

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2013 Spansion Inc. All rights reserved. Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] EclipseTM, ORNANDTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.

F²MC-8FX FAMILY 8-BIT MICROCONTROLLER MB95200 SERIES

HOW TO MAKE PRPGRAMMING ON TARGET BOARD

APPLICATION NOTE

Revision History

Date	Author	Change of Records
2009-2-10	Benjamin. Yang	V1.0, First draft
2009-2-11	Benjamin. Yang	V1.1, Modify
2010-1-11	Ivan. Xiao	V1.1, Add a note to page 14

This manual contains 17 pages.

- 1. The products described in this manual and the specifications thereof may be changed without prior notice. To obtain up-to-date information and/or specifications, contact your Fujitsu sales representative or Fujitsu authorized dealer.
- 2. Fujitsu will not be liable for infringement of copyright, industrial property right, or other rights of a third party caused by the use of information or drawings described in this manual.
- 3. The contents of this manual may not be transferred or copied without the express permission of Fujitsu.
- 4. The products contained in this manual are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.
- 5. Some of the products described in this manual may be strategic materials (or special technology) as defined by the Foreign Exchange and Foreign Trade Control Law. In such cases, the products or portions thereof must not be exported without permission as defined under the law.
- © 2008 Fujitsu Semiconductor (Shanghai) Co., Ltd.

CONTENTS

RI	EVISI	ION HISTORY	2			
1	INTE	RODUCTION	4			
2	APP	APPLICATION ENVIRONMENT				
	2.1	Programming Tool	5			
	2.2	SOFTUNE	5			
	2.3	USB Programmer	6			
3	MCU	U PRODUCTS	7			
4	HARDWARE DESIGN					
	4.1	Single Flash MCU Programming Circuit	8			
	4.2	Dual Flash MCU Programming Circuit	9			
5 PROGRAMMING PROCESS						
	5.1	Use MB95200 Series USB Programmer to Program	10			
		5.1.1 Hardware Connection	10			
		5.1.2 Programming Step	10			
	5.2	Use F2MC-8L/8FX SOFTUNE to Program	12			
6	TRO	DUBLE SHOOTING	15			
	6.1	Solve the Error Message Window from USB Programmer	15			
	6.2	Solve the Error Message Window from SOFTUNE	15			
7	7 ADDITIONAL INFORMATION					
8	APP	PENDIX	17			
	8.1	Tables	17			
	8.2	Figures	17			

1 Introduction

Programming to target board is a very important step for project design. This document shows you how to make programming to target board. In this part, you can realize the programming function process.

The programming interface in this document could be used as an in-circuit debug and in-circuit programming tool.

2 Application Environment

This chapter introduces the application environment of MB95200H/210H SOP20 PGM adaptor.

2.1 Programming Tool

The debug tool is BGMA (BGM Adaptor), the type of it is MB2146-08-E, as below picture. It can be gotten from MB95200 MCU Starter Kit (PN: MB2146-410-01-E).

Figure 2-1 BGM Adaptor

2.2 SOFTUNE

SOFTUNE is used to program and debug, as software development environment. The version of it is F2MC-8L/8FX SOFTUNE Workbench V30L31, as below picture. It can be gotten from MB95200 MCU Starter Kit (PN: MB2146-410-01-E), or downloaded from website: http://www.fujitsu.com/cn/fss/services/mcu/tools.html

Figure 2-2 SOFTUNE Version

2.3 USB Programmer

The MB95200 series USB programmer is as below picture. It can be downloaded from Web: http://www.fujitsu.com/cn/fss/services/mcu/tools.html

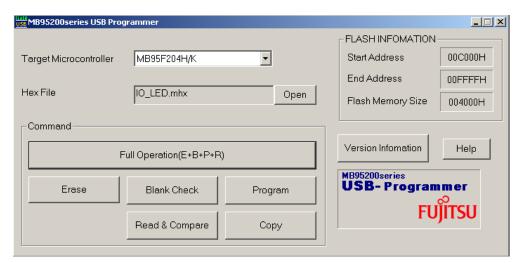


Figure 2-3 MB95200 Series USB Programmer

3 MCU Products

This chapter introduces MCU product which is suit to this document.

This in-circuit programming circuit have some differences between single flash MCU and dual flash MCU. This part will list you the two types of MCU as follow.

Table 3-1 MCU Products

Series	Flash Type	Chip list	Series	Flash Type	Chip list
	1) 0	MB95F202K		1)	MB95F262K
	Single Flash		MB95F260H	Dual Flash	
		MB95F202H			MB95F262H
MB95F200H		MB95F203K			MB95F263K
		MB95F203H			MB95F263H
		MB95F204K			MB95F264K
		MB95F204H			MB95F264H
	Single Flash	MB95F212K	MB95F270H	Dual Flash	MB95F272K
		MB95F212H			MB95F272H
MB95F210H		MB95F213K			MB95F273K
		MB95F213H			MB95F273H
		MB95F214K			MB95F274K
		MB95F214H			MB95F274H
	Single Flash	MB95F222K	MB95F280H	Dual Flash	MB95F282K
		MB95F222H			MB95F282H
MB95F220H		MB95F223K			MB95F283K
		MB95F223H			MB95F283H
					MB95F284K
					MB95F284H
					MB95F332K
					MB95F332H
				Dual	MB95F333K
			MB95F330H	Flash	MB95F333H
					MB95F334K
					MB95F334H

4 Hardware Design

This chapter introduces programming steps using either MB95200 series USB programmer or F2MC-8L/8FX SOFTUNE Workbench V30L31.

As Chapter 3 shows that the MCUs have two types, the debug circuit have any differences. This chapter will give you the different types MCU programming circuit.

4.1 Single Flash MCU Programming Circuit

The follows figure shows the circuit diagram of the in-system programming interface. To design this in-system programmer interface, we need four pins, UVCC_EV, GND, RSTIN, and DBG. (RST_OUT if necessary, please add it).

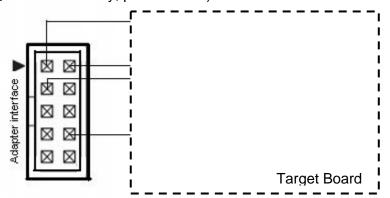


Figure 4-1 Basic Circuit for Single Flash MCU

Components Recommendation:

D1: VF < 0.3V when IF = 1mA. E.g. LL103A, 1SS294

Following list shows the functions of the interface connector.

- (1) J1 is a 10 pins connector which is the interface of this circuit.
- (2) The write voltage (VCC = 4.5V to 5.5V) is supplied from the user system. UVCC_EV and DBG pin timing controls the PGM mode entry.
- (3) Pin2 of the connector used to connect the GND.
- (4) Programmer provides 10V directly to RSTX pin during flash erase/write operation. If it is pulled high in user system, please consider to add a low-drop diode for separate H voltage.
- (5) DBG pin provides 1-line UART communication with the Programmer. Serial write mode can be set if provide special timing of DBG and VCC pin.

4.2 Dual Flash MCU Programming Circuit

The follows figure shows the circuit diagram of the in-system debug interface. To design this in-system programmer interface, we need three pins, UVCC_EV, GND and DBG. (RST_OUT if necessary please add)

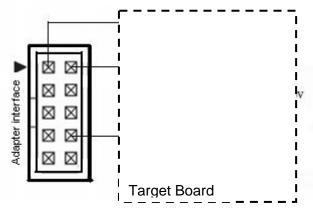


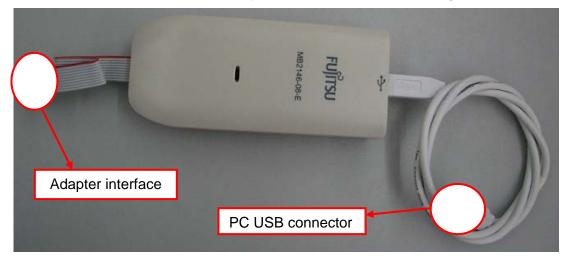
Figure 4-2 Basic Circuit for Single Flash MCU

Components Recommendation:

D1: VF < 0.3V when IF = 1mA. E.g. LL103A, 1SS294

Following list shows the functions of the interface connector.

- (1) J1 is a 10 pins connector which is the interface of this circuit.
- (2) The write voltage (VCC = 4.5V to 5.5V) is supplied from the user system. UVCC_EV and DBG pin timing controls the PGM mode entry.
- (3) Pin2 of the connector used to connect the GND.
- (4) DBG pin provides 1-line UART communication with the Programmer. Serial write mode can be set if provide special timing of DBG and VCC pin.



5 Programming Process

5.1 Use MB95200 Series USB Programmer to Program

5.1.1 Hardware Connection

(1) Connect BGM adapter with computer by USB, then connect it with target board.

(2) Power up MCU on the target board. Please note: user must give the power supply to the target board after connecting target board with BGM adaptor.

5.1.2 Programming Step

- (1) Open MB95200 series USB programmer
- (2) Select MCU type
- (3) Select mhx file at the path: Current project DIR\Debug\ABS

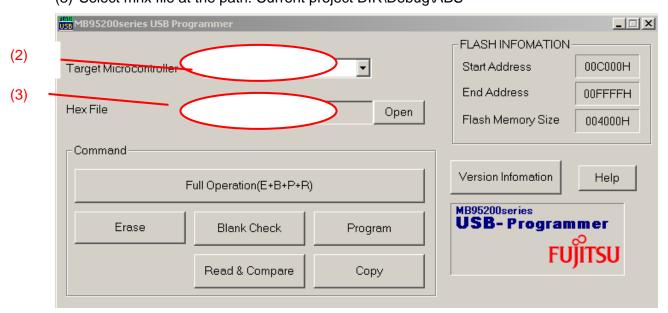


Figure 5-1 Select MCU Type and Hex File

(4) Click Full Operation to do programming.

Figure 5-2 Click Full Operation

(5) The USB programmer also provides single operation, including Erase, Blank Check, Program, Read & Compare and Copy.

5.2 Use F2MC-8L/8FX SOFTUNE to Program

- (1) Connect BGMA to PC
- (2) Connect EV-board to BGMA
- (3) Power on the EV-board

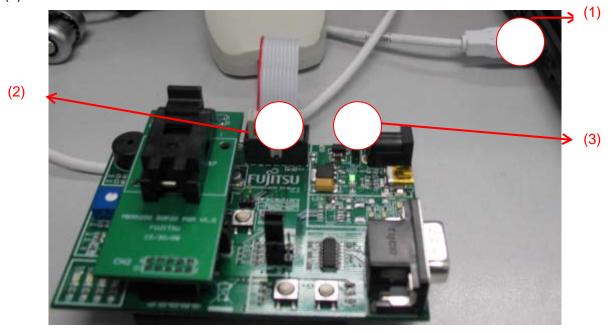


Figure 5-3 Indicate Process 1-3

(4) Open a project (E.g. IO_LED) using SOFTUNE

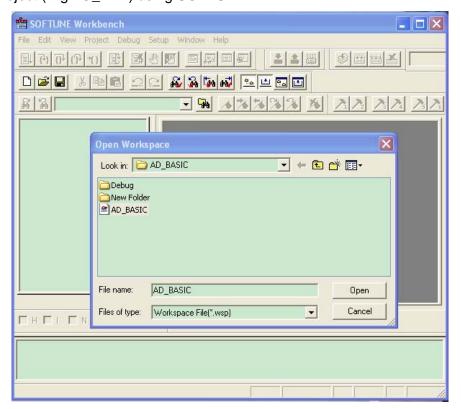


Figure 5-4 Open Demo Project

(5) Start debug.

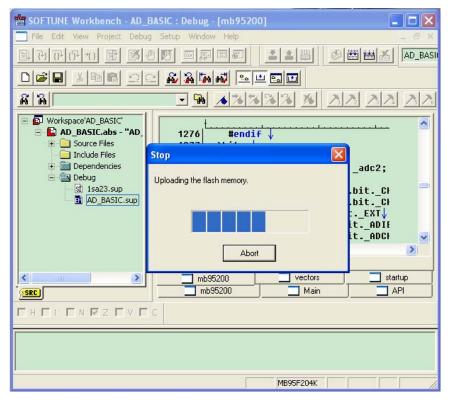


Figure 5-5 Start Debug

(6) Run a step, and the system begin to program. (Press F5 or F6 on the keyboard or click step in or step over in the workbench)

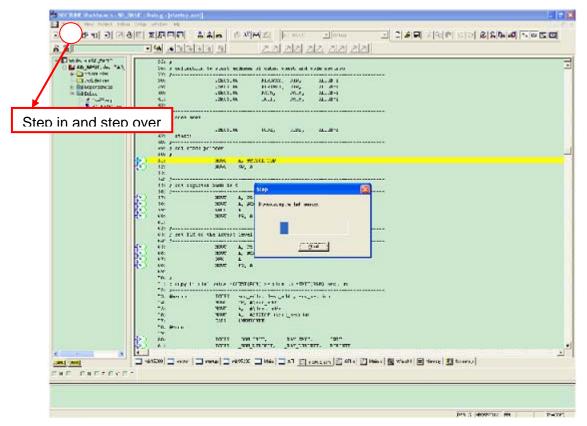


Figure 5-6 Begin to Program

Note: SOFTUNE will change watchdog bit in MCU with watchdog setting(as follows), but USB programmer (include dedicated software) will not, so when use SOFTUNE to debugging and programming, please pay more attention on watchdog setting, below are 2 conditions to use watchdog:

- 1. Use SOFTUNE debugging and programming:
- -Set SOFTUNE watchdog setting the same as code setting, enable or disable
- 2. Use USB programmer (include dedicated software) to programming:
- -Just enable watchdog or disable watchdog in code.

For how to use watchdog, please refer to "MCU-AN-500013-E-11 (Watchdog Timer Application Note)"

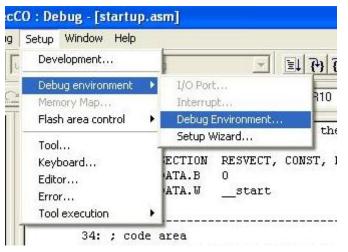


Figure 5-7 Watchdog Setting Menu

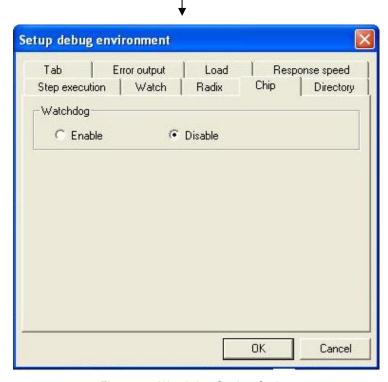


Figure 5-8 Watchdog Setting Option

6 Trouble Shooting

6.1 Solve the Error Message Window from USB Programmer

(1) When using the USB programmer, please choose the right target microcontroller type. Or error occurs as below.

Figure 6-1 Error about MCU Selection

(2) When user connects the power supply before BGM adapter connector, the error as below will occur.

Figure 6-2 Error about Connecting Order by Using USB Programmer

6.2 Solve the Error Message Window from SOFTUNE

(1) When user connects the power supply before BGM adapter connector, the error as below will occur.

Figure 6-3 Error about Connecting by Using SOFTUNE

7 Additional Information

For more information about how to use MB9595200H/210H EV-board, BGM Adaptor and SOFTUNE, please refer to SKT MB2146-410-01-E User Manual, or visit following websites:

English version:

http://www.fujitsu.com/cn/fsp/services/mcu/mb95/application_notes.html

Simplified Chinese Version:

http://www.fujitsu.com/cn/fss/services/mcu/mb95/application_notes.html

8 Appendix

8.1 Tables

Table 3-1 MCU Products	7
8.2 Figures	
Figure 2-1 BGM Adaptor	5
Figure 2-2 SOFTUNE Version	5
Figure 2-3 MB95200 Series USB Programmer	6
Figure 4-1 Basic Circuit for Single Flash MCU	8
Figure 4-2 Basic Circuit for Single Flash MCU	9
Figure 5-1 Select MCU Type and Hex File	10
Figure 5-2 Click Full Operation	11
Figure 5-3 Indicate Process 1-3	12
Figure 5-4 Open Demo Project	12
Figure 5-5 Start Debug	13
Figure 5-6 Begin to Program	13
Figure 5-7 Watchdog Setting Menu	14
Figure 5-8 Watchdog Setting Option	14
Figure 6-1 Error about MCU Selection	15
Figure 6-2 Error about Connecting Order by Using USB Programmer	15
Figure 6-3 Error about Connecting by Using SOFTUNE	15