
TAMS Analyzer 5/12/05 1

TAMS Analyzer 3.1 User Guide
Revision 8

This documentation is really just to get people started and give them an
overview of what is necessarily a complex system. This is not comprehensive
documentation. However, after many complaints I’ve been convinced that the
existing and out of date documentation needs to be supplemented.

Contact information:

Dr. Matthew Weinstein
Assoc. Professor of Science Ed.
Kent State University
404D White Hall
KSU
Kent, OH 44242
mweinste@kent.edu
http://www.personal.kent.edu/~mweinste/
http://tamsys.sourceforge.net/
aim: allemandel3ft

I. What is TAMS Analyzer

TAMS Analyzer (TA) is a software program for coding and analyzing
qualitative, textual information such as interviews, observations/field notes,
and other textual documents.

A. TAMS

The analysis of a document is done by you, the reader-ethnographer, in
this program. TA just keeps track of (actually embeds) the information
you indicate. You read the document, select sections and indicate what
such a selection represents.

TAMS stands for text analysis mark-up system. It’s sort of HTML’ish
or XML-ish, but it is very distinctive. People have asked why I’m not
using XML, and my initial response is that multiple independent ways
that we (qual. researchers) have to analyze texts doesn’t work easily
with XML which, for instance, doesn’t allow overlapped sections. To
just make clear that I am not using XML or any other standard, I use “{“
and “}” to mark my tags. At some point someone (maybe me, maybe
you) will create a TAMS to XML converter.

TAMS Analyzer 5/12/05 2

B. Coding

TA’s first job is to help you code, that is to mark sections of documents
as to their significance. Whether importing documents (TAMS can work
directly with rtf, rtfd and text documents) or creating them in TA your
first job is to select text and indicate what it means.

C. Analyzing

TA’s second job is to extract information from a marked up document.
Basically TA just compiles a table of text meeting specified criteria.
This is called analysis. After compiling this table TA let’s you search
the table and generate summary statistics (counts of how many records
meet such and such criteria). It also lets you use this table to change the
codes in your original source document.

D. License issues

TAMS is released under the GPL license, the text of which is available
at www.gnu.org. At some point I’ll do the tedious work of including a
statement in every source file regarding it; there are also some parts of
the program which are released under Apple’s License which is not as
liberal as GPL; so be careful (in particular the parts of the program
concerning the find text dialog box).

II. Getting started with a project

When you first launch TAMS Analyzer, you are presented with the “New
Project” dialogue. This permits you to name and locate your project.
Starting with TA3 the location of files is tightly controlled by TAMS
Analyzer. In previous versions, new projects, documents, and result files
would start out as “Untitled” and you would save the documents in the
typical way. With TA3 there are no untitled documents (ignoring some
report windows). Instead, before you are presented with the window you are
asked by TA3 to name the file. With document and results windows the
project saves them automatically in appropriate locations. This is necessary
for future improvements as well as for the multi-user capacities that TA3
adds to the program. This is what the “New Project” dialogue looks like:

TAMS Analyzer 5/12/05 3

Figure 1. New Project dialogue

Replace “Untitled” with a project name: “Cooperative learning” or “Cancer
narratives” or whatever is appropriate.

The second line indicates in what folder the project should be located. Use
the Browse button to pick the appropriate folder. Once you have you can
see the folder location next to the browse button. But you should know that
TA3 will create a folder (with a .tams extension) and put the project file and
create the necessary subdirectories all within the chosen folder.

If you wish to automatically add this project to the “work” menu, check the
“Add to work menu” box before hitting create. Note that this will add the
project both to the little pop up menu on the New Project dialogue (next
time you start the program) and to the File->Work submenu.

Once you hit the create button you will see the project window also known
as the workbench.

TAMS Analyzer 5/12/05 4

Figure 2. The project window (aka a workbench)

A project consists of a series of files each of which usually represent one
thing: an interview, an observation, a memo, etc. It is through this window
that you will add files to your project, remove files from your project, and
open files you have already added to the project, as well as do multi-file
searches. This window also holds all of the codes and definitions that are in
your project. The key functions for managing these things are distributed
across the tabs that line the top of the workbench. For example, clicking the
file tab reveals functions and information for adding and removing files
from the project as well as for selecting the files that you will search when
you go to mine your data.

TAMS Analyzer 5/12/05 5

Figure 3. The file tab of the work bench

The file tab provides the interface for adding new data files to the project.
Here are some ways of putting together a project:
A. Case 1: the files already exist

If you have already typed in your interviews, save them as RTF
documents. Click the small “Import” button over the “Files” list view on
the left side of the project window and use the standard open file dialog
to select the files you want to add. The files will be copied into the
project’s data directory and then appear in the “File” list. They will not
be open. You can add text (.txt), RTF and RTFD (.rtf and .rtfd) files to
your workbench. Extensions are necessary for TAMS to know if it can
open the files.

TAMS Analyzer 5/12/05 6

Figure 4. File added to a project

B. Case 2: creating data files in TA

When you create new files in TA, you will be saving them as RTF files
by default. You can also save them as text files or rtfds by picking the
file type from the small pop up menu on the dialogue where you give
the file its name.

TAMS Analyzer 5/12/05 7

Figure 5. Naming and selecting the file type for new data files

To create a new file, simply click on the “New” button over the file
list, give the file a name (no extension), choose the file type, and a
new document will be opened for your immediate use.

C. Saving & restoring projects

The overall details of a project are saved in a project file: a saved
representation of the project window. This file includes, among many
other things, the location of the files that comprise the project, a list of
files to be searched through for information, and, vitally, the codes that
you have created. Unlike all the other windows that TAMS provides,
project files automatically save themselves as new information is added.

Never open a document, source, or results file directly (i.e., an
interview, observation, etc.) directly (i.e., through the finder).
Instead open the project and then double click the document you
want to see from the file list. TAMS can open a project by simply
double clicking a project file, a file which has the extension “.xtprj.” To
add, delete, and create source/document files (interviews, memos, etc.),
use the menu items on the Project menu (not the ones on the File
menu), or the buttons above the file list.

NOTE: If you are upgrading from TAMS 1 to TAMS 2, pick “Convert
ver 1 prefs to project files” from the Project menu. This will create a

TAMS Analyzer 5/12/05 8

series of TAMS project files on your desktop. You are not quite done,
however. When you load the file, you need to move the codes and
definitions from the central code file to the project file. Select the code
file from the “Files” list view. Then pick “Import codes and defs from
code file” from the project menu and save the project file. You now
have upgraded your project to TAMS 2.

D. Converting from TAMS 2 to TAMS 3
To facilitate moving to the new directory structure TAMS has a new conversion
menu item to help create the directory structure and move the files into the
proper folders. To convert from earlier (2.x) versions of TAMS do the
following

1. Save the project in a new empty folder as an XML TAMS Project file.
The program will say something about saving as absolute paths, just click
“Ok”

2. Pick Project->Convert->Convert to ver 3 directory structure
3. You will then be walked through a number of steps. First creates the

directories, then it tries copying the files into the directories (assuming
files are not already there)

Figure 6.

Answering Yes here will copy (not move) the missing files to the
./data directory

a. You may be prompted if it can’t find a file whether you want to

remove the “dead record” from the project file. If you say NO you
can locate the file and drop it in the /data directory. If you say yes
you can always find the file and import it later.

TAMS Analyzer 5/12/05 9

b.
Figure 7.

Answering yes will go through each data file looking for the
!mediafile metatag. If that file exists in that spot it will copy it into the
./media directory of your project. If you have moved your media files,
it will not find them, however. You can still use your media file by
dragging them to the ./media directory yourself. The program always
checks there for your media first (even before the directory specified
in the !mediafile tag!). If you answer no, no attempt will be made to
suss out the media files locations. If you have mp3’s or other media
attached to your documents you probably will want to move them to
the media directory.

c. The program then report any files it could not find on the hard

disk. There’s nothing to do here but click “ok.”

d. The process then repeats itself with result files. It starts by asking

if you want to move result files to the ./results folder:

Figure 8.

Click yes to have these results files copied to the ./results folder.

e. The program then asks if you want to remove lingering, crufty,

useless data that it is holding onto about various files that it still
has data structures for. This is a good time to clean up the project
file by saying yes to questions like:

TAMS Analyzer 5/12/05 10

Figure 9.

f. Voilà, you are done. You now have a TAMS Analyzer 3 project.

One thing you might want to do is to add this new project to your
work menu and get rid of any old TA 2.XX projects from the work
menu you have converted.

III. Coding
A. What is a code

A code is a name that identifies the meaning or significance of a
passage of text. In TAMS the passage is surrounded by tags that have
the code and other information with it. Codes can be nested and
overlapped without problem.

1. Valid characters

The names of codes can have letters, numbers, and underscores
(“_”). They cannot have spaces.

Codes can be hierarchical, i.e., you can create a whole family of
codes, indicating the various levels with “>”. For instance, to create
a “food” family with carrot, parsley, and cilantro in it, you would
name the codes

food>carrot
food>parsley
food>cilantro

carrot, parsley, and cilantro are subcodes of food. Note that TAMS
is case sensitive. Also you can still use food (no subcode) as a code.

You could specify further levels of coding such as

TAMS Analyzer 5/12/05 11

food>parsley>curly
food>parsley>italian

2. From codes to tags
In your text to indicate that something is coded you surround the
passage with “tags” which contain the “code”. Showing is easier
than telling in this case. Say that you are going to code the following
passage in your document.

 Parsley makes me sick.

To do so in TAMS you just surround it with tags containing the
code:

 {food>parsley}Parsley makes me sick.{/food>parsley}

The end tag must begin with a slash, the front tag must not have a
slash, just like HTML. Every open data tag must have a matching
close tag. Your Coding menu has a couple of diagnostic tools to
help you find “bad” or missing tags. Note here you can see that tags
contain codes but are not the same thing as codes. They have that
other stuff (“{“,”}” and “/”) as well.

Note you could just type all that junk in, but what would be the
purpose of my program? In TA you select the text and either pick
the code out of a list or type it in a box on the side of the document
(if it’s a new code). More on this below.

3. Signed tags
To support multiple coders, TA 1.0 introduced a new syntax that
added a signature to a tag. A signature is a group of letters (no
spaces) that are your handle for coding. These are stuck in brackets
after the code inside the tag. If my handle is “mgw” then I could
sign the passage by coding it as

 {food>parsley [mgw]}I hate parsley.{/food>parsley [mgw]}

note the code and the signature must match in both tags!!!

TAMS Analyzer 5/12/05 12

Again, it would be silly for you to type all that. You indicate that
you want to sign your tags in TA’s preferences dialog on TAMS
Analyzer menu.

In TA3 signed tags take on additional significance as the program
has added a whole new layer of support for multiple coders. One
which allows researchers to share their work. Your initials in TA3
are also your login to the database that allows you to share your
research.

4. Tags with comments
Sometimes you want to leave yourself a little memo about the
passage. TAMS does this by allowing you to leave it in the close tag
after the signature (if there is one). The memo is offset from the
code or signature by a space.

 {food>parsley [mgw]}I hate parsley.{/food>parsley [mgw]
This guy’s crazy!!!}

You can also insert it with a colon after the signature (or code if
there is no signature)

 {food>parsley [mgw]}I hate parsley.{/food>parsley [mgw]:
This guy’s crazy}

which makes it look a little nicer.

TA does not facilitate adding memos (or comments, as I prefer to
call them), you just type them in (though see the preferences in
appendix 4). Now you can see that tags have a lot more than just the
code, they also include signatures and comments.

Advanced note: You can also attach a comment to a region of
your document that effects all codes within that region through
the {!setcomment MYCOMMENT} and {!endcomment
MYCOMMENT} metatags.

B. Adding a new code
TA makes it easy to add a new code.

•First, select the text that will be coded.

TAMS Analyzer 5/12/05 13

•Second, just fill in the name of the new code in the box on the left side
of a document window. Do not hit return. That does something very
special in TAMS, called creating a hot code list.
• Press the button marked “New”.

Figure 10. Entering new codes

Then you’ll be prompted for the definition of your new code and when
you click ok, and

1. your code and definition will be added to the code dictionary in the
project workbench (which you better save!)
2. added to the codes list under the box you typed in your code name
into

3. as noted, applied to the selected text.

TAMS Analyzer 5/12/05 14

C. Applying an existing code
Now things get really easy. If you already have the code in your list, just
select a passage and double-click the code as it appears in the code list.

So in this example just double-click food>parsley to code the selected
text.

Fig. 11. Coding

After double clicking the choice in the “Codes” list on the left side of
the window, this will look like this.

TAMS Analyzer 5/12/05 15

Figure 12. After coding

Notice that the text is still selected so you could keep applying codes to
this section of text!

ADVANCED:

When you have a lot of codes, it’s convenient to have a couple of
frequently used ones on the tool bar. To put a code there select a code
from the code list (click on it one time) and press “Code to toolbar”

REALLY ADVANCED:

TAMS Analyzer 5/12/05 16

What if you want the button bar to come up each time with certain
codes. Put a metatag at the top of your document that lists the codes you
want on the button bar, you can also have text and insert vertical bars as
well:
{!button food>parsley, |, “{!end}”}

The first time you type this in you will need to pick “Build button bar”
from the Coding menu, or you could close and reopen the file.

This example will create 2 buttons separated by a vertical bar. The left
button will be a coding button that will code selections “food>parsley”.
The other button will insert {!end} when clicked. Note that this second
button has quotes around it. They signal that this is not a code.

This weird syntax with the ! is explained in III.E. below. For full
documentation of the document toolbar see the tool bar HOW TO in the
how to folder.

D. Working with tags and codes

To help you work with tags TA provides some very simple tools to
select and move tags around as well as to delete tag pairs and leap from
the open tag to the close tag of the pair (and vice versa). These are all on
the Coding menu. I wont walk you through them, they should be pretty
obvious.

The one practical piece of knowledge that I will share is that I often find
the need to move the end tag of a pair to a different location after I find
that the next paragraph should also have been included. No problem.
Click in the end tag, pick “Find current code” from the Coding menu.
This will select the tag. Now drag it to its new location.

E. Using the Define Codes Tab of the Workbench

TAMS Analyzer 5/12/05 17

Figure 13. The define codes tab

To allow you to modify and amend, set colors for tags, as well as
indicate which codes are active and inactive, TA3 has a special tab on
the work bench for working with codes (a similar set of functions is
available through a dialogue called the code browser which you can
access through the “Project->Code browser” menu item). One thing you
will notice is that there is no save button. The fact is things are saved
every time you do anything whether it’s click clear, click a different tab,
or select another code. The program is always saving your codes. So if
you hit “Save/Clear” it will save the codes and definitions you have just
entered. To get rid of a code, use the explict “Delete” button.

E. Universal codes and metatags (sometimes erroneously called metacodes
by me)
The types of codes we’ve been talking about are data codes. They
specify the meaning of some portion of text. In comparison, universal
codes describe a whole document rather than a section of it. For
example you may want to indicate that the type of data you are dealing

TAMS Analyzer 5/12/05 18

with in this particular file is an interview. You could put at the top of the
document the following to remind yourself of this in the output:

 {!universal dataType="Interview"}

This will produce one column in your output called “dataType” and for
records from this document it with fill it with “Interview”.

This type of tag, which starts with a “!” is called a metatag (rather than a
coding tag). It conveys information to the program rather than marks
information. There are a large number of metatags in TA all of which
are listed in the Coding->Insert metatag submenu. They are described in
Appendix 3.

F. Reminding yourself of a code definition.

At some point after 50 or more codes are added, it is useful to quickly
see the definition of a code. To do this, pick the code off of the code list
(i.e., click one time on the code list of your document window or the
workbench) and press the “Def” button. A window explaining the code
will pop up! You can also click on the code lists and pick Coding-
>Code definition. Alternatively, you can select the code in your
document (or even from a results window, which is getting ahead of
myself) and pick Coding->Code definition of selected text.

G. Creating code sets

Some times it’s easier to work with smaller sets of your codes than the
whole body of codes in your project. These smaller groups of codes are
called code sets in TA. The easiest way to access code sets is from the
code sets tab on the workbench:

TAMS Analyzer 5/12/05 19

Figure 14. Code sets tab

Alternatively, you could create code sets by picking “Manage code
sets…” from the small menu next to the code list on the search tab. This
provides a dialogue that allows you to create subsets of code. The
procedure is to select the codes you want in the set by clicking, or
extending the list by shift and apple clicking the codes; then name the
code set by filling in the top blank of the form and register it with the
“+” button.

TAMS Analyzer 5/12/05 20

Figure 15. The Code Set dialogue

As an alternative to selecting the codes by hand you can use the search
criteria to pick more or fewer codes. This way you can select entire code
families in a single go. You can also revise code sets and delete them
using the menu and the – button. The “- -“ button on the dialogue
deletes all current code sets. On the code sets tab, the button to delete
the currently selected code set is marked “delete”. Be careful.

Creating a code set does not select it. You need to return to the code set
menu on the file tab (or the “Project->Code sets” menu) and select your
code set’s name.
Once you have code sets defined there are two ways to get information
about code sets. First, with your workbench as the front window, you
can get lists of which codes comprise your code sets by picking
“Reports->”Code set definitions”. From the dialogue it pops up you can
click on the code sets you are interested in and then click “Refresh” to
see a report of the code set names followed by the codes that comprise
them. If you want to have the definitions for codes provided as well,
click the definitions check box before hitting refresh.

TAMS Analyzer 5/12/05 21

Note: To get a report of your codes and definitions use the “Code
set definitions” dialogue but leave all code set names unselected
before clicking the Refresh button.
For a more graphic image of how codes are related to code sets and
code sets are related to each other through the codes they share use the
“Reports->Graph code sets” with the workbench in front. Dot graphs
are is discussed in section VII in great detail. Just know here that your
options include a map (like a concept map) of codes to code set or code
sets to each other, indicating which codes overlap, showing all of the
codes or only the non-overlapped codes in the boxes representing the
code sets, and matching codes to code sets exactly or non-exactly. See
section VII for more details on these reports.
Code sets are not just a convenience feature. Many elements are
linked to code sets. Count, co-frequency count, “Graph data”
output all look at the current code set to generate their output. In
addition you can look for records from a code set within your
results window. See section VIII for more on analyzing your results
using code sets.

H. Hot code sets

Hot code lists are temporary code sets created in document windows or
on the search tab of the workbench. They allow quick access to relevant
codes in projects that may have hundreds of codes total. They are stored
in the project window, but are not saved with it. They can however be
turned into regular code sets which are saved and restored with your
project.

To generate a hot code set from a document window type in a key word
or a part of a key word or code name into the code text field (above the
code list) that you are interested in and hit return:

TAMS Analyzer 5/12/05 22

Figure 16. Creating a hot code set from a document

The code list will show only those codes that contain this word and
those whose definitions contain that word/phrase/pattern (the latter is
true only if you have the “Check definitions when selecting codes”
preference panel item checked).

Note 1: The “Select +” button allows you to type in other patterns of
characters and add matching codes to the current hot code list

Note 2: If you hit select (or hit return) with the code field empty, you
will see all of your codes.

Note 3: To refine your hot code list use the menu options under Coding-
>Select codes menu item:

TAMS Analyzer 5/12/05 23

Figure 17. The hot code set menu

The group of four items under “Back” allow you to select (from the
total pool of codes), refine the selection you have, add from the total
pool of codes to the hot code list, and remove items from the hot code
list.

The “Back” menu item restores the last hot code list you made and then
as many previous ones as you have allotted with the preference panel
item which indicates how many previous hot code lists to save.

The second to last item, “Turn selection to code set” allows you to turn
your hot code list into a proper code set. You’ll be prompted for a name
under which to save it.

The last item is a toggle which lets you indicate whether or not TA3
should check the code definitions as well as the code names.

Note that all of these same functions are duplicated under the search tab
of the workbench:

TAMS Analyzer 5/12/05 24

Figure 18. Creating a hot code set from the workbench

Note that “<-“ is the equivalent of the “back” menu option. “-> Code
set” turns the current hot code set into a permanent one.
Advanced user note: The searches that are used to compose hot code
lists are regular expressions. This allows you to use the full range of
regular expression technologies in making your selection. For instance
if you want to find all codes with fruit or vegetable in part of the name
(and definition) enter “fruit|vegetable”. The vertical bar above the “\”
key is the “or” function in regular expressions. The searches are case
insensitive and use the multiline mode provided by AGRegex (this
assures that ^ and $ work to mark the beginning and end of a line, so
that you can find codes that start with a by typing in “^a” or that end
with a by typing “a$”).

I. Problems coding

There are a number of problems with coding that can crop up; and TA
provides two tools to help you catch these problems.

1. Broken up codes: sometimes the mouse slips and tags can end up in
tags: {setting>ru{sound>cat}ral}. Here {sound>cat} has accidentally
been inserted inside of {setting>rural}. This will not make any sense to
TA. If you pick “Check for pairs” this will select problem tags, basically
tags that don’t seem to have an end or beginning. The one it shows you
probably is not the problem tag, but it will be near the problem tag. It is
a clue as to where the problem is. TA is saying that for some reason, it
can’t find the other end.

TAMS Analyzer 5/12/05 25

2. Incomplete codes: Sometimes in working with a document, a tag at
one end or the other will get deleted. The solution is the same as for
problem #1. Choose “Check for pairs” off of the Coding menu. A tag
will be selected if there are problems (i.e., if there are not an even # of
beginning and ending tags). This is a clue to the problem; for some
reason, TA did not find a match for this.

3. Nested codes: Sometimes the same codes can end up inside each
other. This might be represented by the following situation:

 {a}Some text{a} that I’m {/a} trying to code {/a}.

This is not the sort of nested code that works with TA. It would be fine
if the inner code was any code including a subcode of a; if it were a>b,
for instance, or even if it was done by a different coder (with a different
signature);. The problem is that TA can’t figure out where the passage
ends, and it will choose the shortest passage. In this example, the phrase
“trying to code” is not seen by TA. These problems can be found by
picking “Check for nested” from the Coding menu.

One type of error that TA is not good at catching is missing close
braces. Often times if you’re getting an error message while doing a
search, this is the source of the problem.

The moral of the story is clear, run “Check for pairs” and “Check
for nested” from the Coding menu often.

IV. Documents, sections, and context information
A. Context Codes and the Context tag

I will be using the example of an interview here, but we could be talking
about field notes in which case time code would probably substitute. In
an interview, I always want to know who is speaking when I look at
results. (Unfortunately if a coded passage crosses speakers, only the first
will be included). To include that information I need to take two steps:
first, indicate who the speaker is, second indicate where that information
is found.

TAMS Analyzer 5/12/05 26

To mark whom the speaker is just code it as you would any data. We
might call the speaker “speaker” for instance:

 {speaker}John{/speaker}: {food>parsley}I hate
parsley.{/food>parsley}{!end}

Now, speaker is really a different sort of code than food>parsley. One
indicates data, the other information you want attached to that data. To
indicate that “speaker” is a special sort of code that isn’t data you put a
metatag at the top that says that this is what I call a “context code”.
Context is identical to the keyword “repeat”. In earlier versions of
TA I talked about Repeat metatag rather than the context. I find
the word context more descriptive of what this does, and have
edited this section (and the tams code base) to reflect that. Note that
!repeat is still supported.
{!context speaker}

If you have time-code information, you could also add that like this
{!context speaker, time_code}, and so on. But see the next section for
problems that could arise.

B. Breaking a document into sections

Initially, starting with TA 2.47, TA starts by assuming that your
documents are “unstructured” (Actually, this is only true if you have a
new installation. Check the default by going to the TAMS Analyzer
Preferences, and looking under the Search tab for the “Documents
treated as unstructured” check box. If it is checked then the
assumption—unless you use one of the triggering metatags—will be
that the document has not been structured, else it will assume it has). By
structuring a document you enable additional features of TA, especially
the section search. Using this search you can ask questions like “which
turns in my interview with Bob involved the code food and the code
parsley.” If your document is unstructured, TA will not know what “a
turn” is in your document. A search will return either the entire
interview (if it had those 2 codes in it) or any coded passages meeting
the criteria, depending on how you have set up your program
preferences. Similarly, empty searches will only work correctly if your
document is structured. On the other hand, unstructured documents are

TAMS Analyzer 5/12/05 27

very easy to work with and initially will give the results you want in
most circumstances: Context codes set the environmental conditions for
subsequent data codes through your documents.

If you are updating TA, you might want to turn off this new default
unstructured behavior. Easily done. Put the metatag {!struct} in your
init file (or on top of each interview if you don’t have an init file).

What is the structure of a document? Often qualitative documents have
a sort of natural syntax: interviews have speakers, field notes have time
coded passages, etc. One reason I created TAMS was so that there was a
way to have associated information: the name of the speaker, the time
code of the field notes, included with the results of queries into the data.
To take advantage of these natural sections, the first thing you will need
to do, and TA offers few tools to help with this, is mark the ends of
these natural sections with {!end} metatags (or {!endsection} metatags,
see §IV.C.)
Manual structuring: You can manually structure your document by
putting {!end} metatags after each natural break in your document:
After a person speaks, at the end of a time coded passage, or at the end
of a newspaper article, for instance. After an {!end} TA2 will forget
who is talking and what time it is, etc., so you’ll need to have !context
tags indicate all of that at the front of the next section. Alternatively,
you can use {!endsection} which carries values of !context values
forward (i.e., if you think of structuring a document as cutting each part
of an interview—for instance—onto 4x5 cards, {!end} carries no
information to the next card, {!endsection} carries everything to the
next card.). You may also need to play with various program
preferences regarding !endsections and !ends in the program preference
dialogue (look on the searching tab) to get the results you expect. The
original use of an !endsection was to allow users to subdivide a section
into smaller parts (e.g., coding letters to the editor. The whole “letters to
the editor” article may terminate with an !end, but each letter would get
an !endsection).

HINT:

You may want to check out TexEdit Plus for this, both of which have
very fancy search and replace functions which can save a lot of time in
marking up documents initially.

TAMS also has a very fancy though very technically complex search
and replace mechanism known as “regular expressions.” You can use

TAMS Analyzer 5/12/05 28

this to bulk code a document often. But the learning curve is steep.
There is documentation included in the source folder regarding regular
expressions (often called regex) as implemented in TAMS ,which uses a
programming library called PCRE (perl c regular expressions) to
implement them. Also search the web for tutorials on regular
expressions. There are a lot of them out there. Powerful stuff.

HINT:
TA will let you turn a passage of text into a tool bar button. After the
first time you type {!end} (or pick it from the Metatags->Structure
menu) select the tag with your mouse and pick “Turn selection into
toolbar button” from the Coding menu. That adds a button to your
toolbar that will insert that text when you click it. Then it’s a simple,
single click to stick {!end}s where you need them. Note: See Coding-
>Toolbar for keyboard shortcuts to your toolbar items.
Automatic structuring: Rather than manually structure your document,
there is some support for having TA structure your document for you.
There are two metatags which you can use to save yourself a lot of time
and have TA automatically decide where !ends fall. These are the !inner
and !last metatags (use one or the other, not both). You use both of these
with !context values, which can act as a sort of demarcation of sections
in your document (see last section of this guide).
The syntax for !inner is {!inner contextCodeName} and for !last,
similarly, is {!last contextCodeName}. These should appear in the init
file or towards the top (i.e., before data codes) of your document files.
!inner indicates that each occurrence of repeatCodeName should be
treated as though it has an !endsection before it.

!last indicates that repeatCodeName is the last repeat code being
assigned to this section. If TA finds another repeat code it should act as
though there is an !endsection before it.

These are easiest to use if only one repeat value is deployed through the
document. Then you just make that one the !last.
Advanced note: The way that endsection and end work (or implied
endsections with !last) is that no data is collected during a search until it
finds that !end/!endsection metatag. Also, context values aren’t paired
with data until the section ends. This means that if in a given section the
context code “time” changes value, only the last value it received will
be reported. Consider this case:

TAMS Analyzer 5/12/05 29

1 {!context time, speaker}{!last speaker}
2
3 {time}100{/time}
4
5 {speaker}bob{/speaker}: {a}food's good{/a}
6 {time}110{/time}
7
8 {food>parsley}I like parsley.{/food>parsley}
9
10 {time}112{/time}
11
12 {speaker}bob{/speaker}: {food>parsley}it really cleans my
13 breath.{/food>parsley}
14
15 {time}115{/time}

Here speaker is our !last code. There are two sections, one starting at
line 1 and going to line 6 (since that is the first time a repeat code is
found after speaker—our designated !last code) and the second going
from line 6 all the way to 15. Again, it’s the speaker in line 12 that tells
TA that the next repeat code should be treated as if it had a
{!endsection} before it. Now consider the value of the time code for
each of these: For the first section all data will be reported with time =
100. For the second ALL DATA will be reported with time = 112. The
110 never gets registered because it is changed (in line 10) before the
data is written (in line 15). Even the food>parsley code in line 8 will
say time=112. The answer to the problem is to put a speaker before line
8 so that when {time} is found in line 10 the data is written, or put an
!endsection metatag on line 9:

1 {!context time, speaker}{!last speaker}
2
3 {time}100{/time}
4
5 {speaker}bob{/speaker}: {a}food's good{/a}
6 {time}110{/time}
7
8 {speaker}bob{/speaker} {food>parsley}I like parsley.{/food>parsley}
9
10 {time}112{/time}
11
12 {speaker}bob{/speaker}: {food>parsley}it really cleans my
13 breath.{/food>parsley}
14
15 {time}115{/time}

The moral: Automation is useful (in fact necessary) but dangerous.
Make sure that every intended section has as its last !repeat value the
one listed in !last, filling it in if necessary. You may need to hand enter

TAMS Analyzer 5/12/05 30

{!endsection}s to cover those places that don’t fit the pattern. Also, see
!inner in the Metatag appendix, appendix 3.

C. !end vs. !endsection

To reiterate, these are used when manually structuring a document.
When TAMS hits an {!end} tag it clears all the repeats that it has found.
None of the values will carry forward from the previous part of the
document. Using {!endsection} rather than {!end} is one answer to this.
It keeps the last values, so that if only a few change in the next section
of the document, the previous values will be retained. In the previous
example with an interview where you are tracking who is talking and
maybe only occasionally entering a time_code you will want to use
{!endsection}, but be careful to mark all the speakers, or you will think
the wrong people are saying the things you are finding!!! Also make
sure that you put in an {!endsection} whenever the value of speaker
changes, or you will be seriously mislead as to who is speaking.

ADVANCED NOTE: An alternative to the {!endsection} metatag is
the {!dirty} and {!clean} metatags which can be sprinkled throughout
your document. They handle how {!end} metatags are handled. {!dirty}
tells the TAMS processor to carry old values forward when it finds an
{!end}; {!clean} tells TAMS to zero values when it finds an {!end}. By
default TAMS assumes that {!end}s should be {!clean}.

V. Getting information out of documents
A. Workbench vs. Document searches

After you have coded your documents you will want to extract
information from them. This generally involves looking up different
codes and sifting through the results. There are two ways to do this on
TA: through the workbench and through the Search tab of each
document window (if I port this to X11/Linux, only workbench searches
are likely to be supported, in fact, workbench searches can do
everything and more that document searches can do). If you want to
search across multiple documents you need to use the workbench. I will
only discuss workbench searches in this document.

1. A simple walk though

TAMS Analyzer 5/12/05 31

To search from the workbench, first put together your search list.
This is done in the Files tab of the workbench. Practically, this
means moving files over by selecting them from the file list (the left
side of the files tab) clicking the “Add” and “Remove” buttons to
move them onto the right hand, search list.

Once you have your file list assembled, click the search tab and fill
in the codes you are looking for (separated by commas) into the
field marked “Search” and hit the button labeled “search”. When
asked for a file name, just click the “Ok” button. That’s actually
enough to get you going.

Figure 19. Searching for 2 codes

B. The unlimited search

This simply refers to searching without putting in a code into the search
field of the search tab; just leaving it blank. Hitting the “search” button
will return a record for every coded passage in your document. That
means the following will generate two results records:

 {veggie}{food>parsley}I like eating things with
parsley{/veggie}{/food>parsley}

One for veggie and one for food>parsley, even though the data will be
almost identical. This is coded twice and it will provide two results in an
unlimited search (this assumes simple is selected as the search type).

(Note: the tags do not have to be properly nested, as this example
shows, the end tags and start tags could be in either order).

C. Looking for particular codes

TAMS Analyzer 5/12/05 32

Of course, more often you will want to look for particular codes. From
the workbench you just double click the code from the code list on the
workbench and hit search.

You could also manually type them into the search field and hit the
search button. By the way, searching for “food” will return the whole
food family: food, food>parsley, etc. If you want to find only food,
search for ‘food. That’s a single quote and the word food. This is called
an exact search, and you could alternatively do it through turning on the
exact flag (under the search) as well.

Figure 20. Double click from the code list to enter a code into the search

What if you want to find both food (and its family) OR things coded
likes>food which is part of the “likes” family. You can search for food
at any coding level by searching for “>food”. This indicates that it
should look for food at all levels of the code.

TAMS Analyzer 5/12/05 33

What if you wanted to find food, moody, good, or neighborhood. You
could search for “*ood” (asterisk followed by a pattern) this basically
just searches the code name for a substring.

D. And & Or

I’m no expert in designing lexical analyzers. As a result there are not
proper Boolean operators. Sorry. However, you can do AND’s and
OR’s. AND’s are indicated with the “+” sign and or’s with a comma
“,”. AND’s take higher precedence than OR’s and there is no grouping
with parentheses, so you have to distribute things yourself. Again, so
sorry. But at least the feature is there!!!
To search for either food>parsley or food>carrot you would enter
“food>parsley, food>carrot” To find passages that are both food>carrot
and loves>vegetarians you would search for
“food>carrot+loves>vegetarians”

Figure 19. A search involving AND

E. Search Flags

In both the document search pane and on the workbench there are three
flags or check boxes that control how TA does searches:

1. Raw searches

Raw simply means that the tags are shown in the results. TAMS will
show you all the tags that are open for the start of the found passage,
by the way. For actually putting things into papers you will want to
turn off the raw flag when you search. By the way, returns are
substituted with “\n” and tabs with “\t”. The original characters
would be confusing to Excel or other databases.

2. Empty searches
Usually, when you search for data you only want to know what
passages meet certain criteria. If you turn on the empty switch TA
will produce a record, data or not, at every !end (or !endsection if

TAMS Analyzer 5/12/05 34

you turn on that feature in the preferences panel). This way you can
find out how many times someone didn’t mention X, Y or Z... Note
this only works for structured documents.

3. Exact searches

Normally if you search for food, you will get the whole food family:
food
food>parsley
food>carrot
etc.

To look for only those things coded food, but not food>carrot, turn
on the exact flag.

NOTE: you could also prefix a ' (single quote) in front of food.

F. Search types

TA can search a wide variety of ways giving very different result sets
depending on need. These search types are chosen from a pull down
menu under the check boxes on the workbench:

Figure 20. Search types

1. Simple searches and non-simple searches
There are three types of searches that TA can do given a mix of
codes. The first two, simple and non-simple are the primary ways
researchers will search for data. In the first case TA searches for the
tags that match what you’ve indicated and returns passages that
meet the criteria you’ve set. In the second case (non-simple), TA

TAMS Analyzer 5/12/05 35

will check at each character whether this character is in a “zone”
that meets the criteria you’ve set. Consider searching for “food,
veggie” for a document that contained this passage:

 {veggie}{food>parsley}I like eating things with
parsley{/veggie}{/food>parsley}

If you are doing a simple search, both food>parsley and veggie meet
the criteria. So TA will generate a result for each tag. You will have
two rows (one for each tag) in your results windows with almost
identical data. On the other hand, if you select non-simple search,
TA will ask if each character in “I like eating...” is in a zone that is
either food or veggie and return it as meeting the criteria. There will
only be one result record for this. TA indicates that this is not a
simple search by prefixing the code in the results window with a “+”
or “-”. Generally you will want the simple flag checked.

NOTE: Searches with “AND” (“+”) are always non-simple
searches.

WARNING: Only simple search results can be recoded!!! This is
because passages returned from searches with “AND” may not be at
tag boundaries.

2. Section searches
If you have used {!end} markers (or {!inner} or{!last}) to mark up
your text so your text has sections, you can look for sections that
meet certain criteria regarding codes. For example you could look
for all sections that have either code “veggie” or code “animal”
(your search would be “veggie, animal”). Or you could look for
sections that have both codes in them: “veggie+animal”. Notice that
AND and OR mean different things in this context. If a section has
both codes in it even if they do not apply to the same passage of text
that section (i.e., an area ending with a {!end} metatag) will be
shown in the results window. Similarly for OR, if either code
appears in that section of text, that section will be copied into the
results.

WARNING: Because {!inner}and {!last} implies that
{!endsection} rather than {!end} as a break point, TA may not

TAMS Analyzer 5/12/05 36

return the data you want. Normally TA looks only for {!end}’s. To
make TA aware of {!endsections} Go to TAMS Analyzer-
>Preferences, and under the searching tab make sure “Report empty
searches for each {!endsection}” is checked.

3. String searches and Regex searches
In addition to searching for codes, TA provides two mechanisms for
searching for raw text in your documents. Entering a string of
characters into the search field and conducting a string search will
return all occurrences of that string (defaults to case insensitive—
check the exact box to make it case sensitive). Furthermore, the
browser will show not just the string but a little bit of context for the
string (how much is determined by a preference option).

Regex string searches use the regular expression support to search
for text. With this you can search for all sentences, or occurrences at
the beginning of a sentence, or words that start with b followed by
three of any character and ending with x. It’s powerful but really
requires its own manual. Look on line for tutorials on perl regular
expressions (or just regular expressions).

G. Searching for coders
If you want results for simple searches only from a certain coder you
could simply put in their code in the “Coder IDs” field of either the
workbench or the document. You could also list coder’s separated by
commas. If you want to include unsigned tags use * (no this doesn’t
mean wildcard in the context of the “Coder IDs” field, it means no
coder was provided). To look for unsigned and tags signed by mgw I’d
fill in “*, mgw”.

You can do much more complex searches however by including coder
information in the search field! If I want all cases of food coded by
mgw, I could search for “food[mgw]”, or if I wanted unsigned results as
well I could do “food[mgw; *]”. Notice that the coders are separated by
semicolons rather than commas . If I wanted only unsigned results I’d
look for “food[*]”. If there was another coder with bob as his initials I
could look for “food[mgw; bob]” or if I want to know what both mgw
and bob coded as food I could look for “food[mgw]+food[bob]”

TAMS Analyzer 5/12/05 37

ADVANCED FEATURE: You can set up pretty complex coder name
systems and search for all sorts of subsets by using the ~ (tilde) in a
search. Searching for [~m] will return all coder’s whose name begins
with m. Or searching for “food[~m;*]” will return all passages coded as
food by anyone whose name starts with m or was unsigned. Again this
is not done in the “Coder IDs” field but in the Search field itself.

H. Saving for Excel and databases
When you have results, you may want to export them to a database. TA
produces very nice tab delimited files readable pretty much straight
away by Excel and other databases. Just pick Save To: and pick “Text”
from the “File format” menu on the save dialogue.

BEWARE:

If you’re using a classic environment database you’ll need to pick “Use
old Mac new line character for results” from the preferences menu
before you do a search.

BEWARE:

Panorama database stops reading things at the end of quotes. Put the
following metatag at the top of your documents: {!noquote}. This will
turn quotes into \Q for double quotes and \q for single quotes.

Alternative: The easiest and most flexible way to get results data to
other programs is through the File->Export data dialogue. Here you are
given all sort of options for how to delimit fields and records. You can
drag the field names around to change the order of the exported data and
then select the fields you want (shift click or apple click to extend the
selection). Data can be exported to the clipboard or to a file this way.

VII. From results to analysis

Once you have searched the list of files in the search list you will be looking
at a “results window”, something like this:

TAMS Analyzer 5/12/05 38

Figure 21. A results window

A results window is a browser for data. It allows you to move through your
data, further search your data, and even modify your source documents.
This section will talk about the first two of those ways of analyzing your
data. First let us note the anatomy of the results window.

The lower pane. In the lower half of the results window you will see one
row for each record returned by the search. This row is broken into
columns: a # column which just keeps count of the records that are
showing, a column for each universal code that applies to the data in that
row, a column for each repeat code that applies to the data in that row, the
data that met the search criteria, comments attached to that data, the coder
for that passage, the name of the document for that passage, and the
beginning character offset in that document for that passage! These
columns can be resized and dragged around (reordered) by dragging the
column titles.

The browser pane. The upper half of the window is dominated by the
browser pane that shows the value of the _data field/column (which is the
part of the table that has the actual data in it) for whichever record is

TAMS Analyzer 5/12/05 39

selected in the lower pane. If you want the browser to show a different
column value change it using “Results->Set field to browse…” You can
also adjust how much of the window should be browser and how much
should be lower pane by dragging the dot on the bar between them.

Figure 22. Results window button pane

Button pane. Above to the browser pane is the information pane and
toolbar. The two buttons labeled “<” and “>” are forward and backward
buttons that allow you to flip through different “selections” of data (more
on “selecting data” below). The “Workbench” (for project) brings up the
workbench for this result window; sort provides a quick and dirty ascending
sort for the selected column (not the best way to sort in TA, however).
“Find record” will take you back to the document window and select the
text connected with the currently selected row of the lower pane. This is the
best way to go back and see the context of that particular row’s data.
Refresh re-runs the search (in case the source document has changed).
You’ll be tipped off that such changes have occurred by a check mark next
to the count of how many records. This count is displayed as a fraction
with the numerator representing how many records are visible, and the
denominator providing a total count of records in the search. As you select
records from the search a string next to the checkbox will change to give
you some record of the records you are currently browsing (here we see the
word Unlimited meaning that this is an unlimited search).
A. Selecting data

Often clicking the search button is only the first step in exploring the
meaning of data. Having pulled up the records related to veggies, we
now want to find out, what did “Bob” say about veggies? What (or how
many) passages about veggies included the word carrot? Did any of
those also include rutabaga? What records under veggie have neither
rutabaga or carrot?

TAMS Analyzer 5/12/05 40

To answer these questions we need to do complex searches of our result
window. The result window is really a fairly complete “flat file”
database, i.e., a database program that works on one file at a time.
Searches have to be done one column at a time BUT through doing
multiple searches you can create complex AND and OR relationships.
Furthermore, once you find a set of records that answer your question
you can “name” this set of records so you can pull them up instantly.
You can also create “autosets”, macros or little programs that can pull
up similar records from any result file!

I used the word search in the last sentence, but from here forward I will
use the word select to mean “search in a result file window” and reserve
the word “search” for workbench or file searches of your source
documents.

Finding a value in a repeat or universal column. I will use the example
of finding “Bob” who I have marked as a {speaker}, which I have
named as a {!repeat} code. If this is unclear, review section IV. To find
only Bob as speaker I first click on the head of the column titled
“speaker” so the entire column is highlighted. I then pick Results-
>Select… (or just click the “Select…” button from the menu and am
confronted by this dialogue box:

Figure 23. The select dialogue box

TAMS Analyzer 5/12/05 41

Enter Bob into the Select string field and press “OK.” Now only records
with Bob or bob or boB in the “speaker” column will be visible.
Now the record count will have changed in the button panel, as well.
And we can see in our fictional example here that (for instance) 4 out of
the total of 7 records in our search had speaker “Bob”:

Figure 24. Changed record count

Seeing all of the records. Given that only one “select” ago we were
looking at all the records, we could use our browser forward and back
buttons to leap back one selection and see all of our records.

Figure 16. The browse back button

Alternatively we could leap to all records by picking “Results->Select
all”
Selecting values in your data. What if we want to find things that were
coded veggie and have in their coded text the word carrot? This
basically is done through two selects. In this case the order of the selects
does not matter, though there may be cases when it does (I’ll discuss
one shortly). The first thing to do here is to select all those records
coded as “veggie”. “veggie” is a code and these are put in the column
called “_code” (all of the columns that TA creates start with an
underscore). Pick this column by clicking it’s title and making sure that
the whole column is highlighted. Then select “veggie”: pick the
“Results->Select…” menu option and type in “veggie” and click ok.
Now only the veggie items are selected.

TAMS Analyzer 5/12/05 42

We now want to further whittle down the data to be only the ones where
people used the word “carrot.” To do this we simply do another
“Results->Select…” after clicking on the _data column, where the
coded text resides. Each time we select data we are working only with
the records showing, not with the entire count of records returned from
the work bench search. So in this case we will pick the “_data” column
by clicking on the title (“_data”) and picking “Results->Select…” a
second time and press OK. Now only records that met criteria in both
selections will be visible: we have selected “veggie” in the _code
column and “carrot” in the _data column.

Logical ORs in selecting records. What if we wanted records that were
either coded “veggie” or “fruit”? If we select veggie the fist time the
way we’ve already described, we will have all the records coded
“veggie”. To add to this the records coded fruit we select the _code
column and pick “Results->Select additional…” This will give us the
same dialogue box to type in “fruit” but instead of selecting from the
shown records, TA goes back to the whole pool of records and adds the
ones meeting this new condition to those shown.

Naming a selection. TA is very big on “sets”, meaning subsets of lists of
things. It supports working with “code sets” (subsets of all your codes,
so you don’t have to scroll through however many hundreds of codes
you’ve created), file sets (so you can keep your memos separate from
your interviews), and results sets (aka data sets) which name a portion
of the records returned from a search.

In the case of having found all of those records that are coded “veggie”
and spoken by “bob” and use the word “carrot”, it might be nice to
“bookmark” these records so you can just leap back to them whenever
you need. With just those records showing (i.e., you’ve just done the
selection of speaker=bob, _code=veggie and _data=carrot (by equal we
means contains, in reality)) pick “Results->Result sets->Create named
set”. You should be prompted to provide a name, type in something like
“bob-veggie-carrot”, i.e., some meangful identifier for this selection of
data. Click “OK” and you have now created a named set. A new item
has been added to the “Results->Result sets” menu which is your
named set!
To show these records at any time you can just pick “Results->Result
sets->bob-veggie-carrot”.
WARNING:

TAMS Analyzer 5/12/05 43

Named sets are saved with result files, but are disposed of the minute
you refresh your data. As a result. If you need something persistent
use auto sets!!! Named sets are best for on the fly data analysis since
they are easier to use than autosets, but autosets have the advantage of
permanence and shareability.

ADVANCED:
Named sets and autosets are not just book marks for your data (though
they are primarily that). You can do complex set operations with data
sets. Using the “Results->Result sets->Set operations…” menu option
you can take the selection that is showing in your results window and do
things like intersect it with a named set or find the union of it and a
named set. These of course can then be named as well. This allows for
very complex analysis and mining of data.
Autosets. In named sets you are just giving a name to a group of records.
With autosets you actually teach TAMS how to find records meeting the
criteria you used. The advantages of this are many: autosets will persist
after you refresh and autosets can be applied to other searches. To create
an auto set, choose the “Results->Result sets->Create autoset…” option.
That will show the following dialogue:

TAMS Analyzer 5/12/05 44

Figure 26. Autoset dialogue

With the autoset dialogue you teach TA the steps needed to make a
results set. If you have done a selection, and want the steps involved
in that selection to be your autoset, press “Add history” (the
sequence of steps you have just done) in area #3. You may need to
modify what appears in area #4 using areas #1 #2, and # 3, and
removing wrong steps using the – button in area #4.

To create an autoset from scratch, you start in area #1 (see Figure 14) by
indicating whether the steps you indicate should start with all of the
result records (no matter what is currently showing) or with a current
selection. If you have used the Results->Sort up and Results->Sort
down to organize your data TA can remember this sort order and
automatically sort your data before applying the next actions to it.

To the base established in step 1, you can add two types of steps, first
you can apply selections through the menus and fields in area #2.
Alternatively you can do set operations using other autosets through
area #3. In either case once you’ve filled in the information through the

5.

4.

1.

2.

3.

6

TAMS Analyzer 5/12/05 45

menus, fields, and check boxes, click add step to have this operation
registered in the autoset. If you don’t click “Add step” the act will not
be registered.
Area #4 is where these steps show up. In area #4 you can rearrange the
order of steps (using the ^ and v arrows), you can delete one step (click
on it and press the – button) or all steps (press the – button).

Once the steps are in place, decide if you want this auto set available
project wide. If yes make sure the box in area #6 is checked. In all cases
you need to enter a name for this autoset in the box in area 5 and press
save.
Under area #5 is a menu which allows you to recall and delete older
autosets.

When done press the Exit button in area #6. To actually run your autoset
pick the name you entered off of the “Results->Result sets” menu.
Sorting. There are two ways to sort data in TA. The first is through the
sort button right in the button panel on the results window. This sorts up
(A before Z) and is good for quickly arranging a single column. The
preferred method of sorting however is through the Results->Sort up
and Results->Sort down menus. These allow you to nest sorts so you
can sort columns inside of columns. You can also control the type of
data that is being sorted, i.e., you can specify whether the column
contains dates (but set the date format first through Results->Date
format), integer, string, real number (floating point) or a code. Sorting
codes require you to set a code level through the Results->code level
menu item. If the code level is 0, then the code is simply treated as a
string and is sorted alphabetically. If code level is 1 then a>b and a>c
are considered the same! Only the first level is examined. If code level
is 2 then a>b>c is the same a>b>d but, bother are different from a>c or
just “a”.

When you use the menus first you sort using one of the criteria that does
not have the word “within” included. This tells TA to forget all previous
sorts and start again. The menu items that include the word “within” add
onto whatever sorts have been done. So after the first time you sort, use
the within’s to sort additional s.

What’s important is that TA remembers the sorts done by the menu and
can import the criteria for sorting into data summary reports and
autosets. If you use the sort button none of those criteria are available to
the TA program.

TAMS Analyzer 5/12/05 46

B. Select Near (Advanced topic warning)

Select near provides a hierarchical view of the data that groups records
related to other records in an outline structure. Select near allows users
to answer questions such as “What occurrences of code X occur within
5 minutes of each occurrence of code Y?” “What occurrences of code
set X are within 4 sections of the current selection?”

In both of these model questions there are two sets: a base set which is
defined by the current record selection, and a comparison set. In the first
question Y is the base set and X is the comparison set. A set image of
this relationship is suggested by the following:

Base record set/selection Comparison record set

Figure 27. Select near matches many records to the current selection

It is clear here that each base can have many comparison records
assigned to it, and that each comparison record may be assigned to
multiple base records.

To understand this complex new function I want to work through the 1st
example above. Here it is diagramed with its different parts:

TAMS Analyzer 5/12/05 47

Figure 28. Sample Query

1. To turn this into a TAMS operation, first select the records that you want

to take as the base of the Select near operation. This is determined by the
part of the question I’ve marked as “C,” the “each occurrence of code Y.”
To do this select the _code column and do a simple selection for code Y.

Note: select near will work with any selection; it doesn’t have to be
the _code column. It can be as complex a selection of records as you
like.

2. Pick “Select near” from the results menu. It will provide you with this

sheet

TAMS Analyzer 5/12/05 48

1 2 3 4

5

6

7

8

9

10

11

12 13

14

Figure 29. Index to the parts of Select near dialogue

A. Since we are looking for code X pick “code” in the “Match” box

menu 1and then pick X from the lower menu (Menu 2). This
matches the A part of the diagrammed query above..

B. Presumably we want the comparison set to be with all of the
records in the result file. If so, pick “All records” from menu 3.
Alternatively you can use the current selection or a particular
results set. In the latter case pick the results set from menu 4.

C. If we want only to match X (and not its children) select check box
5; if we want anything in the X family leave it unchecked.

D. If we want the matching records only to come from the same
source/data file as the base record select box 6. If box 6 is
unchecked comparison records from any file will be matched to the
base set.

E. If we want blank records to count as a numerical 0, check box 14.
Otherwise leave unchecked and empty records will be thrown out
of the analysis.

F. According to our Query we want comparison records that are less
than 5 minutes from their matching base records (see part B of the
query). So for G we’ll pick “<” (within is similar to less than) from

TAMS Analyzer 5/12/05 49

menu 7. Fill in “5” in field 8. Pick minutes from menu 9. If we
want those 5 minutes to be before or after the time in the base
record pick “Before and after” from menu 10, otherwise select
before (the base record time) or after as is appropriate.

Note that TA will pick the field to examine based on your choice in
menu 9. For time units it will use the time field indicated in your
program preferences, for characters it will use _begin_loc, for line
numbers it will use _line_number (if you are scanning for line
numbers and have used them in your source files. To over ride these
decisions use items 11, 12, and 13. Check box 11, pick the field to
search from menu 12, and indicate the type of data included in it
from 13. You will still need to pick a comparison operator from
menu 7 and fill in a value into field 8.

3. At this point pick OK and the results will appear in an outline format:

Figure 30. Results of Select Near

4. At this point you will want to get back to the “table view” of your results.

TA3 will not allow you to do any thing other than view results and export
them from the “outline view.” There are three different ways to toggle
back and forth between table and outline views..

A. Use the Results->Switch data view menu item

TAMS Analyzer 5/12/05 50

B. Use the quick toggle button on the info bar. It will switch from O
(outline) and T (table) to indicate which view you are currently in:

Figure 31. Data view toggle button

C. You can add an optional button to your toolbar which will toggle

the two views: Use “Windows->Customize tool bar”.

Figure 32. The Toggle Views Icon.

C. Exporting “Select near” records

Select near results are not saved when the result file is saved. The only
way to save these results is to export them with the File->Export data
menu item.

First make sure that your results window is showing the results of your
select near search. In other words, the result window must be in outline
view. Pick File Export data and you will get an export data pane with
some additional fields and altered text from the one for the table view:

TAMS Analyzer 5/12/05 51

Figure 33. Export data for Near Results

VI. Interactively reworking your coding

Based on what you find in your searches you will want to go back and
“recode” your document; which usually means adding another layer of
subtlety to your codes. First time through you may have just wanted to
catch any mention of veggies. So you coded anything that seemed slightly
relevant “veggies”. Then you want to see what people are saying about
vegetables, so after searching for veggies you’ll want to change those codes
to veggies>good, veggies>bad, veggies>whatever. I refer to this process as
reanalysis, and it involves recoding your data (which fits the example I just
gave) and adding codes to your data.
A. Finding the results in the text

The first way you could do revise your initial codes is “manually”. To
go back to the original place in the text from a result window, click on
the record (row) you want to look at in the original context, and then
just click the “Find record” button and the coded text in the original
document will pop up!

Consider this section of a mock interview

TAMS Analyzer 5/12/05 52

Figure 34. A mock interview

If you do an unlimited search you should get a results window like the
following:

Figure 35. Unlimited results from the mock interview

TAMS Analyzer 5/12/05 53

Here, the first row is selected (you can see the text for that record in the
browser above). Now click on “Find record” and you’ll be taken back to
that first record, with it selected:

Figure 36. Find record takes us back to the original text

NOTE: This is an important tool for examining context!!! This takes
you back to your source document and scrolls to the original text.

Figure 37. The result refresh button and a check indicating a changed

document file

You can use the “Refresh” to re-synch your results and your original
documents.

TAMS Analyzer 5/12/05 54

B. Marking results

An alternative to manual recoding is to have the program go through
and change or add codes to for you. This involves “marking” the
records you want to change and then picking “Results->Recode->Add
code” or “Results->Recode->Recode”. TA works very hard to keep the
source document and result document “in step” at least as far as the
location of the listed result passages are. If you manually type in the
source window all bets are off. TA will lose track of where the coded
passages are. The best thing to do is to lock out those functions that will
put TA out of synch between source/document windows and results
windows. To do that pick “Project->Reanalysis mode.” Pick it again
to turn it off.

To mark records (rows) for adding codes or recoding, select a row and
pick “Results->Marked records->Mark.” That will add a “+” sign after
the record number (your signal that this record is marked). You can
unmark records by picking “Results->Recode->Unmark”.

Figure 38. A marked record (notice the + sign by the #1)

NOTE:
In reanalysis mode the only things you are allowed to do in your
document windows are double-click code, code using the code button
(which you can set up to prompt for comments), and delete code pairs.
These steps will keep open results windows in synch with the document
windows.

C. Adding codes

Adding codes simply surrounds passage associated with the marked
records with an additional code; the original code is not affected. After
marking records (See §VI.B) you want to add a code to, pick “Results-
>Recode->Add codes”. You will get a dialog like this:

TAMS Analyzer 5/12/05 55

Figure 39. The Add code dialog box

You have two ways to go here: you can pick a code that exists from the
menu and press the top OK button, or you can type in a new code into
the Name: field and its definition and press the lower OK.

This may take some time, it’s doing complex cutting and pasting and
then refreshing of the window.

WARNING: See problems section for bad things that can happen when
you add codes.

D. Recoding

Recoding is trickier for TA than adding codes. This goes through and
actually replaces the codes and includes comments that the original

TAMS Analyzer 5/12/05 56

codes had. Note that you cannot recode based on any search that
involves an “and” (i.e. +) or is not simple. So be warned. As with
adding codes you are presented with a dialog that either allows you to
pick from existing codes or substitute a new one to the code file:

Figure 40. A filled in Recode dialog box

Here I am recoding the first speaker’s comment giving it a more
negative spin by defining a new code: veggie>very>bad. I’ll click the
lower “OK” since I’m filling in the lower information, and voila, the
code will be changed. WARNING: You could possibly see codes
disappear from your results window since they may no longer meet
the search criteria. Also see the next section for warnings about bad
side effects from adding and recoding data.

E. Problems with Adding and Recoding

TAMS Analyzer 5/12/05 57

Adding and recoding can make a mess of codes. The general problem is
that you can land up with a nested situation which doesn’t make sense
to TAMS (or anyone else). If the original was

 {a}This is {b}some text that {/a} will be recoded {/b}

and we recode b to a, we’ll have

 {a}This is {a}some text that {/a} will be recoded {/a}

Basically TA will have no idea that the second {/a} is there or which
{a} it goes with, it will stop looking. And that second {/a} will give all
sorts of problems in any case.

You may not get an error, but you’ll get unexpected results. The answer:
check the syntax by running “Check for nested” from the Coding menu.
Check often.

F. Updating your results

This is redundant with what has been said elsewhere, but if you see a
results window with a check by the “Refresh” button, it means one of
the documents that feed this results window has changed. Clicking the
“Refresh” button should update your results:

VII. Reports

Getting results is one step of transforming an interview into data. An
additional step is done through generating reports from your data.

A. Frequency counts

The simplest report to generate is a count of the codes in the files in the
search list. This is done by having your project’s workbench as your
front window and picking Reports->Count from the menu. This will list
the number of times each code was used in the files listed on the search

TAMS Analyzer 5/12/05 58

list (but not broken down by file… But wait, there is a way! See data
summaries below).

Figure 41. Code count report
Note that this report only uses the codes in the current code set, so you
can control the codes reported upon.

D. Co-frequency counts

A second easy report to generate is the co-coding frequency report. This
report shows how many times a passage of text in the search list has
been coded with each pair of codes in the current code set. This is a
good report for analysis, to see what codes seem related to each other
across the project (or portions thereof).

E. Data summaries

Data summaries are the most complex and powerful reports in TAMS.
They operate from the current selection in a results window. A data
summary report allows you to group data in a column and then count
matching criteria. These counts assume that data is arranged to be
counted. In other words, the data has to be sorted so that what you are
grouping is together. To keep the meaningful data together you need to
use the “Results->Sort up” and “Results->Sort down” menus NOT THE
GENERIC sort button on the default button panel. Data summaries are
described in separate documentation: Data Summary How To. This
report can generate a frequency count by document (or speaker, or just
about any other selectable/sortable criteria).

F. “Graph data” Output

TAMS Analyzer 5/12/05 59

Graphs, or dot graphs which refers to the file name extension of the files
generated by this report (“.dot”) provide a graphical view of data. The
actual program “Graphviz” (available at www.pixelglow.com) makes
images like concept maps: nodes connecting to each other. This is
perhaps the most dramatic report that TA produces. The same menu
option actually produces two very different reports. When “Reports-
>Graph data” is selected from a document window or the workbench it
produces a “graph” of the tree structure of the current code set:

Figure 46. A “graph” of the codes in a project

Here sound>cat and sound>pig have been converted into a tree picture
representing the coding system in this project.
Graphs of the relationships of codes to code sets as well as code sets
with each other can be generated using the “Reports->Graph code sets”
menu item.

Figure 47. Graphing code sets (Project window version)

TAMS Analyzer 5/12/05 60

To generate a graph of the relationship of currently selected codes to
code sets, select the code sets you are interested in examining and pick
“Graph codes to code sets” from the pull down menu. That will produce
a graph like this:

Figure 48. Code to code set graph

The ovals in figure 48 represent codes from the current code set, the
boxes represent the selected codes.
On the other hand, to generate a graph between code sets pick from the
first menu in figure 47, either “Do not graph shared codes” or “Graph
shared codes”. In addition, you have options on what is included in the
box representing the code set. In this example I have included no codes
in the boxes and am choosing to graph the shared codes:

Figure 49. Code set to code set graph

In figure 49, the codes in common between the two code sets appear
above the line connecting the code sets.
More complex images can be generated from result files. In result files,
“Graph data” reports represent the connection between different
columns (think of the columns as variables). The lines connecting the
values in the columns show the frequency count.

TAMS Analyzer 5/12/05 61

Figure 50. A “graph” of the _code and speaker columns of a result file

The shape and arrows of both whole levels and individual values at ach
level can be individually specified. See the “Dot Graph Output How
To” for more instructions on producing these type of graphical reports.

G. Exporting data

Most reports including counts and summary reports can be saved at text.
Actually it is saving the files as tab delimited text so that these files can
be dropped right on Excel or FileMaker and opened. You can also copy
and paste data (not the reports) to other programs using the File->Export
Data… dialogue. This dialogue provides powerful flexibility in terms of
moving data to other programs either through a file or through the
clipboard. The dialogue takes the current selection only and allows you to
rearrange the column order (dragging the column names into different
locations), and select which columns you want exported.

TAMS Analyzer 5/12/05 62

Figure 51: The export data dialogue

You have a variety of options: you can either export the selected records,
or all the records, have it escape (“\”) returns, tabs and other characters
that can cause problems in excel, strip the selections of tags, and export
to the clipboard or save to disk. In addition you can separate the columns
with tabs, commas, returns, or your own delimiters (use \t and \n to
indicate tab and new space if you enter your own).

VIII. Analysis of Code Sets
A. Using code sets as an analytic tool

At late stages of analysis, often codes are not good enough to serve
alone as defining the categories you are interested in tracking. The real
dependent variables you are tracking will probably exist in a variety of
code families rather than in one genetic tree. Code sets were designed to
provide cross-code-family analysis. Until TA3.1 there was no easy way
to get counts of the relationship between code sets and other data
categories. Here I will briefly discuss the several key means of mining
code set relation information from your data: grouping by code set and
graphing code sets. While this section should really have followed
section VI, the fact is that it uses a lot of the ideas introduced in VII, so
I am concluding this manual with a discussion of using code sets.

TAMS Analyzer 5/12/05 63

B. Grouping your data in code sets and getting a count

The simplest analysis you can do is to simply see how a selection of
results records map onto the code sets you’ve defined. This is done by
picking “Results->Code Sets->Group by code set”. This will clear away
any “Select near” analysis you have done, and show you an outline with
each code set represented at level 1, and matched records underneath at
level 2.

Figure 52: The results of Group by code set

The name of the code set is placed in the “_code” column, and a count
of how many records are matched with that code set is placed in
“_data”. In figure 41, I’ve moved (dragged) the columns so that _code
and _data are first for instructional purposes. You may find you have to
scroll over to find your _code and _data columns.

Note that these results can all be moved to other programs or saved
through the “Files->Export data” operation. Just make sure that the
outline view is showing.

By default codes are matched with code sets “non-exactly” meaning
“a>b” is matched with a code set if it has code “a”. You can force
an exact match by selecting “Results->Sort options->Case
sensitive”.

C. Counting the relations between variables and code sets

TAMS Analyzer 5/12/05 64

More often you will want to see how the values of a repeat code are
matched with your code sets. Starting with TA3.1 there is a simple way
to get information like this in two simple forms: a table and a graph.
Once you have the selection of data you want to analyze this way
simply pick Reports->Graph code sets. Note that this will first do a
“group by code set” which will obliterate any “Select near” data you’ve
gathered.
The following dialogue will appear:

Figure 53: Graph code sets (Result window version)

At the top you can pick the code sets you want to study. Below you pick
the fields (columns) you want matched with those code sets. Note that
you can pick more than one field, in which case the values of those
fields are combined using the separator and all values will have to
match to be counted. This is useful if you want data separated by file for
instance if a value crosses different files. Note that the separator can use
“escape characters.” Use \t for tab and \n for return.
The third part of this dialogue is for the “graph” output. You can control
how arrow heads appear and whether a count is shown over the arrow.
Note that the report (which opens in your browser) ignores these options

TAMS Analyzer 5/12/05 65

and provides a count. In this example I’ve picked both “positive
reasons” and “negative reasons” from the top list, and gender from the
bottom list, clicked show count and then clicked show graph to get this
“graph” of the gender relationship between code sets positive and
negative reasons:

Figure 54: Graph output from Graph code sets (Result window version)

If I click on “Show report” I get the following table in my browser:

Figure 55: Report output from Graph code set (Result window)

Good luck, write if you have problems.

Matthew Weinstein
mweinste@kent.edu

http://educ.kent.edu/~mweinste/

TAMS Analyzer 5/12/05 66

Appendix 1

Types of codes

TAMS works with three types of codes:

1. universal codes which are generated for every results window record and
hold their value through the whole document. The syntax is as follows:
{!universal codename="mydata"}. I use "{" since most documents don't use
this. At some point I will add an escape character so you can use "{" without
triggering a response by the processor. A typical example would be {!universal
type="interview"}

2. repeat codes which change their value throughout the document and generate
a separate value in each record produced. These mark distinctive attributes for a
section of a document (marked by {!end} or {!endsection}): typical repeat
codes include speaker, time, question all of which you would want to be
attached to a passage of text you have marked (coded) in some way. To indicate
that the code "author" is a repeat code place {!repeat author} toward the top of
the document or in the Init file. Then mark each occurance of author by
surrounding it with a start and end tag: {author}Matthew Weinstein{/author}
(notice that unlike the !repeat command there is no ! mark here, this is just a
data code). In an interview the speaker might be marked as a repeat code. In
field notes the time of an observation might be a repeat code. In our project
which involves numerous newspaper articles per document, author, title and
date of each article were repeat codes.

3. data codes. These are the passages that you are really interested in. These are
marked with {code}interesting passage{/code}. You don't need to declare
anything, just fill in the word code with whatever you see fit: {sample}Just
some text{/sample} is now coded as sample! Note codes consist of numbers,
spaces and underscore ("_") charaters. No spaces permitted. Passages of text
can have multiple codes; codes can be nested and can overlap.

TAMS Analyzer 5/12/05 67

Appendix 2

Working with large projects

TA has a large variety of tools to help researchers manage large
numbers of files and data. I hope in this section to just point them out
and give some tips; I will not be doing much in the way of hand
holding.
Named searches. The first tool for large projects is the possibility of
saving and restoring different search lists. This way you can just by
picking an item off of a menu pull up a search list that just has memos,
for instance. The search list menu is just above the search list. To save
the current search list (and init file) just press the + button above the
search list on the work bench. You will be prompted for a name. To
restore a saved search list, just pick it from the menu above the search
list. To delete a searchlist, first select it from the menu and then press
the – button. You can clear the search list of all search lists by pressing
the - - button.

The init file. Perhaps the most important element for multiple file
searches. Conceptually the idea is simple. The init file is simple a file
with commands (metatags) that you want designated as the start of a
search. It is just the first file searched. To indicate which is your init file
just select the file from the file list on the work bench and press the
button marked “Init File”. The init file is subsequently listed at the
bottom of the work bench.

There are five tags that I usually will put into an init file: a !button
command which provides project wide code buttons for the document
button bar, an empty !universal command which simply lists the
universals in the order I want them to appear in results windows:
{!universal name=””, city=””, type=””}. At the top of each document I
will have a !universal with those values filled in (in whatever order).
Third, I will declare my repeat codes in the header: {!repeat speaker,
time, gender}. Fourth, if I am using an !inner or !last repeat I will
declare that value in the init file as an indicater of the structure of my
files. Finally, I will use the !if statement to attach any additional
information to my result files: {!if speaker=”Amy”=>gender=”F”}. If I
have declared a repeat value gender it will automatically be assigned a
value “F” everytime speaker becomes “Amy”.

File sets. TAMS allows you to group your files together so that the file
list can display just a subset of files rather than the whole body of data

TAMS Analyzer 5/12/05 68

in your project. You can create a file set for just memos or just
interviews. This is selected by the little set menu that is to the left of the
file list. Every project always has one set already established which is
the results set, which contains every saved (and open) results
window/file. In fact the menu item “View all files” should really be
view all files except the result files. See the code sets section on how to
operate the dialogue box that comes up with manage file sets. They are
identical.

Inter-rater reliability. TAMS can calculate the interrater reliability as
both a percent and as kappa. This requires the construction of special
“test” files that two coders will attempt. See the Inter-rater reliability
information folder in the How To folder in the docs folder.
Line number documents. TA can wrap and line number your interviews
and field notes to help discussions of particular lines. Make sure you
turn on the “Scan for line numbers” option in the results so that line
number information is included in results.

Shareable project format. By default TA is not shareable between
machines. If after initially saving your project you change the project
type to Same folder or relative, keeping all of your files either in a
single folder or in the same file tree respectively, the project will be
shareable. If a colleague gives you a project folder that can’t seem to
find its files then move all files to a single folder and change the project
type to “Same folder”, close and reopen the project. These options are in
the Project->Preferences menu option (not the usual preferences).
Multiple coders. There is support for codes being “signed” by different
coders; searches can be coder specific. The signature is specified in the
preference panel. Searches can be done for specific coders. One can
even do searches that amount show me passages of veggie coded by
MGW and passages of fruit coded by LJS (where MGW and LJS
represent 2 different coders).

Polymorphous data. The search list can contain multiple types of data.
To facilitate mixing data types, the !map metatag allows researchers to
have different codes in the same repeat data column.

TAMS Analyzer 5/12/05 69

Appendix 3

The Metacodes

{!appendcomment X} = appends X to the comment established with
previous !setcomments and !appendcomments.

{!backloadrepeat} = for a coded passage that crosses an !end value, the
record will have it’s repeat values assigned from the values at
the end of the passage.

{!block X} = if repeat code X has already been declared then no values
for X will be returned in results (X will be ignored)

{!bookmark X} = designates a bookmark in the document file
(accessible through the Coding->Bookmarks menu

{!button X} = creates a button bar with button X.

{!clean} = designates that subsequent repeat values should have their
values cleared at {!end} metatags

{!clearcomments} = clears all existing comments set by !setcomment
and !appendcomment.

{!comment X} = See !dummy.

{!context X} = See !repeat.
{!contextcode X} = See !repeat.

{!dirty} = designates that subsequent repeat values do not reset their
value at an {!end}

{!dummy X} = {!comment X} = a do nothing code which allows you to
insert parenthetical comments into your code. Synonyms:
!comment.

{!emptysection} = specifies that the program should report on empty
{!endsection}s when doing empty searches

{!end} = marks the end of a section; by default !repeat values are
cleared. Data found is stored.

{!endcomment X} = clears the comment set by previous !setcomment
and !appendcomment of X. X has to match verbatim a comment
added using !setcomment or !appendcomment. !endcomment
with no argument (i.e., {!endcomment}) clears all comments.

TAMS Analyzer 5/12/05 70

{!endlastcomment} = removes the last comment set by !setcomment or
!appendcomment. To remove a specific comment use
!endcomment.

{!endsection} = like !end, but !repeat codes keep their values, they are
not cleared

{!eofisend} = end of file is treated as {!end}

{!eofisnotend} = end of file is not treated as end

{!escapeoff} = treat “\” as a regular character

{!escapeon} = attend to “\” as an escape character, i.e., it is a flag to
TAMS to not treat the next character as special. Useful for texts
that have braces ({ and }) in them.

{!first X} = See !inner.

{!frontloadrepeat} = for a coded passage that crosses an !end value, the
record will have it’s repeat values assigned from the start of the
passage.

{!if X=”something” => Y = “a value”} = For already declared universal
or repeat code values X and Y, the program will automatically
assign Y to “a value” every time that X is assigned to
“something”. X and Y must both be repeat values or they must
both be universal values; you cannot mix and match.

{!inner X} = short for innerrepeat; designates a code already declared as
a repeat code should be treated as if it had a {!endsection}
before it. Warning: !inner cancels !last and vice versa.
Synonyms: !first, !innerrepeat.

{!innerrepeat X} = See !inner.
{!last X} = short for lastrepeat; designates that existing repeat code X

will always be the last repeat for a section and that the next
occurrence of any repeat code after X should be treated as
having {!endsection} before it. Warning: !inner cancels !last
and vice versa. Synonym: !lastrepeat.

{!lastrepeat X} = See !last.

{!map X->Y, A->B, …} = specifies that instances of repeat value X
should be put in the column called Y (mapped into Y), values
of repeat value A should be put in the column called B. X, Y,
A, and B must all be designated as repeat values. Y and B

TAMS Analyzer 5/12/05 71

should be repeats at the beginning of your search list so that
columns are created for them.

{!name X} = creates or assigns a universal code called FileName to
value X.

{!noemptysection} = specifies that empty searches should only be
returned for !end’s not !endsections.

{!noheader} = specifies that result files should not produce a header row
when saved as text

{!noquote} = specifies that quotes should be converted to escape
characters.

{!noskipinneratend} = overrides the default behavior in which after an
!end or !endsection metatag the first encountered occurrence of
the !inner repeat value is not treated as having an !endsection
before it. Using this metatag treats the first occurrence after an
!end as having an !endsection in front of it.

{!noskipinnertopofdoc} = overrides the default behavior in which the
first time the !inner repeat code is encountered at the start of the
document it is not treated as having an {!endsection} in front of
it.

{!nozapuniversal} = specifies that universals should not be cleared at
end of file

{!repeat X} = used to indicate that code X is designated a repeat code.
Synonyms: !context, !contextcode.

{!setcomment X} = appends comment X to the comments provided in
all subsequent end tags. Using this metatag with no value, i.e.,
{!setcomment} clears the comment. This also replaces any
previously established comment created with !setcomment or
!appendcomment with X

{!setrepeat X=”Y”} = sets existing repeat code X to value Y—if X does
not exist it creates it.

{!skipinneratend} = reasserts the default behavior in which after
encountering a !end or !endsection, the next occurrence of the
!inner repeat code is not treated as having an !endsection before
it. All subsequent occurrences in the document are treated as
having an !endsection before it.

TAMS Analyzer 5/12/05 72

{!skipinnertopofdoc} = reasserts default behavior in which the first
occurrence of the !inner repeat code is not treated as having an
{!endsection} before it. All subsequent occurrences in the
document are treated as having an !endsection before it.

{!struct} = Indicates that a document or document part is structured, i.e.,
is broken up using !end, !endsection, !last or !inner. Important
for conducting section searches.

{!universal X=”Y”} = creates or assigns an existing universal code X
and assigns it value Y

{!unstruct} = indicates that there is no structuring elements. Program
treats each close tag as though it had an !endsection
immediately after it. Section searches are pretty much
meaningless. This is the default state of the tams interpreter.

{!zapmap} = Clears the map of all entries.
{!zapuniversal} = specifies that universals should be cleared at the end

of each file

TAMS Analyzer 5/12/05 73

Appendix 4

Preferences

Coding preferences
Prompt for new code definition: Should TA ask you for a code definition when

you enter a new code (i.e., press the new button on the document
window)?

Use time-date stamp in new code definition: Should TA prefix a new code
definition with a cryptic time/date stamp

Take the code by double clicking list: Is double clicking the code list your
preferred way to code data? Turn off if you want it to take the code
from the little box under the buttons on the document window (fill in
box and click code)

Code list reveals codes as tool tips: a legacy from before TA used split views to
accommodate long codes. Codes appear as tool tips. Slows down the
system significantly. Not recommended.

Use coder id: insert a coder id (you provide it in the box) as you code.

Scan init file… : Should TA scan the init file every time you open a document
to see if there are !button metacodes?

Color tags: What is the default color for meta and code tags?

Automatically refresh tag colors: Should TA automatically refresh the colors
when a file is opened or other changes occur? Could slow down your
system. You can manually uncolor and recolor tags from the coding
menu.

Display comment dialogue for code button: rather than manually typing
comments into the end tag you can set this up so that when you single
click a code and then use the code button you are given a dialogue box
into which to put your comments.

Use HH:MM:SS format: If checked insert time code and the display of media
time will be in HH:MM:SS format. If unchecked the program will use
raw seconds for both insert time code and the display of media time in
both the document and results windows. (Note, this does not change
your data from seconds to HH:MM:SS format. Use the convert menu
options on the Coding->Audio/Visual menu to transform your data to
one format or the other.)

TAMS Analyzer 5/12/05 74

Searching Preferences
Detached result sheets: Should dialogue boxes float above all windows or be

attached to them (affects some not all dialogues)? Recommended.

Autoreload after… : Should the results window refresh after recoding or add
coding?

Report empty…: Should an empty search report at {!end} or {!endsection}?

Show coder…: Should the coder be reported when examining a raw search

EOF is same as {!end}: Should the end of a file be treated as if it had an
implied {!end} there

Evaluate repeat variables…: If checked, coded passages that cross an {!end}
boundary are evaluated in the last section, other wise they are evaluated
at the first section that the coded passage includes.

Universal variables zapped…: Should universal variables carry their value from
document to document or be cleared?

Include repeat variables…: If checked repeats are treated just as normal data
codes when doing a non-simple search.

Use old Mac new line…: When doing a save to of result files should the
program use OSX file new lines or older style new line characters (if
you are exporting to programs that are run in classic you probably need
this checked).

Export result file format: This sets the character set of data being exported
when a result file is saved with “save to” type text.

Number of characters…: This sets how much context should be given when
doing a string search.

Recognize ‘\’…: Should ‘\’ be taken as itself or as an escape character?

Scan for line numbers: If you use the line number and wrap feature you should
have TA scan for line numbers: adds a line number to the first line of
results.

Unmark…: Should marked records be unmarked after doing a recode or
addcode?

Update results…: Should TA attempt to revise your results based on addcodes
and recodes. This is an art (and I’m not an artist). If you really need to
see accurate results uncheck this and refresh your windows.

TAMS Analyzer 5/12/05 75

Save Graphviz files: If you want the default response of Report->dotGraph
Output to be to save the report (rather than open it directly in graphviz)
check this box. Useful if you want to use X11 graphviz software rather
than the aqua version.

Enable the back button…: Should the back (and forward buttons) of the result
window button panel be enabled? Why disable them? They use a lot of
memory!!! If you’re close to the limit you might want to turn off this
feature.

Open document…: Should TA open affected files as it recodes, add codes etc.?
This can get quite messy, with possibly dozens of files being opened,
but these can then be “undone” file by file. Otherwise (unchecked) add
code and recode etc. work in the background and are not undo-able.

Documents treated as structured…: When doing a search should TA treat the
document as structured, which means that repeat values aren’t matched
up with data until an explicit or implicit (set through !last or !inner)
{!end}/{!endsection} is found? Otherwise the program assumes
documents are unstructured which means that every end tag is treated
as if it has an !endsection following it.

