TransformationRulesGenerator

transformers
definitions

preprocessing
rules

parameters
statistics

EventTypesDetectionComponent

csv file
(with events)

EventsSeparationComponent

log file
(1 event per line)

kFSAEngine

Models

log file

actions

Figure 3.1: Components involved in the model generation phase.

10

3.3 Failure Analysis

3.3 Failure Analysis

In this fail the logs recorded during faulty executions are preprocessed follow-

ing the criterion adopted in the model inference phase and then are compared

with the inferred models.

Figure 5.1 shows the components involved in this phase.

transformers
definitions

preprocessing
rules

EventTypesDetectionComponent

csv file
(with events)

EventsSeparationComponent

log file
(1 event per line)

kFSAEngine

Models

log file

actions

From Model Inference

Figure 3.2: Components involved in the failure analysis phase.

The results of this phase are a set of extended models and an anomaly file.

The anomaly file contains the colums described in Table

11

Tools

Column name Description

Component Name of the component that present this anomaly.

Anomaly Anomaly type, can be branch, tail or final state.

Line POsition in the trace in which the anomaly starts. This number corresponds to the position of the event in the trace named checking_<componentName>.trace

State State of the component FSA in which the anoamly has been found

StateType State type, can be existing if it is a state present in the component FSA, or newif it is a state added during a previous extension

Event Sequence of anomalous preprocessed events observed

Original log line POsition in the original log

Original log event Sequence of anomalous events observed

To state State in which the anomaly ends (makes sens only if it is a brnach added anomaly). Branch length

Expected Expected event going out from the anomalous state

Expected incoming Events expected before state "To state"

12

Chapter 4

Examples

4.1 Glassfish deployment failure

This section describe a real case study in which we analyzed log files gener-

ated by the Glassfish J2EE application server to detect the cause of a failure

while deploying the Petstore[?] web application.

In this case study we collected the log files produced by glassfish during

system tests, derived models from the log files (we applied the three different

approaches), and compared the log file produced during the failure. This log

file was provided by a final user of the system which was not able to deploy

the java web application using Netbeans [?].

All the files described in this example can be found in folder

examples/glassfishForumUserIssue/.

4.1.1 Monitoring

In the monitoring phase we collected log files produced by Glassfish while it

is performing different functionalities: start-up, shutdown, web application

deploy, and response to web application requests.

The log files are recorded with the default verbosity. Log files are stored

in the folder examples/glassfishForumUserIssue/correctLogs.

13

Examples

Parameters description

-eventsStartExpression "[#

|.*" indicate that log mes-

sages start with [#

|"

../correctLogs/server.log* expand to all the

correct log files

events.correct.txt

Table 4.1: RegexBasedRawEventsSeparator parameters.

4.1.2 Model Generation

In the model generation phase we preprocess the original log files in order to

generate a model of the correct log file format.

Raw Events Separation

Glassfish record logs in the Uniform Log Format [?]. Logging messages witten

in this format start with “[#” and end with “|]” and can span over different

lines. For this reason we need to preprocess the original log files in order to

obtain a file in which each log message is recorded in a line.

In order to do this we descend into folder

examples/glassfishForumUserIssue/analysis/ and run RegexBasedRaw-

EventsSeparator with the following command (all in a line):

java -cp

path/to/klfa

preprocessing.rawEventsSeparation.RegexBasedRawEventsSeparator

-eventStartExpression "\[#\|2008.*" ../correctLogs/server.log*

events.correct.txt

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runRawEventsSeparationTraning.sh.

Table 5.1.2 explains the options used.

14

4.1 Glassfish deployment failure

Events Types Detection

Event types detection is performed using the AutomatedEventTypesDetector

tool, which uses slct to detect the event types and then parses the given log

to produce a final csv file in which component names, events and parameters

are separated in different columns.

The usage of the AutomatedEventTypesDetector depends on the kind of

analysis you want to perform on your log file. Following we list the different

option we used for the distinct analysis.

Component Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.

AutomatedEventTypesDetector

-slctExecutablePath path/to/slct

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-exportRules rules.properties -workingDir trainingCsvGen

-componentsDefinitionFile components.training.properties

events.correct.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelEventsDetectionTraining.sh.

Table 5.2 explains the parameters used.

15

Examples

Table 4.2: AutomatedEventsDetector parameters.

Parameters description

-slctExecutablePath path/to/slct path to the slct exe-

cutable

-replacement "CORE5076: Us-

ing.*" "Using Java"

replaces all messages

of this type with a

default message, this

message generate a

false positive which

is caused by different

versions of VM used so

we removed info about

the VM.

-replacement ".*/domains/do-

main1/config/" "/domains/do-

main1/config/"

remove the part of the

path that generate a

false positive.

-replacement "ser-

vice:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi"

""

remove this informa-

tion because the path

is system dependant

and we do not have

enough tests to permit

to slct to understand

that this is a parame-

ter.

-replacement "ser-

vice:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi"

""

same as above.

-replacement "

|DEBUG

16

4.1 Glassfish deployment failure

|" "" remove information

about the logging

granularity. It does

not introduce false

positives, just make

events regular expres-

sions less readable.

-replacement "

|FINE

|" "" same as above.

-replacement "

|FINER

|" "" same as above.

-replacement "

|FINEST

|" "" same as above.

-replacement "

|INFO

|" "" same as above.

-dataExpression "[#

|2008.*

|.*

|.*

|.*

|.*

|(.*)

|#]" tell the system where

is positioned the use-

ful event information

using regex grouping.

-componentExpression "[#

|2008*̇

|.*

17

Examples

|.*

| (.*)

|.*

|.*

| #]" tell the system where

the component name

is positioned in the

log line using regex

grouping.

-exportRules rules.properties export the patterns

detected by slct to file

rules.properties (in

the current dir).

-workingDir trainingCsvGen generate component

files in trainingCsv-

Gen dir.

-componentsDefinitionFile com-

ponents.training.properties

save components

ids to file compo-

nents.training.properties.

events.correct.txt original log file (the

one that we generated

in the previous step).

events.correct.csv teh destination file.

Application Level Analysis and Action Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.

AutomatedEventTypesDetector

-dontSplitComponents

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

18

4.1 Glassfish deployment failure

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-exportRules rules.properties -workingDir trainingCsvGen

-componentsDefinitionFile components.training.properties

events.correct.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runActionLevelEventsDetectionTraining.sh.

As you can see for both Application and Action Level Analysis the options

are the same of the Component Level Analysis except from the additional -

dontSplitComponents. This happens because the log file format is the same

so the parsing options d not change, the only difference is in the way events

are detected, in this case we do not need to detect events for components

separately.

Transformation Rules Generation

The next step is the automatic detection of the rewriting strategies to be used

with the engine. This is achieved by running TransformationRulesGenerator.

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.parametersAnalysis.TransformationRulesGenerator

-patterns rules.properties -signatureElements 0,1 events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runTransformationRulesGeneration.sh.

If you already had a CSV file and for this reason you did not run Event-

TypesDetector, you can generates transformation rules by running:

19

Examples

Parameters description

-patterns rules.properties load events regex from

file rules.properties.

-signatureElements 0,1 do not threat columns

0 and 1 as parameters.

events.correct.csv name of the csv file to

analyze.

Table 4.3: TransformationRulesgenerator options

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.parametersAnalysis.TransformationRulesGenerator

-signatureElements 0,1 events.correct.csv

Table 5.1.2 explains the options used.

Inference of the models

Model inference is done using the LogTraceAnalyzer tool. It first applies

the data transformation rules detected by the TransformationRulesGenera-

tor. Then it builds models using the kBehavior inference engine [?].

The analysis type is selected by the user providing the corresponding pa-

rameters to the LogTraceAnalyzer. In the following paragraphs we explain

how to do the different analysis.

Component Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 componentLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelInference.sh.

Table 5.1.2 explains the options used.

Action Level Analysis

20

4.1 Glassfish deployment failure

Parameters description

-separator "," separator char used in

the csv file.

-minimizationLimit 100 do not minimize FSA

if they have more than

100 states.

componentLevel do component level

analysis.

training learn the models.

transformersConfig.txt file with the rewriting

rules defined for the

different data clusters.

preprocessingRules.txt file with the asso-

ciation between the

different instances of

rewriting strategies

and the different

parameters.

events.correct.csv csv file to load data

from.

Table 4.4: LogTraceAnalyzer Component Level Analysis options

21

Examples

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator ","

-splitActionLines -actionLines

actions.correct.properties -minimizationLimit

100 actionLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runActionLevelInference.sh.

Application Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 applicationLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runApplicationLevelInference.sh.

4.1.3 Failure analysis

Once the failure occurs the faulty log file can be compared with the inferred

models to detect anomalies. To do this we have to process the faulty log file

in a similar manner as in the model inference phase. Figure ?? report the

required steps.

Raw Events Separation

The command is the same as in the ModelGeneration phase except from the

input and output parameters.

java -cp

path/to/klfa

preprocessing.rawEventsSeparation.RegexBasedRawEventsSeparator

-eventStartExpression "\[#\|2008.*" ../faultyLogs/server.fail.log

events.fail.txt

22

4.1 Glassfish deployment failure

transformers
definitions

preprocessing
rules

EventTypesDetectionComponent

csv file
(with events)

EventsSeparationComponent

log file
(1 event per line)

kFSAEngine

Models

log file

actions

From Model Inference

Figure 4.1: Components involved in the failure analysis phase.

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runRawEventsSeparationChecking.sh.

Events Types Detection

The command is similar as in the Model Generation phase except from the

fact that we tell the tool to use the component and rules ids used in the Model

Generation phase.

23

Examples

Component Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.AutomatedEventTypesDetector

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-loadComponents components.training.properties -exportRules

rules.checking.properties -workingDir checkingCsvGen

-loadEventPatterns -patternsDir trainingCsvGen

-componentsDefinitionFile components.fail.properties events.fail.txt

events.fail.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelEventsDetectionChecking.sh.

Application Level Analysis and Action Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.AutomatedEventTypesDetector

-dontSplitComponents -replacement "CORE5076: Using.*" "Using Java"

-replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

24

4.1 Glassfish deployment failure

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-loadComponents components.training.properties -exportRules

rules.checking.properties -workingDir checkingCsvGen

-loadEventPatterns -patternsDir trainingCsvGen

-componentsDefinitionFile components.fail.properties events.fail.txt

events.fail.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runApplicationtLevelEventsDetectionChecking.sh or ../bin/run-

ActionLevelEventsDetectionChecking.sh.

Comparison against the models

Comparison against the model is done calling the LogTraceAnalyzer tool and

giving the analysis type used in the model generation phase and specifying

that we are now doing the comparison.

Component Level Analysis

java -cp path/to/klfa tools.kLFAEngine.LogTraceAnalyzer

-separator "," -minimizationLimit 100 componentLevel checking

transformersConfig.txt preprocessingRules.txt events.fail.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelAnomalyDetection.sh.

Action Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 actionLevel checking transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runActionLevelAnomalyDetection.sh.

Application Level Analysis

25

Examples

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 applicationLevel checking transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runApplicationLevelAnomalyDetection.sh.

Anomalies interpretation

In the model comparison phase the tool detects the anomalies present in

the faulty log files and report them to the user by saving them in the file

klfaoutput/anomalies.csv.

The last phase of the technique involves actively the user who has to in-

spect the reported anomalies, and use them as a guide to inspect correct and

faulty files to detect the problem.

Table ?? shows the anomalies detected by the tool in the given case study.We

imported the csv file produced by the tool, anomalies.csv, and sorted the items

according to the column Original Event Line. In the next paragraphs we

are going to interpret them to give an exhaustive explanation of the problem.

26

4.1 Glassfish deployment failure

C
om

p.
A

no
m

al
y

L
in

e
St

at
e

St
at

e

T
yp

e

E
ve

nt
O

ri
gi

na
ll

og
lin

e
O

ri
gi

na
l

lo
g

ev
en

t

E
xp

ec
te

d

5
F

in
al

St
at

e
1

q2
E

xi
st

in
g

5_
R

00
65

15
5,

R
00

65
5_

R
00

64

5_
R

00
66

__
0_

_0

0
F

in
al

St
at

e
5

q8
E

xi
st

in
g

0_
R

00
55

)
20

0,
R

00
55

0_
R

00
52

)

0_
R

00
57

)

G
L

O
B

A
L

Ta
il

13
q1

09
E

xi
st

in
g

14
_R

00
20

__
0)

21 14
,R

00
20

,ja
va

-

pe
ts

to
re

2.
0e

a5

3_
R

00
32

)λ

14
F

in
al

St
at

e
1

q4
E

xi
st

in
g

14
_R

00
20

__
0)

21 14
,R

00
20

,ja
va

-

pe
ts

to
re

-2
.0

-e
a5

14
_R

00
23

)

4
Ta

il
7

q1
2

E
xi

st
in

g
4_

28
93

31
64

8)
24

4,
28

93
31

64
8

4_
-1

62
83

44
21

5)

4_
R

00
73

)

4_
15

73
70

51
68

4_
R

00
75

)

17
Ta

il
1

q3
E

xi
st

in
g

17
_-

81
19

28
00

6)
25

17
,-

81
19

28
00

6

17
_R

00
03

);

3
Ta

il
5

q1
0

E
xi

st
in

g
3_

-1
64

83
56

84
8)

27
3,

-

16
48

35
68

48

3_
R

00
32

)

3_
R

00
31

)

23
N

ew
C

om
-

po
ne

nt

27

Examples

Anomaly 1 Anomaly 1 appears in line 15 of the faulty log file. The

anomaly regards component com.sun.jbi.framewor (the id 5 correspond to

this component as you can see from file components.training.properties).

In this case the anomaly is not caused by an unexpected event, but the sys-

tem detects that the events regarding component 5 stopped before than ex-

pected. In fact a new final state was added to the automaton. By opening the

automaton with the command java -cp path/to/klfa tools.ShowFSA

klfaoutput/5.fsa we can see that many more events are expected. Fur-

thermore by looking at the faulty log file we can see that the file is very short,

so we can deduce that it was truncated by the user or the application was

blocked.

The Event column in this case do not represent the wrong event occurred

but the last event seen. The id of this last event is R0065, which correspond

to the event regex "JBIFW0010 JBI framework ready to accept requests.".

Anomaly 2 Anomaly 2 regards component javax.enterprise.system.core,

also in this case the anomaly is caused by the premature end of messages.

Anomaly 3 Anomaly 3 regards component GLOBAL. This is not a real

component, it is a keyword used to indicate the automata that describes the

way components execution alternate.

The anomaly type is Tail, it indicates that an unseen tail was added to the

state q109. The first anomalous event seen is 14_R0020_0, while it expected

3_R0032, 3_R0031, 13_1394096499, or 2_-2135717321 (the last three are de-

tected following the ε transition). The more interesting is the first one, which

indicates that a deploy message from component 3 (javax.enterprise.system.tools.admin)

is missing in the log. We do not know if indicates the cause of the failure,

maybe it is because in one case it has been used the asadmin tool while i the

other not.

Anomaly 4 Anomaly 4 regards component 14, it says that the component

recorded less messages than expected. This is because the premature end of

the log file. It is expecting a message of the type R0023 ((̂.*) AutoDeploy

Disabling AutoDeployment service.), that happens before stopping the

Glassfish server. While in this log the stopping phase of the server is not

recorded.

Anomaly 5 Anomaly 5 indicates that at line 24 an anomalous event 4_289331648

28

4.1 Glassfish deployment failure

occurs. The event ID in this case is an hash. The AutomatedEventTypesEx-

tractor assigns to a raw event line its hashcode as its id when the raw event

is an outlier. We have an outlier when a raw event does not match any event

regexp.

The occurrence of an hashcode as an anomalous event can have two mean-

ings: the specific event was never seen in the correct logs analyzed or the

event was present in the logs analyzed but its was present very few time and

it was not considered an event type (by default this happens when an event

occurs just once). In the first case it can be an exceptional event that appear

as a consequence of a failure, or it can be a false positive caused by event

regexp that do not generalize enough the data. This should happen if in the

correct log files we have events in which a parameter remains constant over

all their occurrences: in this case the parameter will be considered by slct

as part of the event regex, and in case the value change in the faulty execu-

tion because of environmental reasons (e.g. domain of a web server) it will be

detected as an anomaly which may be not related to the experienced failure

(pay attention it should also be the case in which in the correct execution the

system was behaving correctly because of this constant value).

In this case to further inspect the anomalous event we need to take a look

at the faulty log file (events.fail.txt), in line 24 we see that there is an

exception, which is related with the failure. And that exception was never

seen in the correct log files (search for 289331648 in the correct log).

Anomaly 6 Anomaly 6 occur at line 25, the event 17_-811928006 was

unexpected. As in the previous case the hashcode-id was generate because of

a message never seen before (the exception).

Anomaly 7
Anomaly 7 is detected in line 27 of the trace file. Also in this case if we

take a look at the faulty log file (events.fail.txt), in line 27 we see that

there is an exception, which is related with the failure. The technique has

detected an useful information for the root cause analysis.

Anomaly 8
Anomaly 8 indicates that a new component appeared. If we open components.-

fail.properties we see that component id 23 correspond to component

com.sun.org.apache.commons.modeler.Registry. By searchingfor it

29

Examples

in the failure log we see that it appears because of an event occurred as a

consequence of the failure.

30

Chapter 5

Developers Guide

This Chapter provides some guidelines to invoke KLFA APIs within your pro-

gram.

5.1 Model Inference and Anomaly Detection

This section describe a real case study in which we analyzed log files gener-

ated by the Glassfish J2EE application server to detect the cause of a failure

while deploying the Petstore[?] web application.

In this case study we collected the log files produced by glassfish during

system tests, derived models from the log files (we applied the three different

approaches), and compared the log file produced during the failure. This log

file was provided by a final user of the system which was not able to deploy

the java web application using Netbeans [?].

All the files described in this example can be found in folder

examples/glassfishForumUserIssue/.

5.1.1 Monitoring

In the monitoring phase we collected log files produced by Glassfish while it

is performing different functionalities: start-up, shutdown, web application

deploy, and response to web application requests.

The log files are recorded with the default verbosity. Log files are stored

in the folder examples/glassfishForumUserIssue/correctLogs.

31

Developers Guide

Parameters description

-eventsStartExpression "[#

|.*" indicate that log mes-

sages start with [#

|"

../correctLogs/server.log* expand to all the

correct log files

events.correct.txt

Table 5.1: RegexBasedRawEventsSeparator parameters.

5.1.2 Model Generation

In the model generation phase we preprocess the original log files in order to

generate a model of the correct log file format.

Raw Events Separation

Glassfish record logs in the Uniform Log Format [?]. Logging messages witten

in this format start with “[#” and end with “|]” and can span over different

lines. For this reason we need to preprocess the original log files in order to

obtain a file in which each log message is recorded in a line.

In order to do this we descend into folder

examples/glassfishForumUserIssue/analysis/ and run RegexBasedRaw-

EventsSeparator with the following command (all in a line):

java -cp

path/to/klfa

preprocessing.rawEventsSeparation.RegexBasedRawEventsSeparator

-eventStartExpression "\[#\|2008.*" ../correctLogs/server.log*

events.correct.txt

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runRawEventsSeparationTraning.sh.

Table 5.1.2 explains the options used.

32

5.1 Model Inference and Anomaly Detection

Events Types Detection

Event types detection is performed using the AutomatedEventTypesDetector

tool, which uses slct to detect the event types and then parses the given log

to produce a final csv file in which component names, events and parameters

are separated in different columns.

The usage of the AutomatedEventTypesDetector depends on the kind of

analysis you want to perform on your log file. Following we list the different

option we used for the distinct analysis.

Component Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.

AutomatedEventTypesDetector

-slctExecutablePath path/to/slct

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-exportRules rules.properties -workingDir trainingCsvGen

-componentsDefinitionFile components.training.properties

events.correct.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelEventsDetectionTraining.sh.

Table 5.2 explains the parameters used.

33

Developers Guide

Table 5.2: AutomatedEventsDetector parameters.

Parameters description

-slctExecutablePath path/to/slct path to the slct exe-

cutable

-replacement "CORE5076: Us-

ing.*" "Using Java"

replaces all messages

of this type with a

default message, this

message generate a

false positive which

is caused by different

versions of VM used so

we removed info about

the VM.

-replacement ".*/domains/do-

main1/config/" "/domains/do-

main1/config/"

remove the part of the

path that generate a

false positive.

-replacement "ser-

vice:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi"

""

remove this informa-

tion because the path

is system dependant

and we do not have

enough tests to permit

to slct to understand

that this is a parame-

ter.

-replacement "ser-

vice:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi"

""

same as above.

-replacement "

|DEBUG

34

5.1 Model Inference and Anomaly Detection

|" "" remove information

about the logging

granularity. It does

not introduce false

positives, just make

events regular expres-

sions less readable.

-replacement "

|FINE

|" "" same as above.

-replacement "

|FINER

|" "" same as above.

-replacement "

|FINEST

|" "" same as above.

-replacement "

|INFO

|" "" same as above.

-dataExpression "[#

|2008.*

|.*

|.*

|.*

|.*

|(.*)

|#]" tell the system where

is positioned the use-

ful event information

using regex grouping.

-componentExpression "[#

|2008*̇

|.*

35

Developers Guide

|.*

| (.*)

|.*

|.*

| #]" tell the system where

the component name

is positioned in the

log line using regex

grouping.

-exportRules rules.properties export the patterns

detected by slct to file

rules.properties (in

the current dir).

-workingDir trainingCsvGen generate component

files in trainingCsv-

Gen dir.

-componentsDefinitionFile com-

ponents.training.properties

save components

ids to file compo-

nents.training.properties.

events.correct.txt original log file (the

one that we generated

in the previous step).

events.correct.csv teh destination file.

Application Level Analysis and Action Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.

AutomatedEventTypesDetector

-dontSplitComponents

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

36

5.1 Model Inference and Anomaly Detection

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-exportRules rules.properties -workingDir trainingCsvGen

-componentsDefinitionFile components.training.properties

events.correct.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runActionLevelEventsDetectionTraining.sh.

As you can see for both Application and Action Level Analysis the options

are the same of the Component Level Analysis except from the additional -

dontSplitComponents. This happens because the log file format is the same

so the parsing options d not change, the only difference is in the way events

are detected, in this case we do not need to detect events for components

separately.

Transformation Rules Generation

The next step is the automatic detection of the rewriting strategies to be used

with the engine. This is achieved by running TransformationRulesGenerator.

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.parametersAnalysis.TransformationRulesGenerator

-patterns rules.properties -signatureElements 0,1 events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runTransformationRulesGeneration.sh.

If you already had a CSV file and for this reason you did not run Event-

TypesDetector, you can generates transformation rules by running:

37

Developers Guide

Parameters description

-patterns rules.properties load events regex from

file rules.properties.

-signatureElements 0,1 do not threat columns

0 and 1 as parameters.

events.correct.csv name of the csv file to

analyze.

Table 5.3: TransformationRulesgenerator options

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.parametersAnalysis.TransformationRulesGenerator

-signatureElements 0,1 events.correct.csv

Table 5.1.2 explains the options used.

Inference of the models

Model inference is done using the LogTraceAnalyzer tool. It first applies

the data transformation rules detected by the TransformationRulesGenera-

tor. Then it builds models using the kBehavior inference engine [?].

The analysis type is selected by the user providing the corresponding pa-

rameters to the LogTraceAnalyzer. In the following paragraphs we explain

how to do the different analysis.

Component Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 componentLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelInference.sh.

Table 5.1.2 explains the options used.

Action Level Analysis

38

5.1 Model Inference and Anomaly Detection

Parameters description

-separator "," separator char used in

the csv file.

-minimizationLimit 100 do not minimize FSA

if they have more than

100 states.

componentLevel do component level

analysis.

training learn the models.

transformersConfig.txt file with the rewriting

rules defined for the

different data clusters.

preprocessingRules.txt file with the asso-

ciation between the

different instances of

rewriting strategies

and the different

parameters.

events.correct.csv csv file to load data

from.

Table 5.4: LogTraceAnalyzer Component Level Analysis options

39

Developers Guide

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator ","

-splitActionLines -actionLines

actions.correct.properties -minimizationLimit

100 actionLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runActionLevelInference.sh.

Application Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 applicationLevel training transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runApplicationLevelInference.sh.

5.1.3 Failure analysis

Once the failure occurs the faulty log file can be compared with the inferred

models to detect anomalies. To do this we have to process the faulty log file

in a similar manner as in the model inference phase. Figure ?? report the

required steps.

Raw Events Separation

The command is the same as in the ModelGeneration phase except from the

input and output parameters.

java -cp

path/to/klfa

preprocessing.rawEventsSeparation.RegexBasedRawEventsSeparator

-eventStartExpression "\[#\|2008.*" ../faultyLogs/server.fail.log

events.fail.txt

40

5.1 Model Inference and Anomaly Detection

transformers
definitions

preprocessing
rules

EventTypesDetectionComponent

csv file
(with events)

EventsSeparationComponent

log file
(1 event per line)

kFSAEngine

Models

log file

actions

From Model Inference

Figure 5.1: Components involved in the failure analysis phase.

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runRawEventsSeparationChecking.sh.

Events Types Detection

The command is similar as in the Model Generation phase except from the

fact that we tell the tool to use the component and rules ids used in the Model

Generation phase.

41

Developers Guide

Component Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.AutomatedEventTypesDetector

-replacement "CORE5076: Using.*" "Using Java" -replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-loadComponents components.training.properties -exportRules

rules.checking.properties -workingDir checkingCsvGen

-loadEventPatterns -patternsDir trainingCsvGen

-componentsDefinitionFile components.fail.properties events.fail.txt

events.fail.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelEventsDetectionChecking.sh.

Application Level Analysis and Action Level Analysis

java -cp

path/to/klfa

it.unimib.disco.lta.alfa.preprocessing.eventTypesDetection.AutomatedEventTypesDetector

-dontSplitComponents -replacement "CORE5076: Using.*" "Using Java"

-replacement

".*/domains/domain1/config/" "/domains/domain1/config/" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"service:jmx:rmi:///jndi/rmi://.*:8686/jmxrmi" "" -replacement

"\|INFO\|" "" -replacement "\|FINE\|" "" -replacement "\|DEBUG\|" ""

-replacement "\|FINEST\|" "" -replacement "\|FINER\|" ""

-dataExpression "\[#\|2008.*\|.*\|.*\|.*\|.*\|(.*)\|#\]"

42

5.1 Model Inference and Anomaly Detection

-componentExpression "\[#\|2008.*\|.*\|.*\|(.*)\|.*\|.*\|#\]"

-loadComponents components.training.properties -exportRules

rules.checking.properties -workingDir checkingCsvGen

-loadEventPatterns -patternsDir trainingCsvGen

-componentsDefinitionFile components.fail.properties events.fail.txt

events.fail.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runApplicationtLevelEventsDetectionChecking.sh or ../bin/run-

ActionLevelEventsDetectionChecking.sh.

Comparison against the models

Comparison against the model is done calling the LogTraceAnalyzer tool and

giving the analysis type used in the model generation phase and specifying

that we are now doing the comparison.

Component Level Analysis

java -cp path/to/klfa tools.kLFAEngine.LogTraceAnalyzer

-separator "," -minimizationLimit 100 componentLevel checking

transformersConfig.txt preprocessingRules.txt events.fail.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runComponentLevelAnomalyDetection.sh.

Action Level Analysis

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 actionLevel checking transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runActionLevelAnomalyDetection.sh.

Application Level Analysis

43

Developers Guide

java -cp path/to/klfa

tools.kLFAEngine.LogTraceAnalyzer -separator "," -minimizationLimit

100 applicationLevel checking transformersConfig.txt

preprocessingRules.txt events.correct.csv

From examples/glassfishForumUserIssue/analysis/ you can sim-

ply run ../bin/runApplicationLevelAnomalyDetection.sh.

Anomalies interpretation

In the model comparison phase the tool detects the anomalies present in

the faulty log files and report them to the user by saving them in the file

klfaoutput/anomalies.csv.

The last phase of the technique involves actively the user who has to in-

spect the reported anomalies, and use them as a guide to inspect correct and

faulty files to detect the problem.

Table ?? shows the anomalies detected by the tool in the given case study.We

imported the csv file produced by the tool, anomalies.csv, and sorted the items

according to the column Original Event Line. In the next paragraphs we

are going to interpret them to give an exhaustive explanation of the problem.

44

5.1 Model Inference and Anomaly Detection

C
om

p.
A

no
m

al
y

L
in

e
St

at
e

St
at

e

T
yp

e

E
ve

nt
O

ri
gi

na
ll

og
lin

e
O

ri
gi

na
l

lo
g

ev
en

t

E
xp

ec
te

d

5
F

in
al

St
at

e
1

q2
E

xi
st

in
g

5_
R

00
65

15
5,

R
00

65
5_

R
00

64

5_
R

00
66

__
0_

_0

0
F

in
al

St
at

e
5

q8
E

xi
st

in
g

0_
R

00
55

)
20

0,
R

00
55

0_
R

00
52

)

0_
R

00
57

)

G
L

O
B

A
L

Ta
il

13
q1

09
E

xi
st

in
g

14
_R

00
20

__
0)

21 14
,R

00
20

,ja
va

-

pe
ts

to
re

2.
0e

a5

3_
R

00
32

)λ

14
F

in
al

St
at

e
1

q4
E

xi
st

in
g

14
_R

00
20

__
0)

21 14
,R

00
20

,ja
va

-

pe
ts

to
re

-2
.0

-e
a5

14
_R

00
23

)

4
Ta

il
7

q1
2

E
xi

st
in

g
4_

28
93

31
64

8)
24

4,
28

93
31

64
8

4_
-1

62
83

44
21

5)

4_
R

00
73

)

4_
15

73
70

51
68

4_
R

00
75

)

17
Ta

il
1

q3
E

xi
st

in
g

17
_-

81
19

28
00

6)
25

17
,-

81
19

28
00

6

17
_R

00
03

);

3
Ta

il
5

q1
0

E
xi

st
in

g
3_

-1
64

83
56

84
8)

27
3,

-

16
48

35
68

48

3_
R

00
32

)

3_
R

00
31

)

23
N

ew
C

om
-

po
ne

nt

45

Developers Guide

Anomaly 1 Anomaly 1 appears in line 15 of the faulty log file. The

anomaly regards component com.sun.jbi.framewor (the id 5 correspond to

this component as you can see from file components.training.properties).

In this case the anomaly is not caused by an unexpected event, but the sys-

tem detects that the events regarding component 5 stopped before than ex-

pected. In fact a new final state was added to the automaton. By opening the

automaton with the command java -cp path/to/klfa tools.ShowFSA

klfaoutput/5.fsa we can see that many more events are expected. Fur-

thermore by looking at the faulty log file we can see that the file is very short,

so we can deduce that it was truncated by the user or the application was

blocked.

The Event column in this case do not represent the wrong event occurred

but the last event seen. The id of this last event is R0065, which correspond

to the event regex "JBIFW0010 JBI framework ready to accept requests.".

Anomaly 2 Anomaly 2 regards component javax.enterprise.system.core,

also in this case the anomaly is caused by the premature end of messages.

Anomaly 3 Anomaly 3 regards component GLOBAL. This is not a real

component, it is a keyword used to indicate the automata that describes the

way components execution alternate.

The anomaly type is Tail, it indicates that an unseen tail was added to the

state q109. The first anomalous event seen is 14_R0020_0, while it expected

3_R0032, 3_R0031, 13_1394096499, or 2_-2135717321 (the last three are de-

tected following the ε transition). The more interesting is the first one, which

indicates that a deploy message from component 3 (javax.enterprise.system.tools.admin)

is missing in the log. We do not know if indicates the cause of the failure,

maybe it is because in one case it has been used the asadmin tool while i the

other not.

Anomaly 4 Anomaly 4 regards component 14, it says that the component

recorded less messages than expected. This is because the premature end of

the log file. It is expecting a message of the type R0023 ((̂.*) AutoDeploy

Disabling AutoDeployment service.), that happens before stopping the

Glassfish server. While in this log the stopping phase of the server is not

recorded.

Anomaly 5 Anomaly 5 indicates that at line 24 an anomalous event 4_289331648

46

5.1 Model Inference and Anomaly Detection

occurs. The event ID in this case is an hash. The AutomatedEventTypesEx-

tractor assigns to a raw event line its hashcode as its id when the raw event

is an outlier. We have an outlier when a raw event does not match any event

regexp.

The occurrence of an hashcode as an anomalous event can have two mean-

ings: the specific event was never seen in the correct logs analyzed or the

event was present in the logs analyzed but its was present very few time and

it was not considered an event type (by default this happens when an event

occurs just once). In the first case it can be an exceptional event that appear

as a consequence of a failure, or it can be a false positive caused by event

regexp that do not generalize enough the data. This should happen if in the

correct log files we have events in which a parameter remains constant over

all their occurrences: in this case the parameter will be considered by slct

as part of the event regex, and in case the value change in the faulty execu-

tion because of environmental reasons (e.g. domain of a web server) it will be

detected as an anomaly which may be not related to the experienced failure

(pay attention it should also be the case in which in the correct execution the

system was behaving correctly because of this constant value).

In this case to further inspect the anomalous event we need to take a look

at the faulty log file (events.fail.txt), in line 24 we see that there is an

exception, which is related with the failure. And that exception was never

seen in the correct log files (search for 289331648 in the correct log).

Anomaly 6 Anomaly 6 occur at line 25, the event 17_-811928006 was

unexpected. As in the previous case the hashcode-id was generate because of

a message never seen before (the exception).

Anomaly 7
Anomaly 7 is detected in line 27 of the trace file. Also in this case if we

take a look at the faulty log file (events.fail.txt), in line 27 we see that

there is an exception, which is related with the failure. The technique has

detected an useful information for the root cause analysis.

Anomaly 8
Anomaly 8 indicates that a new component appeared. If we open components.-

fail.properties we see that component id 23 correspond to component

com.sun.org.apache.commons.modeler.Registry. By searchingfor it

47

Developers Guide

in the failure log we see that it appears because of an event occurred as a

consequence of the failure.

48

	Introduction
	Installing and Compiling KLFA
	Installing a compiled version of KLFA
	Compiling KLFA from a source distribution
	Compiling KLFA from CVS

	Tools
	Monitoring
	Model Generation
	Failure Analysis

	Examples
	Glassfish deployment failure
	Monitoring
	Model Generation
	Failure analysis

	Developers Guide
	Model Inference and Anomaly Detection
	Monitoring
	Model Generation
	Failure analysis

	Bibliography

