WinDriver ™ USB User's
Manual

Version 10.3.0

Jungo Ltd.

WinDriver ™ USB User's Manual: Version 10.3.0
Copyright © Jungo Ltd. 2005-2011 All Rights Reserved.

Information in this document is subject to change without notice. The software described in this document is furnished under alicense
agreement. The software may be used, copied or distributed only in accordance with that agreement. No part of this publication

may be reproduced, stored in aretrieval system, or transmitted in any form or any means, electronically or mechanically, including
photocopying and recording for any purpose without the written permission of Jungo Ltd.

Brand and product names mentioned in this document are trademarks of their respective owners and are used here only for
identification purposes.

© Jungo Ltd. 2005-2011

Table of Contents

LY AT a1 T AV @ /= AV L= SR 1
1.1, INtroduCtioN 10 WINDIIVEYoviiiiiieie ettt e s e s e aa e e s s eab e e e s e s abeee e s sanaees 1
1.2, BACKGIOUNG ...ttt e st e e e ne e b e et e nae e 2

1.2.1. The CRall@NGEooeeeeeeeeee e 2
1.2.2. The WINDIIVEN SOIULION ...oooiiiiiie ittt e s aaa e e s ebre e e s esaraee s 2
G T 0 Tox 111" To | R 3
1.4, WINDIIVEr BENEFILS ...ttt s e s e sbr e e s e b e e e e s aanreee s 4
1.5, WINDIIVEr ATCIITECIUIEveeeieeeeee ettt s e e e s s ebre e e s e sabaeee s 5
1.6. What Platforms Does WIinDriver SUPPOIT?ccoeeereerenieneeseeeeseee e seesiee e seesneeneens 6
1.7. Limitations of the Different Evaluation VErSIONSccocveeeiieeciiee e 6
1.8. How Do | Develop My Driver With WINDIIVEr?ccooviiiieeieeee e 6
1.8.1. ON WINAOWS QN0 LINUX ..vvviiiiiriiieiiiieies e e e eiree e s sssaeessessbaseessssaeesssnnneess 6
1.8.2. ON WINAOWS CE ...ttt ettt st e s s aba e e e s eaae e e s s nbaeee s 7
1.9. What Does the WinDriver ToolKit INCIUE?ccvveereeeeee e 7
1.9.1. WINDIIVEr MOAUIESevvieieetiee ettt et e e e s s ebae s 7
L.9.2. ULHIITIES ettt ettt e e e e st e e e be e e ear e e e sateeeeareeeeaneeans 8
1.9.3. WinDriver's Specific Chipset SUPPOITccvviiiiieeeereeee e e 9
194, SAMPIES ..ttt ettt ae et et sreenre e 9
1.10. Can | Distribute the Driver Created With WINDIIVEr?ccoeeeeeeeciieeceee e, 9

2. Understanding DEVICE DITVENScoouiieiieieeeestee ettt ettt sse e e e sneeeas 10
2.1. DEVICE DIIVEr OVEIVIEW ...oooiiiiriiee ettt eeteee e et e e s e saae e s s e sabe e e s s sbaeeessensaeessannreneas 10
2.2. Classification of Drivers According to FUNCONalityccoooeveeieeienieneeeee e 10

2y W Y o 0] 111 Lo B A V= 10
2.2.2. LAYEIEA DIIVELS ...ttt sttt seeeesaeesbeeeesneens 11
2.2.3. MINIPOIT DIIVELS ...ttt st e e nee e nns 12
2.3. Classification of Drivers According to Operating SyStemsccoeceeveereneeneerinseenees 13
2.3. 1. WDIM DIIVELS ..ottt ettt e ettt e s s et e s e s e e s s e sbae e s ssabaeesssnbaeeessanseeessanns 13
R I 5 B I B 1Y/ S 14
2.3.3. UNIX DEVICE DIIVEIS .ottt ettt s sttt e sttee e s s saaae e s s e sabaea s s sbreeesanns 14
2.3 4. LiNUX DEVICE DIIVELS ...ovveiiiectiiee ettt sttt atae e s sbaee e s eaaa e e s s earaee s 14
2.4. The Entry POINt Of the DIIVESoiiiiie ettt 15
2.5. Associating the Hardware With the DIIVESc.ooeeiiriiieineeeeee e 15
2.6. Communicating With DIIVEF'Sc.cooiiiiiieieeeee et 15

3. WINDIIVEr USB OVEIVIEW ...oveeeiietiiee ettt e sttt e s s eata e e s s s ba e e s s eabaesssssbeeessanbeeesssnnens 16
3.1 INtrodUCLION t0 USBoeiiiiieeiie ettt e e s et e e s e ba e e s s eabe e e s s sabreeesaans 16
3.2. WINDIIVEr USB BENEFITS ...ttt sttt st e st ee s e bra e e s s ennaeeeeanns 17
3.3. USB COMPONENESeeiiiiiiieiie ettt b e sae e b s e e e se e saeeebeesnneenneesnneeas 17
3.4. Data FIOW 1N USB DEVICES ...oooeiiieeiee ettt e vt e st e s saaa e e s s sbaa e e s senaaeeeens 18
3.5. USB Dala EXCNANGEeoiueeitiiieiiesieeie ettt ee e steeee e e nneenee s 19
3.6. USB Data TranSfer TYPEScoieeieeierieeieeiesiee e eeesteesee et seesseesteeee e e sseeneeseeeseesnee e 20

I I O 01 (o I I = = 21
3.6.2. 1SOCHIONOUS TraNSFEY ...oveiiiieieie e e e s e eaaee e 21
3.6.3. INEITUPL TIANSFEY ..ottt ens 21
N N STV S I =0 (= (SRR 22
3.7. USB CONFIQUIBLIONooiuieieeiieiiieie ettt ettt e se e s eesaeesreeaeeneenneeneas 22
3.8, WINDIIVEN USB ...ttt ettt e et e e s st e e s s eab e e e e s eabe e e s eaabeeeessnaees 24

© Jungo Ltd. 2005-2011 iii

3.9. WiINDIIVEr USB AFCHITECIUIE ...t e e e e e e e e e e eeeaeeeeaaas 25

3.10. Which Drivers Can | Write with WinDriver USB?coccovvininiiniiinenee e 27
A, INSEAING WINDIIVELoiieceeceee ettt st re e e beeneesaeesseeneeaneenaeeneesreenseannens 28
4.1, System REQUITEMENLScc.eciueiieeeesieeieseesteeeeseesteeee s e s teese s e e seeeesseesseenesseesseensesneenns 28
4.1.1. Windows System REeQUITEMENLSc.ccverurieereeieseeseeieesreesaeseesseessesseesseesseens 28
4.1.2. Windows CE System ReqUIrEMENLSccccveveieerieeiieseesie e steesie e sse e enas 28
4.1.3. Linux System REQUITEMENESc.oceeieieieiee et 29

4.2. WiIinDriver INStallation PrOCESScooeiiiireiinireseeeesie st 29
4.2.1. Windows WinDriver Installation INStruCtionsc.coceverinienienenenesesenenes 29
4.2.2. Windows CE WinDriver Installation INSIruCtionSccoceveveneneeienenieseniens 30
4.2.2.1. Installing WinDriver CE when Building New CE-Based Platforms....... 30

4.2.2.2. Installing WinDriver CE when Developing Applications for Windows

CE COMPULETS .ottt ettt sttt s s sss e s se e s ne e sbe e s ssbe e s saneesnsneeennneeans 32

4.2.2.3. Windows CE Installation NOEccccervieieriereni e 33

4.2.3. Linux WinDriver Installation INSIrUCLIONScccoveiiienieninieeese e 33
4.2.3.1. Preparing the System for Installationcccccceveevencenciene e, 33
4.2.3.2. INSEAIELION ..o 34

4.2.3.3. Restricting Hardware ACCESS 0N LiNUX ...ccuveveiueeiieccieceesieeie e e 36

4.3. Upgrading Your INStallationccceoveeiieieieseee e 36
4.4, Checking Your INSallalioncccoeeieiieiieie et 37
4.4.1. Windows and Linux Installation Checkccocvviiininininininieree e 37
4.4.2. Windows CE Installation Check ... 37

4.5, UNIiNStalling WINDIIVEDccuoeieeecieceee sttt e et e st eesnee s 37
4.5.1. Windows WinDriver Uninstall INStruCtionsc.coevererieinnenene e 37
4.5.2. Linux WinDriver Uninstall INSIrUCtIONSccooeiirinineneneneeee e 39

5. USING DIVENWIZAIT ..ottt sttt sttt e e te et e nneenneenee e 40
5.1 AN OVEIVIEIW .ottt b bbbttt et e et e st st e st s bense e e e e ens 40
5.2. DriverWizard WalKtroughoooiiiiiice et 41
5.2.1. Logging WiIinDriver APl CallScccecieieiieieeie et e e 50
5.2.2. DriverWiIZard LOGUEScceieerieiiieieesteeteetee e eee s e sseeaesee e seesneesaeeaesneessesnse e 50
5.2.3. Automatic Code GENEIALIONcccerererieieriesiesie st ens 50
5.2.3.1. Generating the COOEccovevieeieeieie et 50

5.2.3.2. The Generated USB C COUEcocevirieririnieeerie et 51

5.2.3.3. The Generated Visua Basic and Delphi Code..........ccccooveeeieeiviceesieennnn, 51

5.2.3.4. The Generated C# and Visua Basic .NET Code.........cccoervvrerrirnieniennene 51

5.2.4. Compiling the Generated COUEcccveeevieieieese e 51
5.2.4.1. Windows and Windows CE Compilationcccccceveevesieeseciieseeseenn. 51

5.2.4.2. LinUX COMPIlELION ...cceeeieieiiceceece e 52

5.2.5. Bus Analyzer Integration — Ellisys Visual USBccccooevivienieie e 52

6. DEVEIOPING @ DIIVEN ..ottt ettt ettt e s e e e ne e teeneesreenseenneaneennens 53
6.1. Using DriverWizard to Build a DeVICe DIIVESccccceeveeieiieiece e 53
6.2. Writing the Device Driver Without DriverWizardccceeeeveeeieeiesceese e 54
6.2.1. Include the Required WINDIIVEr FIlEScccoeveiieiieie e 54
6.2.2. WITE YOUI COUE ..ottt sttt st 55
6.2.3. Configure and Build YOUr COEccceevuveieiieciece e 55

6.3. Developing Y our Driver on Windows CE Platforms..........ccccovevevieeinccee e 56
6.4. Developing in Visua Basic and Delphicccooveeiieiice e 57
6.4.1. USING DIVENWIZAIAccoveeiiceee ettt 57

© Jungo Ltd. 2005-2011 iv

O 1 1 o) = 57

6.4.3. Creating YOUr DIVEYccvieeieee ettt 57

A= o UTe o [1 o I AV = £ S 58
7.1. User-Mode DEDUGGING ...ooveieieiieieciereee ettt nesneens 58

4728 D T o 8 o TN 1Y/ o T (o | 58
7.2.1. The wddebug_gui ULHILYcceeeecieceee e 59

7.2.1.1. Running wddebug_gui for a Renamed Drivercccoovvveveeiveceecneenee. 61

7.2.2. The wddebug ULHITY ...ooceeeeceeceeece e 61

7.2.2.1. Console-Mode wddebug EXecutioncccoceeveeveieenecce e 61

7.2.2.2. Windows CE GUI wddebug EXECULiONccccveveeieesienieeseese e 64

8. Enhanced Support for Specific ChipSELScccveeeciee e 66
8L OVEIVIBIW .ttt bbbttt e et et s b b s bt e bt e se e et et et et nnas 66

8.2. Developing a Driver Using the Enhanced Chipset SUPPOTItcccocveveveeveecieseeceen 66

9. USB TTANSIEIS .uviieiiiitieiieiieie ettt s b ettt b et e e b e b et s b b e be e st e e et e nbenbe st 67
0.1, OVEIVIBIW oottt sttt bt bbbttt e e b et s b e bt bt e st e se et et et e beneennis 67

9.2. USB CONtrol TIaNSFEIS ..ocueeieieiiesiesie ettt sttt st 68
9.2.1. USB Control TransSfers OVEIVIEWcoccrerieierieriesiesiesiesiesesesesessee s seesseseens 68

9.2.1.1. Control Data EXChaNQEccceeveeieieeieeie et 68

9.2.1.2. More About the Control Transfer ... 68

0.2.1.3. The Setup PaCKELcceeieeeeceee e 69

9.2.1.4. USB Setup Packet FOrmMatcccoooeveeiiiie e 69

9.2.1.5. Standard Device ReqUESt COESccceevuveeeieereeeseerie et 70

9.2.1.6. Setup Packet EXAMPIEcc.ecceeiieciece et 70

9.2.2. Performing Control Transfers with WinDIiVErcccocoeevviievecce e 71

9.2.2.1. Control Transfers with DriverWizardcccocevvveninenneneneneeenes 71

9.2.2.2. Control Transfers with WinDriver AP ... 73

9.3. Functional USB Data TranSIEr'Sccceierirenininieeesie et sae e seens 74
9.3.1. Functional USB Data Transfers OVEIVIEWccccceverenenenesesieneeneeseeseeseesnes 74

9.3.2. SINgle-BIOCKING TraNSFEN'Sccveiieiie et 74

9.3.2.1. Performing Single-Blocking Transfers with WinDriverc...ccccene. 74

9.3.3. Streaming Data TranSfersccveveieeiice e 74

9.3.3.1. Performing Streaming wWith WIiNDIiVErccccoovveviievececeee e 75

10. Dynamically Loading Y OUr DIIVEScccuciieieieesiecie ettt sae e enae e 77
10.1. Why Do You Need a Dynamically Loadable Driver?cccovveveveevencieseesie e 77
10.2. Windows Dynamic Driver LOAdingccccvveeveeresieeseesie e seesee e e esee e enne e 77
10.2.1. WINAOWS DIIVEN TYPES .c.veeeeiiieiieeieseesieeeesseesteessesseesseesessessseessesssesseessesnessnes 77

10.2.2. The WAreg ULHILY ..cc.eeieeeeeeeceeeee ettt ne s 77

10.2.2. 1. OVEIVIBIW ..ttt bbbttt b et nne e 78

10.2.3. Dynamically Loading/Unloading windrvr6.sys INF Filesccccocvevveciecnee 79

10.3. Linux DynamicC Driver LOBOINGccccveieieeieeieseesie e seesie e esie s s sne e sneenneas 80
10.4. Windows Mobile Dynamic Driver Loadingccccceveeieieenesin e 80

I D TS] oW (] g e I o U T DT = S 81
11.1. Getting a Valid License for WINDIIVENc.cocveceieeiecie e se e sae e e 81
11.2. Windows Driver DIStriDULIONccooviiiiiiiine e e 81
11.2.1. Preparing the Distribution Packageccccveveieeiiece s 82

11.2.2. Installing Your Driver on the Target COMPULEYccccceeveecieveeieecie e 82

11.3. Windows CE Driver DiStriDULIONccooviiiiinininieesese e 85
11.3.1. Distribution to New Windows CE PlatfOrmsccoceveveieneneneseseseneeneen, 85

© Jungo Ltd. 2005-2011 v

11.3.2. Distribution to Windows CE COMPULENSccccvreerreereeseesieeieesreeseeseesneeneenns 87

11.4. LinuxX Driver DIStriDULIONcccoiiiiiiinine et 88
11.4.1. KerNEl MOUUIESooviiiiiiiiieiee ettt et 88
11.4.2. User-Mode Hardware Control Application/Shared Objects.........ccccccevvevieennnne 90
G T g 1S = = o T 1 o) S 90

12. Driver Installation — AQVANCEA ISSUEScoeriririeiiiiesie sttt 91

12.1. WINAOWS INF FIES ..ottt 91
12.1.1. Why Should | Create an INF FIlE?ooveieeeceee et 91
12.1.2. How Do | Install an INF File When No Driver EXiStS?ccccoovvvvenenenennnn, 92
12.1.3. How Do | Replace an Existing Driver Using the INF File?...........cccccvvnennnee. 92

12.2. Renaming the WinDriver Kernel DIIVEScccooveieeieceece e 93
12.2.1. WIindows Driver RENAMINGcccccceiieieiieiieieeieeseese e seessessee e essesseesseensens 9
12.2.2. LinuxX Driver RENAMINGccoveiieiieriicieseesieeteseesesaesreesseseesseesseseesneensesnnens 96

12.3. Digital Driver Signing and Certification — Windows 7/Vista/Server 2008/Server

2003/XPI2000oeveeereeiisieieesteseeeseste st see et seste st e e te st et neete s e e eteete e eseereneenenrenaenean 97
12.3. 1. OVEIVIBIW ettt sttt bbbttt a et st e b e nbenneens 97

12.3.1.1. Authenticode Driver SIgNaLUIEcccoceeveeeeereeieeseereeeeseesee e 98

12.3.1.2. WHQL Driver CertifiCationccccoveeviueeieeceeiee et 98

12.3.2. Driver Signing and Certification of WinDriver-Based Drivers..........ccccceeueee.. 99

12.3.2.1. WHQL DTM TESt NOEScveviereeeiiieieisiesie st 100

12.4. Windows XP Embedded WinDriver COMPONENLccccceereeiierieeseesieseesieeseeeee e 101

A. 64-Bit Operating SySteMS SUPPOITveceeieeieeieseesieeeesteeseeee e e se e e reenteeeesreenseens 103

A.1. Supported 64-Bit ArChiteCtUIreScccvccueieeii e 103

A.2. Support for 32-Bit Applications on 64-Bit Windows and Linux Platforms............... 103

A.3. 64-Bit and 32-Bit Dala TYPES ...ccveeviicieiieitieee ettt ee e sre e s sse e 104

B. WinDriver USB HOSt APl REFEIENCEcoeiviriiriiiieieie sttt 105

B.1. WD _DIIVEINGIMEcceeeieeee ettt st e et e tessaenneeneesneenseeneenns 105

B.2. WinDriver USB (WDU) Library OVEIVIEWccccceeiveeeiiieiieseesie e seesie e 106
B.2.1. Caling Sequence for WinDriver USBccccoieiicie e 106
B.2.2. Upgrading from the WD _xxx USB API to the WDU_xxx APIccccoveueenee. 109

B.3. USB User Callback FUNCLIONScccoiiiiiiiinininiee et 110
B.3.1. WDU_ATTACH_CALLBACK ..ottt 110
B.3.2. WDU_DETACH_CALLBACK ..ottt 111
B.3.3. WDU_POWER_CHANGE_CALLBACKcccotieeeereee e 112

B.4. USB FUNCLIONSccuoitiiiiiiiiieieiesie et sttt bbb 113
2t Y1V 1 L ¥ o 1 RSP 113
B.4.2. WDU_SEINEITACE ...c.covieiieieiesiesieesie e s 114
B.4.3. WDU_GEtDEVICEAUANc.evviiiieiieiesieesie ettt 115
B.4.4. WDU_GetDeviceRegiStryPrOPErtYcceeeeceeiecee e eeesteesie e 116
B.4.5. WDU_GEDEVICEINTOecvicieeiiese ettt 117
B.4.6. WDU_PUIDEVICEINTOovecee ettt s 118
2R 1Y 1 O 1 o SRS 119
B.4.8. Single-Blocking Transfer FUNCLIONSccvevrviereeie e 120

B.4.8.1. WDU_TIanNSfer ..cecovviiieieiisiesieise e 120
B.4.8.2. WDU_HaltTransfercccoveirireisiseseseseeese st 122
B.4.8.3. WDU_TransferDefaultPipeccocoeeiiiieiieiece e 123
B.4.8.4. WDU_TransSferBUIKcooeiiririnieincieeeesese e 123
B.4.8.5. WDU_TransferISOCNc.ccveiiiieiieie e 124

© Jungo Ltd. 2005-2011 Vi

B.4.8.6. WDU_TransferlNterruptccceeeeverieereeie e eee e see e s 124

B.4.9. Streaming Data Transfer FUNCLIONScccveivieevecce e 125
B.4.9.1. WDU_SIreamMOPENcccveieerierieriisiesiesiesesee e et sseseseeseessesseseesnas 125
B.4.9.2. WDU_SITEAMSEAITovviriiriirieniirieie et 127
B.4.9.3. WDU_SIreamREadccoereririeieiienie et 127
B.4.9.4. WDU_SIrEamMWIITEooereiriiriirieieiesie st 128
B.4.9.5. WDU_SIreamFIUSNcccooiiiiiies e 129
B.4.9.6. WDU_SIreamMGEISIALUSccereriirieriiniinieieriesie e s see s 130
B.4.9.7. WDU_SITEAMSIOP ...eeveeerierierieriesieseseeseeseeseesseseessessessessessessssssessessesses 131
B.4.9.8. WDU_SIreaMCIOSEovveriiriiriiniieieiesie et 132

B.4.10. WDU_RESELPIPEcceiiiiriiiiiriesiieieie ettt st st 132

B.4.11. WDU_RESEIDEVICEccueeueiiiieriisie ettt sae s e sns 133

B.4.12. WDU_SeleCtiVESUSPENGooouveiieeiieieseeie ettt 134

B.4.13. WDU_WaaKEUDooueeiiiiiiirienie sttt sttt st 135

B.4.14. WDU_GEILANGIDSooviiiiiiiiiieiesirieeeie ettt st 136

B.4.15. WDU_GEISIINGDESCooviiviieiiiniiniieieieesie st sttt sressesns 137

B.5. USB Dat@ TYPES ..eeiiiiiiiiiiiesiieesitie sttt sttt st s sne e snne e nane e s nnneeennes 138

B.5.1. WD_DEVICE_REGISTRY_PROPERTY Enumerationcccceeervereriennns 139

B.5.2. USB SITUCLUIES ...t 140
B.5.2.1. WDU_MATCH_TABLE SIUCIUIecccceriririeieeriene e 142
B.5.2.2. WDU_EVENT_TABLE SIIUCIUIecoooeviriirierieeeieee e 142
B.5.2.3. WDU_DEVICE SIUCLUIEcceiiriiriirieieieie et 142
B.5.2.4. WDU_CONFIGURATION SIIUCIUIEc.covuiieriiniinienienieseeee e 143
B.5.2.5. WDU_INTERFACE SITUCIUIEccooiveriesiirienieeeeee e 143
B.5.2.6. WDU_ALTERNATE_SETTING SIrUCTUIEceevrieieieiiniesenesiee 144
B.5.2.7. WDU_DEVICE_DESCRIPTOR StrUCUIecceeiriririeierie e 144
B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structurec.ccccceenen.. 145
B.5.2.9. WDU_INTERFACE_DESCRIPTOR SITUCIUIEccceeeeeerienieriesienens 145
B.5.2.10. WDU_ENDPOINT_DESCRIPTOR SITUCIUIEccceeeeeeienieriesienens 146
B.5.2.11. WDU_PIPE_INFO SITUCIUIEc.coviiiiriisierieniesieee e 146

B.6. General WD _XXX FUNCHIONScc.ccviiiiciecie et ee sttt see et nas 147

B.6.1. Calling Sequence WinDriver — General USEcccveveveeviecciesiese e 147

IV I @ o= o ISP 148

B.6.3. WD _VEISION ..ottt sttt sttt sttt 149

B.6.4. WD _ClOSE ..ottt sttt st sttt ettt s nae e 150

B.6.5. WD _DEDUG ..o e 151

B.6.6. WD _DeEDUGATDocooeiiieieee e 152

A VAV D I BT o1U | I o] o 154

B.6.8. WD _SIEED ..oviiiieieeieeiee ettt bbbt nne s 155

B.6.9. WD _LICENSE ...ttt sttt st bbbt nn b nre s 156

B.7. User-Mode Utility FUNCLIONScccccveiiiiieciese ettt s 158

BL7.1. SEBE2SIE ..ottt bttt et b nr s 158

B.7.2. QBLL0OS LYP ittt e e 158

B.7.3. TRrEAASKAITcviieeeieeeee e e 159

B.7.4. TRIEAOWAIT ... 159

B.7.5. OSEVENICIEALE ... s 160

B.7.6. OSEVENICIOSEooiviiiiieiiiriieieee ettt sttt b e e 161

B.7.7. OSEVENIWAILcceoiviriieiiiieiesiesie ettt st nne s 161

© Jungo Ltd. 2005-2011 vii

B.7.8. OSEVENISIGNELcceeeiiee et 162

B.7.9. OSEVENIRESELoeiiiviiictie ettt ba e s s be e sabe e e eareas 162

B.7.10. OSMULEXCIEALEcooieivriiriieeeeeeeiiirrre e e s e e s e e siibbber e e e s e s s s esbbaee e e e e s s s e snsbraaeeeessees 163

B.7.11. OSMULEXCIOSEoeeiieieiieie ettt et s vttt s s e b e s s bae e sabee e sabeeesnres 164

B.7.12. OSMULEXLOCKc.vvieiciiie ittt ettt sbe s s e s sabe e s snbe e s snbeessnreeens 164

B.7.13. OSMULEXUNIOCKvviiiriiiiiieictie ettt sttt eivee s s s b sbae e sree s 165

B.7.14. PrintDDGMESSA0Eocveeiuieieiiieite ettt ee e te e st neenne e sne s 165

B.7.15. WD _LOGSEAIToocueeciieieeee ettt ettt sre e e nne e 166

B.7.16. WD _LOGSIOP ..eecveeieeiiiiiesieeieseesteeieseesteesaesee e essesseesseesesseesneessesneesneensesnnas 167

B.7.17. WD _LOGAA ..ottt st nne e 167

B.8. WINDIIVEr SEAtUS COUESccicvviiiiiieciiee e etee e sttieeete e st e e sbre s sbae s sbeesssbesssneesssnneeans 168

RS I 1 g1 (0o (1 Tox 1 IR 168

B.8.2. Status Codes Returned by WINDIIVEScccovveeieeieceere e 168

B.8.3. Status Codes Returned by USBDccocceiieiiiieceece e 169

C. Troubleshooting and SUPPOITccceiieiierieiesiesieeteseeste e e e teesre s e s e eeeeseesreenesneesneennens 173
D. Evaluation Version LIMITAHiONSccccueeiiiiiiiiiiciieccree e stes s sreeseteesssee s sneessneessveessnreessnnees 174
D.1. Windows WinDriver Evaluation Limitationscccceviiieeiiiee e sieeesiee s 174

D.2. Windows CE WinDriver Evaluation Limitationsccccccveeeiiveeeviee i 174

D.3. Linux WinDriver Evaluation LimitationsScccceeiiiiiiiec et siee e srvee e 175

E. PUrChasing WINDIIVEDccooiiiieceee ettt sttt esreenseennesneenneennas 176
F. Distributing Your Driver — Legal ISSUESccccveieiierie e seeste et sae e sneens 177
(CTAYo (o[1 0= I B Io e Ut aT< a1 7= 1 o] 178

© Jungo Ltd. 2005-2011 viii

List of Figures

1.1, WINDIIVEr ATCIITECIUIE ..ottt sttt nns 5
P28 I Y Fo o] L1 T o D = SRR 11
2.2, LAYEIEA DIIVELS ...ttt sttt et et e st e s bt et e s st e sseeteeaeesbeeeesneenneennens 12
PG TV 1 aTT oo B Y TSP 13
3.1, USB ENOPOINES ...cueeieieieeieeieesiee e siee sttt e st e te s e sseesesseesbeessesseesseesesseesseensesneesseensesneesseenes 19
A U B 1 = ST 20
3.3. DEVICE DESCIIPLOIS ..uveeuieieeeieeieeiee st ee et e sttt ae e te e e e steeae et esbeeteeneesaeesesneesseeneesneenes 23
3.4. WINDriver USB ATChITECIUIEcoieiiieeeceee et 26
5.1. Create or Open a WIiNDIIVEr PrOJECEccoiieiiiiesieeeeeeee e e 41
5.2, SEIECE YOUI DEVICE ...ttt sttt e e e st e ee s st e naeeeeeneenneenes 42
5.3. DriverWizard INF File INfOrmMationc.coceoieiiiiieieee et 43
5.4. DriverWizard Multi-Interface INF File Information — Specific Interfacecccceeeienee. 44
5.5. DriverWizard Multi-Interface INF File Information — Composite Deviceccccceeveeennens 45
5.6. SElECt DEVICE INLEITACEoveeieeeieeee ettt nne s 47
5.7. USB CONLrOl TIANSFEI'Sveiiiiiiiiieeieeiesie ettt st e e e ste e e neesbeeneesneenee 47
o3 T I = o 0 (o T T o= 48
S T L (= (0 T SRR 49
5.10. Code Generation OPLIONSccceiieiieiieiesieeriesee st see st see st e sseesee e e sreeseeneesseeeesseesaeenes 49
5.11. Ellisys Visual USB INTEQIratioNccceeiiiiiiieieiiesieeie et 52
7.1, Start DEDUG MONITOL ..ot b et sn e e nee e 59
22D o 8o I ® o1 o o 1SR 60
7.3. wddebug Windows CE Start LOg MESSAJEccierurrierieeieneesieeeeseeeseeseessee e sseessesseesneens 64
7.4. wddebug Windows CE StOP LOg MESSAQEcccueruerreiiieie et 65
9.1. USB Dal@ EXCNANGEeeeeeiiieieeieitiesieee ettt saeeste st e sne e seeneesneenseeneesseeeeens 67
9.2. USB R8I AN WITE ...ttt st esre e sneen 69
O.3. CUSLOM REGUESL ...ttt ettt sae e e e ae e e abe e sae e e abeesaeeeareesneeanneenneas 72
S (= o 1= I P 72
O.5. USB REQUESE LOQ ...ttt sttt ettt e e e e s e saeeeneesmeeeneesaneenne 73
B.1. WinDriver USB Calling SEOUENCEcoouiiieiieieiierieeie et saeeeesneens 108
B.2. WINDIIVEr USB SHUCLUIESccuieiiieiesiieieeiesiee e see et e s sae s ste s s esaeete e e snesnsesneens 141
B.3. WinDriver APl Calling SEQUENCEcooiiieiiee ettt st 147

© Jungo Ltd. 2005-2011 ix

Chapter 1
WinDriver Overview

In this chapter you will explore the uses of WinDriver, and learn the basic steps of creating your
driver.

This manual outlines WinDriver's support for USB devices.

WinDriver also supports development for PCI / PCMCIA / CardBus/ ISA / EISA /
CompactPCI / PCI Express devices. For detailed information regarding WinDriver's support
for these buses, please refer to the WinDriver Product Line page on our web site (http://
www.jungo.com/st/windriver.html) and to the WinDriver PCI Manual, which isavailable
online at: http://www.jungo.com/st/support/support_windriver.html.

1.1. Introduction to WinDriver

WinDriver is adevelopment toolkit that dramatically simplifies the difficult task of creating
device drivers and hardware access applications. WinDriver includes awizard and code
generation features that automatically detect your hardware and generate the driver to access it
from your application. The driver and application you develop using WinDriver is source code
compatible across all supported operating systems[1.6]. The driver is binary compatible across
Windows 7/Vista/Server 2008/Server 2003/X P/2000.

WinDriver provides a complete solution for creating high-performance drivers.

Don't let the size of this manual fool you. WinDriver makes developing device drivers an

easy task that takes hoursinstead of months. Most of this manual deals with the features that
WinDriver offers to the advanced user. However, most developers will find that reading this
chapter and glancing through the DriverWizard and function reference chaptersis all they need to
successfully write their driver.

WinDriver supports development for all USB chipsets. Enhanced support is offered for Cypress,
Microchip, Philips, Texas Instruments, Agere and Silicon Laboratories USB chipsets, as outlined
in Chapter 8 of the manual.

Visit Jungo's web site at http://www.jungo.com for the latest news about WinDriver and other
driver development tools that Jungo offers.

© Jungo Ltd. 2005-2011 1

http://www.jungo.com/st/windriver.html
http://www.jungo.com/st/windriver.html
http://www.jungo.com/st/support/support_windriver.html
http://www.jungo.com

WinDriver Overview

1.2. Background

1.2.1. The Challenge

In protected operating systems such as Windows and Linux, a programmer cannot access
hardware directly from the application level (user mode), where development work is usually
done. Hardware can only be accessed from within the operating system itself (kernel mode or
Ring-0), utilizing software modules called device drivers. In order to access a custom hardware
device from the application level, a programmer must do the following:

Learn the internals of the operating system he is working on.

Learn how to write adevice driver.

Learn new tools for devel oping/debugging in kernel mode (WDK, ETK, DDI/DKI).
Write the kernel-mode device driver that does the basic hardware input/output.

Write the application in user mode that accesses the hardware through the device driver written
in kernel mode.

Repeat the first four steps for each new operating system on which the code should run.

1.2.2. The WinDriver Solution

Easy Development: WinDriver enables Windows, Windows CE, and Linux programmers

to create USB based device driversin an extremely short time. WinDriver allows you to

create your driver in the familiar user-mode environment, using MS Visual Studio, Borland
C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visua C++, MS Platform
Builder C++, GCC, or any other appropriate compiler/IDE. Y ou do not need to have any
device driver knowledge, nor do you have to be familiar with operating system internas, kernel
programming, the WDK, ETK or DDI/DKI.

Cross Platform: The driver created with WinDriver will run on Windows 7/Vista/Server 2008/
Server 2003/XP/2000, Windows CE.NET, Windows Embedded CE v6.00, Windows Mobile
5.0/6.0, and Linux. In other words — write it once, run it on many platforms.

Friendly Wizards: DriverWizard (included) is agraphica diagnosticstool that lets you view
the device's resources and test the communication with the hardware with just afew mouse
clicks, before writing asingle line of code. Once the device is operating to your satisfaction,
DriverWizard creates the skeletal driver source code, giving access functionsto al the
resources on the hardware.

K ernel-M ode Performance: WinDriver's APl is optimized for performance.

© Jungo Ltd. 2005-2011 2

WinDriver Overview

1.3. Conclusion

Using WinDriver, a developer need only do the following to create an application that accesses
the custom hardware:

« Start DriverWizard and detect the hardware and its resources.

» Automatically generate the device driver code from within DriverWizard, or use one of
the WinDriver samples as the basis for the application (see Chapter 8 for an overview of
WinDriver's enhanced support for specific chipsets).

* Modify the user-mode application, as needed, using the generated/sample functions to
implement the desired functionality for your application.

Y our hardware access application will run on all the supported platforms [1.6] — just re-compile
the code for the target platform. The code is binary compatible across Windows 7/Vista/Server
2008/Server 2003/XP/2000 platforms; there is no need to rebuild the code when porting it across
binary-compatible platforms.

© Jungo Ltd. 2005-2011 3

WinDriver Overview

1.4. WinDriver Benefits

» Easy user-mode driver development.
 Friendly DriverWizard allows hardware diagnostics without writing a single line of code.

» Automatically generates the driver code for the project in C, C#, Visual Basic .NET, Delphi
(Pascal) or Visual Basic.

» Supports any USB device, regardless of manufacturer.

» Enhanced support for Cypress, Microchip, Philips, Texas Instruments, Agere and Silicon
Laboratories chipsets frees the developer from the need to study the hardware's specification.

» Applications are binary compatible across Windows 7 / Vista/ Server 2008 / Server 2003 /
XP/2000.

» Applications are source code compatible across all supported operating systems — Windows 7/
Vista/Server 2008/Server 2003/X P/2000, Windows CE.NET, Windows Embedded CE v6.00,
Windows Mobile 5.0/6.0, and Linux.

 Can be used with common devel opment environments, including MS Visual Studio, Borland
C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visua C++, MS Platform
Builder C++, GCC, or any other appropriate compiler/IDE.

* NoWDK, ETK, DDI or any system-level programming knowledge required.

* Supports multiple CPUs.

* Includes dynamic driver |oader.

» Comprehensive documentation and help files.

» Detailed examplesin C, C#, Visual Basic .NET, Delphi and Visual Basic 6.0.

* WHQL certifiable driver (Windows).

» Two months of free technical support.

* No run-time fees or royalties.

© Jungo Ltd. 2005-2011 4

WinDriver Overview

1.5. WinDriver Architecture

Figure 1.1. WinDriver Architecture

Your Application / DIl / Shared Object

Your Driver Code
‘ I
WinDriver .NET Wrapper API
(wdapi_dotnet DLL)

[

Y Yy

High-level WinDriver API
(wdapi DLL / shared object)

|

...

Kernel Mode

Low-Level WinDriver API
(WinDriver Kernel Module -
windrvr6.sys/.dll/.ol ko)

A

Your Hardware

D Components You Write
[] winDriver Components

[D] OS Components

For hardware access, your application calls one of the WinDriver user-mode functions. The user-
mode function calls the WinDriver kernel, which accesses the hardware for you through the
native calls of the operating system.

© Jungo Ltd. 2005-2011 5

WinDriver Overview

1.6. What Platforms Does WinDriver Support?

WinDriver supports the following operating systems:
» Windows 7/Vista/Server 2008/Server 2003/XP/2000 — henceforth collectively: Windows

* Windows CE 4.x — 5.x (Windows CE.NET), Windows Embedded CE v6.00, Windows Mobile
5.0/6.0 — henceforth collectively: Windows CE

e Linux

The same source code will run on all supported platforms — simply re-compile it for the target
platform. The source code is binary compatible across Windows 7/VistalServer 2008/Server
2003/XP/2000; WinDriver executables can be ported among the binary-compatible platforms
without re-compilation.

Even if your code is meant only for one of the supported operating systems, using WinDriver
will give you the flexibility to move your driver to another operating system in the future without
needing to change your code.

1.7. Limitations of the Different Evaluation
Versions

All the evaluation versions of the WinDriver USB Host toolkit are full featured. No functions
are limited or crippled in any way. The evaluation version of WinDriver varies from the registered
version in the following ways:

» Each time WinDriver is activated, an Unregistered message appears.

* When using DriverWizard, adialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* Inthe Linux and Windows CE versions, the driver will remain operational for 60 minutes, after
which time it must be restarted.

» The Windows evaluation version expires 30 days from the date of installation.

For more details please refer to Appendix D.

1.8. How Do | Develop My Driver with
WinDriver?

1.8.1. On Windows and Linux

1. Start DriverWizard and use it to diagnose your hardware — see details in Chapter 5.

© Jungo Ltd. 2005-2011 6

WinDriver Overview

2. Let DriverWizard generate skeletal code for your driver, or use one of the WinDriver samples
asthe basis for your driver application (see Chapter 8 for details regarding WinDriver's
enhanced support for specific chipsets).

3. Modify the generated/sample code to suit your application's needs.

4. Run and debug your driver.

The code generated by DriverWizard is a diagnostics program that contains functions that
perform data transfers on the device's pipes, send requests to the control pipe, change the
active alternate setting, reset pipes, and more.

1.8.2. On Windows CE

1. Plug your hardware into a Windows host machine.
2. Diagnose your hardware using DriverWizard.
3. Let DriverWizard generate your driver's skeletal code.

4. Modify this code, using MS eMbedded Visual C++, to meet your specific needs. If you are
using M S Platform Builder, activate it and insert the generated *.pbp into your workspace.

5. Test your driver on the target embedded Windows CE platorm.

1.9. What Does the WinDriver Toolkit Include?

» A printed version of this manual
» Two months of free technical support (Phone/Fax/Email)
* WinDriver modules
* The WinDriver CD
« Utilities
 Chipset support APIs

o Samplefiles

1.9.1. WinDriver Modules

* WinDriver (WinDriver/include) —the general purpose hardware access toolkit. The main files
here are:

» windrvr.h: Declarations and definitions of WinDriver's basic API.

© Jungo Ltd. 2005-2011 7

WinDriver Overview

» wdu_lib.h: Declarations and definitions of the WinDriver USB (WDU) library, which
provides convenient wrapper USB APIs.

» windrvr_int_thread.h: Declarations of convenient wrapper functions to simplify interrupt
handling.

» windrvr_events.h: Declarations of APIsfor handling and Plug-and-Play and power
management events.

+ utils.h: Declarations of general utility functions.

» status strings.h: Declarations of API for converting WinDriver status codes to descriptive
error strings.

» DriverWizard (WinDriver/wizard/wdwizard) — a graphical application that diagnoses your
hardware and enables you to easily generate code for your driver (refer to Chapter 5 for
details).

» Debug Monitor — adebugging tool that collects information about your driver asit runs. This
tool isavailable both asafully graphica application — WinDriver/util/wddebug_gui —and
as a console-mode application — WinDriver/util/wddebug. The console-mode version also
supports GUI execution on Windows CE platforms that don't have a command-line prompt.
For details regarding the Debug Monitor, refer to Section 7.2.

» WinDriver distribution package (WinDriver/redist) —the files you include in the driver
distribution to customers.

* Thismanua —the full WinDriver manual (this document), in different formats, can be found
under the WinDriver/docs directory.

1.9.2. Utilities

» usb_diag.exe (WinDriver/util/usb_diag.exe) — enables the user to view the resources of
connected USB devices and communicate with the devices — transfer data to/from the device,
set the active aternate setting, reset pipes, etc.

On Windows the program identifies all devicesthat have been registered to work with
WinDriver using an INF file. On the other supported operating systems the program identifies
all USB devices connected to the target platform.

e pci_dump.exe (WinDriver/util/pci_dump.exe) — used to obtain a dump of the PCI
configuration registers of the installed PCI cards.

» pci_scan.exe (WinDriver/util/pci_scan.exe) — used to obtain alist of the PCI cardsinstalled
and the resources allocated for each card.

* pcmcia_diag.exe (WinDriver/util/pcmcia_diag.exe) — used for reading/writing PCMCIA
attribute space, accessing PCMCIA 1/0 and memory ranges and handling PCM CIA interrupts.

© Jungo Ltd. 2005-2011 8

WinDriver Overview

* pcmcia_scan.exe (WinDriver/util/pcmcia_scan.exe) — used to obtain alist of the PCMCIA
cards installed and the resources allocated for each card.

1.9.3. WinDriver's Specific Chipset Support

WinDriver provides custom wrapper APIs and sample code for major USB chipsets (see
Chapter 8), including for the following chipsets:

» Cypress EZ-USB —WinDriver/cypress

Microchip PIC18F4550 — WinDriver/microchip/picl8f4550

Philips PDIUSBD12 — WinDriver/pdiusbd12

Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052 — WinDriver/ti

Agere USS2828 — WinDriver/agere.

Silicon Laboratories C8051F320 USB — WinDriver/silabs

1.9.4. Samples

In addition to the samples provided for specific chipsets [1.9.3], WinDriver includes a variety
of samples that demonstrate how to use WinDriver's APl to communicate with your device and
perform various driver tasks.

C samples: found under the WinDriver/samples directory.
These samples also include the source code for the utilities listed above [1.9.2].

NET C# and Visua Basic .NET samples (Windows): found under the WinDriver\csharp.net
and WinDriver\vb.net directories (respectively).

Delphi (Pascal) samples (Windows) WinDriver\delphi\samples directory.

Visual Basic samples (Windows): found under the WinDriver\vb\samples directory.

1.10. Can | Distribute the Driver Created with
WinDriver?

Yes. WinDriver is purchased as a devel opment toolkit, and any device driver created using
WinDriver may be distributed, royalties free, in as many copies as you wish. See the license
agreement at (WinDriver/docg/license.pdf) for more details.

© Jungo Ltd. 2005-2011 9

Chapter 2
Understanding Device Drivers

This chapter provides you with a general introduction to device drivers and takes you through the
structural elements of adevice driver.

Using WinDriver, you do not need to familiarize yourself with the internal workings of
driver development. As explained in Chapter 1 of the manual, WinDriver enables you to
communicate with your hardware and develop adriver for your device from the user mode,
using only WinDriver's ssimple APIs, without any need for driver or kernel development
knowledge.

2.1. Device Driver Overview

Device drivers are the software segments that provides an interface between the operating system
and the specific hardware devices such as terminals, disks, tape drives, video cards and network
media. The device driver brings the device into and out of service, sets hardware parametersin the
device, transmits data from the kernel to the device, receives datafrom the device and passes it
back to the kernel, and handles device errors.

A driver acts like atrangator between the device and programs that use the device. Each device
has its own set of specialized commands that only its driver knows. In contrast, most programs
access devices by using generic commands. The driver, therefore, accepts generic commands
from a program and then translates them into specialized commands for the device.

2.2. Classification of Drivers According to
Functionality

There are numerous driver types, differing in their functionality. This subsection briefly describes
three of the most common driver types.

2.2.1. Monolithic Drivers

Monolithic drivers are device drivers that embody all the functionality needed to support a
hardware device. A monolithic driver is accessed by one or more user applications, and directly
drives a hardware device. The driver communicates with the application through 1/O control
commands (IOCTLs) and drives the hardware using calls to the different WDK, ETK, DDI/DKI
functions.

© Jungo Ltd. 2005-2011 10

Understanding Device Drivers

Figure2.1. Monolithic Drivers

Application

i Uszer Mode
Kemnel Mode

HW

-

Monolithic drivers are supported in all operating systems including all Windows platforms and all
Unix platforms.

2.2.2. Layered Drivers

Layered drivers are device drivers that are part of a stack of device drivers that together process
an 1/0 request. An example of alayered driver isadriver that intercepts cals to the disk and
encrypts/decrypts al data being transferred to/from the disk. In this example, a driver would be
hooked on to the top of the existing driver and would only do the encryption/decryption.

Layered drivers are sometimes also known asfilter drivers, and are supported in all operating
systems including all Windows platforms and all Unix platforms.

© Jungo Ltd. 2005-2011 11

Understanding Device Drivers

Figure2.2. Layered Drivers

Application

il

2.2.3. Miniport Drivers

A Miniport driver is an add-on to aclass driver that supports miniport drivers. It is used so the
miniport driver does not have to implement all of the functions required of adriver for that class.
The class driver provides the basic class functionality for the miniport driver.

A classdriver isadriver that supports a group of devices of common functionality, such as all
HID devices or al network devices.

Miniport drivers are also called miniclass drivers or minidrivers, and are supported in the
Windows NT (2000) family, namely Windows 7 / Vista/ Server 2008 / Server 2003 / XP /2000 /
NT 4.0.

© Jungo Ltd. 2005-2011 12

Understanding Device Drivers

Figure 2.3. Miniport Drivers

Application
Uzer Mode
Kernel Mode
Q\\\\\\\\\\\\\\\\\‘Q
E WNDIS Framewoarls s
%\\\\}\T\\T\\Tx\\\ﬁ
\ Miniport
\ Ciriver
LT T
DO
N)
HW
i

Windows 7/Vista/Server 2008/Server 2003/XP/2000/NT 4.0 provide several driver classes (called
ports) that handle the common functionality of their class. It isthen up to the user to add only the
functionality that has to do with the inner workings of the specific hardware. The NDIS miniport
driver is one example of such adriver. The NDIS miniport framework is used to create network
drivers that hook up to NT's communication stacks, and are therefore accessible to common
communication calls used by applications. The Windows NT kernel provides driversfor the
various communication stacks and other code that is common to communication cards. Due to
the NDIS framework, the network card developer does not have to write all of this code, only the
code that is specific to the network card he is developing.

2.3. Classification of Drivers According to
Operating Systems

2.3.1. WDM Drivers

Windows Driver Model (WDM) drivers are kernel-mode drivers within the Windows NT and
Windows 98 operating system families. The Windows NT family includes Windows 7/Vista/
Server 2008/Server 2003/XP/2000/NT 4.0, and the Windows 98 family includes Windows 98 and
Windows Me.

© Jungo Ltd. 2005-2011 13

Understanding Device Drivers

WDM works by channeling some of the work of the device driver into portions of the code that
are integrated into the operating system. These portions of code handle al of the low-level buffer
management, including DMA and Plug-and-Play (Pnp) device enumeration.

WDM drivers are PnP drivers that support power management protocols, and include monoalithic
drivers, layered drivers and miniport drivers.

2.3.2. VXD Drivers

VXD drivers are Windows 95/98/Me Virtual Device Drivers, often called VxDs because the file
names end with the .vxd extension. VXD drivers are typically monolithic in nature. They provide
direct access to hardware and privileged operating system functions. VXD drivers can be stacked
or layered in any fashion, but the driver structure itself does not impose any layering.

2.3.3. Unix Device Drivers

In the classic Unix driver model, devices belong to one of three categories: character (char)
devices, block devices and network devices. Drivers that implement these devices are
correspondingly known as char drivers, block drivers or network drivers. Under Unix, drivers
are code units linked into the kernel that run in privileged kernel mode. Generally, driver code
runs on behalf of a user-mode application. Accessto Unix drivers from user-mode applicationsis
provided viathe file system. In other words, devices appear to the applications as special device
filesthat can be opened.

Unix device drivers are either layered or monolithic drivers. A monolithic driver can be perceived
as aone-layer layered driver.

2.3.4. Linux Device Drivers

Linux device drivers are based on the classic Unix device driver model [2.3.3]. In addition, Linux
introduces some new characteristics.

Under Linux, a block device can be accessed like a character device, asin Unix, but also has a
block-oriented interface that is invisible to the user or application.

Traditionally, under Unix, device drivers are linked with the kernel, and the system is brought
down and restarted after installing a new driver. Linux introduces the concept of a dynamically
loadable driver called amodule. Linux modules can be loaded or removed dynamically without
requiring the system to be shut down. A Linux driver can be written so that it is statically linked
or written in amodular form that allows it to be dynamically loaded. This makes Linux memory
usage very efficient because modules can be written to probe for their own hardware and unload
themselvesif they cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are either layered or monolithic drivers.

© Jungo Ltd. 2005-2011 14

Understanding Device Drivers

2.4. The Entry Point of the Driver

Every device driver must have one main entry point, like the mai n() function in a C console
application. Thisentry pointiscaled Dri ver Ent ry() in Windowsandi ni t _nodul e() in
Linux. When the operating system loads the device driver, this driver entry procedure is called.

There is some global initialization that every driver needs to perform only once when

it isloaded for the first time. This global initialization is the responsibility of the

Driver Entry()/i nit _nodul e() routine. The entry function also registers which driver
callbacks will be called by the operating system. These driver callbacks are operating system
requests for services from the driver. In Windows, these callbacks are called dispatch routines,
and in Linux they are called file operations. Each registered callback is called by the operating
system as aresult of some criteria, such as disconnection of hardware, for example.

2.5. Associating the Hardware with the Driver

Operating systems differ in the ways they associate a device with a specific driver.

In Windows, the hardware—driver association is performed viaan INF file, which registers the
device to work with the driver. This association is performed before the Dr i ver Ent r y() routine
iscaled. The operating system recognizes the device, checks its database to identify which INF
fileis associated with the device, and according to the INF file, calls the driver's entry point.

In Linux, the hardware—driver association is defined in the driver'si ni t _nodul e() routine.
This routine includes a callback that indicates which hardware the driver is designated to handle.
The operating system calls the driver's entry point, based on the definition in the code.

2.6. Communicating with Drivers

Communi cation between a user-mode application and the driver that drives the hardware,
isimplemented differently for each operating system, using the the custom OS Application
Programming Interfaces (APIs).

On Windows, Windows CE, and Linux, the application can use the OS file-access API to open
ahandle to the driver (e.g., using the Windows Cr eat eFi | e() function or using the Linux
open() function), and then read and write from/to the device by passing the handle to the relevant
OS file-access functions (e.g., the Windows ReadFi | e() and Wi t eFi | e() functions, or the
Linux read() and w i t e() functions).

The application sends requests to the driver via l/O control (IOCTL) calls, using the custom OS
APIs provided for this purpose (e.g., the Windows Devi cel oCont r ol () function, or the Linux
i oct | () function).

The data passed between the driver and the application viathe IOCTL callsis encapsulated using
custom OS mechanisms. For example, on Windows the data is passed via an 1/0 Request Packet
(IRP) structure, and is encapsulated by the I/O Manager.

© Jungo Ltd. 2005-2011 15

Chapter 3
WinDriver USB Overview

This chapter explores the basic characteristics of the Universal Serial Bus (USB) and introduces
WinDriver USB's features and architecture.

The references to the WinDriver USB toolkit in this chapter relate to the standard
WinDriver USB toolkit for development of USB host drivers.

"
1

3.1. Introduction to USB

USB (Universal Serial Bus) is an industry standard extension to the PC architecture for

attaching peripherals to the computer. It was originally developed in 1995 by leading PC and
telecommunication industry companies, such as Intel, Compag, Microsoft and NEC. USB was
developed to meet several needs, among them the needs for an inexpensive and widespread
connectivity solution for peripheralsin general and for computer telephony integration in
particular, an easy-to-use and flexible method of reconfiguring the PC, and a solution for adding a
large number of external peripherals. The USB standard meets these needs.

The USB specification allows for the connection of a maximum of 127 peripheral devices
(including hubs) to the system, either on the same port or on different ports.

USB also supports Plug-and-Play installation and hot swapping. The USB 1.1 standard supports
both isochronous and asynchronous data transfers and has dual speed data transfer: 1.5 Mb/s
(megabits per second) for low-speed USB devices and 12 Mb/sfor full-speed USB devices
(much faster than the original seria port). Cables connecting the device to the PC can be up to
five meters (16.4 feet) long. USB includes built-in power distribution for low power devices and
can provide limited power (up to 500 mA of current) to devices attached on the bus.

The USB 2.0 standard supports a signalling rate of 480 Mb/s, known as "high-speed’, which is 40
times faster than the USB 1.1 full-speed transfer rate.

USB 2.0isfully forward- and backward-compatible with USB 1.1 and uses existing cables and
connectors.

USB 2.0 supports connections with PC peripherals that provide expanded functionality and
require wider bandwidth. In addition, it can handle alarger number of peripherals ssmultaneously.
USB 2.0 enhances the user's experience of many applications, including interactive gaming,
broadband Internet access, desktop and Web publishing, Internet services and conferencing.

Because of its benefits (described also in Section 3.2 below), USB is currently enjoying broad
market acceptance.

© Jungo Ltd. 2005-2011 16

WinDriver USB Overview

3.2. WinDriver USB Benefits

This section describes the main benefits of the USB standard and the WinDriver USB toolkit,
which supports this standard:

External connection, maximizing ease of use

Self identifying peripherals supporting automatic mapping of function to driver and
configuration

Dynamically attachable and re-configurable peripherals

Suitable for device bandwidths ranging from afew Kb/s to hundreds of Mb/s

Supports isochronous as well as asynchronous transfer types over the same set of wires
Supports simultaneous operation of many devices (multiple connections)

Supports a data transfer rate of up to 480 Mb/s (high-speed) for USB 2.0 (for the operating
systems that officially support this standard) and up to 12 Mb/s (full-speed) for USB 1.1

Guaranteed bandwidth and low |atencies; appropriate for telephony, audio, etc. (isochronous
transfer may use almost the entire bus bandwidth)

Flexibility: supports awide range of packet sizes and awide range of data transfer rates

Robustness: built-in error handling mechanism and dynamic insertion and removal of devices
with no delay observed by the user

Synergy with PC industry; Uses commodity technologies

Optimized for integration in peripheral and host hardware

Low-cost implementation, therefore suitable for development of low-cost peripherals
Low-cost cables and connectors

Built-in power management and distribution

Specific library support for custom USB HID devices

3.3. USB Components

The Universal Serial Bus (USB) consists of the following primary components:

USB Host: The USB host platform is where the USB host controller isinstalled and where the
client software/device driver runs. The USB Host Controller is the interface between the host
and the USB peripherals. The host is responsible for detecting the insertion and removal of

© Jungo Ltd. 2005-2011 17

WinDriver USB Overview

USB devices, managing the control and data flow between the host and the devices, providing
power to attached devices and more.

* USB Hub: A USB device that allows multiple USB devicesto attach to asingle USB port on
aUSB host. Hubs on the back plane of the hosts are called root hubs. Other hubs are called
external hubs.

» USB Function: A USB device that can transmit or receive data or control information over the
bus and that provides afunction. A function is typically implemented as a separate peripheral
device that plugsinto aport on ahub using a cable. However, it is also possible to create a
compound device, which is a physical package that implements multiple functions and an
embedded hub with asingle USB cable. A compound device appears to the host as a hub with
one or more non-removable USB devices, which may have ports to support the connection of
external devices.

3.4. Data Flow in USB Devices

During the operation of a USB device, the host can initiate aflow of data between the client
software and the device.

Data can be transferred between the host and only one device at atime (peer to peer
communication). However, two hosts cannot communicate directly, nor can two USB devices
(with the exception of On-The-Go (OTG) devices, where one device acts as the master (host) and
the other asthe dave.)

The data on the USB bus is transferred via pipes that run between software memory buffers on the
host and endpoints on the device.

Data flow on the USB busis half-duplex, i.e., data can be transmitted only in one direction at a
given time.

An endpoint isauniquely identifiable entity on a USB device, which is the source or terminus of
the data that flows from or to the device. Each USB device, logical or physical, has a collection of
independent endpoints. The three USB speeds (low, full and high) all support one bi-directional
control endpoint (endpoint zero) and 15 unidirectional endpoints. Each unidirectional endpoint
can be used for either inbound or outbound transfers, so theoretically there are 30 supported
endpoints.

Each endpoint has the following attributes: bus access frequency, bandwidth requirement,
endpoint number, error handling mechanism, maximum packet size that can be transmitted or
received, transfer type and direction (into or out of the device).

© Jungo Ltd. 2005-2011 18

WinDriver USB Overview

Figure 3.1. USB Endpoints

Endpoints
b e ——————
e B ————— g
________________ Memory Hosts
USB » Buffers
Device \
o ——————— >
N
Y
\
Y
3
h Y
3
b Data Pipes/
\ _ _ DataPipes

Data Transfer

A pipeisalogical component that represents an association between an endpoint on the USB
device and software on the host. Datais moved to and from a device through a pipe. A pipe can
be either a stream pipe or a message pipe, depending on the type of data transfer used in the pipe.
Stream pipes handle interrupt, bulk and isochronous transfers, while message pipes support the
control transfer type. The different USB transfer types are discussed below [3.6].

3.5. USB Data Exchange

The USB standard supports two kinds of data exchange between a host and a device: functional
data exchange and control exchange.

» Functional Data Exchangeis used to move data to and from the device. There are three types
of USB datatransfers: Bulk, Interrupt and Isochronous.

» Control Exchangeis used to determine device identification and configuration regquirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.

© Jungo Ltd. 2005-2011 19

WinDriver USB Overview

Control exchange takes place viaa control pipe, mainly the default Pipe O, which always exists.
The control transfer consists of a setup stage (in which a setup packet is sent from the host to
the device), an optional data stage and a status stage.

Figure 3.2 below depicts a USB device with one bi-directional control pipe (endpoint) and two
functional datatransfer pipes (endpoints), as identified by WinDriver's DriverWizard utility
(discussed in Chapter 5).

Figure 3.2. USB Pipes

ﬁ} DriverWizard

File Tools Wiew Project Help

r g Y |

Active Projects g X |

Alternate Setting 2 Mumber of Endpaoints 2

J Cypress Semiconductor Corp. - Produck ID: 1003 ‘ 1 ’—‘
[=- Cypress Semiconductor Corp, - Produck ID: 1003
= Interface 0

Alternake Setting 0
Alternate Setting 1

Pipe Name Pipe Type Information

direction: in & out, pa

Alternate Setting 2
Alcernate Setking 3
Alternate Setting 4
Alternate Setting 5
Alternate Setting &

Z pipe 0x82 Bulk direction: in, packet size: 512

3 | pipe Ox6 Bulk direction: out, packet size: 512

Read [Write

Information Panel g X

log | output | Description

More information on how to implement the control transfer by sending setup packets can be
found in Section 9.2.

3.6. USB Data Transfer Types

The USB device (function) communicates with the host by transferring data through a pipe
between a memory buffer on the host and an endpoint on the device. USB supports four different
transfer types. A typeis selected for a specific endpoint according to the requirements of the
device and the software. The transfer type of a specific endpoint is determined in the endpoint
descriptor.

The USB specification provides for the following data transfer types:

© Jungo Ltd. 2005-2011 20

WinDriver USB Overview

3.6.1. Control Transfer

Control Transfer is mainly intended to support configuration, command and status operations
between the software on the host and the device.

Thistransfer typeisused for low-, full- and high-speed devices.

Each USB device has at least one control pipe (default pipe), which provides access to the
configuration, status and control information.

Control transfer is bursty, non-periodic communication.
The control pipeis bi-directiona —i.e., data can flow in both directions.

Control transfer has arobust error detection, recovery and retransmission mechanism and retries
are made without the involvement of the driver.

The maximum packet size for control endpoints can be only 8 bytes for low-speed devices; 8, 16,
32, or 64 bytes for full-speed devices; and only 64 bytes for high-speed devices.

For more in-depth information regarding USB control transfers and their implementation, refer to
Section 9.2 of the manual.

3.6.2. Isochronous Transfer

Isochronous Transfer is most commonly used for time-dependent information, such as multimedia
streams and telephony.

This transfer type can be used by full-speed and high-speed devices, but not by low-speed
devices.

Isochronous transfer is periodic and continuous.

The isochronous pipe is unidirectional, i.e., a certain endpoint can either transmit or recelve
information. Bi-directional isochronous communication requires two isochronous pipes, onein
each direction.

USB guarantees the isochronous transfer access to the USB bandwidth (i.e., it reserves the
required amount of bytes of the USB frame) with bounded latency, and guarantees the data
transfer rate through the pipe, unless there is less data transmitted.

Since timeliness is more important than correctness in this type of transfer, no retries are made in
case of error in the data transfer. However, the data receiver can determine that an error occurred
on the bus.

3.6.3. Interrupt Transfer

Interrupt Transfer isintended for devices that send and receive small amounts of data infrequently
or in an asynchronous time frame.

© Jungo Ltd. 2005-2011 21

WinDriver USB Overview

This transfer type can be used for low-, full- and high-speed devices.

Interrupt transfer type guarantees a maximum service period and that delivery will be re-
attempted in the next period if thereis an error on the bus.

The interrupt pipe, like the isochronous pipe, is unidirectional and periodical.

The maximum packet size for interrupt endpoints can be 8 bytes or less for |ow-speed devices; 64
bytes or less for full-speed devices, and 1,024 bytes or less for high-speed devices.

3.6.4. Bulk Transfer

Bulk Transfer istypically used for devices that transfer large amounts of non-time sensitive data,
and that can use any available bandwidth, such as printers and scanners.

This transfer type can be used by full-speed and high-speed devices, but not by low-speed
devices.

Bulk transfer is non-periodic, large packet, bursty communication.
Bulk transfer allows access to the bus on an "as-available" basis, guarantees the data transfer but
not the latency, and provides an error check mechanism with retries attempts. If part of the USB

bandwidth is not being used for other transfers, the system will useit for bulk transfer.

Like the other stream pipes (isochronous and interrupt), the bulk pipe is also unidirectional, so bi-
directional transfers require two endpoints.

The maximum packet size for bulk endpoints can be 8, 16, 32, or 64 bytes for full-speed devices,
and 512 bytes for high-speed devices.

3.7. USB Configuration

Before the USB function (or functions, in a compound device) can be operated, the device

must be configured. The host does the configuring by acquiring the configuration information
from the USB device. USB devices report their attributes by descriptors. A descriptor isthe
defined structure and format in which the datais transferred. A complete description of the USB
descriptors can be found in Chapter 9 of the USB Specification (see http://www.usbh.org for the
full specification).

It isbest to view the USB descriptors as a hierarchical structure with four levels:
* TheDevicelevel
» The Configuration level

» ThelInterface leve (thislevel may include an optional
sub-level called Alternate Setting)

© Jungo Ltd. 2005-2011 22

http://www.usb.org

WinDriver USB Overview

» The Endpoint level

Thereis only one device descriptor for each USB device. Each device has one or more
configurations, each configuration has one or more interfaces, and each interface has zero or more
endpoints, as demonstrated in Figure 3.3 below.

Figure 3.3. Device Descriptors

Device Descriptor

Configuration Descriptor Configuration Descriptor
Interface Descriptor Interface Descriptor
Endpoint Endpoint
Descriptor Descriptor |

» Device Level: The device descriptor includes general information about the USB device, i.e.,
global information for all of the device configurations. The device descriptor identifies, among
other things, the device class (HID device, hub, locator device, etc.), subclass, protocol code,
vendor 1D, device ID and more. Each USB device has one device descriptor.

» Configuration Level: A USB device has one or more configuration descriptors. Each
descriptor identifies the number of interfaces grouped in the configuration and the power
attributes of the configuration (such as self-powered, remote wakeup, maximum power
consumption and more). Only one configuration can be loaded at a given time. For example,
an |SDN adapter might have two different configurations, one that presentsit with asingle
interface of 128 Kb/s and a second that presents it with two interfaces of 64 Kb/s each.

» Interface Level: Theinterfaceisarelated set of endpoints that present a specific functionality
or feature of the device. Each interface may operate independently. The interface descriptor
describes the number of the interface, the number of endpoints used by this interface
and the interface-specific class, subclass and protocol values when the interface operates
independently.

In addition, an interface may have alter nate settings. The alternate settings alow the endpoints
or their characteristics to be varied after the device is configured.

* Endpoint Level: The lowest level isthe endpoint descriptor, which provides the host with
information regarding the endpoint's data transfer type and maximum packet size. For
isochronous endpoints, the maximum packet size is used to reserve the required bus time for
the data transfer —i.e., the bandwidth. Other endpoint attributes are its bus access frequency,

© Jungo Ltd. 2005-2011 23

WinDriver USB Overview

endpoint number, error handling mechanism and direction. The same endpoint can have
different properties (and consequently different uses) in different alternate settings.

Seems complicated? Not at al! WinDriver automates the USB configuration process. The
included DriverWizard utility [5] and USB diagnostics application scan the USB bus, detect all
USB devices and their configurations, interfaces, alternate settings and endpoints, and enable you
to pick the desired configuration before starting driver development.

WinDriver identifies the endpoint transfer type as determined in the endpoint descriptor. The
driver created with WinDriver contains all configuration information acquired at this early stage.

3.8. WinDriver USB

WinDriver USB enables developers to quickly develop high-performance drivers for USB-based
devices without having to learn the USB specifications and operating system internals, or use
the operating system development kits. For example, Windows drivers can be devel oped without
using the Windows Driver Kit (WDK) or learning the Windows Driver Model (WDM).

The driver code developed with WinDriver USB is binary compatible across the supported
Windows platforms — Windows 7/Vista/Server 2008/Server 2003/XP/2000 — and source code
compatible across al supported operating systems — Windows 7/Vista/Server 2008/Server
2003/X P/2000, Windows CE.NET, Windows Embedded CE v6.00, Windows Mobile 5.0/6.0,
and Linux. For an up-to-date list of supported operating systems, visit Jungo's web site —
http://www.jungo.com.

WinDriver USB is ageneric tool kit that supports al USB devices from al vendors and with all
types of configurations.

WinDriver USB encapsulates the USB specification and architecture, letting you focus on your
application logic. WinDriver USB features the graphical DriverWizard utility [5], which enables
you to easily detect your hardware, view its configuration information, and test it, before writing
asingleline of code: DriverWizard first lets you choose the desired configuration, interface

and alternate setting combination, using afriendly graphical user interface. After detecting and
configuring your USB device, you can proceed to test the communication with the device —
perform data transfers on the pipes, send control requests, reset the pipes, etc. —in order to ensure
that all your hardware resources function as expected.

After your hardware is diagnosed, you can use DriverWizard to automatically generate your
device driver source codein C, C#, Visual Basic .NET, Delphi or Visual Basic. WinDriver USB
provides user-mode APIs, which you can call from within your application in order to implement
the communication with your device. The WinDriver USB API includes USB-unique operations
such asreset of a pipe or adevice. The generated DriverWizard code implements a diagnostics
application, which demonstrates how to use WinDriver's USB API to drive your specific device.
In order to use the application you just need to compile and run it. Y ou can jJump-start your
development cycle by using this application as your skeletal driver and then modifying the code,
as needed, to implement the desired driver functionality for your specific device.

DriverWizard also automates the creation of an INF file that registers your device to work with
WinDriver, which is an essential step in order to correctly identify and handle USB devices

© Jungo Ltd. 2005-2011 24

http://www.jungo.com

WinDriver USB Overview

using WinDriver. For an explanation on why you need to create an INF file for your USB device,
refer to Section 12.1.1 of the manual. For detailed information on creation of INF files with
DriverWizard, refer to Section 5.2 (see specifically Step 3).

With WinDriver USB, al development is done in the user mode, using familiar devel opment

and debugging tools and your favorite compiler/IDE (such as M S Visual Studio, Borland C++
Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual C++, MS Platform Builder C++,
GCCQC).

For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 9 of the manual.

3.9. WinDriver USB Architecture

To access your hardware, your application calls the WinDriver kernel module using functions
from the WinDriver USB API. The high-level functions utilize the low-level functions, which

use |OCTLs to enable communication between the WinDriver kernel module and your user-
mode application. The WinDriver kernel module accesses your USB device resources through the
native operating system calls.

There are two layers responsible for abstracting the USB device to the USB device driver. The
upper layer isthe USB Driver (USBD) layer, which includes the USB Hub Driver and the USB
Core Driver. The lower level isthe Host Controller Driver (HCD) layer. The division of duties
between the HCD and USBD layersis not defined and is operating system dependent. Both the
HCD and USBD are software interfaces and components of the operating system, where the HCD
layer represents alower level of abstraction.

The HCD isthe software layer that provides an abstraction of the host controller hardware, while
the USBD provides an abstraction of the USB device and the data transfer between the host
software and the function of the USB device.

The USBD communicates with its clients (the specific device driver, for example) through

the USB Driver Interface (USBDI). At the lower level, the Core Driver and USB Hub Driver
implement the hardware access and data transfer by communicating with the HCD using the Host
Controller Driver Interface (HCDI).

The USB Hub Driver isresponsible for identifying the addition and removal of devicesfrom a
particular hub. When the Hub Driver receives asignal that a device was attached or detached, it
uses additional host software and the USB Core Driver to recognize and configure the device. The
software implementing the configuration can include the hub driver, the device driver, and other
software.

WinDriver USB abstracts the configuration procedure and hardware access described above

for the developer. With WinDriver's USB API, developers can perform al the hardware-

related operations without having to master the lower-level implementation for supporting these
operations.

© Jungo Ltd. 2005-2011 25

WinDriver USB Overview

Figure 3.4. WinDriver USB Architecture

D Components You Write .
[C] WinDriver Components Your Application/DIl/Shared Object

[I] os Components -
Your Driver Code

A .

WinDriver .NET wrapper API
(wdapi_dotnet)

Y #

High-level WinDriver API
(wdapi DLL / shared object)

Kernel Mode

Low-Level WinDriver API
(WinDriver Kernel Module -
windrvr6.sys/.dll/.of ko)

L

Py
\-rl
[l
o
——
|
fa

—_— e — — — o — — — — — — — — — _——— e e — — —— —_— e — o o — — e — — — — — — =

Host Controller Driver (HCD)

EHCI Driver L

—y
—
1
L)

S

Hardware
W

© Jungo Ltd. 2005-2011 26

WinDriver USB Overview

3.10. Which Drivers Can | Write with
WinDriver USB?

Almost all monolithic drivers (drivers that need to access specific USB devices) can be written
with WinDriver USB. In cases where a standard driver is required, e.g., NDIS driver, SCSI driver,
Display driver, USB to Serial port drivers, USB layered drivers, etc., use KernelDriver USB (also
from Jungo).

For quicker development time, select WinDriver USB over Kernel Driver USB whenever possible.

© Jungo Ltd. 2005-2011 27

Chapter 4
Installing WinDriver

This chapter takes you through the process of installing WinDriver on your development
platform, and shows you how to verify that your WinDriver is properly installed. The last section
discusses the uninstall procedure. To find out how to install the driver you create on target
platforms, refer to Chapter 11.

4.1. System Requirements

4.1.1. Windows System Requirements

* Any x86 32-bit or 64-bit (x64: AMDG64 or Intel EM64T) processor
» Any development environment supporting C, .NET, VB or Delphi
» Windows 2000 requires SP4

* Windows XP requires SP2

4.1.2. Windows CE System Requirements

* Anx86/MIPS/ARM Windows CE 4.x —5.x (Windows CE.NET) or Windows Embedded CE
v6.00 target platform
or:
an ARMV4l Windows Mobile 5.0/6.0 target platform

» Windows 7/Vista/Server 2008/Server 2003/X P/2000 host development platform

* For Windows CE 4.x —5.0: Microsoft eMbedded Visual C++ with a corresponding target
SDK, OR Microsoft Platform Builder with a corresponding BSP (Board Support Package) for
the target platform

For Windows Embedded CE 6.0: Microsoft Visua Studio 2005/2008 with a corresponding
target SDK or with the Windows CE 6.0 plugin

For Windows M obile: Microsoft Visua Studio 2005/2008

© Jungo Ltd. 2005-2011 28

Installing WinDriver

4.1.3. Linux System Requirements

* Any 32-hit x86 processor with aLinux 2.4.x or 2.6.x kernel
or:
Any 64-bit x86 AMDG64 or Intel EM64T (x86_64) processor with aLinux 2.4.x or 2.6.x kernel

Jungo strives to support new Linux kernel versions as close as possible to their release.
To find out the latest supported kernel version, refer to the WinDriver rel ease notes
(found online at http://www.jungo.com/st/wdver.html).

* A GCC compiler

The version of the GCC compiler should match the compiler version used for building
the running Linux kernel.

"
1

* Any 32-bit or 64-bit devel opment environment (depending on your target configuration)
supporting C for user mode

» On your development PC: glibc2.3.x

* libstdc++.50.5 —required for running GUI WinDriver applications (e.g., DriverWizard [5];
Debug Monitor [7.2])

4.2. WinDriver Installation Process

The WinDriver CD contains all versions of WinDriver for the supported operating systems.

The CD's root directory contains the Windows 7 / Vista/ Server 2008 / Server 2003 / XP / 2000
version. Theinstallation of this version will begin automatically when you insert the CD into the
CD drive on your Windows development machine. The other versions of WinDriver are located
in <OS> sub-directories (for example: Linux; Wince).

4.2.1. Windows WinDriver Installation Instructions

; Driver installation on Windows requires administrator privileges.

1. Insert the WinDriver CD into your CD-ROM drive, or double-click the downloaded
installation file— WD1030.EXE — and follow the installation instructions.

When using the installation CD, wait afew seconds for the installation to begin
automatically. If this does not happen, double-click the file WD1030.EXE in the CD,
and click the Install WinDriver button.

"
1

2. At the end of the installation, you may be prompted to reboot your computer.

© Jungo Ltd. 2005-2011 29

http://www.jungo.com/st/wdver.html

Installing WinDriver

* The WinDriver installation definesaWD_BASEDI R environment variable, which is set to
point to the location of your WinDriver directory, as selected during the installation. This
variable is used during the DriverWizard [5] code generation — it determines the default
directory for saving your generated code and is used in the include paths of the generated
project/make files.

* If theinstalation failswith an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL _MACHI NE\ SOFTWARE
\ M crosof t\ Wndows\ Current Ver si on. Thisregistry key isrequired by
Windows Plug-and-Play in order to properly install drivers using INF files. If the
RunOnce key ismissing, create it; then try installing the INF file again.

Thefollowing stepsarefor registered usersonly:

To register your copy of WinDriver with the license you received from Jungo, follow these steps.
3. Start DriverWizard: Start | Programs | WinDriver | DriverWizard.

4. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

5. Click the Activate L icense button.

6. To register source code that you devel oped during the evaluation period, refer to the
documentation of WDU | ni t () [B.4.1].

4.2.2. Windows CE WinDriver Installation
Instructions

4.2.2.1. Installing WinDriver CE when Building New
CE-Based Platforms

» Thefollowing instructions apply to platform devel opers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visua Studio 2005/2008 with
the Windows CE 6.0 plugin. The instructions use the notation '‘Windows CE IDE' to
refer to either of these platforms.

» We recommend that you read Microsoft's documentation and understand the Windows
CE and device driver integration procedure before you perform the installation.

1. Modify the project registry file to add an entry for your target device:

* If you select to use the WinDriver component (refer to Step 2), modify WinDriver
\samples\wince_instal\<TARGET_CPU>\WinDriver.reg (e.g., WinDriver\samples
\wince_instalNARMV4I\WinDriver .reg).

» Otherwise, modify WinDriver\samples\wince install\project_wd.reg.

© Jungo Ltd. 2005-2011 30

Installing WinDriver

2. You can simplify the driver integration into your Windows CE platform by following the
procedure described in this step before the Sysgen platform compilation stage.

Note:

» The procedure described in this step is relevant only for devel opers who use Windows CE
4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MS Visual Studio 2005/2008 should skip to the
next step (Step 3).

» This procedure provides a convenient method for integrating WinDriver into your
Windows CE platform. If you select not to use this method, you will need to perform the
manual integration steps described in Step 4 below, after the Sysgen stage.

» The procedure described in this step also adds the WinDriver kernel module
(windrvr6.dll) to your OSimage. Thisis anecessary step if you want the WinDriver CE
kernel file (windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using a floppy
disk. However, if you prefer to have the file windrvr6.dll loaded on demand viathe
CESH/PPSH services, you need to perform the manual integration method described in
Step 4 instead of performing the procedure described in the present step.

a. Run the Windows CE IDE and open your platform.

b. From the File menu select Manage Catalog Items.... and then click the Import... button
and select the WinDriver .cec file from the relevant WinDriver\samples\wince_install
\<TARGET_CPU> directory (e.g., WinDriver\samples\wince_instalN\ARMV4l). This
will add a WinDriver component to the Platform Builder Catalog.

c. Inthe Catalog view, right-click the mouse on the WinDriver Component node in the
Third Party tree and select Add to OS design.

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in Step 2 above, perform the following steps
after the Sysgen stage in order to manually integrate the driver into your platform. Note: If
you followed the procedure described in Step 2, skip this step and go directly to Step 5.

a. Run the Windows CE IDE and open your platform.
b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file—WinDriver\redist\<sTARGET_CPU\windrvr6.dll
—tothe%_FLATRELEASEDIR% subdirectory on the target development platform
(should be the current directory in the new command window).

d. Append the contents of the project_wd.reg file in the WinDriver\samples
\wince _install directory to the project.reg fileinthe% FLATRELEASEDIR%
subdirectory.

© Jungo Ltd. 2005-2011 31

Installing WinDriver

e. Append the contents of the project_wd.bib file in the WinDriver\samples
\wince _install directory to the project.bib fileinthe% FLATRELEASEDIR%
subdirectory.

This step is only necessary if you want the WinDriver CE kernel file (windrvr6.dll) to
be a permanent part of the Windows CE image (NK.BIN), which isthe case if you select
to transfer the file to your target platform using a floppy disk. If you prefer to have the
filewindrvr6.dll loaded on demand via the CESH/PPSH services, you do not need to
carry out this step until you build a permanent kernel.

5. Select Make Run-Time I mage from the Build menu and name the new image NK .BIN.

6. Download your new kernel to the target platform and initialize it either by selecting
Download/I nitialize from the Tar get menu or by using a floppy disk.

7. Restart your target CE platform. The WinDriver CE kernel will automatically load.

8. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see Section 4.4.2, which describes how to check your installation).

4.2.2.2. Installing WinDriver CE when Developing
Applications for Windows CE Computers

Unless otherwise specified, 'Windows CE' referencesin this section include all supported
Windows CE platforms, including Windows Mobile.

The following instructions apply to driver developers who do not build the Windows CE kernel,
but only download their drivers, built using MS eMbedded Visual C++ (Windows CE 4.x —
5.x) or MS Visual Studio 2005/2008 (Windows Mobile or Windows CE 6.x) to aready-made
Windows CE platform:

1. Insert the WinDriver CD into your Windows host CD drive.
2. Exit the automatic installation.

3. Copy WinDriver's kernel module —windrvr6.dll —from the WinDriver\redist\WINCE
\<TARGET _CPU> directory on the Windows host development PC to the Windows
directory on your target Windows CE platform.

4. Add WinDriver to the list of device drivers Windows CE |loads on boot:

» Modify the registry according to the entries documented in the file WinDriver\samples
\wince _install\project_wd.reg. This can be done using the Windows CE Pocket Registry
Editor on the hand-held CE computer or by using the Remote CE Registry Editor Tool
supplied with MS eMbedded Visua C++ (Windows CE 4.x —5.x) / MS Visua Studio
2005/2008 (Windows Mobile or Windows CE 6.x). Note that in order to use the Remote

© Jungo Ltd. 2005-2011 32

Installing WinDriver

CE Registry Editor tool you will need to have Windows CE Servicesinstalled on your
Windows host platform.

» On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every time the OSis
started, copy the WinDriver\redist\Windows Mobile 5 ARMV4l\wdreg.exe utility to
the Windows\StartUp directory on the target PC.

5. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will
have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE computer).

6. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see Section 4.4, which describes how to check your installation).

4.2.2.3. Windows CE Installation Note

The WinDriver installation on the host Windows 7 / Vista/ Server 2008 / Server 2003/ XP/
2000 PC definesaWD_BASEDI R environment variable, which is set to point to the location of
your WinDriver directory, as selected during the installation. This variable is used during the
DriverWizard [5] code generation — it determines the default directory for saving your generated
code and is used in the include paths of the generated project/make files.

Note that if you install the WinDriver Windows 7 / Vista/ Server 2008 / Server 2003 / XP / 2000

toolkit on the same host PC, the installation will override the value of the WD_BASEDI R variable
from the Windows CE installation.

4.2.3. Linux WinDriver Installation Instructions

4.2.3.1. Preparing the System for Installation

In Linux, kernel modules must be compiled with the same header filesthat the kernel itself was
compiled with. Since WinDriver installs kernel modules, it must compile with the header files of
the Linux kernel during the installation process.

Therefore, before you install WinDriver for Linux, verify that the Linux source code and the file
versions.h are installed on your machine:

Install the Linux ker nel sour ce code:

 If you haveyet toinstall Linux, install it, including the kernel source code, by following the
instructions for your Linux distribution.

 If Linux isaready installed on your machine, check whether the Linux source code was
installed. Y ou can do this by looking for ‘linux' in the /usr/sr ¢ directory. If the source code

© Jungo Ltd. 2005-2011 33

Installing WinDriver

isnot installed, either install it, or reinstall Linux with the source code, by following the
instructions for your Linux distribution.

I nstall version.h:

» Thefileversion.h is created when you first compile the Linux kernel source code. Some
distributions provide a compiled kernel without the file version.h. Look under /usr/sr¢/linux/
include/linux to seeif you have thisfile. If you do not, please follow these steps:

1. Become super user:
$ su

2. Change directory to the Linux source directory:
cd /usr/src/linux

3. Type:
make xconfig

4. Save the configuration by choosing Save and Exit.

5. Type:
make dep

To run GUI WinDriver applications (e.g., DriverWizard [5]; Debug Monitor [7.2]) you must also
have version 5.0 of the libstdc++ library — libstdc++.50.5. If you do not have thisfile, install it
from the relevant RPM in your Linux distribution (e.g., compat-libstdc++).

Before proceeding with the installation, you must also make sure that you have alinux symbolic
link. If you do not, create one by typing

fusr/src$ In -s <target kernel >/Iinux

For example, for the Linux 2.4 kernel type

fusr/src$ In -s linux-2.4/ |inux

4.2.3.2. Installation

1. Insert the WinDriver CD into your Linux machine's CD drive or copy the downloaded file to
your preferred directory.

2. Change directory to your preferred installation directory, for example to your home directory:
$ cd ~

. Thepath to the installation directory must not contain any spaces.

3. Extract the WinDriver distribution file— WD1030L N.tgz:
$ tar xvzf /<file location> WD1030LN.tgz

© Jungo Ltd. 2005-2011 34

Installing WinDriver

For example:

* FromaCD:
$ tar xvzf /mt/cdronf LI NUX/ WD1030LN. t gz

* From adownloaded file:
$ tar xvzf /home/username/ WD1030LN. t gz

4. Change directory to your WinDriver redist directory (the tar automatically creates a
WinDriver directory):
$ cd <WnDriver directory path>/redi st

5. Install WinDriver:

a <WnDriver directory>/redist$

./l configure

The configur e script creates a makefile based on your specific running kernel.

Y ou may run the configur e script based on another kernel source you have
installed, by adding theflag - - wi t h- ker nel - sour ce=<pat h> to the
configure script. The <path> is the full path to the kernel source directory, e.g., /
usr/src/linux.

If the Linux kernel version is 2.6.26 or higher, configur e generates makefiles that
use kbui | d to compile the kernel modules. Y ou can force the use of kbuild on
earlier versions of Linux, by passing the - - enabl e- kbui | d flag to configure.

b. <WnDriver directory>/redist$ nmake

c. Become super user:
<WnDriver directory>/redist$ su

d. Install the driver:
<WnDriver directory>/redist# make install

6. Create asymbolic link so that you can easily launch the DriverWizard GUI:
$1In -s <path to WnDriver>/w zard/ wdwi zard/ usr/bin/wdw zard

7. Change the read and execute permissions on the file wdwizar d so that ordinary users can
access this program.

8. Change the user and group IDs and give read/write permissions to the device file /dev/
windrvr 6 depending on how you wish to allow users to access hardware through the device.
If you are using aLinux 2.6.x kernel that has the udev file system, change the permissions
by modifying your /etc/udev/per missions.d/50-udev.per missions file. For example, add the
following line to provide read and write permissions:
Wi ndrvr 6: root: root: 0666 Otherwise, use the chnod command, for example:
chnod 666 /dev/w ndrvr6

© Jungo Ltd. 2005-2011 35

Installing WinDriver

9. Defineanew WD_BASEDI R environment variable and set it to point to the location of your
WinDriver directory, as selected during the installation. This variable is used in the make and
source files of the WinDriver samples and generated DriverWizard [5] code, and is also used
to determine the default directory for saving your generated DriverWizard projects. If you do
not define this variable you will be instructed to do so when attempting to build the sample/
generated code using the WinDriver makefiles.

10. You can now start using WinDriver to access your hardware and generate your driver code!

Use the WinDriver/util/wdreg script to load the WinDriver kernel module [10.3].

Le 7}

Thefollowing stepsarefor registered usersonly:
To register your copy of WinDriver with the license you received from Jungo, follow these steps.

11. Start DriverWizard:
$ <path to WnbDriver>/w zard/ wdwi zard

12. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

13. Click the Activate License button.

14. To register source code that you devel oped during the evaluation period, refer to the
documentation of WDU_| ni t () [B.4.1].

4.2.3.3. Restricting Hardware Access on Linux

@ Since /dev/windrvr 6 gives direct hardware access to user programs, it may compromise
kernel stability on multi-user Linux systems. Please restrict access to DriverWizard and the
devicefile /dev/windrvr6 to trusted users.

For security reasons the WinDriver installation script does not automatically perform the
steps of changing the permissions on /dev/windrvr 6 and the DriverWizard application
(wdwizard).

4.3. Upgrading Your Installation

To upgrade to a new version of WinDriver on Windows, follow the steps outlined in

Section 4.2.1, which illustrate the process of installing WinDriver for Windows 7/Vista/Server
2008/Server 2003/XP/2000. Y ou can either choose to overwrite the existing installation or install
to a separate directory.

After installation, start DriverWizard and enter the new license string, if you have received one.
This completes the upgrade of WinDriver.

© Jungo Ltd. 2005-2011 36

Installing WinDriver

To upgrade your source code, pass the new license string as a parameter to WDU_| ni t () [B.4.1]
(or to WD _Li cense(), when using the old WD_UsbXXX() APIs).

The procedure for upgrading your installation on other operating systems is the same as the one
described above. Please check the respective installation sections for installation details.

4.4. Checking Your Installation

4.4.1. Windows and Linux Installation Check

1. Start DriverWizard — <path to WinDriver >/wizar d/wdwizard. On Windows you can also
run DriverWizard from the Start menu: Start | Programs | WinDriver | DriverWizard.

2. If you are aregistered user, make sure that your WinDriver licenseisregistered (refer to
Section 4.2, which explains how to install WinDriver and register your license).
If you are an evaluation version user, you do not need to register alicense.

4.4.2. Windows CE Installation Check

1. Copy the console-mode Debug Monitor utility — WinDriver\util\wddebug
\<TARGET_CPU>\wddebug.exe — from the host Windows machine to a directory on your
target Windows CE device.

2. Run the Debug Monitor with the st at us command on the target device:
wddebug. exe st at us
If the windriver installation was successful, the application will display information regarding

the Debug Monitor version and current status, the running WinDriver kernel module, and
general system information.

4.5. Uninstalling WinDriver

This section will help you to uninstall either the evaluation or registered version of WinDriver.

4.5.1. Windows WinDriver Uninstall Instructions

* You can select to use the graphical wdreg_gui.exe utility instead of wdr eg.exe.

» wdreg.exe and wdreg_gui.exe are found in the WinDriver\util directory (see Chapter 10
for details regarding these utilities).

1. Close any open WinDriver applications, including DriverWizard, the Debug Monitor, and
user-specific applications.

© Jungo Ltd. 2005-2011 37

Installing WinDriver

2. Uningtall al Plug-and-Play devices (USB/PCI/PCMCIA) that have been registered with
WinDriver viaan INF file:

» Uninstall the device using the wdr eg utility:
wdreg -inf <path to the INF file> uninstall

» Verify that no INF files that register your device(s) with WinDriver's kernel module
(windrvr6.sys) are found in the %owindir %\inf directory.

3. Uninstall WinDriver:

* On thedevelopment PC, on which you installed the WinDriver toolkit:
Run Start | WinDriver | Uninstall , OR run the uninstall.exe utility from the WinDriver
installation directory.

The uninstall will stop and unload the WinDriver kernel module (windrvr 6.sys); delete the
copy of the windrvr6.inf file from the % windir %\inf directory; delete WinDriver from
Windows Start menu; delete the WinDriver installation directory (except for files that
you added to this directory); and delete the shortcut icons to the DriverWizard and Debug
Monitor utilities from the Desktop.

* On atarget PC, on which you installed the WinDriver kernel module (windrvr 6.sys), but
not the entire WinDriver toolkit:
Use the wdr eg utility to stop and unload the driver:
wdreg -inf <path to windrvr6.inf> uninstall

When running this command, windr vr 6.sys should reside in the same directory as
windrvr6.inf.

(On the development PC, the relevant wdr eg uninstall command is executed for you by the
uninstall utility).

* If you attempt to uninstall WinDriver while there are open handles to the WinDriver
service (windrvr 6.sys or your renamed driver [12.2], or there are connected and
enabled Plug-and-Play devicesthat are registered to work with this service, wdreg
will fail to uninstall the driver. This ensures that you do not uninstall the driver while
it isbeing used.

» You can check if the WinDriver kernel module isloaded by running the Debug
Monitor utility (WinDriver\util\wddebug_gui.exe) [7.2]. When the driver is|oaded,
the Debug Monitor log displays driver and OS information; otherwise, it displays a
relevant error message. On the development PC, the uninstall command will delete
the Debug Monitor executables; to use this utility after the uninstallation, create a
copy of wddebug_gui.exe before performing the uninstall procedure.

4. If windrvr6.sys was successfully unloaded, erase the following files (if they exist):

* %windir% \system32\drivers\windrvr 6.sys

© Jungo Ltd. 2005-2011 38

Installing WinDriver

* %windir%\inf\windrvr6.inf
* % windir% \system32\wdapi1030.dll
* %windir % \sysWOW 64\wdapi1030.dIl (Windows x64)

5. Reboot the computer.

4.5.2. Linux WinDriver Uninstall Instructions

; Thefollowing commands must be executed with root privileges.

1. Verify that the WinDriver driver modules are not being used by another program:

» View thelist of modules and the programs using each of them:
I # /sbin/lsnod

* |dentify any applications and modules that are using the WinDriver driver modules. (By
default, WinDriver module names begin with windrvr 6).

» Close any applications that are using the WinDriver driver modules.

» Unload any modules that are using the WinDriver driver modules:
[# [sbin/ modprobe -r <nodul e_nane>

2. Unload the WinDriver driver modules:
[# [sbin/ modprobe -r wi ndrvr6

3. If you arenot using aLinux 2.6.x kernel that supports the udev file system, remove the old
device node in the /dev directory:
[# rm-f /dev/w ndrvr6

4. Removethefile .windriver.rc from the /etc directory:
[# rm-f /etc/.windriver.rc

5. Removethefile .windriver.rc from $HOME:
[# rm-f $HOVE/ . wi ndriver.rc

6. If you created a symbolic link to DriverWizard, remove the link using the command
[# rm-f [usr/bin/wdw zard

7. Remove the WinDriver installation directory using the command
I# rm-rf ~/WnDriver

8. Remove the WinDriver shared object file, if it exists:
[usr/lib/libwdapi1030.s0 (32-hit x86) /
lusr/1ib64/libwdapi1030.s0 (64-bit x86).

© Jungo Ltd. 2005-2011 39

Chapter 5
Using DriverWizard

This chapter describes WinDriver DriverWizard's hardware diagnostics and driver code
generation capabilities.

5.1. An Overview

DriverWizard (included in the WinDriver toolkit) is a GUI-based diagnostics and driver
generation tool that allows you to write to and read from the hardware, before writing asingle
line of code. The hardware is diagnosed through a Graphical User Interface — the device's
configuration and pipes information is displayed, data can be transferred on the pipes, the pipes
can be reset, etc.

Once the device is operating to your satisfaction, DriverWizard creates the skeletal driver source
code, with functions to access your hardware's resources.

If you are developing adriver for adevice that is based on one of the enhanced-support USB
chipsets (The Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas
Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon

L aboratories C8051F320), we recommend that you read Chapter 8, which explains WinDriver's
enhanced support for specific chipsets, before starting your driver development.

DriverWizard can be used to diagnose your hardware; on Windows it can also be used to generate
an INF file for your hardware.

Avoid using DriverWizard to generate code for a device based on one of the supported USB
chipsets[8], as DriverWizard generates generic code which will have to be modified according
to the specific functionality of the device in question. Preferably, use the complete source code
libraries and sample applications (supplied in the package) tailored to the various USB chipsets.

DriverWizard is an excellent tool for two major phases in your HW/Driver development:

» Hardware diagnostics: After the hardware has been built, attach your device to a USB port on
your machine, and use DriverWizard to verify that the hardware is performing as expected.

» Code generation: Once you are ready to build your code, let DriverWizard generate your
driver code for you.

The code generated by DriverWizard is composed of the following elements:

» Library functionsfor accessing each element of your device's resources (memory ranges, 1/0
ranges, registers and interrupts).

© Jungo Ltd. 2005-2011 40

Using DriverWizard

» A 32-bit diagnostics program in console mode with which you can diagnose your device.
This application utilizes the special library functions described above. Use this diagnostics
program as your skeletal device driver.

» A project workspace/solution that you can use to automatically load all of the project
information and files into your development environment.
For Linux, DriverWizard generates the required makefile.

5.2. DriverWizard Walkthrough

To use DriverWizard:

1. Attach your hardwareto the computer:
Attach your device to a USB port on your computer.

2. Run DriverWizard and select your device:

a. Start DriverWizard — <path to WinDriver>/wizar d/wdwizard. On Windows you
can also run DriverWizard from the Start menu: Start | Programs | WinDriver |
DriverWizard.

6 On Windows 7 and Vista you must run DriverWizard as administrator.

b. Click New host driver project to start anew project, or Open an existing project to
open a saved session.

Figure5.1. Create or Open a WinDriver Project

Choose Your Project

o
JUNGO
WinDriver A
* The World Standard in Driver Development it
Meww host driver project Open an existing project

c. Select your Device from the list of devices detected by DriverWizard.

© Jungo Ltd. 2005-2011 41

Using DriverWizard

Figure5.2. Select Your Device

Select Your Device

Please select yvour device from the detected devices below, or choose "IS4 card” for non Plug and Play cards,

Type Description ‘Wendor [Refresh devices list]
PCI: PCI %irtual Device ’ —]
ISA: 154 Device 154 Device .

154: Parallel Port 1S4 Device ’ Uninstall .INF File]
PCI: SiS - SiS648M¥ Host-to-PCI Bridge Sis
=t PCT Si5 - SiS7E0 Yirtual PCI to PCI Bridge (AGP) Sis
PCI: ATI - 01541014 Rage P/ Mobility AGP 2x ATI
PCI Si5 - 5i5964 LPC Bridge Sis
PCI: SiS - 5i55513 PCI IDE Controller Sis
PCI: SiS - SiS7012 PCI Audio Accelerator Sis
PCI: SiS - SiS5571 USE Host Controller
PCI: SiS - SiS5571 USE Host Controller
PCI: Si5 - 5iS5571 USE Host Controller

= PCIL: iS - 5iS7002 USB 2.0 Enhanced Host Controller
rniconductor Corp, - Product ID: 1003 niconductor Carp,
PCI: SiS - 5iS900 Fast Ethernet/Home Networking Cirir
PCI: Realtek - RTLE1394/8/C Fast Ethernet Adapter Realtek
PCI: PL¥ - PCI 9856RDK-Lite PCI Rapid Development Kit for P... PLX

Device Descripkion:

Hardware ID: Vendor 04b4, Product 1003
Driver: WinDrivert
"bat_test_O4b4_1003"

Mext == ” Cancel

3. Generatean INF filefor DriverWizard:
On Windows 7/Vista/Server 2008/Server 2003/XP/2000, the driver for Plug-and-Play
devices (such as USB) isinstalled by installing an INF file for the device. DriverWizard
enables you to generate an INF file that registers your device to work with WinDriver (i.e.,
with the windrvr 6.sys driver). The INF file generated by DriverWizard should later be
distributed to your customers who are using Windows 7 / Vista/ Server 2008 / Server 2003 /
XP /2000, and installed on their PCs.

The INF file that you generate in this step is also designed to enable DriverWizard to
diagnose Plug-and-Play devices on Windows 7 / Vista/ Server 2008 / Server 2003 /
XP/2000. Additional information concerning the need for an INF file is provided in
Section 12.1.1.
If you do not need to generate an INF file, skip this step and proceed to the next one.
To generate the INF file with DriverWizard, follow the steps below:
a. Inthe Select Your Device screen, click the Generate .I NF file button or click Next .
b. DriverWizard will display information detected for your device —Vendor 1D, Product

ID, Device Class, manufacturer name and device name — and allow you to modify this
information.

© Jungo Ltd. 2005-2011 42

Using DriverWizard

Figure5.3. DriverWizard INF File Information

Enter Information for INE File

Please fill in the information below for wour device,

This information will be incorporated into the INF file,
which WinDriver will generate For vour device.

The information wou specify will appear in the
Device Manager after the installation of the IMF File,

vendar 1D: | 04bé Device ID: | 1003 |

Manufacturer names: |Cypress Semiconduckor Corp. |

Device name: | DEYICE |

Device Class: OTHER Y|

WinDiriver's unique Class,

IJse this option For a non-standard type of device,
WinDriver will set a new Class bype For wour device.

Support Message Signaled Interrupks (MSIMSI-x)
Aukamatically inskall the IMF File,

Maoke; This will replace any existing driver you may have for your device,

[Mk] ’ Zancel

c. For multiple-interface USB devices, you can select to generate an INF file either for the
composite device or for a specific interface.

» When selecting to generate an INF file for a specific interface of a multi-interface
USB device the INF information dialogue will indicate for which interface the INF file
IS generated.

© Jungo Ltd. 2005-2011 43

Using DriverWizard

Figure5.4. Driver Wizard Multi-Interface
INF File Information — Specific I nterface

Enter Information for INE File

Please fill in the information below for wour device,

This information will be incorporated into the INF file,
which WinDriver will generate For vour device.

The information wou specify will appear in the
Device Manager after the installation of the IMF File,

Vendor ID: [09d9 Device ID; | 0020
Manufacturer name; |KRF Tech, Ltd

Device name: | DEYICE

This is a mulki-interface device.

(%) Generate IMF file For the root device itself

) Generate IMF file For the following device interfaces

Inkerface 0

Device Class: OTHER w

WinDiriver's unique Class,

Ilse this option For a non-standard tvpe of device.
WinDriver will set a new Class bype For wour device.

Support Message Signaled Inkerrupts (MSIMSI-2)
Automatically install the IMF File.

Mote: This will replace any existing driver wau may hawve For your device,

[Mexk] ’ Zancel

* When selecting to generate an INF file for a composite device of a multi-interface
USB device, the INF information dial ogue provides you with the option to either
generate an INF file for the root device itself, or generate an INF file for specific
interfaces, which you can select from the dialogue.

Selecting to generate an INF file for the root device will enable you to handle multiple
active interfaces ssmultaneoudly.

© Jungo Ltd. 2005-2011 44

Using DriverWizard

Figure5.5. Driver Wizard Multi-Interface
INF File Information — Composite Device

Enter Information for INE File

Please fill in the information below for wour device,

This information will be incorporated into the INF file,
which WinDriver will generate For vour device.

The information wou specify will appear in the
Device Manager after the installation of the IMF File,

Vendor ID: [09d9 Device ID; | 0020
Manufacturer name; |KRF Tech, Ltd

Device name: | DEYICE

This is a mulki-interface device.

(%) Generate IMF file For the root device itself

) Generate IMF file For the following device interfaces

Inkerface 2 Interface 0

Device Class: OTHER

WinDiriver's unique Class,

Ilse this option For a non-standard tvpe of device.
WinDriver will set a new Class bype For wour device.

Support Message Signaled Inkerrupts (MSIMSI-2)
Automatically install the IMF File.

Mote: This will replace any existing driver wau may hawve For your device,

[Mexk] ’ Zancel

d. When you are done, click Next and choose the directory in which you wish to store the
generated INF file. DriverWizard will then automatically generate the INF file for you.

Y ou can choose to automatically install the INF file by checking the Automatically
Install the INF file option in the DriverWizard's INF generation dialogue.

© Jungo Ltd. 2005-2011 45

Using DriverWizard

If the automatic INF file installation fails, DriverWizard will notify you and provide
manual installation instructions (refer also the manual INF file installation instructionsin
Section 12.1).

e. When the INF file installation completes, select and open your device from the list in the
Select Your Device screen.

4. Uninstall the INF file of your device:
Y ou can use the Uninstall option to uninstall the INF file of your device. Once you uninstall
the INF file, the device will no longer be registered to work with the windrvr6.sys, and the

INF file will be deleted from the Windows root directory. If you do not need to uninstall an
INF file, skip thisstep and proceed to the next one.

a. Inthe Select Your Device screen, click the Uninstall .INF file button.
b. Select the INF file to be removed.
5. Select thedesired alternate setting:
DriverWizard detects all the device's supported alternate settings and displays them, as
demonstrated in Figure 5.6 below.
Select the desired alter nate setting from the displayed list.

DriverWizard will display the pipesinformation for the selected alternate setting.

For USB devices with only one alternate setting configured, DriverWizard
automatically selects the detected alternate setting and therefore the Select Device
I nterface dialogue will not be displayed.

6. Diagnose your device:
Before writing your device driver, it isimportant to make sure your hardware is working as
expected. Use DriverWizard to diagnose your hardware. All of your activity will be logged in
the DriverWizard log so that you may later analyze your tests:

a. Test your USB device's pipes. DriverWizard shows the pipes detected for the selected
alternate setting. To perform USB data transfers on the pipes, follow these steps:

© Jungo Ltd. 2005-2011 46

Using DriverWizard

Figure 5.6. Select Device Interface

ﬁ'} DriverWizard

File Tools view Project Help

W wﬁﬂ.l/ R

Active Projects

] Cypress Semiconductar Corp, - Praduct ID: 1003 ‘ L]

[=1 Cypress Semiconductar Corp, - Produck I 1003
(= Inkerface 0

Alernate Setting 0 Pipe Name Pipe Type Information
Alkernate Setting 1 1 y
Alter e S

Alternate Sett\n 3

alternate Setting 4 2 pipe 0x82 Bulk direction: in, packet size: 512
Alternate Setting 5
? 3 pipe Ox6 Bulk direction: out, packet size: 512

Alternate Setting &

Read | Write

Information Panel

Log Output ” Diescription

i. Select the desired pipe.

ii. For acontrol pipe (abidirectional pipe), click Read / Write. A new dialogue will
appear, alowing you to select a standard USB request or define a custom request, as
demonstrated in Figure 5.7.

Figure5.7. USB Control Transfers

‘E’} Pipe O - Control

Setup Packet Wyrite to pipe data (Hex):
|Custu:um request ,V,l

Type Request wialue wIndex wlength

o |lo |loooo | o o |

|00 00 00 00 00 00 00 00 |

Ackion
[Write ko Pipe l Read From Fipe
[Clear] [Save Write Data]

Pipe ko File [File ko Pipe]

Trace USE transaction in Ellisys Yisual ISE

© Jungo Ltd. 2005-2011 47

Using DriverWizard

When you select one of the available standard USB requests, the setup packet
information for the selected request is automatically filled and the request
description is displayed in the Request Description box.

For a custom request, you are required to enter the setup packet information and
write data (if exists) yourself. The size of the setup packet should be eight bytes and
it should be defined using little endian byte ordering. The setup packet information
should conform to the USB specification parameters (bnmRequest Type,
bRequest ,wal ue, W ndex, wLengt h).

More detailed information on the standard USB requests, on how to
~— implement the control transfer and how to send setup packets can be found in
Section 9.2.

iii. For an input pipe (moves data from device to host) click Listen to Pipe. To
successfully accomplish this operation with devices other than HID, you need to
first verify that the device sends data to the host. If no data is sent after listening for
ashort period of time, DriverWizard will notify you that the Transfer Failed.

To stop reading, click Stop Listen to Pipe.

Figure5.8. Listen to Pipe

Alkernate Setting 2: Mumber of Endpaints 2

Pipe Name Pipe Type Information

1| pipe 0«0 Control direction: in & out, packet size: 64

direction: in, packet size: 512

3 | pipe Ox6 Bulk. direction: out, packet size: 512

Listen ta Pipe Q[Reset Pipe]

iv. For an output pipe (moves data from host to device), click Writeto Pipe. A new
dialogue box will appear asking you to enter the data to write. The DriverWizard log
will contain the result of the operation.

© Jungo Ltd. 2005-2011 48

Using DriverWizard

Alternate Setting 2

Figure5.9. Writeto Pipe

£3) Write To Pipe

PIX

Write to pipe data (Hex):
DE AD BE AF
Pipelame | Ppe Type Information
1 ppeld) Conbol direction: in &out, packet size: 84
2 ppe(x82 Buk direction: in, packe! size: 512
e e |
Action
I ‘Write to Pipe l I File to Pipe
. Clear Save Write Data
| |
%3

v. You can reset input and output pipes by pressing the Reset Pipe button for the

selected pipe.

7. Generatethe skeletal driver code:

a. Select to generate code either viathe Gener ate Code toolbar icon or from the Project |

Generate Code menu.

b. In the Select Code Generation Options dialogue box that will appear, choose the code
language and development environment(s) for the generated code and select Next to

generate the code.

Figure 5.10. Code Generation Options

Select Code Generation Options

In which language do you want vour code to be generated?

Generate project makefile Far:

[Linux Makefile

] MS Developer Studia 6,5
[] M5 Developer Studia
[] MS Developer Studia
[] M5 Developer Studio
[] M5 Developer Studio
[] s Develaper Studia
[] s Develaper Studia
[] M5 Developer Studia
[] M5 Developer Studia
[] MS Developer Studia
[] Microsoft eMbdedded Yisual C++ - for CE
[] Micrasaft Platfarm Builder C++ - far CE
[] Borlad C++ Builder 3

[] Barlad C++ Builder 4 - &

JMET 2003

MET 2005 (For %66

MET 2005 (For AMDE4)

JMET 2005 (For Windows Mobile 5)
MET 2008 (For %56

MET 2008 (For AMDE4)

MET 2008 (For Windows Mobile 53
JMET 2010 (For %ga6)

MET 2010 (For AMDE4)

ICE to Invoke:

one

Ok H Cancel]

© Jungo Ltd. 2005-2011

49

Using DriverWizard

c. Save your project (if required) and click OK to open your development environment
with the generated driver.

d. Close DriverWizard.
8. Compile and run the generated code:

» Usethis code as a starting point for your device driver. Modify where needed to perform
your driver's specific functionality.

» The source code DriverWizard creates can be compiled with any 32-bit compiler, and will
run on all supported platforms without modification.

For detailed compilation instructions, refer to Section 5.2.4.

5.2.1. Logging WinDriver API Calls

Y ou have the option to log all the WinDriver API calls using DriverWizard, with the API calls
input and output parameters. Y ou can select this option by selecting the Log API calls option
from the Tools menu or by clicking on the Log API calls toolbar icon in DriverWizard's opening
window.

5.2.2. DriverWizard Logger

The wizard logger is the empty window that opens along with the Device Resour ces dialogue
box when you open a new project. The logger keeps track of all of the input and output during the
diagnostics stage, so that you may analyze your device's physical performance at alater time. You
can save the log for future reference. When saving the project, your log is saved as well. Each log
is associated with one project.

5.2.3. Automatic Code Generation

After you have finished diagnosing your device and have ensured that it runs according to your
specifications, you are ready to write your driver.

5.2.3.1. Generating the Code

Generate code by selecting this option either via DriverWizard's Gener ate Code toolbar icon
or from the wizard's Proj ect | Generate Code menu. DriverWizard will generate the source
code for your driver, and place it along with the project file (xxx.wdp, where "xxx" is the
project name). The files are saved in adirectory DriverWizard creates for every development
environment and operating system selected in the code generation dialogue box.

© Jungo Ltd. 2005-2011 50

Using DriverWizard

5.2.3.2. The Generated USB C Code

In the source code directory you now have a new xxx_diag.c source file (where xxx is the name
you selected for your DriverWizard project). This file implements a diagnostic USB application,
which demonstrates how to use WinDriver's USB API to locate and communicate with your
USB device(s), including detection of Plug-and-Play events (device insertion/removal, etc.),
performing read/write transfers on the pipes, resetting the pipes and changing the device's active
aternate setting.

The generated application supports handling of multiple identical USB devices.

5.2.3.3. The Generated Visual Basic and Delphi Code

The generated DriverWizard Visual Basic and Delphi code includes similar functions and
provides similar functionality as the generated C code described in Section 5.2.3.2.

The generated Delphi code implements a consol e application (like the C code), while the Visual
Basic code implements a GUI application.

5.2.3.4. The Generated C# and Visual Basic .NET Code

The generated DriverWizard C# and Visual Basic .NET code provides similar functionality asthe
generated C code [5.2.3.2], but from a GUI .NET program.

5.2.4. Compiling the Generated Code

5.2.4.1. Windows and Windows CE Compilation

As explained above, on Windows you can select to generate project and workspace/solution
filesfor any of the supported integrated development environments (IDEs) — MS Visual Studio
5.0/6.0/2003/2005/2008/2010, Borland C++ Builder, Visual Basic 6.0, Borland Delphi, MS
eMbedded Visual C++, or MS Platform Builder — and you can also select to automatically invoke
your selected IDE from the wizard. Y ou can then proceed to immediately build and run the code
from your IDE.

Y ou can a'so build the generated code from any other IDE that supports the selected code
language and target OS. Simply create a new project file for your selected IDE, then add the
generated source filesto your project and compile and run the code.

» For Windows 7/Vista/Server 2008/Server 2003/XP/2000, the generated IDE files are
located under an x86 directory —for 32-bit projects, or amd64 directory — for 64-bit
projects.

» For Windows CE, note that the generated Windows M obile code is targeted at the
Windows Mobile 5.0/6.0 ARMV4I SDK.

© Jungo Ltd. 2005-2011 51

Using DriverWizard

5.2.4.2. Linux Compilation

Use the makefile that was created for you by DriverWizard in order to build the generated code
using your favorite compiler, preferably GCC.

5.2.5. Bus Analyzer Integration — Ellisys Visual USB

DriverWizard provides native support for the Ellisys Explorer 200 USB analyzer on Windows XP
and higher (32-bit only). This support enables you to:

* Initiate USB traffic capture directly from DriverWizard.
» Capture discrete control transfers.
To capture USB traffic:
1. Select Tools| Start USB Analyzer Captureto start capturing USB data.

2. Tofinish the data capture, select Tools| Stop USB Analyzer Capture.
A dialogue box will appear notifying you where DriverWizard stored the analyzer trace.
Click Yesto run Ellisyss Visual Analyzer with the captured data.

To capture a discrete control trasfer check the Trace USB transaction in Ellisys Visual USB
check box in the control transfers dialogue box.

Figureb5.11. Ellisys Visual USB Integration

Sekup Packet Write to pipe data (Hex):
:Cus_l_:nm request 'V':

Tvpe Requesk witalue wlndex wlLength

oo 0 naoo 0 0

/00,0000 00 00 00 00 00

Ackion

i Write bo Pipe Fead from Pipe

| Clear | Save Write Data |

| Pipe ko File | File ko Pipe |

Trace USE transaction in Ellisys YWisual USE

© Jungo Ltd. 2005-2011 52

Chapter 6
Developing a Driver

This chapter takes you through the WinDriver driver development cycle.

If your device is based on one of the chipsets for which WinDriver provides enhanced
support (The Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12;
Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828;
Silicon Laboratories C8051F320), read the following overview and then skip straight to
Chapter 8.

6.1. Using DriverWizard to Build a Device
Driver

» Use DriverWizard to diagnose your device: View the device's configuration information,
transfer data on the device's pipes, send standard requests to the control pipe and reset the
pipes. Verify that your device operates as expected.

» Use DriverWizard to generate skeletal code for your devicein C, C#, Visua Basic .NET,
Delphi or Visua Basic. For more information about DriverWizard, refer to Chapter 5.

* If you are using one of the specific chipsets for which WinDriver offers enhanced support (The
Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas Instruments
TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon Laboratories
C8051F320), we recommend that you use the specific sample code provided for your chip as
your skeletal driver code. For more details regarding WinDriver's enhanced support for specific
chipsets, refer to Chapter 8.

* Useany C/.NET / Delphi / Visual Basic compiler/IDE (such as MS Visua Studio, Borland
C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual C++, MS Platform
Builder C++, GCC) to compile the skeletal driver you need.

» For Linux, use any compilation environment, preferably GCC, to build your code.

» That isal you need to do in order to create your user-mode driver.

Please see Appendix B for a detailed description of WinDriver's USB API.

For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 9 of the manual.

© Jungo Ltd. 2005-2011 53

Developing a Driver

6.2. Writing the Device Driver Without
DriverWizard

There may be times when you choose to write your driver directly, without using DriverWizard.
In such cases, either follow the steps outlined in this section to create a new driver project, or use
one of the WinDriver samples, which most closely resembles your target driver, and modify the
sample to suit your specific requirements.

6.2.1. Include the Required WinDriver Files

1. Include the relevant WinDriver header filesin your driver project.
All header files are found under the WinDriver/include directory.

All WinDriver projects require the windrvr.h header file.
When using the WDU_xxx WinDriver USB API [B.2], include the wdu_lib.h header file;
(thisfile already includes windrvr.h).

Include any other header file that provides APIs that you wish to use from your code (e.g.,
filesfrom the WinDriver/samples/shared directory, which provide convenient diagnostics
functions.)

2. Include the relevant header files from your source code: For example, to use the USB API
from the wdu_lib.h header file, add the following line to the code:

#include "wdu_lib. h"
3. Link your code with the WDAPI library (Windows) / shared object (Linux):

» For Windows 7/VistalServer 2008/Server 2003/XP/2000: WinDriver\lib\<CPU>
\wdapi1030.lib or wdapi1030 borland.lib (for Borland C++ Builder), where the <CPU>
directory is either x86 (32-bit binaries for x86 platforms), amd64 (64-bit binaries for x64
platforms) or amd64\x86 (32-bit binaries for x64 platforms[A.2]

» For Windows CE: WinDriver\lib\WINCE\<CPU>\wdapi1030.lib

» For Linux: From the WinDriver/lib directory — libwdapi1030.s0 or libwdapi1030_32.so
(for 32-bit applications targeted at 64-bit platforms)
Note: When using libwdapil1030_32.so, first create a copy of thisfilein adifferent
directory and rename it to libwdapi1030.s0, then link your code with the renamed
file[A.2].

Y ou can also include the library's source files in your project instead of linking the project
with the library. The C source files are located under the WinDriver/sr c/wdapi directory.

© Jungo Ltd. 2005-2011 54

Developing a Driver

When linking your project with the WDAPI library/shared object, you will need to
distribute this binary with your driver.

For Windows, get wdapi1030.dIl / wdapi1030_32.dll (for 32-bit applications targeted
at 64-hit platforms) from the WinDriver\redist directory.

For Linux, get libwdapi1030.so / libwdapi1030_32.so (for 32-bit applications targeted
at 64-hit platforms) from the WinDriver/lib directory.

Note: On Windows and Linux, when using the DLL/shared object file for 32-bit applications
on 64-bit platforms (wdapi1030_32.dll / libwdapil030_32.s0), rename the copy of thefilein
the distribution package, by removing the _32 portion [A.2].

For detailed distribution instructions, refer to Chapter 11.

4. Add any other WinDriver source files that implement API that you which to use in your code
(e.g., filesfrom the WinDriver/samples/shared directory.)

6.2.2. Write Your Code

1. Call WDU_I ni t () [B.4.1] at the beginning of your program to initialize WinDriver for your
USB device, and wait for the device-attach callback. The relevant device information will be
provided in the attach callback.

2. Once the attach callback is received, you can start using one of the
WDU_Tr ansf er () [B.4.8.1] functions family to send and receive data.

3. Tofinish, call WDU_Uni ni t () [B.4.7] to unregister from the device.

6.2.3. Configure and Build Your Code

After including the required files and writing your code, make sure that the required build flags
and environment variables are set, then build your code.

Before building your code, verify that the WD _BASEDI R environment variableis set to the
location of the of the WinDriver installation directory.

On Windows, Windows CE, and Linux you can define the WD_BASEDI R environment
variable globally — as explained in Chapter 4: For Windows — refer to the Windows
WD_BASEDIR note in Section 4.2.1; for Windows CE — refer to Section 4.2.2.3; for
Linux: refer to Section 4.2.3.2, Step 9.

© Jungo Ltd. 2005-2011 55

Developing a Driver

6.3. Developing Your Driver on Windows CE
Platforms

To use WinDriver to handle a Plug-and-Play device, you must first register the device with the
WinDriver kernel module (windrvr6.dll).

To register the device with WinDriver, use either of the following methods:

* Modify the registry to identify your device and link it to windrvr6.dll. The registry can be
modified by adding the relevant information to your project.reg file.

« Toidentify the device by its vendor ID (<VID>) and product ID (<PID>) — as decimal

values — add the following:

[HKEY_LOCAL_MACHI NE\ Dr i ver s\ USB\ LoadCl i ent s\ <VI D>_ <Pl D>\ Def aul t\ Def aul t \ VDR]
"DLL"="wi ndrvr6.dl|"

« Toidentify the device by its USB class (<CLASS>), subclass (< SUBCLASS>), and protocol
(<PROT>) —as decimal values— add the following:

[HKEY_LOCAL_MACHI NE\ Dri ver s\ USB\ Loadd i ent s\ Def aul t\ Def aul t\ <CLASS>_<SUBCLASS>_<PROT>\ \DR]
"DLL"="wi ndrvr6.dl|"

e Cal WDU I ni t () to identify the device by its vendor and product IDs and register it with
WinDriver, before connecting the device to the computer .

For more information about the relevant registry settings, refer to USB Driver Registry
Settings in the MSDN Library.

© Jungo Ltd. 2005-2011 56

Developing a Driver

6.4. Developing in Visual Basic and Delphi

The entire WinDriver API can be used when developing driversin Visual Basic and Delphi.

6.4.1. Using DriverWizard

DriverWizard can be used to diagnose your hardware and verify that it is working properly before
you start coding. Y ou can then proceed to automatically generate source code with the wizard in a
variety of languages, including Delphi and Visual Basic. For more information, refer to Chapter 5
and Section 6.4.3 below.

6.4.2. Samples

Samples for drivers written using the WinDriver APl in Delphi or Visual Basic can be found in:
1. WinDriver\delphi\samples
2. WinDriver\vb\samples

Use these samples as a starting point for your own driver.

6.4.3. Creating your Driver

The method of development in Visual Basic is the same as the method in C using the automatic
code generation feature of DriverWizard.

Y our work process should be as follows:

» Use DriverWizard to easily diagnose your hardware.

Verify that it isworking properly.

Generate your driver code.

Integrate the driver into your application.

Y ou may find it useful to use the WinDriver samples to get to know the WinDriver APl and as
your skeletal driver code.

© Jungo Ltd. 2005-2011 57

Chapter 7
Debugging Drivers

The following sections describe how to debug your hardware-access application code.

7.1. User-Mode Debugging

» Since WinDriver is accessed from the user mode, we recommend that you first debug your
code using your standard debugging software.

» The Debug Monitor utility [7.2] logs debug messages from WinDriver's kernel-mode and user-
mode APIs. You can also use WinDriver APIs to send your own debug messages to the Debug
Monitor log.

» Use DriverWizard to validate your device's USB configuration and test the communication
with the device.

7.2. Debug Monitor

Debug Monitor is a powerful graphical- and console-mode tool for monitoring all activities
handled by the WinDriver kernel.
Y ou can use this tool to monitor how each command sent to the kernel is executed.

In addition, WinDriver enables you to print your own debug messages to the Debug Monitor,
using the WD_DebugAdd() function [B.6.6] or the high-level Pri nt DogMessage()
function [B.7.14].

The Debug Monitor comesin two versions:

» wddebug_gui [7.2.1] —a GUI version for Windows 7/Vista/Server 2008/Server 2003/XP/2000
and Linux.

» wddebug [7.2.2] —a console-mode version for Windows, Windows CE, and Linux; on
Windows CE, wddebug also supports GUI execution.

Both Debug Monitor versions are provided in the WinDriver/util directory.

© Jungo Ltd. 2005-2011 58

Debugging Drivers

7.2.1. The wddebug_gui Utility

wddebug_gui isafully graphical (GUI) version of the Debug Monitor utility for Windows 7/
Vista/Server 2008/Server 2003/XP/2000 and Linux.

1. Run the Debug Monitor using either of the following methods:
* Run WinDriver/util/wddebug_gui.
* Run the Debug Monitor from DriverWizard's T ools menu.
* OnWindows, run Start | Programs | WinDriver | Debug Monitor.

Figure7.1. Start Debug Monitor

B WinDriver Debug Monitor
File Edit ‘Wiew Help

ud}lliw‘m

WinDriver Debug Monitor 9,01,

Furning WinDriver 9,01 Junga () 1997 - 2007 Build Date: Jun 10 2007 ©86 32hit SY5 13:48:53
05; windows MT 5.1 Build 0.0.2600 Service Pack. 2

Time: Sun 10, Jun 15:50:335 2007

2. Set the Debug Monitor's status, trace level and debug sections information from the Debug
Options dialogue, which is activated either from the Debug Monitor's View | Debug Options
menu or the Debug Options toolbar button.

© Jungo Ltd. 2005-2011 59

Debugging Drivers

Figure 7.2. Debug Options

Debug Options

Seckion

ljo PP
ey
M
Status Interrupks

kernel Plugin

Miscellaneous

Pl

PCMCTA
Card Reqistration

off 154 PrP
LUSE Kerrnel Driver
DMA Events

Al Sections

Level

{:} Error {:} W arm O Info @ Trace

[] Send debug messages ta the operating system kernel debugger

o [conee

o Status— Set trace on or off.
* Section — Choose what part of the WinDriver APl you would like to monitor.

USB developers should select the USB section.

., Choose carefully those sections that you would like to monitor. Checking more
- options than necessary could result in an overflow of information, making it harder
for you to locate your problem.

» Level — Choose the level of messages you want to see for the resources defined.
» Error isthe lowest trace level, resulting in minimum output to the screen.

» Traceisthe highest trace level, displaying every operation the WinDriver kernel
performs.

» Send debug messages to the operating system kernel debugger —

Select this option to send the debug messages received from the WinDriver kernel module
to an external kernel debugger, in addition to the Debug Monitor.

© Jungo Ltd. 2005-2011 60

Debugging Drivers

On Windows 7 and Vista, the first time that you enable this option you will need to
restart the PC.

. A free Windows kernel debugger, WinDbg, is distributed with the Windows Driver
- Kit (WDK) and is part of the Debugging Tools for Windows package, distributed via
the Microsoft web site.

3. Once you have defined what you want to trace and on what level, click OK to close the
Debug Options window.

4. Activate your application (step-by-step or in one run).
5. Watch the Debug Monitor log (or the kernel debugger log, if enabled) for errors or any
unexpected messages.

7.2.1.1. Running wddebug_gui for a Renamed Driver

By default, wddebug_gui logs messages from the default WinDriver kernel module —
windrvr6.sys/.o/.ko. However, you can also use wddebug_gui to log debug messages from a
renamed version of thisdriver [12.2], by running wddebug_gui from the command line with the
dri ver _nane option: wddebug_gui <dri ver_nane>.

The driver name should be set to the name of the driver file without the file's extension;
e.g., windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

For example, if you have renamed the default windrvr 6.sys driver on Windows to
my_driver.sys, you can log messages from your driver by running the Debug Monitor using the
following command: wddebug_gui ny_dri ver

7.2.2. The wddebug Utility

7.2.2.1. Console-Mode wddebug Execution

The wddebug version of the Debug Monitor utility can be executed as a console-mode
application on all supported operating systems. Windows, Windows CE, and Linux. To use the
console-mode Debug Monitor version, run WinDriver/util/wddebug in the manner explained
below.

For console-mode execution on Windows CE, start a command window (CM D.EXE) on
the Windows CE target, and then run the program WDDEBUG.EXE inside this shell.
Y ou can aso execute wddebug viathe Windows CE GUI, as explained in Section 7.2.2.2.

© Jungo Ltd. 2005-2011 61

Debugging Drivers

wddebug console-mode usage

wddebug [<driver _name>] [<conmand>] [<Ievel >]
[<sections>]

The wddebug arguments must be provided in the order in which they appear in the usage
statement above.

e <dri ver _nanme>: The name of the driver to which to apply the command.

The driver name should be set to the name of the WinDriver kernel module —windrvr6, or a
renamed version of thisdriver (refer to the explanation in Section 12.2).

The driver name should be set to the name of the driver file without the file's extension;
for example, windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

» <conmand>: The Debug Monitor command to execute:
* Activation commands:
* on: Turn the Debug Monitor on.
o of f: Turn the Debug Monitor off.

» dbg_on : Redirect the debug messages from the Debug Monitor to a kernel debugger and
turn the Debug Monitor on (if it was not aready turned on).

On Windows 7 and Vista, the first time that you enable this option you will need to
restart the PC.

» dbg_of f : Stop redirecting debug messages from the Debug Monitor to akernel
debugger.

Theon and dbg_on commands can be run together with the <l evel > and
<sect i ons> options, described below.

dunp: Continuously display (‘dump’) debug information, until the user selectsto stop.

st at us: Display information regarding the running <dr i ver _nane> driver, the current
Debug Monitor status — including the active debug level and sections (when the Debug
Monitor is on) — and the size of the debug messages buffer.

hel p : Display usage instructions.

None: Y ou can run wddebug with no arguments, including no command. On platforms other
than Windows CE, thisis equivalent to runningwddebug hel p. On Windows CE, running
wddebug with no arguments activates the utility's Windows CE GUI version, as explained
in Section 7.2.2.2.

© Jungo Ltd. 2005-2011 62

Debugging Drivers

The following options are applicable only to the on and dbg_on commands:

<| evel >: The debug trace level to set. The level can be set to either of the following flags:
ERROR, WARN, | NFOor TRACE, where ERROR is the lowest trace level and TRACE isthe
highest level (displays all messages).

The default debug trace level is TRACE.

<sect i ons>: The debug sections to set. The debug sections determine what part of the
WinDriver APl you would like to monitor.

For afull list of all supported debug sections, run wddebug help to view the utility's usage
instructions.
The default debug sections flag is ALL — sets all the supported debug sections.

Usage Sequence

To log messages using wddebug, use the following sequence:

Turn on the Debug Monitor by running wddebug with either the on command, or thedbg_on
command — which redirects the debug messages to a kernel debugger before turning on the
Debug Monitor.

You can usethel evel and/or secti ons flagsto set the debug level and/or sections for the
log. If these options are not explicitly set, the default values will be used.

Y ou can aso log messages from arenamed WinDriver driver by preceding the command with
the name of the driver (seethe<dr i ver _name> option above). The default driver nameis
windrvr6.

Run wddebug with the dunp command to begin dumping debug messages to the command
prompt. Y ou can turn off the display of the debug messages, at any time, by following the
instructions displayed in the command prompt.

Run applications that use the driver, and view the debug messages as they are being logged to
the command prompt/the kernel debugger.

Y ou can run wddebug with the st at us command, at any time while the Debug Monitor is
on, to view the current debug level and sections, as well as information regarding the running
<driver_name> kernel module.

You canusedbg_on and dbg_of f to toggle the redirection of debug messages to a kernel
debugger at any time while the Debug Monitor ison.

When you are ready, turn off the Debug Monitor by running wddebug with the of f command.

Y ou can aso run wddebug with the st at us command while the Debug Monitor is turned

U off, to view information regarding the running <driver _name> driver.

© Jungo Ltd. 2005-2011 63

Debugging Drivers

EXAMPLE

The following is an example of atypical wddebug usage sequence. Since no <dr i ver _nane>
is set, the commands are applied to the default driver —windrvr6.

 Turn the Debug Monitor on with the highest trace level for all sections:
wddebug on TRACE ALL

Note: Thisisthe sameasrunning' wddebug on TRACE' , since ALL isthe default debug
sections option.

» Dump the debug messages continuously, until the user selects to stop:
wddebug dunp

» Usethedriver and view the debug messages in the command prompt.

» Turn the Debug Monitor off:
wddebug of f

 Display usage instructions:
wddebug hel p Asexplained above, on all platforms other than Windows CE, thisis
equivalent to running wddebug with no arguments.

7.2.2.2. Windows CE GUI wddebug Execution

On Windows CE, you can also log debug messages by running wddebug without any arguments.
This method is designed to enable debug logging on Windows CE platforms that do not have a
command-line prompt. On such platforms, you can activate debug logging by double-clicking
the wddebug executable; thisis equivalent to running the application with no arguments from a
command-line prompt.

When executing wddebug without arguments, the user isinformed, viaa GUI message box,
that log messages will be stored in a predetermined log file —wdlog.txt in the root Windows CE
directory — and is given the option to cancel or continue.

Figure 7.3. wddebug Windows CE Start L og M essage

=,

rwddehug

1 Press OK to start logging debug messages.
\\;) The messages will be saved o wdlog. bt in the root Windows CE directory.

..

K Cancel

..

© Jungo Ltd. 2005-2011 64

Debugging Drivers

If the user selects to continue, debug logging isturned on with atrace level of TRACE and debug
sections AL L, and the Debug Monitor begins dumping debug messages to the wdlog.txt log
file. The user can stop the logging and turn off debug logging, at any time, via a dedicated GUI

message box.
Figure 7.4. wddebug Windows CE Stop L og M essage

~

rwddebug

y Press OK o stop logging

..

..

© Jungo Ltd. 2005-2011 65

Chapter 8
Enhanced Support for Specific

Chipsets

8.1. Overview

In addition to the standard WinDriver API and the DriverWizard code generation capabilities
described in this manual, which support development of drivers for any USB device, WinDriver
offers enhanced support for specific USB chipsets. The enhanced support includes custom API
and sampl e diagnostics code, which are designed specifically for these chipsets.

WinDriver's enhanced support is currently available for the following chipsets: The Cypress
EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas Instruments TUSB3410,
TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon Laboratories C8051F320.

8.2. Developing a Driver Using the Enhanced
Chipset Support

When developing adriver for a device based on one of the enhanced-support chipsets[8.1], you
can use WinDriver's chipset-set specific support by following these steps:

1. Locate the sample diagnostics program for your device under the WinDriver/chip_vendor/
chip_namedirectory.

Most of the sample diagnostics program names are derived from the sample's main purpose
(e.g., download_sample for afirmware download sample) and their source code can be
found directly under the specific chip_name directory.

2. Run the custom diagnostics program to diagnose your device and familiarize yourself with
the options provided by the sample program.

3. Use the source code of the diagnostics program as your skeletal device driver and modify the
code, as needed, to suit your specific development needs. When modifying the code, you can
utilize the custom WinDriver API for your specific chip. The custom API istypically found
under the WinDriver/chip_vendor/lib directory.

© Jungo Ltd. 2005-2011 66

Chapter 9
USB Transfers

9.1. Overview

This chapter provides detailed information regarding implementation of USB transfers using
WinDriver.

As explained in Section 3.5, the USB standard supports two kinds of data exchange between the
host and the device — control exchange and functional data exchange.
The WinDriver APIs enable you to implement both control and functional data transfers.

Figure 9.1 demonstrates how a device's pipes are displayed in the DriverWizard utility, which
enables you to perform transfers from a GUI environment.

Figure9.1. USB Data Exchange

alkernate Setting 2: Number of Endpoints 2

Pipe Name Pipe Type Information
Cl‘;:&::::;lu:;]lﬂﬁ —] pipe Ox0 Control direction: in & out, packet size: 64
. X 2 m direction: in, packet size: 512
FUnctional Pipes ——
{Bulk { Interrupt / 3 pipe Ox6 Bulk direction: out, packet size: 512
Isochronous)

Section 9.2 below provides detailed information regarding USB control transfers and how they
can be implemented using WinDriver.

Section 9.3 describes the functional data transfer implementation options provided by WinDriver.

© Jungo Ltd. 2005-2011 67

USB Transfers

9.2. USB Control Transfers

9.2.1. USB Control Transfers Overview

9.2.1.1. Control Data Exchange

USB control exchange is used to determine device identification and configuration requirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.

Control exchange takes place via a control pipe, mainly the default Pipe 0, which always exists.
The control transfer consists of a setup stage (in which a setup packet is sent from the host to the
device), an optional data stage and a status stage.

9.2.1.2. More About the Control Transfer

The control transaction always begins with a setup stage. The setup stage is followed by zero or
more control data transactions (data stage) that carry the specific information for the requested
operation, and finally a status transaction completes the control transfer by returning the status to
the host.

During the setup stage, an 8-byte setup packet is used to transmit information to the control
endpoint of the device. The setup packet's format is defined by the USB specification.

A control transfer can be aread transaction or awrite transaction. In aread transaction the setup
packet indicates the characteristics and amount of datato be read from the device. In awrite
transaction the setup packet contains the command sent (written) to the device and the number of
control data bytes that will be sent to the device in the data stage.

Refer to Figure 9.2 (taken from the USB specification) for a sequence of read and write
transactions.

'(in)" indicates data flow from the device to the host.

'(out)" indicates data flow from the host to the device.

© Jungo Ltd. 2005-2011 68

USB Transfers

Conirol
Wate

Conirol
Keaad

M o-data
Conirol

Figure9.2. USB Read and Write

setup Drata Stage
Stage {Cptional) Status
e
Ty Ty
SETUF DATA (ouf) DATA [ouf) DATA [ouf) Sats (i)
Setup LDrata Stage
Stage (@ﬁﬂ) Status
Ty T el
SETTF DATA (in) DATA [DATA (i) Status (ouf)
setup Status
Stage
D G
SETUF Status (@)

9.2.1.3. The Setup Packet

The setup packets (combined with the control data stage and the status stage) are used to
configure and send commands to the device. Chapter 9 of the USB specification defines standard
device requests. USB requests such as these are sent from the host to the device, using setup
packets. The USB deviceisrequired to respond properly to these requests. In addition, each
vendor may define device-specific setup packets to perform device-specific operations. The
standard setup packets (standard USB device requests) are detailed below. The vendor's device-
specific setup packets are detailed in the vendor's data book for each USB device.

9.2.1.4. USB Setup Packet Format

The table below shows the format of the USB setup packet. For more information, please refer to
the USB specification at http://www.usb.org.

Byte

Field

Description

0

bmRequest Type

Bit 7: Request direction (O=Host to device — Out, 1=Device to host —
In).

Bits 5-6: Request type (O=standard, 1=class, 2=vendor, 3=reserved).
Bits 0-4: Recipient (O=device, 1=interface, 2=endpoint,3=other).

bRequest

The actual request (see the Standard Device Request Codes
table[9.2.1.5].

wVaueL

A word-size value that varies according to the request. For example,
in the CLEAR_FEATURE request the value is used to select the
feature, in the GET_DESCRI PTOR request the value indicates

the descriptor type and in the SET_ ADDRESS request the value
contains the device address.

wVaueH

The upper byte of the Val ue word.

© Jungo Ltd. 2005-2011

69

http://www.usb.org

USB Transfers

Byte | Field Description

4 | windexL A word-size value that varies according to the request. Theindex is
generally used to specify an endpoint or an interface.
windexH The upper byte of the | ndex word.
wLengthL A word-size value that indicates the number of bytes to be

transferred if there is a data stage.

7 | wLengthH The upper byte of the Lengt h word.

9.2.1.5. Standard Device Request Codes

The table below shows the standard device request codes.

bRequest Value
GET_STATUS 0
CLEAR_FEATURE
Reserved for future use
SET FEATURE
Reserved for future use
SET_ADDRESS
GET_DESCRIPTOR
SET_DESCRIPTOR
GET_CONFIGURATION
SET_CONFIGURATION
GET_INTERFACE
SET_INTERFACE
SYNCH_FRAME

Ol | Nl bd|W|IDN|PF

=
o

|
|

=
N

9.2.1.6. Setup Packet Example

This example of a standard USB device request illustrates the setup packet format and itsfields.
The setup packet isin Hex format.

The following setup packet is for a control read transaction that retrieves the device descriptor
from the USB device. The device descriptor includes information such as USB standard revision,
vendor ID and product ID.

GET_DESCRIPTOR (Device) Setup Packet

80 | 06 | 00| 01 | OO |00 | 12 | 0O

Setup packet meaning:

© Jungo Ltd. 2005-2011 70

USB Transfers

Byte | Field Value | Description
0 |BmRequest Type | 80 | 8h=1000b

bit 7=1 -> direction of datais from device to host.
Oh=0000b

bits 0..1=00 -> the recipient is the device.

1 | bRequest 06 | The Requestis GET_DESCRIPTOR.

2 | wValueL 00

3 |wVaueH 01 | Thedescriptor typeis device (values defined in USB spec).

4 | windexL 00 | Theindex isnot relevant in this setup packet since thereis
only one device descriptor.

windexH 00

6 | wLengthL 12 | Length of the datato be retrieved: 18(12h) bytes (thisisthe
length of the device descriptor).

7 | wLengthH 00

In response, the device sends the device descriptor data. A device descriptor of Cypress EZ-USB
Integrated Circuit is provided as an example:

ByteNo. | 0 | 1| 2|3 |4 |5 |6/|7]|8]09]10]
Content | 12 | 0L | 00 | 01 | ff | ff | ff | 40 | 47 | 05 | 80 |

ByteNo. | 11 | 12 | 13 | 14 | 15 | 16 | 17
Content 00O | 01 0O | 0O | OO | OO | 01

Asdefined in the USB specification, byte O indicates the length of the descriptor, bytes 2-3
contain the USB specification release number, byte 7 is the maximum packet size for endpoint 00,
bytes 8-9 are the Vendor ID, bytes 10-11 are the Product 1D, etc.

9.2.2. Performing Control Transfers with WinDriver

WinDriver alows you to easily send and receive control transfers on Pipe00, while using
DriverWizard to test your device. Y ou can either use the API generated by DriverWizard [5] for
your hardware, or directly call the WinDriver WDU_Tr ansf er () function [B.4.8.1] from within
your application.

9.2.2.1. Control Transfers with DriverWizard

1. Choose Pipe 0x0 and click the Read / Write button.

2. You can either enter a custom setup packet, or use a standard USB request.

© Jungo Ltd. 2005-2011 71

USB Transfers

» For acustom request: enter the required setup packet fields. For awrite transaction that
includes a data stage, enter the datain the Write to pipe data (Hex) field. Click Read
From Pipe or Write To Pipe according to the required transaction (see Figure 9.3).

Figure 9.3. Custom Request

@3 Pipe O - Control

Setup Packet Write to pipe daka (Hexl:
|Cust|:|m request _V|

Type Reguest hialue wlnde:x wlength

oo o | [ooo0 ||o | [o |

0000 00 00 00 00 00 00 |

Ackion

I \Wrike ko Pipe l Read from Pipe

’ Clear] ’ Save Write Data]
Fipe to File ’ File ko Pipe]

Trace USE transaction in Ellisys Yisual USE

» For astandard USB request: select a USB request from the requests list, which includes
requests such as GET_DESCRIPTOR CONFIGURATION, GET_DESCRIPTOR
DEVICE, GET_STATUSDEVICE, etc. (see Figure 9.4). The description of the selected
request will be displayed in the Request Description box on the right hand of the dialogue
window.

Figure9.4. Request List

@ Pipe 0 - Control

Setup Packet Write to pipe data (Hex):

Custom request

GET_DESCRIFTOR. - CONFIGLRATION
GET_DESCRIFTOR. - DEVICE
GET_DESCRIFTOR. - STRING
GET_STATUS - DEVICE

GET_STATUS - ENDPQINT
GET_STATUS - INTERFACE

Action

[Write to Pipe l Read from Pipe

[Clear l [Save Write Data l
Fipe to File [File to Fipe l

Trace USB transaction in Elisys Visual USBE

© Jungo Ltd. 2005-2011 72

USB Transfers

3. Theresults of the transfer, such as the data that was read or arelevant error, are displayed in
Driver Wizard's L og window.
Figure 9.5, below, shows the contents of the L og window after a successful
GET_DESCRIPTOR DEVICE request.

Figure 9.5. USB Request Log

Information Panel

1201000200000040B40403 1000000102 |....... @
0001

Log Cutput Description

9.2.2.2. Control Transfers with WinDriver API

To perform aread or write transaction on the control pipe, you can either use the API generated
by DriverWizard for your hardware, or directly call the WinDriver WDU_Tr ansf er ()
function [B.4.8.1] from within your application.

Fill the setup packet inthe BYTE Set upPacket [8] array and call these functions to send
setup packets on Pipe00 and to retrieve control and status data from the device.

» Thefollowing sample demonstrates how to fill the Set upPacket [8] variablewith a
CET_DESCRI PTOR setup packet:

set upPacket[0] = 0x80; /* BnRequst Type */

set upPacket [6]
set upPacket [7]

set upPacket[1] = 0x6; /* bRequest [0x6 == GET_DESCRI PTOR] */

set upPacket[2] = O0; /* wval ue */

set upPacket[3] = Ox1; /* wval ue [Descriptor Type: Ox1 == DEVICE] */
set upPacket[4] = O0; /* w ndex */

set upPacket[5] = O0; /* w ndex */

0x12; /* wiLength [Size for the returned buffer] */

0; /* wiLength */

» Thefollowing sample demonstrates how to send a setup packet to the control pipe (a GET
instruction; the device will return the information requested in the pBuf f er variable):

WDU_Tr ansf er Def aul t Pi pe(hDev, TRUE, 0, pBuffer, dwSize,
bytes_transferred, &setupPacket[0], 10000);

» Thefollowing sample demonstrates how to send a setup packet to the control pipe (a SET
instruction):

WDU_Tr ansf er Def aul t Pi pe(hDev, FALSE, 0, NULL, O,
bytes_transferred, &setupPacket[O], 10000);

For further information regarding WDU_Tr ansf er Def aul t Pi pe(), refer to Section B.4.8.3.
For further information regarding WDU_Tr ansf er (), refer to Section B.4.8.1.

© Jungo Ltd. 2005-2011 73

USB Transfers

9.3. Functional USB Data Transfers

9.3.1. Functional USB Data Transfers Overview

Functional USB data exchangeis used to move datato and from the device. There are three
types of USB data transfers: Bulk, Interrupt and Isochronous , which are described in detail in
Sections 3.6.2—3.6.4 of the manual.

Functional USB data transfers can be implemented using two alternative methods:. single-
blocking transfers and streaming transfers, both supported by WinDriver, as explained in the
following sections. The generated DriverWizard USB code [5.2.3] and the generic WinDriver/
util/usb_diag.exe utility [1.9.2] (source code located under the WinDriver/samples/usb_diag
directory) enable the user to select which type of transfer to perform.

9.3.2. Single-Blocking Transfers

In the single-blocking USB data transfer scheme, blocks of data are synchronously transferred
(hence —"blocking") between the host and the device, per request from the host (hence —"single"
transfers).

9.3.2.1. Performing Single-Blocking Transfers with
WinDriver

WinDriver's\WDU_Tr ansf er () function, and the WDU_Tr ansf er Bul k(),

WDU_Tr ansf erl soch(),and WDU_Tr ansf er | nt er r upt () convenience functions — all
described in Section B.4.8 of the manual — enable you to easily impelment single-blocking USB
data transfers.

Y ou can aso perform single-blocking transfers using the DriverWizard utility (which uses the
WDU_Tr ansf er () function), as demonstrated in Section 5.2 of the manual.

9.3.3. Streaming Data Transfers

In the streaming USB data transfer scheme, data is continuously streamed between the host and
the device, using internal buffers allocated by the host driver — "streams”.

Stream transfers allow for a sequential data flow between the host and the device, and can be used
to reduce single-blocking transfer overhead, which may occur as aresult of multiple function calls
and context switches between user and kernel modes. Thisis especially relevant for devices with
small data buffers, which might, for example, overwrite data before the host is able to read it, due
to agap in the data flow between the host and device.

© Jungo Ltd. 2005-2011 74

USB Transfers

9.3.3.1. Performing Streaming with WinDriver

WinDriver's WDU_St r eanXXX() functions, described in Section B.4.9 of the manual, enable
you to impelment USB streaming data transfers. Note: These functions are currently supported on
Windows and Windows CE.

To begin performing stream transfers, call the WDU_St r eamOpen() function [B.4.9.1]. When
thisfunction is called, WinDriver creates a new stream object for the specified data pipe. Y ou
can open a stream for any pipe except for the control pipe (Pipe 0). The stream's data transfer
direction — read/write — is derived from the direction of its pipe.

WinDriver supports both blocking and non-blocking stream transfers. The open function's

f Bl ocki ng parameter indicates which type of transfer to perform (see explanation below).
Streams that perform blocking transfers will henceforth be referred to as "blocking streams”*, and
streams that perform non-blocking transfers will be referred to as "non-blocking streams”.

The function's dWRX Tx Ti meout parameter indicates the desired timeout period for transfers
between the stream and the device.

After opening astream, call WDU_St r eantst ar t () [B.4.9.2] to begin data transfers between the
stream's data buffer and the device.

In the case of aread stream, the driver will constantly read data from the device into the

stream's buffer, in blocks of a pre-defined size (as set in the dWRx Si ze parameter of the
WDU_St r eamOpen() function [B.4.9.1]. In the case of awrite stream, the driver will constantly
check for datain the stream's data buffer and write any data that is found to the device.

To read data from aread stream to the user-mode host application, call

WDU_St r eanRead() [B.4.9.3].

In case of ablocking stream, the read function blocks until the entire amount of data requested by
the application is transferred from the stream to the application, or until the stream'’s attempt to
read data from the device times out.

In the case of anon-blocking stream, the function transfers to the application as much of the
requested data as possible, subject to the amount of data currently available in the stream's data
buffer, and returns immediately.

To write data from the user-mode host application to a write the stream, call

WDU StreamNite() [B.4.9.4].

In case of ablocking stream, the function blocks until the entire datais written to the stream, or
until the stream's attempt to write data to the device times out.

In the case of a non-blocking stream, the function writes as much of the write data as currently
possible to the stream, and returns immediately.

For both blocking and non-blocking transfers, the read/write function returns the amount of bytes
actually transferred between the stream and the calling application within an output parameter —
*pdwByt esRead [B.4.9.3] / * pdwByt esW i tt en [B.4.9.4].

Y ou can flush an active stream at any time by calling the WDU_St r eant| ush()

function [B.4.9.5], which writes the entire contents of the stream'’s data buffer to the device (for a
write stream), and blocks until all pending I/O for the stream is handled.

Y ou can flush both blocking and non-blocking streams.

© Jungo Ltd. 2005-2011 75

USB Transfers

You can cal WDU_St r eamGet St at us() [B.4.9.6] for any open stream in order to get the
stream'’s current status information.

To stop the data streaming between an active stream and the device, call

WDU_St r eantst op() [B.4.9.7]. In the case of awrite stream, the function flushes the stream —
i.e., writes its contents to the device — before stopping it.

An open stream can be stopped and restarted at any time until it is closed.

To close an open stream, call WDU_St r eanCl ose() [B.4.9.8].

The function stops the stream, including flushing its data to the device (in the case of awrite
stream), before closing it.

Note: Each call to WDU_St r eanOpen() must have a matching call to WDU_St r eanCl ose()
later on in the code in order to perform the necessary cleanup.

© Jungo Ltd. 2005-2011 76

Chapter 10
Dynamically Loading Your Driver

10.1. Why Do You Need a Dynamically
Loadable Driver?

When adding a new driver, you may be required to reboot the system in order for it to load your
new driver into the system. WinDriver isadynamically loadable driver, which enables your
customersto start your application immediately after installing it, without the need for reboot.

To successfully unload your driver, make sure that there are no open handles to the
WinDriver service (windrvr6.sys or your renamed driver (refer to Section 12.2), and that
there are no connected and enabled Plug-and-Play devices that are registered with this
service.

10.2. Windows Dynamic Driver Loading

10.2.1. Windows Driver Types

Windows drivers can be implemented as either of the following types:

» Windows Driver Model (WDM) drivers: Files with the extension *.sys on Windows 7/Vista/
Server 2008/Server 2003/XP/2000/Me/98 (e.g., windrvr 6.sys).
WDM drivers areinstalled viathe installation of an INF file (see below).

* Non-WDM / Legacy drivers: These include drivers for non-Plug-and-Play Windows operating
systems (Windows NT 4.0) and files with the extension *.vxd on Windows 98/Me.

The WinDriver Windows kernel module —windrvr 6.sys—isafully WDM driver, which can be
installed using the wdr eg utility, as explained in the following sections.

10.2.2. The wdreg Utility

WinDriver provides a utility for dynamically loading and unloading your driver, which replaces
the slower manual process using Windows' Device Manager (which can still be used for the
device INF). This utility is provided in two forms: wdreg and wdreg_gui. Both versions can be
found in the WinDriver\util directory, can be run from the command line, and provide the same
functionality. The differenceisthat wdreg_gui displays install ation messages graphically, while
wdr eg displays them in console mode.

© Jungo Ltd. 2005-2011 77

Dynamically Loading Your Driver

This section describes the use of wdreg/ wdreg_gui on Windows operating systems.

1. wdreg is dependent on the Driver Install Frameworks APl (DIFXAPI) DLL —
difxapi.dll, unless when run with the - conpat option (described below). difxapi.dll
is provided under the WinDriver\util directory.

2. The explanations and examples below refer to wdr eg, but any references to wdreg can
be replaced with wdreg_gui.

10.2.2.1. Overview

This section explains how to use the wdr eg utility to install the WDM windrvr 6.sys driver on
Windows, or to install INF files that register USB devices to work with this driver on Windows 7/
Vista/Server 2008/Server 2003/X P/2000.

%, You can rename the windrvr 6.sys kernel module and modify your device INF fileto
register with your renamed driver, as explained in Section 12.2.1. To install your modified
INF files using wdr eg, simply replace any references to windrvr 6 below with the name of
your new driver.

Usage: The wdreg utility can be used in two ways as demonstrated bel ow:

1. wdreg -inf <filenanme> [-silent] [-log <logfile>]
[install | preinstall | uninstall | enable | disable]

2.wdreg -rescan <enunerator> [-silent] [-log <logfile>]

* OPTIONS
wdr eg supports several basic OPTIONS from which you can choose one, some, or none:

 -inf — The path of the INF file to be dynamically installed.

* -rescan <enumerator> — Rescan enumerator (ROOT, USB, etc.) for hardware changes.
Only one enumerator can be specified.

» -silent — Suppress display of all messages (optional).
* -log <logfile> — Log all messages to the specified file (optional).

» -compat — Usethetraditional SetupDi API instead of the newer Driver Install Frameworks
API (DIFXAPI).

* ACTIONS
wdr eg supports several basic ACTIONS:

* install —Installs the INF file, copies the relevant files to their target locations, and
dynamically loads the driver specified in the INF file name by replacing the older version (if
needed).

© Jungo Ltd. 2005-2011 78

Dynamically Loading Your Driver

» preinstall Pre-installs the INF file for a non-present device.

 uninstall — Removes your driver from the registry so that it will not load on next boot (see
note below).

* enable— Enablesyour driver.

» disable— Disablesyour driver, i.e., dynamically unloadsit, but the driver will reload after
system boot (see note below).

To successfully disable/uninstall your driver, make sure that there are no open handles to
the WinDriver service (windrvr 6.sys or your renamed driver (refer to Section 12.2), and
that there are no connected and enabled Plug-and-Play devices that are registered with this
service.

10.2.3. Dynamically Loading/Unloading
windrvr6é.sys INF Files

When using WinDriver, you develop a user-mode application that controls and accesses your
hardware by using the generic windrvr6.sys driver (WinDriver's kernel module). Therefore, you
might want to dynamically load and unload the driver windrvr 6.sys — which you can do using
wdreg.

In addition, in WDM-compatible operating systems, you also need to dynamically load INF files
for your Plug-and-Play devices. wdr eg enables you to do so automatically on Windows 7/Vista/
Server 2008/Server 2003/X P/2000.

This section includes wdr eg usage examples, which are based on the detailed description of

wdr eg contained in the previous section.

e To start windrvr6.sys on Windows 7/Vista/Server 2008/Server 2003/X P/2000:
wdreg -inf <path to windrvr6.inf> install
This command loads windr vr 6.inf and starts the windrvr 6.sys service.

» Toload an INF file named device.inf, located in the c:\tmp directory:
wdreg -inf c:\tnp\device.inf install

You can replacethei nst al | option in the example above with pr ei nst al | to pre-install
the device INF file for adevice that is not currently connected to the PC.

If theinstallation fails with an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL_MACHI NE\ SOFTWARE

\' M cr osof t\ Wndows\ Current Ver si on. Thisregistry key isrequired by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

To unload the driver/INF file, use the same commands, but simply replacei nst al | inthe
examples above withuni nstal | .

© Jungo Ltd. 2005-2011 79

Dynamically Loading Your Driver

10.3. Linux Dynamic Driver Loading

; Thefollowing commands must be executed with root privileges.

» Todynamically load WinDriver, run the following command:
<path to wdreg> wi ndrvr6

* Todynamically unload WinDriver, run the following command:
/ sbi n/ nodpr obe -r wi ndrvr6.

wdreg is provided in the WinDriver/util directory.

- Toautomatically load WinDriver on each boot, add the following to the target Linux boot

' file (fetc/rc.dirc.local):
<path to wdreg> wi ndrvr6

10.4. Windows Mobile Dynamic Driver
Loading

The WinDriver\redist\Windows Mobile 5 ARMV4I\wdr eg.exe utility can be used for loading
the WinDriver kernel module (windrvr 6.dll) on a Windows Mobile platform.

 On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be rel oaded
after boot. To load WinDriver on the target Windows Mobile platform every timethe OSis
started, copy the wdreg.exe utility to the Windows\StartUp directory on the target PC.

The source code of the Windows Mobile wdreg.exe utility is available under the WinDriver
\samples\wince _install\wdr eg directory on the development PC.

© Jungo Ltd. 2005-2011 80

Chapter 11
Distributing Your Driver

» Read this chapter in the final stages of driver development. It will guide you in preparing
' your driver for distribution.

11.1. Getting a Valid License for WinDriver

To purchase aWinDriver license, complete the WinDriver/docs/or der .pdf order form and fax or
email it to Jungo. Complete details are included on the order form. Alternatively, you can order
WinDriver online. For more details, visit our web site: http://www.jungo.com.

In order to install the registered version of WinDriver and to activate driver code that you
have developed during the evaluation period on the development machine, please follow the
installation instructions found in Section 4.2 above.

11.2. Windows Driver Distribution

 All references to wdreg in this section can be replaced with wdreg_gui, which offers
the same functionality as wdreg but displays GUI messages instead of console-mode

messages.

* If you have renamed the WinDriver kernel module (windrvr 6.sys), as explained in
Section 12.2, replace the relevant windr vr 6 references with the name of your driver,
and replace references to the WinDriver\redist directory with the path to the directory
that contains your modified installation files. For example, when using the generated
DriverWizard renamed driver files for your driver project, as explained in Section 12.2.1,
you can replace references to the WinDriver\redist directory with references to the
generated xxx_installation\redist directory (where xxx is the name of your generated
driver project).

* If you have created new INF and/or catalog files for your driver, replace the referencesto
the original WinDriver INF files and/or to the wd1030.cat catal og file with the names of
your new files (see information in Sections 12.2.1 and 12.3.2 regarding renaming of the
original files).

* If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare a separate driver installation package for each platform. The required files for
each package are located within the WinDriver installation directory for the respective
platform.

© Jungo Ltd. 2005-2011 81

http://www.jungo.com

Distributing Your Driver

Distributing the driver you created is a multi-step process. First, create a distribution package that
includes all the files required for the installation of the driver on the target computer. Second,
install the driver on the target machine. Thisinvolvesinstalling windrvr 6.sys and windrvr 6.inf,
and installing the specific INF file for your device.

Finally, you need to install and execute the hardware control application that you devel oped with
WinDriver. These steps can be performed using wdr eg utility.

11.2.1. Preparing the Distribution Package

Y our distribution package should include the following files:

* Your hardware control application/DLL.

e windrvr6.sys.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

e windrvr6.inf.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

» wd1030.cat.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

» wdapil1030.dll (for distribution of 32-bit binariesto 32-bit target platforms or for distribution
of 64-bit binariesto 64-bit platforms) or wdapi1030 32.dll (for distribution of 32-bit binaries
to 64-bit platforms[A.2].

Get thisfile from the WinDriver\redist directory of the WinDriver package.

 difxapi.dll (required by the wdr eg.exe utility [10.2.2]).
Get thisfile from the WinDriver\util directory of the WinDriver package.

* AnINFfilefor your device.
Y ou can generate this file with DriverWizard, as explained in Section 5.2.

11.2.2. Installing Your Driver on the Target
Computer

; Driver installation on Windows requires administrator privileges.

Follow the instructions below in the order specified to properly install your driver on the target
computer:

* Preliminary Steps:

» To successfully install your driver, make sure that there are no open handles to the
WinDriver service (windrvr6.sys or your renamed driver (refer to Section 12.2), and
that there are no connected and enabled Plug-and-Play devices that are registered with

© Jungo Ltd. 2005-2011 82

Distributing Your Driver

this service. Thisisrelevant, for example, when upgrading the version of the driver (for
WinDriver v6.0.0 and above; earlier versions used a different module name). If the serviceis
being used, attemptsto install the new driver using wdreg will fail.

Y ou can disable or uninstall connected devices from the Device Manager (Properties |
Disable/Uninstall) or using wdr eg, or otherwise physically disconnect the device(s) from
the PC.

* On Windows 2000, remove any INF file(s) previously installed for your device (such as
files created with an earlier version of WinDriver) from the % windir %\inf directory before
installing the new INF file that you created for the device. Thiswill prevent Windows from
automatically detecting and installing an obsolete file. Y ou can search the INF directory for
the device's vendor 1D and device/product 1D to locate the file(s) associated with the device.

* |nstall WinDriver'skernel module;

1. Copy windrvr6.sys, windrvr6.inf, and wd1030.cat to the same directory.

wd1030.cat contains the driver's Authenticode digital signature. To maintain the
signature's validity this file must be found in the same install ation directory as the
windrvr6.inf file. If you select to distribute the catalog and INF files in different
directories, or make any changes to these files or to any other files referred to by the
catalog file (such as windrvr6.sys), you will need to do either of the following:

» Create anew catalog file and re-sign the driver using thisfile.

e Comment-out or remove the following linein the windrvr 6.inf file:
Cat al ogFi | e=wd1030. cat
and do not include the catalog file in your driver distribution. However, note that
this option invalidates the driver's digital signature.

For more information regarding driver digital signing and certification and the
signing of your WinDriver-based driver, refer to Section 12.3 of the manual.

2. Usethe utility wdreg to install WinDriver's kernel module on the target computer:
wdreg -inf <path to windrvr6.inf> install

For example, if windrvr6.inf and windrvr6.sys arein the d:\MyDevice directory on the
target computer, the command should be:
wdreg -inf d:\MyDevice\w ndrvr6.inf install

Y ou can find the executable of wdreg in the WinDriver package under the WinDriver\util
directory. For ageneral description of this utility and its usage, please refer to Chapter 10.

; * Wdreg is dependent on the difxapi.dll DLL.

» wdregisaninteractive utility. If it fails, it will display a message instructing the
user how to overcome the problem. In some cases the user may be asked to reboot
the computer.

© Jungo Ltd. 2005-2011 83

Distributing Your Driver

@ When distributing your driver, take care not to overwrite a newer version of
windrvr6.sys with an older version of the file in Windows drivers directory
(Yowindir% \system32\drivers). Y ou should configure your installation program (if
you are using one) or your INF file so that the installer automatically compares the
time stamp on these two files and does not overwrite a newer version with an older
one.

» Ingtall the INF filefor your device (registering your Plug-and-Play device with
windrvr6.sys):

Run the utility wdreg with thei nst al | command to automatically install the INF file and

update Windows Device Manager:
wdreg -inf <path to your INF file> install

Y ou can aso use the wdreg utility'spr ei nst al | command to pre-install an INF filefor a
device that is not currently connected to the PC:
wdreg -inf <path to your INF file> preinstall

* On Windows 2000, if another INF file was previously installed for the device,
which registered the device to work with the Plug-and-Play driver used in earlier
versions of WinDriver remove any INF file(s) for the device from the % windir %
\inf directory before installing the new INF file that you created. Thiswill prevent
Windows from automatically detecting and installing an obsolete file. Y ou can search
the INF directory for the device's vendor 1D and device/product 1D to locate the file(s)
associated with the device.

 |If theinstallation fails with an ERROR_FI LE_NOT_FOUND error, inspect the
Windows registry to seeif the RunOnce key existsin HKEY _LOCAL_MACHI NE
\ SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on. Thisregistry key is
required by Windows Plug-and-Play in order to properly install drivers using INF files.
If the RunOnce key ismissing, create it; then try installing the INF file again.

* Install wdapi1030.dll:
If your hardware control application/DLL uses wdapi1030.dll (asisthe case for the sample
and generated DriverWizard WinDriver projects), copy this DLL to the target's % windir %
\system32 directory.
If you are distributing a 32-bit application/DLL to atarget 64-bit platform [A.2], rename
wdapi1030_32.dIl in your distribution package to wdapi1030.dll, and copy the renamed file to
the target's % windir % \sysW OW 64 directory.

© Jungo Ltd. 2005-2011 84

Distributing Your Driver

If you attempt to write a 32-bit installation program that installs a 64-bit program, and
therefore copies the 64-bit wdapi1030.dll DLL to the % windir % \system32 directory,
you may find that the file is actually copied to the 32-bit % windir % \sysW OW 64
directory. The reason for thisis that Windows x64 platforms transl ate references to 64-bit
directories from 32-bit commands into references to 32-hbit directories. Y ou can avoid
the problem by using 64-bit commands to perform the necessary installation steps from
your 32-bit installation program. The system64.exe program, provided in the WinDriver
\redist directory of the Windows x64 WinDriver distributions, enables you to do this.

 Ingtall your hardware control application/DLL: Copy your hardware control application/
DLL tothetarget and runit!

11.3. Windows CE Driver Distribution

11.3.1. Distribution to New Windows CE Platforms

The following instructions apply to platform developers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visua Studio 2005/2008 with the
Windows CE 6.0 plugin. The instructions use the notation "Windows CE I DE' to refer to
either of these platforms.

To distribute the driver you devel oped with WinDriver to a new target Windows CE platform,
follow these steps.

1. Modify the project registry file to add an entry for your target device:

* If you select to use the WinDriver component (refer to Step 2), modify WinDriver
\samples\wince instal\<TARGET_CPU>\WinDriver.reg (e.g., WinDriver\samples
\wince_instalN\ARMV4I\WinDriver .reg).

» Otherwise, modify WinDriver\samples\wince install\project_wd.reg.

2. You can simplify the driver integration into your Windows CE platform by following the
procedure described in this step before the Sysgen platform compilation stage.

Note:

» The procedure described in this step is relevant only for devel opers who use Windows CE
4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MS Visual Studio 2005/2008 should skip to the
next step (Step 3).

 This procedure provides a convenient method for integrating WinDriver into your
Windows CE platform. If you select not to use this method, you will need to perform the
manual integration steps described in Step 4 below, after the Sysgen stage.

© Jungo Ltd. 2005-2011 85

Distributing Your Driver

» The procedure described in this step also adds the WinDriver kernel module
(windrvr6.dll) to your OSimage. Thisis anecessary step if you want the WinDriver CE
kernel file (windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using a floppy
disk. However, if you prefer to have the file windrvr 6.dll loaded on demand viathe
CESH/PPSH services, you need to perform the manual integration method described in
Step 4 instead of performing the procedure described in the present step.

a. Run the Windows CE IDE and open your platform.

b. From the File menu select Manage Catalog Items.... and then click the Import... button
and select the WinDriver .cec file from the relevant WinDriver\samples\wince install
\<TARGET_CPU> directory (e.g., WinDriver\samples\wince installARMV4I). This
will add aWinDriver component to the Platform Builder Catalog.

c. Inthe Catalog view, right-click the mouse on the WinDriver Component node in the
Third Party tree and select Add to OS design.

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in Step 2 above, perform the following steps
after the Sysgen stage in order to manually integrate the driver into your platform. Note: If
you followed the procedure described in Step 2, skip this step and go directly to Step 5.

a. Run the Windows CE IDE and open your platform.
b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file—WinDriver\redist\<sTARGET_CPU\windrvr6.dll
—tothe% FLATRELEASEDIR% subdirectory on the target development platform
(should be the current directory in the new command window).

d. Append the contents of the project_wd.reg file in the WinDriver\samples
\wince_install directory to the project.reg fileinthe%_FLATRELEASEDIR%
subdirectory.

e. Append the contents of the project_wd.bib filein the WinDriver\samples
\wince _install directory to the project.bib fileinthe% FLATRELEASEDIR%
subdirectory.

This step is only necessary if you want the WinDriver CE kernel file (windrvr6.dll) to
be a permanent part of the Windows CE image (NK.BIN), which isthe case if you select
to transfer the file to your target platform using a floppy disk. If you prefer to have the
filewindrvr6.dll loaded on demand via the CESH/PPSH services, you do not need to
carry out this step until you build a permanent kernel.

5. Select Make Run-Time Image from the Build menu and name the new image NK.BIN.

© Jungo Ltd. 2005-2011 86

Distributing Your Driver

6. Download your new kernel to the target platform and initialize it either by selecting
Download/I nitialize from the Tar get menu or by using a floppy disk.

7. Restart your target CE platform. The WinDriver CE kernel will automatically load.

8. Install your hardware control application/DLL on the target.
If your hardware control application/DLL uses wdapi1030.dll (asisthe case for the sample
and generated DriverWizard WinDriver projects), also copy thisDLL from the WinDriver
\redist\WINCE\<TARGET _CPU> directory on the Windows host development PC to the
target's Windows directory.

11.3.2. Distribution to Windows CE Computers

Unless otherwise specified, 'Windows CE' referencesin this section include all supported
Windows CE platforms, including Windows Mobile.

1. Copy WinDriver's kernel module —windrvr 6.dll —from the WinDriver\redist\WINCE
\<TARGET _CPU> directory on the Windows host development PC to the Windows
directory on your target Windows CE platform.

2. Add WinDriver to thelist of device drivers Windows CE loads on boot:

» Modify the registry according to the entries documented in the file WinDriver\samples
\wince_install\project_wd.reg. This can be done using the Windows CE Pocket Registry
Editor on the hand-held CE computer or by using the Remote CE Registry Editor Tool
supplied with MS eMbedded Visual C++ (Windows CE 4.x —5.x) / MS Visua Studio
2005/2008 (Windows Mobile or Windows CE 6.x). Note that in order to use the Remote
CE Registry Editor tool you will need to have Windows CE Services installed on your
Windows host platform.

» On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every timethe OSis
started, copy the WinDriver\redist\Windows _Mobile 5 ARMV4l\wdreg.exe utility to
the Windows\StartUp directory on the target PC.

3. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will
have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE compulte).

4. Install your hardware control application/DLL on the target.
If your hardware control application/DLL uses wdapi1030.dll (asisthe case for the sample
and generated DriverWizard WinDriver projects), also copy thisDLL from the WinDriver
\redist\WINCE\<TARGET _CPU> directory on the development PC to the target's
Windows directory.

© Jungo Ltd. 2005-2011 87

Distributing Your Driver

11.4. Linux Driver Distribution

» TheLinux kernel is continuously under development and kernel data structures are
subject to frequent changes. To support such a dynamic development environment and
still have kernel stability, the Linux kernel developers decided that kernel modules
must be compiled with header filesidentical to those with which the kernel itself was
compiled. They enforce this by including a version number in the kernel header files that
is checked against the version number encoded into the kernel. This forces Linux driver
developers to facilitate recompilation of their driver based on the target system's kernel
version.

"
1

* If you have renamed the WinDriver driver modules (windrvr6.0/.ko and
windrvr6_usb.o/.ko), as explained in Section 12.2, replace windr vr 6 references with
your new driver name, and replace references to the WinDriver redist, lib and include
directories with the path to your copy of the relevant directory. For example, when using
the generated DriverWizard renamed driver filesfor your driver project, as explained
in Section 12.2.2, you can replace references to the WinDriver/redist directory with
references to the generated xxx_installation/redist directory (where xxx is the name of
your generated driver project).

* If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare a separate driver installation package for each platform. The required files for
each package are located within the WinDriver installation directory for the respective
platform.

11.4.1. Kernel Modules

WinDriver uses two kernel modules: the main WinDriver driver module, which implements the
WinDriver APl —windrvr6.0/.ko —and a driver module that implements the USB functionality
—windrvr6_ush.o/.ko. Since these are kernel modules, they must be recompiled for every kernel
version on which they are loaded.

To enable recompilation, the following components must be distributed along with your driver
source/object code.

The components are provided under the WinDriver/redist directory, unless specified
otherwise.

"
1

» windrvr_gcc v2.a, windrvr_gcc v3.aand windrvr_gcc v3 regparm.a: compiled object
code for the WinDriver kernel module. windrvr_gcc v2.aisused for kernels compiled
with GCC v2.x.x, and windrvr_gcc_v3.aisused for kernels compiled with GCC v3.x.x.
windrvr_gcc v3 regparm.aisused for kernels compiled with GCC v3.x.x with the regparm

flag.

* linux_wrappers.c/h: wrapper library source code files that bind the WinDriver kernel module
to the Linux kernel.

© Jungo Ltd. 2005-2011 88

Distributing Your Driver

* linux_common.h, windrvr.h, wd_ver.h, windrvr_usb.h, and wdusb_interface.h: header
filesrequired for building the WinDriver kernel module on the target.

windrvr.h, wd_ver.h, and windrvr_usb.h are provided under the WinDriver/include
directory.

» wdusb_linux.c: used by WinDriver to utilize the USB stack.

 configure: aconfiguration script that creates makefile from makefile.in and runs
configurewd and configure.usb (see below).

If the Linux kernel version is 2.6.26 or higher, configur e generates makefiles that use
kbui | d to compile the kernel modules. Y ou can force the use of kbuild on earlier
versions of Linux, by passing the - - enabl e- kbui | d flag to configure. Thefiles that
use kbui | d include .kbuild in their names.

 configure.wd: a configuration script that creates makefile.wd[.kbuild] from
makefilewd[.kbuild].in.

 configure.ush: a configuration script that creates makefile.usb[.kbuild] from
makefile.usb[.kbuild].in.

» makefilein: atemplate for the main WinDriver makefile, which compiles and installs
WinDriver by making makefile.wd[.kbuild] and makefile.usb[.kbuild].

* makefilewd.in: atemplate for a makefile that compiles and installs the main WinDriver kernel
module.

» makefilewd.kbuild.in: atemplate for a makefile that compiles the main WinDriver kernel
module using kbui | d, and then installs the module.

» makefile.ushb.in: atemplate for a makefile that compiles and installs the USB kernel module
(windrvr6_usb.o/.ko).

» makefile.usb.kbuild.in: atemplate for a makefile that compiles the USB kernel module using
kbui | d, and then installs the module.

e setup_inst_dir: ascript to install your driver modules.
* wadreg (provided under the WinDriver/util directory): ascript to load the WinDriver kernel

driver modules (see Section 10.3).
Note: The setup_inst_dir script uses wdreg to load the driver modules.

© Jungo Ltd. 2005-2011 89

Distributing Your Driver

11.4.2. User-Mode Hardware Control Application/
Shared Objects

Copy the hardware control application/shared object that you created with WinDriver to the
target.

If your hardware control application/shared object uses libwdapi1030.so (asis the case for the
sample and generated DriverWizard WinDriver projects), copy this file from the WinDriver/lib
directory on the devel opment machine to the target's library directory —/usr/lib for 32-bit x86
targets, or /usr/lib64 for 64-bit x86 targets.

If you are distributing a 32-bit application/shared object to atarget 64-bit platform [A.2] — copy
libwdapil030 32.so from the WinDriver/lib directory to your distribution package, rename the
copy to libwdapi1030.s0, and copy the renamed file to the target's /usr/lib directory.

Since your hardware control application/shared object does not have to be matched against the
kernel version number, you are free to distribute it as binary code (if you wish to protect your
source code from unauthorized copying) or as source code. Note that under the license agreement
with Jungo you may not distribute the source code of the libwdapi1030.s0 shared object.

If you select to distribute your source code, make sure you do not distribute your WinDriver
license string, which is used in the code.

11.4.3. Installation Script

We suggest that you supply an installation shell script to automate the build and installation
processes on the target.

© Jungo Ltd. 2005-2011 90

Chapter 12
Driver Installation — Advanced

Issues

12.1. Windows INF Files

Deviceinformation (INF) files are text files that provide information used by the Plug-and-Play
mechanism on Windows 7 / Vista/ Server 2008 / Server 2003/ XP/ 2000/ Me/ 98 to install
software that supports a given hardware device. INF files are required for hardware that identifies
itself, such as USB and PCI. An INF file includes al necessary information about a device and
the filesto be installed. When hardware manufacturers introduce new products, they must create
INF files to explicitly define the resources and files required for each class of device.

In some cases, the INF file for your specific device is supplied by the operating system. In
other cases, you will need to create an INF file for your device. WinDriver's DriverWizard can
generate a specific INF file for your device. The INF file is used to notify the operating system
that WinDriver now handles the selected device.

For USB devices, you will not be able to access the device with WinDriver (either from
DriverWizard or from the code) without first registering the device to work with windrvr 6.sys.
Thisisdone by installing an INF file for the device. DriverWizard will offer to automatically
generate the INF file for your device.

Y ou can use DriverWizard to generate the INF file on the development machine — as explained in

Section 5.2 of the manual —and then install the INF file on any machine to which you distribute
the driver, as explained in the following sections.

12.1.1. Why Should I Create an INF File?

» To bind the WinDriver kernel module to a specific USB device.
» Tooverridethe existing driver (if any).

» To enable WinDriver applications and DriverWizard to access a USB device.

© Jungo Ltd. 2005-2011 91

Driver Installation — Advanced Issues

12.1.2. How Do I Install an INF File When No Driver
Exists?

Y ou must have administrative privilegesin order to install an INF file.

Y ou can use the wdreg utility with thei nst al | command to automatically install the INF file:
wdreg -inf <path to the INF file> install
(For more information, refer to Section 10.2.2 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically I nstall the INF file
option in the DriverWizard's INF generation window (refer to Section 5.2).

It isalso possibleto install the INF file manually, using either of the following methods:

* Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis plugged
inor, if the device was already connected, when scanning for hardware changes from the
Device Manager.

» Windows Add/Remove Hardwar e Wizard: Right-click the mouse on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

» Windows Upgrade Device Driver Wizard: Locate the devicein the Device Manager devices
list and select the Update Driver ... option from the right-click mouse menu or from the Device
Manager's Action menu.

In al the manual installation methods above you will need to point Windows to the location of the
relevant INF file during the installation.

We recommend using the wdr eg utility to install the INF file automatically, instead of installing it
manually.

If theinstallation fails with an ERROR_FI LE_NOT _FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY LOCAL_MACHI NE\ SOFTWARE

\' M crosof t\ Wndows\ Cur r ent Ver si on. Thisregistry key isrequired by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

12.1.3. How Do | Replace an Existing Driver Using
the INF File?

; Youmust have administrative privilegesin order to replace adriver.

1. On Windows 2000, if you wish to upgrade the driver for USB devices that have been
registered to work with earlier versions of WinDriver, we recommend that you first delete
from the Windows INF directory (\windir\inf) any previous INF files for the device, to

© Jungo Ltd. 2005-2011 92

Driver Installation — Advanced Issues

prevent Windows from installing an old INF file in place of the new file that you created.
L ook for files containing your device's vendor and device IDs and del ete them.

. Install your INF file:

Y ou can use the wdr eg utility with thei nst al | command to automatically install the INF
file:

wdreg -inf <path to INF file> install

(For more information, refer to Section 10.2.2 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to Section 5.2).

Itisalso possible to install the INF file manually, using either of the following methods:

* Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis
plugged in or, if the device was already connected, when scanning for hardware changes
from the Device Manager.

* Windows Add/Remove Hardware Wizard: Right-click on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

* Windows Upgrade Device Driver Wizard: Locate the device in the Device M anager
deviceslist and select the Update Driver ... option from the right-click mouse menu or
from the Device Manager's Action menu.

In the manual installation methods above you will need to point Windows to the location of
the relevant INF file during the installation. If the installation wizard offersto install an INF
file other than the one you have generated, select I nstall one of the other driversand choose
your specific INF file from the list.

We recommend using the wdr eg utility to install the INF file automatically, instead of
installing it manually.

If theinstallation failswith an ERROR_FI LE_NOT _FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY LOCAL_MACHI NE\ SOFTWARE

\' M crosof t\ Wndows\ Cur rent Ver si on. Thisregistry key isrequired by Windows
Plug-and-Play in order to properly install driversusing INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

12.2. Renaming the WinDriver Kernel Driver

The WinDriver APIs are implemented within the WinDriver kernel driver module
(windrvr6.syd.dll/.o/.ko — depending on the OS), which provides the main driver functionality
and enables you to code your specific driver logic from the user mode [1.5].

On Windows and Linux you can change the name of the WinDriver kernel module to your
preferred driver name, and then distribute the renamed driver instead of default kernel module

© Jungo Ltd. 2005-2011 93

Driver Installation — Advanced Issues

—windrvr6.sysd.o/.ko. The following sections explain how to rename the driver for each of the
supported operating systems.

» A renamed WinDriver kernel driver can be installed on the same machine as the original
kernel module.
Y ou can aso install multiple renamed WinDriver drivers on the same machine,
simultaneously.

) Try to give your driver aunigue name in order to avoid a potenial conflict with other drivers
- onthetarget machine on which your driver will be installed.

12.2.1. Windows Driver Renaming

DriverWizard automates most of the work of renaming the Windows WinDriver kernel driver —
windrvr6.sys.

» The renaming procedure should be performed on a platform with a CPU architecture
(32-bit/64-bit) and WinDriver installation that match the architecture of the target
platform to which the driver will be distributed.

"
1

* Renaming the signed windrvr 6.sys driver nullifiesits signature. In such cases you
can select either to sign your new driver, or to distribute an unsigned driver. For more
information on driver signing and certification, refer to Section 12.3. For guidelines for
signing and certifying your renamed driver, refer to Section 12.3.2.

4 References to xxx in this section should be replaced with the name of your generated
' DriverWizard driver project.

To rename your Windows WinDriver kernel driver, follow these steps:

1. Usethe DriverWizard utility to generate driver code for your hardware on Windows (refer
to Section 5.2, Step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

 redist directory:

* XxX.sys—Your new driver, which is actually arenamed copy of the windrvr6.sys
driver. Note: The properties of the generated driver file (such asthefile's version,
company name, etc.) are identical to the properties of the origina windrvr6.sys driver.
Y ou can rebuild the driver with new properties using the files from the generated
xxx_installation sys directory, as explained below.

o xxx_driver.inf — A modified version of the windrvr6.inf file, which will be used to
install your new xxx.sys driver.
Y ou can make additional modificationsto thisfile, if you wish —namely, changing the
string definitions and/or comments in thefile.

© Jungo Ltd. 2005-2011 94

Driver Installation — Advanced Issues

» xxx_device.inf — A modified version of the standard generated DriverWizard INF file
for your device, which registers your device with your driver (Xxx.sys).
Y ou can make additional modificationsto thisfile, if you wish, such as changing the
manufacturer or driver provider strings.

» wdapi1030.dll — A copy of the WinDriver API DLL. The DLL iscopied herein order to
simplify the driver distribution, allowing you to use the generated xxx\r edist directory
as the main installation directory for your driver, instead of the origina WinDriver
\redist directory.

» gysdirectory: Thisdirectory contains files for advanced users, who wish to change the
properties of their driver file.
Note: Changing the file's properties requires rebuilding of the driver module using the
Windows Driver Kit (WDK).
To modify the properties of your xxx.sys driver file:

1. Verify that the WDK isinstalled on your development PC, or elsewhere on its
network, and set the BASEDIR environment variable to point to the WDK installation
directory.

2. Modify the xxx.rc resources file in the generated sys directory in order to set different
driver file properties.

3. Rebuild the driver by running the following command:
ddk_rmake <0OS> <build node (free/checked)>
For example, to build arelease version of the driver for Windows XP:
ddk_nmake wi nxp free

» The selected build OS must match the CPU architecture of your WinDriver
installation. For example, you cannot select the 64-bitwi n7_x64 OSflag
when using a 32-bit WinDriver installation.

» Theddk_make.bat utility is provided under the WinDriver\util directory,
and should be automatically identified by Windows when running the
installation command.

 Runddk_make. bat with no parameters to view the available options for
this utility.

After rebuilding the xxx.sys driver, copy the new driver file to the generated
xxx_installation\redist directory.

2. Verify that your user-mode application callsthe WD_Dr i ver Nanme() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needto dois
replace the driver name that is passed to the function in the code with your new driver name.

© Jungo Ltd. 2005-2011 95

Driver Installation — Advanced Issues

3. Verify that your user-mode driver project is built with the
WD DRI VER _NAME CHANGE preprocessor flag (e.g., - DAD_DRI VER_NAME CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

4. Install your new driver by following the instructions in Section 11.2 of the manual, using the

modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.

12.2.2. Linux Driver Renaming

DriverWizard automates most of the work of renaming the Linux WinDriver kernel driver —
windrvr 6.0/ .ko.

When renaming windrvr 6.0/.ko, the windrvr6_usb.o/.ko WinDriver USB Linux GPL
driver is automatically renamed to <new driver name>_usb.o/.ko.

"
1

, References to xxx in this section should be replaced with the name of your generated
W DriverWizard driver project.

To rename your Linux WinDriver kernel driver, follow these steps:

1. Usethe DriverWizard utility to generate driver code for your hardware on Linux (refer to
Section 5.2, Step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

 redist directory: Thisdirectory contains copies of the files from the original WinDriver/
redist installation directory, but with the required modifications for building your
xxX.0/.ko driver instead of windrvr6.0/.ko.

* lib and include directories: Copies of the library and include directories from the original
WinDriver distribution. These copies are created since the supported Linux WinDriver
kernel driver build method relies on the existence of these directories directly under the
same parent directory asthe redist directory.

2. Verify that your user-mode application callsthe WD_Dr i ver Nanme() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needto do is
replace the driver name that is passed to the function in the code with your new driver name.

3. Verify that your user-mode driver project is built with the
WD DRI VER_NANME_CHANGE preprocessor flag (- DWD_DRI VER _NANME _CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

© Jungo Ltd. 2005-2011 96

Driver Installation — Advanced Issues

4. Install your new driver by following the instructionsin Section 11.4 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.

As part of the installation, build your new kernel driver module(s) by following the
instructionsin Section 11.4.1, using the files from your new installation directory.

12.3. Digital Driver Signing and Certification
— Windows 7/Vista/Server 2008/Server 2003/
XP/2000

12.3.1. Overview

Before distributing your driver, you can digitally sign and/or certify it, either by submitting it to
the Microsoft Windows Logo Program, for certification and signature, or by having the driver
Authenticode signed.

Some Windows operating systems, such as Windows X P and below, do not require installed
driversto be digitally signed or certified. There are, however, advantages to getting your driver
digitally signed or fully certified, including the following:

» Driver installation on systems where installing unsigned drivers has been blocked

» Avoiding warnings during driver installation

» Full pre-installation of INF files[12.1] on Windows XP and higher

64-bit versions of Windows Vista and higher require Kernel-Mode Code Signing (KMCS) of
software that loads in kernel mode. This has the following implications for WinDriver-based

drivers:

» Driversthat areinstalled viaan INF file must be distributed together with a signed catalog file
(see detailsin Section 12.3.2).

» Driversthat are not installed using an INF file must contain an embedded driver signature.

During driver development, you can configure Windows to temporarily alow the
installation of unsigned drivers.

For more information about digital driver signing and certification, see

 Driver Signing Requirements for Windows:
http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx.

» The Introduction to Code Sgning topic in the Microsoft Development Network (MSDN)
documentation.

© Jungo Ltd. 2005-2011 97

http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx

Driver Installation — Advanced Issues

* Digital Signatures for Kernel Modules on Systems Running Windows Vista and higher:
http://www.microsoft.com/whdc/winlogo/drvsign/kmsi gning.mspx.
This white paper contains information about kernel-mode code signing, test signing, and
disabling signature enforcement during devel opment.

12.3.1.1. Authenticode Driver Signature

The Microsoft Authenticode mechanism verifies the authenticity of driver's provider. It allows
driver developers to include information about themselves and their code with their programs
through the use of digital signatures, and informs users of the driver that the driver's publisher is
participating in an infrastructure of trusted entities.

The Authenticode signature does not, however, guarantee the code's safety or functionality.

The WinDriver\redist\windrvr 6.sys driver has an Authenticode digital signature.

12.3.1.2. WHQL Driver Certification

Microsoft's Windows Logo Program — http://www.microsoft.com/whdc/winlogo/default. mspx
—lays out procedures for submitting hardware and software modules, including drivers, for
Microsoft quality assurance tests. Passing the tests qualifies the hardware/software for Microsoft
certification, which verifies both the driver provider's authenticity and the driver's safety and
functionality.

Device drivers should be submitted for certification together with the hardware that they drive.
The driver and hardware are submitted to Microsoft's Windows Hardware Quality Labs (WHQL)
testing in order to receive digital signature and certification. This procedure verifies both the
driver's provider and its behavior.

4% Jungo's professional services unit provides a complete WHQL pre-certification service for
' Jungo-based drivers. Professional engineers efficiently perform all the required testsin the
Jungo WHQL test lab, relieving customers of the expense and stress of in-house testing.
Jungo prepares a WHQL submission package containing the test results, and delivers the
package to the customer, ready for submission to Microsoft.
For more information, refer to http://www.jungo.com/st/whql_certification.html.

For detailed information regarding the WHQL certification process, refer to the following
Microsoft web pages:

* WHQL home page:
http://www.microsoft.com/whdc/whql/default.mspx

» WHQL Policies page:
http://www.microsoft.com/whdc/whql/policies/default. mspx

» Windows Quality Online Services (Winqual) home page:
https://winqual .microsoft.com/

* Winqua help:
https://winqual.microsoft.com/Help/

© Jungo Ltd. 2005-2011 98

http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx
http://www.microsoft.com/whdc/winlogo/default.mspx
http://www.jungo.com/st/whql_certification.html
http://www.microsoft.com/whdc/whql/default.mspx
http://www.microsoft.com/whdc/whql/policies/default.mspx
https://winqual.microsoft.com/
https://winqual.microsoft.com/Help/

Driver Installation — Advanced Issues

* WHQL tests, procedures and forms download page:
http://www.microsoft.com/whdc/whgl/WHQL dwn.mspx

» Windows Driver Kit (WDK):
http://www.microsoft.com/whdc/devtool s/wdk/default.mspx

» Driver Test Manager (DTM):
http://www.microsoft.com/whdc/DevT ool YWDK/DTM.mspx

Note: Some of the links require Windows Internet Explorer.

12.3.2. Driver Signing and Certification of
WinDriver-Based Drivers

Asindicated above [12.3.1.1], The WinDriver\redist\windrvr 6.sys driver has an Authenticode
signature. Since WinDriver's kernel module (windrvr6.sys) is ageneric driver, which can be used
asadriver for different types of hardware devices, it cannot be submitted as a standalone driver
for WHQL certification. However, once you have used WinDriver to develop aWindows 7/
Vista/ Server 2008 / Server 2003 / XP / 2000 driver for your selected hardware, you can submit
both the hardware and driver for Microsoft WHQL certification, as explained below.

The driver certification and signature procedures — either via Authenticode or WHQL — require
the creation of a catalog file for the driver. Thisfileisasort of hash, which describes other files.
The signed windrvr6.sys driver is provided with a matching catalog file — WinDriver\redist
\wd1030.cat. Thisfileisassigned to the Cat al ogFi | e entry in the windrvr6.inf file (provided
aswell intheredist directory). This entry is used to inform Windows of the driver's signature and
the relevant catalog file during the driver'sinstallation.

When the name, contents, or even the date of the files described in adriver's catalog fileis
modified, the catalog file, and consequently the driver signature associated with it, become
invalid. Therefore, if you select to rename the windrvr 6.sys driver [12.2] and/or the related
windrvr6.inf file, the wd1030.cat catalog file and the related driver signature will become
invalid.

In addition, when using WinDriver to develop adriver for your Plug-and-Play device, you
normally also create a device-specific INF file that registers your device to work with the
windrvr6.sys driver module (or arenamed version of thisdriver). Since this INF file is created
at your site, for your specific hardware, it is not referenced from the wd1030.cat catalog file and
cannot be signed by Jungo a priori.

When renaming windrvr 6.sys and/or creating a device-specific INF file for your device, you
have two alternative options regarding your driver's digital signing:

» Do not digitally sign your driver. If you select this option, remove or comment-out the
reference to the wd1030.cat file from the windrvr6.inf file (or your renamed version of this
file).

© Jungo Ltd. 2005-2011 99

http://www.microsoft.com/whdc/whql/WHQLdwn.mspx
http://www.microsoft.com/whdc/devtools/wdk/default.mspx
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

Driver Installation — Advanced Issues

» Submit your driver for WHQL certification or have it Authenticode signed.

Note that while renaming WinDriver\redist\windrvr 6.sys nullifies the driver's digita
signature, the driver is still WHQL -compliant and can therefore be submitted for WHQL
testing.

To digitally sign/certify your driver, follow these steps:

» Create anew catalog file for your driver, as explained in Microsoft's WHQL documentation.
The new file should reference both windrvr 6.sys (or your renamed driver) and any INF files
used in your driver'sinstallation.

» Assign the name of your new catalog file to the Cat al ogFi | e entry inyour driver's
INF file(s). (You can either change the Cat al ogFi | e entry inthewindrvr6.inf fileto
refer to your new catalog file, and add a similar entry in your device-specific INF file; or
incorporate both windrvr 6.inf and your device INF file into asingle INF file that contains
such aCat al ogFi | e entry).

* If you wish to submit your driver for WHQL certification, refer to the additional guidelines
in Section 12.3.2.1.

» Submit your driver for WHQL certification or for an Authenticode signature.

Note that many WinDriver customers have already successfully digitally signed and certified
their WinDriver-based drivers.

12.3.2.1. WHQL DTM Test Notes

Asindicated in the WHQL documentation, before submitting the driver for testing you need to
download Microsoft's Driver Test Manager (DTM) (http://www.microsoft.com/whdc/DevTools/
WDK/DTM.mspx) and run the relevant tests for your hardware/software. After you have verified
that you can successfully passthe DTM tests, create the required logs package and proceed
according to Microsoft's documentation.

When running the DTM tests, note the following:

The DTM test class for WinDriver-based drivers should be Unclassified — Universal Device.
The Driver Verifier test is applied to all unsigned drivers found on the test machine. It is
therefore important to try and minimize the number of unsigned driversinstalled on the test PC
(apart from the test driver —windrvr 6.sys).

The USB Selective Suspend test requires that the depth of the under-test USB device in the
USB devicestreeis at least one external hub and no more than two external hubs deep.

The ACPI Stresstest requires that the ACPI settings in the BIOS support the S3 power state.

Verify that the / PAE switch is added to the boot flagsin the PC's boot.ini file.

© Jungo Ltd. 2005-2011 100

http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

Driver Installation — Advanced Issues

» Before submitting the file for certification you need to create a new catalog file, which lists
your driver and specific INF file(s), and refer to this catalog file from your INF file(s), as
explained above [12.3.2].

12.4. Windows XP Embedded WinDriver
Component

When creating a Windows X P Embedded image using the Target Designer tool from Microsoft's
Windows Embedded Studio, you can select the components that you wish to add to your image.
The added components will be installed automatically during the first boot on the Windows XP
Embedded target on which theimage is |oaded.

To automatically install the required WinDriver files — such as the windrvr 6.inf file and the
WinDriver kernel driver that it installs (windrvr 6.sys), your device INF file , and the WinDriver
API DLL (wdapi1030.dll) —on Windows X P Embedded platforms, you can create arelevant
WinDriver component and add it to your Windows XP Embedded image.

WinDriver ssimplifies this task for you by providing you with a ready-made component:
WinDriver\redist\xp_embedded\wd_component\windriver.sd.

To use the provided component, follow the steps below.

The provided windriver.sld component relies on the existence of awd_files directory
in the same directory that holds the component. Therefore, do not rename the provided
WinDriver\redist\xp_embedded\wd_component\wd_files directory or modify its
contents, unless instructed to so in the following guidelines.

1. Modify the dev.inf file:
The windriver.sd component depends on the existence of adev.inf filein thewd_files
directory. The WinDriver installation on your development Windows platform contains a
generic WinDriver\redist\xp_embedded\wd_component\wd_files\dev.inf file. Use either
of the following methods to modify this file to suit your device:

» Modify the generic dev.inf file to describe your device. At the very least, you must modify
thetemplate [Devi ceLi st] entry and insert your device's hardware type and vendor
and product IDs. For example, for adevice with vendor ID 0x1234 and product ID
0x5678:

"ny_dev_usb"=Install, USB\VID 1234\ &PI D 5678

OR:

» Create an INF filefor your device using DriverWizard (refer to Section 5.2, Step 3) and
name it dev.inf, or use an INF file from one of WinDriver's enhanced-support chipsets [8]
that suits your card and rename it to dev.inf. Then copy your dev.inf device INF file to the
WinDriver\redist\xp_embedded\wd_component\wd_files directory.

© Jungo Ltd. 2005-2011 101

Driver Installation — Advanced Issues

2. Add the WinDriver component to the Windows Embedded Component Database:

1. Open the Windows Embedded Component Database Manager (DBMgr).

2. Click Import.

3. Select the WinDriver component —
WinDriver\redist\xp_embedded\wd_component\windriver.sld —asthe SLD file and
click Import.

3. Add the WinDriver component to your Windows XP Embedded image:

1. Open your project in the Target Designer.

2. Double-click the WinDriver component to add it to your project.

Note: If you aready have an earlier version of the WinDriver component in your
project's components list, right-click this component and select Upgrade.

3. Run adependency check and build your image.

After following these steps, WinDriver will automatically be installed during the first boot on the
target Windows X P Embedded platform on which your image is loaded.

If you have selected to rename the WinDriver kernel module [12.2], you will not be able
to use the provided windriver.sld component. Y ou can build your own component for the
renamed driver, or use the wdreg utility to install the driver on the target Windows XP
Embedded platform, as explained in the manual.

© Jungo Ltd. 2005-2011 102

Appendix A
64-Bit Operating Systems
Support

A.l. Supported 64-Bit Architectures

WinDriver supports the following 64-bit platforms:

* Linux AMD®64 or Intel EM64T (x86_64)
For afull list of the Linux platforms supported by WinDriver, refer to Section 4.1.3.

* Windows AMD®64 or Intel EM64T (x64).
For afull list of the Windows platforms supported by WinDriver, refer to Section 4.1.1.

A.2. Support for 32-Bit Applications on 64-Bit
Windows and Linux Platforms

By default, applications created using the 64-bit versions of WinDriver are 64-bit applications.
Such applications are more efficient than 32-bit applications. However, you can also use the
64-bit WinDriver versions to create 32-bit applications that will run on the supported Windows
and Linux 64-bit platforms[A.1].

In the following documentation, <WD64> signifies the path to a 64-bit WinDriver
installation directory for your target operating system, and <WD32> signifies the path to a
32-bit WinDriver installation directory for the same operating system.

To create a 32-bit application for 64-bit Windows or Linux platforms, using the 64-bit version of
WinDriver, do the following:

1. Create aWinDriver application, as outlined in this manual (e.g., by generating code with
DriverWizard, or using one of the WinDriver samples).

2. Build the application with an appropriate 32-bit compiler for your target OS, using the
following configuration:

» Add aKERNEL_64BI T preprocessor definition to your project or makefile.

In the makefiles, the definition is added using the - Dflag: - DKERNEL_64BI T.

The sample and wizard-generated Linux makefiles and Windows MS Visua Studio
projects, in the 64-bit WinDriver toolkit, already add this definition.

© Jungo Ltd. 2005-2011 103

* Link the application with the specific version of the WinDriver API library/
shared object for 32-bit applications executed on 64-bit platforms — <WD64>\lib
\amd64\x86\wdapi1030.lib on Windows <W D64>/lib/libwdapi1030_32.s0 on Linux.

On Linux, the installation of the 64-bit WinDriver toolkit on the development machine
creates a libwdapi1030.so symbolic link in the /usr/lib directory —which links to
<WD64>/lib/libwdapi1030_32.so —and in the /usr/lib64 directory —which linksto
<WD64>/lib/libwdapi1030.s0 (the 64-bit version of this shared object).

The sample and wizard-generated WinDriver makefiles rely on these symbolic linksto
link with the appropriate shared object, depending on whether the code is compiled using a
32-bit or 64-bit compiler.

On Windows, the sample and wizard-generated MS Visual Studio projects are defined

to link with wdapi1030.lib (seethe Addi t i onal Dependenci es), but the linker
library path refersto the 64-bit library file in the <WD64>\lib\amd64 directory (see
Addi ti onal Li braryDi rect ori es); when using such a project to compile a 32-bit
application for 64-bit platforms, add \x86 to the library path in order to link the code with
<WD64>\lib\amd64\x86\wdapi 1030.lib.

» When distributing your application to target 64-bit platforms, you need to provide
with it the WinDriver APl DLL/shared object for 32-bit applications executed on
64-bit platforms — <WD64>\r edist\wdapi1030_32.dIl on Windows <WD64>/lib/
libwdapi1030 32.so0 on Linux. Before distributing this file, rename the copy of thefile
in your distribution package by removing the _32 portion. The installation on the target
should copy the renamed DL L/shared object to the relevant OS directory — \windir
\sysWOW64 on Windows or /usr/lib on Linux. All other distribution files are the same
asfor any other 64-bit WinDriver driver distribution, as detailed in Chapter 11.

* An application created using the method described in this section will not work on 32-bit
platforms. A WinDriver application for 32-bit platforms needs to be compiled without the
KERNEL _64BI T definition; it needs to be linked with the standard 32-bit version of the
WinDriver AP library/shared object from the 32-bit WinDriver installation (<WD32>
\lib\x86\wdapi1030.lib on Windows / <WD32>/lib/libwdapi1030.s0 on Linux); and
it should be distributed with the standard 32-bit WinDriver APl DLL/shared object
(WD32>\r edist\wdapi 1030.dll on Windows / <WD32>/lib/libwdapi1030.s0 on Linux)
and any other required 32-bit distribution file, as outlined in Chapter 11.

A.3. 64-Bit and 32-Bit Data Types

In general, DWORD is unsigned long. While any 32-bit compiler treats this type as 32 bits wide,
64-bit compilers treat thistype differently. With Windows 64-bit compilers the size of thistype
isstill 32 bits. However, with UNIX 64-bit compilers (e.g., GCC) the size of thistype is 64 bits.
In order to avoid compiler dependency issues, use the UINT32 and UINT64 cross-platform types
when you want to refer to a 32-bit or 64-bit address, respectively.

© Jungo Ltd. 2005-2011 104

Appendix B
WinDriver USB Host API

Reference

This function reference is C oriented. The WinDriver .NET, Visua Basic and Delphi APIs
have been implemented as closely as possible to the C APIs, therefore .NET, VB and

Delphi programmers can also use this reference to better understand the WinDriver APIs for
their selected development language. For the exact API implementation and usage examples
for your selected language, refer to the WinDriver .NET/VB/Delphi source code.

B.1. WD_DriverName

Purpose

Sets the name of the WinDriver kernel module, which will be used by the calling application.

The default driver name, which isused if the function is not called, is windrvr 6.

This function must be called once, and only once, from the beginning of your application,
before calling any other WinDriver function (including WD_QOpen() / WDU _I ni t ()), as
demonstrated in the sample and generated DriverWizard WinDriver applications, which
include a call to this function with the default driver name —windr vr 6.

On Windows and Linux, if you select to modify the name of the WinDriver kernel module
(windrvr6.sys.0/.ko), as explained in Section 12.2, you must ensure that your application calls
WD _Dr i ver Nane() with your new driver name.

In order to usethe WD _Dr i ver Nane() function, your user-mode driver project must be built
with WD DRI VER_NAME CHANGE preprocessor flag (e.g.: - DWD_DRI VER NANME CHANGE
—for MS Visua Studio and gcc).

The sample and generated DriverWizard Windows and Linux WinDriver projects/makefiles
already set this preprocessor flag.

Prototype

const char* DLLCALLCONV WD Driver Name(const char* sNane);

Parameters
Name Type I nput/Output
sName const char* Input

© Jungo Ltd. 2005-2011 105

Description

Name Description
sName The name of the WinDriver kernel module to be used by the
application.

NOTE: The driver name should be indicated without the driver
file's extension. For example, use windrvr 6, not windrvr 6.sys or
windrvr6.0.

Return Value

Returns the selected driver name on success; returns NULL on failure (e.g., if the functionis
called twice from the same application)long.

Remarks

The ability to rename the WinDriver kernel module is supported on Windows and Linux, as
explained in Section 12.2.

On Windows CE, always call theWD_Dr i ver Nanme() function with the default WinDriver
kernel module name —windrvr 6 — or refrain from calling the function atogether.

B.2. WinDriver USB (WDU) Library Overview

This section provides a general overview of WinDriver's USB Library (WDU), including
* Anoutline of the WDU_xxx API calling sequence — see Section B.2.1.

* |Instructions for upgrading code devel oped with the previous WinDriver USB API, used in
version 5.22 and earlier, to use the improved WDU_xxx APl —see Section B.2.2.
If you do not need to upgrade USB driver code developed with an older version of WinDriver,
simply skip this section.

The WDU library'sinterfaceis found in the WinDriver/include/wdu_lib.h and WinDriver/
include/windrvr.h header files, which should be included from any source file that calls the
WDU API. (wdu_lib.h already includes windrvr.h).

B.2.1. Calling Sequence for WinDriver USB

The WinDriver WDU_xxx USB API is designed to support event-driven transfers between your
user-mode USB application and USB devices. Thisisin contrast to earlier versions, in which
USB devices were initialized and controlled using a specific sequence of function calls.

Y ou can implement the three user callback functions specified in the next section:
WDU_ATTACH_CALLBACK [B.3.1], WbU_DETACH_CALLBACK [B.3.2] and
WDU_POWNER _CHANGE_CALLBACK [B.3.3] (at the very least WDU_ATTACH_CALLBACK).

© Jungo Ltd. 2005-2011 106

These functions are used to notify your application when arelevant system event occurs, such as
the attaching or detaching of a USB device. For best performance, minimal processing should be
donein these functions.

Y our application calls\VWDU | ni t () [B.4.1] and provides the criteria according to which the
system identifies adevice asrelevant or irrelevant. The WDU I ni t () function must also pass
pointers to the user callback functions.

Y our application then simply waits to receive a notification of an event. Upon receipt of such a
notification, processing continues. Y our application may make use of any functions defined in the
high- or low-level APIsbelow. The high-level functions, provided for your convenience, make
use of the low-level functions, which in turn use IOCTLSs to enable communication between the
WinDriver kernel module and your user-mode application.

When exiting, your application calls WDU_Uni ni t () [B.4.7] to stop listening to devices
matching the given criteria and to unregister the notification callbacks for these devices.

The following figure depicts the calling sequence described above. Each vertical line represents a
function or process. Each horizontal arrow represents asignal or request, drawn from the initiator
to the recipient. Time progresses from top to bottom.

© Jungo Ltd. 2005-2011 107

FigureB.1. WinDriver USB Calling Sequence

time maini) attachil detachi] WinDriver

WO Init()
Motify the user of currenly attached devices
Signal Attach
_______________ atacl *____]
LUSE Device
Attach
Motify the user of the attdch of the new device
Signal Attach
_______________ attach
WD Setinterface() 2
WOL Transer]) ©
[rnainf) may initiate other requests to WirDriver] 2
LISE Device
Detach
Motify the user of the
detached device
Signal Detach
device_detachi)
WO Uniniti)
k J

TIf the WD _ACKNOWLEDGE flag was set in the call to WD _Init(), the attach()
callback should return TRLUE to accept contral of the device or FALSE othensise.

2 Only possikble if the attach() callback returned TRUE.

The following piece of meta-code can serve as aframework for your user-mode application's
code:

attach()
{

if this is ny device
/*
Set the desired alternate setting ;
Si gnal main() about the attachment of this device
*/

© Jungo Ltd. 2005-2011 108

return TRUE;
el se
return FALSE;

}

det ach()
{

signal main() about the detachment of this device

}

mai n()

{
WU Init(...);

while (...)
{

/[* wait for new devices */

/* issue transfers */

}

ﬁbU_Uninit();

B.2.2. Upgrading from the WD_xxx USB API to the
WDU_xxx API

The WinDriver WDU_xxx USB AP, provided beginning with version 6.00, is designed to
support event-driven transfers between your user-mode USB application and USB devices. This
isin contrast to earlier versions, in which USB devices wereinitialized and controlled using a
specific sequence of function calls.

Asaresult of this change, you will need to modify your USB applications that were designed to
interface with earlier versions of WinDriver to ensure that they will work with WinDriver v6.X on
all supported platforms and not only on Microsoft Windows.

Y ou will have to reorganize your application's code so that it conforms with the framework
illustrated by the piece of meta-code provided in Section B.2.1.

In addition, the functions that collectively define the USB API have been changed. The new
functions, described in the next few sections, provide an improved interface between user-mode
USB applications and the WinDriver kernel module. Note that the new functions receive their
parameters directly, unlike the old functions, which received their parameters using a structure.

The table below lists the legacy functions in the left column and indicates in the right column
which function or functions replace(s) each of the legacy functions. Use thistable to quickly
determine which new functions to use in your new code.

© Jungo Ltd. 2005-2011 109

Problem Solution
High Level API
This function... has been replaced by...

WD Open()
WD Ver si on()
WD UsbScanDevi ce()

\WDU_| ni t () [B.4.1]

WD _UsbDevi ceRegi st er ()

WDU_Set | nt er face() [B.4.2]

WD UsbGet Confi gurati on()

WDU_Get Devi cel nf o() [B.4.5]

WD _UsbDevi ceUnr egi ster ()

VDU_Uni ni t () [B.4.7]

Low Level API

This function...

has been replaced by...

WD _UsbTr ansf er ()

WDU_Tr ansf er () [B.4.8.1]

WDU_Tr ansf er Def aul t Pi pe() [B.4.8.3]
WDU_Tr ansf er Bul k() [B.4.8.4]

WDU_Tr ansf er | soch() [B.4.8.5]
WDU_Tr ansferlnterrupt () [B.4.8.6]

USB_TRANSFER _HALT option

WDU Hal t Tr ansf er () [B.4.8.2]

WD UsbReset Pi pe()

WDU_ Reset Pi pe() [B.4.10]

WD UsbReset Devi ce()
WD UsbReset Devi ceEx()

WDU Reset Devi ce() [B.4.11]

B.3. USB User Callback Functions

B.3.1. WDU_ATTACH_CALLBACK

Purpose

WinDriver calls this function when a new device, matching the given criteria, is attached,

provided it is not yet controlled by another driver.
This callback is called once for each matching interface.

Prototype

typedef BOOL (DLLCALLCONV *WDU_ATTACH_ CALLBACK) (

WDU_DEVI CE_HANDLE hDevi ce,
WDU_DEVI CE *pDevi cel nf o,
PVA D pUser Dat a) ;

© Jungo Ltd. 2005-2011

110

Parameters

Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pDevicelnfo WDU_DEVICE* Input
pUserData PVOID I nput
Description
Name Description
hDevice A unique identifier for the device/interface
pDevicelnfo Pointer to a USB device information structure [B.5.2.3]; Valid until the
end of the function
pUserData Pointer to user-mode data for the callback, as passed to
WDU_I| ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

Return Value

If the WD_ ACKNOWLEDGE flag was set in the call to WDU_| ni t () [B.4.1] (within the

dwOpt i ons parameter), the callback function should check if it wantsto control the device, and
if so return TRUE (otherwise — return FALSE).

If the WD_ ACKNOWLEDGE flag was not set in the call to WDU _I ni t (), then the return value of
the callback function isinsignificant.

B.3.2. WDU_DETACH_CALLBACK

Purpose

WinDriver calls this function when a controlled device has been detached from the system.

Prototype

typedef void (DLLCALLCONV *WDU_DETACH_CALLBACK) (
WDU_DEVI CE_HANDLE hDevi ce,
PVO D pUser Dat a) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pUserData PVOID I nput

© Jungo Ltd. 2005-2011 111

Description

Name Description
hDevice A unique identifier for the device/interface
pUserData Pointer to user-mode data for the callback, as passed to

VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

Return Value

None

B.3.3. WDU_POWER_CHANGE_CALLBACK

Purpose

WinDriver calls this function when a controlled device has changed its power settings.

Prototype

t ypedef BOOL (DLLCALLCONV *WDU POWER CHANGE CALLBACK) (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPower St at e,
PVA D pUser Dat a) ;

Parameters
Name Type I nput/Output
dwPowerState DWORD Input
pUserData PVOID Input
Description
Name Description
hDevice A unique identifier for the device/interface
dwPowerState Number of the power state selected
pUserData Pointer to user-mode data for the callback, as passed to
VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

Return Value

TRUE/ FALSE. Currently there is no significance to the return value.

© Jungo Ltd. 2005-2011 112

Remarks

This callback is supported only in Windows operating systems, starting from Windows 2000.

B.4. USB Functions

The functions described in this section are declared in the

WinDriver/include/wdu_lib.h header file.

B.4.1. WDU _Init

Purpose

Starts listening to devices matching input criteria and registers notification callbacks for these

devices.

Prototype

DWORD VDU _| ni t (

WDU_DRI VER HANDLE *phbDri ver,
WDU_NMATCH TABLE *pMat chTabl es,
DWORD dwiNumivat chTabl es,
WDU_EVENT_TABLE *pEvent Tabl e,
const char *sLicense,

DWORD dwOpt i ons) ;

Parameters

Name Type I nput/Output
phDriver WDU_DRIVER_HANDLE * Output
pMatchTables WDU_MATCH_TABLE* Input
dwNumMatchTables | DWORD Input
pEventTable WDU_EVENT_TABLE* Input
sLicense const char* Input
dwOptions DWORD Input

© Jungo Ltd. 2005-2011

113

Description

Name Description

phDriver Handle to the registration of events & criteria

pMatchTables Array of match tables [B.5.2.1] defining the devices criteria

dwNumMatchTables | Number of elementsin pMatchTables

pEventTable Pointer to an event table structure [B.5.2.2], which holds the
addresses of the user-mode device status change notification callback
functions [B.3] and the data to pass to the callbacks

sLicense WinDriver's license string

dwOptions Canbezeroor:

* WD ACKNOWLEDGE — the user can seize control over the device
when returning value in WDU_ATTACH_CALLBACK [B.3.1]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.2. WDU_SetInterface

Purpose

Sets the alternate setting for the specified interface.

Prototype

DWORD WDU_Set | nt er f ace(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwi nt er f aceNum
DWORD dwAl t er nat eSetti ng);

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwlnterfaceNum DWORD Input
dwA lternateSetting DWORD Input

© Jungo Ltd. 2005-2011

114

Description

Name Description

hDevice A unique identifier for the device/interface
dwlnterfaceNum The interface's number

dwA IternateSetting The desired alternate setting value

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

On Windows CE — as opposed to Windows 7/VistalServer 2008/Server 2003/X P/2000 —
WDU_Set | nt er f ace() attemptsto open all the pipes of the specified alternate setting,

even if not all pipes are currently required. The reason for thisis that Windows CE limits

the total number of pipes that can be opened simultaneously on adevice, to 16 (see http://
msdn. microsoft.com/en-ug/library/ms919318.aspx). By opening all the pipes, the driver ensures
that the pipes will be available for use, when needed.

The pipes are opened using the Windows CE USB host controller driver's

LPOPEN_PI PE callback. On some Mobile devices, the call to this callback fails, causing
WDU_Set | nt er f ace() to fail aswell. To resolve such problems, upgrade the device's USB
host controller driver.

B.4.3. WDU_GetDeviceAddr

Purpose

Gets the USB address for agiven device.

Prototype

DWORD WDU_Get Devi ceAddr (
WDU_DEVI CE_HANDLE hDevi ce,
ULONG *pAddr ess) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
pAddress ULONG Output

© Jungo Ltd. 2005-2011 115

http://msdn.microsoft.com/en-us/library/ms919318.aspx
http://msdn.microsoft.com/en-us/library/ms919318.aspx

Description

Name Description
hDevice A unigue identifier for a device/interface
pAddress A pointer to the address number returned by the function

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

Thisfunction is supported only on Windows 2000 and higher.

B.4.4. WDU_GetDeviceRegistryProperty

Purpose

Gets the specified registry property of agiven USB device.

Prototype

DWORD DLLCALLCONV WDU_GCet Devi ceRegi stryProperty(
WDU_DEVI CE_HANDLE hDevi ce,

PVA D pBuffer,
PDWORD pdwSi ze,

WD_DEVI CE_REG STRY_PROPERTY property):

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
pBuffer PVOID Output
pdwSize PDWORD [nput/Output
property WD_DEVICE_REGISTRY PROPERTY I nput

© Jungo Ltd. 2005-2011

116

Description

Name Description
hDevice A unique identifier of the device/interface
pBuffer Pointer to a user allocated buffer to be filled with the requested registry

property. The function will fill the buffer only if the buffer size, as
indicated in the input value of the pdwSi ze parameter, is sufficient —
i.e., >=the property's size, asreturned viapdwSi ze.

pBuf f er can be set to NULL when using the function only to retrieve
the size of the registry property (see pdwSi ze).

pdwSize Asinput, pointsto avalue indicating the size of the user-supplied
buffer (pBuf f er); if pBuf f er issetto NULL, theinput value of this
parameter isignored.

As output, points to a value indicating the required buffer size for
storing the registry property.

property The ID of the registry property to be retrieved — see the description of
theWD_DEVI CE_REGQ STRY_PROPERTY enumeration [B.5.1].
Note: String registry properties arein WCHAR format.

Return Value

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

* When the size of the provided user buffer (pBuf f er) —* pdwSi ze (input) —is not sufficient
to hold the requested registry property, the function returns\VWD_| NVALI D_PARAMETER.

» Thisfunction is supported only on Windows 2000 and higher.

B.4.5. WDU_GetDevicelnfo

Purpose
Gets configuration information from adevice, including all the device descriptors.

NOTE: The caller to thisfunction is responsible for calling WDU_Put Devi cel nf o() [B.4.6] in
order to freethe * ppDevi cel nf o pointer returned by the function.

Prototype

DWORD WDU_Get Devi cel nf o
WDU_DEVI CE_HANDLE hDevi ce,
WDU_DEVI CE **ppDevi cel nf o) ;

© Jungo Ltd. 2005-2011 117

Parameters

Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
ppDevicelnfo WDU_DEVICE** Output
Description

Name Description

hDevice A uniqueidentifier for a device/interface

ppDevicelnfo Pointer to pointer to a USB device information structure [B.5.2.3]

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.6. WDU_PutDevicelnfo

Purpose

Receives a device information pointer, allocated with a previous
WDU_Get Devi cel nf o() [B.4.5] cdl, in order to perform the necessary cleanup.

Prototype

voi d WDU_Put Devi cel nf o(WDU_DEVI CE *pDevi cel nfo);

Parameters
Name Type I nput/Output
pDevicelnfo WDU_DEVICE* Input
Description
Name Description
pDevicelnfo Pointer to a USB device information structure [B.5.2.3], as returned by

apreviouscal to WDU_Get Devi cel nf o() [B.4.5]

Return Value

None

© Jungo Ltd. 2005-2011

118

B.4.7. WDU_Uninit

Purpose

Stops listening to devices matching a given criteria and unregisters the notification callbacks for

these devices.

Prototype

voi d WDU_Uni ni t (WDU_DRI VER_HANDLE hDri ver);

Parameters

Name Type I nput/Output
hDriver WDU_DRIVER_HANDLE Input
Description

Name Description

hDriver Handle to the registration received from WDU_| ni t () [B.4.1]

Return Value

None

© Jungo Ltd. 2005-2011

119

B.4.8. Single-Blocking Transfer Functions

This section describes WinDriver's single-blocking data transfer functions.
For more information, refer to Section 9.3.2 of the manual.

B.4.8.1. WDU_Transfer

Purpose

Transfers data to or from adevice.

Prototype

DWORD WDU_Tr ansf er (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,
DWORD dwOpt i ons,
PVA D pBuffer,
DWORD dwBuf fer Si ze,
PDWORD pdwByt esTr ansf err ed,
PBYTE pSet upPacket ,
DWORD dwTi neout) ;

Parameters

Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwPipeNum DWORD Input
fRead DWORD I nput
dwOptions DWORD Input
pBuffer PVOID Input
dwBufferSize DWORD Input
pdwBytesTransferred | PDWORD Output
pSetupPacket PBYTE I nput
dwTimeout DWORD Input

© Jungo Ltd. 2005-2011 120

Description

Name

Description

hDevice

A unigue identifier for the device/interface received from
WDU I nit()[B.4.1]

dwPipeNum

The number of the pipe through which the datais transferred

fRead

TRUE for read, FALSE for write

dwOptions

A bit-mask of USB transfer options, which can consist of a
combination of any of the following flags:

* USB | SOCH_NOASAP — Instructs the lower USB stack driver
(usbd.sys) to use a preset frame number (instead of the next available
frame) for an isochronous data transfer.

It is recommended that you use this flag for isochronous write

(OUT) transfers, and if you notice unused frames during transfers on
low-speed or full-speed USB 1.1 devices.

Thisflag isavailable only for Windows.

* USB | SOCH FULL_PACKETS_ ONLY — Prevents transfers of less
than the packet size on isochronous pipes.

*« USB_BULK | NT_URB_SI ZE_OVERRI DE_128K - Limitsthe size
of the USB Request Block (URB) to 128K B.

Thisflag isavailable only for Windows.

* USB_| SOCH_RESET — Resets the isochronous pipe before the
datatransfer. It also resets the pipe after minor errors, consequently
allowing to transfer to continue.

pBuffer

Address of the data buffer

dwBufferSize

Number of bytesto transfer. The buffer sizeisnot limited to the
device's maximum packet size; therefore, you can use larger buffers

by setting the buffer size to a multiple of the maximum packet size.
Use large buffers to reduce the number of context switches and thereby
improve performance.

pdwBytesTransferred

Number of bytes actually transferred

pSetupPacket

An 8-byte packet to transfer to control pipes

dwTimeout

Maximum time, in milliseconds (ms), to complete a transfer.
A value of zero indicates no timeout (infinite wait).

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

Remarks

The resolution of the timeout (the dwTi meout parameter) is according to the operating system
scheduler'stime slot. For example, in Windows the timeout's resolution is 10 milliseconds (ms).

© Jungo Ltd. 2005-2011

121

B.4.8.2. WDU_HaltTransfer

Purpose

Halts the transfer on the specified pipe (only one simultaneous transfer per pipeis alowed by

WinDriver).

Prototype

DWORD WDU_Hal t Tr ansf er (
WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwPi peNum) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwPipeNum DWORD Input
Description
Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The number of the pipe

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2011

122

B.4.8.3. WDU_TransferDefaultPipe

Purpose

Transfers datato or from a device through the default pipe.

Prototype

DWORD WDU_Tr ansf er Def aul t Pi pe(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD f Read,

DWORD dwOpt i ons,

PVA D pBuffer,

DWORD dwBuf fer Si ze,

PDWORD pdwByt esTr ansf err ed,
PBYTE pSet upPacket ,

DWORD dwTi neout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
@ GwPi peNum(N/A).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.8.4. WDU_TransferBulk

Purpose

Performs bulk data transfer to or from adevice.

Prototype

DWORD WDU_Tr ansf er Bul k(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVA D pBuffer,

DWORD dwBuf fer Si ze,

PDWORD pdwByt esTr ansf err ed,
DWORD dwTi neout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
v pSet upPacket (N/A).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2011 123

B.4.8.5. WDU_Transferlsoch

Purpose

Performs isochronous data transfer to or from a device.

Prototype

DWORD WDU_Tr ansf er | soch(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVA D pBuffer,

DWORD dwBuf fer Si ze,

PDWORD pdwByt esTr ansf err ed,
DWORD dwTi neout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
v pSet upPacket (N/A).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.8.6. WDU_TransferInterrupt

Purpose

Performs interrupt data transfer to or from a device.

Prototype

DWORD WDU_Tr ansf er | nt err upt (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVA D pBuffer,

DWORD dwBuf fer Si ze,

PDWORD pdwByt esTr ansf err ed,
DWORD dwTi neout) ;

| Refer to the WDU_Tr ansf er () parameters documentation [B.4.8.1], except for
v pSet upPacket (N/A).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2011 124

B.4.9. Streaming Data Transfer Functions

This section describes WinDriver's streaming data transfer functions.
For a detailed explanation regarding stream transfers and their implementation with Windriver,
refer to Section 9.3.3 of the manual.

| a The streaming APIs are currently supported on Windows and Windows CE.

B.4.9.1. WDU_StreamOpen

Purpose

Opens a new stream for the specified pipe.
A stream can be associated with any pipe except for the control pipe (Pipe 0). The stream's data
transfer direction — read/write —is derived from the direction of its pipe.

Prototype

DWORD DLLCALLCONV WDU_St r eanOpen(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD dwBuf f er Si ze,

DWORD dwRxSi ze,

BOOL f Bl ocki ng,

DWORD dwOpt i ons,

DWORD dwRxTxTi meout ,
WDU_STREAM HANDLE *phStream ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE HANDLE I nput
dwPipeNum DWORD Input
dwBufferSize DWORD Input
dwRxSize DWORD Input
fBlocking BOOL Input
dwOptions DWORD Input
dwRxTxTimeout DWORD Input
phStream WDU_STREAM_HANDLE* Output

© Jungo Ltd. 2005-2011 125

Description

Name Description

hDevice A unique identifier for the device/interface

dwPipeNum The number of the pipe for which to open the stream

dwBufferSize The size, in bytes, of the stream's data buffer

dwRxSize The size, in bytes, of the data blocks that the stream reads from the
device. This parameter is relevant only for read streams, and must
not exceed the value of the dwBuf f er Si ze parameter. Note: When
setting the USB_STREAM _MAX_TRANSFER_SI ZE_OVERWRI TE
dwOpt i ons flag, thisis aso the maximum transfer size.

fBlocking » TRUE for a blocking stream, which performs blocked 1/0;
» FAL SE for anon-blocking stream, which performs non-blocking 1/0.
For additional information, refer to Section 9.3.3.1.

dwOptions A bit-mask of USB transfer options, which can consist of a

combination of any of the following flags:

e USB | SOCH_NQASAP — Instructs the lower USB stack driver
(usbd.sys) to use a preset frame number (instead of the next available
frame) for an isochronous data transfer.

It is recommended that you use this flag for isochronous write

(OUT) transfers, and if you notice unused frames during transfers on
low-speed or full-speed USB 1.1 devices.

Thisflag is available only for Windows.

* USB | SOCH FULL_PACKETS_ ONLY — Prevents transfers of less
than the packet size on isochronous pipes.

« USB_BULK_| NT_URB_SI ZE_ OVERRI DE_128K — Limitsthe size
of the USB Request Block (URB) to 128K B.

Thisflag is available only for Windows.

« USB_ STREAM OVERWRI TE_BUFFER_WHEN_FULL —When there
is not enough free space in aread stream'’s data buffer to complete the
transfer, overwrite old datain the buffer. Thisflag is applicable only to
read streams.

« USB_STREAM MAX_TRANSFER_SI ZE_OVERRI DE — Overrides
the default maximum transfer size with the dwRx Si ze transfer size,
on Windows CE. Note that setting alarge dwRxSi ze value when
using this flag, may cause the transfersto fail due to host controller
limitations.

Thisflag is applicable only to read streams on Windows CE.

dwRXTxTimeout

Maximum time, in milliseconds (ms), for the completion of a data
transfer between the stream and the device.
A value of zero indicates no timeout (infinite wait).

phStream

Pointer to a unique identifier for the stream, to be returned by the
function and passed to the other WDU_St r eanmXXX() functions

© Jungo Ltd. 2005-2011

126

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.9.2. WDU_StreamStart

Purpose

Starts a stream, i.e., starts transfers between the stream and the device.
Data will be transferred according to the stream's direction — read/write.
Prototype

DWORD DLLCALLCONV WDU_St r eantt ar t (
WDU_STREAM HANDLE hStrean) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.9.3. WDU_StreamRead

Purpose
Reads data from aread stream to the application.

For ablocking stream (f Bl ocki ng=TRUE —see WDU_St r eanOpen()), the call to this function
is blocked until the specified amount of data (byt es) isread, or until the stream'’s attempt to
read from the device times out (i.e., the timeout period for transfers between the stream and the
device, asset in the dwRx TxTi meout WDU_St r eanOpen() parameter [B.4.9.1], expires).

For anon-blocking stream (f Bl ocki ng=FALSE), the function transfers to the application as
much of the requested data as possible, subject to the amount of data currently available in the
stream's data buffer, and returnsimmediately.

© Jungo Ltd. 2005-2011 127

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually read from the stream within the pdwByt esRead parameter.

Prototype

DWORD DLLCALLCONV WDU_St r eanRead(
HANDLE hSt r eam
PVA D pBuffer,
DWORD byt es,
DWORD * pdwByt esRead) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
pBuffer PVOID Output
bytes DWORD Input
pdwBytesRead DWORD* Output
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()
pBuffer Pointer to a data buffer to be filled with the data read from the stream
bytes Number of bytesto read from the stream
pdwBytesRead Pointer to a value indicating the number of bytes actually read from the
stream

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.9.4. WDU_StreamWrite

Purpose
Writes data from the applciation to a write stream.

For ablocking stream (f Bl ocki ng=TRUE —see WDU_St r eantOpen()), the call to this function
is blocked until the entire data is written to the stream, or until the stream'’s attempt to write to the
device times out (i.e., the timeout period for transfers between the stream and the device, as set in
the dWRXTxTi neout WDU_St r eanOpen() parameter [B.4.9.1], expires).

© Jungo Ltd. 2005-2011 128

For anon-blocking stream (f Bl ocki ng=FALSE), the function writes as much data as currently
possible to the stream's data buffer, and returns immediately.

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually written to the stream within the pdwByt esW i t t en parameter.

Prototype

DWORD DLLCALLCONV WDU_StreamiNit e(
HANDLE hSt r eam
const PVA D pBuffer,
DWORD byt es,
DWORD *pdwByt esWitten);

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE Input
pBuffer const PVOID Input
bytes DWORD Input
pawBytesWritten DWORD* Output
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()
pBuffer Pointer to a data buffer containing the data to write to the stream
bytes Number of bytesto write to the stream
pdwBytesWritten Pointer to a value indicating the number of bytes actually written to the
stream

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.9.5. WDU_StreamFlush

Purpose

Flushes awrite stream, i.e., writes the entire contents of the stream's data buffer to the device.
The function blocks until the completion of al pending I/O on the stream.

© Jungo Ltd. 2005-2011 129

| (’ This function can be called for both blocking and non-blocking streams.

Prototype

DWORD DLLCALLCONV WDU_St r eantl ush(
WDU_STREAM HANDLE hStrean) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput

Description

‘ Name ’ Description ‘
hStream A unique identifier for the stream, as returned by

WDU_St r eanOpen()

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].
B.4.9.6. WDU_StreamGetStatus

Purpose

Returns a stream's current status.

Prototype

DWORD DLLCALLCONV WDU_St r eantGet St at us(
WDU_STREAM HANDLE hStream
BOOL *pf | sRunni ng,
DWORD * pdwiLast Err or,
DWORD * pdwByt esl nBuf fer) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
pflsRunning BOOL* Output
pdwL astError DWORD* Output
pdwBytesInBuffer DWORD* Output

© Jungo Ltd. 2005-2011 130

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

pflsRunning Pointer to a value indicating the stream'’s current state:

* TRUE — the stream is currently running
* FALSE —the stream is currently stopped

pdwL astError Pointer to the last error associated with the stream.
Note: Calling the function also resets the stream's last error.

pdwBytesInBuffer Pointer to the current bytes count in the stream's data buffer

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
B.4.9.7. WDU_StreamStop

Purpose

Stops an active stream, i.e., stops transfers between the stream and the device.

In the case of awrite stream, the function flushes the stream —i.e., writes its contents to the device
— before stopping it.

Prototype

DWORD DLLCALLCONV WDU_St r eansSt op(WDU_STREAM HANDLE hStrean) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2011 131

B.4.9.8. WDU_StreamClose

Purpose

Closes an open stream.

The function stops the stream, including flushing its data to the device (in the case of awrite

stream), before closing it.

Prototype

DWORD DLLCALLCONV WDU_St r eanCl ose(WDU_STREAM HANDLE hStrean) ;

Parameters
Name Type I nput/Output
hStream WDU_STREAM_HANDLE I nput
Description
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.10. WDU _

Purpose

ResetPipe

Resets a pipe by clearing both the halt condition on the host side of the pipe and the stall

condition on the endpoint. This function is applicable for al pipes except pipe0O.

Prototype

DWORD WDU_Reset Pi pe(

WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwPi peNum ;

© Jungo Ltd. 2005-2011

132

Parameters

Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwPipeNum DWORD Input
Description

Name Description

hDevice A unique identifier for the device/interface

dwPipeNum The pipe's number

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

This function should be used if apipeis halted, in order to clear the halt.

B.4.11. WDU_ResetDevice

Purpose

Resets adevice.

Prototype

DWORD WDU_Reset Devi ce(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwOpt i ons) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwOptions DWORD Input

© Jungo Ltd. 2005-2011 133

Description

Name Description
hDevice A unique identifier for the device/interface.
dwOptions Can be either zero or:

* W _USB_ HARD_ RESET - reset the device eveniif it isnot disabled.
After using thisoption it is advised to set the interface device using
WDU_Set | nterface() [B.4.2).

* WD USB CYCLE_PORT — simulate unplugging and replugging of
the device, prompting the operating system to re-enumerate the device
without resetting it.

This option is supported only on Windows XP and higher.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

* WOU_Reset Devi ce() issupported only on Windows and Windows CE, beginning with
Windows CE 5.0.
TheWD _USB_CYCLE_PORT option is supported on Windows XP and higher.

» The function issues a request from the Windows USB driver to reset a hub port, provided the
Windows USB driver supports this feature.

B.4.12. WDU_SelectiveSuspend

Purpose

Submits a request to suspend a given device (selective suspend), or cancels a previous suspend
request.

Prototype

DWORD DLLCALLCONV WDU_Sel ect i veSuspend(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwOpt i ons) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwOptions DWORD Input

© Jungo Ltd. 2005-2011 134

Description

Name Description
hDevice A unique identifier for the device/interface.
dwOptions Can be set to either of the following

WDU_SELECTI VE_SUSPEND_OPTI ONS values:

* WDU_SELECTI VE_SUSPEND_SUBM T — submit arequest to
suspend the device.

* WOU_SELECTI VE_SUSPEND CANCEL — cancel a previous request
to suspend the device.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
If the device is busy when a suspend request is submitted

(dwOpt i ons=WDU_SELECTI VE_SUSPEND_ SUBM T), the function returns

WD _OPERATI ON_FAI LED.

Remarks

WDU_Sel ect i veSuspend() is supported on Windows XP and higher.

B.4.13. WDU_Wakeup

Purpose

Enables/Disables the wakeup feature.

Prototype

DWORD VDU_Wakeup(

WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwOpt i ons) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwOptions DWORD Input

© Jungo Ltd. 2005-2011

135

Description

Name Description
hDevice A unique identifier for the device/interface
dwOptions Can be either:

« WDU WAKEUP_ENABLE — enable wakeup
OR:
* WDU_WAKEUP_ DI SABL E — disable wakeup

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.14. WDU_GetLangIDs

Purpose

Reads alist of supported language | Ds and/or the number of supported language IDs from a

device.

Prototype

DWORD DLLCALLCONV WDU_Get Langl Ds(
WDU_DEVI CE_HANDLE hDevi ce,
PBYTE pbNunSupport edLangl Ds,

WDU_LANG D *pLangl Ds,

BYTE bNumliangl Ds) ;

Parameters
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pbNumSupportedLanglDs | PBYTE Output
pLanglDs WDU_LANGID* Output
bNumLangIDs BYTE Input

© Jungo Ltd. 2005-2011

136

Description

Name Description

hDevice A unique identifier for the device/interface

pbNumSupportedLanglDs | Parameter to receive number of supported language IDs

pLanglDs Array of language IDs. If bNunLangl Ds is not zero the function
will fill this array with the supported language IDs for the device.

bNumLangIDs Number of IDsin the pLanglDs array

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

» If dwNurLangl Ds is zero the function will return only the number of supported language IDs
(inpbNunBSuppor t edLangl Ds) but will not update the language IDs array (pLangl Ds
) with the actual IDs. For thisusage pLangl Ds can be NULL (sinceit is not referenced) but
pbNunmSupport edLangl Ds must not be NULL.

* pbNunBupport edLangl Ds can be NULL if the user only wantsto receive the list of
supported language 1Ds and not the number of supported IDs.
In this case bNuniangl Ds cannot be zero and pLangl Ds cannot be NULL.

* |f the device does not support any language | Ds the function will return success. The caler
should therefore check the value of * pbNunSuppor t edLangl Ds after the function returns.

 If thesize of thepLangl Ds array (bNunLangl Ds) is smaller than the number of IDs
supported by the device (* pbNunSuppor t edLangl Ds), the function will read and return
only thefirst bNurmLangl Ds supported language IDs.

B.4.15. WDU_GetStringDesc

Purpose

Reads a string descriptor from a device by string index.

Prototype

DWORD DLLCALLCONV WDU_Get Stri ngDesc(
WDU_DEVI CE_HANDLE hDevi ce,
BYTE bStr | ndex,
PBYTE pbBuf,
DWORD dwBuf Si ze,
WDU_LANG D | angl D,
PDWORD pdwDescSi ze) ;

© Jungo Ltd. 2005-2011 137

Parameters

Name Type I nput/Output

hDevice WDU_DEVICE_HANDLE Input

bStrindex BYTE Input

pbBuf PBYTE Output

dwBuUfSize DWORD Input

langID WDU_LANGID Input

pawDescSize PDWORD Output

Description

Name Description

hDevice A unique identifier for the device/interface

bStrindex The index of the string descriptor to read

pbBuf Pointer to a buffer to be filled with the string descriptor

dwBuUfSize The size of the pbBuf buffer, in bytes

langlD The language 1D to be used in the get string descriptor request. If
this parameter is 0, the request will use the first supported language 1D
returned by the device.

pdwDescSize An optional DWORD pointer to be filled with the size of the string
descriptor read from the device.
If NULL, the size of the string descriptor will not be returned.

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

Remarks
If the size of the pbBuf buffer is smaller than the size of the string descriptor

(dwBuf Si ze* pdwDescSi ze), the returned descriptor will be truncated to the provided buffer
size (dwBuf Si ze).

B.5. USB Data Types

The types described in this section are declared in the WinDriver/include/windrvr .h header file,
unless otherwise specified in the documentation.

© Jungo Ltd. 2005-2011 138

B.5.1. WD DEVICE REGISTRY_PROPERTY
Enumeration

Enumeration of device registry property identifiers.
String properties are returned in NUL L-terminated WCHAR array format.

.. For more information regarding the properties described in this enumaration, refer to the
G description of the Windows | oGet Devi cePr opert y() function'sDevi cePr operty
parameter in the Microsoft Development Network (M SDN) documentation.

Enum Value Description
WdDevicePropertyDeviceDescription Device description
WdDevicePropertyHardwarel D The device's hardware IDs
WdDevicePropertyCompatiblel Ds The device's compatible IDs
WdDevicePropertyBootConfiguration The hardware resources assigned to the

device by the firmware, in raw dataform

WdDevicePropertyBootConfigurationTranslated | The hardware resources assigned to the
device by the firmware, in translated form

WdDevicePropertyClassName The name of the device's setup class, in text
format

WdDevicePropertyClassGuid The GUID for the device's setup class (string
format)

WdDevicePropertyDriverK eyName The name of the driver-specific registry key

WdDevicePropertyManufacturer Device manufacturer string

WdDevicePropertyFriendlyName Friendly device name (typically defined by

the classinstaller), which can be used to
distinguish between two similar devices

WdDevicePropertyL ocationlnformation Information about the device's Location on
the bus (string format).
The interpertation of thisinformation is bus-

specific.
WdDevicePropertyPhysical DeviceObjectName | The name of the Physical Device Object
(PDO) for the device
WdDevicePropertyBusTypeGuid The GUID for the bus to which the deviceis
connected
WdDevicePropertyL egacyBusType The bustype (e.g., PCIBus or PCMCIABuUS)
WdDevicePropertyBusNumber The legacy bus number of the bus to which
the device is connected
WdDevicePropertyEnumeratorName The name of the device's enumerator (e.g.,
"PCI" or "root")
WdDevicePropertyAddress The device's bus address.

© Jungo Ltd. 2005-2011 139

Enum Value Description
The interpertation of this addressis bus-
specific.
WdDevicePropertyUINumber A number associated with the device that
can be displayed in the user interface
WdDevicePropertylnstall State The device'sinstallation state
WdDevicePropertyRemoval Policy The device's current removal policy
(Windows XP and later)

B.5.2. USB Structures

The following figure depicts the structure hierarchy used by WinDriver's USB API. The arrays
situated in each level of the hierarchy may contain more elements than are depicted in the
diagram. Arrows are used to represent pointers. In the interest of clarity, only one structure at
each level of the hierarchy is depicted in full detail (with al of its elementslisted and pointers
from it pictured).

© Jungo Ltd. 2005-2011 140

FigureB.2. WinDriver USB Structures

WDU DEVICE
* Descriptor

* Pipel
S e aa e e alet pConfigs

N e T pActiveConfig

pt s s s s s R m s m AR =TT pActivelnterface
L]
.

h J
WD CONFIGURATION WDU CONFIGURATION WD COMNFIGURATION
* Descriptor
* dwiNumlinterfaces
** pinterfaces

¥

--J--.---

- WD INTERFACE WDU INTERFACE WD INTERFACE
T dwNumAltSettings
=" pActivestSetting

DL AL TERNATE SETTING WDU ALTERNATE SETTING WU AL TERMATE SETTING

* Descriptor
® * pEndpointDescriptors
= * pPipes

- - = & 9

.-h- WDU ENDPOINT DESCRIPTOR .] WDLU PIPE INFO
* blLength T dwiNumber
* pDescriptorType " dwhaximumPacketsize
* bEndpointfddress T otype
* bmAttributes * direction
* widaxPacketSize * binterval
* binterval

© Jungo Ltd. 2005-2011 141

B.5.2.1. WDU_MATCH_TABLE Structure

USB match table structure.

(*) For al field members, if valueis set to zero — match all.

Field Type Description

wVendorld WORD Required USB Vendor ID to detect, as assigned by USB-IF
(*)

wProductld WORD Required USB Product 1D to detect, as assigned by the
product manufacturer (*)

bDeviceClass BYTE The device's class code, as assigned by USB-IF (*)

bDeviceSubClass BYTE The device's sub-class code, as assigned by USB-IF (*)

bl nterfaceClass BYTE The interface's class code, as assigned by USB-IF (*)

binterfaceSubClass | BY TE The interface's sub-class code, as assigned by USB-IF (*)

blnterfaceProtocol | BYTE The interface's protocol code, as assigned by USB-IF (*)

B.5.2.2. WDU_

USB events table structure.
This structure is declared in the WinDriver/include/wdu_lib.h header file.

EVENT_TABLE Structure

Field

Type

Description

pfDeviceAttach

WDU_ATTACH_CALLBACK

Will be called by WinDriver
when adeviceis attached

pfDeviceDetach

WDU_DETACH_CALLBACK

Will be called by WinDriver
when adeviceis detached

pfPowerChange | WDU_POWER_CHANGE_CALLBACK | Will be called by WinDriver
when thereisachangein a
device's power state

pUserData PVOID Pointer to user-mode data to be

passed to the callbacks

B.5.2.3. WDU_DEVICE Structure

USB device information structure.

Field Type Description

Descriptor WDU_DEVICE_DESCRIPTOR Device descriptor information
structure [B.5.2.7]

Pipe0 WDU_PIPE_INFO Pipe information structure [B.5.2.11]
for the device's default pipe (Pipe 0)

© Jungo Ltd. 2005-2011

142

Field

Type

Description

pConfigs

WDU_CONFIGURATION*

Pointer to the device's configuration
information structure [B.5.2.4]

pActiveConfig

WDU_CONFIGURATION*

Pointer to a configuration information
structure [B.5.2.4] for the device's
active configuration

pActivel nterface

WDU_INTERFACE*
[WD_USB_MAX_INTERFACES]

Array of pointersto interface
information structures [B.5.2.5] for
the device's active interfaces

B.5.2.4. WDU_CONFIGURATION Structure

Configuration information structure.

Field

Type

Description

Descriptor

WDU_CONFIGURATION_DESCRIPTOR

Configuration
descriptor information
structure [B.5.2.8]

dwNumlnterfaces

DWORD

Number of interfaces
supported by this
configuration

plnterfaces

WDU_INTERFACE*

Pointer to the beginning

of an array of

interface information
structures [B.5.2.5] for the
configuration's interfaces

B.5.2.5. WDU_INTERFACE Structure

Interface information structure.

Field

Type

Description

pAlternateSettings

WDU_ALTERNATE_SETTING*

Pointer to the beginning of an array
of alternate setting information
structures [B.5.2.6] for the
interface's alternate settings

dwNumAItSettings

DWORD

Number of alternate settings
supported by thisinterface

pActiveAltSetting

WDU_ALTERNATE_SETTING*

Pointer to an alternate setting
information structure [B.5.2.6]
for the interface's active aternate
Setting

© Jungo Ltd. 2005-2011

143

B.5.2.6. WDU_ALTERNATE_SETTING Structure

Alternate setting information structure.

Field

Type

Description

Descriptor

WDU_INTERFACE_DESCRIPTOR

Interface descriptor
information
structure [B.5.2.9]

pEndpointDescriptors

WDU_ENDPOINT_DESCRIPTOR*

Pointer to the beginning

of an array of endpoint
descriptor information
structures [B.5.2.10] for the
alternate setting's endpoints

pPipes

WDU_PIPE_INFO*

Pointer to the beginning of
an array of pipe information
structures [B.5.2.11] for the
alternate setting's pipes

B.5.2.7. WDU_DEVICE_DESCRIPTOR Structure

USB device descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (18 bytes)

bDescriptorType UCHAR | Device descriptor (0x01)

bcdUSB USHORT | Number of the USB specification with which the device
complies

bDeviceClass UCHAR | Thedevice'sclass

bDeviceSubClass UCHAR | The device's sub-class

bDeviceProtocol UCHAR | The device's protocol

bM axPacketSizeO UCHAR | Maximum size of transferred packets

idVendor USHORT | Vendor ID, as assigned by USB-IF

idProduct USHORT | Product ID, as assigned by the product manufacturer

bcdDevice USHORT | Device release number

iManufacturer UCHAR | Index of manufacturer string descriptor

iProduct UCHAR | Index of product string descriptor

iSerialNumber UCHAR | Index of serial number string descriptor

bNumConfigurations | UCHAR | Number of possible configurations

© Jungo Ltd. 2005-2011

144

B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structure

USB configuration descriptor information structure.

Field Type Description
bLength UCHAR | Size, in bytes, of the descriptor
bDescriptorType UCHAR | Configuration descriptor (0x02)
wTotalLength USHORT | Total length, in bytes, of data returned
bNumlnterfaces UCHAR | Number of interfaces
bConfigurationValue | UCHAR | Configuration number
iConfiguration UCHAR | Index of string descriptor that describes this configuration
bmAttributes UCHAR | Power settings for this configuration:
* D6 — self-powered
» D5 —remote wakeup (allows device to wake up the host)
M axPower UCHAR | Maximum power consumption for this configuration, in
2mA units

B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structure

USB interface descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (9 bytes)

bDescriptorType UCHAR | Interface descriptor (0x04)

blnterfaceNumber UCHAR | Interface number

bAlternateSetting UCHAR | Alternate setting number

bNumEndpoints UCHAR | Number of endpoints used by thisinterface

bl nterfaceClass UCHAR | Theinterface's class code, as assigned by USB-IF

binterfaceSubClass | UCHAR | The interface's sub-class code, as assigned by USB-IF

binterfaceProtocol | UCHAR | Theinterface's protocol code, as assigned by USB-IF

ilnterface UCHAR | Index of string descriptor that describes this interface

© Jungo Ltd. 2005-2011 145

B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structure

USB endpoint descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (7 bytes)

bDescriptorType UCHAR | Endpoint descriptor (0x05)

bEndpointAddress | UCHAR | Endpoint address. Use bits 0—3 for endpoint number, set
bits 4-6 to zero (0), and set bit 7 to zero (0) for outbound
data and to one (1) for inbound data (ignored for control
endpoints).

bmALttributes UCHAR | Specifiesthe transfer type for this endpoint (control,
interrupt, isochronous or bulk). See the USB specification for
further information.

wMaxPacketSize USHORT | Maximum size of packets this endpoint can send or receive

blnterval UCHAR | Interval, in frame counts, for polling endpoint data transfers.

Ignored for bulk and control endpoints.
Must equal 1 for isochronous endpoints.
May range from 1 to 255 for interrupt endpoints.

B.5.2.11. WDU_PIPE_

USB pipe information structure.

INFO Structure

Field Type Description

dwNumber DWORD | Pipe number; Zero for default pipe

dwMaximumPacketSize | DWORD | Maximum size of packets that can be transferred using
this pipe

type DWORD | Transfer type for this pipe

direction DWORD | Direction of the transfer:
* WU DI R_I Nor WbU_DI R_QUT for isochronous,
bulk or interrupt pipes.
*WDU_ DI R_I N_QUT for control pipes.

dwlnterval DWORD | Interval in milliseconds.

Relevant only to interrupt pipes.

© Jungo Ltd. 2005-2011

146

B.6. General WD_xxx Functions

B.6.1. Calling Sequence WinDriver — General Use

Thefollowing isatypical calling sequence for the WinDriver API.
FigureB.3. WinDriver API Calling Sequence

WD_Open()
+
WD Version()

¥ ¥

General WinDriver API:

WinDriver's Hardware PrintDbgiMessage() ;
Accecs AP WD_DebugAdd()
eeess WD_Sleep() ;

WD Logxxx() ;

h J

WD_Close()

» Werecommend calling the WinDriver function WD_Ver si on() [B.6.3] after calling
WD Open() [B.6.2] and before calling any other WinDriver function. Its purposeisto
return the WinDriver kernel module version number, thus providing the means to verify
that your application is version compatible with the WinDriver kernel module.

* WD DebugAdd() [B.6.6] and WD_SI eep() [B.6.8] can be called anywhere after
WD_Open()

© Jungo Ltd. 2005-2011 147

B.6.2. WD_Open

Purpose

Opens a handle to access the WinDriver kernel module.
The handleis used by all WinDriver APIs, and therefore must be called before any other

WinDriver API iscdled.
Prototype

HANDLE WD _Open(voi d) ;

Return Value

The handle to the WinDriver kernel module.
If device could not be opened, returns | NVALI D_HANDLE VAL UE.

Remarks

If you are aregistered user, please refer to the documentation of WD_Li cense() [B.6.9] for an
example of how to register your WinDriver license.

EXAMPLE

HANDLE hWD;
hWD = WD_Qpen() ;

if (hWD == | NVALI D_HANDLE_VALUE)
{

}

printf("Cannot open WnDriver device\n");

© Jungo Ltd. 2005-2011 148

B.6.3. WD_Version

Purpose

Returns the version number of the WinDriver kernel module currently running.

Prototype

DWORD WD _Ver si on(
HANDLE hW\D,
WD_VERSI ON *pVer) ;

Parameters
Name Type I nput/Output
hwD HANDLE I nput
pVer WD_VERSION*
o dwVer DWORD Output
*CVer CHAR[128] Output
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]
pVer Pointer to a WinDriver version information structure:
s dwVer The version number
*cVer Version information string.
The version string's size is limited to 128 characters (including the
NULL terminator character).

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

© Jungo Ltd. 2005-2011 149

EXAMPLE

WD_VERSI ON ver ;

BZERQ(ver) ;

WD _Ver si on(hWD, &ver);
printf("%\n", ver.cVer);
if (ver.dwer < WD _VER)

{
}

printf("Error - incorrect WnDriver version\n");

B.6.4. WD _Close

Purpose

Closes the access to the WinDriver kernel module.

Prototype

voi d WD_C ose(HANDLE hWD) ;

Parameters
Name Type I nput/Output
hwD HANDLE I nput
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]

Return Value

None

Remarks

This function must be called when you finish using WinDriver kernel module.

EXAMPLE

WD _Cl ose(hV\D) ;

© Jungo Ltd. 2005-2011 150

B.6.5. WD_Debug

Purpose

Sets debugging level for collecting debug messages.

Prototype

DWORD WD_Debug(
HANDLE hWD,

WD_DEBUG * pDebug) ;

Parameters
Name Type I nput/Output
hwD HANDLE I nput
pDebug WD_DEBUG* Input
* dwCmd DWORD Input
* dwLevel DWORD Input
* dwSection DWORD Input
» dwLevelMessageBox | DWORD Input
» dwBufferSize DWORD Input

© Jungo Ltd. 2005-2011

151

Description

Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]
pDebug Pointer to a debug information structure:
e dwCmd Debug command: Set filter, Clear buffer, etc.
For more details please refer to DEBUG_COMVAND in windrvr .h.
* dwLevel Used for dwCnd=DEBUG_SET_FI LTER. Setsthe debugging level

to collect: Error, Warning, Info, Trace.
For more details please refer to DEBUG_LEVEL in windrvr.h.

e dwSection Used for dwCnd=DEBUG_SET_FI LTER. Setsthe sectionsto
collect: 1/0, Memory, Interrupt, etc. Use S_ALL for all.
For more details please refer to DEBUG_SECTI ONin windrvr .h.

» dwLevelMessageBox | Used for dwCnmd=DEBUG_SET_FI LTER. Sets the debugging level
to print in a message box.
For more details please refer to DEBUG_LEVEL in windrvr.h.

» dwBufferSize Used for dwCnd=DEBUG_SET_BUFFER. The size of buffer in the
kernel.

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

WD DEBUG dbg;

BZERQ(dbg) ;

dbg. dwCnd = DEBUG SET FI LTER;
dbg. dwLevel = D ERROR;

dbg. dwSection = S ALL;

dbg. dwLevel MessageBox = D _ERROR;

WD _Debug(hWD, &dbg) ;

B.6.6. WD _DebugAdd

Purpose

Sends debug messages to the debug log. Used by the driver code.

© Jungo Ltd. 2005-2011 152

Prototype

DWORD WD_DebugAdd(

HANDLE hWD,

WD_DEBUG_ADD * pDat a) ;

Parameters
Name Type I nput/Output
hwD HANDLE Input
pData WD_DEBUG_ADD*
* dwLevel DWORD Input
* dwSection DWORD Input
* pcBuffer CHAR[256] Input
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]
pData Pointer to an additional debug information structure:
* dwLevel Assignsthe level in the Debug Monitor, in which the data will be
declared.
If dwLevel iszero, D ERRORwill be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.
* dwSection Assigns the section in the Debug Monitor, in which the datawill be
declared.
If dwSect i oniszero, S M SC section will be declared.
For more details please refer to DEBUG_SECTI ONin windrvr .h.
* pcBuffer The string to copy into the message log.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

WD_DEBUG_ADD add:;

BZERQ(add) ;

add. dwLevel = D _WARN;

add. dwSection = S _M SC,

sprintf(add. pcBuffer,

"This nessage will be displayed in "

"t he Debug Monitor\n");
WD_DebugAdd(hWD, &add);

© Jungo Ltd. 2005-2011

153

B.6.7. WD_DebugDump

Purpose

Retrieves debug messages buffer.

Prototype

DWORD WD_DebugDunp(
HANDLE hWD,

WD_DEBUG_DUMP * pDebugDunp) ;

Parameters
Name Type I nput/Output
hwD HANDLE Input
pDebug WD_DEBUG_DUMP* I nput
* pcBuffer PCHAR [nput/Output
* dwSize DWORD Input
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]
pDebugDump Pointer to a debug dump information structure:
* pcBuffer Buffer to receive debug messages
dwSize Size of buffer in bytes

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

EXAMPLE

char buffer[1024];
WD _DEBUG DUMP dunp;
dunp. pcBuf f er=buf fer;

dunp. dwSi ze = si zeof (buffer);
WD DebugDunmp(hWD, &dunp) ;

© Jungo Ltd. 2005-2011

154

B.6.8. WD _Sleep

Purpose

Delays execution for a specific duration of time.

Prototype

DWORD WD_SlI eep(
HANDLE hW\D,

WD_SLEEP *pSl eep) ;

Parameters
Name Type I nput/Output
hwD HANDLE [nput
pSleep WD_SLEEP*
 dwMicroSeconds DWORD Input
* dwOptions DWORD Input
Description
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]
pSleep Pointer to a sleep information structure:
 dwMicroSeconds Sleep time in microseconds — 1/1,000,000 of a second.
* dwOptions A bit-mask, which can be set to either of the following:

e Zero (0) —Busy deep (default)

OR:

* SLEEP_NON_BUSY — Delay execution without consuming CPU
resources. (Not relevant for under 17,000 micro seconds. L ess accurate
than busy sleep).

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

Example usage: to access slow response hardware.

© Jungo Ltd. 2005-2011

155

EXAMPLE
WD_Sl eep sl p;

BZER((sl p) ;
sl p. dwM croSeconds = 200;

WD_SI eep(hWD, &sl p);

B.6.9. WD _License

Purpose

Transfers the license string to the WinDriver kernel module and returns information regarding the

license type of the specified license string.

When using the WDU USB APIs [B.2] your WinDriver license registration is done viathe

call toWDU 1 ni t () [B.4.1], so you do not need to call WD_Li cense() directly from your

code.

Prototype

DWORD WD_Li cense(
HANDLE hWD,
WD LI CENSE *pLi cense);

Parameters
Name Type I nput/Output
hwD HANDLE I nput
pLicense WD_LICENSE*
e cLicense CHARJ[] Input
* dwLicense DWORD Output
* dwLicense2 DWORD Output

© Jungo Ltd. 2005-2011

156

Description

Name Description

hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]

pLicense Pointer to a WinDriver license information structure:

* cLicense A buffer to contain the license string that is to be transferred to the
WinDriver kernel module. If an empty string is transferred, then
WinDriver kernel module returns the current license type to the
parameter dwLi cense.

e dwLicense Returns the license type of the specified license string (CLi cnhese).
The return value is abit-mask of license flags, defined asan enum in
windrvr.h. Zero signifiesan invalid license string. Additional flags for
determining the license type are returned in dwLi cense2, if needed.

e dwLicense2 Returns additional flags for determining the license type, if

dwLi cense cannot hold all the relevant information (otherwise —
Zero)

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

When using aregistered version, this function must be called before any other WinDriver API
call, apart fromVWD_Open() [B.6.2], in order to register the license from the code.

EXAMPLE

Example usage: Add registration routine to your application:
DWORD Regi ster W nDri ver ()

{
HANDLE hWD;

WD_LI CENSE i c;

DWORD dwSt at us = WD_| NVALI D_HANDLE;

hWw = WD _Open();

i f (hWD! =I NVALI D_HANDLE_VALUE)

{
BZERO(i ¢) ;

/* Replace the following string with your license string: */
strcpy(lic.cLicense, "12345abcdel2345. ConpanyNane") ;

dwSt atus = WD _Li cense(hWD, &lic);

WD _Cl ose(hV\D) ;

}

return dwsStat us;

© Jungo Ltd. 2005-2011

157

B.7. User-Mode Utility Functions

This section describes a number of user-mode utility functions you will find useful for
implementing various tasks. These utility functions are multi-platform, implemented on all
operating systems supported by WinDriver.

B.7.1. Stat2Str

Purpose

Retrieves the status string that corresponds to a status code.

Prototype

const char *Stat2Str(DWORD dwst at us) ;

Parameters
Name Type I nput/Output
dwStatus DWORD Input
Description
Name Description
» dwStatus A numeric status code

Return Value

Returns the verbal status description (string) that corresponds to the specified numeric status code.

Remarks

See Section B.8 for acomplete list of status codes and strings.
B.7.2. get_os_type

Purpose

Retrieves the type of the operating system.

Prototype

OS_TYPE get _os_type(void);

© Jungo Ltd. 2005-2011 158

Return Value

Returns the type of the operating system.
If the operating system type is not detected, returns OS_CAN_NOT _DETECT.

B.7.3. ThreadStart

Purpose

Creates athread.

Prototype

DWORD ThreadSt art (
HANDLE *phThr ead,
HANDLER_FUNC pFunc,

voi d *pData) ;

Parameters

Name Type I nput/Output

phThread HANDLE* Output

pFunc typedef void (*HANDLER_FUNC)(Input

void *pData);

pData VOID* I nput
Description

Name Description

phThread Returns the handle to the created thread

pFunc Starting address of the code that the new thread is to execute. (The

handler's prototype — HANDLER FUNC —is defined in utils.h).
pData Pointer to the data to be passed to the new thread

Return Value

ReturnsWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.4. ThreadWait

Purpose

Waits for athread to exit.

© Jungo Ltd. 2005-2011 159

Prototype

voi d ThreadWai t (HANDLE hThr ead) ;

Parameters
‘ Name ’ Type ‘ I nput/Output ‘
| hThread ' HANDLE | Input |
Description
Name Description
hThread The handle to the thread whose completion is awaited
Return Value
None
B.7.5. OsEventCreate
Purpose
Creates an event object.
Prototype
DWORD OsEvent Creat e(HANDLE *phGsEvent) ;
Parameters
Name Type I nput/Output
phOsEvent HANDLE* Output
Description
Name Description
phOsEvent The pointer to avariable that receives a handle to the newly created
event object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2011

160

B.7.6. OsEventClose

Purpose

Closes a handle to an event object.

Prototype

voi d OsEvent G ose(HANDLE hGCsEvent);

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object to be closed

Return Value

None

B.7.7. OsEventWait

Purpose

Waits until a specified event object isin the signaled state or the time-out interval elapses.

Prototype

DWORD OsEvent Wai t (
HANDLE hOsEvent,
DWORD dwSecTi meout) ;

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
dwSecTimeout DWORD Input

© Jungo Ltd. 2005-2011 161

Description

Name Description
hOsEvent The handle to the event object
dwSecTimeout Time-out interval of the event, in seconds.
For an infinite wait, set the timeout to | NFI NI TE.

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.8. OsEventSignal

Purpose

Sets the specified event object to the signaled state.

Prototype

DWORD OsEvent Si gnal (HANDLE hGsEvent) ;

Parameters
Name Type I nput/Output
hOsEvent HANDLE Input
Description
Name Description
hOsEvent The handle to the event object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.9. OsEventReset

Purpose

Resets the specified event object to the non-signaled state.

© Jungo Ltd. 2005-2011 162

Prototype

DWORD OGsEvent Reset (HANDLE hGsEvent) ;

Parameters
‘ Name ’ Type ‘ I nput/Output ‘
| hOsEvent ' HANDLE | Input |
Description

Name Description

hOsEvent The handle to the event object

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

B.7.10. OsMutexCreate

Purpose

Creates amutex object.

Prototype

DWORD OsMut exCr eat e(HANDLE *phGsMut ex) ;

Parameters
Name Type I nput/Output
phOsM utex HANDLE* Output
Description
Name Description
phOsM utex The pointer to avariable that receives a handle to the newly created
mutex object

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2011

B.7.11. OsMutexClose

Purpose

Closes a handle to a mutex object.

Prototype

voi d OsMut exCl ose(HANDLE hGsMut ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be closed
Return Value
None
B.7.12. OsMutexLock
Purpose
L ocks the specified mutex object.
Prototype
DWORD OsMut exLock(HANDLE hGsMut ex) ;
Parameters
Name Type I nput/Output
hOsMutex HANDLE Input

© Jungo Ltd. 2005-2011 164

Description

Name Description

hOsMutex The handle to the mutex object to be locked

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.13. OsMutexUnlock

Purpose

Releases (unlocks) alocked mutex object.

Prototype

DWORD GsMut exUnl ock(HANDLE hGsMut ex) ;

Parameters
Name Type I nput/Output
hOsMutex HANDLE Input
Description
Name Description
hOsMutex The handle to the mutex object to be unlocked

Return Value

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.14. PrintDbgMessage

Purpose

Sends debug messages to the Debug Monitor.

© Jungo Ltd. 2005-2011 165

Prototype

voi d Print DbgMessage(
DWORD dwievel ,
DWORD dwSect i on,
const char *format

[, argunent]...);
Parameters
Name Type I nput/Output
dwLevel DWORD Input
dwSection DWORD Input
format const char* Input
argument Input
Description
Name Description
dwLevel Assignsthe level in the Debug Monitor, in which the data will be
declared. If zero, D_ERROR will be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.
dwSection Assigns the section in the Debug Monitor, in which the datawill be
declared. If zero, S_M SCwill be declared.
For more details please refer to DEBUG_SECTION inwindrvr.h.
format Format-control string
argument Optional arguments, limited to 256 bytes

Return Value

None

B.7.15. WD_LogStart

Purpose

Opensalogfile.

Prototype

DWORD WD LogStart (
const char *sFil eNane,
const char *shbde);

© Jungo Ltd. 2005-2011 166

Parameters

Name Type I nput/Output

sFileName const char* Input

sMode const char* Input
Description

Name Description

sFileName Name of log file to be opened

sMode Type of access permitted.

For example, NULL or w opens an empty file for writing, and if the
given file exists, its contents are destroyed;
aopensafilefor writing at the end of thefile (i.e., append).

Return Value

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

Remarks

Oncealog fileis opened, all API callsarelogged in thisfile.

Y ou may add your own printouts to the log file by calling WD_LogAdd() [B.7.17].

B.7.16. WD _LogStop

Purpose

Closesalog file.

Prototype

VO D WD_LogSt op(voi d);

Return Value

None

B.7.17. WD_LogAdd

Purpose

Adds user printoutsinto log file.

© Jungo Ltd. 2005-2011 167

Prototype

VO D DLLCALLCONV WD_LogAdd(
const char *sFor mat

[, argunent]...);

Parameters

Name Type I nput/Output
sFormat const char* Input
argument I nput
Description

Name Description

sFormat Format-control string

argument Optional format arguments

Return Value

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

B.8. WinDriver Status Codes

B.8.1. Introduction

Most of the WinDriver functions return a status code, where zero (WD_STATUS SUCCESS)
means success and a non-zero value means failure.

The St at 2St r () functions can be used to retrieve the status description string for a given status
code. The status codes and their descriptive strings are listed below.

B.8.2. Status Codes Returned by WinDriver

Status Code Description

WD_STATUS SUCCESS Success

WD_STATUS INVALID_WD_HANDLE | Invalid WinDriver handle
WD_WINDRIVER_STATUS ERROR Error

WD_INVALID_HANDLE Invalid handle

WD_INVALID_PIPE_ NUMBER Invalid pipe number
WD_READ_WRITE_CONFLICT Conflict between read and write operations
WD_ZERO PACKET_SIZE Packet sizeis zero

© Jungo Ltd. 2005-2011 168

Status Code

Description

WD_INSUFFICIENT_RESOURCES

Insufficient resources

WD_UNKNOWN_PIPE_TYPE

Unknown pipe type

WD_SYSTEM_INTERNAL_ERROR

Internal system error

WD_DATA_MISMATCH

Data mismatch

WD_NO_LICENSE

No valid license

WD_NOT_IMPLEMENTED

Function not implemented

WD_FAILED_ENABLING_INTERRUPT

Failed enabling interrupt

WD_INTERRUPT_NOT_ENABLED

Interrupt not enabled

WD_RESOURCE_OVERLAP

Resource overlap

WD_DEVICE_NOT_FOUND

Device not found

WD_WRONG_UNIQUE_ID

Wrong unique ID

WD_OPERATION_ALREADY_DONE

Operation aready done

WD_USB_DESCRIPTOR_ERROR

USB descriptor error

WD_SET_CONFIGURATION_FAILED

Set configuration operation failed

WD_CANT_OBTAIN_PDO

Cannot obtain PDO

WD_TIME_OUT_EXPIRED

Timeout expired

WD_IRP_CANCELED

IRP operation cancelled

WD_FAILED_USER _MAPPING

Failed to map in user space

WD_FAILED_KERNEL_MAPPING

Failed to map in kernel space

WD_NO_RESOURCES ON_DEVICE

No resources on the device

WD_NO_EVENTS

No events

WD_INVALID_PARAMETER

Invalid parameter

WD_INCORRECT_VERSION

Incorrect WinDriver version installed

WD_TRY_AGAIN Try again
WD_INVALID_IOCTL Received aninvalid IOCTL
WD_OPERATION_FAILED Operation failed

WD_INVALID_32BIT_APP

Received an invalid 32-bit IOCTL

WD_TOO_MANY_HANDLES

No room to add handle

WD_NO_DEVICE_OBJECT

Driver not installed

B.8.3. Status Codes Returned by USBD

The following WinDriver status codes comply with USBD_XXX status codes returned by the

USB stack drivers.

© Jungo Ltd. 2005-2011

169

Status Code Description
USBD Satus Types
WD_USBD_STATUS SUCCESS USBD: Success

WD_USBD_STATUS PENDING

USBD: Operation pending

WD_USBD_STATUS ERROR

USBD: Error

WD_USBD_STATUS HALTED

USBD: Halted

USBD Satus Codes

(NOTE: The status codes consist of one of the status types above and an error code, i.e.,
OXXYYYYYYYL, where X=status type and YYYYY Y Y =error code. The same error codes

may also appear with one of the other status types as well.)

HC (Host Controller) Satus Codes

(NOTE: These usethe WD _USBD_STATUS HALTED status type.)

WD_USBD_STATUS CRC

HC status: CRC

WD_USBD_STATUS BTSTUFF

HC status: Bit stuffing

WD_USBD_STATUS DATA_TOGGLE_MISMATCH

HC status: Data toggle mismatch

WD_USBD_STATUS STALL_PID

HC status: PID stall

WD_USBD_STATUS DEV_NOT_RESPONDING

HC status: Device not responding

WD_USBD_STATUS PID_CHECK_FAILURE

HC status; PID check failed

WD_USBD_STATUS UNEXPECTED_PID

HC status: Unexpected PID

WD_USBD_STATUS DATA_OVERRUN

HC status: Data overrun

WD_USBD_STATUS DATA_UNDERRUN

HC status: Data underrun

WD_USBD_STATUS RESERVED1

HC status; Reservedl

WD_USBD_STATUS RESERVED?2

HC status: Reserved?2

WD_USBD_STATUS BUFFER_OVERRUN

HC status: Buffer overrun

WD_USBD_STATUS BUFFER_UNDERRUN

HC status: Buffer Underrun

WD_USBD_STATUS NOT_ACCESSED

HC status: Not accessed

WD_USBD_STATUS FIFO

HC status: FIFO

For Windows only:

WD_USBD_STATUS XACT_ERROR

HC status: The host controller has
set the Transaction Error (XactErr)
bit in the transfer descriptor's
status field

WD_USBD_STATUS BABBLE_DETECTED

HC status: Babble detected

WD_USBD_STATUS DATA_BUFFER_ERROR

HC status; Data buffer error

For Windows CE only:

WD_USBD_STATUS ISOCH

USBD: Isochronous transfer failed

WD_USBD_STATUS NOT_COMPLETE

USBD: Transfer not completed

© Jungo Ltd. 2005-2011 170

Status Code Description
WD_USBD_STATUS CLIENT_BUFFER USBD: Cannot write to buffer
For all platforms:

WD_USBD_STATUS CANCELED USBD: Transfer cancelled

Returned by HCD (Host Controller Driver) if a transfer is submitted to an endpoint that is
stalled:

WD_USBD_STATUS ENDPOINT_HALTED HCD: Transfer submitted to stalled
endpoint

Software Status Codes (NOTE: Only the error bit is set):

WD_USBD_STATUS NO_MEMORY USBD: Out of memory
WD_USBD_STATUS INVALID URB_FUNCTION USBD: Invalid URB function
WD_USBD_STATUS INVALID PARAMETER USBD: Invalid parameter

Returned if client driver attempts to close an endpoint/interface or configuration with
outstanding transfers:

WD_USBD_STATUS ERROR _BUSY USBD: Attempted to close
endpoint/interface/configuration
with outstanding transfer

Returned by USBD if it cannot complete a URB request. Typically thiswill be returned in the
URB status field (when the IRP is completed) with a more specific error code. The IRP status
codes are indicated in WinDriver's Debug Monitor tool (wddebug_gui / wddebug):

WD_USBD_STATUS REQUEST_FAILED USBD: URB request failed

WD_USBD_STATUS INVALID_PIPE_ HANDLE USBD: Invalid pipe handle

Returned when there is not enough bandwidth available to open a requested endpoint:

WD_USBD_STATUS NO_BANDWIDTH USBD: Not enough bandwidth for
endpoint

Generic HC (Host Controller) error:

WD_USBD_STATUS INTERNAL_HC_ERROR USBD: Host controller error

Returned when a short packet terminates the transfer, i.e., USBD_SHORT_TRANSFER_OK bit
not set:

WD_USBD_STATUS ERROR_SHORT_TRANSFER USBD: Transfer terminated with
short packet

Returned if the requested start frame is not within USBD _| SO _START _FRAME _RANGE of the
current USB frame (NOTE: The stall bit is set):

WD _USBD STATUS BAD_START_FRAME USBD: Start frame outside range

Returned by HCD (Host Controller Driver) if all packetsin an isochronous transfer complete
with an error:

WD_USBD_STATUS ISOCH_REQUEST_FAILED HCD: Isochronous transfer
completed with error

© Jungo Ltd. 2005-2011 171

Status Code

Description

by another driver:

Returned by USBD if the frame length control for a given HC (Host Controller) is already taken

WD_USBD_STATUS FRAME_CONTROL_OWNED

USBD: Frame length control
already taken

modify the HC frame length:

Returned by USBD if the caller does not own frame length control and attempts to release or

WD_USBD_STATUS FRAME_CONTROL_NOT _
OWNED

USBD: Attempted operation on
frame length control not owned by
caler

Additional software error codes added for USB 2.0 (for Windows only) :

WD_USBD_STATUS NOT_SUPPORTED

USBD: API not supported/
implemented

WD_USBD_STATUS INAVLID_CONFIGURATION_
DESCRIPTOR

USBD: Invalid configuration
descriptor

WD_USBD_STATUS _INSUFFICIENT_RESOURCES

USBD: Insufficient resources

WD_USBD_STATUS SET_CONFIG_FAILED

USBD: Set configuration failed

WD_USBD_STATUS BUFFER TOO_SMALL

USBD: Buffer too small

WD_USBD_STATUS INTERFACE_NOT_FOUND

USBD: Interface not found

WD_USBD_STATUS INAVLID PIPE FLAGS

USBD: Invalid pipe flags

WD_USBD_STATUS TIMEOUT

USBD: Timeout

WD_USBD_STATUS DEVICE_GONE

USBD: Device gone

WD_USBD_STATUS STATUS NOT_MAPPED

USBD: Status not mapped

Extended isochronous error codes returned by USBD

These errors appear in the packet status field of an isochronous transfer:

WD_USBD_STATUS 1SO NOT_ACCESSED BY_ HW

USBD: The controller did not
access the TD associated with this
packet

WD_USBD_STATUS ISO_TD_ERROR

USBD: Controller reported an
error inthe TD

WD_USBD_STATUS SO NA_LATE_USBPORT

USBD: The packet was submitted
in time by the client but failed to
reach the miniport in time

WD_USBD_STATUS ISO NOT_ACCESSED LATE

USBD: The packet was not sent
because the client submitted it too
|ate to transmit

© Jungo Ltd. 2005-2011 172

Appendix C
Troubleshooting and Support

Please refer to http://www.jungo.com/st/support/support_windriver.html for additional resources
for developers, including:

» Technical documents
 FAQs
e Samples

* Quick start guides

© Jungo Ltd. 2005-2011 173

http://www.jungo.com/st/support/support_windriver.html

Appendix D
Evaluation Version Limitations

D.1. Windows WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregistered message appears.

» When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* DriverWizard [5]:
» Each time DriverWizard is activated, an Unregistered message appears.

* An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

* WinDriver will function for only 30 days after the original installation.

D.2. Windows CE WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregistered message appears.
» The WinDriver CE Kernel (windrvr6.dll) will operate for no more than 60 minutes at atime.

* DriverWizard [5] (used on a host Windows 7 / Vista/ Server 2008 / Server 2003 / XP / 2000
PC):

» Eachtime DriverWizard is activated, an Unregistered message appears.

* An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

© Jungo Ltd. 2005-2011 174

D.3. Linux WinDriver Evaluation Limitations

» Each time WinDriver is activated, an Unregistered message appears.
* DriverWizard [5]:
» Each time DriverWizard is activated, an Unregistered message appears.

* An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

* WinDriver's kernel module will work for no more than 60 minutes at atime. To continue
working, the WinDriver kernel module must be reloaded (unload and load the module) using
the following commands:

; Thefollowing commands must be executed with root privileges.

To unload:
/ sbi n/ nodpr obe -r w ndrvr6

To load:
<path to wdreg> wi ndrvr6

wdreg is provided in the WinDriver/util directory.

© Jungo Ltd. 2005-2011 175

Appendix E
Purchasing WinDriver

Fill inthe order form found in Start | WinDriver | Order Form on your Windows start menu,
and send it to Jungo viaemail, fax or mail (see details below).

Y our WinDriver package will be sent to you via courier or registered mail. The WinDriver license

string will be emailed to you immediately.

Email
Sales/ Information:
License Registration:

Phone
Worldwide:
USA (toll free):

Mailing Address

Jungo Ltd.

1 Hamachshev St.
P.O. Box 8493
Netanya 42504
Israel

sales@jungo.com

wd_license@jungo.com

+972 74 721 2121
+1 877 514 0537

Web Site
http://www.jungo.com

Fax
Worldwide: +972 74721 2122
USA (toll free): +1 877 514 0538

© Jungo Ltd. 2005-2011

176

mailto:sales@jungo.com
http://www.jungo.com
mailto:wd_license@jungo.com

Appendix F
Distributing Your Driver — Legal

Issues

WinDriver islicensed per-seat. The WinDriver license alows one developer on a single computer
to develop an unlimited number of device drivers, and to freely distribute the created drivers
without royalties, as outlined in the license agreement in the WinDriver/docg/license.pdf file.

© Jungo Ltd. 2005-2011 177

Appendix G
Additional Documentation

Updated Manuals

The most updated WinDriver user manuals can be found on Jungo's site at:
http://www.jungo.com/st/support/support_windriver.html.

Version History

If you wish to view WinDriver version history, refer to the WinDriver Release Notes: http://
www.jungo.com/st/wdver.html. The release notes include alist of the new features, enhancements
and fixes that have been added in each WinDriver version.

Technical Documents

For additional information, refer to the WinDriver Technical Documents database:
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html.

This database includes detailed descriptions of WinDriver's features, utilities and APIs and their
correct usage, troubleshooting of common problems, useful tips and answers to frequently asked
guestions.

© Jungo Ltd. 2005-2011 178

http://www.jungo.com/st/support/support_windriver.html
http://www.jungo.com/st/wdver.html
http://www.jungo.com/st/wdver.html
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html

	WinDriver™ USB User's Manual
	Table of Contents
	List of Figures
	Chapter 1. WinDriver Overview
	1.1. Introduction to WinDriver
	1.2. Background
	1.2.1. The Challenge
	1.2.2. The WinDriver Solution

	1.3. Conclusion
	1.4. WinDriver Benefits
	1.5. WinDriver Architecture
	1.6. What Platforms Does WinDriver Support?
	1.7. Limitations of the Different Evaluation Versions
	1.8. How Do I Develop My Driver with WinDriver?
	1.8.1. On Windows and Linux
	1.8.2. On Windows CE

	1.9. What Does the WinDriver Toolkit Include?
	1.9.1. WinDriver Modules
	1.9.2. Utilities
	1.9.3. WinDriver's Specific Chipset Support
	1.9.4. Samples

	1.10. Can I Distribute the Driver Created with WinDriver?

	Chapter 2. Understanding Device Drivers
	2.1. Device Driver Overview
	2.2. Classification of Drivers According to Functionality
	2.2.1. Monolithic Drivers
	2.2.2. Layered Drivers
	2.2.3. Miniport Drivers

	2.3. Classification of Drivers According to Operating Systems
	2.3.1. WDM Drivers
	2.3.2. VxD Drivers
	2.3.3. Unix Device Drivers
	2.3.4. Linux Device Drivers

	2.4. The Entry Point of the Driver
	2.5. Associating the Hardware with the Driver
	2.6. Communicating with Drivers

	Chapter 3. WinDriver USB Overview
	3.1. Introduction to USB
	3.2. WinDriver USB Benefits
	3.3. USB Components
	3.4. Data Flow in USB Devices
	3.5. USB Data Exchange
	3.6. USB Data Transfer Types
	3.6.1. Control Transfer
	3.6.2. Isochronous Transfer
	3.6.3. Interrupt Transfer
	3.6.4. Bulk Transfer

	3.7. USB Configuration
	3.8. WinDriver USB
	3.9. WinDriver USB Architecture
	3.10. Which Drivers Can I Write with WinDriver USB?

	Chapter 4. Installing WinDriver
	4.1. System Requirements
	4.1.1. Windows System Requirements
	4.1.2. Windows CE System Requirements
	4.1.3. Linux System Requirements

	4.2. WinDriver Installation Process
	4.2.1. Windows WinDriver Installation Instructions
	4.2.2. Windows CE WinDriver Installation Instructions
	4.2.2.1. Installing WinDriver CE when Building New CE-﻿Based Platforms
	4.2.2.2. Installing WinDriver CE when Developing Applications for Windows CE Computers
	4.2.2.3. Windows CE Installation Note

	4.2.3. Linux WinDriver Installation Instructions
	4.2.3.1. Preparing the System for Installation
	4.2.3.2. Installation
	4.2.3.3. Restricting Hardware Access on Linux

	4.3. Upgrading Your Installation
	4.4. Checking Your Installation
	4.4.1. Windows and Linux Installation Check
	4.4.2. Windows CE Installation Check

	4.5. Uninstalling WinDriver
	4.5.1. Windows WinDriver Uninstall Instructions
	4.5.2. Linux WinDriver Uninstall Instructions

	Chapter 5. Using DriverWizard
	5.1. An Overview
	5.2. DriverWizard Walkthrough
	5.2.1. Logging WinDriver API Calls
	5.2.2. DriverWizard Logger
	5.2.3. Automatic Code Generation
	5.2.3.1. Generating the Code
	5.2.3.2. The Generated USB C Code
	5.2.3.3. The Generated Visual Basic and Delphi Code
	5.2.3.4. The Generated C﻿# and Visual Basic .NET Code

	5.2.4. Compiling the Generated Code
	5.2.4.1. Windows and Windows CE Compilation
	5.2.4.2. Linux Compilation

	5.2.5. Bus Analyzer Integration – Ellisys Visual USB

	Chapter 6. Developing a Driver
	6.1. Using DriverWizard to Build a Device Driver
	6.2. Writing the Device Driver Without DriverWizard
	6.2.1. Include the Required WinDriver Files
	6.2.2. Write Your Code
	6.2.3. Configure and Build Your Code

	6.3. Developing Your Driver on Windows CE Platforms
	6.4. Developing in Visual Basic and Delphi
	6.4.1. Using DriverWizard
	6.4.2. Samples
	6.4.3. Creating your Driver

	Chapter 7. Debugging Drivers
	7.1. User-Mode Debugging
	7.2. Debug Monitor
	7.2.1. The wddebug_gui Utility
	7.2.1.1. Running wddebug_gui for a Renamed Driver

	7.2.2. The wddebug Utility
	7.2.2.1. Console-Mode wddebug Execution
	7.2.2.2. Windows CE GUI wddebug Execution

	Chapter 8. Enhanced Support for Specific Chipsets
	8.1. Overview
	8.2. Developing a Driver Using the Enhanced Chipset Support

	Chapter 9. USB Transfers
	9.1. Overview
	9.2. USB Control Transfers
	9.2.1. USB Control Transfers Overview
	9.2.1.1. Control Data Exchange
	9.2.1.2. More About the Control Transfer
	9.2.1.3. The Setup Packet
	9.2.1.4. USB Setup Packet Format
	9.2.1.5. Standard Device Request Codes
	9.2.1.6. Setup Packet Example

	9.2.2. Performing Control Transfers with WinDriver
	9.2.2.1. Control Transfers with DriverWizard
	9.2.2.2. Control Transfers with WinDriver API

	9.3. Functional USB Data Transfers
	9.3.1. Functional USB Data Transfers Overview
	9.3.2. Single-Blocking Transfers
	9.3.2.1. Performing Single-Blocking Transfers with WinDriver

	9.3.3. Streaming Data Transfers
	9.3.3.1. Performing Streaming with WinDriver

	Chapter 10. Dynamically Loading Your Driver
	10.1. Why Do You Need a Dynamically Loadable Driver?
	10.2. Windows Dynamic Driver Loading
	10.2.1. Windows Driver Types
	10.2.2. The wdreg Utility
	10.2.2.1. Overview

	10.2.3. Dynamically Loading/Unloading windrvr6.sys INF Files

	10.3. Linux Dynamic Driver Loading
	10.4. Windows Mobile Dynamic Driver Loading

	Chapter 11. Distributing Your Driver
	11.1. Getting a Valid License for WinDriver
	11.2. Windows Driver Distribution
	11.2.1. Preparing the Distribution Package
	11.2.2. Installing Your Driver on the Target Computer

	11.3. Windows CE Driver Distribution
	11.3.1. Distribution to New Windows CE Platforms
	11.3.2. Distribution to Windows CE Computers

	11.4. Linux Driver Distribution
	11.4.1. Kernel Modules
	11.4.2. User-Mode Hardware Control Application/Shared Objects
	11.4.3. Installation Script

	Chapter 12. Driver Installation – Advanced Issues
	12.1. Windows INF Files
	12.1.1. Why Should I Create an INF File?
	12.1.2. How Do I Install an INF File When No Driver Exists?
	12.1.3. How Do I Replace an Existing Driver Using the INF File?

	12.2. Renaming the WinDriver Kernel Driver
	12.2.1. Windows Driver Renaming
	12.2.2. Linux Driver Renaming

	12.3. Digital Driver Signing and Certification – Windows 7/Vista/Server 2008/Server 2003/XP/2000
	12.3.1. Overview
	12.3.1.1. Authenticode Driver Signature
	12.3.1.2. WHQL Driver Certification

	12.3.2. Driver Signing and Certification of WinDriver-Based Drivers
	12.3.2.1. WHQL DTM Test Notes

	12.4. Windows XP Embedded WinDriver Component

	Appendix A. 64-﻿Bit Operating Systems Support
	A.1. Supported 64-﻿Bit Architectures
	A.2. Support for 32-﻿Bit Applications on 64-﻿Bit Windows and Linux Platforms
	A.3. 64-﻿Bit and 32-﻿Bit Data Types

	Appendix B. WinDriver USB Host API Reference
	B.1. WD_DriverName
	B.2. WinDriver USB (WDU) Library Overview
	B.2.1. Calling Sequence for WinDriver USB
	B.2.2. Upgrading from the WD_xxx USB API to the WDU_xxx API

	B.3. USB User Callback Functions
	B.3.1. WDU_ATTACH_CALLBACK
	B.3.2. WDU_DETACH_CALLBACK
	B.3.3. WDU_POWER_CHANGE_CALLBACK

	B.4. USB Functions
	B.4.1. WDU_Init
	B.4.2. WDU_SetInterface
	B.4.3. WDU_GetDeviceAddr
	B.4.4. WDU_GetDeviceRegistryProperty
	B.4.5. WDU_GetDeviceInfo
	B.4.6. WDU_PutDeviceInfo
	B.4.7. WDU_Uninit
	B.4.8. Single-Blocking Transfer Functions
	B.4.8.1. WDU_Transfer
	B.4.8.2. WDU_HaltTransfer
	B.4.8.3. WDU_TransferDefaultPipe
	B.4.8.4. WDU_TransferBulk
	B.4.8.5. WDU_TransferIsoch
	B.4.8.6. WDU_TransferInterrupt

	B.4.9. Streaming Data Transfer Functions
	B.4.9.1. WDU_StreamOpen
	B.4.9.2. WDU_StreamStart
	B.4.9.3. WDU_StreamRead
	B.4.9.4. WDU_StreamWrite
	B.4.9.5. WDU_StreamFlush
	B.4.9.6. WDU_StreamGetStatus
	B.4.9.7. WDU_StreamStop
	B.4.9.8. WDU_StreamClose

	B.4.10. WDU_ResetPipe
	B.4.11. WDU_ResetDevice
	B.4.12. WDU_SelectiveSuspend
	B.4.13. WDU_Wakeup
	B.4.14. WDU_GetLangIDs
	B.4.15. WDU_GetStringDesc

	B.5. USB Data Types
	B.5.1. WD_DEVICE_REGISTRY_PROPERTY Enumeration
	B.5.2. USB Structures
	B.5.2.1. WDU_MATCH_TABLE Structure
	B.5.2.2. WDU_EVENT_TABLE Structure
	B.5.2.3. WDU_DEVICE Structure
	B.5.2.4. WDU_CONFIGURATION Structure
	B.5.2.5. WDU_INTERFACE Structure
	B.5.2.6. WDU_ALTERNATE_SETTING Structure
	B.5.2.7. WDU_DEVICE_DESCRIPTOR Structure
	B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structure
	B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structure
	B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structure
	B.5.2.11. WDU_PIPE_INFO Structure

	B.6. General WD_xxx Functions
	B.6.1. Calling Sequence WinDriver – General Use
	B.6.2. WD_Open
	B.6.3. WD_Version
	B.6.4. WD_Close
	B.6.5. WD_Debug
	B.6.6. WD_DebugAdd
	B.6.7. WD_DebugDump
	B.6.8. WD_Sleep
	B.6.9. WD_License

	B.7. User-Mode Utility Functions
	B.7.1. Stat2Str
	B.7.2. get_os_type
	B.7.3. ThreadStart
	B.7.4. ThreadWait
	B.7.5. OsEventCreate
	B.7.6. OsEventClose
	B.7.7. OsEventWait
	B.7.8. OsEventSignal
	B.7.9. OsEventReset
	B.7.10. OsMutexCreate
	B.7.11. OsMutexClose
	B.7.12. OsMutexLock
	B.7.13. OsMutexUnlock
	B.7.14. PrintDbgMessage
	B.7.15. WD_LogStart
	B.7.16. WD_LogStop
	B.7.17. WD_LogAdd

	B.8. WinDriver Status Codes
	B.8.1. Introduction
	B.8.2. Status Codes Returned by WinDriver
	B.8.3. Status Codes Returned by USBD

	Appendix C. Troubleshooting and Support
	Appendix D. Evaluation Version Limitations
	D.1. Windows WinDriver Evaluation Limitations
	D.2. Windows CE WinDriver Evaluation Limitations
	D.3. Linux WinDriver Evaluation Limitations

	Appendix E. Purchasing WinDriver
	Appendix F. Distributing Your Driver – Legal Issues
	Appendix G. Additional Documentation

