
WinDriver™ USB User's
Manual

Version 10.3.0

Jungo Ltd.

© Jungo Ltd. 2005–2011

WinDriver™ USB User's Manual: Version 10.3.0
Copyright © Jungo Ltd. 2005–2011 All Rights Reserved.

Information in this document is subject to change without notice. The software described in this document is furnished under a license
agreement. The software may be used, copied or distributed only in accordance with that agreement. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or any means, electronically or mechanically, including
photocopying and recording for any purpose without the written permission of Jungo Ltd.

Brand and product names mentioned in this document are trademarks of their respective owners and are used here only for
identification purposes.

© Jungo Ltd. 2005–2011 iii

Table of Contents
1. WinDriver Overview .. 1

1.1. Introduction to WinDriver .. 1
1.2. Background ... 2

1.2.1. The Challenge .. 2
1.2.2. The WinDriver Solution .. 2

1.3. Conclusion ... 3
1.4. WinDriver Benefits ... 4
1.5. WinDriver Architecture .. 5
1.6. What Platforms Does WinDriver Support? .. 6
1.7. Limitations of the Different Evaluation Versions ... 6
1.8. How Do I Develop My Driver with WinDriver? ... 6

1.8.1. On Windows and Linux ... 6
1.8.2. On Windows CE .. 7

1.9. What Does the WinDriver Toolkit Include? ... 7
1.9.1. WinDriver Modules ... 7
1.9.2. Utilities ... 8
1.9.3. WinDriver's Specific Chipset Support ... 9
1.9.4. Samples .. 9

1.10. Can I Distribute the Driver Created with WinDriver? .. 9
2. Understanding Device Drivers ... 10

2.1. Device Driver Overview ... 10
2.2. Classification of Drivers According to Functionality ... 10

2.2.1. Monolithic Drivers ... 10
2.2.2. Layered Drivers .. 11
2.2.3. Miniport Drivers .. 12

2.3. Classification of Drivers According to Operating Systems .. 13
2.3.1. WDM Drivers .. 13
2.3.2. VxD Drivers ... 14
2.3.3. Unix Device Drivers .. 14
2.3.4. Linux Device Drivers ... 14

2.4. The Entry Point of the Driver .. 15
2.5. Associating the Hardware with the Driver ... 15
2.6. Communicating with Drivers .. 15

3. WinDriver USB Overview ... 16
3.1. Introduction to USB .. 16
3.2. WinDriver USB Benefits .. 17
3.3. USB Components .. 17
3.4. Data Flow in USB Devices .. 18
3.5. USB Data Exchange ... 19
3.6. USB Data Transfer Types ... 20

3.6.1. Control Transfer ... 21
3.6.2. Isochronous Transfer .. 21
3.6.3. Interrupt Transfer ... 21
3.6.4. Bulk Transfer ... 22

3.7. USB Configuration ... 22
3.8. WinDriver USB .. 24

© Jungo Ltd. 2005–2011 iv

3.9. WinDriver USB Architecture ... 25
3.10. Which Drivers Can I Write with WinDriver USB? .. 27

4. Installing WinDriver .. 28
4.1. System Requirements .. 28

4.1.1. Windows System Requirements .. 28
4.1.2. Windows CE System Requirements .. 28
4.1.3. Linux System Requirements .. 29

4.2. WinDriver Installation Process ... 29
4.2.1. Windows WinDriver Installation Instructions ... 29
4.2.2. Windows CE WinDriver Installation Instructions ... 30

4.2.2.1. Installing WinDriver CE when Building New CE-Based Platforms 30
4.2.2.2. Installing WinDriver CE when Developing Applications for Windows
CE Computers .. 32
4.2.2.3. Windows CE Installation Note ... 33

4.2.3. Linux WinDriver Installation Instructions ... 33
4.2.3.1. Preparing the System for Installation .. 33
4.2.3.2. Installation ... 34
4.2.3.3. Restricting Hardware Access on Linux ... 36

4.3. Upgrading Your Installation ... 36
4.4. Checking Your Installation ... 37

4.4.1. Windows and Linux Installation Check ... 37
4.4.2. Windows CE Installation Check .. 37

4.5. Uninstalling WinDriver ... 37
4.5.1. Windows WinDriver Uninstall Instructions ... 37
4.5.2. Linux WinDriver Uninstall Instructions .. 39

5. Using DriverWizard ... 40
5.1. An Overview ... 40
5.2. DriverWizard Walkthrough ... 41

5.2.1. Logging WinDriver API Calls ... 50
5.2.2. DriverWizard Logger ... 50
5.2.3. Automatic Code Generation ... 50

5.2.3.1. Generating the Code ... 50
5.2.3.2. The Generated USB C Code ... 51
5.2.3.3. The Generated Visual Basic and Delphi Code .. 51
5.2.3.4. The Generated C# and Visual Basic .NET Code 51

5.2.4. Compiling the Generated Code .. 51
5.2.4.1. Windows and Windows CE Compilation ... 51
5.2.4.2. Linux Compilation .. 52

5.2.5. Bus Analyzer Integration – Ellisys Visual USB .. 52
6. Developing a Driver .. 53

6.1. Using DriverWizard to Build a Device Driver ... 53
6.2. Writing the Device Driver Without DriverWizard ... 54

6.2.1. Include the Required WinDriver Files ... 54
6.2.2. Write Your Code .. 55
6.2.3. Configure and Build Your Code .. 55

6.3. Developing Your Driver on Windows CE Platforms ... 56
6.4. Developing in Visual Basic and Delphi ... 57

6.4.1. Using DriverWizard ... 57

© Jungo Ltd. 2005–2011 v

6.4.2. Samples .. 57
6.4.3. Creating your Driver .. 57

7. Debugging Drivers ... 58
7.1. User-Mode Debugging .. 58
7.2. Debug Monitor .. 58

7.2.1. The wddebug_gui Utility .. 59
7.2.1.1. Running wddebug_gui for a Renamed Driver 61

7.2.2. The wddebug Utility ... 61
7.2.2.1. Console-Mode wddebug Execution .. 61
7.2.2.2. Windows CE GUI wddebug Execution ... 64

8. Enhanced Support for Specific Chipsets ... 66
8.1. Overview ... 66
8.2. Developing a Driver Using the Enhanced Chipset Support .. 66

9. USB Transfers .. 67
9.1. Overview ... 67
9.2. USB Control Transfers ... 68

9.2.1. USB Control Transfers Overview .. 68
9.2.1.1. Control Data Exchange ... 68
9.2.1.2. More About the Control Transfer ... 68
9.2.1.3. The Setup Packet .. 69
9.2.1.4. USB Setup Packet Format .. 69
9.2.1.5. Standard Device Request Codes ... 70
9.2.1.6. Setup Packet Example ... 70

9.2.2. Performing Control Transfers with WinDriver .. 71
9.2.2.1. Control Transfers with DriverWizard ... 71
9.2.2.2. Control Transfers with WinDriver API ... 73

9.3. Functional USB Data Transfers .. 74
9.3.1. Functional USB Data Transfers Overview .. 74
9.3.2. Single-Blocking Transfers .. 74

9.3.2.1. Performing Single-Blocking Transfers with WinDriver 74
9.3.3. Streaming Data Transfers ... 74

9.3.3.1. Performing Streaming with WinDriver ... 75
10. Dynamically Loading Your Driver .. 77

10.1. Why Do You Need a Dynamically Loadable Driver? .. 77
10.2. Windows Dynamic Driver Loading .. 77

10.2.1. Windows Driver Types .. 77
10.2.2. The wdreg Utility ... 77

10.2.2.1. Overview ... 78
10.2.3. Dynamically Loading/Unloading windrvr6.sys INF Files 79

10.3. Linux Dynamic Driver Loading ... 80
10.4. Windows Mobile Dynamic Driver Loading ... 80

11. Distributing Your Driver ... 81
11.1. Getting a Valid License for WinDriver .. 81
11.2. Windows Driver Distribution .. 81

11.2.1. Preparing the Distribution Package .. 82
11.2.2. Installing Your Driver on the Target Computer ... 82

11.3. Windows CE Driver Distribution ... 85
11.3.1. Distribution to New Windows CE Platforms ... 85

© Jungo Ltd. 2005–2011 vi

11.3.2. Distribution to Windows CE Computers ... 87
11.4. Linux Driver Distribution ... 88

11.4.1. Kernel Modules .. 88
11.4.2. User-Mode Hardware Control Application/Shared Objects 90
11.4.3. Installation Script ... 90

12. Driver Installation – Advanced Issues ... 91
12.1. Windows INF Files ... 91

12.1.1. Why Should I Create an INF File? .. 91
12.1.2. How Do I Install an INF File When No Driver Exists? 92
12.1.3. How Do I Replace an Existing Driver Using the INF File? 92

12.2. Renaming the WinDriver Kernel Driver .. 93
12.2.1. Windows Driver Renaming ... 94
12.2.2. Linux Driver Renaming ... 96

12.3. Digital Driver Signing and Certification – Windows 7/Vista/Server 2008/Server
2003/XP/2000 ... 97

12.3.1. Overview .. 97
12.3.1.1. Authenticode Driver Signature .. 98
12.3.1.2. WHQL Driver Certification .. 98

12.3.2. Driver Signing and Certification of WinDriver-Based Drivers 99
12.3.2.1. WHQL DTM Test Notes .. 100

12.4. Windows XP Embedded WinDriver Component ... 101
A. 64-Bit Operating Systems Support ... 103

A.1. Supported 64-Bit Architectures .. 103
A.2. Support for 32-Bit Applications on 64-Bit Windows and Linux Platforms 103
A.3. 64-Bit and 32-Bit Data Types .. 104

B. WinDriver USB Host API Reference ... 105
B.1. WD_DriverName .. 105
B.2. WinDriver USB (WDU) Library Overview ... 106

B.2.1. Calling Sequence for WinDriver USB .. 106
B.2.2. Upgrading from the WD_xxx USB API to the WDU_xxx API 109

B.3. USB User Callback Functions ... 110
B.3.1. WDU_ATTACH_CALLBACK .. 110
B.3.2. WDU_DETACH_CALLBACK .. 111
B.3.3. WDU_POWER_CHANGE_CALLBACK .. 112

B.4. USB Functions ... 113
B.4.1. WDU_Init .. 113
B.4.2. WDU_SetInterface ... 114
B.4.3. WDU_GetDeviceAddr ... 115
B.4.4. WDU_GetDeviceRegistryProperty .. 116
B.4.5. WDU_GetDeviceInfo .. 117
B.4.6. WDU_PutDeviceInfo ... 118
B.4.7. WDU_Uninit .. 119
B.4.8. Single-Blocking Transfer Functions .. 120

B.4.8.1. WDU_Transfer ... 120
B.4.8.2. WDU_HaltTransfer ... 122
B.4.8.3. WDU_TransferDefaultPipe .. 123
B.4.8.4. WDU_TransferBulk .. 123
B.4.8.5. WDU_TransferIsoch ... 124

© Jungo Ltd. 2005–2011 vii

B.4.8.6. WDU_TransferInterrupt .. 124
B.4.9. Streaming Data Transfer Functions ... 125

B.4.9.1. WDU_StreamOpen ... 125
B.4.9.2. WDU_StreamStart .. 127
B.4.9.3. WDU_StreamRead ... 127
B.4.9.4. WDU_StreamWrite ... 128
B.4.9.5. WDU_StreamFlush ... 129
B.4.9.6. WDU_StreamGetStatus .. 130
B.4.9.7. WDU_StreamStop .. 131
B.4.9.8. WDU_StreamClose ... 132

B.4.10. WDU_ResetPipe .. 132
B.4.11. WDU_ResetDevice .. 133
B.4.12. WDU_SelectiveSuspend .. 134
B.4.13. WDU_Wakeup ... 135
B.4.14. WDU_GetLangIDs .. 136
B.4.15. WDU_GetStringDesc .. 137

B.5. USB Data Types ... 138
B.5.1. WD_DEVICE_REGISTRY_PROPERTY Enumeration 139
B.5.2. USB Structures .. 140

B.5.2.1. WDU_MATCH_TABLE Structure .. 142
B.5.2.2. WDU_EVENT_TABLE Structure ... 142
B.5.2.3. WDU_DEVICE Structure ... 142
B.5.2.4. WDU_CONFIGURATION Structure ... 143
B.5.2.5. WDU_INTERFACE Structure ... 143
B.5.2.6. WDU_ALTERNATE_SETTING Structure ... 144
B.5.2.7. WDU_DEVICE_DESCRIPTOR Structure .. 144
B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structure 145
B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structure 145
B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structure 146
B.5.2.11. WDU_PIPE_INFO Structure .. 146

B.6. General WD_xxx Functions ... 147
B.6.1. Calling Sequence WinDriver – General Use ... 147
B.6.2. WD_Open .. 148
B.6.3. WD_Version .. 149
B.6.4. WD_Close .. 150
B.6.5. WD_Debug .. 151
B.6.6. WD_DebugAdd ... 152
B.6.7. WD_DebugDump .. 154
B.6.8. WD_Sleep .. 155
B.6.9. WD_License .. 156

B.7. User-Mode Utility Functions .. 158
B.7.1. Stat2Str .. 158
B.7.2. get_os_type .. 158
B.7.3. ThreadStart .. 159
B.7.4. ThreadWait .. 159
B.7.5. OsEventCreate ... 160
B.7.6. OsEventClose .. 161
B.7.7. OsEventWait .. 161

© Jungo Ltd. 2005–2011 viii

B.7.8. OsEventSignal ... 162
B.7.9. OsEventReset ... 162
B.7.10. OsMutexCreate .. 163
B.7.11. OsMutexClose ... 164
B.7.12. OsMutexLock .. 164
B.7.13. OsMutexUnlock ... 165
B.7.14. PrintDbgMessage ... 165
B.7.15. WD_LogStart ... 166
B.7.16. WD_LogStop ... 167
B.7.17. WD_LogAdd ... 167

B.8. WinDriver Status Codes ... 168
B.8.1. Introduction .. 168
B.8.2. Status Codes Returned by WinDriver ... 168
B.8.3. Status Codes Returned by USBD .. 169

C. Troubleshooting and Support .. 173
D. Evaluation Version Limitations .. 174

D.1. Windows WinDriver Evaluation Limitations ... 174
D.2. Windows CE WinDriver Evaluation Limitations .. 174
D.3. Linux WinDriver Evaluation Limitations .. 175

E. Purchasing WinDriver ... 176
F. Distributing Your Driver – Legal Issues ... 177
G. Additional Documentation .. 178

© Jungo Ltd. 2005–2011 ix

List of Figures
1.1. WinDriver Architecture .. 5
2.1. Monolithic Drivers .. 11
2.2. Layered Drivers .. 12
2.3. Miniport Drivers ... 13
3.1. USB Endpoints .. 19
3.2. USB Pipes ... 20
3.3. Device Descriptors .. 23
3.4. WinDriver USB Architecture ... 26
5.1. Create or Open a WinDriver Project .. 41
5.2. Select Your Device ... 42
5.3. DriverWizard INF File Information ... 43
5.4. DriverWizard Multi-Interface INF File Information – Specific Interface 44
5.5. DriverWizard Multi-Interface INF File Information – Composite Device 45
5.6. Select Device Interface ... 47
5.7. USB Control Transfers ... 47
5.8. Listen to Pipe .. 48
5.9. Write to Pipe ... 49
5.10. Code Generation Options .. 49
5.11. Ellisys Visual USB Integration ... 52
7.1. Start Debug Monitor ... 59
7.2. Debug Options .. 60
7.3. wddebug Windows CE Start Log Message .. 64
7.4. wddebug Windows CE Stop Log Message .. 65
9.1. USB Data Exchange ... 67
9.2. USB Read and Write .. 69
9.3. Custom Request .. 72
9.4. Request List .. 72
9.5. USB Request Log ... 73
B.1. WinDriver USB Calling Sequence ... 108
B.2. WinDriver USB Structures ... 141
B.3. WinDriver API Calling Sequence .. 147

© Jungo Ltd. 2005–2011 1

Chapter 1
WinDriver Overview
In this chapter you will explore the uses of WinDriver, and learn the basic steps of creating your
driver.

This manual outlines WinDriver's support for USB devices.
WinDriver also supports development for PCI / PCMCIA / CardBus / ISA / EISA /
CompactPCI / PCI Express devices. For detailed information regarding WinDriver's support
for these buses, please refer to the WinDriver Product Line page on our web site (http://
www.jungo.com/st/windriver.html) and to the WinDriver PCI Manual, which is available
online at: http://www.jungo.com/st/support/support_windriver.html.

1.1. Introduction to WinDriver
WinDriver is a development toolkit that dramatically simplifies the difficult task of creating
device drivers and hardware access applications. WinDriver includes a wizard and code
generation features that automatically detect your hardware and generate the driver to access it
from your application. The driver and application you develop using WinDriver is source code
compatible across all supported operating systems [1.6]. The driver is binary compatible across
Windows 7/Vista/Server 2008/Server 2003/XP/2000.

WinDriver provides a complete solution for creating high-performance drivers.

Don't let the size of this manual fool you. WinDriver makes developing device drivers an
easy task that takes hours instead of months. Most of this manual deals with the features that
WinDriver offers to the advanced user. However, most developers will find that reading this
chapter and glancing through the DriverWizard and function reference chapters is all they need to
successfully write their driver.

WinDriver supports development for all USB chipsets. Enhanced support is offered for Cypress,
Microchip, Philips, Texas Instruments, Agere and Silicon Laboratories USB chipsets, as outlined
in Chapter 8 of the manual.

Visit Jungo's web site at http://www.jungo.com for the latest news about WinDriver and other
driver development tools that Jungo offers.

http://www.jungo.com/st/windriver.html
http://www.jungo.com/st/windriver.html
http://www.jungo.com/st/support/support_windriver.html
http://www.jungo.com

WinDriver Overview

© Jungo Ltd. 2005–2011 2

1.2. Background

1.2.1. The Challenge

In protected operating systems such as Windows and Linux, a programmer cannot access
hardware directly from the application level (user mode), where development work is usually
done. Hardware can only be accessed from within the operating system itself (kernel mode or
Ring-0), utilizing software modules called device drivers. In order to access a custom hardware
device from the application level, a programmer must do the following:

• Learn the internals of the operating system he is working on.

• Learn how to write a device driver.

• Learn new tools for developing/debugging in kernel mode (WDK, ETK, DDI/DKI).

• Write the kernel-mode device driver that does the basic hardware input/output.

• Write the application in user mode that accesses the hardware through the device driver written
in kernel mode.

• Repeat the first four steps for each new operating system on which the code should run.

1.2.2. The WinDriver Solution

• Easy Development: WinDriver enables Windows, Windows CE, and Linux programmers
to create USB based device drivers in an extremely short time. WinDriver allows you to
create your driver in the familiar user-mode environment, using MS Visual Studio, Borland
C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual C++, MS Platform
Builder C++, GCC, or any other appropriate compiler/IDE. You do not need to have any
device driver knowledge, nor do you have to be familiar with operating system internals, kernel
programming, the WDK, ETK or DDI/DKI.

• Cross Platform: The driver created with WinDriver will run on Windows 7/Vista/Server 2008/
Server 2003/XP/2000, Windows CE.NET, Windows Embedded CE v6.00, Windows Mobile
5.0/6.0, and Linux. In other words – write it once, run it on many platforms.

• Friendly Wizards: DriverWizard (included) is a graphical diagnostics tool that lets you view
the device's resources and test the communication with the hardware with just a few mouse
clicks, before writing a single line of code. Once the device is operating to your satisfaction,
DriverWizard creates the skeletal driver source code, giving access functions to all the
resources on the hardware.

• Kernel-Mode Performance: WinDriver's API is optimized for performance.

WinDriver Overview

© Jungo Ltd. 2005–2011 3

1.3. Conclusion
Using WinDriver, a developer need only do the following to create an application that accesses
the custom hardware:

• Start DriverWizard and detect the hardware and its resources.

• Automatically generate the device driver code from within DriverWizard, or use one of
the WinDriver samples as the basis for the application (see Chapter 8 for an overview of
WinDriver's enhanced support for specific chipsets).

• Modify the user-mode application, as needed, using the generated/sample functions to
implement the desired functionality for your application.

Your hardware access application will run on all the supported platforms [1.6] – just re-compile
the code for the target platform. The code is binary compatible across Windows 7/Vista/Server
2008/Server 2003/XP/2000 platforms; there is no need to rebuild the code when porting it across
binary-compatible platforms.

WinDriver Overview

© Jungo Ltd. 2005–2011 4

1.4. WinDriver Benefits
• Easy user-mode driver development.

• Friendly DriverWizard allows hardware diagnostics without writing a single line of code.

• Automatically generates the driver code for the project in C, C#, Visual Basic .NET, Delphi
(Pascal) or Visual Basic.

• Supports any USB device, regardless of manufacturer.

• Enhanced support for Cypress, Microchip, Philips, Texas Instruments, Agere and Silicon
Laboratories chipsets frees the developer from the need to study the hardware's specification.

• Applications are binary compatible across Windows 7 / Vista / Server 2008 / Server 2003 /
XP / 2000.

• Applications are source code compatible across all supported operating systems – Windows 7/
Vista/Server 2008/Server 2003/XP/2000, Windows CE.NET, Windows Embedded CE v6.00,
Windows Mobile 5.0/6.0, and Linux.

• Can be used with common development environments, including MS Visual Studio, Borland
C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual C++, MS Platform
Builder C++, GCC, or any other appropriate compiler/IDE.

• No WDK, ETK, DDI or any system-level programming knowledge required.

• Supports multiple CPUs.

• Includes dynamic driver loader.

• Comprehensive documentation and help files.

• Detailed examples in C, C#, Visual Basic .NET, Delphi and Visual Basic 6.0.

• WHQL certifiable driver (Windows).

• Two months of free technical support.

• No run-time fees or royalties.

WinDriver Overview

© Jungo Ltd. 2005–2011 5

1.5. WinDriver Architecture
Figure 1.1. WinDriver Architecture

For hardware access, your application calls one of the WinDriver user-mode functions. The user-
mode function calls the WinDriver kernel, which accesses the hardware for you through the
native calls of the operating system.

WinDriver Overview

© Jungo Ltd. 2005–2011 6

1.6. What Platforms Does WinDriver Support?
WinDriver supports the following operating systems:

• Windows 7/Vista/Server 2008/Server 2003/XP/2000 – henceforth collectively: Windows

• Windows CE 4.x – 5.x (Windows CE.NET), Windows Embedded CE v6.00, Windows Mobile
5.0/6.0 – henceforth collectively: Windows CE

• Linux

The same source code will run on all supported platforms – simply re-compile it for the target
platform. The source code is binary compatible across Windows 7/Vista/Server 2008/Server
2003/XP/2000; WinDriver executables can be ported among the binary-compatible platforms
without re-compilation.

Even if your code is meant only for one of the supported operating systems, using WinDriver
will give you the flexibility to move your driver to another operating system in the future without
needing to change your code.

1.7. Limitations of the Different Evaluation
Versions
All the evaluation versions of the WinDriver USB Host toolkit are full featured. No functions
are limited or crippled in any way. The evaluation version of WinDriver varies from the registered
version in the following ways:

• Each time WinDriver is activated, an Unregistered message appears.

• When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

• In the Linux and Windows CE versions, the driver will remain operational for 60 minutes, after
which time it must be restarted.

• The Windows evaluation version expires 30 days from the date of installation.

For more details please refer to Appendix D.

1.8. How Do I Develop My Driver with
WinDriver?

1.8.1. On Windows and Linux

1. Start DriverWizard and use it to diagnose your hardware – see details in Chapter 5.

WinDriver Overview

© Jungo Ltd. 2005–2011 7

2. Let DriverWizard generate skeletal code for your driver, or use one of the WinDriver samples
as the basis for your driver application (see Chapter 8 for details regarding WinDriver's
enhanced support for specific chipsets).

3. Modify the generated/sample code to suit your application's needs.

4. Run and debug your driver.

The code generated by DriverWizard is a diagnostics program that contains functions that
perform data transfers on the device's pipes, send requests to the control pipe, change the
active alternate setting, reset pipes, and more.

1.8.2. On Windows CE

1. Plug your hardware into a Windows host machine.

2. Diagnose your hardware using DriverWizard.

3. Let DriverWizard generate your driver's skeletal code.

4. Modify this code, using MS eMbedded Visual C++, to meet your specific needs. If you are
using MS Platform Builder, activate it and insert the generated *.pbp into your workspace.

5. Test your driver on the target embedded Windows CE platorm.

1.9. What Does the WinDriver Toolkit Include?
• A printed version of this manual

• Two months of free technical support (Phone/Fax/Email)

• WinDriver modules

• The WinDriver CD

• Utilities

• Chipset support APIs

• Sample files

1.9.1. WinDriver Modules

• WinDriver (WinDriver/include) – the general purpose hardware access toolkit. The main files
here are:

• windrvr.h: Declarations and definitions of WinDriver's basic API.

WinDriver Overview

© Jungo Ltd. 2005–2011 8

• wdu_lib.h: Declarations and definitions of the WinDriver USB (WDU) library, which
provides convenient wrapper USB APIs.

• windrvr_int_thread.h: Declarations of convenient wrapper functions to simplify interrupt
handling.

• windrvr_events.h: Declarations of APIs for handling and Plug-and-Play and power
management events.

• utils.h: Declarations of general utility functions.

• status_strings.h: Declarations of API for converting WinDriver status codes to descriptive
error strings.

• DriverWizard (WinDriver/wizard/wdwizard) – a graphical application that diagnoses your
hardware and enables you to easily generate code for your driver (refer to Chapter 5 for
details).

• Debug Monitor – a debugging tool that collects information about your driver as it runs. This
tool is available both as a fully graphical application – WinDriver/util/wddebug_gui – and
as a console-mode application – WinDriver/util/wddebug. The console-mode version also
supports GUI execution on Windows CE platforms that don't have a command-line prompt.
For details regarding the Debug Monitor, refer to Section 7.2.

• WinDriver distribution package (WinDriver/redist) – the files you include in the driver
distribution to customers.

• This manual – the full WinDriver manual (this document), in different formats, can be found
under the WinDriver/docs directory.

1.9.2. Utilities

• usb_diag.exe (WinDriver/util/usb_diag.exe) – enables the user to view the resources of
connected USB devices and communicate with the devices – transfer data to/from the device,
set the active alternate setting, reset pipes, etc.
On Windows the program identifies all devices that have been registered to work with
WinDriver using an INF file. On the other supported operating systems the program identifies
all USB devices connected to the target platform.

• pci_dump.exe (WinDriver/util/pci_dump.exe) – used to obtain a dump of the PCI
configuration registers of the installed PCI cards.

• pci_scan.exe (WinDriver/util/pci_scan.exe) – used to obtain a list of the PCI cards installed
and the resources allocated for each card.

• pcmcia_diag.exe (WinDriver/util/pcmcia_diag.exe) – used for reading/writing PCMCIA
attribute space, accessing PCMCIA I/O and memory ranges and handling PCMCIA interrupts.

WinDriver Overview

© Jungo Ltd. 2005–2011 9

• pcmcia_scan.exe (WinDriver/util/pcmcia_scan.exe) – used to obtain a list of the PCMCIA
cards installed and the resources allocated for each card.

1.9.3. WinDriver's Specific Chipset Support

WinDriver provides custom wrapper APIs and sample code for major USB chipsets (see
Chapter 8), including for the following chipsets:

• Cypress EZ-USB – WinDriver/cypress

• Microchip PIC18F4550 – WinDriver/microchip/pic18f4550

• Philips PDIUSBD12 – WinDriver/pdiusbd12

• Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052 – WinDriver/ti

• Agere USS2828 – WinDriver/agere.

• Silicon Laboratories C8051F320 USB – WinDriver/silabs

1.9.4. Samples

In addition to the samples provided for specific chipsets [1.9.3], WinDriver includes a variety
of samples that demonstrate how to use WinDriver's API to communicate with your device and
perform various driver tasks.

• C samples: found under the WinDriver/samples directory.
These samples also include the source code for the utilities listed above [1.9.2].

• .NET C# and Visual Basic .NET samples (Windows): found under the WinDriver\csharp.net
and WinDriver\vb.net directories (respectively).

• Delphi (Pascal) samples (Windows) WinDriver\delphi\samples directory.

• Visual Basic samples (Windows): found under the WinDriver\vb\samples directory.

1.10. Can I Distribute the Driver Created with
WinDriver?
Yes. WinDriver is purchased as a development toolkit, and any device driver created using
WinDriver may be distributed, royalties free, in as many copies as you wish. See the license
agreement at (WinDriver/docs/license.pdf) for more details.

© Jungo Ltd. 2005–2011 10

Chapter 2
Understanding Device Drivers
This chapter provides you with a general introduction to device drivers and takes you through the
structural elements of a device driver.

Using WinDriver, you do not need to familiarize yourself with the internal workings of
driver development. As explained in Chapter 1 of the manual, WinDriver enables you to
communicate with your hardware and develop a driver for your device from the user mode,
using only WinDriver's simple APIs, without any need for driver or kernel development
knowledge.

2.1. Device Driver Overview
Device drivers are the software segments that provides an interface between the operating system
and the specific hardware devices such as terminals, disks, tape drives, video cards and network
media. The device driver brings the device into and out of service, sets hardware parameters in the
device, transmits data from the kernel to the device, receives data from the device and passes it
back to the kernel, and handles device errors.

A driver acts like a translator between the device and programs that use the device. Each device
has its own set of specialized commands that only its driver knows. In contrast, most programs
access devices by using generic commands. The driver, therefore, accepts generic commands
from a program and then translates them into specialized commands for the device.

2.2. Classification of Drivers According to
Functionality
There are numerous driver types, differing in their functionality. This subsection briefly describes
three of the most common driver types.

2.2.1. Monolithic Drivers

Monolithic drivers are device drivers that embody all the functionality needed to support a
hardware device. A monolithic driver is accessed by one or more user applications, and directly
drives a hardware device. The driver communicates with the application through I/O control
commands (IOCTLs) and drives the hardware using calls to the different WDK, ETK, DDI/DKI
functions.

Understanding Device Drivers

© Jungo Ltd. 2005–2011 11

Figure 2.1. Monolithic Drivers

Monolithic drivers are supported in all operating systems including all Windows platforms and all
Unix platforms.

2.2.2. Layered Drivers

Layered drivers are device drivers that are part of a stack of device drivers that together process
an I/O request. An example of a layered driver is a driver that intercepts calls to the disk and
encrypts/decrypts all data being transferred to/from the disk. In this example, a driver would be
hooked on to the top of the existing driver and would only do the encryption/decryption.

Layered drivers are sometimes also known as filter drivers, and are supported in all operating
systems including all Windows platforms and all Unix platforms.

Understanding Device Drivers

© Jungo Ltd. 2005–2011 12

Figure 2.2. Layered Drivers

2.2.3. Miniport Drivers

A Miniport driver is an add-on to a class driver that supports miniport drivers. It is used so the
miniport driver does not have to implement all of the functions required of a driver for that class.
The class driver provides the basic class functionality for the miniport driver.
A class driver is a driver that supports a group of devices of common functionality, such as all
HID devices or all network devices.

Miniport drivers are also called miniclass drivers or minidrivers, and are supported in the
Windows NT (2000) family, namely Windows 7 / Vista / Server 2008 / Server 2003 / XP / 2000 /
NT 4.0.

Understanding Device Drivers

© Jungo Ltd. 2005–2011 13

Figure 2.3. Miniport Drivers

Windows 7/Vista/Server 2008/Server 2003/XP/2000/NT 4.0 provide several driver classes (called
ports) that handle the common functionality of their class. It is then up to the user to add only the
functionality that has to do with the inner workings of the specific hardware. The NDIS miniport
driver is one example of such a driver. The NDIS miniport framework is used to create network
drivers that hook up to NT's communication stacks, and are therefore accessible to common
communication calls used by applications. The Windows NT kernel provides drivers for the
various communication stacks and other code that is common to communication cards. Due to
the NDIS framework, the network card developer does not have to write all of this code, only the
code that is specific to the network card he is developing.

2.3. Classification of Drivers According to
Operating Systems

2.3.1. WDM Drivers

Windows Driver Model (WDM) drivers are kernel-mode drivers within the Windows NT and
Windows 98 operating system families. The Windows NT family includes Windows 7/Vista/
Server 2008/Server 2003/XP/2000/NT 4.0, and the Windows 98 family includes Windows 98 and
Windows Me.

Understanding Device Drivers

© Jungo Ltd. 2005–2011 14

WDM works by channeling some of the work of the device driver into portions of the code that
are integrated into the operating system. These portions of code handle all of the low-level buffer
management, including DMA and Plug-and-Play (Pnp) device enumeration.

WDM drivers are PnP drivers that support power management protocols, and include monolithic
drivers, layered drivers and miniport drivers.

2.3.2. VxD Drivers

VxD drivers are Windows 95/98/Me Virtual Device Drivers, often called VxDs because the file
names end with the .vxd extension. VxD drivers are typically monolithic in nature. They provide
direct access to hardware and privileged operating system functions. VxD drivers can be stacked
or layered in any fashion, but the driver structure itself does not impose any layering.

2.3.3. Unix Device Drivers

In the classic Unix driver model, devices belong to one of three categories: character (char)
devices, block devices and network devices. Drivers that implement these devices are
correspondingly known as char drivers, block drivers or network drivers. Under Unix, drivers
are code units linked into the kernel that run in privileged kernel mode. Generally, driver code
runs on behalf of a user-mode application. Access to Unix drivers from user-mode applications is
provided via the file system. In other words, devices appear to the applications as special device
files that can be opened.

Unix device drivers are either layered or monolithic drivers. A monolithic driver can be perceived
as a one-layer layered driver.

2.3.4. Linux Device Drivers

Linux device drivers are based on the classic Unix device driver model [2.3.3]. In addition, Linux
introduces some new characteristics.

Under Linux, a block device can be accessed like a character device, as in Unix, but also has a
block-oriented interface that is invisible to the user or application.

Traditionally, under Unix, device drivers are linked with the kernel, and the system is brought
down and restarted after installing a new driver. Linux introduces the concept of a dynamically
loadable driver called a module. Linux modules can be loaded or removed dynamically without
requiring the system to be shut down. A Linux driver can be written so that it is statically linked
or written in a modular form that allows it to be dynamically loaded. This makes Linux memory
usage very efficient because modules can be written to probe for their own hardware and unload
themselves if they cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are either layered or monolithic drivers.

Understanding Device Drivers

© Jungo Ltd. 2005–2011 15

2.4. The Entry Point of the Driver
Every device driver must have one main entry point, like the main() function in a C console
application. This entry point is called DriverEntry() in Windows and init_module() in
Linux. When the operating system loads the device driver, this driver entry procedure is called.

There is some global initialization that every driver needs to perform only once when
it is loaded for the first time. This global initialization is the responsibility of the
DriverEntry()/init_module() routine. The entry function also registers which driver
callbacks will be called by the operating system. These driver callbacks are operating system
requests for services from the driver. In Windows, these callbacks are called dispatch routines,
and in Linux they are called file operations. Each registered callback is called by the operating
system as a result of some criteria, such as disconnection of hardware, for example.

2.5. Associating the Hardware with the Driver
Operating systems differ in the ways they associate a device with a specific driver.

In Windows, the hardware–driver association is performed via an INF file, which registers the
device to work with the driver. This association is performed before the DriverEntry() routine
is called. The operating system recognizes the device, checks its database to identify which INF
file is associated with the device, and according to the INF file, calls the driver's entry point.

In Linux, the hardware–driver association is defined in the driver's init_module() routine.
This routine includes a callback that indicates which hardware the driver is designated to handle.
The operating system calls the driver's entry point, based on the definition in the code.

2.6. Communicating with Drivers
Communication between a user-mode application and the driver that drives the hardware,
is implemented differently for each operating system, using the the custom OS Application
Programming Interfaces (APIs).

On Windows, Windows CE, and Linux, the application can use the OS file-access API to open
a handle to the driver (e.g., using the Windows CreateFile() function or using the Linux
open() function), and then read and write from/to the device by passing the handle to the relevant
OS file-access functions (e.g., the Windows ReadFile() and WriteFile() functions, or the
Linux read() and write() functions).

The application sends requests to the driver via I/O control (IOCTL) calls, using the custom OS
APIs provided for this purpose (e.g., the Windows DeviceIoControl() function, or the Linux
ioctl() function).
The data passed between the driver and the application via the IOCTL calls is encapsulated using
custom OS mechanisms. For example, on Windows the data is passed via an I/O Request Packet
(IRP) structure, and is encapsulated by the I/O Manager.

© Jungo Ltd. 2005–2011 16

Chapter 3
WinDriver USB Overview
This chapter explores the basic characteristics of the Universal Serial Bus (USB) and introduces
WinDriver USB's features and architecture.

The references to the WinDriver USB toolkit in this chapter relate to the standard
WinDriver USB toolkit for development of USB host drivers.

3.1. Introduction to USB
USB (Universal Serial Bus) is an industry standard extension to the PC architecture for
attaching peripherals to the computer. It was originally developed in 1995 by leading PC and
telecommunication industry companies, such as Intel, Compaq, Microsoft and NEC. USB was
developed to meet several needs, among them the needs for an inexpensive and widespread
connectivity solution for peripherals in general and for computer telephony integration in
particular, an easy-to-use and flexible method of reconfiguring the PC, and a solution for adding a
large number of external peripherals. The USB standard meets these needs.

The USB specification allows for the connection of a maximum of 127 peripheral devices
(including hubs) to the system, either on the same port or on different ports.

USB also supports Plug-and-Play installation and hot swapping. The USB 1.1 standard supports
both isochronous and asynchronous data transfers and has dual speed data transfer: 1.5 Mb/s
(megabits per second) for low-speed USB devices and 12 Mb/s for full-speed USB devices
(much faster than the original serial port). Cables connecting the device to the PC can be up to
five meters (16.4 feet) long. USB includes built-in power distribution for low power devices and
can provide limited power (up to 500 mA of current) to devices attached on the bus.

The USB 2.0 standard supports a signalling rate of 480 Mb/s, known as 'high-speed', which is 40
times faster than the USB 1.1 full-speed transfer rate.
USB 2.0 is fully forward- and backward-compatible with USB 1.1 and uses existing cables and
connectors.
USB 2.0 supports connections with PC peripherals that provide expanded functionality and
require wider bandwidth. In addition, it can handle a larger number of peripherals simultaneously.
USB 2.0 enhances the user's experience of many applications, including interactive gaming,
broadband Internet access, desktop and Web publishing, Internet services and conferencing.

Because of its benefits (described also in Section 3.2 below), USB is currently enjoying broad
market acceptance.

WinDriver USB Overview

© Jungo Ltd. 2005–2011 17

3.2. WinDriver USB Benefits
This section describes the main benefits of the USB standard and the WinDriver USB toolkit,
which supports this standard:

• External connection, maximizing ease of use

• Self identifying peripherals supporting automatic mapping of function to driver and
configuration

• Dynamically attachable and re-configurable peripherals

• Suitable for device bandwidths ranging from a few Kb/s to hundreds of Mb/s

• Supports isochronous as well as asynchronous transfer types over the same set of wires

• Supports simultaneous operation of many devices (multiple connections)

• Supports a data transfer rate of up to 480 Mb/s (high-speed) for USB 2.0 (for the operating
systems that officially support this standard) and up to 12 Mb/s (full-speed) for USB 1.1

• Guaranteed bandwidth and low latencies; appropriate for telephony, audio, etc. (isochronous
transfer may use almost the entire bus bandwidth)

• Flexibility: supports a wide range of packet sizes and a wide range of data transfer rates

• Robustness: built-in error handling mechanism and dynamic insertion and removal of devices
with no delay observed by the user

• Synergy with PC industry; Uses commodity technologies

• Optimized for integration in peripheral and host hardware

• Low-cost implementation, therefore suitable for development of low-cost peripherals

• Low-cost cables and connectors

• Built-in power management and distribution

• Specific library support for custom USB HID devices

3.3. USB Components
The Universal Serial Bus (USB) consists of the following primary components:

• USB Host: The USB host platform is where the USB host controller is installed and where the
client software/device driver runs. The USB Host Controller is the interface between the host
and the USB peripherals. The host is responsible for detecting the insertion and removal of

WinDriver USB Overview

© Jungo Ltd. 2005–2011 18

USB devices, managing the control and data flow between the host and the devices, providing
power to attached devices and more.

• USB Hub: A USB device that allows multiple USB devices to attach to a single USB port on
a USB host. Hubs on the back plane of the hosts are called root hubs. Other hubs are called
external hubs.

• USB Function: A USB device that can transmit or receive data or control information over the
bus and that provides a function. A function is typically implemented as a separate peripheral
device that plugs into a port on a hub using a cable. However, it is also possible to create a
compound device, which is a physical package that implements multiple functions and an
embedded hub with a single USB cable. A compound device appears to the host as a hub with
one or more non-removable USB devices, which may have ports to support the connection of
external devices.

3.4. Data Flow in USB Devices
During the operation of a USB device, the host can initiate a flow of data between the client
software and the device.

Data can be transferred between the host and only one device at a time (peer to peer
communication). However, two hosts cannot communicate directly, nor can two USB devices
(with the exception of On-The-Go (OTG) devices, where one device acts as the master (host) and
the other as the slave.)

The data on the USB bus is transferred via pipes that run between software memory buffers on the
host and endpoints on the device.

Data flow on the USB bus is half-duplex, i.e., data can be transmitted only in one direction at a
given time.

An endpoint is a uniquely identifiable entity on a USB device, which is the source or terminus of
the data that flows from or to the device. Each USB device, logical or physical, has a collection of
independent endpoints. The three USB speeds (low, full and high) all support one bi-directional
control endpoint (endpoint zero) and 15 unidirectional endpoints. Each unidirectional endpoint
can be used for either inbound or outbound transfers, so theoretically there are 30 supported
endpoints.
Each endpoint has the following attributes: bus access frequency, bandwidth requirement,
endpoint number, error handling mechanism, maximum packet size that can be transmitted or
received, transfer type and direction (into or out of the device).

WinDriver USB Overview

© Jungo Ltd. 2005–2011 19

Figure 3.1. USB Endpoints

A pipe is a logical component that represents an association between an endpoint on the USB
device and software on the host. Data is moved to and from a device through a pipe. A pipe can
be either a stream pipe or a message pipe, depending on the type of data transfer used in the pipe.
Stream pipes handle interrupt, bulk and isochronous transfers, while message pipes support the
control transfer type. The different USB transfer types are discussed below [3.6].

3.5. USB Data Exchange
The USB standard supports two kinds of data exchange between a host and a device: functional
data exchange and control exchange.

• Functional Data Exchange is used to move data to and from the device. There are three types
of USB data transfers: Bulk, Interrupt and Isochronous .

• Control Exchange is used to determine device identification and configuration requirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.

WinDriver USB Overview

© Jungo Ltd. 2005–2011 20

Control exchange takes place via a control pipe, mainly the default Pipe 0, which always exists.
The control transfer consists of a setup stage (in which a setup packet is sent from the host to
the device), an optional data stage and a status stage.

Figure 3.2 below depicts a USB device with one bi-directional control pipe (endpoint) and two
functional data transfer pipes (endpoints), as identified by WinDriver's DriverWizard utility
(discussed in Chapter 5).

Figure 3.2. USB Pipes

More information on how to implement the control transfer by sending setup packets can be
found in Section 9.2.

3.6. USB Data Transfer Types
The USB device (function) communicates with the host by transferring data through a pipe
between a memory buffer on the host and an endpoint on the device. USB supports four different
transfer types. A type is selected for a specific endpoint according to the requirements of the
device and the software. The transfer type of a specific endpoint is determined in the endpoint
descriptor.

The USB specification provides for the following data transfer types:

WinDriver USB Overview

© Jungo Ltd. 2005–2011 21

3.6.1. Control Transfer
Control Transfer is mainly intended to support configuration, command and status operations
between the software on the host and the device.

This transfer type is used for low-, full- and high-speed devices.

Each USB device has at least one control pipe (default pipe), which provides access to the
configuration, status and control information.

Control transfer is bursty, non-periodic communication.

The control pipe is bi-directional – i.e., data can flow in both directions.

Control transfer has a robust error detection, recovery and retransmission mechanism and retries
are made without the involvement of the driver.

The maximum packet size for control endpoints can be only 8 bytes for low-speed devices; 8, 16,
32, or 64 bytes for full-speed devices; and only 64 bytes for high-speed devices.

For more in-depth information regarding USB control transfers and their implementation, refer to
Section 9.2 of the manual.

3.6.2. Isochronous Transfer
Isochronous Transfer is most commonly used for time-dependent information, such as multimedia
streams and telephony.

This transfer type can be used by full-speed and high-speed devices, but not by low-speed
devices.

Isochronous transfer is periodic and continuous.

The isochronous pipe is unidirectional, i.e., a certain endpoint can either transmit or receive
information. Bi-directional isochronous communication requires two isochronous pipes, one in
each direction.

USB guarantees the isochronous transfer access to the USB bandwidth (i.e., it reserves the
required amount of bytes of the USB frame) with bounded latency, and guarantees the data
transfer rate through the pipe, unless there is less data transmitted.

Since timeliness is more important than correctness in this type of transfer, no retries are made in
case of error in the data transfer. However, the data receiver can determine that an error occurred
on the bus.

3.6.3. Interrupt Transfer
Interrupt Transfer is intended for devices that send and receive small amounts of data infrequently
or in an asynchronous time frame.

WinDriver USB Overview

© Jungo Ltd. 2005–2011 22

This transfer type can be used for low-, full- and high-speed devices.

Interrupt transfer type guarantees a maximum service period and that delivery will be re-
attempted in the next period if there is an error on the bus.

The interrupt pipe, like the isochronous pipe, is unidirectional and periodical.

The maximum packet size for interrupt endpoints can be 8 bytes or less for low-speed devices; 64
bytes or less for full-speed devices; and 1,024 bytes or less for high-speed devices.

3.6.4. Bulk Transfer

Bulk Transfer is typically used for devices that transfer large amounts of non-time sensitive data,
and that can use any available bandwidth, such as printers and scanners.

This transfer type can be used by full-speed and high-speed devices, but not by low-speed
devices.

Bulk transfer is non-periodic, large packet, bursty communication.

Bulk transfer allows access to the bus on an "as-available" basis, guarantees the data transfer but
not the latency, and provides an error check mechanism with retries attempts. If part of the USB
bandwidth is not being used for other transfers, the system will use it for bulk transfer.

Like the other stream pipes (isochronous and interrupt), the bulk pipe is also unidirectional, so bi-
directional transfers require two endpoints.

The maximum packet size for bulk endpoints can be 8, 16, 32, or 64 bytes for full-speed devices,
and 512 bytes for high-speed devices.

3.7. USB Configuration
Before the USB function (or functions, in a compound device) can be operated, the device
must be configured. The host does the configuring by acquiring the configuration information
from the USB device. USB devices report their attributes by descriptors. A descriptor is the
defined structure and format in which the data is transferred. A complete description of the USB
descriptors can be found in Chapter 9 of the USB Specification (see http://www.usb.org for the
full specification).

It is best to view the USB descriptors as a hierarchical structure with four levels:

• The Device level

• The Configuration level

• The Interface level (this level may include an optional
sub-level called Alternate Setting)

http://www.usb.org

WinDriver USB Overview

© Jungo Ltd. 2005–2011 23

• The Endpoint level

There is only one device descriptor for each USB device. Each device has one or more
configurations, each configuration has one or more interfaces, and each interface has zero or more
endpoints, as demonstrated in Figure 3.3 below.

Figure 3.3. Device Descriptors

• Device Level: The device descriptor includes general information about the USB device, i.e.,
global information for all of the device configurations. The device descriptor identifies, among
other things, the device class (HID device, hub, locator device, etc.), subclass, protocol code,
vendor ID, device ID and more. Each USB device has one device descriptor.

• Configuration Level: A USB device has one or more configuration descriptors. Each
descriptor identifies the number of interfaces grouped in the configuration and the power
attributes of the configuration (such as self-powered, remote wakeup, maximum power
consumption and more). Only one configuration can be loaded at a given time. For example,
an ISDN adapter might have two different configurations, one that presents it with a single
interface of 128 Kb/s and a second that presents it with two interfaces of 64 Kb/s each.

• Interface Level: The interface is a related set of endpoints that present a specific functionality
or feature of the device. Each interface may operate independently. The interface descriptor
describes the number of the interface, the number of endpoints used by this interface
and the interface-specific class, subclass and protocol values when the interface operates
independently.

In addition, an interface may have alternate settings. The alternate settings allow the endpoints
or their characteristics to be varied after the device is configured.

• Endpoint Level: The lowest level is the endpoint descriptor, which provides the host with
information regarding the endpoint's data transfer type and maximum packet size. For
isochronous endpoints, the maximum packet size is used to reserve the required bus time for
the data transfer – i.e., the bandwidth. Other endpoint attributes are its bus access frequency,

WinDriver USB Overview

© Jungo Ltd. 2005–2011 24

endpoint number, error handling mechanism and direction. The same endpoint can have
different properties (and consequently different uses) in different alternate settings.

Seems complicated? Not at all! WinDriver automates the USB configuration process. The
included DriverWizard utility [5] and USB diagnostics application scan the USB bus, detect all
USB devices and their configurations, interfaces, alternate settings and endpoints, and enable you
to pick the desired configuration before starting driver development.

WinDriver identifies the endpoint transfer type as determined in the endpoint descriptor. The
driver created with WinDriver contains all configuration information acquired at this early stage.

3.8. WinDriver USB
WinDriver USB enables developers to quickly develop high-performance drivers for USB-based
devices without having to learn the USB specifications and operating system internals, or use
the operating system development kits. For example, Windows drivers can be developed without
using the Windows Driver Kit (WDK) or learning the Windows Driver Model (WDM).

The driver code developed with WinDriver USB is binary compatible across the supported
Windows platforms – Windows 7/Vista/Server 2008/Server 2003/XP/2000 – and source code
compatible across all supported operating systems – Windows 7/Vista/Server 2008/Server
2003/XP/2000, Windows CE.NET, Windows Embedded CE v6.00, Windows Mobile 5.0/6.0,
and Linux. For an up-to-date list of supported operating systems, visit Jungo's web site –
http://www.jungo.com.

WinDriver USB is a generic tool kit that supports all USB devices from all vendors and with all
types of configurations.

WinDriver USB encapsulates the USB specification and architecture, letting you focus on your
application logic. WinDriver USB features the graphical DriverWizard utility [5], which enables
you to easily detect your hardware, view its configuration information, and test it, before writing
a single line of code: DriverWizard first lets you choose the desired configuration, interface
and alternate setting combination, using a friendly graphical user interface. After detecting and
configuring your USB device, you can proceed to test the communication with the device –
perform data transfers on the pipes, send control requests, reset the pipes, etc. – in order to ensure
that all your hardware resources function as expected.

After your hardware is diagnosed, you can use DriverWizard to automatically generate your
device driver source code in C, C#, Visual Basic .NET, Delphi or Visual Basic. WinDriver USB
provides user-mode APIs, which you can call from within your application in order to implement
the communication with your device. The WinDriver USB API includes USB-unique operations
such as reset of a pipe or a device. The generated DriverWizard code implements a diagnostics
application, which demonstrates how to use WinDriver's USB API to drive your specific device.
In order to use the application you just need to compile and run it. You can jump-start your
development cycle by using this application as your skeletal driver and then modifying the code,
as needed, to implement the desired driver functionality for your specific device.

DriverWizard also automates the creation of an INF file that registers your device to work with
WinDriver, which is an essential step in order to correctly identify and handle USB devices

http://www.jungo.com

WinDriver USB Overview

© Jungo Ltd. 2005–2011 25

using WinDriver. For an explanation on why you need to create an INF file for your USB device,
refer to Section 12.1.1 of the manual. For detailed information on creation of INF files with
DriverWizard, refer to Section 5.2 (see specifically Step 3).

With WinDriver USB, all development is done in the user mode, using familiar development
and debugging tools and your favorite compiler/IDE (such as MS Visual Studio, Borland C++
Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual C++, MS Platform Builder C++,
GCC).

For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 9 of the manual.

3.9. WinDriver USB Architecture
To access your hardware, your application calls the WinDriver kernel module using functions
from the WinDriver USB API. The high-level functions utilize the low-level functions, which
use IOCTLs to enable communication between the WinDriver kernel module and your user-
mode application. The WinDriver kernel module accesses your USB device resources through the
native operating system calls.

There are two layers responsible for abstracting the USB device to the USB device driver. The
upper layer is the USB Driver (USBD) layer, which includes the USB Hub Driver and the USB
Core Driver. The lower level is the Host Controller Driver (HCD) layer. The division of duties
between the HCD and USBD layers is not defined and is operating system dependent. Both the
HCD and USBD are software interfaces and components of the operating system, where the HCD
layer represents a lower level of abstraction.

The HCD is the software layer that provides an abstraction of the host controller hardware, while
the USBD provides an abstraction of the USB device and the data transfer between the host
software and the function of the USB device.

The USBD communicates with its clients (the specific device driver, for example) through
the USB Driver Interface (USBDI). At the lower level, the Core Driver and USB Hub Driver
implement the hardware access and data transfer by communicating with the HCD using the Host
Controller Driver Interface (HCDI).

The USB Hub Driver is responsible for identifying the addition and removal of devices from a
particular hub. When the Hub Driver receives a signal that a device was attached or detached, it
uses additional host software and the USB Core Driver to recognize and configure the device. The
software implementing the configuration can include the hub driver, the device driver, and other
software.

WinDriver USB abstracts the configuration procedure and hardware access described above
for the developer. With WinDriver's USB API, developers can perform all the hardware-
related operations without having to master the lower-level implementation for supporting these
operations.

WinDriver USB Overview

© Jungo Ltd. 2005–2011 26

Figure 3.4. WinDriver USB Architecture

WinDriver USB Overview

© Jungo Ltd. 2005–2011 27

3.10. Which Drivers Can I Write with
WinDriver USB?
Almost all monolithic drivers (drivers that need to access specific USB devices) can be written
with WinDriver USB. In cases where a standard driver is required, e.g., NDIS driver, SCSI driver,
Display driver, USB to Serial port drivers, USB layered drivers, etc., use KernelDriver USB (also
from Jungo).

For quicker development time, select WinDriver USB over KernelDriver USB whenever possible.

© Jungo Ltd. 2005–2011 28

Chapter 4
Installing WinDriver
This chapter takes you through the process of installing WinDriver on your development
platform, and shows you how to verify that your WinDriver is properly installed. The last section
discusses the uninstall procedure. To find out how to install the driver you create on target
platforms, refer to Chapter 11.

4.1. System Requirements

4.1.1. Windows System Requirements

• Any x86 32-bit or 64-bit (x64: AMD64 or Intel EM64T) processor

• Any development environment supporting C, .NET, VB or Delphi

• Windows 2000 requires SP4

• Windows XP requires SP2

4.1.2. Windows CE System Requirements

• An x86 / MIPS / ARM Windows CE 4.x – 5.x (Windows CE.NET) or Windows Embedded CE
v6.00 target platform
or:
an ARMV4I Windows Mobile 5.0/6.0 target platform

• Windows 7/Vista/Server 2008/Server 2003/XP/2000 host development platform

• For Windows CE 4.x – 5.0: Microsoft eMbedded Visual C++ with a corresponding target
SDK, OR Microsoft Platform Builder with a corresponding BSP (Board Support Package) for
the target platform

For Windows Embedded CE 6.0: Microsoft Visual Studio 2005/2008 with a corresponding
target SDK or with the Windows CE 6.0 plugin

For Windows Mobile: Microsoft Visual Studio 2005/2008

Installing WinDriver

© Jungo Ltd. 2005–2011 29

4.1.3. Linux System Requirements

• Any 32-bit x86 processor with a Linux 2.4.x or 2.6.x kernel
or:
Any 64-bit x86 AMD64 or Intel EM64T (x86_64) processor with a Linux 2.4.x or 2.6.x kernel

Jungo strives to support new Linux kernel versions as close as possible to their release.
To find out the latest supported kernel version, refer to the WinDriver release notes
(found online at http://www.jungo.com/st/wdver.html).

• A GCC compiler

The version of the GCC compiler should match the compiler version used for building
the running Linux kernel.

• Any 32-bit or 64-bit development environment (depending on your target configuration)
supporting C for user mode

• On your development PC: glibc2.3.x

• libstdc++.so.5 – required for running GUI WinDriver applications (e.g., DriverWizard [5];
Debug Monitor [7.2])

4.2. WinDriver Installation Process
The WinDriver CD contains all versions of WinDriver for the supported operating systems.
The CD's root directory contains the Windows 7 / Vista / Server 2008 / Server 2003 / XP / 2000
version. The installation of this version will begin automatically when you insert the CD into the
CD drive on your Windows development machine. The other versions of WinDriver are located
in <OS> sub-directories (for example: Linux; Wince).

4.2.1. Windows WinDriver Installation Instructions

Driver installation on Windows requires administrator privileges.

1. Insert the WinDriver CD into your CD-ROM drive, or double-click the downloaded
installation file – WD1030.EXE – and follow the installation instructions.

When using the installation CD, wait a few seconds for the installation to begin
automatically. If this does not happen, double-click the file WD1030.EXE in the CD,
and click the Install WinDriver button.

2. At the end of the installation, you may be prompted to reboot your computer.

http://www.jungo.com/st/wdver.html

Installing WinDriver

© Jungo Ltd. 2005–2011 30

• The WinDriver installation defines a WD_BASEDIR environment variable, which is set to
point to the location of your WinDriver directory, as selected during the installation. This
variable is used during the DriverWizard [5] code generation – it determines the default
directory for saving your generated code and is used in the include paths of the generated
project/make files.

• If the installation fails with an ERROR_FILE_NOT_FOUND error, inspect the Windows
registry to see if the RunOnce key exists in HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows\CurrentVersion. This registry key is required by
Windows Plug-and-Play in order to properly install drivers using INF files. If the
RunOnce key is missing, create it; then try installing the INF file again.

The following steps are for registered users only:

To register your copy of WinDriver with the license you received from Jungo, follow these steps:

3. Start DriverWizard: Start | Programs | WinDriver | DriverWizard.

4. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

5. Click the Activate License button.

6. To register source code that you developed during the evaluation period, refer to the
documentation of WDU_Init() [B.4.1].

4.2.2. Windows CE WinDriver Installation
Instructions

4.2.2.1. Installing WinDriver CE when Building New
CE-Based Platforms

• The following instructions apply to platform developers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visual Studio 2005/2008 with
the Windows CE 6.0 plugin. The instructions use the notation 'Windows CE IDE' to
refer to either of these platforms.

• We recommend that you read Microsoft's documentation and understand the Windows
CE and device driver integration procedure before you perform the installation.

1. Modify the project registry file to add an entry for your target device:

• If you select to use the WinDriver component (refer to Step 2), modify WinDriver
\samples\wince_install\<TARGET_CPU>\WinDriver.reg (e.g., WinDriver\samples
\wince_install\ARMV4I\WinDriver.reg).

• Otherwise, modify WinDriver\samples\wince_install\project_wd.reg.

Installing WinDriver

© Jungo Ltd. 2005–2011 31

2. You can simplify the driver integration into your Windows CE platform by following the
procedure described in this step before the Sysgen platform compilation stage.

Note:

• The procedure described in this step is relevant only for developers who use Windows CE
4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MS Visual Studio 2005/2008 should skip to the
next step (Step 3).

• This procedure provides a convenient method for integrating WinDriver into your
Windows CE platform. If you select not to use this method, you will need to perform the
manual integration steps described in Step 4 below, after the Sysgen stage.

• The procedure described in this step also adds the WinDriver kernel module
(windrvr6.dll) to your OS image. This is a necessary step if you want the WinDriver CE
kernel file (windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN),
which is the case if you select to transfer the file to your target platform using a floppy
disk. However, if you prefer to have the file windrvr6.dll loaded on demand via the
CESH/PPSH services, you need to perform the manual integration method described in
Step 4 instead of performing the procedure described in the present step.

a. Run the Windows CE IDE and open your platform.

b. From the File menu select Manage Catalog Items.... and then click the Import... button
and select the WinDriver.cec file from the relevant WinDriver\samples\wince_install
\<TARGET_CPU> directory (e.g., WinDriver\samples\wince_install\ARMV4I). This
will add a WinDriver component to the Platform Builder Catalog.

c. In the Catalog view, right-click the mouse on the WinDriver Component node in the
Third Party tree and select Add to OS design.

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in Step 2 above, perform the following steps
after the Sysgen stage in order to manually integrate the driver into your platform. Note: If
you followed the procedure described in Step 2, skip this step and go directly to Step 5.

a. Run the Windows CE IDE and open your platform.

b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file – WinDriver\redist\<TARGET_CPU\windrvr6.dll
– to the %_FLATRELEASEDIR% subdirectory on the target development platform
(should be the current directory in the new command window).

d. Append the contents of the project_wd.reg file in the WinDriver\samples
\wince_install directory to the project.reg file in the %_FLATRELEASEDIR%
subdirectory.

Installing WinDriver

© Jungo Ltd. 2005–2011 32

e. Append the contents of the project_wd.bib file in the WinDriver\samples
\wince_install directory to the project.bib file in the %_FLATRELEASEDIR%
subdirectory.

This step is only necessary if you want the WinDriver CE kernel file (windrvr6.dll) to
be a permanent part of the Windows CE image (NK.BIN), which is the case if you select
to transfer the file to your target platform using a floppy disk. If you prefer to have the
file windrvr6.dll loaded on demand via the CESH/PPSH services, you do not need to
carry out this step until you build a permanent kernel.

5. Select Make Run-Time Image from the Build menu and name the new image NK.BIN.

6. Download your new kernel to the target platform and initialize it either by selecting
Download/Initialize from the Target menu or by using a floppy disk.

7. Restart your target CE platform. The WinDriver CE kernel will automatically load.

8. Compile and run the sample programs to make sure that WinDriver CE is loaded and is
functioning correctly (see Section 4.4.2, which describes how to check your installation).

4.2.2.2. Installing WinDriver CE when Developing
Applications for Windows CE Computers

Unless otherwise specified, 'Windows CE' references in this section include all supported
Windows CE platforms, including Windows Mobile.

The following instructions apply to driver developers who do not build the Windows CE kernel,
but only download their drivers, built using MS eMbedded Visual C++ (Windows CE 4.x –
5.x) or MS Visual Studio 2005/2008 (Windows Mobile or Windows CE 6.x) to a ready-made
Windows CE platform:

1. Insert the WinDriver CD into your Windows host CD drive.

2. Exit the automatic installation.

3. Copy WinDriver's kernel module – windrvr6.dll – from the WinDriver\redist\WINCE
\<TARGET_CPU> directory on the Windows host development PC to the Windows
directory on your target Windows CE platform.

4. Add WinDriver to the list of device drivers Windows CE loads on boot:

• Modify the registry according to the entries documented in the file WinDriver\samples
\wince_install\project_wd.reg. This can be done using the Windows CE Pocket Registry
Editor on the hand-held CE computer or by using the Remote CE Registry Editor Tool
supplied with MS eMbedded Visual C++ (Windows CE 4.x – 5.x) / MS Visual Studio
2005/2008 (Windows Mobile or Windows CE 6.x). Note that in order to use the Remote

Installing WinDriver

© Jungo Ltd. 2005–2011 33

CE Registry Editor tool you will need to have Windows CE Services installed on your
Windows host platform.

• On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every time the OS is
started, copy the WinDriver\redist\Windows_Mobile_5_ARMV4I\wdreg.exe utility to
the Windows\StartUp directory on the target PC.

5. Restart your target CE computer. The WinDriver CE kernel will automatically load. You will
have to do a warm reset rather than just suspend/resume (use the reset or power button on
your target CE computer).

6. Compile and run the sample programs to make sure that WinDriver CE is loaded and is
functioning correctly (see Section 4.4, which describes how to check your installation).

4.2.2.3. Windows CE Installation Note

The WinDriver installation on the host Windows 7 / Vista / Server 2008 / Server 2003 / XP /
2000 PC defines a WD_BASEDIR environment variable, which is set to point to the location of
your WinDriver directory, as selected during the installation. This variable is used during the
DriverWizard [5] code generation – it determines the default directory for saving your generated
code and is used in the include paths of the generated project/make files.

Note that if you install the WinDriver Windows 7 / Vista / Server 2008 / Server 2003 / XP / 2000
toolkit on the same host PC, the installation will override the value of the WD_BASEDIR variable
from the Windows CE installation.

4.2.3. Linux WinDriver Installation Instructions

4.2.3.1. Preparing the System for Installation

In Linux, kernel modules must be compiled with the same header files that the kernel itself was
compiled with. Since WinDriver installs kernel modules, it must compile with the header files of
the Linux kernel during the installation process.

Therefore, before you install WinDriver for Linux, verify that the Linux source code and the file
versions.h are installed on your machine:

Install the Linux kernel source code:

• If you have yet to install Linux, install it, including the kernel source code, by following the
instructions for your Linux distribution.

• If Linux is already installed on your machine, check whether the Linux source code was
installed. You can do this by looking for 'linux' in the /usr/src directory. If the source code

Installing WinDriver

© Jungo Ltd. 2005–2011 34

is not installed, either install it, or reinstall Linux with the source code, by following the
instructions for your Linux distribution.

Install version.h:

• The file version.h is created when you first compile the Linux kernel source code. Some
distributions provide a compiled kernel without the file version.h. Look under /usr/src/linux/
include/linux to see if you have this file. If you do not, please follow these steps:

1. Become super user:
$ su

2. Change directory to the Linux source directory:
cd /usr/src/linux

3. Type:
make xconfig

4. Save the configuration by choosing Save and Exit.

5. Type:
make dep

To run GUI WinDriver applications (e.g., DriverWizard [5]; Debug Monitor [7.2]) you must also
have version 5.0 of the libstdc++ library – libstdc++.so.5. If you do not have this file, install it
from the relevant RPM in your Linux distribution (e.g., compat-libstdc++).

Before proceeding with the installation, you must also make sure that you have a linux symbolic
link. If you do not, create one by typing
/usr/src$ ln -s <target kernel>/linux
For example, for the Linux 2.4 kernel type
/usr/src$ ln -s linux-2.4/ linux

4.2.3.2. Installation

1. Insert the WinDriver CD into your Linux machine's CD drive or copy the downloaded file to
your preferred directory.

2. Change directory to your preferred installation directory, for example to your home directory:
$ cd ~

The path to the installation directory must not contain any spaces.

3. Extract the WinDriver distribution file – WD1030LN.tgz:
$ tar xvzf /<file location>/WD1030LN.tgz

Installing WinDriver

© Jungo Ltd. 2005–2011 35

For example:

• From a CD:
$ tar xvzf /mnt/cdrom/LINUX/WD1030LN.tgz

• From a downloaded file:
$ tar xvzf /home/username/WD1030LN.tgz

4. Change directory to your WinDriver redist directory (the tar automatically creates a
WinDriver directory):
$ cd <WinDriver directory path>/redist

5. Install WinDriver:

a. <WinDriver directory>/redist$

./configure

The configure script creates a makefile based on your specific running kernel.
You may run the configure script based on another kernel source you have
installed, by adding the flag --with-kernel-source=<path> to the
configure script. The <path> is the full path to the kernel source directory, e.g., /
usr/src/linux.
If the Linux kernel version is 2.6.26 or higher, configure generates makefiles that
use kbuild to compile the kernel modules. You can force the use of kbuild on
earlier versions of Linux, by passing the --enable-kbuild flag to configure.

b. <WinDriver directory>/redist$ make

c. Become super user:
<WinDriver directory>/redist$ su

d. Install the driver:
<WinDriver directory>/redist# make install

6. Create a symbolic link so that you can easily launch the DriverWizard GUI:
$ ln -s <path to WinDriver>/wizard/wdwizard/ usr/bin/wdwizard

7. Change the read and execute permissions on the file wdwizard so that ordinary users can
access this program.

8. Change the user and group IDs and give read/write permissions to the device file /dev/
windrvr6 depending on how you wish to allow users to access hardware through the device.
If you are using a Linux 2.6.x kernel that has the udev file system, change the permissions
by modifying your /etc/udev/permissions.d/50-udev.permissions file. For example, add the
following line to provide read and write permissions:
windrvr6:root:root:0666 Otherwise, use the chmod command, for example:
chmod 666 /dev/windrvr6

Installing WinDriver

© Jungo Ltd. 2005–2011 36

9. Define a new WD_BASEDIR environment variable and set it to point to the location of your
WinDriver directory, as selected during the installation. This variable is used in the make and
source files of the WinDriver samples and generated DriverWizard [5] code, and is also used
to determine the default directory for saving your generated DriverWizard projects. If you do
not define this variable you will be instructed to do so when attempting to build the sample/
generated code using the WinDriver makefiles.

10. You can now start using WinDriver to access your hardware and generate your driver code!

Use the WinDriver/util/wdreg script to load the WinDriver kernel module [10.3].

The following steps are for registered users only:

To register your copy of WinDriver with the license you received from Jungo, follow these steps:

11. Start DriverWizard:
$ <path to WinDriver>/wizard/wdwizard

12. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

13. Click the Activate License button.

14. To register source code that you developed during the evaluation period, refer to the
documentation of WDU_Init() [B.4.1].

4.2.3.3. Restricting Hardware Access on Linux

Since /dev/windrvr6 gives direct hardware access to user programs, it may compromise
kernel stability on multi-user Linux systems. Please restrict access to DriverWizard and the
device file /dev/windrvr6 to trusted users.

For security reasons the WinDriver installation script does not automatically perform the
steps of changing the permissions on /dev/windrvr6 and the DriverWizard application
(wdwizard).

4.3. Upgrading Your Installation
To upgrade to a new version of WinDriver on Windows, follow the steps outlined in
Section 4.2.1, which illustrate the process of installing WinDriver for Windows 7/Vista/Server
2008/Server 2003/XP/2000. You can either choose to overwrite the existing installation or install
to a separate directory.

After installation, start DriverWizard and enter the new license string, if you have received one.
This completes the upgrade of WinDriver.

Installing WinDriver

© Jungo Ltd. 2005–2011 37

To upgrade your source code, pass the new license string as a parameter to WDU_Init() [B.4.1]
(or to WD_License(), when using the old WD_UsbXXX() APIs).

The procedure for upgrading your installation on other operating systems is the same as the one
described above. Please check the respective installation sections for installation details.

4.4. Checking Your Installation

4.4.1. Windows and Linux Installation Check

1. Start DriverWizard – <path to WinDriver>/wizard/wdwizard. On Windows you can also
run DriverWizard from the Start menu: Start | Programs | WinDriver | DriverWizard.

2. If you are a registered user, make sure that your WinDriver license is registered (refer to
Section 4.2, which explains how to install WinDriver and register your license).
If you are an evaluation version user, you do not need to register a license.

4.4.2. Windows CE Installation Check

1. Copy the console-mode Debug Monitor utility – WinDriver\util\wddebug
\<TARGET_CPU>\wddebug.exe – from the host Windows machine to a directory on your
target Windows CE device.

2. Run the Debug Monitor with the status command on the target device:
wddebug.exe status
If the windriver installation was successful, the application will display information regarding
the Debug Monitor version and current status, the running WinDriver kernel module, and
general system information.

4.5. Uninstalling WinDriver
This section will help you to uninstall either the evaluation or registered version of WinDriver.

4.5.1. Windows WinDriver Uninstall Instructions

• You can select to use the graphical wdreg_gui.exe utility instead of wdreg.exe.

• wdreg.exe and wdreg_gui.exe are found in the WinDriver\util directory (see Chapter 10
for details regarding these utilities).

1. Close any open WinDriver applications, including DriverWizard, the Debug Monitor, and
user-specific applications.

Installing WinDriver

© Jungo Ltd. 2005–2011 38

2. Uninstall all Plug-and-Play devices (USB/PCI/PCMCIA) that have been registered with
WinDriver via an INF file:

• Uninstall the device using the wdreg utility:
wdreg -inf <path to the INF file> uninstall

• Verify that no INF files that register your device(s) with WinDriver's kernel module
(windrvr6.sys) are found in the %windir%\inf directory.

3. Uninstall WinDriver:

• On the development PC, on which you installed the WinDriver toolkit:
Run Start | WinDriver | Uninstall , OR run the uninstall.exe utility from the WinDriver
installation directory.

The uninstall will stop and unload the WinDriver kernel module (windrvr6.sys); delete the
copy of the windrvr6.inf file from the %windir%\inf directory; delete WinDriver from
Windows' Start menu; delete the WinDriver installation directory (except for files that
you added to this directory); and delete the shortcut icons to the DriverWizard and Debug
Monitor utilities from the Desktop.

• On a target PC, on which you installed the WinDriver kernel module (windrvr6.sys), but
not the entire WinDriver toolkit:
Use the wdreg utility to stop and unload the driver:
wdreg -inf <path to windrvr6.inf> uninstall

When running this command, windrvr6.sys should reside in the same directory as
windrvr6.inf.

(On the development PC, the relevant wdreg uninstall command is executed for you by the
uninstall utility).

• If you attempt to uninstall WinDriver while there are open handles to the WinDriver
service (windrvr6.sys or your renamed driver [12.2], or there are connected and
enabled Plug-and-Play devices that are registered to work with this service, wdreg
will fail to uninstall the driver. This ensures that you do not uninstall the driver while
it is being used.

• You can check if the WinDriver kernel module is loaded by running the Debug
Monitor utility (WinDriver\util\wddebug_gui.exe) [7.2]. When the driver is loaded,
the Debug Monitor log displays driver and OS information; otherwise, it displays a
relevant error message. On the development PC, the uninstall command will delete
the Debug Monitor executables; to use this utility after the uninstallation, create a
copy of wddebug_gui.exe before performing the uninstall procedure.

4. If windrvr6.sys was successfully unloaded, erase the following files (if they exist):

• %windir%\system32\drivers\windrvr6.sys

Installing WinDriver

© Jungo Ltd. 2005–2011 39

• %windir%\inf\windrvr6.inf

• %windir%\system32\wdapi1030.dll

• %windir%\sysWOW64\wdapi1030.dll (Windows x64)

5. Reboot the computer.

4.5.2. Linux WinDriver Uninstall Instructions

The following commands must be executed with root privileges.

1. Verify that the WinDriver driver modules are not being used by another program:

• View the list of modules and the programs using each of them:
/# /sbin/lsmod

• Identify any applications and modules that are using the WinDriver driver modules. (By
default, WinDriver module names begin with windrvr6).

• Close any applications that are using the WinDriver driver modules.

• Unload any modules that are using the WinDriver driver modules:
/# /sbin/modprobe -r <module_name>

2. Unload the WinDriver driver modules:
/# /sbin/modprobe -r windrvr6

3. If you are not using a Linux 2.6.x kernel that supports the udev file system, remove the old
device node in the /dev directory:
/# rm -f /dev/windrvr6

4. Remove the file .windriver.rc from the /etc directory:
/# rm -f /etc/.windriver.rc

5. Remove the file .windriver.rc from $HOME:
/# rm -f $HOME/.windriver.rc

6. If you created a symbolic link to DriverWizard, remove the link using the command
/# rm -f /usr/bin/wdwizard

7. Remove the WinDriver installation directory using the command
/# rm -rf ~/WinDriver

8. Remove the WinDriver shared object file, if it exists:
/usr/lib/libwdapi1030.so (32-bit x86) /
/usr/lib64/libwdapi1030.so (64-bit x86).

© Jungo Ltd. 2005–2011 40

Chapter 5
Using DriverWizard
This chapter describes WinDriver DriverWizard's hardware diagnostics and driver code
generation capabilities.

5.1. An Overview
DriverWizard (included in the WinDriver toolkit) is a GUI-based diagnostics and driver
generation tool that allows you to write to and read from the hardware, before writing a single
line of code. The hardware is diagnosed through a Graphical User Interface – the device's
configuration and pipes information is displayed, data can be transferred on the pipes, the pipes
can be reset, etc.

Once the device is operating to your satisfaction, DriverWizard creates the skeletal driver source
code, with functions to access your hardware's resources.

If you are developing a driver for a device that is based on one of the enhanced-support USB
chipsets (The Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas
Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon
Laboratories C8051F320), we recommend that you read Chapter 8, which explains WinDriver's
enhanced support for specific chipsets, before starting your driver development.

DriverWizard can be used to diagnose your hardware; on Windows it can also be used to generate
an INF file for your hardware.

Avoid using DriverWizard to generate code for a device based on one of the supported USB
chipsets [8], as DriverWizard generates generic code which will have to be modified according
to the specific functionality of the device in question. Preferably, use the complete source code
libraries and sample applications (supplied in the package) tailored to the various USB chipsets.

DriverWizard is an excellent tool for two major phases in your HW/Driver development:

• Hardware diagnostics: After the hardware has been built, attach your device to a USB port on
your machine, and use DriverWizard to verify that the hardware is performing as expected.

• Code generation: Once you are ready to build your code, let DriverWizard generate your
driver code for you.

The code generated by DriverWizard is composed of the following elements:

• Library functions for accessing each element of your device's resources (memory ranges, I/O
ranges, registers and interrupts).

Using DriverWizard

© Jungo Ltd. 2005–2011 41

• A 32-bit diagnostics program in console mode with which you can diagnose your device.
This application utilizes the special library functions described above. Use this diagnostics
program as your skeletal device driver.

• A project workspace/solution that you can use to automatically load all of the project
information and files into your development environment.
For Linux, DriverWizard generates the required makefile.

5.2. DriverWizard Walkthrough
To use DriverWizard:

1. Attach your hardware to the computer:
Attach your device to a USB port on your computer.

2. Run DriverWizard and select your device:

a. Start DriverWizard – <path to WinDriver>/wizard/wdwizard. On Windows you
can also run DriverWizard from the Start menu: Start | Programs | WinDriver |
DriverWizard.

On Windows 7 and Vista you must run DriverWizard as administrator.

b. Click New host driver project to start a new project, or Open an existing project to
open a saved session.

Figure 5.1. Create or Open a WinDriver Project

c. Select your Device from the list of devices detected by DriverWizard.

Using DriverWizard

© Jungo Ltd. 2005–2011 42

Figure 5.2. Select Your Device

3. Generate an INF file for DriverWizard:
On Windows 7/Vista/Server 2008/Server 2003/XP/2000, the driver for Plug-and-Play
devices (such as USB) is installed by installing an INF file for the device. DriverWizard
enables you to generate an INF file that registers your device to work with WinDriver (i.e.,
with the windrvr6.sys driver). The INF file generated by DriverWizard should later be
distributed to your customers who are using Windows 7 / Vista / Server 2008 / Server 2003 /
XP / 2000, and installed on their PCs.

The INF file that you generate in this step is also designed to enable DriverWizard to
diagnose Plug-and-Play devices on Windows 7 / Vista / Server 2008 / Server 2003 /
XP / 2000. Additional information concerning the need for an INF file is provided in
Section 12.1.1.

If you do not need to generate an INF file, skip this step and proceed to the next one.

To generate the INF file with DriverWizard, follow the steps below:

a. In the Select Your Device screen, click the Generate .INF file button or click Next .

b. DriverWizard will display information detected for your device – Vendor ID, Product
ID, Device Class, manufacturer name and device name – and allow you to modify this
information.

Using DriverWizard

© Jungo Ltd. 2005–2011 43

Figure 5.3. DriverWizard INF File Information

c. For multiple-interface USB devices, you can select to generate an INF file either for the
composite device or for a specific interface.

• When selecting to generate an INF file for a specific interface of a multi-interface
USB device the INF information dialogue will indicate for which interface the INF file
is generated.

Using DriverWizard

© Jungo Ltd. 2005–2011 44

Figure 5.4. DriverWizard Multi-Interface
INF File Information – Specific Interface

• When selecting to generate an INF file for a composite device of a multi-interface
USB device, the INF information dialogue provides you with the option to either
generate an INF file for the root device itself, or generate an INF file for specific
interfaces, which you can select from the dialogue.
Selecting to generate an INF file for the root device will enable you to handle multiple
active interfaces simultaneously.

Using DriverWizard

© Jungo Ltd. 2005–2011 45

Figure 5.5. DriverWizard Multi-Interface
INF File Information – Composite Device

d. When you are done, click Next and choose the directory in which you wish to store the
generated INF file. DriverWizard will then automatically generate the INF file for you.

You can choose to automatically install the INF file by checking the Automatically
Install the INF file option in the DriverWizard's INF generation dialogue.

Using DriverWizard

© Jungo Ltd. 2005–2011 46

If the automatic INF file installation fails, DriverWizard will notify you and provide
manual installation instructions (refer also the manual INF file installation instructions in
Section 12.1).

e. When the INF file installation completes, select and open your device from the list in the
Select Your Device screen.

4. Uninstall the INF file of your device:
You can use the Uninstall option to uninstall the INF file of your device. Once you uninstall
the INF file, the device will no longer be registered to work with the windrvr6.sys, and the
INF file will be deleted from the Windows root directory. If you do not need to uninstall an
INF file, skip this step and proceed to the next one.

a. In the Select Your Device screen, click the Uninstall .INF file button.

b. Select the INF file to be removed.

5. Select the desired alternate setting:

DriverWizard detects all the device's supported alternate settings and displays them, as
demonstrated in Figure 5.6 below.
Select the desired alternate setting from the displayed list.

DriverWizard will display the pipes information for the selected alternate setting.

For USB devices with only one alternate setting configured, DriverWizard
automatically selects the detected alternate setting and therefore the Select Device
Interface dialogue will not be displayed.

6. Diagnose your device:
Before writing your device driver, it is important to make sure your hardware is working as
expected. Use DriverWizard to diagnose your hardware. All of your activity will be logged in
the DriverWizard log so that you may later analyze your tests:

a. Test your USB device's pipes: DriverWizard shows the pipes detected for the selected
alternate setting. To perform USB data transfers on the pipes, follow these steps:

Using DriverWizard

© Jungo Ltd. 2005–2011 47

Figure 5.6. Select Device Interface

i. Select the desired pipe.

ii. For a control pipe (a bidirectional pipe), click Read / Write. A new dialogue will
appear, allowing you to select a standard USB request or define a custom request, as
demonstrated in Figure 5.7.

Figure 5.7. USB Control Transfers

Using DriverWizard

© Jungo Ltd. 2005–2011 48

When you select one of the available standard USB requests, the setup packet
information for the selected request is automatically filled and the request
description is displayed in the Request Description box.

For a custom request, you are required to enter the setup packet information and
write data (if exists) yourself. The size of the setup packet should be eight bytes and
it should be defined using little endian byte ordering. The setup packet information
should conform to the USB specification parameters (bmRequestType,
bRequest, wValue, wIndex, wLength).

More detailed information on the standard USB requests, on how to
implement the control transfer and how to send setup packets can be found in
Section 9.2.

iii. For an input pipe (moves data from device to host) click Listen to Pipe. To
successfully accomplish this operation with devices other than HID, you need to
first verify that the device sends data to the host. If no data is sent after listening for
a short period of time, DriverWizard will notify you that the Transfer Failed.

To stop reading, click Stop Listen to Pipe.

Figure 5.8. Listen to Pipe

iv. For an output pipe (moves data from host to device), click Write to Pipe. A new
dialogue box will appear asking you to enter the data to write. The DriverWizard log
will contain the result of the operation.

Using DriverWizard

© Jungo Ltd. 2005–2011 49

Figure 5.9. Write to Pipe

v. You can reset input and output pipes by pressing the Reset Pipe button for the
selected pipe.

7. Generate the skeletal driver code:

a. Select to generate code either via the Generate Code toolbar icon or from the Project |
Generate Code menu.

b. In the Select Code Generation Options dialogue box that will appear, choose the code
language and development environment(s) for the generated code and select Next to
generate the code.

Figure 5.10. Code Generation Options

Using DriverWizard

© Jungo Ltd. 2005–2011 50

c. Save your project (if required) and click OK to open your development environment
with the generated driver.

d. Close DriverWizard.

8. Compile and run the generated code:

• Use this code as a starting point for your device driver. Modify where needed to perform
your driver's specific functionality.

• The source code DriverWizard creates can be compiled with any 32-bit compiler, and will
run on all supported platforms without modification.

For detailed compilation instructions, refer to Section 5.2.4.

5.2.1. Logging WinDriver API Calls

You have the option to log all the WinDriver API calls using DriverWizard, with the API calls
input and output parameters. You can select this option by selecting the Log API calls option
from the Tools menu or by clicking on the Log API calls toolbar icon in DriverWizard's opening
window.

5.2.2. DriverWizard Logger

The wizard logger is the empty window that opens along with the Device Resources dialogue
box when you open a new project. The logger keeps track of all of the input and output during the
diagnostics stage, so that you may analyze your device's physical performance at a later time. You
can save the log for future reference. When saving the project, your log is saved as well. Each log
is associated with one project.

5.2.3. Automatic Code Generation

After you have finished diagnosing your device and have ensured that it runs according to your
specifications, you are ready to write your driver.

5.2.3.1. Generating the Code

Generate code by selecting this option either via DriverWizard's Generate Code toolbar icon
or from the wizard's Project | Generate Code menu. DriverWizard will generate the source
code for your driver, and place it along with the project file (xxx.wdp, where "xxx" is the
project name). The files are saved in a directory DriverWizard creates for every development
environment and operating system selected in the code generation dialogue box.

Using DriverWizard

© Jungo Ltd. 2005–2011 51

5.2.3.2. The Generated USB C Code

In the source code directory you now have a new xxx_diag.c source file (where xxx is the name
you selected for your DriverWizard project). This file implements a diagnostic USB application,
which demonstrates how to use WinDriver's USB API to locate and communicate with your
USB device(s), including detection of Plug-and-Play events (device insertion/removal, etc.),
performing read/write transfers on the pipes, resetting the pipes and changing the device's active
alternate setting.
The generated application supports handling of multiple identical USB devices.

5.2.3.3. The Generated Visual Basic and Delphi Code

The generated DriverWizard Visual Basic and Delphi code includes similar functions and
provides similar functionality as the generated C code described in Section 5.2.3.2.

The generated Delphi code implements a console application (like the C code), while the Visual
Basic code implements a GUI application.

5.2.3.4. The Generated C# and Visual Basic .NET Code

The generated DriverWizard C# and Visual Basic .NET code provides similar functionality as the
generated C code [5.2.3.2], but from a GUI .NET program.

5.2.4. Compiling the Generated Code

5.2.4.1. Windows and Windows CE Compilation

As explained above, on Windows you can select to generate project and workspace/solution
files for any of the supported integrated development environments (IDEs) – MS Visual Studio
5.0/6.0/2003/2005/2008/2010, Borland C++ Builder, Visual Basic 6.0, Borland Delphi, MS
eMbedded Visual C++, or MS Platform Builder – and you can also select to automatically invoke
your selected IDE from the wizard. You can then proceed to immediately build and run the code
from your IDE.

You can also build the generated code from any other IDE that supports the selected code
language and target OS. Simply create a new project file for your selected IDE, then add the
generated source files to your project and compile and run the code.

• For Windows 7/Vista/Server 2008/Server 2003/XP/2000, the generated IDE files are
located under an x86 directory – for 32-bit projects, or amd64 directory – for 64-bit
projects.

• For Windows CE, note that the generated Windows Mobile code is targeted at the
Windows Mobile 5.0/6.0 ARMV4I SDK.

Using DriverWizard

© Jungo Ltd. 2005–2011 52

5.2.4.2. Linux Compilation

Use the makefile that was created for you by DriverWizard in order to build the generated code
using your favorite compiler, preferably GCC.

5.2.5. Bus Analyzer Integration – Ellisys Visual USB
DriverWizard provides native support for the Ellisys Explorer 200 USB analyzer on Windows XP
and higher (32-bit only). This support enables you to:

• Initiate USB traffic capture directly from DriverWizard.

• Capture discrete control transfers.

To capture USB traffic:

1. Select Tools | Start USB Analyzer Capture to start capturing USB data.

2. To finish the data capture, select Tools | Stop USB Analyzer Capture.
A dialogue box will appear notifying you where DriverWizard stored the analyzer trace.
Click Yes to run Ellisys's Visual Analyzer with the captured data.

To capture a discrete control trasfer check the Trace USB transaction in Ellisys Visual USB
check box in the control transfers dialogue box.

Figure 5.11. Ellisys Visual USB Integration

© Jungo Ltd. 2005–2011 53

Chapter 6
Developing a Driver
This chapter takes you through the WinDriver driver development cycle.

If your device is based on one of the chipsets for which WinDriver provides enhanced
support (The Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12;
Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828;
Silicon Laboratories C8051F320), read the following overview and then skip straight to
Chapter 8.

6.1. Using DriverWizard to Build a Device
Driver
• Use DriverWizard to diagnose your device: View the device's configuration information,

transfer data on the device's pipes, send standard requests to the control pipe and reset the
pipes. Verify that your device operates as expected.

• Use DriverWizard to generate skeletal code for your device in C, C#, Visual Basic .NET,
Delphi or Visual Basic. For more information about DriverWizard, refer to Chapter 5.

• If you are using one of the specific chipsets for which WinDriver offers enhanced support (The
Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas Instruments
TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon Laboratories
C8051F320), we recommend that you use the specific sample code provided for your chip as
your skeletal driver code. For more details regarding WinDriver's enhanced support for specific
chipsets, refer to Chapter 8.

• Use any C / .NET / Delphi / Visual Basic compiler/IDE (such as MS Visual Studio, Borland
C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual C++, MS Platform
Builder C++, GCC) to compile the skeletal driver you need.

• For Linux, use any compilation environment, preferably GCC, to build your code.

• That is all you need to do in order to create your user-mode driver.

Please see Appendix B for a detailed description of WinDriver's USB API.
For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 9 of the manual.

Developing a Driver

© Jungo Ltd. 2005–2011 54

6.2. Writing the Device Driver Without
DriverWizard
There may be times when you choose to write your driver directly, without using DriverWizard.
In such cases, either follow the steps outlined in this section to create a new driver project, or use
one of the WinDriver samples, which most closely resembles your target driver, and modify the
sample to suit your specific requirements.

6.2.1. Include the Required WinDriver Files

1. Include the relevant WinDriver header files in your driver project.
All header files are found under the WinDriver/include directory.

All WinDriver projects require the windrvr.h header file.
When using the WDU_xxx WinDriver USB API [B.2], include the wdu_lib.h header file;
(this file already includes windrvr.h).

Include any other header file that provides APIs that you wish to use from your code (e.g.,
files from the WinDriver/samples/shared directory, which provide convenient diagnostics
functions.)

2. Include the relevant header files from your source code: For example, to use the USB API
from the wdu_lib.h header file, add the following line to the code:

#include "wdu_lib.h"

3. Link your code with the WDAPI library (Windows) / shared object (Linux):

• For Windows 7/Vista/Server 2008/Server 2003/XP/2000: WinDriver\lib\<CPU>
\wdapi1030.lib or wdapi1030_borland.lib (for Borland C++ Builder), where the <CPU>
directory is either x86 (32-bit binaries for x86 platforms), amd64 (64-bit binaries for x64
platforms) or amd64\x86 (32-bit binaries for x64 platforms [A.2]

• For Windows CE: WinDriver\lib\WINCE\<CPU>\wdapi1030.lib

• For Linux: From the WinDriver/lib directory – libwdapi1030.so or libwdapi1030_32.so
(for 32-bit applications targeted at 64-bit platforms)
Note: When using libwdapi1030_32.so, first create a copy of this file in a different
directory and rename it to libwdapi1030.so, then link your code with the renamed
file [A.2].

You can also include the library's source files in your project instead of linking the project
with the library. The C source files are located under the WinDriver/src/wdapi directory.

Developing a Driver

© Jungo Ltd. 2005–2011 55

When linking your project with the WDAPI library/shared object, you will need to
distribute this binary with your driver.
For Windows, get wdapi1030.dll / wdapi1030_32.dll (for 32-bit applications targeted
at 64-bit platforms) from the WinDriver\redist directory.
For Linux, get libwdapi1030.so / libwdapi1030_32.so (for 32-bit applications targeted
at 64-bit platforms) from the WinDriver/lib directory.

Note: On Windows and Linux, when using the DLL/shared object file for 32-bit applications
on 64-bit platforms (wdapi1030_32.dll / libwdapi1030_32.so), rename the copy of the file in
the distribution package, by removing the _32 portion [A.2].
For detailed distribution instructions, refer to Chapter 11.

4. Add any other WinDriver source files that implement API that you which to use in your code
(e.g., files from the WinDriver/samples/shared directory.)

6.2.2. Write Your Code

1. Call WDU_Init() [B.4.1] at the beginning of your program to initialize WinDriver for your
USB device, and wait for the device-attach callback. The relevant device information will be
provided in the attach callback.

2. Once the attach callback is received, you can start using one of the
WDU_Transfer() [B.4.8.1] functions family to send and receive data.

3. To finish, call WDU_Uninit() [B.4.7] to unregister from the device.

6.2.3. Configure and Build Your Code

After including the required files and writing your code, make sure that the required build flags
and environment variables are set, then build your code.

Before building your code, verify that the WD_BASEDIR environment variable is set to the
location of the of the WinDriver installation directory.
On Windows, Windows CE, and Linux you can define the WD_BASEDIR environment
variable globally – as explained in Chapter 4: For Windows – refer to the Windows
WD_BASEDIR note in Section 4.2.1; for Windows CE – refer to Section 4.2.2.3; for
Linux: refer to Section 4.2.3.2, Step 9.

Developing a Driver

© Jungo Ltd. 2005–2011 56

6.3. Developing Your Driver on Windows CE
Platforms
To use WinDriver to handle a Plug-and-Play device, you must first register the device with the
WinDriver kernel module (windrvr6.dll).

To register the device with WinDriver, use either of the following methods:

• Modify the registry to identify your device and link it to windrvr6.dll. The registry can be
modified by adding the relevant information to your project.reg file.

To identify the device by its vendor ID (<VID>) and product ID (<PID>) – as decimal
values – add the following:
[HKEY_LOCAL_MACHINE\Drivers\USB\LoadClients\<VID>_<PID>\Default\Default\WDR]
 "DLL"="windrvr6.dll"

To identify the device by its USB class (<CLASS>), subclass (<SUBCLASS>), and protocol
(<PROT>) – as decimal values – add the following:
[HKEY_LOCAL_MACHINE\Drivers\USB\LoadClients\Default\Default\<CLASS>_<SUBCLASS>_<PROT>\WDR]
 "DLL"="windrvr6.dll"

• Call WDU_Init() to identify the device by its vendor and product IDs and register it with
WinDriver, before connecting the device to the computer .

For more information about the relevant registry settings, refer to USB Driver Registry
Settings in the MSDN Library.

Developing a Driver

© Jungo Ltd. 2005–2011 57

6.4. Developing in Visual Basic and Delphi
The entire WinDriver API can be used when developing drivers in Visual Basic and Delphi.

6.4.1. Using DriverWizard

DriverWizard can be used to diagnose your hardware and verify that it is working properly before
you start coding. You can then proceed to automatically generate source code with the wizard in a
variety of languages, including Delphi and Visual Basic. For more information, refer to Chapter 5
and Section 6.4.3 below.

6.4.2. Samples

Samples for drivers written using the WinDriver API in Delphi or Visual Basic can be found in:

1. WinDriver\delphi\samples

2. WinDriver\vb\samples

Use these samples as a starting point for your own driver.

6.4.3. Creating your Driver

The method of development in Visual Basic is the same as the method in C using the automatic
code generation feature of DriverWizard.

Your work process should be as follows:

• Use DriverWizard to easily diagnose your hardware.

• Verify that it is working properly.

• Generate your driver code.

• Integrate the driver into your application.

• You may find it useful to use the WinDriver samples to get to know the WinDriver API and as
your skeletal driver code.

© Jungo Ltd. 2005–2011 58

Chapter 7
Debugging Drivers
The following sections describe how to debug your hardware-access application code.

7.1. User-Mode Debugging
• Since WinDriver is accessed from the user mode, we recommend that you first debug your

code using your standard debugging software.

• The Debug Monitor utility [7.2] logs debug messages from WinDriver's kernel-mode and user-
mode APIs. You can also use WinDriver APIs to send your own debug messages to the Debug
Monitor log.

• Use DriverWizard to validate your device's USB configuration and test the communication
with the device.

7.2. Debug Monitor
Debug Monitor is a powerful graphical- and console-mode tool for monitoring all activities
handled by the WinDriver kernel.
You can use this tool to monitor how each command sent to the kernel is executed.

In addition, WinDriver enables you to print your own debug messages to the Debug Monitor,
using the WD_DebugAdd() function [B.6.6] or the high-level PrintDbgMessage()
function [B.7.14].

The Debug Monitor comes in two versions:

• wddebug_gui [7.2.1] – a GUI version for Windows 7/Vista/Server 2008/Server 2003/XP/2000
and Linux.

• wddebug [7.2.2] – a console-mode version for Windows, Windows CE, and Linux; on
Windows CE, wddebug also supports GUI execution.

Both Debug Monitor versions are provided in the WinDriver/util directory.

Debugging Drivers

© Jungo Ltd. 2005–2011 59

7.2.1. The wddebug_gui Utility

wddebug_gui is a fully graphical (GUI) version of the Debug Monitor utility for Windows 7/
Vista/Server 2008/Server 2003/XP/2000 and Linux.

1. Run the Debug Monitor using either of the following methods:

• Run WinDriver/util/wddebug_gui.

• Run the Debug Monitor from DriverWizard's Tools menu.

• On Windows, run Start | Programs | WinDriver | Debug Monitor.

Figure 7.1. Start Debug Monitor

2. Set the Debug Monitor's status, trace level and debug sections information from the Debug
Options dialogue, which is activated either from the Debug Monitor's View | Debug Options
menu or the Debug Options toolbar button.

Debugging Drivers

© Jungo Ltd. 2005–2011 60

Figure 7.2. Debug Options

• Status – Set trace on or off.

• Section – Choose what part of the WinDriver API you would like to monitor.

USB developers should select the USB section.

Choose carefully those sections that you would like to monitor. Checking more
options than necessary could result in an overflow of information, making it harder
for you to locate your problem.

• Level – Choose the level of messages you want to see for the resources defined.

• Error is the lowest trace level, resulting in minimum output to the screen.

• Trace is the highest trace level, displaying every operation the WinDriver kernel
performs.

• Send debug messages to the operating system kernel debugger –

Select this option to send the debug messages received from the WinDriver kernel module
to an external kernel debugger, in addition to the Debug Monitor.

Debugging Drivers

© Jungo Ltd. 2005–2011 61

On Windows 7 and Vista, the first time that you enable this option you will need to
restart the PC.

A free Windows kernel debugger, WinDbg, is distributed with the Windows Driver
Kit (WDK) and is part of the Debugging Tools for Windows package, distributed via
the Microsoft web site.

3. Once you have defined what you want to trace and on what level, click OK to close the
Debug Options window.

4. Activate your application (step-by-step or in one run).

5. Watch the Debug Monitor log (or the kernel debugger log, if enabled) for errors or any
unexpected messages.

7.2.1.1. Running wddebug_gui for a Renamed Driver

By default, wddebug_gui logs messages from the default WinDriver kernel module –
windrvr6.sys/.o/.ko. However, you can also use wddebug_gui to log debug messages from a
renamed version of this driver [12.2], by running wddebug_gui from the command line with the
driver_name option: wddebug_gui <driver_name>.

The driver name should be set to the name of the driver file without the file's extension;
e.g., windrvr6, not windrvr6.sys (on Windows) or windrvr6.o (on Linux).

For example, if you have renamed the default windrvr6.sys driver on Windows to
my_driver.sys, you can log messages from your driver by running the Debug Monitor using the
following command: wddebug_gui my_driver

7.2.2. The wddebug Utility

7.2.2.1. Console-Mode wddebug Execution

The wddebug version of the Debug Monitor utility can be executed as a console-mode
application on all supported operating systems: Windows, Windows CE, and Linux. To use the
console-mode Debug Monitor version, run WinDriver/util/wddebug in the manner explained
below.

For console-mode execution on Windows CE, start a command window (CMD.EXE) on
the Windows CE target, and then run the program WDDEBUG.EXE inside this shell.
You can also execute wddebug via the Windows CE GUI, as explained in Section 7.2.2.2.

Debugging Drivers

© Jungo Ltd. 2005–2011 62

wddebug console-mode usage

wddebug [<driver_name>] [<command>] [<level>]
[<sections>]

The wddebug arguments must be provided in the order in which they appear in the usage
statement above.

• <driver_name>: The name of the driver to which to apply the command.

The driver name should be set to the name of the WinDriver kernel module – windrvr6, or a
renamed version of this driver (refer to the explanation in Section 12.2).

The driver name should be set to the name of the driver file without the file's extension;
for example, windrvr6, not windrvr6.sys (on Windows) or windrvr6.o (on Linux).

• <command>: The Debug Monitor command to execute:

• Activation commands:

• on: Turn the Debug Monitor on.

• off: Turn the Debug Monitor off.

• dbg_on : Redirect the debug messages from the Debug Monitor to a kernel debugger and
turn the Debug Monitor on (if it was not already turned on).

On Windows 7 and Vista, the first time that you enable this option you will need to
restart the PC.

• dbg_off : Stop redirecting debug messages from the Debug Monitor to a kernel
debugger.

The on and dbg_on commands can be run together with the <level> and
<sections> options, described below.

• dump: Continuously display ('dump') debug information, until the user selects to stop.

• status: Display information regarding the running <driver_name> driver, the current
Debug Monitor status – including the active debug level and sections (when the Debug
Monitor is on) – and the size of the debug messages buffer.

• help : Display usage instructions.

• None: You can run wddebug with no arguments, including no command. On platforms other
than Windows CE, this is equivalent to running wddebug help. On Windows CE, running
wddebug with no arguments activates the utility's Windows CE GUI version, as explained
in Section 7.2.2.2.

Debugging Drivers

© Jungo Ltd. 2005–2011 63

The following options are applicable only to the on and dbg_on commands:

• <level>: The debug trace level to set. The level can be set to either of the following flags:
ERROR, WARN, INFO or TRACE, where ERROR is the lowest trace level and TRACE is the
highest level (displays all messages).
The default debug trace level is TRACE.

• <sections>: The debug sections to set. The debug sections determine what part of the
WinDriver API you would like to monitor.

For a full list of all supported debug sections, run wddebug help to view the utility's usage
instructions.
The default debug sections flag is ALL – sets all the supported debug sections.

Usage Sequence

To log messages using wddebug, use the following sequence:

• Turn on the Debug Monitor by running wddebug with either the on command, or the dbg_on
command – which redirects the debug messages to a kernel debugger before turning on the
Debug Monitor.

You can use the level and/or sections flags to set the debug level and/or sections for the
log. If these options are not explicitly set, the default values will be used.

You can also log messages from a renamed WinDriver driver by preceding the command with
the name of the driver (see the <driver_name> option above). The default driver name is
windrvr6.

• Run wddebug with the dump command to begin dumping debug messages to the command
prompt. You can turn off the display of the debug messages, at any time, by following the
instructions displayed in the command prompt.

• Run applications that use the driver, and view the debug messages as they are being logged to
the command prompt/the kernel debugger.

• You can run wddebug with the status command, at any time while the Debug Monitor is
on, to view the current debug level and sections, as well as information regarding the running
<driver_name> kernel module.

• You can use dbg_on and dbg_off to toggle the redirection of debug messages to a kernel
debugger at any time while the Debug Monitor is on.

• When you are ready, turn off the Debug Monitor by running wddebug with the off command.

You can also run wddebug with the status command while the Debug Monitor is turned
off, to view information regarding the running <driver_name> driver.

Debugging Drivers

© Jungo Ltd. 2005–2011 64

EXAMPLE

The following is an example of a typical wddebug usage sequence. Since no <driver_name>
is set, the commands are applied to the default driver – windrvr6.

• Turn the Debug Monitor on with the highest trace level for all sections:
wddebug on TRACE ALL

Note: This is the same as running 'wddebug on TRACE', since ALL is the default debug
sections option.

• Dump the debug messages continuously, until the user selects to stop:
wddebug dump

• Use the driver and view the debug messages in the command prompt.

• Turn the Debug Monitor off:
wddebug off

• Display usage instructions:
wddebug help As explained above, on all platforms other than Windows CE, this is
equivalent to running wddebug with no arguments.

7.2.2.2. Windows CE GUI wddebug Execution

On Windows CE, you can also log debug messages by running wddebug without any arguments.
This method is designed to enable debug logging on Windows CE platforms that do not have a
command-line prompt. On such platforms, you can activate debug logging by double-clicking
the wddebug executable; this is equivalent to running the application with no arguments from a
command-line prompt.

When executing wddebug without arguments, the user is informed, via a GUI message box,
that log messages will be stored in a predetermined log file – wdlog.txt in the root Windows CE
directory – and is given the option to cancel or continue.

Figure 7.3. wddebug Windows CE Start Log Message

Debugging Drivers

© Jungo Ltd. 2005–2011 65

If the user selects to continue, debug logging is turned on with a trace level of TRACE and debug
sections ALL, and the Debug Monitor begins dumping debug messages to the wdlog.txt log
file. The user can stop the logging and turn off debug logging, at any time, via a dedicated GUI
message box.

Figure 7.4. wddebug Windows CE Stop Log Message

© Jungo Ltd. 2005–2011 66

Chapter 8
Enhanced Support for Specific
Chipsets

8.1. Overview
In addition to the standard WinDriver API and the DriverWizard code generation capabilities
described in this manual, which support development of drivers for any USB device, WinDriver
offers enhanced support for specific USB chipsets. The enhanced support includes custom API
and sample diagnostics code, which are designed specifically for these chipsets.

WinDriver's enhanced support is currently available for the following chipsets: The Cypress
EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas Instruments TUSB3410,
TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon Laboratories C8051F320.

8.2. Developing a Driver Using the Enhanced
Chipset Support
When developing a driver for a device based on one of the enhanced-support chipsets [8.1], you
can use WinDriver's chipset-set specific support by following these steps:

1. Locate the sample diagnostics program for your device under the WinDriver/chip_vendor/
chip_name directory.

Most of the sample diagnostics program names are derived from the sample's main purpose
(e.g., download_sample for a firmware download sample) and their source code can be
found directly under the specific chip_name directory.

2. Run the custom diagnostics program to diagnose your device and familiarize yourself with
the options provided by the sample program.

3. Use the source code of the diagnostics program as your skeletal device driver and modify the
code, as needed, to suit your specific development needs. When modifying the code, you can
utilize the custom WinDriver API for your specific chip. The custom API is typically found
under the WinDriver/chip_vendor/lib directory.

© Jungo Ltd. 2005–2011 67

Chapter 9
USB Transfers

9.1. Overview
This chapter provides detailed information regarding implementation of USB transfers using
WinDriver.

As explained in Section 3.5, the USB standard supports two kinds of data exchange between the
host and the device – control exchange and functional data exchange.
The WinDriver APIs enable you to implement both control and functional data transfers.

Figure 9.1 demonstrates how a device's pipes are displayed in the DriverWizard utility, which
enables you to perform transfers from a GUI environment.

Figure 9.1. USB Data Exchange

Section 9.2 below provides detailed information regarding USB control transfers and how they
can be implemented using WinDriver.

Section 9.3 describes the functional data transfer implementation options provided by WinDriver.

USB Transfers

© Jungo Ltd. 2005–2011 68

9.2. USB Control Transfers

9.2.1. USB Control Transfers Overview

9.2.1.1. Control Data Exchange

USB control exchange is used to determine device identification and configuration requirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.
Control exchange takes place via a control pipe, mainly the default Pipe 0, which always exists.
The control transfer consists of a setup stage (in which a setup packet is sent from the host to the
device), an optional data stage and a status stage.

9.2.1.2. More About the Control Transfer

The control transaction always begins with a setup stage. The setup stage is followed by zero or
more control data transactions (data stage) that carry the specific information for the requested
operation, and finally a status transaction completes the control transfer by returning the status to
the host.

During the setup stage, an 8-byte setup packet is used to transmit information to the control
endpoint of the device. The setup packet's format is defined by the USB specification.

A control transfer can be a read transaction or a write transaction. In a read transaction the setup
packet indicates the characteristics and amount of data to be read from the device. In a write
transaction the setup packet contains the command sent (written) to the device and the number of
control data bytes that will be sent to the device in the data stage.

Refer to Figure 9.2 (taken from the USB specification) for a sequence of read and write
transactions.
'(in)' indicates data flow from the device to the host.
'(out)' indicates data flow from the host to the device.

USB Transfers

© Jungo Ltd. 2005–2011 69

Figure 9.2. USB Read and Write

9.2.1.3. The Setup Packet

The setup packets (combined with the control data stage and the status stage) are used to
configure and send commands to the device. Chapter 9 of the USB specification defines standard
device requests. USB requests such as these are sent from the host to the device, using setup
packets. The USB device is required to respond properly to these requests. In addition, each
vendor may define device-specific setup packets to perform device-specific operations. The
standard setup packets (standard USB device requests) are detailed below. The vendor's device-
specific setup packets are detailed in the vendor's data book for each USB device.

9.2.1.4. USB Setup Packet Format

The table below shows the format of the USB setup packet. For more information, please refer to
the USB specification at http://www.usb.org.

Byte Field Description

0 bmRequest Type Bit 7: Request direction (0=Host to device – Out, 1=Device to host –
In).
Bits 5-6: Request type (0=standard, 1=class, 2=vendor, 3=reserved).
Bits 0-4: Recipient (0=device, 1=interface, 2=endpoint,3=other).

1 bRequest The actual request (see the Standard Device Request Codes
table [9.2.1.5].

2 wValueL A word-size value that varies according to the request. For example,
in the CLEAR_FEATURE request the value is used to select the
feature, in the GET_DESCRIPTOR request the value indicates
the descriptor type and in the SET_ADDRESS request the value
contains the device address.

3 wValueH The upper byte of the Value word.

http://www.usb.org

USB Transfers

© Jungo Ltd. 2005–2011 70

Byte Field Description

4 wIndexL A word-size value that varies according to the request. The index is
generally used to specify an endpoint or an interface.

5 wIndexH The upper byte of the Index word.

6 wLengthL A word-size value that indicates the number of bytes to be
transferred if there is a data stage.

7 wLengthH The upper byte of the Length word.

9.2.1.5. Standard Device Request Codes

The table below shows the standard device request codes.

bRequest Value

GET_STATUS 0

CLEAR_FEATURE 1

Reserved for future use 2

SET_FEATURE 3

Reserved for future use 4

SET_ADDRESS 5

GET_DESCRIPTOR 6

SET_DESCRIPTOR 7

GET_CONFIGURATION 8

SET_CONFIGURATION 9

GET_INTERFACE 10

SET_INTERFACE 11

SYNCH_FRAME 12

9.2.1.6. Setup Packet Example

This example of a standard USB device request illustrates the setup packet format and its fields.
The setup packet is in Hex format.

The following setup packet is for a control read transaction that retrieves the device descriptor
from the USB device. The device descriptor includes information such as USB standard revision,
vendor ID and product ID.

GET_DESCRIPTOR (Device) Setup Packet

80 06 00 01 00 00 12 00

Setup packet meaning:

USB Transfers

© Jungo Ltd. 2005–2011 71

Byte Field Value Description

0 BmRequest Type 80 8h=1000b

bit 7=1 -> direction of data is from device to host.

0h=0000b

bits 0..1=00 -> the recipient is the device.

1 bRequest 06 The Request is GET_DESCRIPTOR.

2 wValueL 00

3 wValueH 01 The descriptor type is device (values defined in USB spec).

4 wIndexL 00 The index is not relevant in this setup packet since there is
only one device descriptor.

5 wIndexH 00

6 wLengthL 12 Length of the data to be retrieved: 18(12h) bytes (this is the
length of the device descriptor).

7 wLengthH 00

In response, the device sends the device descriptor data. A device descriptor of Cypress EZ-USB
Integrated Circuit is provided as an example:

Byte No. 0 1 2 3 4 5 6 7 8 9 10

Content 12 01 00 01 ff ff ff 40 47 05 80

Byte No. 11 12 13 14 15 16 17

Content 00 01 00 00 00 00 01

As defined in the USB specification, byte 0 indicates the length of the descriptor, bytes 2-3
contain the USB specification release number, byte 7 is the maximum packet size for endpoint 00,
bytes 8-9 are the Vendor ID, bytes 10-11 are the Product ID, etc.

9.2.2. Performing Control Transfers with WinDriver

WinDriver allows you to easily send and receive control transfers on Pipe00, while using
DriverWizard to test your device. You can either use the API generated by DriverWizard [5] for
your hardware, or directly call the WinDriver WDU_Transfer() function [B.4.8.1] from within
your application.

9.2.2.1. Control Transfers with DriverWizard

1. Choose Pipe 0x0 and click the Read / Write button.

2. You can either enter a custom setup packet, or use a standard USB request.

USB Transfers

© Jungo Ltd. 2005–2011 72

• For a custom request: enter the required setup packet fields. For a write transaction that
includes a data stage, enter the data in the Write to pipe data (Hex) field. Click Read
From Pipe or Write To Pipe according to the required transaction (see Figure 9.3).

Figure 9.3. Custom Request

• For a standard USB request: select a USB request from the requests list, which includes
requests such as GET_DESCRIPTOR CONFIGURATION, GET_DESCRIPTOR
DEVICE, GET_STATUS DEVICE, etc. (see Figure 9.4). The description of the selected
request will be displayed in the Request Description box on the right hand of the dialogue
window.

Figure 9.4. Request List

USB Transfers

© Jungo Ltd. 2005–2011 73

3. The results of the transfer, such as the data that was read or a relevant error, are displayed in
Driver Wizard's Log window.
Figure 9.5, below, shows the contents of the Log window after a successful
GET_DESCRIPTOR DEVICE request.

Figure 9.5. USB Request Log

9.2.2.2. Control Transfers with WinDriver API

To perform a read or write transaction on the control pipe, you can either use the API generated
by DriverWizard for your hardware, or directly call the WinDriver WDU_Transfer()
function [B.4.8.1] from within your application.

Fill the setup packet in the BYTE SetupPacket[8] array and call these functions to send
setup packets on Pipe00 and to retrieve control and status data from the device.

• The following sample demonstrates how to fill the SetupPacket[8] variable with a
GET_DESCRIPTOR setup packet:

setupPacket[0] = 0x80; /* BmRequstType */
 setupPacket[1] = 0x6; /* bRequest [0x6 == GET_DESCRIPTOR] */
 setupPacket[2] = 0; /* wValue */
 setupPacket[3] = 0x1; /* wValue [Descriptor Type: 0x1 == DEVICE] */
 setupPacket[4] = 0; /* wIndex */
 setupPacket[5] = 0; /* wIndex */
 setupPacket[6] = 0x12; /* wLength [Size for the returned buffer] */
 setupPacket[7] = 0; /* wLength */

• The following sample demonstrates how to send a setup packet to the control pipe (a GET
instruction; the device will return the information requested in the pBuffer variable):

WDU_TransferDefaultPipe(hDev, TRUE, 0, pBuffer, dwSize,
 bytes_transferred, &setupPacket[0], 10000);

• The following sample demonstrates how to send a setup packet to the control pipe (a SET
instruction):

WDU_TransferDefaultPipe(hDev, FALSE, 0, NULL, 0,
 bytes_transferred, &setupPacket[0], 10000);

For further information regarding WDU_TransferDefaultPipe(), refer to Section B.4.8.3.
For further information regarding WDU_Transfer(), refer to Section B.4.8.1.

USB Transfers

© Jungo Ltd. 2005–2011 74

9.3. Functional USB Data Transfers

9.3.1. Functional USB Data Transfers Overview

Functional USB data exchange is used to move data to and from the device. There are three
types of USB data transfers: Bulk, Interrupt and Isochronous , which are described in detail in
Sections 3.6.2–3.6.4 of the manual.

Functional USB data transfers can be implemented using two alternative methods: single-
blocking transfers and streaming transfers, both supported by WinDriver, as explained in the
following sections. The generated DriverWizard USB code [5.2.3] and the generic WinDriver/
util/usb_diag.exe utility [1.9.2] (source code located under the WinDriver/samples/usb_diag
directory) enable the user to select which type of transfer to perform.

9.3.2. Single-Blocking Transfers

In the single-blocking USB data transfer scheme, blocks of data are synchronously transferred
(hence – "blocking") between the host and the device, per request from the host (hence – "single"
transfers).

9.3.2.1. Performing Single-Blocking Transfers with
WinDriver

WinDriver's WDU_Transfer() function, and the WDU_TransferBulk(),
WDU_TransferIsoch(), and WDU_TransferInterrupt() convenience functions – all
described in Section B.4.8 of the manual – enable you to easily impelment single-blocking USB
data transfers.

You can also perform single-blocking transfers using the DriverWizard utility (which uses the
WDU_Transfer() function), as demonstrated in Section 5.2 of the manual.

9.3.3. Streaming Data Transfers

In the streaming USB data transfer scheme, data is continuously streamed between the host and
the device, using internal buffers allocated by the host driver – "streams".

Stream transfers allow for a sequential data flow between the host and the device, and can be used
to reduce single-blocking transfer overhead, which may occur as a result of multiple function calls
and context switches between user and kernel modes. This is especially relevant for devices with
small data buffers, which might, for example, overwrite data before the host is able to read it, due
to a gap in the data flow between the host and device.

USB Transfers

© Jungo Ltd. 2005–2011 75

9.3.3.1. Performing Streaming with WinDriver

WinDriver's WDU_StreamXXX() functions, described in Section B.4.9 of the manual, enable
you to impelment USB streaming data transfers. Note: These functions are currently supported on
Windows and Windows CE.

To begin performing stream transfers, call the WDU_StreamOpen() function [B.4.9.1]. When
this function is called, WinDriver creates a new stream object for the specified data pipe. You
can open a stream for any pipe except for the control pipe (Pipe 0). The stream's data transfer
direction – read/write – is derived from the direction of its pipe.
WinDriver supports both blocking and non-blocking stream transfers. The open function's
fBlocking parameter indicates which type of transfer to perform (see explanation below).
Streams that perform blocking transfers will henceforth be referred to as "blocking streams", and
streams that perform non-blocking transfers will be referred to as "non-blocking streams".
The function's dwRxTxTimeout parameter indicates the desired timeout period for transfers
between the stream and the device.

After opening a stream, call WDU_StreamStart() [B.4.9.2] to begin data transfers between the
stream's data buffer and the device.
In the case of a read stream, the driver will constantly read data from the device into the
stream's buffer, in blocks of a pre-defined size (as set in the dwRxSize parameter of the
WDU_StreamOpen() function [B.4.9.1]. In the case of a write stream, the driver will constantly
check for data in the stream's data buffer and write any data that is found to the device.

To read data from a read stream to the user-mode host application, call
WDU_StreamRead() [B.4.9.3].
In case of a blocking stream, the read function blocks until the entire amount of data requested by
the application is transferred from the stream to the application, or until the stream's attempt to
read data from the device times out.
In the case of a non-blocking stream, the function transfers to the application as much of the
requested data as possible, subject to the amount of data currently available in the stream's data
buffer, and returns immediately.

To write data from the user-mode host application to a write the stream, call
WDU_StreamWrite() [B.4.9.4].
In case of a blocking stream, the function blocks until the entire data is written to the stream, or
until the stream's attempt to write data to the device times out.
In the case of a non-blocking stream, the function writes as much of the write data as currently
possible to the stream, and returns immediately.

For both blocking and non-blocking transfers, the read/write function returns the amount of bytes
actually transferred between the stream and the calling application within an output parameter –
*pdwBytesRead [B.4.9.3] / *pdwBytesWritten [B.4.9.4].

You can flush an active stream at any time by calling the WDU_StreamFlush()
function [B.4.9.5], which writes the entire contents of the stream's data buffer to the device (for a
write stream), and blocks until all pending I/O for the stream is handled.
You can flush both blocking and non-blocking streams.

USB Transfers

© Jungo Ltd. 2005–2011 76

You can call WDU_StreamGetStatus() [B.4.9.6] for any open stream in order to get the
stream's current status information.

To stop the data streaming between an active stream and the device, call
WDU_StreamStop() [B.4.9.7]. In the case of a write stream, the function flushes the stream –
i.e., writes its contents to the device – before stopping it.
An open stream can be stopped and restarted at any time until it is closed.

To close an open stream, call WDU_StreamClose() [B.4.9.8].
The function stops the stream, including flushing its data to the device (in the case of a write
stream), before closing it.
Note: Each call to WDU_StreamOpen() must have a matching call to WDU_StreamClose()
later on in the code in order to perform the necessary cleanup.

© Jungo Ltd. 2005–2011 77

Chapter 10
Dynamically Loading Your Driver

10.1. Why Do You Need a Dynamically
Loadable Driver?
When adding a new driver, you may be required to reboot the system in order for it to load your
new driver into the system. WinDriver is a dynamically loadable driver, which enables your
customers to start your application immediately after installing it, without the need for reboot.

To successfully unload your driver, make sure that there are no open handles to the
WinDriver service (windrvr6.sys or your renamed driver (refer to Section 12.2), and that
there are no connected and enabled Plug-and-Play devices that are registered with this
service.

10.2. Windows Dynamic Driver Loading

10.2.1. Windows Driver Types
Windows drivers can be implemented as either of the following types:

• Windows Driver Model (WDM) drivers: Files with the extension *.sys on Windows 7/Vista/
Server 2008/Server 2003/XP/2000/Me/98 (e.g., windrvr6.sys).
WDM drivers are installed via the installation of an INF file (see below).

• Non-WDM / Legacy drivers: These include drivers for non-Plug-and-Play Windows operating
systems (Windows NT 4.0) and files with the extension *.vxd on Windows 98/Me.

The WinDriver Windows kernel module – windrvr6.sys – is a fully WDM driver, which can be
installed using the wdreg utility, as explained in the following sections.

10.2.2. The wdreg Utility
WinDriver provides a utility for dynamically loading and unloading your driver, which replaces
the slower manual process using Windows' Device Manager (which can still be used for the
device INF). This utility is provided in two forms: wdreg and wdreg_gui. Both versions can be
found in the WinDriver\util directory, can be run from the command line, and provide the same
functionality. The difference is that wdreg_gui displays installation messages graphically, while
wdreg displays them in console mode.

Dynamically Loading Your Driver

© Jungo Ltd. 2005–2011 78

This section describes the use of wdreg/ wdreg_gui on Windows operating systems.

1. wdreg is dependent on the Driver Install Frameworks API (DIFxAPI) DLL –
difxapi.dll, unless when run with the -compat option (described below). difxapi.dll
is provided under the WinDriver\util directory.

2. The explanations and examples below refer to wdreg, but any references to wdreg can
be replaced with wdreg_gui.

10.2.2.1. Overview

This section explains how to use the wdreg utility to install the WDM windrvr6.sys driver on
Windows, or to install INF files that register USB devices to work with this driver on Windows 7/
Vista/Server 2008/Server 2003/XP/2000.

You can rename the windrvr6.sys kernel module and modify your device INF file to
register with your renamed driver, as explained in Section 12.2.1. To install your modified
INF files using wdreg, simply replace any references to windrvr6 below with the name of
your new driver.

Usage: The wdreg utility can be used in two ways as demonstrated below:

1. wdreg -inf <filename> [-silent] [-log <logfile>]
[install | preinstall | uninstall | enable | disable]

2. wdreg -rescan <enumerator> [-silent] [-log <logfile>]

• OPTIONS
wdreg supports several basic OPTIONS from which you can choose one, some, or none:

• -inf – The path of the INF file to be dynamically installed.

• -rescan <enumerator> – Rescan enumerator (ROOT, USB, etc.) for hardware changes.
Only one enumerator can be specified.

• -silent – Suppress display of all messages (optional).

• -log <logfile> – Log all messages to the specified file (optional).

• -compat – Use the traditional SetupDi API instead of the newer Driver Install Frameworks
API (DIFxAPI).

• ACTIONS
wdreg supports several basic ACTIONS:

• install – Installs the INF file, copies the relevant files to their target locations, and
dynamically loads the driver specified in the INF file name by replacing the older version (if
needed).

Dynamically Loading Your Driver

© Jungo Ltd. 2005–2011 79

• preinstall Pre-installs the INF file for a non-present device.

• uninstall – Removes your driver from the registry so that it will not load on next boot (see
note below).

• enable – Enables your driver.

• disable – Disables your driver, i.e., dynamically unloads it, but the driver will reload after
system boot (see note below).

To successfully disable/uninstall your driver, make sure that there are no open handles to
the WinDriver service (windrvr6.sys or your renamed driver (refer to Section 12.2), and
that there are no connected and enabled Plug-and-Play devices that are registered with this
service.

10.2.3. Dynamically Loading/Unloading
windrvr6.sys INF Files

When using WinDriver, you develop a user-mode application that controls and accesses your
hardware by using the generic windrvr6.sys driver (WinDriver's kernel module). Therefore, you
might want to dynamically load and unload the driver windrvr6.sys – which you can do using
wdreg.
In addition, in WDM-compatible operating systems, you also need to dynamically load INF files
for your Plug-and-Play devices. wdreg enables you to do so automatically on Windows 7/Vista/
Server 2008/Server 2003/XP/2000.
This section includes wdreg usage examples, which are based on the detailed description of
wdreg contained in the previous section.

• To start windrvr6.sys on Windows 7/Vista/Server 2008/Server 2003/XP/2000:
wdreg -inf <path to windrvr6.inf> install
This command loads windrvr6.inf and starts the windrvr6.sys service.

• To load an INF file named device.inf, located in the c:\tmp directory:
wdreg -inf c:\tmp\device.inf install

You can replace the install option in the example above with preinstall to pre-install
the device INF file for a device that is not currently connected to the PC.

If the installation fails with an ERROR_FILE_NOT_FOUND error, inspect the Windows
registry to see if the RunOnce key exists in HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows\CurrentVersion. This registry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

To unload the driver/INF file, use the same commands, but simply replace install in the
examples above with uninstall.

Dynamically Loading Your Driver

© Jungo Ltd. 2005–2011 80

10.3. Linux Dynamic Driver Loading

The following commands must be executed with root privileges.

• To dynamically load WinDriver, run the following command:
<path to wdreg> windrvr6

• To dynamically unload WinDriver, run the following command:
/sbin/modprobe -r windrvr6.

wdreg is provided in the WinDriver/util directory.

To automatically load WinDriver on each boot, add the following to the target Linux boot
file (/etc/rc.d/rc.local):
<path to wdreg> windrvr6

10.4. Windows Mobile Dynamic Driver
Loading
The WinDriver\redist\Windows_Mobile_5_ARMV4I\wdreg.exe utility can be used for loading
the WinDriver kernel module (windrvr6.dll) on a Windows Mobile platform.

On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every time the OS is
started, copy the wdreg.exe utility to the Windows\StartUp directory on the target PC.

The source code of the Windows Mobile wdreg.exe utility is available under the WinDriver
\samples\wince_install\wdreg directory on the development PC.

© Jungo Ltd. 2005–2011 81

Chapter 11
Distributing Your Driver

Read this chapter in the final stages of driver development. It will guide you in preparing
your driver for distribution.

11.1. Getting a Valid License for WinDriver
To purchase a WinDriver license, complete the WinDriver/docs/order.pdf order form and fax or
email it to Jungo. Complete details are included on the order form. Alternatively, you can order
WinDriver online. For more details, visit our web site: http://www.jungo.com.

In order to install the registered version of WinDriver and to activate driver code that you
have developed during the evaluation period on the development machine, please follow the
installation instructions found in Section 4.2 above.

11.2. Windows Driver Distribution

• All references to wdreg in this section can be replaced with wdreg_gui, which offers
the same functionality as wdreg but displays GUI messages instead of console-mode
messages.

• If you have renamed the WinDriver kernel module (windrvr6.sys), as explained in
Section 12.2, replace the relevant windrvr6 references with the name of your driver,
and replace references to the WinDriver\redist directory with the path to the directory
that contains your modified installation files. For example, when using the generated
DriverWizard renamed driver files for your driver project, as explained in Section 12.2.1,
you can replace references to the WinDriver\redist directory with references to the
generated xxx_installation\redist directory (where xxx is the name of your generated
driver project).

• If you have created new INF and/or catalog files for your driver, replace the references to
the original WinDriver INF files and/or to the wd1030.cat catalog file with the names of
your new files (see information in Sections 12.2.1 and 12.3.2 regarding renaming of the
original files).

• If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare a separate driver installation package for each platform. The required files for
each package are located within the WinDriver installation directory for the respective
platform.

http://www.jungo.com

Distributing Your Driver

© Jungo Ltd. 2005–2011 82

Distributing the driver you created is a multi-step process. First, create a distribution package that
includes all the files required for the installation of the driver on the target computer. Second,
install the driver on the target machine. This involves installing windrvr6.sys and windrvr6.inf,
and installing the specific INF file for your device.

Finally, you need to install and execute the hardware control application that you developed with
WinDriver. These steps can be performed using wdreg utility.

11.2.1. Preparing the Distribution Package
Your distribution package should include the following files:

• Your hardware control application/DLL.

• windrvr6.sys.
Get this file from the WinDriver\redist directory of the WinDriver package.

• windrvr6.inf.
Get this file from the WinDriver\redist directory of the WinDriver package.

• wd1030.cat.
Get this file from the WinDriver\redist directory of the WinDriver package.

• wdapi1030.dll (for distribution of 32-bit binaries to 32-bit target platforms or for distribution
of 64-bit binaries to 64-bit platforms) or wdapi1030_32.dll (for distribution of 32-bit binaries
to 64-bit platforms [A.2].
Get this file from the WinDriver\redist directory of the WinDriver package.

• difxapi.dll (required by the wdreg.exe utility [10.2.2]).
Get this file from the WinDriver\util directory of the WinDriver package.

• An INF file for your device .
You can generate this file with DriverWizard, as explained in Section 5.2.

11.2.2. Installing Your Driver on the Target
Computer

Driver installation on Windows requires administrator privileges.

Follow the instructions below in the order specified to properly install your driver on the target
computer:

• Preliminary Steps:

• To successfully install your driver, make sure that there are no open handles to the
WinDriver service (windrvr6.sys or your renamed driver (refer to Section 12.2), and
that there are no connected and enabled Plug-and-Play devices that are registered with

Distributing Your Driver

© Jungo Ltd. 2005–2011 83

this service. This is relevant, for example, when upgrading the version of the driver (for
WinDriver v6.0.0 and above; earlier versions used a different module name). If the service is
being used, attempts to install the new driver using wdreg will fail.
You can disable or uninstall connected devices from the Device Manager (Properties |
Disable/Uninstall) or using wdreg, or otherwise physically disconnect the device(s) from
the PC.

• On Windows 2000, remove any INF file(s) previously installed for your device (such as
files created with an earlier version of WinDriver) from the %windir%\inf directory before
installing the new INF file that you created for the device. This will prevent Windows from
automatically detecting and installing an obsolete file. You can search the INF directory for
the device's vendor ID and device/product ID to locate the file(s) associated with the device.

• Install WinDriver's kernel module:

1. Copy windrvr6.sys, windrvr6.inf, and wd1030.cat to the same directory.

wd1030.cat contains the driver's Authenticode digital signature. To maintain the
signature's validity this file must be found in the same installation directory as the
windrvr6.inf file. If you select to distribute the catalog and INF files in different
directories, or make any changes to these files or to any other files referred to by the
catalog file (such as windrvr6.sys), you will need to do either of the following:

• Create a new catalog file and re-sign the driver using this file.

• Comment-out or remove the following line in the windrvr6.inf file:
CatalogFile=wd1030.cat
and do not include the catalog file in your driver distribution. However, note that
this option invalidates the driver's digital signature.

For more information regarding driver digital signing and certification and the
signing of your WinDriver-based driver, refer to Section 12.3 of the manual.

2. Use the utility wdreg to install WinDriver's kernel module on the target computer:
wdreg -inf <path to windrvr6.inf> install

For example, if windrvr6.inf and windrvr6.sys are in the d:\MyDevice directory on the
target computer, the command should be:
wdreg -inf d:\MyDevice\windrvr6.inf install

You can find the executable of wdreg in the WinDriver package under the WinDriver\util
directory. For a general description of this utility and its usage, please refer to Chapter 10.

• wdreg is dependent on the difxapi.dll DLL.

• wdreg is an interactive utility. If it fails, it will display a message instructing the
user how to overcome the problem. In some cases the user may be asked to reboot
the computer.

Distributing Your Driver

© Jungo Ltd. 2005–2011 84

When distributing your driver, take care not to overwrite a newer version of
windrvr6.sys with an older version of the file in Windows drivers directory
(%windir%\system32\drivers). You should configure your installation program (if
you are using one) or your INF file so that the installer automatically compares the
time stamp on these two files and does not overwrite a newer version with an older
one.

• Install the INF file for your device (registering your Plug-and-Play device with
windrvr6.sys):

Run the utility wdreg with the install command to automatically install the INF file and
update Windows Device Manager:
wdreg -inf <path to your INF file> install

You can also use the wdreg utility's preinstall command to pre-install an INF file for a
device that is not currently connected to the PC:
wdreg -inf <path to your INF file> preinstall

• On Windows 2000, if another INF file was previously installed for the device,
which registered the device to work with the Plug-and-Play driver used in earlier
versions of WinDriver remove any INF file(s) for the device from the %windir%
\inf directory before installing the new INF file that you created. This will prevent
Windows from automatically detecting and installing an obsolete file. You can search
the INF directory for the device's vendor ID and device/product ID to locate the file(s)
associated with the device.

• If the installation fails with an ERROR_FILE_NOT_FOUND error, inspect the
Windows registry to see if the RunOnce key exists in HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows\CurrentVersion. This registry key is
required by Windows Plug-and-Play in order to properly install drivers using INF files.
If the RunOnce key is missing, create it; then try installing the INF file again.

• Install wdapi1030.dll:
If your hardware control application/DLL uses wdapi1030.dll (as is the case for the sample
and generated DriverWizard WinDriver projects), copy this DLL to the target's %windir%
\system32 directory.
If you are distributing a 32-bit application/DLL to a target 64-bit platform [A.2], rename
wdapi1030_32.dll in your distribution package to wdapi1030.dll, and copy the renamed file to
the target's %windir%\sysWOW64 directory.

Distributing Your Driver

© Jungo Ltd. 2005–2011 85

If you attempt to write a 32-bit installation program that installs a 64-bit program, and
therefore copies the 64-bit wdapi1030.dll DLL to the %windir%\system32 directory,
you may find that the file is actually copied to the 32-bit %windir%\sysWOW64
directory. The reason for this is that Windows x64 platforms translate references to 64-bit
directories from 32-bit commands into references to 32-bit directories. You can avoid
the problem by using 64-bit commands to perform the necessary installation steps from
your 32-bit installation program. The system64.exe program, provided in the WinDriver
\redist directory of the Windows x64 WinDriver distributions, enables you to do this.

• Install your hardware control application/DLL: Copy your hardware control application/
DLL to the target and run it!

11.3. Windows CE Driver Distribution

11.3.1. Distribution to New Windows CE Platforms

The following instructions apply to platform developers who build Windows CE kernel
images using Windows CE Platform Builder or using MS Visual Studio 2005/2008 with the
Windows CE 6.0 plugin. The instructions use the notation 'Windows CE IDE' to refer to
either of these platforms.

To distribute the driver you developed with WinDriver to a new target Windows CE platform,
follow these steps:

1. Modify the project registry file to add an entry for your target device:

• If you select to use the WinDriver component (refer to Step 2), modify WinDriver
\samples\wince_install\<TARGET_CPU>\WinDriver.reg (e.g., WinDriver\samples
\wince_install\ARMV4I\WinDriver.reg).

• Otherwise, modify WinDriver\samples\wince_install\project_wd.reg.

2. You can simplify the driver integration into your Windows CE platform by following the
procedure described in this step before the Sysgen platform compilation stage.

Note:

• The procedure described in this step is relevant only for developers who use Windows CE
4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MS Visual Studio 2005/2008 should skip to the
next step (Step 3).

• This procedure provides a convenient method for integrating WinDriver into your
Windows CE platform. If you select not to use this method, you will need to perform the
manual integration steps described in Step 4 below, after the Sysgen stage.

Distributing Your Driver

© Jungo Ltd. 2005–2011 86

• The procedure described in this step also adds the WinDriver kernel module
(windrvr6.dll) to your OS image. This is a necessary step if you want the WinDriver CE
kernel file (windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN),
which is the case if you select to transfer the file to your target platform using a floppy
disk. However, if you prefer to have the file windrvr6.dll loaded on demand via the
CESH/PPSH services, you need to perform the manual integration method described in
Step 4 instead of performing the procedure described in the present step.

a. Run the Windows CE IDE and open your platform.

b. From the File menu select Manage Catalog Items.... and then click the Import... button
and select the WinDriver.cec file from the relevant WinDriver\samples\wince_install
\<TARGET_CPU> directory (e.g., WinDriver\samples\wince_install\ARMV4I). This
will add a WinDriver component to the Platform Builder Catalog.

c. In the Catalog view, right-click the mouse on the WinDriver Component node in the
Third Party tree and select Add to OS design.

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in Step 2 above, perform the following steps
after the Sysgen stage in order to manually integrate the driver into your platform. Note: If
you followed the procedure described in Step 2, skip this step and go directly to Step 5.

a. Run the Windows CE IDE and open your platform.

b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file – WinDriver\redist\<TARGET_CPU\windrvr6.dll
– to the %_FLATRELEASEDIR% subdirectory on the target development platform
(should be the current directory in the new command window).

d. Append the contents of the project_wd.reg file in the WinDriver\samples
\wince_install directory to the project.reg file in the %_FLATRELEASEDIR%
subdirectory.

e. Append the contents of the project_wd.bib file in the WinDriver\samples
\wince_install directory to the project.bib file in the %_FLATRELEASEDIR%
subdirectory.

This step is only necessary if you want the WinDriver CE kernel file (windrvr6.dll) to
be a permanent part of the Windows CE image (NK.BIN), which is the case if you select
to transfer the file to your target platform using a floppy disk. If you prefer to have the
file windrvr6.dll loaded on demand via the CESH/PPSH services, you do not need to
carry out this step until you build a permanent kernel.

5. Select Make Run-Time Image from the Build menu and name the new image NK.BIN.

Distributing Your Driver

© Jungo Ltd. 2005–2011 87

6. Download your new kernel to the target platform and initialize it either by selecting
Download/Initialize from the Target menu or by using a floppy disk.

7. Restart your target CE platform. The WinDriver CE kernel will automatically load.

8. Install your hardware control application/DLL on the target.
If your hardware control application/DLL uses wdapi1030.dll (as is the case for the sample
and generated DriverWizard WinDriver projects), also copy this DLL from the WinDriver
\redist\WINCE\<TARGET_CPU> directory on the Windows host development PC to the
target's Windows directory.

11.3.2. Distribution to Windows CE Computers

Unless otherwise specified, 'Windows CE' references in this section include all supported
Windows CE platforms, including Windows Mobile.

1. Copy WinDriver's kernel module – windrvr6.dll – from the WinDriver\redist\WINCE
\<TARGET_CPU> directory on the Windows host development PC to the Windows
directory on your target Windows CE platform.

2. Add WinDriver to the list of device drivers Windows CE loads on boot:

• Modify the registry according to the entries documented in the file WinDriver\samples
\wince_install\project_wd.reg. This can be done using the Windows CE Pocket Registry
Editor on the hand-held CE computer or by using the Remote CE Registry Editor Tool
supplied with MS eMbedded Visual C++ (Windows CE 4.x – 5.x) / MS Visual Studio
2005/2008 (Windows Mobile or Windows CE 6.x). Note that in order to use the Remote
CE Registry Editor tool you will need to have Windows CE Services installed on your
Windows host platform.

• On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every time the OS is
started, copy the WinDriver\redist\Windows_Mobile_5_ARMV4I\wdreg.exe utility to
the Windows\StartUp directory on the target PC.

3. Restart your target CE computer. The WinDriver CE kernel will automatically load. You will
have to do a warm reset rather than just suspend/resume (use the reset or power button on
your target CE computer).

4. Install your hardware control application/DLL on the target.
If your hardware control application/DLL uses wdapi1030.dll (as is the case for the sample
and generated DriverWizard WinDriver projects), also copy this DLL from the WinDriver
\redist\WINCE\<TARGET_CPU> directory on the development PC to the target's
Windows directory.

Distributing Your Driver

© Jungo Ltd. 2005–2011 88

11.4. Linux Driver Distribution

• The Linux kernel is continuously under development and kernel data structures are
subject to frequent changes. To support such a dynamic development environment and
still have kernel stability, the Linux kernel developers decided that kernel modules
must be compiled with header files identical to those with which the kernel itself was
compiled. They enforce this by including a version number in the kernel header files that
is checked against the version number encoded into the kernel. This forces Linux driver
developers to facilitate recompilation of their driver based on the target system's kernel
version.

• If you have renamed the WinDriver driver modules (windrvr6.o/.ko and
windrvr6_usb.o/.ko), as explained in Section 12.2, replace windrvr6 references with
your new driver name, and replace references to the WinDriver redist, lib and include
directories with the path to your copy of the relevant directory. For example, when using
the generated DriverWizard renamed driver files for your driver project, as explained
in Section 12.2.2, you can replace references to the WinDriver/redist directory with
references to the generated xxx_installation/redist directory (where xxx is the name of
your generated driver project).

• If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare a separate driver installation package for each platform. The required files for
each package are located within the WinDriver installation directory for the respective
platform.

11.4.1. Kernel Modules

WinDriver uses two kernel modules: the main WinDriver driver module, which implements the
WinDriver API – windrvr6.o/.ko – and a driver module that implements the USB functionality
– windrvr6_usb.o/.ko. Since these are kernel modules, they must be recompiled for every kernel
version on which they are loaded.

To enable recompilation, the following components must be distributed along with your driver
source/object code.

The components are provided under the WinDriver/redist directory, unless specified
otherwise.

• windrvr_gcc_v2.a, windrvr_gcc_v3.a and windrvr_gcc_v3_regparm.a: compiled object
code for the WinDriver kernel module. windrvr_gcc_v2.a is used for kernels compiled
with GCC v2.x.x, and windrvr_gcc_v3.a is used for kernels compiled with GCC v3.x.x.
windrvr_gcc_v3_regparm.a is used for kernels compiled with GCC v3.x.x with the regparm
flag.

• linux_wrappers.c/h: wrapper library source code files that bind the WinDriver kernel module
to the Linux kernel.

Distributing Your Driver

© Jungo Ltd. 2005–2011 89

• linux_common.h, windrvr.h, wd_ver.h, windrvr_usb.h, and wdusb_interface.h: header
files required for building the WinDriver kernel module on the target.

windrvr.h, wd_ver.h, and windrvr_usb.h are provided under the WinDriver/include
directory.

• wdusb_linux.c: used by WinDriver to utilize the USB stack.

• configure: a configuration script that creates makefile from makefile.in and runs
configure.wd and configure.usb (see below).

If the Linux kernel version is 2.6.26 or higher, configure generates makefiles that use
kbuild to compile the kernel modules. You can force the use of kbuild on earlier
versions of Linux, by passing the --enable-kbuild flag to configure. The files that
use kbuild include .kbuild in their names.

• configure.wd: a configuration script that creates makefile.wd[.kbuild] from
makefile.wd[.kbuild].in.

• configure.usb: a configuration script that creates makefile.usb[.kbuild] from
makefile.usb[.kbuild].in.

• makefile.in: a template for the main WinDriver makefile, which compiles and installs
WinDriver by making makefile.wd[.kbuild] and makefile.usb[.kbuild].

• makefile.wd.in: a template for a makefile that compiles and installs the main WinDriver kernel
module.

• makefile.wd.kbuild.in: a template for a makefile that compiles the main WinDriver kernel
module using kbuild, and then installs the module.

• makefile.usb.in: a template for a makefile that compiles and installs the USB kernel module
(windrvr6_usb.o/.ko).

• makefile.usb.kbuild.in: a template for a makefile that compiles the USB kernel module using
kbuild, and then installs the module.

• setup_inst_dir: a script to install your driver modules.

• wdreg (provided under the WinDriver/util directory): a script to load the WinDriver kernel
driver modules (see Section 10.3).
Note: The setup_inst_dir script uses wdreg to load the driver modules.

Distributing Your Driver

© Jungo Ltd. 2005–2011 90

11.4.2. User-Mode Hardware Control Application/
Shared Objects

Copy the hardware control application/shared object that you created with WinDriver to the
target.

If your hardware control application/shared object uses libwdapi1030.so (as is the case for the
sample and generated DriverWizard WinDriver projects), copy this file from the WinDriver/lib
directory on the development machine to the target's library directory – /usr/lib for 32-bit x86
targets, or /usr/lib64 for 64-bit x86 targets.
If you are distributing a 32-bit application/shared object to a target 64-bit platform [A.2] – copy
libwdapi1030_32.so from the WinDriver/lib directory to your distribution package, rename the
copy to libwdapi1030.so, and copy the renamed file to the target's /usr/lib directory.

Since your hardware control application/shared object does not have to be matched against the
kernel version number, you are free to distribute it as binary code (if you wish to protect your
source code from unauthorized copying) or as source code. Note that under the license agreement
with Jungo you may not distribute the source code of the libwdapi1030.so shared object.

If you select to distribute your source code, make sure you do not distribute your WinDriver
license string, which is used in the code.

11.4.3. Installation Script

We suggest that you supply an installation shell script to automate the build and installation
processes on the target.

© Jungo Ltd. 2005–2011 91

Chapter 12
Driver Installation – Advanced
Issues

12.1. Windows INF Files
Device information (INF) files are text files that provide information used by the Plug-and-Play
mechanism on Windows 7 / Vista / Server 2008 / Server 2003 / XP / 2000 / Me / 98 to install
software that supports a given hardware device. INF files are required for hardware that identifies
itself, such as USB and PCI. An INF file includes all necessary information about a device and
the files to be installed. When hardware manufacturers introduce new products, they must create
INF files to explicitly define the resources and files required for each class of device.

In some cases, the INF file for your specific device is supplied by the operating system. In
other cases, you will need to create an INF file for your device. WinDriver's DriverWizard can
generate a specific INF file for your device. The INF file is used to notify the operating system
that WinDriver now handles the selected device.

For USB devices, you will not be able to access the device with WinDriver (either from
DriverWizard or from the code) without first registering the device to work with windrvr6.sys.
This is done by installing an INF file for the device. DriverWizard will offer to automatically
generate the INF file for your device.

You can use DriverWizard to generate the INF file on the development machine – as explained in
Section 5.2 of the manual – and then install the INF file on any machine to which you distribute
the driver, as explained in the following sections.

12.1.1. Why Should I Create an INF File?

• To bind the WinDriver kernel module to a specific USB device.

• To override the existing driver (if any).

• To enable WinDriver applications and DriverWizard to access a USB device.

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 92

12.1.2. How Do I Install an INF File When No Driver
Exists?

You must have administrative privileges in order to install an INF file.

You can use the wdreg utility with the install command to automatically install the INF file:
wdreg -inf <path to the INF file> install
(For more information, refer to Section 10.2.2 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to Section 5.2).

It is also possible to install the INF file manually, using either of the following methods:

• Windows Found New Hardware Wizard: This wizard is activated when the device is plugged
in or, if the device was already connected, when scanning for hardware changes from the
Device Manager.

• Windows Add/Remove Hardware Wizard: Right-click the mouse on My Computer, select
Properties, choose the Hardware tab and click on Hardware Wizard....

• Windows Upgrade Device Driver Wizard: Locate the device in the Device Manager devices
list and select the Update Driver... option from the right-click mouse menu or from the Device
Manager's Action menu.

In all the manual installation methods above you will need to point Windows to the location of the
relevant INF file during the installation.
We recommend using the wdreg utility to install the INF file automatically, instead of installing it
manually.

If the installation fails with an ERROR_FILE_NOT_FOUND error, inspect the Windows
registry to see if the RunOnce key exists in HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows\CurrentVersion. This registry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

12.1.3. How Do I Replace an Existing Driver Using
the INF File?

You must have administrative privileges in order to replace a driver.

1. On Windows 2000, if you wish to upgrade the driver for USB devices that have been
registered to work with earlier versions of WinDriver, we recommend that you first delete
from the Windows INF directory (\windir\inf) any previous INF files for the device, to

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 93

prevent Windows from installing an old INF file in place of the new file that you created.
Look for files containing your device's vendor and device IDs and delete them.

2. Install your INF file:
You can use the wdreg utility with the install command to automatically install the INF
file:
wdreg -inf <path to INF file> install
(For more information, refer to Section 10.2.2 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to Section 5.2).

It is also possible to install the INF file manually, using either of the following methods:

• Windows Found New Hardware Wizard: This wizard is activated when the device is
plugged in or, if the device was already connected, when scanning for hardware changes
from the Device Manager.

• Windows Add/Remove Hardware Wizard: Right-click on My Computer, select
Properties, choose the Hardware tab and click on Hardware Wizard....

• Windows Upgrade Device Driver Wizard: Locate the device in the Device Manager
devices list and select the Update Driver... option from the right-click mouse menu or
from the Device Manager's Action menu.

In the manual installation methods above you will need to point Windows to the location of
the relevant INF file during the installation. If the installation wizard offers to install an INF
file other than the one you have generated, select Install one of the other drivers and choose
your specific INF file from the list.

We recommend using the wdreg utility to install the INF file automatically, instead of
installing it manually.

If the installation fails with an ERROR_FILE_NOT_FOUND error, inspect the Windows
registry to see if the RunOnce key exists in HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Windows\CurrentVersion. This registry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

12.2. Renaming the WinDriver Kernel Driver
The WinDriver APIs are implemented within the WinDriver kernel driver module
(windrvr6.sys/.dll/.o/.ko – depending on the OS), which provides the main driver functionality
and enables you to code your specific driver logic from the user mode [1.5].

On Windows and Linux you can change the name of the WinDriver kernel module to your
preferred driver name, and then distribute the renamed driver instead of default kernel module

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 94

– windrvr6.sys/.o/.ko. The following sections explain how to rename the driver for each of the
supported operating systems.

A renamed WinDriver kernel driver can be installed on the same machine as the original
kernel module.
You can also install multiple renamed WinDriver drivers on the same machine,
simultaneously.

Try to give your driver a unique name in order to avoid a potenial conflict with other drivers
on the target machine on which your driver will be installed.

12.2.1. Windows Driver Renaming

DriverWizard automates most of the work of renaming the Windows WinDriver kernel driver –
windrvr6.sys.

• The renaming procedure should be performed on a platform with a CPU architecture
(32-bit/64-bit) and WinDriver installation that match the architecture of the target
platform to which the driver will be distributed.

• Renaming the signed windrvr6.sys driver nullifies its signature. In such cases you
can select either to sign your new driver, or to distribute an unsigned driver. For more
information on driver signing and certification, refer to Section 12.3. For guidelines for
signing and certifying your renamed driver, refer to Section 12.3.2.

References to xxx in this section should be replaced with the name of your generated
DriverWizard driver project.

To rename your Windows WinDriver kernel driver, follow these steps:

1. Use the DriverWizard utility to generate driver code for your hardware on Windows (refer
to Section 5.2, Step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

• redist directory:

• xxx.sys – Your new driver, which is actually a renamed copy of the windrvr6.sys
driver. Note: The properties of the generated driver file (such as the file's version,
company name, etc.) are identical to the properties of the original windrvr6.sys driver.
You can rebuild the driver with new properties using the files from the generated
xxx_installation sys directory, as explained below.

• xxx_driver.inf – A modified version of the windrvr6.inf file, which will be used to
install your new xxx.sys driver.
You can make additional modifications to this file, if you wish – namely, changing the
string definitions and/or comments in the file.

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 95

• xxx_device.inf – A modified version of the standard generated DriverWizard INF file
for your device, which registers your device with your driver (xxx.sys).
You can make additional modifications to this file, if you wish, such as changing the
manufacturer or driver provider strings.

• wdapi1030.dll – A copy of the WinDriver API DLL. The DLL is copied here in order to
simplify the driver distribution, allowing you to use the generated xxx\redist directory
as the main installation directory for your driver, instead of the original WinDriver
\redist directory.

• sys directory: This directory contains files for advanced users, who wish to change the
properties of their driver file.
Note: Changing the file's properties requires rebuilding of the driver module using the
Windows Driver Kit (WDK).
To modify the properties of your xxx.sys driver file:

1. Verify that the WDK is installed on your development PC, or elsewhere on its
network, and set the BASEDIR environment variable to point to the WDK installation
directory.

2. Modify the xxx.rc resources file in the generated sys directory in order to set different
driver file properties.

3. Rebuild the driver by running the following command:
ddk_make <OS> <build mode (free/checked)>
For example, to build a release version of the driver for Windows XP:
ddk_make winxp free

• The selected build OS must match the CPU architecture of your WinDriver
installation. For example, you cannot select the 64-bit win7_x64 OS flag
when using a 32-bit WinDriver installation.

• The ddk_make.bat utility is provided under the WinDriver\util directory,
and should be automatically identified by Windows when running the
installation command.

• Run ddk_make.bat with no parameters to view the available options for
this utility.

After rebuilding the xxx.sys driver, copy the new driver file to the generated
xxx_installation\redist directory.

2. Verify that your user-mode application calls the WD_DriverName() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications already include
a call to this function, but with the default driver name (windrvr6), so all you need to do is
replace the driver name that is passed to the function in the code with your new driver name.

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 96

3. Verify that your user-mode driver project is built with the
WD_DRIVER_NAME_CHANGE preprocessor flag (e.g., -DWD_DRIVER_NAME_CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

4. Install your new driver by following the instructions in Section 11.2 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.

12.2.2. Linux Driver Renaming

DriverWizard automates most of the work of renaming the Linux WinDriver kernel driver –
windrvr6.o/.ko.

When renaming windrvr6.o/.ko, the windrvr6_usb.o/.ko WinDriver USB Linux GPL
driver is automatically renamed to <new driver name>_usb.o/.ko.

References to xxx in this section should be replaced with the name of your generated
DriverWizard driver project.

To rename your Linux WinDriver kernel driver, follow these steps:

1. Use the DriverWizard utility to generate driver code for your hardware on Linux (refer to
Section 5.2, Step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

• redist directory: This directory contains copies of the files from the original WinDriver/
redist installation directory, but with the required modifications for building your
xxx.o/.ko driver instead of windrvr6.o/.ko.

• lib and include directories: Copies of the library and include directories from the original
WinDriver distribution. These copies are created since the supported Linux WinDriver
kernel driver build method relies on the existence of these directories directly under the
same parent directory as the redist directory.

2. Verify that your user-mode application calls the WD_DriverName() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications already include
a call to this function, but with the default driver name (windrvr6), so all you need to do is
replace the driver name that is passed to the function in the code with your new driver name.

3. Verify that your user-mode driver project is built with the
WD_DRIVER_NAME_CHANGE preprocessor flag (-DWD_DRIVER_NAME_CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 97

4. Install your new driver by following the instructions in Section 11.4 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.
As part of the installation, build your new kernel driver module(s) by following the
instructions in Section 11.4.1, using the files from your new installation directory.

12.3. Digital Driver Signing and Certification
– Windows 7/Vista/Server 2008/Server 2003/
XP/2000

12.3.1. Overview

Before distributing your driver, you can digitally sign and/or certify it, either by submitting it to
the Microsoft Windows Logo Program, for certification and signature, or by having the driver
Authenticode signed.

Some Windows operating systems, such as Windows XP and below, do not require installed
drivers to be digitally signed or certified. There are, however, advantages to getting your driver
digitally signed or fully certified, including the following:

• Driver installation on systems where installing unsigned drivers has been blocked

• Avoiding warnings during driver installation

• Full pre-installation of INF files [12.1] on Windows XP and higher

64-bit versions of Windows Vista and higher require Kernel-Mode Code Signing (KMCS) of
software that loads in kernel mode. This has the following implications for WinDriver-based
drivers:

• Drivers that are installed via an INF file must be distributed together with a signed catalog file
(see details in Section 12.3.2).

• Drivers that are not installed using an INF file must contain an embedded driver signature.

During driver development, you can configure Windows to temporarily allow the
installation of unsigned drivers.

For more information about digital driver signing and certification, see

• Driver Signing Requirements for Windows:
http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx.

• The Introduction to Code Signing topic in the Microsoft Development Network (MSDN)
documentation.

http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 98

• Digital Signatures for Kernel Modules on Systems Running Windows Vista and higher:
http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx.
This white paper contains information about kernel-mode code signing, test signing, and
disabling signature enforcement during development.

12.3.1.1. Authenticode Driver Signature

The Microsoft Authenticode mechanism verifies the authenticity of driver's provider. It allows
driver developers to include information about themselves and their code with their programs
through the use of digital signatures, and informs users of the driver that the driver's publisher is
participating in an infrastructure of trusted entities.
The Authenticode signature does not, however, guarantee the code's safety or functionality.

The WinDriver\redist\windrvr6.sys driver has an Authenticode digital signature.

12.3.1.2. WHQL Driver Certification

Microsoft's Windows Logo Program – http://www.microsoft.com/whdc/winlogo/default.mspx
– lays out procedures for submitting hardware and software modules, including drivers, for
Microsoft quality assurance tests. Passing the tests qualifies the hardware/software for Microsoft
certification, which verifies both the driver provider's authenticity and the driver's safety and
functionality.

Device drivers should be submitted for certification together with the hardware that they drive.
The driver and hardware are submitted to Microsoft's Windows Hardware Quality Labs (WHQL)
testing in order to receive digital signature and certification. This procedure verifies both the
driver's provider and its behavior.

Jungo's professional services unit provides a complete WHQL pre-certification service for
Jungo-based drivers. Professional engineers efficiently perform all the required tests in the
Jungo WHQL test lab, relieving customers of the expense and stress of in-house testing.
Jungo prepares a WHQL submission package containing the test results, and delivers the
package to the customer, ready for submission to Microsoft.
For more information, refer to http://www.jungo.com/st/whql_certification.html.

For detailed information regarding the WHQL certification process, refer to the following
Microsoft web pages:

• WHQL home page:
http://www.microsoft.com/whdc/whql/default.mspx

• WHQL Policies page:
http://www.microsoft.com/whdc/whql/policies/default.mspx

• Windows Quality Online Services (Winqual) home page:
https://winqual.microsoft.com/

• Winqual help:
https://winqual.microsoft.com/Help/

http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx
http://www.microsoft.com/whdc/winlogo/default.mspx
http://www.jungo.com/st/whql_certification.html
http://www.microsoft.com/whdc/whql/default.mspx
http://www.microsoft.com/whdc/whql/policies/default.mspx
https://winqual.microsoft.com/
https://winqual.microsoft.com/Help/

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 99

• WHQL tests, procedures and forms download page:
http://www.microsoft.com/whdc/whql/WHQLdwn.mspx

• Windows Driver Kit (WDK):
http://www.microsoft.com/whdc/devtools/wdk/default.mspx

• Driver Test Manager (DTM):
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

Note: Some of the links require Windows Internet Explorer.

12.3.2. Driver Signing and Certification of
WinDriver-Based Drivers

As indicated above [12.3.1.1], The WinDriver\redist\windrvr6.sys driver has an Authenticode
signature. Since WinDriver's kernel module (windrvr6.sys) is a generic driver, which can be used
as a driver for different types of hardware devices, it cannot be submitted as a standalone driver
for WHQL certification. However, once you have used WinDriver to develop a Windows 7 /
Vista / Server 2008 / Server 2003 / XP / 2000 driver for your selected hardware, you can submit
both the hardware and driver for Microsoft WHQL certification, as explained below.

The driver certification and signature procedures – either via Authenticode or WHQL – require
the creation of a catalog file for the driver. This file is a sort of hash, which describes other files.
The signed windrvr6.sys driver is provided with a matching catalog file – WinDriver\redist
\wd1030.cat. This file is assigned to the CatalogFile entry in the windrvr6.inf file (provided
as well in the redist directory). This entry is used to inform Windows of the driver's signature and
the relevant catalog file during the driver's installation.

When the name, contents, or even the date of the files described in a driver's catalog file is
modified, the catalog file, and consequently the driver signature associated with it, become
invalid. Therefore, if you select to rename the windrvr6.sys driver [12.2] and/or the related
windrvr6.inf file, the wd1030.cat catalog file and the related driver signature will become
invalid.

In addition, when using WinDriver to develop a driver for your Plug-and-Play device, you
normally also create a device-specific INF file that registers your device to work with the
windrvr6.sys driver module (or a renamed version of this driver). Since this INF file is created
at your site, for your specific hardware, it is not referenced from the wd1030.cat catalog file and
cannot be signed by Jungo a priori.

When renaming windrvr6.sys and/or creating a device-specific INF file for your device, you
have two alternative options regarding your driver's digital signing:

• Do not digitally sign your driver. If you select this option, remove or comment-out the
reference to the wd1030.cat file from the windrvr6.inf file (or your renamed version of this
file).

http://www.microsoft.com/whdc/whql/WHQLdwn.mspx
http://www.microsoft.com/whdc/devtools/wdk/default.mspx
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 100

• Submit your driver for WHQL certification or have it Authenticode signed.
Note that while renaming WinDriver\redist\windrvr6.sys nullifies the driver's digital
signature, the driver is still WHQL-compliant and can therefore be submitted for WHQL
testing.

To digitally sign/certify your driver, follow these steps:

• Create a new catalog file for your driver, as explained in Microsoft's WHQL documentation.
The new file should reference both windrvr6.sys (or your renamed driver) and any INF files
used in your driver's installation.

• Assign the name of your new catalog file to the CatalogFile entry in your driver's
INF file(s). (You can either change the CatalogFile entry in the windrvr6.inf file to
refer to your new catalog file, and add a similar entry in your device-specific INF file; or
incorporate both windrvr6.inf and your device INF file into a single INF file that contains
such a CatalogFile entry).

• If you wish to submit your driver for WHQL certification, refer to the additional guidelines
in Section 12.3.2.1.

• Submit your driver for WHQL certification or for an Authenticode signature.

Note that many WinDriver customers have already successfully digitally signed and certified
their WinDriver-based drivers.

12.3.2.1. WHQL DTM Test Notes

As indicated in the WHQL documentation, before submitting the driver for testing you need to
download Microsoft's Driver Test Manager (DTM) (http://www.microsoft.com/whdc/DevTools/
WDK/DTM.mspx) and run the relevant tests for your hardware/software. After you have verified
that you can successfully pass the DTM tests, create the required logs package and proceed
according to Microsoft's documentation.

When running the DTM tests, note the following:

• The DTM test class for WinDriver-based drivers should be Unclassified – Universal Device.

• The Driver Verifier test is applied to all unsigned drivers found on the test machine. It is
therefore important to try and minimize the number of unsigned drivers installed on the test PC
(apart from the test driver – windrvr6.sys).

• The USB Selective Suspend test requires that the depth of the under-test USB device in the
USB devices tree is at least one external hub and no more than two external hubs deep.

• The ACPI Stress test requires that the ACPI settings in the BIOS support the S3 power state.

• Verify that the /PAE switch is added to the boot flags in the PC's boot.ini file.

http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 101

• Before submitting the file for certification you need to create a new catalog file, which lists
your driver and specific INF file(s), and refer to this catalog file from your INF file(s), as
explained above [12.3.2].

12.4. Windows XP Embedded WinDriver
Component
When creating a Windows XP Embedded image using the Target Designer tool from Microsoft's
Windows Embedded Studio, you can select the components that you wish to add to your image.
The added components will be installed automatically during the first boot on the Windows XP
Embedded target on which the image is loaded.

To automatically install the required WinDriver files – such as the windrvr6.inf file and the
WinDriver kernel driver that it installs (windrvr6.sys), your device INF file , and the WinDriver
API DLL (wdapi1030.dll) – on Windows XP Embedded platforms, you can create a relevant
WinDriver component and add it to your Windows XP Embedded image.
WinDriver simplifies this task for you by providing you with a ready-made component:
WinDriver\redist\xp_embedded\wd_component\windriver.sld.
To use the provided component, follow the steps below.

The provided windriver.sld component relies on the existence of a wd_files directory
in the same directory that holds the component. Therefore, do not rename the provided
WinDriver\redist\xp_embedded\wd_component\wd_files directory or modify its
contents, unless instructed to so in the following guidelines.

1. Modify the dev.inf file:
The windriver.sld component depends on the existence of a dev.inf file in the wd_files
directory. The WinDriver installation on your development Windows platform contains a
generic WinDriver\redist\xp_embedded\wd_component\wd_files\dev.inf file. Use either
of the following methods to modify this file to suit your device:

• Modify the generic dev.inf file to describe your device. At the very least, you must modify
the template [DeviceList] entry and insert your device's hardware type and vendor
and product IDs. For example, for a device with vendor ID 0x1234 and product ID
0x5678:
"my_dev_usb"=Install, USB\VID_1234\&PID_5678

OR:

• Create an INF file for your device using DriverWizard (refer to Section 5.2, Step 3) and
name it dev.inf, or use an INF file from one of WinDriver's enhanced-support chipsets [8]
that suits your card and rename it to dev.inf. Then copy your dev.inf device INF file to the
WinDriver\redist\xp_embedded\wd_component\wd_files directory.

Driver Installation – Advanced Issues

© Jungo Ltd. 2005–2011 102

2. Add the WinDriver component to the Windows Embedded Component Database:

1. Open the Windows Embedded Component Database Manager (DBMgr).

2. Click Import.

3. Select the WinDriver component –
WinDriver\redist\xp_embedded\wd_component\windriver.sld – as the SLD file and
click Import.

3. Add the WinDriver component to your Windows XP Embedded image:

1. Open your project in the Target Designer.

2. Double-click the WinDriver component to add it to your project.
Note: If you already have an earlier version of the WinDriver component in your
project's components list, right-click this component and select Upgrade.

3. Run a dependency check and build your image.

After following these steps, WinDriver will automatically be installed during the first boot on the
target Windows XP Embedded platform on which your image is loaded.

If you have selected to rename the WinDriver kernel module [12.2], you will not be able
to use the provided windriver.sld component. You can build your own component for the
renamed driver, or use the wdreg utility to install the driver on the target Windows XP
Embedded platform, as explained in the manual.

© Jungo Ltd. 2005–2011 103

Appendix A
64-Bit Operating Systems
Support

A.1. Supported 64-Bit Architectures
WinDriver supports the following 64-bit platforms:

• Linux AMD64 or Intel EM64T (x86_64)
For a full list of the Linux platforms supported by WinDriver, refer to Section 4.1.3.

• Windows AMD64 or Intel EM64T (x64).
For a full list of the Windows platforms supported by WinDriver, refer to Section 4.1.1.

A.2. Support for 32-Bit Applications on 64-Bit
Windows and Linux Platforms
By default, applications created using the 64-bit versions of WinDriver are 64-bit applications.
Such applications are more efficient than 32-bit applications. However, you can also use the
64-bit WinDriver versions to create 32-bit applications that will run on the supported Windows
and Linux 64-bit platforms [A.1].

In the following documentation, <WD64> signifies the path to a 64-bit WinDriver
installation directory for your target operating system, and <WD32> signifies the path to a
32-bit WinDriver installation directory for the same operating system.

To create a 32-bit application for 64-bit Windows or Linux platforms, using the 64-bit version of
WinDriver, do the following:

1. Create a WinDriver application, as outlined in this manual (e.g., by generating code with
DriverWizard, or using one of the WinDriver samples).

2. Build the application with an appropriate 32-bit compiler for your target OS, using the
following configuration:

• Add a KERNEL_64BIT preprocessor definition to your project or makefile.

In the makefiles, the definition is added using the -D flag: -DKERNEL_64BIT.

The sample and wizard-generated Linux makefiles and Windows MS Visual Studio
projects, in the 64-bit WinDriver toolkit, already add this definition.

© Jungo Ltd. 2005–2011 104

• Link the application with the specific version of the WinDriver API library/
shared object for 32-bit applications executed on 64-bit platforms – <WD64>\lib
\amd64\x86\wdapi1030.lib on Windows <WD64>/lib/libwdapi1030_32.so on Linux.

On Linux, the installation of the 64-bit WinDriver toolkit on the development machine
creates a libwdapi1030.so symbolic link in the /usr/lib directory – which links to
<WD64>/lib/libwdapi1030_32.so – and in the /usr/lib64 directory – which links to
<WD64>/lib/libwdapi1030.so (the 64-bit version of this shared object).
The sample and wizard-generated WinDriver makefiles rely on these symbolic links to
link with the appropriate shared object, depending on whether the code is compiled using a
32-bit or 64-bit compiler.

On Windows, the sample and wizard-generated MS Visual Studio projects are defined
to link with wdapi1030.lib (see the AdditionalDependencies), but the linker
library path refers to the 64-bit library file in the <WD64>\lib\amd64 directory (see
AdditionalLibraryDirectories); when using such a project to compile a 32-bit
application for 64-bit platforms, add \x86 to the library path in order to link the code with
<WD64>\lib\amd64\x86\wdapi1030.lib.

• When distributing your application to target 64-bit platforms, you need to provide
with it the WinDriver API DLL/shared object for 32-bit applications executed on
64-bit platforms – <WD64>\redist\wdapi1030_32.dll on Windows <WD64>/lib/
libwdapi1030_32.so on Linux. Before distributing this file, rename the copy of the file
in your distribution package by removing the _32 portion. The installation on the target
should copy the renamed DLL/shared object to the relevant OS directory – \windir
\sysWOW64 on Windows or /usr/lib on Linux. All other distribution files are the same
as for any other 64-bit WinDriver driver distribution, as detailed in Chapter 11.

• An application created using the method described in this section will not work on 32-bit
platforms. A WinDriver application for 32-bit platforms needs to be compiled without the
KERNEL_64BIT definition; it needs to be linked with the standard 32-bit version of the
WinDriver API library/shared object from the 32-bit WinDriver installation (<WD32>
\lib\x86\wdapi1030.lib on Windows / <WD32>/lib/libwdapi1030.so on Linux); and
it should be distributed with the standard 32-bit WinDriver API DLL/shared object
(<WD32>\redist\wdapi1030.dll on Windows / <WD32>/lib/libwdapi1030.so on Linux)
and any other required 32-bit distribution file, as outlined in Chapter 11.

A.3. 64-Bit and 32-Bit Data Types
In general, DWORD is unsigned long. While any 32-bit compiler treats this type as 32 bits wide,
64-bit compilers treat this type differently. With Windows 64-bit compilers the size of this type
is still 32 bits. However, with UNIX 64-bit compilers (e.g., GCC) the size of this type is 64 bits.
In order to avoid compiler dependency issues, use the UINT32 and UINT64 cross-platform types
when you want to refer to a 32-bit or 64-bit address, respectively.

© Jungo Ltd. 2005–2011 105

Appendix B
WinDriver USB Host API
Reference

This function reference is C oriented. The WinDriver .NET, Visual Basic and Delphi APIs
have been implemented as closely as possible to the C APIs, therefore .NET, VB and
Delphi programmers can also use this reference to better understand the WinDriver APIs for
their selected development language. For the exact API implementation and usage examples
for your selected language, refer to the WinDriver .NET/VB/Delphi source code.

B.1. WD_DriverName

Purpose

Sets the name of the WinDriver kernel module, which will be used by the calling application.

• The default driver name, which is used if the function is not called, is windrvr6.

• This function must be called once, and only once, from the beginning of your application,
before calling any other WinDriver function (including WD_Open() / WDU_Init()), as
demonstrated in the sample and generated DriverWizard WinDriver applications, which
include a call to this function with the default driver name – windrvr6.

• On Windows and Linux, if you select to modify the name of the WinDriver kernel module
(windrvr6.sys/.o/.ko), as explained in Section 12.2, you must ensure that your application calls
WD_DriverName() with your new driver name.

• In order to use the WD_DriverName() function, your user-mode driver project must be built
with WD_DRIVER_NAME_CHANGE preprocessor flag (e.g.: -DWD_DRIVER_NAME_CHANGE
– for MS Visual Studio and gcc).
The sample and generated DriverWizard Windows and Linux WinDriver projects/makefiles
already set this preprocessor flag.

Prototype

const char* DLLCALLCONV WD_DriverName(const char* sName);

Parameters

Name Type Input/Output

sName const char* Input

© Jungo Ltd. 2005–2011 106

Description

Name Description

sName The name of the WinDriver kernel module to be used by the
application.
NOTE: The driver name should be indicated without the driver
file's extension. For example, use windrvr6, not windrvr6.sys or
windrvr6.o.

Return Value

Returns the selected driver name on success; returns NULL on failure (e.g., if the function is
called twice from the same application)long.

Remarks

The ability to rename the WinDriver kernel module is supported on Windows and Linux, as
explained in Section 12.2.
On Windows CE, always call the WD_DriverName() function with the default WinDriver
kernel module name – windrvr6 – or refrain from calling the function altogether.

B.2. WinDriver USB (WDU) Library Overview
This section provides a general overview of WinDriver's USB Library (WDU), including

• An outline of the WDU_xxx API calling sequence – see Section B.2.1.

• Instructions for upgrading code developed with the previous WinDriver USB API, used in
version 5.22 and earlier, to use the improved WDU_xxx API – see Section B.2.2.
If you do not need to upgrade USB driver code developed with an older version of WinDriver,
simply skip this section.

The WDU library's interface is found in the WinDriver/include/wdu_lib.h and WinDriver/
include/windrvr.h header files, which should be included from any source file that calls the
WDU API. (wdu_lib.h already includes windrvr.h).

B.2.1. Calling Sequence for WinDriver USB

The WinDriver WDU_xxx USB API is designed to support event-driven transfers between your
user-mode USB application and USB devices. This is in contrast to earlier versions, in which
USB devices were initialized and controlled using a specific sequence of function calls.

You can implement the three user callback functions specified in the next section:
WDU_ATTACH_CALLBACK [B.3.1], WDU_DETACH_CALLBACK [B.3.2] and
WDU_POWER_CHANGE_CALLBACK [B.3.3] (at the very least WDU_ATTACH_CALLBACK).

© Jungo Ltd. 2005–2011 107

These functions are used to notify your application when a relevant system event occurs, such as
the attaching or detaching of a USB device. For best performance, minimal processing should be
done in these functions.

Your application calls WDU_Init() [B.4.1] and provides the criteria according to which the
system identifies a device as relevant or irrelevant. The WDU_Init() function must also pass
pointers to the user callback functions.

Your application then simply waits to receive a notification of an event. Upon receipt of such a
notification, processing continues. Your application may make use of any functions defined in the
high- or low-level APIs below. The high-level functions, provided for your convenience, make
use of the low-level functions, which in turn use IOCTLs to enable communication between the
WinDriver kernel module and your user-mode application.

When exiting, your application calls WDU_Uninit() [B.4.7] to stop listening to devices
matching the given criteria and to unregister the notification callbacks for these devices.

The following figure depicts the calling sequence described above. Each vertical line represents a
function or process. Each horizontal arrow represents a signal or request, drawn from the initiator
to the recipient. Time progresses from top to bottom.

© Jungo Ltd. 2005–2011 108

Figure B.1. WinDriver USB Calling Sequence

The following piece of meta-code can serve as a framework for your user-mode application's
code:
attach()
{
 ...
 if this is my device
 /*
 Set the desired alternate setting ;
 Signal main() about the attachment of this device
 */

© Jungo Ltd. 2005–2011 109

 return TRUE;
 else
 return FALSE;
}

detach()
{
 ...
 signal main() about the detachment of this device
 ...
}

main()
{
 WDU_Init(...);

 ...
 while (...)
 {
 /* wait for new devices */

 ...

 /* issue transfers */

 ...
 }
 ...
 WDU_Uninit();
}

B.2.2. Upgrading from the WD_xxx USB API to the
WDU_xxx API
The WinDriver WDU_xxx USB API, provided beginning with version 6.00, is designed to
support event-driven transfers between your user-mode USB application and USB devices. This
is in contrast to earlier versions, in which USB devices were initialized and controlled using a
specific sequence of function calls.

As a result of this change, you will need to modify your USB applications that were designed to
interface with earlier versions of WinDriver to ensure that they will work with WinDriver v6.X on
all supported platforms and not only on Microsoft Windows.
You will have to reorganize your application's code so that it conforms with the framework
illustrated by the piece of meta-code provided in Section B.2.1.

In addition, the functions that collectively define the USB API have been changed. The new
functions, described in the next few sections, provide an improved interface between user-mode
USB applications and the WinDriver kernel module. Note that the new functions receive their
parameters directly, unlike the old functions, which received their parameters using a structure.

The table below lists the legacy functions in the left column and indicates in the right column
which function or functions replace(s) each of the legacy functions. Use this table to quickly
determine which new functions to use in your new code.

© Jungo Ltd. 2005–2011 110

Problem Solution

High Level API

This function... has been replaced by...

WD_Open()
WD_Version()
WD_UsbScanDevice()

WDU_Init() [B.4.1]

WD_UsbDeviceRegister() WDU_SetInterface() [B.4.2]

WD_UsbGetConfiguration() WDU_GetDeviceInfo() [B.4.5]

WD_UsbDeviceUnregister() WDU_Uninit() [B.4.7]

Low Level API

This function... has been replaced by...

WD_UsbTransfer() WDU_Transfer() [B.4.8.1]
WDU_TransferDefaultPipe() [B.4.8.3]
WDU_TransferBulk() [B.4.8.4]
WDU_TransferIsoch() [B.4.8.5]
WDU_TransferInterrupt() [B.4.8.6]

USB_TRANSFER_HALT option WDU_HaltTransfer() [B.4.8.2]

WD_UsbResetPipe() WDU_ResetPipe() [B.4.10]

WD_UsbResetDevice()
WD_UsbResetDeviceEx()

WDU_ResetDevice() [B.4.11]

B.3. USB User Callback Functions

B.3.1. WDU_ATTACH_CALLBACK

Purpose

WinDriver calls this function when a new device, matching the given criteria, is attached,
provided it is not yet controlled by another driver.
This callback is called once for each matching interface.

Prototype

typedef BOOL (DLLCALLCONV *WDU_ATTACH_CALLBACK)(
 WDU_DEVICE_HANDLE hDevice,
 WDU_DEVICE *pDeviceInfo,
 PVOID pUserData);

© Jungo Ltd. 2005–2011 111

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

pDeviceInfo WDU_DEVICE* Input

pUserData PVOID Input

Description

Name Description

hDevice A unique identifier for the device/interface

pDeviceInfo Pointer to a USB device information structure [B.5.2.3]; Valid until the
end of the function

pUserData Pointer to user-mode data for the callback, as passed to
WDU_Init() [B.4.1] within the event table parameter
(pEventTable->pUserData)

Return Value

If the WD_ACKNOWLEDGE flag was set in the call to WDU_Init() [B.4.1] (within the
dwOptions parameter), the callback function should check if it wants to control the device, and
if so return TRUE (otherwise – return FALSE).
If the WD_ACKNOWLEDGE flag was not set in the call to WDU_Init(), then the return value of
the callback function is insignificant.

B.3.2. WDU_DETACH_CALLBACK

Purpose

WinDriver calls this function when a controlled device has been detached from the system.

Prototype

typedef void (DLLCALLCONV *WDU_DETACH_CALLBACK)(
 WDU_DEVICE_HANDLE hDevice,
 PVOID pUserData);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

pUserData PVOID Input

© Jungo Ltd. 2005–2011 112

Description

Name Description

hDevice A unique identifier for the device/interface

pUserData Pointer to user-mode data for the callback, as passed to
WDU_Init() [B.4.1] within the event table parameter
(pEventTable->pUserData)

Return Value

None

B.3.3. WDU_POWER_CHANGE_CALLBACK

Purpose

WinDriver calls this function when a controlled device has changed its power settings.

Prototype

typedef BOOL (DLLCALLCONV *WDU_POWER_CHANGE_CALLBACK)(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPowerState,
 PVOID pUserData);

Parameters

Name Type Input/Output

dwPowerState DWORD Input

pUserData PVOID Input

Description

Name Description

hDevice A unique identifier for the device/interface

dwPowerState Number of the power state selected

pUserData Pointer to user-mode data for the callback, as passed to
WDU_Init() [B.4.1] within the event table parameter
(pEventTable->pUserData)

Return Value

TRUE/FALSE. Currently there is no significance to the return value.

© Jungo Ltd. 2005–2011 113

Remarks

This callback is supported only in Windows operating systems, starting from Windows 2000.

B.4. USB Functions
The functions described in this section are declared in the
WinDriver/include/wdu_lib.h header file.

B.4.1. WDU_Init

Purpose

Starts listening to devices matching input criteria and registers notification callbacks for these
devices.

Prototype

DWORD WDU_Init(
 WDU_DRIVER_HANDLE *phDriver,
 WDU_MATCH_TABLE *pMatchTables,
 DWORD dwNumMatchTables,
 WDU_EVENT_TABLE *pEventTable,
 const char *sLicense,
 DWORD dwOptions);

Parameters

Name Type Input/Output

phDriver WDU_DRIVER_HANDLE * Output

pMatchTables WDU_MATCH_TABLE* Input

dwNumMatchTables DWORD Input

pEventTable WDU_EVENT_TABLE* Input

sLicense const char* Input

dwOptions DWORD Input

© Jungo Ltd. 2005–2011 114

Description

Name Description

phDriver Handle to the registration of events & criteria

pMatchTables Array of match tables [B.5.2.1] defining the devices' criteria

dwNumMatchTables Number of elements in pMatchTables

pEventTable Pointer to an event table structure [B.5.2.2], which holds the
addresses of the user-mode device status change notification callback
functions [B.3] and the data to pass to the callbacks

sLicense WinDriver's license string

dwOptions Can be zero or :
• WD_ACKNOWLEDGE – the user can seize control over the device
when returning value in WDU_ATTACH_CALLBACK [B.3.1]

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.2. WDU_SetInterface

Purpose

Sets the alternate setting for the specified interface.

Prototype

DWORD WDU_SetInterface(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwInterfaceNum,
 DWORD dwAlternateSetting);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwInterfaceNum DWORD Input

dwAlternateSetting DWORD Input

© Jungo Ltd. 2005–2011 115

Description

Name Description

hDevice A unique identifier for the device/interface

dwInterfaceNum The interface's number

dwAlternateSetting The desired alternate setting value

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

On Windows CE – as opposed to Windows 7/Vista/Server 2008/Server 2003/XP/2000 –
WDU_SetInterface() attempts to open all the pipes of the specified alternate setting,
even if not all pipes are currently required. The reason for this is that Windows CE limits
the total number of pipes that can be opened simultaneously on a device, to 16 (see http://
msdn.microsoft.com/en-us/library/ms919318.aspx). By opening all the pipes, the driver ensures
that the pipes will be available for use, when needed.
The pipes are opened using the Windows CE USB host controller driver's
LPOPEN_PIPE callback. On some Mobile devices, the call to this callback fails, causing
WDU_SetInterface() to fail as well. To resolve such problems, upgrade the device's USB
host controller driver.

B.4.3. WDU_GetDeviceAddr

Purpose

Gets the USB address for a given device.

Prototype

DWORD WDU_GetDeviceAddr(
 WDU_DEVICE_HANDLE hDevice,
 ULONG *pAddress);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

pAddress ULONG Output

http://msdn.microsoft.com/en-us/library/ms919318.aspx
http://msdn.microsoft.com/en-us/library/ms919318.aspx

© Jungo Ltd. 2005–2011 116

Description

Name Description

hDevice A unique identifier for a device/interface

pAddress A pointer to the address number returned by the function

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

This function is supported only on Windows 2000 and higher.

B.4.4. WDU_GetDeviceRegistryProperty

Purpose

Gets the specified registry property of a given USB device.

Prototype

DWORD DLLCALLCONV WDU_GetDeviceRegistryProperty(
 WDU_DEVICE_HANDLE hDevice,
 PVOID pBuffer,
 PDWORD pdwSize,
 WD_DEVICE_REGISTRY_PROPERTY property);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

pBuffer PVOID Output

pdwSize PDWORD Input/Output

property WD_DEVICE_REGISTRY_PROPERTY Input

© Jungo Ltd. 2005–2011 117

Description

Name Description

hDevice A unique identifier of the device/interface

pBuffer Pointer to a user allocated buffer to be filled with the requested registry
property. The function will fill the buffer only if the buffer size, as
indicated in the input value of the pdwSize parameter, is sufficient –
i.e., >= the property's size, as returned via pdwSize.
pBuffer can be set to NULL when using the function only to retrieve
the size of the registry property (see pdwSize).

pdwSize As input, points to a value indicating the size of the user-supplied
buffer (pBuffer); if pBuffer is set to NULL, the input value of this
parameter is ignored.
As output, points to a value indicating the required buffer size for
storing the registry property.

property The ID of the registry property to be retrieved – see the description of
the WD_DEVICE_REGISTRY_PROPERTY enumeration [B.5.1].
Note: String registry properties are in WCHAR format.

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

• When the size of the provided user buffer (pBuffer) – *pdwSize (input) – is not sufficient
to hold the requested registry property, the function returns WD_INVALID_PARAMETER.

• This function is supported only on Windows 2000 and higher.

B.4.5. WDU_GetDeviceInfo

Purpose

Gets configuration information from a device, including all the device descriptors.

NOTE: The caller to this function is responsible for calling WDU_PutDeviceInfo() [B.4.6] in
order to free the *ppDeviceInfo pointer returned by the function.

Prototype

DWORD WDU_GetDeviceInfo(
 WDU_DEVICE_HANDLE hDevice,
 WDU_DEVICE **ppDeviceInfo);

© Jungo Ltd. 2005–2011 118

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

ppDeviceInfo WDU_DEVICE** Output

Description

Name Description

hDevice A unique identifier for a device/interface

ppDeviceInfo Pointer to pointer to a USB device information structure [B.5.2.3]

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.6. WDU_PutDeviceInfo

Purpose

Receives a device information pointer, allocated with a previous
WDU_GetDeviceInfo() [B.4.5] call, in order to perform the necessary cleanup.

Prototype

void WDU_PutDeviceInfo(WDU_DEVICE *pDeviceInfo);

Parameters

Name Type Input/Output

pDeviceInfo WDU_DEVICE* Input

Description

Name Description

pDeviceInfo Pointer to a USB device information structure [B.5.2.3], as returned by
a previous call to WDU_GetDeviceInfo() [B.4.5]

Return Value

None

© Jungo Ltd. 2005–2011 119

B.4.7. WDU_Uninit

Purpose

Stops listening to devices matching a given criteria and unregisters the notification callbacks for
these devices.

Prototype

void WDU_Uninit(WDU_DRIVER_HANDLE hDriver);

Parameters

Name Type Input/Output

hDriver WDU_DRIVER_HANDLE Input

Description

Name Description

hDriver Handle to the registration received from WDU_Init() [B.4.1]

Return Value

None

© Jungo Ltd. 2005–2011 120

B.4.8. Single-Blocking Transfer Functions

This section describes WinDriver's single-blocking data transfer functions.
For more information, refer to Section 9.3.2 of the manual.

B.4.8.1. WDU_Transfer

Purpose

Transfers data to or from a device.

Prototype

DWORD WDU_Transfer(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPipeNum,
 DWORD fRead,
 DWORD dwOptions,
 PVOID pBuffer,
 DWORD dwBufferSize,
 PDWORD pdwBytesTransferred,
 PBYTE pSetupPacket,
 DWORD dwTimeout);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwPipeNum DWORD Input

fRead DWORD Input

dwOptions DWORD Input

pBuffer PVOID Input

dwBufferSize DWORD Input

pdwBytesTransferred PDWORD Output

pSetupPacket PBYTE Input

dwTimeout DWORD Input

© Jungo Ltd. 2005–2011 121

Description

Name Description

hDevice A unique identifier for the device/interface received from
WDU_Init() [B.4.1]

dwPipeNum The number of the pipe through which the data is transferred

fRead TRUE for read, FALSE for write

dwOptions A bit-mask of USB transfer options, which can consist of a
combination of any of the following flags:
• USB_ISOCH_NOASAP – Instructs the lower USB stack driver
(usbd.sys) to use a preset frame number (instead of the next available
frame) for an isochronous data transfer.
It is recommended that you use this flag for isochronous write
(OUT) transfers, and if you notice unused frames during transfers on
low-speed or full-speed USB 1.1 devices.
This flag is available only for Windows.
• USB_ISOCH_FULL_PACKETS_ONLY – Prevents transfers of less
than the packet size on isochronous pipes.
• USB_BULK_INT_URB_SIZE_OVERRIDE_128K – Limits the size
of the USB Request Block (URB) to 128KB.
This flag is available only for Windows.
• USB_ISOCH_RESET – Resets the isochronous pipe before the
data transfer. It also resets the pipe after minor errors, consequently
allowing to transfer to continue.

pBuffer Address of the data buffer

dwBufferSize Number of bytes to transfer. The buffer size is not limited to the
device's maximum packet size; therefore, you can use larger buffers
by setting the buffer size to a multiple of the maximum packet size.
Use large buffers to reduce the number of context switches and thereby
improve performance.

pdwBytesTransferred Number of bytes actually transferred

pSetupPacket An 8-byte packet to transfer to control pipes

dwTimeout Maximum time, in milliseconds (ms), to complete a transfer.
A value of zero indicates no timeout (infinite wait).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

The resolution of the timeout (the dwTimeout parameter) is according to the operating system
scheduler's time slot. For example, in Windows the timeout's resolution is 10 milliseconds (ms).

© Jungo Ltd. 2005–2011 122

B.4.8.2. WDU_HaltTransfer

Purpose

Halts the transfer on the specified pipe (only one simultaneous transfer per pipe is allowed by
WinDriver).

Prototype

DWORD WDU_HaltTransfer(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPipeNum);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwPipeNum DWORD Input

Description

Name Description

hDevice A unique identifier for the device/interface

dwPipeNum The number of the pipe

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005–2011 123

B.4.8.3. WDU_TransferDefaultPipe

Purpose

Transfers data to or from a device through the default pipe.

Prototype

DWORD WDU_TransferDefaultPipe(
 WDU_DEVICE_HANDLE hDevice,
 DWORD fRead,
 DWORD dwOptions,
 PVOID pBuffer,
 DWORD dwBufferSize,
 PDWORD pdwBytesTransferred,
 PBYTE pSetupPacket,
 DWORD dwTimeout);

Refer to the WDU_Transfer() parameters documentation [B.4.8.1], except for
dwPipeNum (N/A).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.8.4. WDU_TransferBulk

Purpose

Performs bulk data transfer to or from a device.

Prototype

DWORD WDU_TransferBulk(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPipeNum,
 DWORD fRead,
 DWORD dwOptions,
 PVOID pBuffer,
 DWORD dwBufferSize,
 PDWORD pdwBytesTransferred,
 DWORD dwTimeout);

Refer to the WDU_Transfer() parameters documentation [B.4.8.1], except for
pSetupPacket (N/A).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005–2011 124

B.4.8.5. WDU_TransferIsoch

Purpose

Performs isochronous data transfer to or from a device.

Prototype

DWORD WDU_TransferIsoch(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPipeNum,
 DWORD fRead,
 DWORD dwOptions,
 PVOID pBuffer,
 DWORD dwBufferSize,
 PDWORD pdwBytesTransferred,
 DWORD dwTimeout);

Refer to the WDU_Transfer() parameters documentation [B.4.8.1], except for
pSetupPacket (N/A).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.8.6. WDU_TransferInterrupt

Purpose

Performs interrupt data transfer to or from a device.

Prototype

DWORD WDU_TransferInterrupt(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPipeNum,
 DWORD fRead,
 DWORD dwOptions,
 PVOID pBuffer,
 DWORD dwBufferSize,
 PDWORD pdwBytesTransferred,
 DWORD dwTimeout);

Refer to the WDU_Transfer() parameters documentation [B.4.8.1], except for
pSetupPacket (N/A).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005–2011 125

B.4.9. Streaming Data Transfer Functions

This section describes WinDriver's streaming data transfer functions.
For a detailed explanation regarding stream transfers and their implementation with Windriver,
refer to Section 9.3.3 of the manual.

The streaming APIs are currently supported on Windows and Windows CE.

B.4.9.1. WDU_StreamOpen

Purpose

Opens a new stream for the specified pipe.
A stream can be associated with any pipe except for the control pipe (Pipe 0). The stream's data
transfer direction – read/write – is derived from the direction of its pipe.

Prototype

DWORD DLLCALLCONV WDU_StreamOpen(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPipeNum,
 DWORD dwBufferSize,
 DWORD dwRxSize,
 BOOL fBlocking,
 DWORD dwOptions,
 DWORD dwRxTxTimeout,
 WDU_STREAM_HANDLE *phStream);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwPipeNum DWORD Input

dwBufferSize DWORD Input

dwRxSize DWORD Input

fBlocking BOOL Input

dwOptions DWORD Input

dwRxTxTimeout DWORD Input

phStream WDU_STREAM_HANDLE* Output

© Jungo Ltd. 2005–2011 126

Description

Name Description

hDevice A unique identifier for the device/interface

dwPipeNum The number of the pipe for which to open the stream

dwBufferSize The size, in bytes, of the stream's data buffer

dwRxSize The size, in bytes, of the data blocks that the stream reads from the
device. This parameter is relevant only for read streams, and must
not exceed the value of the dwBufferSize parameter. Note: When
setting the USB_STREAM_MAX_TRANSFER_SIZE_OVERWRITE
dwOptions flag, this is also the maximum transfer size.

fBlocking • TRUE for a blocking stream, which performs blocked I/O;
• FALSE for a non-blocking stream, which performs non-blocking I/O.
For additional information, refer to Section 9.3.3.1.

dwOptions A bit-mask of USB transfer options, which can consist of a
combination of any of the following flags:
• USB_ISOCH_NOASAP – Instructs the lower USB stack driver
(usbd.sys) to use a preset frame number (instead of the next available
frame) for an isochronous data transfer.
It is recommended that you use this flag for isochronous write
(OUT) transfers, and if you notice unused frames during transfers on
low-speed or full-speed USB 1.1 devices.
This flag is available only for Windows.
• USB_ISOCH_FULL_PACKETS_ONLY – Prevents transfers of less
than the packet size on isochronous pipes.
• USB_BULK_INT_URB_SIZE_OVERRIDE_128K – Limits the size
of the USB Request Block (URB) to 128KB.
This flag is available only for Windows.
• USB_STREAM_OVERWRITE_BUFFER_WHEN_FULL – When there
is not enough free space in a read stream's data buffer to complete the
transfer, overwrite old data in the buffer. This flag is applicable only to
read streams.
• USB_STREAM_MAX_TRANSFER_SIZE_OVERRIDE – Overrides
the default maximum transfer size with the dwRxSize transfer size,
on Windows CE. Note that setting a large dwRxSize value when
using this flag, may cause the transfers to fail due to host controller
limitations.
This flag is applicable only to read streams on Windows CE.

dwRxTxTimeout Maximum time, in milliseconds (ms), for the completion of a data
transfer between the stream and the device.
A value of zero indicates no timeout (infinite wait).

phStream Pointer to a unique identifier for the stream, to be returned by the
function and passed to the other WDU_StreamXXX() functions

© Jungo Ltd. 2005–2011 127

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.2. WDU_StreamStart

Purpose

Starts a stream, i.e., starts transfers between the stream and the device.
Data will be transferred according to the stream's direction – read/write.

Prototype

DWORD DLLCALLCONV WDU_StreamStart(
 WDU_STREAM_HANDLE hStream);

Parameters

Name Type Input/Output

hStream WDU_STREAM_HANDLE Input

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_StreamOpen()

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.3. WDU_StreamRead

Purpose

Reads data from a read stream to the application.

For a blocking stream (fBlocking=TRUE – see WDU_StreamOpen()), the call to this function
is blocked until the specified amount of data (bytes) is read, or until the stream's attempt to
read from the device times out (i.e., the timeout period for transfers between the stream and the
device, as set in the dwRxTxTimeout WDU_StreamOpen() parameter [B.4.9.1], expires).

For a non-blocking stream (fBlocking=FALSE), the function transfers to the application as
much of the requested data as possible, subject to the amount of data currently available in the
stream's data buffer, and returns immediately.

© Jungo Ltd. 2005–2011 128

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually read from the stream within the pdwBytesRead parameter.

Prototype

DWORD DLLCALLCONV WDU_StreamRead(
 HANDLE hStream,
 PVOID pBuffer,
 DWORD bytes,
 DWORD *pdwBytesRead);

Parameters

Name Type Input/Output

hStream WDU_STREAM_HANDLE Input

pBuffer PVOID Output

bytes DWORD Input

pdwBytesRead DWORD* Output

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_StreamOpen()

pBuffer Pointer to a data buffer to be filled with the data read from the stream

bytes Number of bytes to read from the stream

pdwBytesRead Pointer to a value indicating the number of bytes actually read from the
stream

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.4. WDU_StreamWrite

Purpose

Writes data from the applciation to a write stream.

For a blocking stream (fBlocking=TRUE – see WDU_StreamOpen()), the call to this function
is blocked until the entire data is written to the stream, or until the stream's attempt to write to the
device times out (i.e., the timeout period for transfers between the stream and the device, as set in
the dwRxTxTimeout WDU_StreamOpen() parameter [B.4.9.1], expires).

© Jungo Ltd. 2005–2011 129

For a non-blocking stream (fBlocking=FALSE), the function writes as much data as currently
possible to the stream's data buffer, and returns immediately.

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually written to the stream within the pdwBytesWritten parameter.

Prototype

DWORD DLLCALLCONV WDU_StreamWrite(
 HANDLE hStream,
 const PVOID pBuffer,
 DWORD bytes,
 DWORD *pdwBytesWritten);

Parameters

Name Type Input/Output

hStream WDU_STREAM_HANDLE Input

pBuffer const PVOID Input

bytes DWORD Input

pdwBytesWritten DWORD* Output

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_StreamOpen()

pBuffer Pointer to a data buffer containing the data to write to the stream

bytes Number of bytes to write to the stream

pdwBytesWritten Pointer to a value indicating the number of bytes actually written to the
stream

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.5. WDU_StreamFlush

Purpose

Flushes a write stream, i.e., writes the entire contents of the stream's data buffer to the device.
The function blocks until the completion of all pending I/O on the stream.

© Jungo Ltd. 2005–2011 130

This function can be called for both blocking and non-blocking streams.

Prototype

DWORD DLLCALLCONV WDU_StreamFlush(
 WDU_STREAM_HANDLE hStream);

Parameters

Name Type Input/Output

hStream WDU_STREAM_HANDLE Input

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_StreamOpen()

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.6. WDU_StreamGetStatus

Purpose

Returns a stream's current status.

Prototype

DWORD DLLCALLCONV WDU_StreamGetStatus(
 WDU_STREAM_HANDLE hStream,
 BOOL *pfIsRunning,
 DWORD *pdwLastError,
 DWORD *pdwBytesInBuffer);

Parameters

Name Type Input/Output

hStream WDU_STREAM_HANDLE Input

pfIsRunning BOOL* Output

pdwLastError DWORD* Output

pdwBytesInBuffer DWORD* Output

© Jungo Ltd. 2005–2011 131

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_StreamOpen()

pfIsRunning Pointer to a value indicating the stream's current state:
• TRUE – the stream is currently running
• FALSE – the stream is currently stopped

pdwLastError Pointer to the last error associated with the stream.
Note: Calling the function also resets the stream's last error.

pdwBytesInBuffer Pointer to the current bytes count in the stream's data buffer

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.7. WDU_StreamStop

Purpose

Stops an active stream, i.e., stops transfers between the stream and the device.
In the case of a write stream, the function flushes the stream – i.e., writes its contents to the device
– before stopping it.

Prototype

DWORD DLLCALLCONV WDU_StreamStop(WDU_STREAM_HANDLE hStream);

Parameters

Name Type Input/Output

hStream WDU_STREAM_HANDLE Input

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_StreamOpen()

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005–2011 132

B.4.9.8. WDU_StreamClose

Purpose

Closes an open stream.
The function stops the stream, including flushing its data to the device (in the case of a write
stream), before closing it.

Prototype

DWORD DLLCALLCONV WDU_StreamClose(WDU_STREAM_HANDLE hStream);

Parameters

Name Type Input/Output

hStream WDU_STREAM_HANDLE Input

Description

Name Description

hStream A unique identifier for the stream, as returned by
WDU_StreamOpen()

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.10. WDU_ResetPipe

Purpose

Resets a pipe by clearing both the halt condition on the host side of the pipe and the stall
condition on the endpoint. This function is applicable for all pipes except pipe00.

Prototype

DWORD WDU_ResetPipe(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwPipeNum);

© Jungo Ltd. 2005–2011 133

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwPipeNum DWORD Input

Description

Name Description

hDevice A unique identifier for the device/interface

dwPipeNum The pipe's number

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

This function should be used if a pipe is halted, in order to clear the halt.

B.4.11. WDU_ResetDevice

Purpose

Resets a device.

Prototype

DWORD WDU_ResetDevice(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwOptions);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwOptions DWORD Input

© Jungo Ltd. 2005–2011 134

Description

Name Description

hDevice A unique identifier for the device/interface.

dwOptions Can be either zero or:
• WD_USB_HARD_RESET – reset the device even if it is not disabled.
After using this option it is advised to set the interface device using
WDU_SetInterface() [B.4.2].
• WD_USB_CYCLE_PORT – simulate unplugging and replugging of
the device, prompting the operating system to re-enumerate the device
without resetting it.
This option is supported only on Windows XP and higher.

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

• WDU_ResetDevice() is supported only on Windows and Windows CE, beginning with
Windows CE 5.0.
The WD_USB_CYCLE_PORT option is supported on Windows XP and higher.

• The function issues a request from the Windows USB driver to reset a hub port, provided the
Windows USB driver supports this feature.

B.4.12. WDU_SelectiveSuspend

Purpose

Submits a request to suspend a given device (selective suspend), or cancels a previous suspend
request.

Prototype

DWORD DLLCALLCONV WDU_SelectiveSuspend(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwOptions);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwOptions DWORD Input

© Jungo Ltd. 2005–2011 135

Description

Name Description

hDevice A unique identifier for the device/interface.

dwOptions Can be set to either of the following
WDU_SELECTIVE_SUSPEND_OPTIONS values:
• WDU_SELECTIVE_SUSPEND_SUBMIT – submit a request to
suspend the device.
• WDU_SELECTIVE_SUSPEND_CANCEL – cancel a previous request
to suspend the device.

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
If the device is busy when a suspend request is submitted
(dwOptions=WDU_SELECTIVE_SUSPEND_SUBMIT), the function returns
WD_OPERATION_FAILED.

Remarks

WDU_SelectiveSuspend() is supported on Windows XP and higher.

B.4.13. WDU_Wakeup

Purpose

Enables/Disables the wakeup feature.

Prototype

DWORD WDU_Wakeup(
 WDU_DEVICE_HANDLE hDevice,
 DWORD dwOptions);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

dwOptions DWORD Input

© Jungo Ltd. 2005–2011 136

Description

Name Description

hDevice A unique identifier for the device/interface

dwOptions Can be either:
• WDU_WAKEUP_ENABLE – enable wakeup
OR:
• WDU_WAKEUP_DISABLE – disable wakeup

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.14. WDU_GetLangIDs

Purpose

Reads a list of supported language IDs and/or the number of supported language IDs from a
device.

Prototype

DWORD DLLCALLCONV WDU_GetLangIDs(
 WDU_DEVICE_HANDLE hDevice,
 PBYTE pbNumSupportedLangIDs,
 WDU_LANGID *pLangIDs,
 BYTE bNumLangIDs);

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

pbNumSupportedLangIDs PBYTE Output

pLangIDs WDU_LANGID* Output

bNumLangIDs BYTE Input

© Jungo Ltd. 2005–2011 137

Description

Name Description

hDevice A unique identifier for the device/interface

pbNumSupportedLangIDs Parameter to receive number of supported language IDs

pLangIDs Array of language IDs. If bNumLangIDs is not zero the function
will fill this array with the supported language IDs for the device.

bNumLangIDs Number of IDs in the pLangIDs array

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

• If dwNumLangIDs is zero the function will return only the number of supported language IDs
(in pbNumSupportedLangIDs) but will not update the language IDs array (pLangIDs
) with the actual IDs. For this usage pLangIDs can be NULL (since it is not referenced) but
pbNumSupportedLangIDs must not be NULL.

• pbNumSupportedLangIDs can be NULL if the user only wants to receive the list of
supported language IDs and not the number of supported IDs.
In this case bNumLangIDs cannot be zero and pLangIDs cannot be NULL.

• If the device does not support any language IDs the function will return success. The caller
should therefore check the value of *pbNumSupportedLangIDs after the function returns.

• If the size of the pLangIDs array (bNumLangIDs) is smaller than the number of IDs
supported by the device (*pbNumSupportedLangIDs), the function will read and return
only the first bNumLangIDs supported language IDs.

B.4.15. WDU_GetStringDesc

Purpose

Reads a string descriptor from a device by string index.

Prototype

DWORD DLLCALLCONV WDU_GetStringDesc(
 WDU_DEVICE_HANDLE hDevice,
 BYTE bStrIndex,
 PBYTE pbBuf,
 DWORD dwBufSize,
 WDU_LANGID langID,
 PDWORD pdwDescSize);

© Jungo Ltd. 2005–2011 138

Parameters

Name Type Input/Output

hDevice WDU_DEVICE_HANDLE Input

bStrIndex BYTE Input

pbBuf PBYTE Output

dwBufSize DWORD Input

langID WDU_LANGID Input

pdwDescSize PDWORD Output

Description

Name Description

hDevice A unique identifier for the device/interface

bStrIndex The index of the string descriptor to read

pbBuf Pointer to a buffer to be filled with the string descriptor

dwBufSize The size of the pbBuf buffer, in bytes

langID The language ID to be used in the get string descriptor request. If
this parameter is 0, the request will use the first supported language ID
returned by the device.

pdwDescSize An optional DWORD pointer to be filled with the size of the string
descriptor read from the device.
If NULL, the size of the string descriptor will not be returned.

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

If the size of the pbBuf buffer is smaller than the size of the string descriptor
(dwBufSize*pdwDescSize), the returned descriptor will be truncated to the provided buffer
size (dwBufSize).

B.5. USB Data Types
The types described in this section are declared in the WinDriver/include/windrvr.h header file,
unless otherwise specified in the documentation.

© Jungo Ltd. 2005–2011 139

B.5.1. WD_DEVICE_REGISTRY_PROPERTY
Enumeration
Enumeration of device registry property identifiers.
String properties are returned in NULL-terminated WCHAR array format.

For more information regarding the properties described in this enumaration, refer to the
description of the Windows IoGetDeviceProperty() function's DeviceProperty
parameter in the Microsoft Development Network (MSDN) documentation.

Enum Value Description

WdDevicePropertyDeviceDescription Device description

WdDevicePropertyHardwareID The device's hardware IDs

WdDevicePropertyCompatibleIDs The device's compatible IDs

WdDevicePropertyBootConfiguration The hardware resources assigned to the
device by the firmware, in raw data form

WdDevicePropertyBootConfigurationTranslated The hardware resources assigned to the
device by the firmware, in translated form

WdDevicePropertyClassName The name of the device's setup class, in text
format

WdDevicePropertyClassGuid The GUID for the device's setup class (string
format)

WdDevicePropertyDriverKeyName The name of the driver-specific registry key

WdDevicePropertyManufacturer Device manufacturer string

WdDevicePropertyFriendlyName Friendly device name (typically defined by
the class installer), which can be used to
distinguish between two similar devices

WdDevicePropertyLocationInformation Information about the device's Location on
the bus (string format).
The interpertation of this information is bus-
specific.

WdDevicePropertyPhysicalDeviceObjectName The name of the Physical Device Object
(PDO) for the device

WdDevicePropertyBusTypeGuid The GUID for the bus to which the device is
connected

WdDevicePropertyLegacyBusType The bus type (e.g., PCIBus or PCMCIABus)

WdDevicePropertyBusNumber The legacy bus number of the bus to which
the device is connected

WdDevicePropertyEnumeratorName The name of the device's enumerator (e.g.,
"PCI" or "root")

WdDevicePropertyAddress The device's bus address.

© Jungo Ltd. 2005–2011 140

Enum Value Description
The interpertation of this address is bus-
specific.

WdDevicePropertyUINumber A number associated with the device that
can be displayed in the user interface

WdDevicePropertyInstallState The device's installation state

WdDevicePropertyRemovalPolicy The device's current removal policy
(Windows XP and later)

B.5.2. USB Structures

The following figure depicts the structure hierarchy used by WinDriver's USB API. The arrays
situated in each level of the hierarchy may contain more elements than are depicted in the
diagram. Arrows are used to represent pointers. In the interest of clarity, only one structure at
each level of the hierarchy is depicted in full detail (with all of its elements listed and pointers
from it pictured).

© Jungo Ltd. 2005–2011 141

Figure B.2. WinDriver USB Structures

© Jungo Ltd. 2005–2011 142

B.5.2.1. WDU_MATCH_TABLE Structure

USB match table structure.

(*) For all field members, if value is set to zero – match all.

Field Type Description

wVendorId WORD Required USB Vendor ID to detect, as assigned by USB-IF
(*)

wProductId WORD Required USB Product ID to detect, as assigned by the
product manufacturer (*)

bDeviceClass BYTE The device's class code, as assigned by USB-IF (*)

bDeviceSubClass BYTE The device's sub-class code, as assigned by USB-IF (*)

bInterfaceClass BYTE The interface's class code, as assigned by USB-IF (*)

bInterfaceSubClass BYTE The interface's sub-class code, as assigned by USB-IF (*)

bInterfaceProtocol BYTE The interface's protocol code, as assigned by USB-IF (*)

B.5.2.2. WDU_EVENT_TABLE Structure

USB events table structure.
This structure is declared in the WinDriver/include/wdu_lib.h header file.

Field Type Description

pfDeviceAttach WDU_ATTACH_CALLBACK Will be called by WinDriver
when a device is attached

pfDeviceDetach WDU_DETACH_CALLBACK Will be called by WinDriver
when a device is detached

pfPowerChange WDU_POWER_CHANGE_CALLBACK Will be called by WinDriver
when there is a change in a
device's power state

pUserData PVOID Pointer to user-mode data to be
passed to the callbacks

B.5.2.3. WDU_DEVICE Structure

USB device information structure.

Field Type Description

Descriptor WDU_DEVICE_DESCRIPTOR Device descriptor information
structure [B.5.2.7]

Pipe0 WDU_PIPE_INFO Pipe information structure [B.5.2.11]
for the device's default pipe (Pipe 0)

© Jungo Ltd. 2005–2011 143

Field Type Description

pConfigs WDU_CONFIGURATION* Pointer to the device's configuration
information structure [B.5.2.4]

pActiveConfig WDU_CONFIGURATION* Pointer to a configuration information
structure [B.5.2.4] for the device's
active configuration

pActiveInterface WDU_INTERFACE*
[WD_USB_MAX_INTERFACES]

Array of pointers to interface
information structures [B.5.2.5] for
the device's active interfaces

B.5.2.4. WDU_CONFIGURATION Structure

Configuration information structure.

Field Type Description

Descriptor WDU_CONFIGURATION_DESCRIPTOR Configuration
descriptor information
structure [B.5.2.8]

dwNumInterfaces DWORD Number of interfaces
supported by this
configuration

pInterfaces WDU_INTERFACE* Pointer to the beginning
of an array of
interface information
structures [B.5.2.5] for the
configuration's interfaces

B.5.2.5. WDU_INTERFACE Structure

Interface information structure.

Field Type Description

pAlternateSettings WDU_ALTERNATE_SETTING* Pointer to the beginning of an array
of alternate setting information
structures [B.5.2.6] for the
interface's alternate settings

dwNumAltSettings DWORD Number of alternate settings
supported by this interface

pActiveAltSetting WDU_ALTERNATE_SETTING* Pointer to an alternate setting
information structure [B.5.2.6]
for the interface's active alternate
setting

© Jungo Ltd. 2005–2011 144

B.5.2.6. WDU_ALTERNATE_SETTING Structure

Alternate setting information structure.

Field Type Description

Descriptor WDU_INTERFACE_DESCRIPTOR Interface descriptor
information
structure [B.5.2.9]

pEndpointDescriptors WDU_ENDPOINT_DESCRIPTOR* Pointer to the beginning
of an array of endpoint
descriptor information
structures [B.5.2.10] for the
alternate setting's endpoints

pPipes WDU_PIPE_INFO* Pointer to the beginning of
an array of pipe information
structures [B.5.2.11] for the
alternate setting's pipes

B.5.2.7. WDU_DEVICE_DESCRIPTOR Structure

USB device descriptor information structure.

Field Type Description

bLength UCHAR Size, in bytes, of the descriptor (18 bytes)

bDescriptorType UCHAR Device descriptor (0x01)

bcdUSB USHORT Number of the USB specification with which the device
complies

bDeviceClass UCHAR The device's class

bDeviceSubClass UCHAR The device's sub-class

bDeviceProtocol UCHAR The device's protocol

bMaxPacketSize0 UCHAR Maximum size of transferred packets

idVendor USHORT Vendor ID, as assigned by USB-IF

idProduct USHORT Product ID, as assigned by the product manufacturer

bcdDevice USHORT Device release number

iManufacturer UCHAR Index of manufacturer string descriptor

iProduct UCHAR Index of product string descriptor

iSerialNumber UCHAR Index of serial number string descriptor

bNumConfigurations UCHAR Number of possible configurations

© Jungo Ltd. 2005–2011 145

B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structure

USB configuration descriptor information structure.

Field Type Description

bLength UCHAR Size, in bytes, of the descriptor

bDescriptorType UCHAR Configuration descriptor (0x02)

wTotalLength USHORT Total length, in bytes, of data returned

bNumInterfaces UCHAR Number of interfaces

bConfigurationValue UCHAR Configuration number

iConfiguration UCHAR Index of string descriptor that describes this configuration

bmAttributes UCHAR Power settings for this configuration:
• D6 – self-powered
• D5 – remote wakeup (allows device to wake up the host)

MaxPower UCHAR Maximum power consumption for this configuration, in
2mA units

B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structure

USB interface descriptor information structure.

Field Type Description

bLength UCHAR Size, in bytes, of the descriptor (9 bytes)

bDescriptorType UCHAR Interface descriptor (0x04)

bInterfaceNumber UCHAR Interface number

bAlternateSetting UCHAR Alternate setting number

bNumEndpoints UCHAR Number of endpoints used by this interface

bInterfaceClass UCHAR The interface's class code, as assigned by USB-IF

bInterfaceSubClass UCHAR The interface's sub-class code, as assigned by USB-IF

bInterfaceProtocol UCHAR The interface's protocol code, as assigned by USB-IF

iInterface UCHAR Index of string descriptor that describes this interface

© Jungo Ltd. 2005–2011 146

B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structure

USB endpoint descriptor information structure.

Field Type Description

bLength UCHAR Size, in bytes, of the descriptor (7 bytes)

bDescriptorType UCHAR Endpoint descriptor (0x05)

bEndpointAddress UCHAR Endpoint address: Use bits 0–3 for endpoint number, set
bits 4–6 to zero (0), and set bit 7 to zero (0) for outbound
data and to one (1) for inbound data (ignored for control
endpoints).

bmAttributes UCHAR Specifies the transfer type for this endpoint (control,
interrupt, isochronous or bulk). See the USB specification for
further information.

wMaxPacketSize USHORT Maximum size of packets this endpoint can send or receive

bInterval UCHAR Interval, in frame counts, for polling endpoint data transfers.
Ignored for bulk and control endpoints.
Must equal 1 for isochronous endpoints.
May range from 1 to 255 for interrupt endpoints.

B.5.2.11. WDU_PIPE_INFO Structure

USB pipe information structure.

Field Type Description

dwNumber DWORD Pipe number; Zero for default pipe

dwMaximumPacketSize DWORD Maximum size of packets that can be transferred using
this pipe

type DWORD Transfer type for this pipe

direction DWORD Direction of the transfer:
• WDU_DIR_IN or WDU_DIR_OUT for isochronous,
bulk or interrupt pipes.
• WDU_DIR_IN_OUT for control pipes.

dwInterval DWORD Interval in milliseconds.
Relevant only to interrupt pipes.

© Jungo Ltd. 2005–2011 147

B.6. General WD_xxx Functions

B.6.1. Calling Sequence WinDriver – General Use

The following is a typical calling sequence for the WinDriver API.

Figure B.3. WinDriver API Calling Sequence

• We recommend calling the WinDriver function WD_Version() [B.6.3] after calling
WD_Open() [B.6.2] and before calling any other WinDriver function. Its purpose is to
return the WinDriver kernel module version number, thus providing the means to verify
that your application is version compatible with the WinDriver kernel module.

• WD_DebugAdd() [B.6.6] and WD_Sleep() [B.6.8] can be called anywhere after
WD_Open()

© Jungo Ltd. 2005–2011 148

B.6.2. WD_Open

Purpose

Opens a handle to access the WinDriver kernel module.
The handle is used by all WinDriver APIs, and therefore must be called before any other
WinDriver API is called.

Prototype

HANDLE WD_Open(void);

Return Value

The handle to the WinDriver kernel module.
If device could not be opened, returns INVALID_HANDLE_VALUE.

Remarks

If you are a registered user, please refer to the documentation of WD_License() [B.6.9] for an
example of how to register your WinDriver license.

EXAMPLE

 HANDLE hWD;

hWD = WD_Open();
if (hWD == INVALID_HANDLE_VALUE)
{
 printf("Cannot open WinDriver device\n");
}

© Jungo Ltd. 2005–2011 149

B.6.3. WD_Version

Purpose

Returns the version number of the WinDriver kernel module currently running.

Prototype

DWORD WD_Version(
 HANDLE hWD,
 WD_VERSION *pVer);

Parameters

Name Type Input/Output

hWD HANDLE Input

pVer WD_VERSION*

• dwVer DWORD Output

• cVer CHAR[128] Output

Description

Name Description

hWD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

pVer Pointer to a WinDriver version information structure:

• dwVer The version number

• cVer Version information string.
The version string's size is limited to 128 characters (including the
NULL terminator character).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005–2011 150

EXAMPLE

WD_VERSION ver;

BZERO(ver);
WD_Version(hWD, &ver);
printf("%s\n", ver.cVer);
if (ver.dwVer < WD_VER)
{
 printf("Error - incorrect WinDriver version\n");
}

B.6.4. WD_Close

Purpose

Closes the access to the WinDriver kernel module.

Prototype

void WD_Close(HANDLE hWD);

Parameters

Name Type Input/Output

hWD HANDLE Input

Description

Name Description

hWD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

Return Value

None

Remarks

This function must be called when you finish using WinDriver kernel module.

EXAMPLE

WD_Close(hWD);

© Jungo Ltd. 2005–2011 151

B.6.5. WD_Debug

Purpose

Sets debugging level for collecting debug messages.

Prototype

DWORD WD_Debug(
 HANDLE hWD,
 WD_DEBUG *pDebug);

Parameters

Name Type Input/Output

hWD HANDLE Input

pDebug WD_DEBUG* Input

• dwCmd DWORD Input

• dwLevel DWORD Input

• dwSection DWORD Input

• dwLevelMessageBox DWORD Input

• dwBufferSize DWORD Input

© Jungo Ltd. 2005–2011 152

Description

Name Description

hWD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

pDebug Pointer to a debug information structure:

• dwCmd Debug command: Set filter, Clear buffer, etc.
For more details please refer to DEBUG_COMMAND in windrvr.h.

• dwLevel Used for dwCmd=DEBUG_SET_FILTER. Sets the debugging level
to collect: Error, Warning, Info, Trace.
For more details please refer to DEBUG_LEVEL in windrvr.h.

• dwSection Used for dwCmd=DEBUG_SET_FILTER. Sets the sections to
collect: I/O, Memory, Interrupt, etc. Use S_ALL for all.
For more details please refer to DEBUG_SECTION in windrvr.h.

• dwLevelMessageBox Used for dwCmd=DEBUG_SET_FILTER. Sets the debugging level
to print in a message box.
For more details please refer to DEBUG_LEVEL in windrvr.h.

• dwBufferSize Used for dwCmd=DEBUG_SET_BUFFER. The size of buffer in the
kernel.

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

WD_DEBUG dbg;

BZERO(dbg);
dbg.dwCmd = DEBUG_SET_FILTER;
dbg.dwLevel = D_ERROR;
dbg.dwSection = S_ALL;
dbg.dwLevelMessageBox = D_ERROR;

WD_Debug(hWD, &dbg);

B.6.6. WD_DebugAdd

Purpose

Sends debug messages to the debug log. Used by the driver code.

© Jungo Ltd. 2005–2011 153

Prototype

DWORD WD_DebugAdd(
 HANDLE hWD,
 WD_DEBUG_ADD *pData);

Parameters

Name Type Input/Output

hWD HANDLE Input

pData WD_DEBUG_ADD*

• dwLevel DWORD Input

• dwSection DWORD Input

• pcBuffer CHAR[256] Input

Description

Name Description

hWD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

pData Pointer to an additional debug information structure:

• dwLevel Assigns the level in the Debug Monitor, in which the data will be
declared.
If dwLevel is zero, D_ERROR will be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.

• dwSection Assigns the section in the Debug Monitor, in which the data will be
declared.
If dwSection is zero, S_MISC section will be declared.
For more details please refer to DEBUG_SECTION in windrvr.h.

• pcBuffer The string to copy into the message log.

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

WD_DEBUG_ADD add;

BZERO(add);
add.dwLevel = D_WARN;
add.dwSection = S_MISC;
sprintf(add.pcBuffer, "This message will be displayed in "
 "the Debug Monitor\n");
WD_DebugAdd(hWD, &add);

© Jungo Ltd. 2005–2011 154

B.6.7. WD_DebugDump

Purpose

Retrieves debug messages buffer.

Prototype

DWORD WD_DebugDump(
 HANDLE hWD,
 WD_DEBUG_DUMP *pDebugDump);

Parameters

Name Type Input/Output

hWD HANDLE Input

pDebug WD_DEBUG_DUMP* Input

• pcBuffer PCHAR Input/Output

• dwSize DWORD Input

Description

Name Description

hWD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

pDebugDump Pointer to a debug dump information structure:

• pcBuffer Buffer to receive debug messages

dwSize Size of buffer in bytes

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

char buffer[1024];
WD_DEBUG_DUMP dump;
dump.pcBuffer=buffer;
dump.dwSize = sizeof(buffer);
WD_DebugDump(hWD, &dump);

© Jungo Ltd. 2005–2011 155

B.6.8. WD_Sleep

Purpose

Delays execution for a specific duration of time.

Prototype

DWORD WD_Sleep(
 HANDLE hWD,
 WD_SLEEP *pSleep);

Parameters

Name Type Input/Output

hWD HANDLE Input

pSleep WD_SLEEP*

• dwMicroSeconds DWORD Input

• dwOptions DWORD Input

Description

Name Description

hWD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

pSleep Pointer to a sleep information structure:

• dwMicroSeconds Sleep time in microseconds – 1/1,000,000 of a second.

• dwOptions A bit-mask, which can be set to either of the following:
• Zero (0) – Busy sleep (default)
OR:
• SLEEP_NON_BUSY – Delay execution without consuming CPU
resources. (Not relevant for under 17,000 micro seconds. Less accurate
than busy sleep).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

Example usage: to access slow response hardware.

© Jungo Ltd. 2005–2011 156

EXAMPLE

WD_Sleep slp;

BZERO(slp);
slp.dwMicroSeconds = 200;
WD_Sleep(hWD, &slp);

B.6.9. WD_License

Purpose

Transfers the license string to the WinDriver kernel module and returns information regarding the
license type of the specified license string.

When using the WDU USB APIs [B.2] your WinDriver license registration is done via the
call to WDU_Init() [B.4.1], so you do not need to call WD_License() directly from your
code.

Prototype

DWORD WD_License(
 HANDLE hWD,
 WD_LICENSE *pLicense);

Parameters

Name Type Input/Output

hWD HANDLE Input

pLicense WD_LICENSE*

• cLicense CHAR[] Input

• dwLicense DWORD Output

• dwLicense2 DWORD Output

© Jungo Ltd. 2005–2011 157

Description

Name Description

hWD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

pLicense Pointer to a WinDriver license information structure:

• cLicense A buffer to contain the license string that is to be transferred to the
WinDriver kernel module. If an empty string is transferred, then
WinDriver kernel module returns the current license type to the
parameter dwLicense.

• dwLicense Returns the license type of the specified license string (cLicnese).
The return value is a bit-mask of license flags, defined as an enum in
windrvr.h. Zero signifies an invalid license string. Additional flags for
determining the license type are returned in dwLicense2, if needed.

• dwLicense2 Returns additional flags for determining the license type, if
dwLicense cannot hold all the relevant information (otherwise –
zero)

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

When using a registered version, this function must be called before any other WinDriver API
call, apart from WD_Open() [B.6.2], in order to register the license from the code.

EXAMPLE

Example usage: Add registration routine to your application:
DWORD RegisterWinDriver()
{
 HANDLE hWD;
 WD_LICENSE lic;
 DWORD dwStatus = WD_INVALID_HANDLE;

 hWD = WD_Open();
 if (hWD!=INVALID_HANDLE_VALUE)
 {
 BZERO(lic);
 /* Replace the following string with your license string: */
 strcpy(lic.cLicense, "12345abcde12345.CompanyName");
 dwStatus = WD_License(hWD, &lic);
 WD_Close(hWD);
 }

 return dwStatus;
}

© Jungo Ltd. 2005–2011 158

B.7. User-Mode Utility Functions
This section describes a number of user-mode utility functions you will find useful for
implementing various tasks. These utility functions are multi-platform, implemented on all
operating systems supported by WinDriver.

B.7.1. Stat2Str

Purpose

Retrieves the status string that corresponds to a status code.

Prototype

const char *Stat2Str(DWORD dwStatus);

Parameters

Name Type Input/Output

dwStatus DWORD Input

Description

Name Description

• dwStatus A numeric status code

Return Value

Returns the verbal status description (string) that corresponds to the specified numeric status code.

Remarks

See Section B.8 for a complete list of status codes and strings.

B.7.2. get_os_type

Purpose

Retrieves the type of the operating system.

Prototype

OS_TYPE get_os_type(void);

© Jungo Ltd. 2005–2011 159

Return Value

Returns the type of the operating system.
If the operating system type is not detected, returns OS_CAN_NOT_DETECT.

B.7.3. ThreadStart

Purpose

Creates a thread.

Prototype

DWORD ThreadStart(
 HANDLE *phThread,
 HANDLER_FUNC pFunc,
 void *pData);

Parameters

Name Type Input/Output

phThread HANDLE* Output

pFunc typedef void (*HANDLER_FUNC)(
 void *pData);

Input

pData VOID* Input

Description

Name Description

phThread Returns the handle to the created thread

pFunc Starting address of the code that the new thread is to execute. (The
handler's prototype – HANDLER_FUNC – is defined in utils.h).

pData Pointer to the data to be passed to the new thread

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.4. ThreadWait

Purpose

Waits for a thread to exit.

© Jungo Ltd. 2005–2011 160

Prototype

void ThreadWait(HANDLE hThread);

Parameters

Name Type Input/Output

hThread HANDLE Input

Description

Name Description

hThread The handle to the thread whose completion is awaited

Return Value

None

B.7.5. OsEventCreate

Purpose

Creates an event object.

Prototype

DWORD OsEventCreate(HANDLE *phOsEvent);

Parameters

Name Type Input/Output

phOsEvent HANDLE* Output

Description

Name Description

phOsEvent The pointer to a variable that receives a handle to the newly created
event object

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005–2011 161

B.7.6. OsEventClose

Purpose

Closes a handle to an event object.

Prototype

void OsEventClose(HANDLE hOsEvent);

Parameters

Name Type Input/Output

hOsEvent HANDLE Input

Description

Name Description

hOsEvent The handle to the event object to be closed

Return Value

None

B.7.7. OsEventWait

Purpose

Waits until a specified event object is in the signaled state or the time-out interval elapses.

Prototype

DWORD OsEventWait(
 HANDLE hOsEvent,
 DWORD dwSecTimeout);

Parameters

Name Type Input/Output

hOsEvent HANDLE Input

dwSecTimeout DWORD Input

© Jungo Ltd. 2005–2011 162

Description

Name Description

hOsEvent The handle to the event object

dwSecTimeout Time-out interval of the event, in seconds.
For an infinite wait, set the timeout to INFINITE.

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.8. OsEventSignal

Purpose

Sets the specified event object to the signaled state.

Prototype

DWORD OsEventSignal(HANDLE hOsEvent);

Parameters

Name Type Input/Output

hOsEvent HANDLE Input

Description

Name Description

hOsEvent The handle to the event object

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.9. OsEventReset

Purpose

Resets the specified event object to the non-signaled state.

© Jungo Ltd. 2005–2011 163

Prototype

DWORD OsEventReset(HANDLE hOsEvent);

Parameters

Name Type Input/Output

hOsEvent HANDLE Input

Description

Name Description

hOsEvent The handle to the event object

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.10. OsMutexCreate

Purpose

Creates a mutex object.

Prototype

DWORD OsMutexCreate(HANDLE *phOsMutex);

Parameters

Name Type Input/Output

phOsMutex HANDLE* Output

Description

Name Description

phOsMutex The pointer to a variable that receives a handle to the newly created
mutex object

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005–2011 164

B.7.11. OsMutexClose

Purpose

Closes a handle to a mutex object.

Prototype

void OsMutexClose(HANDLE hOsMutex);

Parameters

Name Type Input/Output

hOsMutex HANDLE Input

Description

Name Description

hOsMutex The handle to the mutex object to be closed

Return Value

None

B.7.12. OsMutexLock

Purpose

Locks the specified mutex object.

Prototype

DWORD OsMutexLock(HANDLE hOsMutex);

Parameters

Name Type Input/Output

hOsMutex HANDLE Input

© Jungo Ltd. 2005–2011 165

Description

Name Description

hOsMutex The handle to the mutex object to be locked

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.13. OsMutexUnlock

Purpose

Releases (unlocks) a locked mutex object.

Prototype

DWORD OsMutexUnlock(HANDLE hOsMutex);

Parameters

Name Type Input/Output

hOsMutex HANDLE Input

Description

Name Description

hOsMutex The handle to the mutex object to be unlocked

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.14. PrintDbgMessage

Purpose

Sends debug messages to the Debug Monitor.

© Jungo Ltd. 2005–2011 166

Prototype

void PrintDbgMessage(
 DWORD dwLevel,
 DWORD dwSection,
 const char *format
 [, argument]...);

Parameters

Name Type Input/Output

dwLevel DWORD Input

dwSection DWORD Input

format const char* Input

argument Input

Description

Name Description

dwLevel Assigns the level in the Debug Monitor, in which the data will be
declared. If zero, D_ERROR will be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.

dwSection Assigns the section in the Debug Monitor, in which the data will be
declared. If zero, S_MISC will be declared.
For more details please refer to DEBUG_SECTION in windrvr.h.

format Format-control string

argument Optional arguments, limited to 256 bytes

Return Value

None

B.7.15. WD_LogStart

Purpose

Opens a log file.

Prototype

DWORD WD_LogStart(
 const char *sFileName,
 const char *sMode);

© Jungo Ltd. 2005–2011 167

Parameters

Name Type Input/Output

sFileName const char* Input

sMode const char* Input

Description

Name Description

sFileName Name of log file to be opened

sMode Type of access permitted.
For example, NULL or w opens an empty file for writing, and if the
given file exists, its contents are destroyed;
a opens a file for writing at the end of the file (i.e., append).

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

Remarks

Once a log file is opened, all API calls are logged in this file.
You may add your own printouts to the log file by calling WD_LogAdd() [B.7.17].

B.7.16. WD_LogStop

Purpose

Closes a log file.

Prototype

VOID WD_LogStop(void);

Return Value

None

B.7.17. WD_LogAdd

Purpose

Adds user printouts into log file.

© Jungo Ltd. 2005–2011 168

Prototype

VOID DLLCALLCONV WD_LogAdd(
 const char *sFormat
 [, argument]...);

Parameters

Name Type Input/Output

sFormat const char* Input

argument Input

Description

Name Description

sFormat Format-control string

argument Optional format arguments

Return Value

Returns WD_STATUS_SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.8. WinDriver Status Codes

B.8.1. Introduction
Most of the WinDriver functions return a status code, where zero (WD_STATUS_SUCCESS)
means success and a non-zero value means failure.
The Stat2Str() functions can be used to retrieve the status description string for a given status
code. The status codes and their descriptive strings are listed below.

B.8.2. Status Codes Returned by WinDriver

Status Code Description

WD_STATUS_SUCCESS Success

WD_STATUS_INVALID_WD_HANDLE Invalid WinDriver handle

WD_WINDRIVER_STATUS_ERROR Error

WD_INVALID_HANDLE Invalid handle

WD_INVALID_PIPE_NUMBER Invalid pipe number

WD_READ_WRITE_CONFLICT Conflict between read and write operations

WD_ZERO_PACKET_SIZE Packet size is zero

© Jungo Ltd. 2005–2011 169

Status Code Description

WD_INSUFFICIENT_RESOURCES Insufficient resources

WD_UNKNOWN_PIPE_TYPE Unknown pipe type

WD_SYSTEM_INTERNAL_ERROR Internal system error

WD_DATA_MISMATCH Data mismatch

WD_NO_LICENSE No valid license

WD_NOT_IMPLEMENTED Function not implemented

WD_FAILED_ENABLING_INTERRUPT Failed enabling interrupt

WD_INTERRUPT_NOT_ENABLED Interrupt not enabled

WD_RESOURCE_OVERLAP Resource overlap

WD_DEVICE_NOT_FOUND Device not found

WD_WRONG_UNIQUE_ID Wrong unique ID

WD_OPERATION_ALREADY_DONE Operation already done

WD_USB_DESCRIPTOR_ERROR USB descriptor error

WD_SET_CONFIGURATION_FAILED Set configuration operation failed

WD_CANT_OBTAIN_PDO Cannot obtain PDO

WD_TIME_OUT_EXPIRED Timeout expired

WD_IRP_CANCELED IRP operation cancelled

WD_FAILED_USER_MAPPING Failed to map in user space

WD_FAILED_KERNEL_MAPPING Failed to map in kernel space

WD_NO_RESOURCES_ON_DEVICE No resources on the device

WD_NO_EVENTS No events

WD_INVALID_PARAMETER Invalid parameter

WD_INCORRECT_VERSION Incorrect WinDriver version installed

WD_TRY_AGAIN Try again

WD_INVALID_IOCTL Received an invalid IOCTL

WD_OPERATION_FAILED Operation failed

WD_INVALID_32BIT_APP Received an invalid 32-bit IOCTL

WD_TOO_MANY_HANDLES No room to add handle

WD_NO_DEVICE_OBJECT Driver not installed

B.8.3. Status Codes Returned by USBD

The following WinDriver status codes comply with USBD_XXX status codes returned by the
USB stack drivers.

© Jungo Ltd. 2005–2011 170

Status Code Description

USBD Status Types

WD_USBD_STATUS_SUCCESS USBD: Success

WD_USBD_STATUS_PENDING USBD: Operation pending

WD_USBD_STATUS_ERROR USBD: Error

WD_USBD_STATUS_HALTED USBD: Halted

USBD Status Codes
(NOTE: The status codes consist of one of the status types above and an error code, i.e.,
0xXYYYYYYYL, where X=status type and YYYYYYY=error code. The same error codes
may also appear with one of the other status types as well.)

HC (Host Controller) Status Codes
(NOTE: These use the WD_USBD_STATUS_HALTED status type.)

WD_USBD_STATUS_CRC HC status: CRC

WD_USBD_STATUS_BTSTUFF HC status: Bit stuffing

WD_USBD_STATUS_DATA_TOGGLE_MISMATCH HC status: Data toggle mismatch

WD_USBD_STATUS_STALL_PID HC status: PID stall

WD_USBD_STATUS_DEV_NOT_RESPONDING HC status: Device not responding

WD_USBD_STATUS_PID_CHECK_FAILURE HC status: PID check failed

WD_USBD_STATUS_UNEXPECTED_PID HC status: Unexpected PID

WD_USBD_STATUS_DATA_OVERRUN HC status: Data overrun

WD_USBD_STATUS_DATA_UNDERRUN HC status: Data underrun

WD_USBD_STATUS_RESERVED1 HC status: Reserved1

WD_USBD_STATUS_RESERVED2 HC status: Reserved2

WD_USBD_STATUS_BUFFER_OVERRUN HC status: Buffer overrun

WD_USBD_STATUS_BUFFER_UNDERRUN HC status: Buffer Underrun

WD_USBD_STATUS_NOT_ACCESSED HC status: Not accessed

WD_USBD_STATUS_FIFO HC status: FIFO

For Windows only:

WD_USBD_STATUS_XACT_ERROR HC status: The host controller has
set the Transaction Error (XactErr)
bit in the transfer descriptor's
status field

WD_USBD_STATUS_BABBLE_DETECTED HC status: Babble detected

WD_USBD_STATUS_DATA_BUFFER_ERROR HC status: Data buffer error

For Windows CE only:

WD_USBD_STATUS_ISOCH USBD: Isochronous transfer failed

WD_USBD_STATUS_NOT_COMPLETE USBD: Transfer not completed

© Jungo Ltd. 2005–2011 171

Status Code Description

WD_USBD_STATUS_CLIENT_BUFFER USBD: Cannot write to buffer

For all platforms:

WD_USBD_STATUS_CANCELED USBD: Transfer cancelled

Returned by HCD (Host Controller Driver) if a transfer is submitted to an endpoint that is
stalled:

WD_USBD_STATUS_ENDPOINT_HALTED HCD: Transfer submitted to stalled
endpoint

Software Status Codes (NOTE: Only the error bit is set):

WD_USBD_STATUS_NO_MEMORY USBD: Out of memory

WD_USBD_STATUS_INVALID_URB_FUNCTION USBD: Invalid URB function

WD_USBD_STATUS_INVALID_PARAMETER USBD: Invalid parameter

Returned if client driver attempts to close an endpoint/interface or configuration with
outstanding transfers:

WD_USBD_STATUS_ERROR_BUSY USBD: Attempted to close
endpoint/interface/configuration
with outstanding transfer

Returned by USBD if it cannot complete a URB request. Typically this will be returned in the
URB status field (when the IRP is completed) with a more specific error code. The IRP status
codes are indicated in WinDriver's Debug Monitor tool (wddebug_gui / wddebug):

WD_USBD_STATUS_REQUEST_FAILED USBD: URB request failed

WD_USBD_STATUS_INVALID_PIPE_HANDLE USBD: Invalid pipe handle

Returned when there is not enough bandwidth available to open a requested endpoint:

WD_USBD_STATUS_NO_BANDWIDTH USBD: Not enough bandwidth for
endpoint

Generic HC (Host Controller) error:

WD_USBD_STATUS_INTERNAL_HC_ERROR USBD: Host controller error

Returned when a short packet terminates the transfer, i.e., USBD_SHORT_TRANSFER_OK bit
not set:

WD_USBD_STATUS_ERROR_SHORT_TRANSFER USBD: Transfer terminated with
short packet

Returned if the requested start frame is not within USBD_ISO_START_FRAME_RANGE of the
current USB frame (NOTE: The stall bit is set):

WD_USBD_STATUS_BAD_START_FRAME USBD: Start frame outside range

Returned by HCD (Host Controller Driver) if all packets in an isochronous transfer complete
with an error:

WD_USBD_STATUS_ISOCH_REQUEST_FAILED HCD: Isochronous transfer
completed with error

© Jungo Ltd. 2005–2011 172

Status Code Description

Returned by USBD if the frame length control for a given HC (Host Controller) is already taken
by another driver:

WD_USBD_STATUS_FRAME_CONTROL_OWNED USBD: Frame length control
already taken

Returned by USBD if the caller does not own frame length control and attempts to release or
modify the HC frame length:

WD_USBD_STATUS_FRAME_CONTROL_NOT_
OWNED

USBD: Attempted operation on
frame length control not owned by
caller

Additional software error codes added for USB 2.0 (for Windows only) :

WD_USBD_STATUS_NOT_SUPPORTED USBD: API not supported/
implemented

WD_USBD_STATUS_INAVLID_CONFIGURATION_
DESCRIPTOR

USBD: Invalid configuration
descriptor

WD_USBD_STATUS_INSUFFICIENT_RESOURCES USBD: Insufficient resources

WD_USBD_STATUS_SET_CONFIG_FAILED USBD: Set configuration failed

WD_USBD_STATUS_BUFFER_TOO_SMALL USBD: Buffer too small

WD_USBD_STATUS_INTERFACE_NOT_FOUND USBD: Interface not found

WD_USBD_STATUS_INAVLID_PIPE_FLAGS USBD: Invalid pipe flags

WD_USBD_STATUS_TIMEOUT USBD: Timeout

WD_USBD_STATUS_DEVICE_GONE USBD: Device gone

WD_USBD_STATUS_STATUS_NOT_MAPPED USBD: Status not mapped

Extended isochronous error codes returned by USBD
These errors appear in the packet status field of an isochronous transfer:

WD_USBD_STATUS_ISO_NOT_ACCESSED_BY_HW USBD: The controller did not
access the TD associated with this
packet

WD_USBD_STATUS_ISO_TD_ERROR USBD: Controller reported an
error in the TD

WD_USBD_STATUS_ISO_NA_LATE_USBPORT USBD: The packet was submitted
in time by the client but failed to
reach the miniport in time

WD_USBD_STATUS_ISO_NOT_ACCESSED_LATE USBD: The packet was not sent
because the client submitted it too
late to transmit

© Jungo Ltd. 2005–2011 173

Appendix C
Troubleshooting and Support
Please refer to http://www.jungo.com/st/support/support_windriver.html for additional resources
for developers, including:

• Technical documents

• FAQs

• Samples

• Quick start guides

http://www.jungo.com/st/support/support_windriver.html

© Jungo Ltd. 2005–2011 174

Appendix D
Evaluation Version Limitations

D.1. Windows WinDriver Evaluation
Limitations
• Each time WinDriver is activated, an Unregistered message appears.

• When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

• DriverWizard [5]:

• Each time DriverWizard is activated, an Unregistered message appears.

• An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

• WinDriver will function for only 30 days after the original installation.

D.2. Windows CE WinDriver Evaluation
Limitations
• Each time WinDriver is activated, an Unregistered message appears.

• The WinDriver CE Kernel (windrvr6.dll) will operate for no more than 60 minutes at a time.

• DriverWizard [5] (used on a host Windows 7 / Vista / Server 2008 / Server 2003 / XP / 2000
PC):

• Each time DriverWizard is activated, an Unregistered message appears.

• An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

© Jungo Ltd. 2005–2011 175

D.3. Linux WinDriver Evaluation Limitations
• Each time WinDriver is activated, an Unregistered message appears.

• DriverWizard [5]:

• Each time DriverWizard is activated, an Unregistered message appears.

• An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

• WinDriver's kernel module will work for no more than 60 minutes at a time. To continue
working, the WinDriver kernel module must be reloaded (unload and load the module) using
the following commands:

The following commands must be executed with root privileges.

To unload:
/sbin/modprobe -r windrvr6

To load:
<path to wdreg> windrvr6

wdreg is provided in the WinDriver/util directory.

© Jungo Ltd. 2005–2011 176

Appendix E
Purchasing WinDriver
Fill in the order form found in Start | WinDriver | Order Form on your Windows start menu,
and send it to Jungo via email, fax or mail (see details below).

Your WinDriver package will be sent to you via courier or registered mail. The WinDriver license
string will be emailed to you immediately.

Email Web Site

Sales / Information: sales@jungo.com http://www.jungo.com

License Registration: wd_license@jungo.com

Phone Fax

Worldwide: +972 74 721 2121 Worldwide: +972 74 721 2122

USA (toll free): +1 877 514 0537 USA (toll free): +1 877 514 0538

Mailing Address

Jungo Ltd.
1 Hamachshev St.
P.O. Box 8493
Netanya 42504
Israel

mailto:sales@jungo.com
http://www.jungo.com
mailto:wd_license@jungo.com

© Jungo Ltd. 2005–2011 177

Appendix F
Distributing Your Driver – Legal
Issues
WinDriver is licensed per-seat. The WinDriver license allows one developer on a single computer
to develop an unlimited number of device drivers, and to freely distribute the created drivers
without royalties, as outlined in the license agreement in the WinDriver/docs/license.pdf file.

© Jungo Ltd. 2005–2011 178

Appendix G
Additional Documentation
Updated Manuals

The most updated WinDriver user manuals can be found on Jungo's site at:
http://www.jungo.com/st/support/support_windriver.html.

Version History

If you wish to view WinDriver version history, refer to the WinDriver Release Notes: http://
www.jungo.com/st/wdver.html. The release notes include a list of the new features, enhancements
and fixes that have been added in each WinDriver version.

Technical Documents

For additional information, refer to the WinDriver Technical Documents database:
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html.
This database includes detailed descriptions of WinDriver's features, utilities and APIs and their
correct usage, troubleshooting of common problems, useful tips and answers to frequently asked
questions.

http://www.jungo.com/st/support/support_windriver.html
http://www.jungo.com/st/wdver.html
http://www.jungo.com/st/wdver.html
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html

	WinDriver™ USB User's Manual
	Table of Contents
	List of Figures
	Chapter 1. WinDriver Overview
	1.1. Introduction to WinDriver
	1.2. Background
	1.2.1. The Challenge
	1.2.2. The WinDriver Solution

	1.3. Conclusion
	1.4. WinDriver Benefits
	1.5. WinDriver Architecture
	1.6. What Platforms Does WinDriver Support?
	1.7. Limitations of the Different Evaluation Versions
	1.8. How Do I Develop My Driver with WinDriver?
	1.8.1. On Windows and Linux
	1.8.2. On Windows CE

	1.9. What Does the WinDriver Toolkit Include?
	1.9.1. WinDriver Modules
	1.9.2. Utilities
	1.9.3. WinDriver's Specific Chipset Support
	1.9.4. Samples

	1.10. Can I Distribute the Driver Created with WinDriver?

	Chapter 2. Understanding Device Drivers
	2.1. Device Driver Overview
	2.2. Classification of Drivers According to Functionality
	2.2.1. Monolithic Drivers
	2.2.2. Layered Drivers
	2.2.3. Miniport Drivers

	2.3. Classification of Drivers According to Operating Systems
	2.3.1. WDM Drivers
	2.3.2. VxD Drivers
	2.3.3. Unix Device Drivers
	2.3.4. Linux Device Drivers

	2.4. The Entry Point of the Driver
	2.5. Associating the Hardware with the Driver
	2.6. Communicating with Drivers

	Chapter 3. WinDriver USB Overview
	3.1. Introduction to USB
	3.2. WinDriver USB Benefits
	3.3. USB Components
	3.4. Data Flow in USB Devices
	3.5. USB Data Exchange
	3.6. USB Data Transfer Types
	3.6.1. Control Transfer
	3.6.2. Isochronous Transfer
	3.6.3. Interrupt Transfer
	3.6.4. Bulk Transfer

	3.7. USB Configuration
	3.8. WinDriver USB
	3.9. WinDriver USB Architecture
	3.10. Which Drivers Can I Write with WinDriver USB?

	Chapter 4. Installing WinDriver
	4.1. System Requirements
	4.1.1. Windows System Requirements
	4.1.2. Windows CE System Requirements
	4.1.3. Linux System Requirements

	4.2. WinDriver Installation Process
	4.2.1. Windows WinDriver Installation Instructions
	4.2.2. Windows CE WinDriver Installation Instructions
	4.2.2.1. Installing WinDriver CE when Building New CE-Based Platforms
	4.2.2.2. Installing WinDriver CE when Developing Applications for Windows CE Computers
	4.2.2.3. Windows CE Installation Note

	4.2.3. Linux WinDriver Installation Instructions
	4.2.3.1. Preparing the System for Installation
	4.2.3.2. Installation
	4.2.3.3. Restricting Hardware Access on Linux

	4.3. Upgrading Your Installation
	4.4. Checking Your Installation
	4.4.1. Windows and Linux Installation Check
	4.4.2. Windows CE Installation Check

	4.5. Uninstalling WinDriver
	4.5.1. Windows WinDriver Uninstall Instructions
	4.5.2. Linux WinDriver Uninstall Instructions

	Chapter 5. Using DriverWizard
	5.1. An Overview
	5.2. DriverWizard Walkthrough
	5.2.1. Logging WinDriver API Calls
	5.2.2. DriverWizard Logger
	5.2.3. Automatic Code Generation
	5.2.3.1. Generating the Code
	5.2.3.2. The Generated USB C Code
	5.2.3.3. The Generated Visual Basic and Delphi Code
	5.2.3.4. The Generated C# and Visual Basic .NET Code

	5.2.4. Compiling the Generated Code
	5.2.4.1. Windows and Windows CE Compilation
	5.2.4.2. Linux Compilation

	5.2.5. Bus Analyzer Integration – Ellisys Visual USB

	Chapter 6. Developing a Driver
	6.1. Using DriverWizard to Build a Device Driver
	6.2. Writing the Device Driver Without DriverWizard
	6.2.1. Include the Required WinDriver Files
	6.2.2. Write Your Code
	6.2.3. Configure and Build Your Code

	6.3. Developing Your Driver on Windows CE Platforms
	6.4. Developing in Visual Basic and Delphi
	6.4.1. Using DriverWizard
	6.4.2. Samples
	6.4.3. Creating your Driver

	Chapter 7. Debugging Drivers
	7.1. User-Mode Debugging
	7.2. Debug Monitor
	7.2.1. The wddebug_gui Utility
	7.2.1.1. Running wddebug_gui for a Renamed Driver

	7.2.2. The wddebug Utility
	7.2.2.1. Console-Mode wddebug Execution
	7.2.2.2. Windows CE GUI wddebug Execution

	Chapter 8. Enhanced Support for Specific Chipsets
	8.1. Overview
	8.2. Developing a Driver Using the Enhanced Chipset Support

	Chapter 9. USB Transfers
	9.1. Overview
	9.2. USB Control Transfers
	9.2.1. USB Control Transfers Overview
	9.2.1.1. Control Data Exchange
	9.2.1.2. More About the Control Transfer
	9.2.1.3. The Setup Packet
	9.2.1.4. USB Setup Packet Format
	9.2.1.5. Standard Device Request Codes
	9.2.1.6. Setup Packet Example

	9.2.2. Performing Control Transfers with WinDriver
	9.2.2.1. Control Transfers with DriverWizard
	9.2.2.2. Control Transfers with WinDriver API

	9.3. Functional USB Data Transfers
	9.3.1. Functional USB Data Transfers Overview
	9.3.2. Single-Blocking Transfers
	9.3.2.1. Performing Single-Blocking Transfers with WinDriver

	9.3.3. Streaming Data Transfers
	9.3.3.1. Performing Streaming with WinDriver

	Chapter 10. Dynamically Loading Your Driver
	10.1. Why Do You Need a Dynamically Loadable Driver?
	10.2. Windows Dynamic Driver Loading
	10.2.1. Windows Driver Types
	10.2.2. The wdreg Utility
	10.2.2.1. Overview

	10.2.3. Dynamically Loading/Unloading windrvr6.sys INF Files

	10.3. Linux Dynamic Driver Loading
	10.4. Windows Mobile Dynamic Driver Loading

	Chapter 11. Distributing Your Driver
	11.1. Getting a Valid License for WinDriver
	11.2. Windows Driver Distribution
	11.2.1. Preparing the Distribution Package
	11.2.2. Installing Your Driver on the Target Computer

	11.3. Windows CE Driver Distribution
	11.3.1. Distribution to New Windows CE Platforms
	11.3.2. Distribution to Windows CE Computers

	11.4. Linux Driver Distribution
	11.4.1. Kernel Modules
	11.4.2. User-Mode Hardware Control Application/Shared Objects
	11.4.3. Installation Script

	Chapter 12. Driver Installation – Advanced Issues
	12.1. Windows INF Files
	12.1.1. Why Should I Create an INF File?
	12.1.2. How Do I Install an INF File When No Driver Exists?
	12.1.3. How Do I Replace an Existing Driver Using the INF File?

	12.2. Renaming the WinDriver Kernel Driver
	12.2.1. Windows Driver Renaming
	12.2.2. Linux Driver Renaming

	12.3. Digital Driver Signing and Certification – Windows 7/Vista/Server 2008/Server 2003/XP/2000
	12.3.1. Overview
	12.3.1.1. Authenticode Driver Signature
	12.3.1.2. WHQL Driver Certification

	12.3.2. Driver Signing and Certification of WinDriver-Based Drivers
	12.3.2.1. WHQL DTM Test Notes

	12.4. Windows XP Embedded WinDriver Component

	Appendix A. 64-Bit Operating Systems Support
	A.1. Supported 64-Bit Architectures
	A.2. Support for 32-Bit Applications on 64-Bit Windows and Linux Platforms
	A.3. 64-Bit and 32-Bit Data Types

	Appendix B. WinDriver USB Host API Reference
	B.1. WD_DriverName
	B.2. WinDriver USB (WDU) Library Overview
	B.2.1. Calling Sequence for WinDriver USB
	B.2.2. Upgrading from the WD_xxx USB API to the WDU_xxx API

	B.3. USB User Callback Functions
	B.3.1. WDU_ATTACH_CALLBACK
	B.3.2. WDU_DETACH_CALLBACK
	B.3.3. WDU_POWER_CHANGE_CALLBACK

	B.4. USB Functions
	B.4.1. WDU_Init
	B.4.2. WDU_SetInterface
	B.4.3. WDU_GetDeviceAddr
	B.4.4. WDU_GetDeviceRegistryProperty
	B.4.5. WDU_GetDeviceInfo
	B.4.6. WDU_PutDeviceInfo
	B.4.7. WDU_Uninit
	B.4.8. Single-Blocking Transfer Functions
	B.4.8.1. WDU_Transfer
	B.4.8.2. WDU_HaltTransfer
	B.4.8.3. WDU_TransferDefaultPipe
	B.4.8.4. WDU_TransferBulk
	B.4.8.5. WDU_TransferIsoch
	B.4.8.6. WDU_TransferInterrupt

	B.4.9. Streaming Data Transfer Functions
	B.4.9.1. WDU_StreamOpen
	B.4.9.2. WDU_StreamStart
	B.4.9.3. WDU_StreamRead
	B.4.9.4. WDU_StreamWrite
	B.4.9.5. WDU_StreamFlush
	B.4.9.6. WDU_StreamGetStatus
	B.4.9.7. WDU_StreamStop
	B.4.9.8. WDU_StreamClose

	B.4.10. WDU_ResetPipe
	B.4.11. WDU_ResetDevice
	B.4.12. WDU_SelectiveSuspend
	B.4.13. WDU_Wakeup
	B.4.14. WDU_GetLangIDs
	B.4.15. WDU_GetStringDesc

	B.5. USB Data Types
	B.5.1. WD_DEVICE_REGISTRY_PROPERTY Enumeration
	B.5.2. USB Structures
	B.5.2.1. WDU_MATCH_TABLE Structure
	B.5.2.2. WDU_EVENT_TABLE Structure
	B.5.2.3. WDU_DEVICE Structure
	B.5.2.4. WDU_CONFIGURATION Structure
	B.5.2.5. WDU_INTERFACE Structure
	B.5.2.6. WDU_ALTERNATE_SETTING Structure
	B.5.2.7. WDU_DEVICE_DESCRIPTOR Structure
	B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structure
	B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structure
	B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structure
	B.5.2.11. WDU_PIPE_INFO Structure

	B.6. General WD_xxx Functions
	B.6.1. Calling Sequence WinDriver – General Use
	B.6.2. WD_Open
	B.6.3. WD_Version
	B.6.4. WD_Close
	B.6.5. WD_Debug
	B.6.6. WD_DebugAdd
	B.6.7. WD_DebugDump
	B.6.8. WD_Sleep
	B.6.9. WD_License

	B.7. User-Mode Utility Functions
	B.7.1. Stat2Str
	B.7.2. get_os_type
	B.7.3. ThreadStart
	B.7.4. ThreadWait
	B.7.5. OsEventCreate
	B.7.6. OsEventClose
	B.7.7. OsEventWait
	B.7.8. OsEventSignal
	B.7.9. OsEventReset
	B.7.10. OsMutexCreate
	B.7.11. OsMutexClose
	B.7.12. OsMutexLock
	B.7.13. OsMutexUnlock
	B.7.14. PrintDbgMessage
	B.7.15. WD_LogStart
	B.7.16. WD_LogStop
	B.7.17. WD_LogAdd

	B.8. WinDriver Status Codes
	B.8.1. Introduction
	B.8.2. Status Codes Returned by WinDriver
	B.8.3. Status Codes Returned by USBD

	Appendix C. Troubleshooting and Support
	Appendix D. Evaluation Version Limitations
	D.1. Windows WinDriver Evaluation Limitations
	D.2. Windows CE WinDriver Evaluation Limitations
	D.3. Linux WinDriver Evaluation Limitations

	Appendix E. Purchasing WinDriver
	Appendix F. Distributing Your Driver – Legal Issues
	Appendix G. Additional Documentation

