
Programmers Manual – Tracker Programming Interface

emScon 2.1

Programmers Manual

emScon TPI

Metrology Division

1

Preface
 These are original instructions and part of the
product. Keep for future reference and pass on to
subsequent holder/user of product. Read
instructions before setting-up and operating the
hard- and software. The emScon TPI reference
manual and the emScon TPI user manual should
always be used together.
This reference manual contains information
protected by copyright and subject to change
without notice. No part of this reference manual may
be reproduced in any form without prior and
written consent from Leica Geosystems AG.
Leica Geosystems AG shall not be responsible for
technical or editorial errors or omissions.
Product names are trademarks or registered
trademarks of their respective companies.
The software described herein is furnished under
license and non-disclosure agreement, and may be
used only in accordance with the terms of the sales
agreement.
© Leica Geosystems AG
Feedback
Your feedback is important as we strive to improve
the quality of our documentation. We request you to
make specific comments as to where you envisage
scope for improvement. Please use the following E-
Mail address to send in suggestions:
documentation.metrology@leica-geosystems.com
Software and version emScon TPI; V2.1
Manual update April 2005
Manual order number None

2

Preface
Contact
Leica Geosystems AG
Metrology Division
Moenchmattweg 5
5035 Unterentfelden
Switzerland
Phone ++41 +62 737 67 67
Fax ++41 +62 737 68 34
www.leica-geosystems.com/ims/index.htm

3

1 Contents

1 Contents

2 Introduction
2.1 Prerequisites..8

2.1.1 Tracker Basics/Terminology8
2.1.2 Abbreviations..8
2.1.3 Hardware ..8
2.1.4 Programming Environment9
2.1.5 TCP/IP Protocol..9

2.2 TCP/IP Communication.................................9
2.2.1 Socket Functions ..9

2.3 Tracker Programming Interface11
2.3.1 Platform and Programming Language
Issues 11
2.3.2 Prefixes and Suffixes used in Type Names12
2.3.3 Asynchronous Communication13
2.3.4 Working Conditions...14
2.3.5 Coordinate Parameter Triplets..........................16
2.3.6 Persistency ...17
2.3.7 Default Settings ..17
2.3.8 Version Backward Compatibility18
2.3.9 Sample Code..20

2.4 Application Initial Steps..............................22
2.4.1 Essential Steps...22
2.4.2 Command Sequence for 3D Measurements.....23
2.4.3 Command Sequence for 6DOF
Measurements...25
2.4.4 Initial Steps Description in Detail27

3 C - Interface
3.1 Low-level TPI Programming37

3.1.1 Preconditions..37
3.1.2 Recommendation ...37
3.1.3 Byte Alignment ...38
3.1.4 Little/Big Endians..38
3.1.5 Preprocessor Statements39
3.1.6 TPI 'Boolean' Data Type39
3.1.7 Enumeration-Type Members Numerical
representation..40
3.1.8 Basic C Data Type size of TPI Structures.........40

3.2 Communication Basics...............................40
3.2.1 Commands ...40
3.2.2 Command Answers ..41
3.2.3 Error Events..45

4

3.2.4 System Status Change Events45
3.2.5 3D / 6 DOF – Related commands.....................46

3.3 C- Language TPI Reference........................47
3.3.1 Constants ...47
3.3.2 Enumeration Types...48

3.4 Data Structures..133
3.4.1 Basic Data Structures.....................................133
3.4.2 Packet Data Structures...................................150

3.5 C - Language TPI Programming
Instructions ...205

3.5.1 TCP/IP Connection...205
3.5.2 Sending Commands205
3.5.3 Initialization Macros ..206
3.5.4 Excurse: C++ Initialization207
3.5.5 Answers from Tracker Server207
3.5.6 Asynchronous Communication208
3.5.7 DataArrived Notification208
3.5.8 Data arrival 'Traffic Jams'208
3.5.9 PacketHeader Masking...................................209
3.5.10 Command Subtype Switch..........................210

3.6 C Language TPI - Samples212
3.6.1 Sample 3 ..212

4 C++ Interface
4.1 Class- based TPI Programming216

4.1.1 Preconditions..216
4.1.2 Platform Issues...217
4.1.3 TCP/IP ..217

4.2 C++ Language TPI Reference...................217
4.2.1 CESAPICommand class.................................217
4.2.2 CESAPIReceive class219

4.3 C++ Language TPI Programming
Instructions ...221

4.3.1 Sending Data..221
4.3.2 Receiving Data ...221
4.3.3 Class Design Issues222
4.3.4 Data Structure Wrapper Classes223
4.3.5 CESAPICommand..224
4.3.6 CESAPIReceive..226
4.3.7 Queued and Scattered Data227
4.3.8 Partial Settings Changes231
4.3.9 Asynchronous Programming Issues232

4.4 C++ Language TPI Samples235
4.4.1 Sample 4 ..235
4.4.2 Sample 9 ..238
4.4.3 Sample 12 ..239

5 COM - Interface
5.1 High-level TPI Programming242

5.1.1 Drawbacks..242
5.1.2 Introduction...242

5.2 COM TPI Programming Instructions244
5.2.1 VisualBasic and VBA Applications..................244
5.2.2 C++ Applications ..247

5

5.2.3 Notification Method...248
5.2.4 Exceptions and Return Types.........................250
5.2.5 COM TPI Programming Languages253
5.2.6 Proper Interface Selection255
5.2.7 Type- Library ..257
5.2.8 COM TPI Reference258
5.2.9 Registering COM Objects259
5.2.10 Synchronous versus Asynchronous
Interface 260
5.2.11 Multi- Tracker Applications..........................261
5.2.12 Visual Basic Boolean variable evaluation....261
5.2.13 Reading Data Blocks with Visual Basic.......262
5.2.14 VBA Macro-Language Support264
5.2.15 Continuous measurements and VBA266
5.2.16 Scripting Language Support........................269
5.2.17 Exception Handling for Non- Microsoft
Clients 269

5.3 COM TPI Samples......................................270
5.3.1 Sample 5 ..270
5.3.2 Sample 7 ..278
5.3.3 Sample 8 ..285
5.3.4 Sample 14 ..285
5.3.5 Sample 15 ..286
5.3.6 Sample 18 ..286
5.3.7 Sample 20 ..286

6 C# - Interface
6.1 Client Programming with C#288

6.1.1 Introduction...288
6.1.2 C# Application Programming288
6.1.3 Sample 16 ..289
6.1.4 Sample 17 ..289

7 Base User Interface (BUI)
7.1 Client Programming and BUI....................293

7.1.1 Measurement BUI versus Compensation
Applications ...293
7.1.2 EmScon Basic User Interface (BUI)293
7.1.3 Integration of BUI into applications294
7.1.4 Sample 13 ..294

8 Selected Commands in Detail
8.1 Special Functions......................................296

8.1.1 Get Reflectors Command296
8.1.2 Still Image Command300
8.1.3 Live Image display..305
8.1.4 Orient To Gravity Procedure...........................310
8.1.5 Transformation Procedure311
8.1.6 Automated Intermediate Compensation313
8.1.7 Two Face Field-Check....................................317

9 Mathematics
9.1 Point accuracy ...322

6

9.1.1 A priori accuracy...322
9.1.2 A posteriori accuracy323
9.1.3 Transformation of covariance matrices...........323

9.2 Orientation and Transformation323
9.2.1 Orientation ..324
9.2.2 Transformation ...325
9.2.3 Nominal and actual coordinates325
9.2.4 Orientation parameters326
9.2.5 Transformation parameters327
9.2.6 Input to transformation computation327
9.2.7 Output of transformation computation328
9.2.8 Examples..330

9.3 T-Probe ...332

10 Appendix A
10.1 TRACKER ERROR NUMBERS334

10.1.1 System Errors ...334
10.1.2 Communication Errors335
10.1.3 Parameter Errors ..335
10.1.4 Laser Control Processor HW Errors............335
10.1.5 Absolute Distance Meter HW Errors335
10.1.6 Hardware Error (additional error numbers
to the 9xx group)..336
10.1.7 Operation Errors ...336
10.1.8 Hardware Configuration Errors (user
correctable)..337
10.1.9 Hardware Error (requires service
personnel)..338

10.2 T- PRODUCTS ERROR NUMBERS339

7

2 Introduction

2.1 Prerequisites
2.1.1 Tracker Basics/Terminology
This manual does not replace tracker operating
knowledge. Users of this Reference Manual must
be familiar with tracker operation and tracker-
specific terms such as Bird bath, Tracker
initialization etc.

2.1.2 Abbreviations
TPI Tracker Programming

Interface
TS Tracker Server
CS Coordinate System
ADM Absolute Distance Meter
IFM Interferometer
TP Tracker Processor
NYI Not yet implemented
LT Laser Tracker

2.1.3 Hardware
The emScon TPI supports the following Laser
Trackers:

• LT300

• LT500 & LTD500

• LT600 & LTD600

• LTD700

• LT800 & LTD800

8

2.1.4 Programming Environment
This manual (notation, samples) is based on
Microsoft Visual Studio 6.0 (VC++ 6.0, Visual
Basic 6.0) running on Microsoft Windows
(98/NT/2000). Some samples refer to VisualStudio
7.0 (C# and VB .NET samples)

• For Unicode applications, install VC++ with
Unicode libraries (custom installation).
Linker/runtime errors, such as: mfc42u.lib,
mfc42ud.lib or mfc42u.dll missing, indicate
that VC++ was installed without Unicode
support.

2.1.5 TCP/IP Protocol
Communication to the tracker server is based on
TCP/IP. The client PC must be equipped with a
TCP/IP-enabled LAN Board.

 This manual does not cover hardware an
installation issues.

d

2.2 TCP/IP Communication
Communication with TCP/IP requires platform
specific communication functions. These are not
part of the emScon TPI and have to be provided,
except when using the high-level TPI (COM
interface).

The TCP/IP API functions of your operating
system (OS) can be used. Keywords under VC++
include Win32 Sockets API, or (if using MFC)
CAsyncSocket and CSocket. Visual Studio contains
a TCP/IP communication library, MSWinsck.ocx,
as an ActiveX control (COM object).

2.2.1 Socket Functions
Minimal required Functions include:

9

• Connect – Build a TCP/IP connection
between the Application PC and Tracker
Server. Specify the IP address/hostname and
port number of the Tracker Server.

• SendData – Send a packet of data, usually by
specifying a pointer to a byte array data-
block and the size of that block.

• ReceiveData – callback mechanism. To be
notified when data arrives and to read/
process this data.

• ReadData – To read arrived data into a byte-
array buffer, upon a notification.

• Close – Closes a previously established
TCP/IP connection.

Availability of TCP/IP functions:
There are several options as listed below. The
emScon application programmer has to decide
which one to use. This decision will mainly
depend on the programming language used and
the type of the application (Console Application,
Windows Application with GUI, Server
Application running in background...).

• Operating system TCP/IP API (e.g. Winsock
2.0 API of Windows). This approach requires
some advanced programming knowledge.

• Class Libraries, for example MFC, provide a
higher level abstraction of the winsock
functions. Easier to use.

• ActiveX Controls / COM libraries. For
example Winsck.ocx of Windows.

• Third party TCP/IP communication library
or component.

• Self developed TCP/IP library.

10

2.3 Tracker Programming Interface
EmScon provides a TCP/IP interface.
Communicating with the emScon server hence
means sending and receiving byte-array data-
blocks over a network connection.
The emScon TPI (low-level interface) is a
collection of Data Types, namely Enumeration
Types and Data Structures. These data types fully
describe the structure of the data blocks to be
exchanged over the TCP/IP network. They are
required to 'construct' blocks to be sent to the
Tracker Server and can be used to mask incoming
data blocks in order to interpret these. The
definition of these data-types is provided with C-
notation include-file, ES_C_API_Def.h. This file is
compatible to the IDL-language, and its data
types are fully transparent to COM interfaces
(except constants).

The ES_C_API_Def.h file is the only interface
definition of emScon TPI. It is the 'native' emScon
interface. All other interface levels (C++ TPI, LT
Control) are strictly based on this basic include-
file and are, therefore, just provided for
convenience. This enables the client programmer
to design alternate C++ interfaces and/or other
high-level interfaces (e.g. even COM
components).

 The ES_C_API_Def.h file should not be
changed on any account.
2.3.1 Platform and Programming Language
Issues
• The versatility of emScon TPI with TCP/IP

allows its use on different operating systems
(Windows, Linux and Macintosh).

• The programming language is not restricted
to C, as shown in the interface specification.
All programming languages, which define
structures in C-notation, can be used to

11

program based on the TPI low-level
interface. However, use of languages other
than C/C++ require translation of C-
structures (ES_C_API_Def.h) to the target
language's notation, with matching
structures on the byte level (4 Byte
alignment).
Translations are not covered by this Manual.

• The use of programming languages other
than C/C++ is not recommended for low-
level TPI programming, and no support is
provided.

 Translating the TPI's Enumeration
Types and Data Structures into other
language's syntax may encounter poten
errors (different size of basic data types
alignment issues etc.).

tial
, byte

• Using the C++ interface is highly
recommended instead of the C interface. The
C++ interface defines Class wrappers around
the basic data structures (of the C interface),
easing programming for sending commands
and receiving answers.

2.3.2 Prefixes and Suffixes used in Type
Names

Prefixes
ES

Tracker programming
interface

DT
C Command

Data type (Packet type)

RS Result
SSC

Status
System Status Change

Suffixes
T

Type, usually used for
general sub-structures

12

RT Return type (used for
data transfer from ES)

CT Command type (used for
data transfer to ES)

These are only the most frequent ones. Other
Prefixes explain themselves as they are derived
from the enum type- names in which definition
they occur.

2.3.3 Asynchronous Communication
Low-level communication (C/C++) to the Tracker
Server is asynchronous.

• SendData function will always return
immediately without waiting for an answer.
Depending on the command, several seconds
may expire before the answer arrives
(through a notification or callback).

• Each TPI command causes an asynchronous
answer (sort of an acknowledgment). Hence,
Commands and Answers always occur ‘pair-
wise’. Some commands, however, cause
more than one result packet.

• Some Error Event types (for example 'beam
broken') can occur at any time and are not
direct reactions to a command.

• There are numerous 'System Change Events'
that can occur at any time. An application
may evaluate these (mainly for GUI update);

• The Tracker Server high-level interface
(COM) provides both asynchronous and
synchronous communication.

 Some answer types remain
asynchronous, even when using
synchronous communication

13

2.3.4 Working Conditions
The table below shows the valid working ranges
for selected parameters.

Level 1

A Warning will be issued message when range is
outside level 1 limits, but within level 2 limits. (In
other words: Values are outside Leica specified
working ambient conditions but still accepted.
Should be used with caution.

14

Working
ambient
conditions

Minimum value Maximum value

Temperature + 5°C + 40°C
Height above
sea
level/elevation
(not relevant for
software) -500 m +3000 m
Air pressure 600 mbar 1170 mbar
Relative
humidity 10% 90%
Refraction index
IFM 1.00015 1.000331
Refraction index
ADM 1.000152 1.000336

Level 2

An Error message occurs when trying to set a
value outside the specified range. The values are
rejected.

Storage ambient
conditions
(extended
working range)

Minimum value Maximum value

Temperature -10°C + 60°C
Height above
sea
level/elevation
(not relevant for
software) -2000 m +7000 m
Air pressure 330 mbar 1400 mbar
Relative
humidity 0% 100%
Refraction index
IFM 1.000077 1.000419
Refraction index
ADM 1.000078 1.000425

15

2.3.5 Coordinate Parameter Triplets
The values of coordinate parameter triplets (often
named as Val1,Val2 and Val3) in most data
structures, depend on the currently active
coordinate system type and the currently active
units. In addition, measured coordinate values
(output) and positioning values (input) are
transformed according to currently set
transformation- and orientation parameters.
Coordinate values for 'filters' (Sphere, Box, Grid)
differ from case to case. Details and exceptions
are explained in the reference section.

 The orientation / transformation filters can
be switched off through flags provided by the
system settings. Using the default values for
orientation and transformation parameters'
(0,0,0,0,0,0)/(0,0,0,0,0,0,1) mean invariant
transformations.

Coordinate
system type

Val1 Val2 Val3

Cartesian
(RHR, LHR)

X Y Z

Spherical H V D (=R)
Cylindrical R Phi (=H) Z

X, Y, Z Cartesian
coordinate values

H Horizontal
V Vertical

angle
Angle

D Distance (=Radius)
R Radius
PHI Horizontal Angle

(=H)

 Different notations of values in different
systems (Phi instead of H, D instead of R)

16

maintain continuity with previous releases of
application software.

2.3.6 Persistency
The Tracker Server keeps settings (such as Units,
CS-type, Reflector type etc.) persistently. Recent
values will be restored, on restart of the Tracker-
server.

It is recommended to initially set the required
settings, on every client startup – as good
programming practice.

2.3.7 Default Settings
List of the most common parameters and their
default factory- settings:

• Orientation parameters:{0,0,0,0,0,0}

• Transformation parameters:{0,0,0,0,0,0,1}
(scale factor is 1)

• CS-Type: RHR (right handed rectangular)

• Length: Meter

• Angle: Radian

• Temperature: Celsius

• Pressure: Hectopascal

• Rel. Humidity: 70%

• Temperature: 20.0°C

• Pressure: 1013.25 mbar (760 mmHg)

• Measurement mode: Stationary

• Temperature range: Medium

• Reflector: None

• Interferometer refraction index: 1.0

• ADM refraction index: 1.0

• Stationary point measurement time:2500 ms

• Continuous measurement; time: 1000 ms

17

• Continuous measurement; number of
points: 100

• Statistic mode: Standard

• Region and grid mode parameters:
Arbitrary.

Other, less- common settings are described in the
command reference section.

2.3.8 Version Backward Compatibility

New data types/packets with evolving server versions

This is a very important issue in order to prevent
client application software adjustments upon
future emScon server software upgrades. The
coming versions of emScon will include arrival of
new/extended data over the TCP/IP connection,
such as new packet types, status messages and
new error messages. Existing client applications
will not be broken in combination with future
emScon server versions, with one important
caveat.

Backward compatibility will be provided, in that
existing packets/information structure are neither
changed nor removed. In practice, this generally
means that the default case in switch statements
should always be treated as 'neutral' (no action).

Example:

The enum ES_SystemStatusChange in v1.2
contains only two members.
enum ES_SystemStatusChange
{
 ES_SSC_DistanceSet,
 ES_SSC_LaserWarmedUp,
};

EmScon 1.2 had only two system status change
events, as shown above. With emScon version 1.4
(and higher), many more status change events
have been appended (See C- API def file).

18

A (v1.2) programming statement as follows
would cause an 'Unexpected Status' message,
with (v1.3 and higher) emScon server upgrades.
switch (status)
{
 case ES_SSC_DistanceSet:
 MessageBox(“ADM Distance
 re-established”);
 break;

 case ES_SSC_LaserWarmedUp:
 MessageBox(“Laser is now
 ready”);
 break;

 default:
 MessageBox(“Unexpected Status”);
 break; // WRONG!!!
};

Solution:

Ignore the default case with no 'default' entry tag
or one that just has an effect to debug versions.
 default: // No action at all
 break;

or

 default: // no effect to retail versions
 TRACE(“Unexpected Status”);
 ASSERT(false);
 break;

In short: emScon client application only must
interpret KNOWN, i.e. defined data according to
enums/structs in C- API def file. All other data
must be ignored.

Only if this rule is attended, existing emScon
client applications will also run with future
emScon server upgrades. Otherwise, application
source may need to be adjusted to be compliant
to new server versions.

Applications supporting different server versions

If an application is required to support tracker
hardware with different capability and/or several
emScon server versions, some important version
checking issues apply.
Consider for example that the same application
should be able to deal with emScon 1.5 (3D only)
as well as with emScon 2.0 and up (3D trackers as
well 6Dof systems).

19

Since newer emScon server versions always are
backward compatible, that is, all previous
commands are also contained in the newer
version, there is usually no problem (exceptions
see previous chapter) to run an already existing
application on a newer server version.
The problem starts if developing a new
application, which should for example support
6Dof systems (emScon server V2.0 at least), but
should also be able to deal with 3D trackers
running in combination with an emScon 1.5
server.
In order to run properly, such an application
should check the server version upon startup and
make provisions to prevent calls not suitable to a
particular server version.

The version info to query is part of the
information delivered by the ‘GetSystemStatus’
command.
(ESVersionNumberT esVersionNumber).
Depending on the server version the application
is connected to, it has to allow/prevent
commands being executed.
If the queried server version for example
evaluates to 1.5, the application would have to
block (for example gray-out menus) all 6Dof
related commands.
See ‘enum ES_Command’ in file
‘ES_C_Api_def.h’ for availability of commands in
which version. There are comments such as
// New commands added for release 2.0

2.3.9 Sample Code
The samples/tutorials, which are part of the SDK
and which have to be regarded as integral part of
this manual, show the principles of TPI
programming in terms of ready to compile/use
applications.
However, the sample applications may not be of

20

real practical use, with respect to the specific TPI
commands they implement. The focus of the
samples is set to show principles of tracker
control.

In a practical application, in order to get accurate
results, it is crucial to implement all the steps as
listed under 'Initial steps'.

The number of files and overhead in the samples
has been kept to a minimum. Code generated
from wizards, such as recompiled headers, icon, res2
includes and 'cosmetic functions', have been
stripped off.

See also the numerous comments in the sample
source files and the 'ReadMe.txt' files in each
sample folder.

Error Handling

The samples do not always implement complete
error handling and may need to be run through
the debugger in order to find failure reasons.

Interface Design

The user interface design is kept at a minimum
level (for example, unavailable buttons are not
grayed out). Such items are general issues of
Windows programming.

Hard Coded Information

The samples may contain some hard-coded
information (IP address/coordinate values) that
might be adapted to the local environment.

21

2.4 Application Initial Steps

2.4.1 Essential Steps
A client application must carry out all steps listed
below upon startup. Omitting some of these steps
may prevent the tracker from measuring or lead
to inaccurate results. Inaccurate results are
difficult to detect.

Setting correct environment parameters
(temperature, pressure, humidity) or configuring
the system for automatic, environment parameter
reading is crucial.

Most of the Settings ('Set'- commands) remain
persistent. That is, they will be the same after a
system restart. However, it is strongly
recommended that an application always
confirms these settings upon startup. This is
because another application (e.g. emScon Base
User Interface) could have accessed the tracker
server in-between and could have changed the
settings.

Note that most of the sample applications are not
complete to this respect – the intention of the
Samples is to show programming principles only.
See also Leica Tracker/Training Manual.

22

2.4.2 Command Sequence for 3D
Measurements

3D Measurements are performed to a (currently
selected) Reflector. The selected Measurement
mode must apply to one of the 3D modes. The
tracker does not require a T-Cam, although there
might be one mounted.

Steps TPI command

1. Establish TCP/IP
connection.

Depends upon TCP/IP
communication – See
different samples

2. Set units (length,
angle, temperature
and pressure)

ES_C_SetUnits

3. Set current
environmental
temperature,
pressure and
humidity

ES_C_SetEnvironmentP
arams,

4. Initialize the Laser
Tracker

ES_C_Initialize

5. Select desired 3D
Measurement mode
(Stationary,
ContinuousTime..)

ES_C_SetMeasurement
Mode

6. Query all defined
Reflectors

ES_C_GetReflectors

7. Select the Reflector
being used

ES_C_SetReflector

23

8. Go Bird Bath
(optional, if Tracker
equipped with an
ADM)
For 6D modes, the
tracker will move to
zero position instead;
GoBirdBath does not
make sense for
Probes

ES_C_GoBirdBath

9. Set Station
Orientation
parameters

ES_C_SetStationOrientat
ionParams

10. Set Transformation
parameters

ES_C_SetTransformatio
nParams

11. Set Coordinate
system type (RHR,
LHR…)

ES_C_SetCoordinateSys
temType

In addition, a valid mechanical Tracker
compensation must be active. This is usually
always the case (supposed the Tracker
compensation once has been performed or
imported). However, there can be exceptions
when installing new software or importing
compensation data.
The active compensation is a persistent setting
which can be changed by a ‘SetCompensation’
TPI command (or by selection within the
compensation tree- representation in the BUI-
Application). See description of
‘GetCompensations / GetCompensation /
SetCompensation’.

24

2.4.3 Command Sequence for 6DOF
Measurements
6DOF Measurements are performed to a T-Probe,
which will be recognized automatically by the
system.. The selected Measurement mode must
apply to one of the 6DOF modes. A T-Cam must
be mounted.

Steps TPI command

1. Establish TCP/IP
connection.

Depends upon TCP/IP
communication – See
different samples

2. Set units (length,
angle, temperature
and pressure)

ES_C_SetUnits

3. Set current
environmental
temperature, pressure
and humidity

ES_C_SetEnvironmentP
arams,

4. Initialize the
System

ES_C_Initialize

5. Select desired
6DOF Measurement
mode

ES_C_SetMeasurement
Mode

6. Ensure that 'Keep
Last Position' flag is
enabled

ES_C_SetSystemSettings
OR
ES_C_SetLongSystemPa
rameter

7. Set Station
Orientation
parameters

ES_C_SetStationOrienta
tionParams

8. Set Transformation
parameters

ES_C_SetTransformatio
nParams

9. Set Coordinate
system type (RHR,
LHR…)

ES_C_SetCoordinateSys
temType

25

In addition, apart from a valid mechanical
Tracker compensation (see 3D), compensations
must be present and active for TCamToTracker,
Probe and TipToProbe (supposed all these
compensation processes have once been
performed or imported). Active compensations
are persistent settings that can be changed by the
several ‘Set…Compensation’ TPI commands (or
by selection within the compensation tree-
representation in the BUI- Application). See
description of ‘Get…Compensations /
Get…Compensation / Set…Compensation’.

Selection of TCam and Probe compensation only
mean a ‘hint’ to the system. The compensations
themselves only become really active if a
matching TCam (i.e. the compensation must
match the serial number of the TCam) is being
mounted respectively a matching Probe is being
attached and recognized by the camera.

26

2.4.4 Initial Steps Description in Detail
Description of some commands that require more
explanation.

Initialize Laser Tracker

Implication Comment

Initialize encoders and
internal components

This command has to be
performed every time
you set up a new Leica
Tracker system station. It
is strongly recommended
to use this function 2-3
times a day to initialize
encoders and its internal
components. This is
important due to thermal
expansion of the tracker
hardware, which has a
direct influence on the
measurements

27

Set Current Environmental Parameters

Implication Comment

Calculate and Set index
of refraction

With the input of the
environmental
temperature, pressure
and humidity, the system
calculates the light
refraction index of the
interferometer (IFM) and
the absolute distance
meter (ADM). These
parameters have a direct
influence on the distance
measurement A change
of 1°C causes a
measurement difference
of 1ppm.

A change of 3.5mbar
causes a measurement
difference of 1ppm.

Change environmental
parameters when
significant changes take
place.

Default values:
20.0 °C, 1013.3 mbar

28

Set Reflector

Implication Comment

Select a specific reflector A wrong reflector results
in a wrong initial IFM
distance, e.g. when using
the Go Birdbath
command. This has a
direct influence on the
distance measurement.

Tooling ball reflector
(TBR) = 5.310 mm
Cat eye = 59.114 mm

There is usually more
than one reflector
defined. These can be
queried from the system
by using the
'GetReflectors' command.
This shows the relation
between the ID and the
Name (Reflector Type).
The ID can then be
passed to the
'SetReflector' command
to activate it. Note that
this setting remains
persistent. Nevertheless
it's strongly
recommended that an
application upon launch
at least checks whether
the desired Reflector is
set
More info: Chapter 8: 'Get
Reflectors' command

29

Set Compensation

Implication Comment

Select a specific
Mechanical Tracker
Compensation

More than one
mechanical Tracker
Compensation may be
defined for a tracker
(although often there is
only one).

If there is more than one,
these can be queried from
the system by using the
'GetCompensations'
command. This will show
the relation between the
ID (a number) and the
Name (a Date- String) of
the available
compensation. The ID
can then be passed to the
'SetCompensation'
command in order to
activate it. Note that this
setting remains
persistent. Nevertheless
it's a good idea that an
application upon launch
at least checks whether
the desired compensation
is set (command
GetCompensation).
The principle of dealing
with compensations is
the same as for
Reflectors. For more
details see chapter 8: 'Get
Reflectors' command

30

Set T- Cam To Tracker Compensation

Implication Comment

Select a specific T- Cam
to Tracker
Compensation. Related to
6DoF modes only.

More than one T- Cam to
Tracker Compensation
may be defined for a
tracker/ camera (although
often there is only one).

If there are more than
one, these can be queried
from the system by using
the
'GetTCamToTrackerCom
pensations' command.
This will show the
relation between the ID (a
number) and the Name (a
Date- String) of the
available compensation.
The ID can then be
passed to the
'SetTCamToTrackerCom
pensation' command in
order to activate it. Note
that this setting remains
persistent . Nevertheless
it's a good idea that an
application upon launch
at least checks whether
the desired compensation
is set (command
'GetTCamToTrackerCom
pensation').
The principle of dealing
with compensations is
the same as for
Reflectors. For more
details see chapter 8: 'Get
Reflectors' command

31

Set Probe Compensation

Implication Comment

Select a specific Probe
Compensation. Related to
6DoF modes only.

More than one Probe
Compensation may be
defined for a tracker/
camera (although often
there is only one).

If there is more than one,
these can be queried from
the system by using the
'GetProbeCompensations'
command. This will show
the relation between the
ID (a number) and the
Name (a Date- String) of
the available
compensation. The ID
can then be passed to the
'SetProbeCompensation'
command in order to
activate it. Note that this
setting remains
persistent. Nevertheless
it's a good idea that an
application upon launch
at least checks whether
the desired compensation
is set (command
'GetProbeCompensation')
The principle of dealing
with probe
compensations is the
same as for Reflectors.
For more details see
chapter 8: 'Get Reflectors'
command

32

Keep Last Position Flag

Implication Comment

Makes the laser beam
stay at its current
position if the beam is
broken.

Enabling this flag is
optional for 3D
measurements (it makes
only sense if the Tracker
is equipped with an
ADM). This flag is
cleared by default. For
6DOF measurements,
enabling this flag is
compulsory to prevent
the laser going to home
position upon a beam
break.

(automatically
remeasures reference
distance to the Reflector
or T-Probe after the
laser-beam has been
lost.)

There are two ways to
control this flag, either
through the command
‘SetSystemSettings’ or
through
‘SetLongSystemParame
ter’

See also 1.4.3

33

Station Parameters

Implication Comment

The station parameters
describes the translation
and rotation of the
tracker station in a
coordinate system:
X, Y, Z, Omega, Phi,
Kappa

 Orientation parameters
can be determined using
the Transformation
functionality of emScon
(see. 8.1 Points to points
Transformation) or can
be individually set by the
application.

By default, the
orientation parameters
are as follows:
(X=0/Y=0/Z=0/Omega=0/P
hi=0/Kappa=0).

Transformation Parameters

Implication Comment

A transformation
describes a change into
another coordinate
system, which is different
from the tracker
coordinate system. It has
the following parameters:
X, Y, Z, Omega, Phi, and
Kappa and scale factor.

Transformation
parameters can be
determined using the
Transformation
functionality of emScon
(see. 8.1 Points to points
Transformation) or can
be individually set by the
application.

By default, the
transformation
parameters are as
follows: (X=0 / Y=0 / Z=0 /
Omega=0 / Phi=0 /
Kappa=0 / Scale = 1.

34

Coordinate System Type

Implication Comment

Selects the coordinate
system type:
RHR/LHR X, LHR Y,
LHR
Z/CCW/CCC/SCW/SCC

The TPI delivers the data
in the current coordinate
system type. By default
the tracker system will
work in the right handed
rectangular coordinate
system (RHR) type:

3D rectangular
coordinates are defined
by 3 mutually
perpendicular axes X, Y
and Z given in the order
(X, Y, Z).

Since the axes can be
arranged in two different
ways, right and left-
handed systems are
defined according to the
convention illustrated in
a simple 2D case.

Cylindrical Clockwise
(CCW),
Cylindrical Counter
Clockwise (CCC).
In a cylindrical system
the X and Y values are
expressed in terms of a
radial (distance) offset
from the Z-axis and a
horizontal angle of
rotation. The Z
coordinate remains the
same.

35

Implication Comment

 Spherical Clockwise
(SCW),
Spherical Counter
Clockwise (SCC).
In a spherical system a
point is located by a
distance and two angles
instead of the 3
coordinate values along
the rectangular axes. For
axes labeled XYZ, with Z
vertical, the point is
located by its distance
from the origin,
horizontal angle in the
XY plane and zenith
angle measured from the
Z-axis.

36

3 C - Interface

3.1 Low-level TPI Programming

3.1.1 Preconditions
Using the C interface requires some particular C-
programming knowledge. A programmer should
at least know about asynchronous programming
concepts, TCP/IP socket programming and multi-
threading.

The description of the enums/structs in this
chapter may be slightly discrepant to the contents
of the ES_C_API_Def.h file in the SDK. In case of
discrepancies, the information in the
ES_C_API_Def.h file should be regarded as
correct.

This chapter completely and exclusively relates to
the file 'ES_C_API_Def.h', which is part of the
EmScon SDK. All Enumeration types and
Structures are described in this header file. This
header file acts as an integral part to this manual
and it might be helpful to have it open in parallel
to this document since the information is much
more condensed in the header file.

3.1.2 Recommendation
Although the C- interface makes up the native
programming- interface to emScon, it is not
usually recommended to write applications
directly using the C- interface. Rather use the
much more convenient C++ interface.
In contrast to the C++ interface, the C-interface
requires much more coding lines and comprises

37

the danger of doing initialization errors for
structures (aka 'copy/paste errors').
However, since it's the native interface, the
enumeration types and structures of the C-
interface serve as main- reference. The same
enumeration types and parameters will show up
in the C++ interface as well.
Hence even when using the C++- interface,
looking up information in this chapter 'C-
Interface' might be essential.

3.1.3 Byte Alignment
Data packets have a 4-Byte alignment convention
as a Visual Basic default – small data packets sent
over the network. The VC++ statement #pragma
pack (push, 4), before user-defined structure
definition, uses 4 Byte alignment – VC++ default
is 8 Byte. The statement #pragma pack (pop) sets
the alignment back to the previous value.

 Use only 4 Byte alignments for TPI
structures.

These are Microsoft VC++ specific statements.
When using a non-Microsoft compiler, #pragma
pack (push, 4) and pragma pack (pop) may have to
be replaced or removed respectively.

The following include statement prepares the
C_API_Def.h file for Byte alignment in Linux/
Win32.

 4 Byte alignments for other platforms must
be inserted.
#ifdef _WIN32
#pragma pack (push, 4)
#elif defined __linux__
#pragma pack (4)
#elif
#error Insert here directive to ensure 4 Byte alignment for
other platforms (Unix, MAC)
#endif

3.1.4 Little/Big Endians
Non-Intel based workstations, for example
M68000 based workstations like SUN, Apple or

38

IBM RS6000 series, use different endians for
double values. The client application (the TCP/IP
communication interface respectively) require
appropriate meas

s

ures to interpret numerical
values correctly.

.The Tracker Server is Intel based. All values
are provided in the little endian format.

arnings for
s of data types.

ES_C_API_DEF_H

3.1.5 Preprocessor Statements
The following statements show a common
practice to avoid multiple inclusion of the same
include-file while compiling a .CPP module. In
case of nested inclusion of the ES_C_API_Def.h

ts will prevent wfile, these statemen
multiple definition
#ifndef
#define ES_C_API_DEF_H
…
#endif

3.1.6 TPI 'Boolean' Data Type
No native Boolean data-type is available in C. C
uses the integer basic type for Boolean values. For
convenience, a platform- independent ES_BOOL

ced for the ES_API:

 a 4

max

type has been introdu

typedef int ES_BOOL

Neither BOOL (which is 2 Bytes and Microsoft-
specific) nor bool (which is 1 Byte and specific to
newer C++ revisions) has been used. By using
Byte Boolean (= int), pure C compliance and

imal portability is assured.

 This relates only to the C interface,
ES_C_API_Def.h. The C++ interface as well as
custom programs may use any compatible
Boolean type. Boolean type variables used in ES C

PI structs must be 4 bytes. A

39

3.1.7 Enumeration-Type Members
Numerical representation
Enumerat
represented by integer values. Numbers c
assigned explicitly to particular enum values; th
is the case for all enumeration types defined for
emScon.

ion-type members in C are internally
an be

is

his approach has some advantages for

ing languages other

than C/C++. However, some non-standard C/C++
c y provide d
data types. For TPI clients, it is necessary to use
t ollowing standard si

pe
g)

ely)
8 Bytes

 long)

T
application debugging . However, applications
should never use the numerical values directly.
Always use the according symbol-names.

3.1.8 Basic C Data Type size of TPI Structures
This is relevant for programm

ompilers ma ifferent sizes of basic

he f zes:
Data ty
Enum values

Size
4 Bytes (= int 32 or lon

Long 4 Bytes
Int 4 Bytes
Short 2 Bytes (for Unicode

strings exclusiv
Double
ES_BOOL 4 Bytes (= int 32 or

3.2 Communication Basics
3. Commands 2.1
The Tracker Server can be controlled only

ffe

ers are
 called property setting

Set<CommandName> commands. The syntax of

through commands sent over TCP/IP. Commands
di r in the count of parameters they take.

• GoBirdBath is an example for a non-
parameter taking command.

• PointLaser (x,y,z) takes 3 parameters.

The majority of commands taking paramet
used for so-

40

each command – whether taking parameters or
not – is defined by its <CommandName>CT
structure.

These structures need to be initialized
properly. Refer to C- Programming instructions
section.
3.2.2 Command Answers
Every command causes an asynchronous answer,
with an acknowledgment. The command-ty
'cookie' previously sent to the Tracker Server is
echoed back, padded with information whethe

pe

r

for

tructure defines
e contents of a command answer. However,

s of

ure, the return
tatus (its numerical representation or enum-

-data

 by

the command succeeded or not, and (optionally)
padded with command specific data. Depending
on the command type, this echo can occur
immediately, or may take several seconds (
example for FindReflector or Initialize Tracker).

Generally, a <CommandName>RT s
th
there are some special cases in the case of
measurements commands.
The command answers can be categorized into
several subtypes as listed below.

Non-data Returning Command Answers

This command answer-type essentially consist
a command type 'cookie' with the return status
'succeeded' or 'failed'. In case of fail
s
status value) may indicate the reason. Non
returning commands all share the same basic
return type structure. Find Reflector is an example
of a non-data returning command.

Property-data Returning Command Answers

Properties are the (current) system settings of the
Tracker Server. Properties can be retrieved
Get<xxx> commands. All Get<xxx> commands

41

return their results in a Get<xxx>RT structure.
RT structure for each
respect to its data members. Data members w
only a Get… with no corresponding Set…
command can be individual basic-type or enu
parameters (int, double , enum...) . Example:
GetSystemStatusRT.
However, the normally there is a command-

 The
 command differs with

ith

m

).

an one command. This avoids code duplication.

. If a Set command

e

ingle Measurement Answers

These are answers that follow to a previously
issu

nts are often also referred to as

specific sub structure (example GetUnitsRT
contains a SystemUnitsDataT sub structure
In other words: a sub- structure is available,
when the same parameters are used for more
th

Set/Get commands rarely fail
fails (return status not OK), the supplied
parameters are usually out of valid range. Th
return status informs about the failure reason.

S

ed Start<xxx>MeasurementCT command.
Single measureme
Stationary measurements.

 Applies only when the measurement mode is
set to stationary.

•

he

•
ned to

t is
r

sult type indicates a
ingleMeasResultT structure, and

ES_DT_StationaryProbeMeasResult indicates

In case of a failure (which is frequent for
measurement commands), a
Start<xxx>MeasurementRT structure with t
error code is returned.

In case of success, instead of a
Start<xxx>MeasurementRT (not desig
take sensor results), a specifically designed
measurement type-related data packe
eceived. For example, a

ES_DT_SingleMeasRe
S

42

arrival of a ProbeStationaryResultT.

 A successful measurement always
returns such a data-packet.

Mu -Measurement Answers

e apply to tracker related continuous
lti

Thes
measurements only. The measurement mode is
set to one of the non- stationary modes.

• In case of success, not only one packet, but
also

ackets contains a
e' (atomic)

• In case of failure, as with single
measurement answers, a
Start<xxx>MeasurementRT with error code is
returned.

 a series of multi-measurement packets
arrive. Each one of these p
various-sized array of 'singl
measurements.

 See also structures 'MultiMeasRe
'MultiMeasResult2T' and
'ProbeContinuousResultT'.

Only the first element of the measurement
array is covered by these structures,
although the index is valid from
0…numberOfResults-1. There is another
significan

sultT',

•

t difference to single
ta

• ys arrive
w

urementRT confirmation is therefore
ssential for continuous modes.

measurements. Before the measurement da
packet stream starts, a StartMeasurementRT
with command status OK arrives
(acknowledge that the ‘start’ command has
arrived).

Single measurement results alwa
ithin a certain time span. This is not the

case with continuous measurements (Grid
Mode, big time separation criteria.). A
StartMeas
e

 A multi-measurement stream runs until

43

explicitly stopped, StopMeasurement or until

d

ations, ES_C_GetTipAdapters. do
not fit any of the above categories.

l) are treated
ay.

specified time or count thresholds are
reached.

Special Command Answers

Some commands, such as ES_C_GetReflectors an
ES_C_GetTransformedPoints,
ES_C_GetCompens

Generally spoken, all commands starting with
'Get' and ending with an 's' (i.e. plura
in a special w

 ES_C_GetReflectors must not to be mixe
with ES_C_GetReflector (missing 's').

Convention:

The answer to these commands is made up
many answer-packets as reflector types (o
transformed points, Compensations, Tips...) are
available from the Tracker Server.
These answers mainly resolve the relation
between item name (string) and item ID
(numerical ID), for example the relation betw
Reflector name and Reflecto
A

d up

 of as
r

een
r ID.

part from different other information, the
ontain (redundant) information on

ber of

 Example: short
ReflectorName[32] declaration. It can consist of a

packets also c
the total number of items and the num
packets expected to arrive.

Convention:

All string-type names are in Unicode
representation –
c
maximum of 32 characters, however, since 'short'
is 16 bit, there are 16 bits for every character (not
only one Byte).

44

ReflectorPosResultT and Prob
be seen as a special command answers. These are
ES_DT_ReflectorPosResult / ES_DT_ProbeP
type packets and are received whenever the
tracker is locked onto a reflector (3 measu
per second), supposed the
'SendReflectorPositionData' system- setting flag is
enabled. This mechanism can be used in
applications providing graphical representat
of reflect

ePosResultT can also

osResult

rements

ion
or/probe motion, even while no

ontinuous measurement is in ongoing.
y of the positions provided

ipt of these measurements

s ES_DT_Error are not
d

e
the highly 'asynchronous' behavior of

c
Note that the accurac
are limited. The rece
can be switched on/off. It is switched off by
default.

3.2.3 Error Events
Most error-type data packet

irect reactions to commands. They are
'unsolicited' and can occur at any time. Thes
confirm
emScon communication. A typical example is the
'Laser beam broken' event.

 Command directly contain the error status in
their answer structure in case of command

ccur

 is
tusChange. The handling is the

ame as with error events, with the only
difference that there is only one parameter.

failure.
ES_DT_Errors type answer packets are only used
for so called 'unsolicited errors' (which can o
at any time, regardless of a command).

3.2.4 System Status Change Events
Although already present in version 1.2 (only two
events), there has been an inflation of such
events since then. The appropriate packet type
ES_DT_SystemSta
s

45

IMPORTANT: See chapter 'Version Backward

con v1.5 and

ve

oF

easurements. The only difference is that other

overview of the related co

3D Packets/Commands Probe)

Compatibility' for convention about handling
'unknown' data.

3.2.5 3D / 6 DOF – Related commands
The essential change between emS
emScon V2.0 is the introduction of 6DoF
measurement structures (6 degrees of freedom).
Some were already present in v1.5. However,
these were declared as preliminary and ha
significantly changed since then.
From programming point of view, handling 6D
measurements is principally the same as 3D
m
data structures are to be used. Here is an

mmands / packets /
structures:

6DoF (
Packets/Commands

ES_DT_SingleMeasResult ES_DT_StationaryProbeMeas
Result

ES_DT_MultiMeasResult obeMeaES_DT_ContinuousPr
sResult

ES_DT_ReflectorPosResult ES_DT_ProbePosResult

3D Structures 6DoF Structures
SingleMeasResultT ProbeStationaryResultT
MultiMeasResultT ProbeContinuousResultT
ReflectorPosResultT ProbePosResultT

The ES_DT_SingleMeasResult2 /
SingleMeasResult2T and ES_DT_MultiMeasResult2
/ MultiMeasResult2T packets / commands are
extended variants of the relatives without the '2'
in their name. The only difference is that these
versions contain extended (statistical)

46

information. Applications passing measurements
 the 'CallTransformation' command should use

etStatisticMode' command.

ference

to
the '2'- variants since the transformation routine
requires these extended statistics. See also
'S

3.3 C- Language TPI Re

3.3.1 Constants

ts that can be used

ddition to 'ES_C_API_Def.h'.

Constants for Transformation
e used for the Weighting

 9.2.6).

onst double ES_FixedStdDev = 0.0;

ES_UnknownStdDev
knownStdDev = 1.0E35;

;

Use this value to weigh parameters according to
rd Deviation.

This section names the constan
with C/C++ TPI programming.

The application needs to include the file
'Constant.h' in a

These constants ar
Scheme of the Transformation process (see
Section

c

ES_FixedStdDev
Use this value (= 0.0) to indicate a parameter as
fixed.

const double ES_Un

Use this value to indicate a parameter as
unknown (not fixed).

ES_ApproxStdDev
const double ES_ApproxStdDev = 1.0E15

its related Standa

See command 'SetTransformationInputParams'
for details.

47

Other Constants
The other constants defined in 'Constant.h' (Unit-

s) are for

Scon applications.

ration Types

The ES_DataType enumeration values are used to
iden

in

Conversion related constant
informational reasons only and should not be
directly referenced by em

3.3.2 Enume
This section describes all enumeration types and
their individual values.

ES_DataType

tify the type of data packets that are sent
to/received from the Tracker Server on TCP/IP.
There are 11 different packet types that differ
size and structure.

 The ES_DT_Command comprises many sub-
d structure as well.
HeaderT, which

e in all packets.

types that all differ in size an
A related data type is Packet
serves as a sub-structur
enum ES_DataType {
 ES_DT_Command,
 ES_DT_Error,
 ES_DT_SingleMeasResult,
 ES_DT_MultiMeasResult,
 DT_StationaryProbeMeasResES_ ult,
 DT_ContinuousProbeMeasResult, ES_
 ES_DT_NivelResult,
 ES_DT_ReflectorPosResult,
 ES_DT_SystemStatusChange,
 ES_DT_SingleMeasResult2,
 ES_DT_MultiMeasResult2,
 ES_DT_ProbePosResult,
};

•
cket contains a command (sent),

 answer (received).

• ror
formation.

ES_DT_Command

The data pa
or a command
Related data structures: BasicCommandCT
and BasicCommandRT (which are used as
sub-structures of each command-related
structure).

ES_DT_Er
The data packet contains error in

48

Such a packet means an 'Er
example 'beam broken'). It is not a reaction
some previous command and can occur at
any time.
Related data structure: ErrorRT.

ror event' (For
 of

 one
t'-

tT.

•
ket contains results of a

ends

• MeasResult
easResult, but

 block

•
MeasResult, but with

is, the data block
nts each with 3 rotation

R

•

easurement.

• ES_DT_SingleMeasResult
The data packet contains the result of
single (stationary 3D) measurement. 'Resul
type packets can only be received.
Related data structure: SingleMeasResul

ES_DT_MultiMeasResult
The data pac
continuous 3D measurement. This type of
result block is of variable size and dep
on the number of single measurements
within a block. 'Result'- type values can only
be received.
Related data structure: MultiMeasResultT.

ES_DT_StationaryProbe
The equivalent to SingleM
with 6 degrees of freedom, i.e. the data
contains 3 angular values in addition to 3
coordinate values (apart from other data).
Related data structure:
ProbeStationaryResultT.

ES_DT_ContinuousProbeMeasResult
The equivalent to Multi
6 degrees of freedom, that
contains measureme
parameters in addition to 3 coordinate
position values (apart from other data).

elated data structure:
ProbeContinuousResultT

ES_DT_NivelResult
The data packet contains the result of a
Nivel20 (inclination sensor) m

 Requires the Nivel sensor being
connected to the Tracker directly. 'Result'-

49

type values can only be r
Related data structure: NivelResultT.

eceived.

be suppressed.
eflectorPosResultT.

• ange
ormation about a

•

.

t2T
n the

easResultT. This is an

eas result' has
lready

eak existing

T.

•
ts of a

tistic

Mode'.

n the

• ES_DT_ReflectorPosResult:
The data packet contains position
information about the reflector. This type of
information is foreseen for special purposes
and can
Related data structure: R

ES_DT_SystemStatusCh
The data packet contains inf
status change. Other than an error event, a
SystemStatusChange event does not mean a
failure.
Related data structure:
SystemStatusChangeT.

ES_DT_SingleMeasResult2
The data packet contains the result of one
single (stationary) measurement, in case the
statistic mode is set to ‘extended’. These
types are mainly used for measurements
used as input to the Transformation routine
 See command 'SetStatisticMode'.
The difference is that SingleMeasResul
contains more statistical information tha
standard SingleM
advanced feature. The default statistic mode
is ‘standard’. (This 'type 2 m
been introduced to avoid changes to a
published TPI definitions with earlier
versions, in order not to br
applications.).
Related data structure: SingleMeasResult2

ES_DT_MultiMeasResult2
The data packet contains resul
continuous measurement, in case the sta
mode is set to ‘extended’.
 See command 'SetStatistic
The difference is that MultiMeasResult2T
contains more statistical information tha

50

standard MultiMeasResultT.
The default statistic mod
R

e is ‘standard’.
elated data structure: MultiMeasResult2T.

robePosResult

ES_

re provided by the TPI. A data packet of type

alues. The answer packet to a command returns

• ES_DT_ P
The equivalent to ES_DT_ReflectorPosResult,
but related to probes with 6 Degrees of
freedom. I.e. Not only the position, but also
the rotation is supplied.

Command

This enumeration type names all commands that
a
ES_DT_Command contains exactly one of these
v
the same value for acknowledgment.

 See struct 'BasicCommandCT' for details.

General Information related to each command:

The related data- structures for sending and

na

mand

stfix to get name of related send-
structure (CT stands for CommandType)

ceive-

e are

e command
escriptions (ES_C_...) and also at the related

structure descriptions (..CT, ..RT). To avoid too

1.) Naming Convention Send / Receive Structs

receiving data can be derived from the command
me as follows:

• Remove the ES_C_ Prefix from the com

• Add CT po

• Add RT postfix to get name of related re
structure (RT stands for ReturnType)

Example: Structures related to command
'ES_C_Initialize' are 'InitializeCT' and
'InitializeRT'

If CT/RT structures contain sub- structs, thes
mentioned at each commands description.

Explanations are available at th
d

51

much redundancy, descriptions are usually not
be

rs

plicitly in the command
 following units of all parameters

 units'. That is, in those

 command:

- H

This applies to parameters sent as well as those
rec
de

y one exception to this
and StartNivelMeasurement

rees
nits.

•

•

ch
sed, an

ignore each second byte.
See sample applications for examples.

repeated at both locations. Thus it might
necessary to look- up command descriptions and
related structure descriptions.

2.) Dimensions / Units of Paramete

Unless stated ex
description, the
are always in 'current
units the application/programmer has selected
with the SetUnits

- Length- units

- Angle- units

- Temperature- units

- Pressure- units

umidity- units (currently only one: percent)

eived such as coordinates, standard
viations, meteorological values...

• Currently, there is onl
rule: The comm
delivers the native Nivel20 inclination
readings. These are milli-radiants and deg
Celsius, regardless of currently selected u

Other units include:
- Time – units:
These are always in milliseconds – unless
stated differently. Example: a Stationary
Measurement Time of '2000 'means two
seconds.

String- type parameters:
Strings as far as handled through the TPI are
always in UNICODE (arrays of unsigned
short). That is, two bytes are reserved for ea
character. As far as pure ANSI text is u
application can just

52

• Enumeration-type parameters: These are type-

.
t

command, but not repeated at the description of
the related 'Get..' command.
It is obvious that these information apply to both
'Set..' and 'Get..'. (Although the valid range
information is obsolete for 'Get..' commands).

safe with the related enum definition. The
parameters are described at the enum-
definition location.

3.) Valid Parameter Ranges

This applies to parameters being sent to the
system, typically with one of the 'Set..' command
Where limitations apply, these are mentioned a
the command description.
See also chapter 'Working Conditions' in the
'Introduction' main chapter of this manual.
Note that it is never possible to violate valid
parameter ranges in such that the related 'Set..'
commands do not accept values outside valid
range and therefore will return with an error.

Reading Instructions Set/Get Command- pairs.

Information about parameter representation in
terms of current Units, Coordinate System- Type
(CS-type), Transformation and Orientation is
provided at the Description of the 'Set..'

53

enum ES_Command
{
 ES_C_ExitApplication,
 ES_C_GetSystemStatus,
 ES_C_GetTrackerStatus,
 ES_C_SetTemperatureRange,
 ES_C_GetTemperatureRange,
 ES_C_SetUnits,
 ES_C_GetUnits,
 ES_C_Initialize,
 ES_C_ReleaseMotors,
 ES_C_ActivateCameraView,
 ES_C_Park,
 ES_C_SwitchLaser,
 ES_C_SetStationOrientationParams,
 ES_C_GetStationOrientationParams,
 ES_C_SetTransformationParams,
 ES_C_GetTransformationParams,
 ES_C_SetBoxRegionParams,
 ES_C_GetBoxRegionParams,
 ES_C_SetSphereRegionParams,
 ES_C_GetSphereRegionParams,
 ES_C_SetEnvironmentParams,
 ES_C_GetEnvironmentParams,
 ES_C_SetRefractionParams,
 ES_C_GetRefractionParams,
 ES_C_SetMeasurementMode,
 ES_C_GetMeasurementMode,
 ES_C_SetCoordinateSystemType,
 ES_C_GetCoordinateSystemType,
 ES_C_SetStationaryModeParams,
 ES_C_GetStationaryModeParams,
 ES_C_SetContinuousTimeModeParams,
 ES_C_GetContinuousTimeModeParams,
 ES_C_SetContinuousDistanceModeParams,
 ES_C_GetContinuousDistanceModeParams,
 ES_C_SetSphereCenterModeParams,
 ES_C_GetSphereCenterModeParams,
 ES_C_SetCircleCenterModeParams,
 ES_C_GetCircleCenterModeParams,
 ES_C_SetGridModeParams,
 ES_C_GetGridModeParams,
 ES_C_SetReflector,
 ES_C_GetReflector,
 ES_C_GetReflectors,
 ES_C_SetSearchParams,
 ES_C_GetSearchParams,
 ES_C_SetAdmParams,
 ES_C_GetAdmParams,
 ES_C_SetSystemSettings,
 ES_C_GetSystemSettings,
 ES_C_StartMeasurement,
 ES_C_StartNivelMeasurement,
 ES_C_StopMeasurement,
 ES_C_ChangeFace,
 ES_C_GoBirdBath,
 ES_C_GoPosition,
 ES_C_GoPositionHVD,
 ES_C_PositionRelativeHV,
 ES_C_PointLaser,
 ES_C_PointLaserHVD,
 ES_C_MoveHV,
 ES_C_GoNivelPosition,
 ES_C_GoLastMeasuredPoint,
 ES_C_FindReflector,
 ES_C_Unknown,
 ES_C_LookForTarget,
 ES_C_GetDirection,
 ES_C_CallOrientToGravity,
 ES_C_ClearTransformationNominalPointList,
 ES_C_ClearTransformationActualPointList,
 ES_C_AddTransformationNominalPoint,
 ES_C_AddTransformationActualPoint,
 ES_C_SetTransformationInputParams,
 ES_C_GetTransformationInputParams,
 ES_C_CallTransformation,
 ES_C_GetTransformedPoints,
 ES_C_ClearDrivePointList,
 ES_C_AddDrivePoint,
 ES_C_CallIntermediateCompensation,
 ES_C_SetCompensation,
 ES_C_SetStatisticMode,
 ES_C_GetStatisticMode,
 ES_C_GetStillImage,
 ES_C_SetCameraParams,
 ES_C_GetCameraParams,
 ES_C_GetCameraParams,
 ES_C_GetCompensation,

54

 ES_C_GetCompensations,
 ES_C_CheckBirdBath,
 ES_C_GetTrackerDiagnostics,
 ES_C_GetADMInfo,
 ES_C_GetTPInfo,
 ES_C_GetNivelInfo,
 ES_C_SetLaserOnTimer,
 ES_C_GetLaserOnTimer,
 ES_C_ConvertDisplayCoordinates,
 ES_C_GoBirdBath2,
 ES_C_SetTriggerSource,
 ES_C_GetTriggerSource,
 ES_C_GetFace,
 ES_C_GetCameras,
 ES_C_GetCamera,
 ES_C_SetMeasurementCameraMode,
 ES_C_GetMeasurementCameraMode ,
 ES_C_GetProbes,
 ES_C_GetProbe,
 ES_C_GetTipAdapters,
 ES_C_GetTipAdapter,
 ES_C_GetTCamToTrackerCompensations,
 ES_C_GetTCamToTrackerCompensation,
 ES_C_SetTCamToTrackerCompensation,
 ES_C_GetProbeCompensations,
 ES_C_GetProbeCompensation,
 ES_C_SetProbeCompensation,
 ES_C_GetTipToProbeCompensations,
 ES_C_GetTipToProbeCompensation ,
 ES_C_SetExternTriggerParams,
 ES_C_GetExternTriggerParams ,
 ES_C_GetErrorEllipsoid,
 ES_C_GetMeasurementCameraInfo,
 ES_C_GetMeasurementProbeInfo,
 ES_C_SetLongSystemParameter,
 ES_C_GetLongSystemParameter,
 ES_C_GetMeasurementStatusInfo,
 ES_C_GetCompensations2,
 ES_C_GetCurrentPrismPosition,
};

• ES_C_ExitApplication
Stop and reset the Tracker Server.
Other than most commands,
‘ExitApplication’ takes effect even while
another command may still be busy
(Initialization, FindReflector..). However,
there might be a delayed reaction in certain
cases. This command thus can be used for
‘emergency aborts’ in those cases where
‘StopMeasurement’ is not sufficient.
Applications cannot rely on that this
command will send any confirmation
(command completed, SystemStatus change
events). Depending on context, there may be
a reaction or not. Applications should close
the TCP/IP connection after having sent the
‘ExitApplication’ command.
Note: ‘ExitApplication’ and
‘StopMeasurement’ are the only two
exceptions of commands that cause
immediate reaction while some other

55

command is still pending. All other
commands will return ‘Server busy instead’.
(Hint: This does not apply to the
synchronous emScon COM interface
(LTControl)).

• ES_C_GetSystemStatus
Request status information about the system.

• ES_C_GetTrackerStatus
Request status information about the tracker.

• ES_C_SetTemperatureRange
Set the Trackers working temperature range.

• ES_C_GetTemperatureRange
Get the Trackers working temperature range.

• ES_C_SetUnits
Set Current Units.
All length, angular, temperature, pressure
and humidity- type parameters of all TPI-
commands are represented in the currently
selected units.
Exception: Nivel20 (inclination sensor)
readings are provided in the Nivel20 sensors
native units (milli-rad, Celsius).
Related structure: SystemUnitsDataT.

• ES_C_GetUnits
Queries the currently active unit- settings.
Related structure: SystemUnitsDataT.

• ES_C_Initialize
Initializes the tracker.

• ES_C_ReleaseMotors
Release the motor for horizontal and vertical
tracker head movement in order to allow
manual tracker head movement.

• ES_C_ActivateCameraView
Activates the camera view. The mirror is
turned upwards in order to direct camera
view towards tracker head orientation.

56

Command only applies to Trackers equipped
with an overview camera.

• ES_C_Park
Send tracker to park position. The laser beam
points towards the floor on the opposite side
of the Bird bath.

• ES_C_SwitchLaser
Switch the laser off or on. Usually used to
switch off the laser overnight.

• ES_C_SetStationOrientationParams
Set the 6 orientation parameters to be
applied to measurements and positioning
coordinates. Invariant orientation parameters
are {0,0,0,0,0,0}. With these default settings,
the tracker delivers measured coordinate
values (and takes positioning values) in the
instrument's CS. Orientation parameters
values are also ignored if the
applyStationOrientationParams system settings
flag is not set.
Station orientation parameters itself are in
current units and current CS-type, but
neither according to applied transformation
settings nor to applied orientation settings
(which would mean recursive). No range
limitations apply.
Related structure: StationOrientationDataT.

• ES_C_GetStationOrientationParams
Queries the currently applied 6 orientation
parameters.
Related structure: StationOrientationDataT.

• ES_C_SetTransformationParams
Set the 7 transformation parameters to be
applied to measurements and positioning
coordinates and to (part of) the input filters
such as region parameters.
Invariant transformation parameters are
{0,0,0,0,0,0,1}. With these default settings, the
tracker delivers data in the instrument's CS,

57

(or in the 'oriented system', if non-invariant
orientation parameters are present).
Transformation parameters are also ignored
if the applyTransformationParams system
settings flag is not set.
Transformation parameters itself are in
current units and current CS-type, but
neither according to applied orientation
settings nor to applied transformation
settings (which would mean recursive)! No
range limitations apply.
Related structure: TransformationDataT.

• ES_C_GetTransformationParams
Queries the currently applied 7
transformation parameters.
Related structure: TransformationDataT.

• ES_C_SetSphereRegionParams
Defines a spherical region. If the
corresponding mode is active, measurements
outside the region are suppressed. The
interpretation of the parameters is subject to
units, coordinate type, and transformation
parameters.
Related structure: SphereRegionDataT

• ES_C_GetSphereRegionParams
Queries the currently valid sphere region
parameters.
Related structure: SphereRegionDataT.

• ES_C_SetBoxRegionParams
Defines a box region. If the corresponding
mode is active, measurements outside the
region are suppressed. The box is connected
to the object system given by the
transformation parameters. It is defined by
its diagonal, i.e. by two points in the object
system. The coordinates of the points are
subject to units and coordinate type (They
are NOT subject to transformation
parameters!)

58

A box region is described by a coordinate
system parallel to the box edges and two
opposite vertices. All coordinates of the first
point must be less than those of the second
one. If this condition fails on input, the
corresponding coordinates are switched.
Related structure: BoxRegionDataT.

• ES_C_GetBoxRegionParams
Queries the currently valid box region
parameters. Note that the retrieved point
coordinate values can be different from those
previously set by SetBoxRegion (Because of
the condition that the coordinates of the first
point must be less than those of the second
one). However, the defined box will remain
the same.
Related structure: BoxRegionDataT.

• ES_C_SetEnvironmentParams
Sets the environment parameters.
(temperature, pressure and humidity).
Parameters are in current units.
For valid parameter ranges refer to chapter
'Working Conditions' in the 'Introduction'
main chapter of this manual.
Trying to set values outside the valid ranges
will result in command failure.
Related structure: EnvironmentDataT.
 See enum 'ES_WeatherMonitorStatus' for
details on explicit and implicit updates of
environmental parameters.

• ES_C_GetEnvironmentParams
Queries the currently valid environment
parameters.
Related structure: EnvironmentDataT.
 See enum 'ES_WeatherMonitorStatus' for
details on explicit and implicit updates of
environmental parameters.

• ES_C_SetRefractionParams
Set explicit Refraction Indices for

59

Interferometer and ADM. This is an
advanced command and should only be
used in real special situations. That is, if one
wants to use his own formula for calculating
the refractions from the environment
parameters. SetRefractionParams will
override those refraction parameters
indirectly calculated and implicitly set by a
previous call to SetEnvironmentParams.
Note SetEnvironmentParams and
SetRefractionParams are 'concurrent'
commands. Both update the refraction
parameters.
Refraction indices are dimension-less.
For valid parameter ranges refer to chapter
'Working Conditions' in the 'Introduction'
main chapter of this manual.
Trying to set values outside the valid ranges
will result in command failure.
 A change of the environment parameters
automatically causes an internal, implicit
refraction parameter setting.

• ES_C_GetRefractionParams
Query the currently valid Refraction
Parameters for Interferometer and ADM.

• ES_C_SetMeasurementMode
Sets the measurement mode of the tracker.
Depending on this mode, a subsequent 'Start
measurement' command will result in a
'Stationary measurement' (=single point
measurement), a 'Continuous measurement'
etc.
See enum 'ES_MeasMode' for a list of modes
supported.

• ES_C_GetMeasurementMode
Queries the currently active measurement
mode.

60

• ES_C_SetCoordinateSystemType
Sets the coordinate system type.
See 'ES_CoordinateSystemType' for a list of
CS- types supported. All coordinate- type
parameters of all TPI commands are
represented in the currently selected CS-
type.

• ES_C_GetCoordinateSystemType
Queries the currently active CS-type.

• ES_C_SetStationaryModeParams
Sets the properties for a stationary
measurement, i.e. Measurement time and
ADM use (usually do not use ADM upon
measurement). Measurement time must lie
between 500 ms and 100000 ms (0.5 – 100
seconds).
Related structure: StationaryModeDataT.

• ES_C_GetStationaryModeParams
Queries the currently valid Stationary Mode
Parameters.
Related structure: StationaryModeDataT.

• ES_C_SetContinuousTimeModeParams
Sets the properties for a continuous time
measurement.
Related structure:
ContinuousTimeModeDataT.

• ES_C_GetContinuousTimeModeParams
Queries the currently valid Continuous Time
Mode Parameters
Related structure:
ContinuousTimeModeDataT.

• ES_C_SetContinuousDistanceModeParams
Sets the properties for a continuous distance
measurement.
Distance parameter is in current Length-
units. No range limitation applies to distance
parameters in theory, but there is a practical
limitation given by tracker working space.

61

Related structure:
ContinuousDistanceModeDataT.

• ES_C_GetContinuousDistanceModeParams
Queries the currently valid Continuous
Distance mode parameters.
Related structure:
ContinuousDistanceModeDataT.

• ES_C_SetSphereCenterModeParams
Sets the properties for a Sphere Center
measurement. Radius and SpatialDistance
parameters are in current Length- units. No
range limitation apply to distance and radius
parameters in theory, but there is a practical
limitation given by tracker working space.
Related structure: SphereCenterModeDataT.

• ES_C_GetSphereCenterModeParams
Queries the currently valid
SphereCenterMode Parameters.
Related structure: SphereCenterModeDataT.

• ES_C_SetCircleCenterModeParams
Set the properties for a Circle Center
measurement.
Radius and SpatialDistance parameters are
in current Length- units. No range limitation
apply to distance and radius parameters in
theory, but there is a practical limitation
given by tracker working space.
Related structure: CircleCenterModeDataT.

• ES_C_GetCircleCenterModeParams
Queries the currently valid Circle Center
Mode Parameters.
Related structure: CircleCenterModeDataT.

• ES_C_SetGridModeParams
Sets the properties for a Grid measurement.
Grid value parameters are in current units,
and according current CS-type. No range
limitation apply to grid parameters in
theory, but there is a practical limitation

62

given by tracker working space.
Related structure: GridModeDataT.

• ES_C_GetGridModeParams
Queries the current Grid Mode Parameters.
Related structure: GridModeDataT.

• ES_C_SetReflector
Sets the valid reflector type by its numerical
ID. Attention: Reflector ID's must not be
hard coded. They differ from emScon system
to emScon system. Use command
'GetReflectors' to query the system for
defined reflectors and appropriate ID-
name/type mapping.

• ES_C_GetReflector
Queries the ID of currently valid Reflector .

• ES_C_GetReflectors
Queries all known reflectors of the Tracker
Server. Apart from other information, mainly
delivers the association between reflector
names and their numerical IDs.

• ES_C_SetSearchParams
Set criteria for reflector search abort (search
radius and time out). Search radius is in
current Length- units. Maximal search
parameter is 0.5 meters.
The search time should be set into a
reasonable relation to the search radius.
Large search radii result in extended search
times unless limited by the search timeout
value. The minimum value for the
SearchTimeout is 10’000 ms (10 seconds).
Note: was 2’5000 in previous emScon
versions.

Related structure: SearchParamsDataT.
For a detailed description see there.

• ES_C_GetSearchParams
Queries the currently valid criteria for
aborting a reflector search.

63

Related structure: SearchParamsDataT.
For detailed description see there.

• ES_C_SetAdmParams
Set parameters for the ADM (stability, time,
retries). Attention: This is a 'dangerous'
command. Lowering the stability criteria will
result in measurement precision loss. Only
change these values if really required due
instable conditions (ground vibrations etc.)
TargetStabilityTolerance is a distance
parameter and is in current length- units.
TargetStabilityTolerance must lie between
0.005 and 0.1 Millimeter. Leave this value as
low as possible! (Default is 0.005).
RetryTimeFrame is in milliseconds in the
range between 500 and 5000.
Related structure: AdmParamsDataT.

• ES_C_GetAdmParams
Queries the currently valid ADM
parameters.
Related structures: SetAdmParamsCT,
SetAdmParamsRT and AdmParamsDataT.

• ES_C_SetSystemSettings
Sets system settings, a collection of flags to
control the behavior of Tracker Server.
See struct 'SystemSettingsDataT' for details.
Related structures: SetSystemSettingsCT,
SetSystemSettingsRT and SystemSettingsDataT .

• ES_C_GetSystemSettings
Queries the currently valid System Settings.
Related structure: SystemSettingsDataT.

• ES_C_StartMeasurement
Triggers a measurement – regardless of the
measurement mode. I.e. depending on
selected mode, Start Measurement may start
a Stationary3D- a StationaryProbe-, a
Continuous3D- or a ContinuousProbe
measurement.
Once a continuous measurement (with

64

unlimited time/points) has been started, it
can only be stopped on using
ES_C_StopMeasurement (apart from beam
break).
Note: ‘StopMeasurement’ can also be used to
interrupt some other lengthily taking (but
deterministic) commands (Except on using
the emScon COM [LTControl] synchronous
interface – See Chapter ‘Proper Interface
Selection’). Further details see description of
‘ES_C_StopMeasurement’.

• ES_C_StartNivelMeasurement
Triggers a Nivel 20 (inclination sensor)
measurement, if sensor is available. Note:
result are in native Nivel20 units (milli-
radiant, Celsius), regardless of the currently
set angular and temperature units. This is an
exception to the common convention.
Reason: It does not make sense to provide
very small angles (parts of milli- radiants) in
Degrees or Gons.

• ES_C_StopMeasurement
Stopping a continuous measurement is the
main purpose of this command.
However, this command can also be used to
interrupt other long taking, but deterministic
actions (This is a new feature introduced
with V2.0 and is not available on earlier
emScon versions).
Commands that can be interrupted include:
Stationary Measurements (if a long
measurement time is applied), those
Positioning Commands including a spiral
reflector search (GoPosition, FindReflector..),
and finally the ‘OrientToGravity’ and
‘Automated Intermediate Compensation’
processes.
Note: the Tracker ‘Initialize’ command
cannot be interrupted.

65

Interruption of long taking commands is also
not possible when using the emScon COM
[LTControl] synchronous interface. If an
issue, use the asynchronous COM interface.
For details see chapter ‘Proper Interface
Selection’.

• ES_C_ChangeFace
Changes the tracker face before the laser
beam is attached to the same position.

• ES_C_GoBirdBath
3D Modes: Laser beam is sent to the Bird
bath. The beam is 'attached' to the reflector in
the Bird bath and the Interferometer distance
is set to the known Bird- bath distance. This
command is especially important for LT-
series trackers without ADM. For such
tracker, there is no other way to set the
interferometer distance.
6D Modes: GoBirdBath does not make sense
for a Probe. This command thus has a
different effect while one of the 6D
measurement modes is active. The laser
beam is sent to zero position instead (which
is on the opposite side of the BirdBath),
where it can then be catched with the probe.

• ES_C_GoPosition
Laser beam is sent to a specified location,
followed by an implicit 'Find reflector'. The
beam is 'attached' to the reflector (if found).
Input is in current units, CS-type and
according to applied orientation /
transformation parameters. No range
limitations apply to these parameters in
theory, but there is a practical limitation
given by tracker working volume. The
useADM flag should always be set for
trackers equipped with an ADM.
If ADM flag is not set, the IFM distance is
calculated from the supplied coordinates and

66

is set as the valid one. To be used with
caution!

The search time depends on the search
radius. Large search radii result in extended
search times, unless limited by the search
timeout value selected by 'SetSearchParams'.
See command 'SetSearchParams' for details.
A ‘GoPosition’ command in progress can be
interrupted with ‘ES_C_StopMeasurement’.

• ES_C_GoPositionHVD
Laser beam is sent to specified location,
followed by an implicit 'Find reflector'. Input
is in current units as horizontal, vertical and
distance parameters related to the values of
the 'instrument CS' and 'raw' measurement
values, regardless of current CS and CS-type.
Range limitations apply with respect to the
tracker elevation limits. The useADM flag
should always be set for trackers equipped
with an ADM.
If ADM flag is not set, the provided distance
is taken as new IFM distance. To be used
with caution!

The search time depends on the search
radius. Large search radii result in extended
search times, unless limited by the search
timeout value selected by 'SetSearchParams'.
See command 'SetSearchParams' for details.
A ‘GoPositionHVD’ command in progress
can be interrupted with
‘ES_C_StopMeasurement’.

• PositionRelativeHV
Position (relative)the tracker head to the
given horizontal and vertical angles. The
angles are 'signed' values in order to specify
the direction. Parameters are according to
currently set angular units. Range limitations

67

apply with respect to the tracker elevation
limits.

• ES_C_PointLaser
Similar to ES_C_GoPosition, but laser beam
is sent to the specified location only. A
reflector is neither searched nor attached.

• ES_C_PointLaserHVD
Same as ES_C_GoPositionHVD (laser beam
is sent to the specified location), but a
reflector is neither searched for nor attached.

• ES_C_MoveHV
Command to start laser beam movement in
horizontal, vertical direction, or to stop
movement. Zero values mean 'stop
movement'.
The parameters for MoveHV are 'signed'
values in order to specify the direction of
movement. The parameters are 'speed values
in the range between -100 < x < 100

• ES_C_GoNivelPosition
This command moves the tracker head to
one of the defined Nivel20 positions (1 to 4).
The laser tracker moves at a slow speed to
avoid disturbing the Nivel sensor. This
command is used for the orient to gravity
procedure.

• ES_C_GoLastMeasuredPoint
Positions the laser beam to the location that
has been last measured successfully in
stationary mode.

• ES_C_FindReflector
Searches a reflector at the given position.
Reflector is attached if found. The approx
distance is only required to calculate the
'opening angle' of the laser beam from the
given search parameter. An inaccurate
approx distance only has the effect that the
real search radius will be bigger or smaller

68

than specified in SetSearchParams. It has no
effect to measurement quality. Approx
distance parameters are in current Length
Unit. Although no range limitation applies in
theory, there is a practical limitation given by
tracker working space: 100 mm < approxDist
<= 50000 mm. Note: the minimum value is
101 mm, not 100 mm!
The search time depends on the search
radius. Large search radii result in extended
search times.
 See also command 'SetSearchParams'.
A ‘FindReflector’ command in progress can
be interrupted with
‘ES_C_StopMeasurement’

• ES_C_Unknown
Used for initialization purposes only. Does
not appear as an answer to a command .

• ES_C_LookForTarget
Looks for a reflector at the given position
and returns H, V values, if a reflector is
present. Values are in current angular units.
This command is mainly useful for LT- series
of Tracker without ADM and should not be
used in general.

• ES_C_GetDirection,
Returns H, V values even without a reflector
locked on. Values always are in current
angular units.

• ES_C_CallOrientToGravity
Triggers an ‘Orient to Gravity’ process. The 2
inclination parameters are returned as a
result. Result values are in current angular
units and are typically used as RotVal1,
RotVal2 input values for the
SetStationOrientationParams command.
Note: this is a rather long-taking command.
It can be interrupted with

69

‘ES_C_StopMeasurement’.

• ES_C_ClearTransformationNominalPointList
Clears the current nominal point list (which
is used as input data for the Transformation
process).
For all transformation related commands, see
Section 9.2 for details.

• ES_C_ClearTransformationActualPointList
Clears the current actual point list (which is
used as input data for the Transformation
process).

• ES_C_AddTransformationNominalPoint
Adds a point to the transformation input
nominal point list. Values are expected in
current units, current CS-type.
Transformation parameters are not taken
into account.

• ES_C_AddTransformationActualPoint
Adds a point to the transformation input
actual point list. Values are expected in
current units, current CS-type and according
current transformation settings (in contrast
to AddTransformationNominalPoint).

• ES_C_SetTransformationInputParams
Sets the input params for the
transformation. . Values are expected in
current units and current CS-type (No
transformation applies). For all
transformation related commands, see
Section 9.2 for details.
Input Standard deviations should take one of
the constant values defined in the chapter
'Constants for Transformation' (TPI
Reference).
In particular, they one of the following
values should be assigned:
0.0 – If parameter to be fixed,
1.0E+35 – If parameter unknown, or

70

1.0E+15 – If parameter approximately
known.
Rather use the predefined constant symbols
than hardcoded numerical values!

• ES_C_GetTransformationInputParams
Gets the currently active transformation
input parameters.

• ES_C_CallTransformation
Triggers the transformation-parameter
calculation process. The 7 transformation
parameters (including statistical information)
are returned as a result. Values are delivered
in current units and current CS-type (the
same as with TransformationInputParams).
For all transformation related commands, see
Section 9.2 for details.

• ES_C_GetTransformedPoints
Retrieves the ‘secondary’ transformation
results (= transformed points including
statistical information and their residuals to
nominal points) after a successful
‘CallTransformation’. Values are provided in
current units, current CS-type (but not
according to current orientation settings).
Transformed points do match the nominal
points (apart from residuals). For all
transformation related commands, see
Section 9.2 for details.

• ES_C_ClearDrivePointList
Clears the current drive point list (used as
input data for the Intermediate
Compensation).

• ES_C_AddDrivePoint
Add a point to the drive point list for the
Intermediate Compensation. Values are
expected in current units, current CS-type
and according current orientation /
transformation settings.
For all intermediate compensation related

71

commands, see main chapters 8 (sub- chapter
Automated Intermediate Compensation).

• ES_C_CallIntermediateCompensation
Triggers an ‘Intermediate Compensation’
process and calculation.
A successful result will not automatically
become the active compensation.
For all intermediate compensation related
commands, see main chapters 8 (sub- chapter
Automated Intermediate Compensation).
Note: this is a long-taking command. It can
be interrupted with
‘ES_C_StopMeasurement’.

• ES_C_GetCompensations
Reads all Tracker- compensations stored in
the database. Apart from the internal ID and
name (which is made up of the
compensation date), a series of properties is
delivered.

• ES_C_GetCompensations2
Enhanced version of
ES_C_GetCompensations. Delivers comment
for ADM compensation and active
compensation as additional information.
ES_C_GetCompensations only left for
backward compatibility reasons. New
applications should use
ES_C_GetCompensations2.

• ES_C_SetCompensation
Sets the specified tracker compensation with
the given ID as the active one. The available
Tracker compensations including their Ids
can be retrieved with the command
'GetCompensations'.

• ES_C_GetCompensation
Reads the currently active compensation ID.
Only the internal ID is returned. For
additional information, the properties need

72

to be looked up in the list delivered by
ES_C_GetCompensations

• ES_C_SetStatisticMode,
Switches the statistic mode between
‘standard’ and ‘extended’. This mode only
influences the Single- and Multi-
measurement results. This is an advanced
feature. Extended statistic mode should only
be used if enhanced statistical information is
required. This is for example the case when
using stationary measurements as input to
the transformation routine.
See difference between
Single/MultMeasResultT (standard) and
Single/MultMeasResult2T enhanced).

• ES_C_GetStatisticMode
Gets the current statistic mode.

• ES_C_GetStillImage
Requests a still image (in case the tracker is
equipped with an Overview Camera).
For all Still Image related commands, see
main chapters 8 (sub- chapter Still Image).

• ES_C_SetCameraParams
Sets the current contrast and brightness
parameters of the Overview Camera. Valid
values are between 1..255. Saturation is
currently ignored and should be zero.

• ES_C_GetCameraParams
Get current Overview Camera parameters.

• ES_C_CheckBirdBath
Carries out Bird bath check routine. Returns
Initial and current differences of BirdBath
Angles and Distances. Values are expected
in current units.

• ES_C_GetTrackerDiagnostics
Returns Tracker diagnostic information. This
is an advanced / diagnostic command. Not

73

usually used by common applications. See
Tracker hardware manual for details.

• ES_C_GetADMInfo
Returns Absolute Distance Meter
information (Version and Serial Number), if
available (i.e. If a LTD series tracker).

• ES_C_GetTPInfo
Returns Tracker Processor information. This
is an advanced / diagnostic command. Not
usually used by common applications. See
Tracker/TP hardware manual for details.

• ES_C_GetNivelInfo
Returns Nivel information, if available.
(Version and Serial Number).

• ES_C_SetLaserOnTimer
Switches the laser on in predefined time

• ES_C_GetLaserOnTimer
Reads the remaining time left before it is
switched on

• ES_C_ConvertDisplayCoordinates
Converts display coordinate triples from
base to current and back.
 This is a private function/command and is
not documented/supported. It should not be
used for any client programming

• ES_C_GoBirdBath2
Sets the laser beam to the Bird bath by
turning tracker head in specified direction
(clockwise or counter clockwise). Note: This
command only applies to 3D measurement
modes. See description of ES_C_GoBirdBath
for more details.

• ES_C_SetTriggerSource
Sets the Trigger Source for triggering
measurements from remote (e.g. Probe
buttons, or clock signal).
Note: Trigger functionality is not yet

74

available with emScon 2.1.x releases and may
be subject to change!

• ES_C_GetTriggerSource
Get the currently active Trigger source
Note: Trigger functionality is not yet
available with emScon 2.1.x releases and may
be subject to change!

• ES_C_GetFace
Get the currently active Tracker- Face (I or II)

• ES_C_GetCameras
Enumerate all Measurement cameras known
to the system (i.e. those defined in the
database). Apart from the 'internal' ID, a
selection of properties is delivered (Name,
Type, Serial number....). This approach is the
same as used for the command
'ES_C_GetReflectors' or
'ES_C_GetCompensations'.

• ES_C_GetCamera
Get the currently active, i.e. mounted
camera. Only the internal ID is returned. For
additional information, the properties need
to be looked up in the list delivered by
ES_C_GetCameras

• ES_C_SetMeasurementCameraMode
This command only applies to tracker
systems equipped with a T-Cam. Allows to
switch between Measurement- and
Overview mode. If in Overview mode, the T-
Cam plays the role of a 'classic' camera as
already available with LT/D 500 series. That
is, commands such as 'ActivateCameraView',
Set/GetCameraParams, GetStillImage apply.

• ES_C_GetMeasurementCameraMode
Get the currently active T-Cam mode
(Measurement, Overview).

• ES_C_GetProbes
 This command only applies to tracker

75

systems equipped with a T-Cam.
Delivers all T-Probes known to the system,
including ID and other properties. This
command is the 6DoF relative to
ES_C_GetReflectors of a 3D system.

• ES_C_GetProbe
Gets the ID of the currently active Probe.

• ES_C_GetTipAdapters
This command only applies to tracker
systems equipped with a T-Cam.
It delivers all Measurement Tip Adapters
known to the system, including ID and other
properties. This command is similar to
ES_C_GetReflectors of a 3D system.

Explanation of Terms:

Note that the terms ‘Tip’ and ‘Stylus’ are
equivalent. The former is used in by the TPI,
while the Compensation Application mainly
uses the latter.
 A ‘TipAssembly’ (= StylusAssembly)
addresses the actual combination of Tip and
TipAdapter. The TipAssembly is designed as
a property of a TipAdapter and mainly
consists of Tip Length and the diameter of
the ruby sphere. There is one and only one
TipAssembly for each TipAdapter.

76

TipAssemblies can only be defined from
within the Compensation Module (apart
from importing TipAdapters with already
existing valid TipAssembly). The
TipAssembly must be redefined each time a
different Type of Tip (Stylus) is attached to a
TipAdapter. Moreover, a TipAssembly
definition must be followed by a TipToProbe
Compensation.
Note that a particular Tip – other than a
TipAdapter – does not have its own ID. For
that reason, there is no ‘GetTips’ command.
Tips can only be identified indirectly
through the TipAdapter they are mounted to
It is the users responsibility to correctly
define length and radius (upon defining a
TipAssembly for a particular TipAdapter).
These values (in addition to a user- defined
comment) can be retrieved through the
command GetTipAdapters.

• ES_C_GetTipAdapter
Gets the ID of the currently active Tip
Adapter.

• ES_C_GetTCamToTrackerCompensations
Reads all T-Cam to Tracker- compensations
stored in the database. Apart from the
internal ID and name, a series of properties is
delivered.

• ES_C_GetTCamToTrackerCompensation
Reads the currently active T_Cam to Tracker
compensation ID. Only the internal ID is
returned. For additional information, the
properties need to be looked up in the list
delivered by ES_C_
GetTCamToTrackerCompensations

• ES_C_SetTCamToTrackerCompensation
Sets the specified tracker compensation with
the given ID as the active one. The available
TCamToTracker compensations including

77

their Ids can be retrieved with the command
' GetTCamToTrackerCompensation '.

• ES_C_GetProbeCompensations
Reads all Probe- compensations stored in the
database. Apart from the internal ID and
name, a series of properties is delivered.

• ES_C_GetProbeCompensation
Reads the currently active probe
compensation ID. Only the internal ID is
returned. For additional information, the
properties need to be looked up in the list
delivered by
ES_C_GetTCamToTrackerCompensations

• ES_C_SetProbeCompensation
Sets the specified Probe compensation with
the given ID as the active one. The available
Probe compensations including their ID's can
be retrieved with the command ' Get
GetProbeCompensations '.

• ES_C_GetTipToProbeCompensations
Reads all TipToProbe- compensations stored
in the database. Apart from the internal ID
and name, a series of properties is delivered.

• ES_C_GetTipToProbeCompensation
Reads the currently active TipToProbe
compensation ID. Only the internal ID is
returned. For additional information, the
properties need to be looked up in the list
delivered by
ES_C_GetTipToProbeCompensations

• ES_C_SetExternTriggerParams
Set the behavior of the external trigger.
related structure: ExternTriggerParamsT
Note: Trigger functionality is not yet
available with emScon 2.1.x releases and may
be subject to change!

• ES_C_GetExternTriggerParams
Set the parameters of the external trigger.

78

Note: Trigger functionality is not yet
available with emScon 2.1.x releases and may
be subject to change!

• ES_C_GetErrorEllipsoid
Convenience function to calculate an error
ellipsoid from a given point with Standard
Deviations and Covariance.
Input is in current units, current CS-type and
applied orientation / transformation settings.
Output is always in RHR.

• ES_C_GetMeasurementCameraInfo
Returns Measurement Camera information.
This is an advanced / diagnostic command.
Not usually used by common applications.
See Tracker/T-Cam hardware manual for
details.
See also GetMeasurementCameraInfoRT
structure.

• ES_C_GetMeasurementProbeInfo
Returns Probe information. This is an
advanced / diagnostic command. Not
usually used by common applications. See
Tracker/Probe hardware manual for details.
See also GetMeasurementProbeInfoRT
structure.

• ES_C_SetLongSystemParameter
This is an advanced command to set
SystemSettings parameters of type Long,
Boolean and enum- types individually. This
approach was chosen to avoid extending the
existing 'SystemSettingsDataT' structure.
There are now some parameters covered by
both commands (For example
WeatherMonitorStatus). For these, either
command (SetSystemSettings or
SetLongSystemParameter) can be used.
See enum ES_SystemParameter for values
supported by this command.
Some system parameters are new and can

79

only be addressed by this command and not
by the former SetSystemSettings command
(Example: ES_SP_AllowProbeWithoutTip).

• ES_C_GetLongSystemParameter
Get current (long- type) system parameter.
The opposite of
ES_C_SetLongSystemParameter

• ES_C_GetMeasurementStatusInfo
Get information about availability of all
types of compensations and related
hardware.
The information data is delivered as a long
value representing a bit-mask. Use the enum
ES_MeasurementStatusInfo values to
identify / mask the long parameter
information.

• ES_C_GetCurrentPrismPosition

Get the current position of the prism the
laser beam is currently attached to. This can
be a reflector or the prism of a probe.
Delivered position parameters are with all
‘filters’ applied (Units, CS- Type,
Transformation, Orientation). In other
words: the ‘same’ values as a stationary
measurement would deliver. However, these
position values are NOT as accurate as
stationary measurements. Do NOT use these
values as measurements where precise
measurements are required.
The background for this command is as
follows: If a probe is attached, it is not
possible to take 3D measurements to the
probe prism. A measurement to the probe
delivers the tip position, not the prism
position. However, there exist situations
where the position of the probe prism may
be of interest (for example when issuing a
GoPosition as a reaction of a beam broken
event – supposed the probe is always placed

80

to the same location).
Thus, this command is probably only of
interest for Probe related enterprises.

ES_ResultStatus

Defines the supported result status values
received as an answer to TPI commands.

 See 8. Appendix at the end of this manual for
a listing of error numbers.

81

enum ES_ResultStatus
{
 ES_RS_AllOK,
 ES_RS_ServerBusy,
 ES_RS_NotImplemented,
 ES_RS_WrongParameter,
 ES_RS_WrongParameter1,
 ES_RS_WrongParameter2,
 ES_RS_WrongParameter3,
 ES_RS_WrongParameter4,
 ES_RS_WrongParameter5,
 ES_RS_WrongParameter6,
 ES_RS_WrongParameter7,
 ES_RS_Parameter1OutOfRangeOK,
 ES_RS_Parameter1OutOfRangeNOK,
 ES_RS_Parameter2OutOfRangeOK,
 ES_RS_Parameter2OutOfRangeNOK,
 ES_RS_Parameter3OutOfRangeOK,
 ES_RS_Parameter3OutOfRangeNOK,
 ES_RS_Parameter4OutOfRangeOK,
 ES_RS_Parameter4OutOfRangeNOK,
 ES_RS_Parameter5OutOfRangeOK,
 ES_RS_Parameter5OutOfRangeNOK,
 ES_RS_Parameter6OutOfRangeOK,
 ES_RS_Parameter6OutOfRangeNOK,
 ES_RS_WrongCurrentReflector,
 ES_RS_NoCircleCenterFound,
 ES_RS_NoSphereCenterFound,
 ES_RS_NoTPFound,
 ES_RS_NoWeathermonitorFound,
 ES_RS_NoLastMeasuredPoint,
 ES_RS_NoVideoCamera,
 ES_RS_NoAdm,
 ES_RS_NoNivel,
 ES_RS_WrongTPFirmware,
 ES_RS_DataBaseNotFound,
 ES_RS_LicenseExpired,
 ES_RS_UsageConflict,
 ES_RS_Unknown,
 ES_RS_NoDistanceSet,
 ES_RS_NoTrackerConnected,
 ES_RS_TrackerNotInitialized,
 ES_RS_ModuleNotStarted,
 ES_RS_ModuleTimedOut,
 ES_RS_ErrorReadingModuleDb,
 ES_RS_ErrorWritingModuleDb,
 ES_RS_NotInCameraPosition,
 ES_RS_TPHasServiceFirmware,
 ES_RS_TPExternalControl,
 ES_RS_WrongParameter8,
 ES_RS_WrongParameter9,
 ES_RS_WrongParameter10,
 ES_RS_WrongParameter11,
 ES_RS_WrongParameter12,
 ES_RS_WrongParameter13,
 ES_RS_WrongParameter14,
 ES_RS_WrongParameter15,
 ES_RS_WrongParameter16,
 ES_RS_NoSuchCompensation ,
 ES_RS_MeteoDataOutOfRange,
 ES_RS_InCompensationMode,
 ES_RS_InternalProcessActive,
 ES_RS_NoCopyProtectionDongleFound,
 ES_RS_ModuleNotActivated,
 ES_RS_ModuleWrongVersion,
 ES_RS_DemoDongleExpired,
 ES_RS_ParameterImportFromProbeFailed,
 ES_RS_ParameterExportToProbeFailed,
 ES_RS_NotTrkCompWithMeasCamera,
 ES_RS_NoMeasurementCamera,
 ES_RS_NoActiveMeasurementCamera,
 ES_RS_NoMeasurementCamerasInDb,
 ES_RS_NoCameraToTrackerCompSet,
 ES_RS_NoCameraToTrackerCompInDb,
 ES_RS_ProblemStoringCameraToTrackerFactorySet,
 ES_RS_ProblemWithCameraInternalCalibration,
 ES_RS_CommunicationWithMeasurementCameraFailed,
 ES_RS_NoMeasurementProbe,
 ES_RS_NoActiveMeasurementProbe,
 ES_RS_NoMeasurementProbesInDb,
 ES_RS_NoMeasurementProbeCompSet,
 ES_RS_NoMeasurementProbeCompInDb,
 ES_RS_ProblemStoringProbeFactorySet,
 ES_RS_WrongActiveMeasurementProbeCompInDb,
 ES_RS_CommunicationWithMeasurementProbeFailed,
 ES_RS_NoMeasurementTip,
 ES_RS_NoActiveMeasurementTip,
 ES_RS_NoMeasurementTipsInDb,

82

 ES_RS_NoMeasurementTipCompInDb,
 ES_RS_NoMeasurementTipCompSet,
 ES_RS_ProblemStoringTipAssembly,
 ES_RS_ProblemReadingCompensationDb,
 ES_RS_NoDataToImport,
 ES_RS_ProblemSettingTriggerSource,
 ES_RS_6DModeNotAllowed,
 ES_RS_Bad6DResult,
 ES_RS_NoTemperatureFromWM,
 ES_RS_NoPressureFromWM,
 ES_RS_NoHumidityFromWM,
 ES_RS_6DMeasurementFace2NotAllowed,
};

• ES_RS_AllOK
Meaning: The command terminated
successfully.

• ES_RS_ServerBusy
Meaning: A previously invoked command
was being processed when the next
command was invoked. The 'next' command
was not executed.
Note: The application should always wait,
until the previous command has terminated,
before issuing the next command. This is due
to the asynchronous communication
behavior of the emScon C/C++ TPI. This
indicates a programming error in the
application – The application did not await
the termination of the previous command,
before issuing a new one.
 This error should not occur when using the
synchronous interface of the COM TPI.

• ES_RS_NotImplemented
Meaning: A command that is already
specified in the programming interface, but
not yet implemented/supported, was being
executed.
 This may occur in pre-releases (Beta
versions) of emScon.

• ES_RS_WrongParameter
 This error applies to commands with only
one parameter.
Meaning: The parameter of the issued
command was not accepted and executed.
This error is issued if, for example:

83

- A positive value is expected but the user
passed a negative one.

- The parameter is out of valid range. Very
often this is due to wrong unit selection.

Note: Check the valid range and current unit
of the command parameter (see command
description).
Example: The system is currently set to
'Meters' for length units, but the user enters
5000 (5000 mm) instead of 5.

• ES_RS_WrongParameter1

• ES_RS_WrongParameter2

• ES_RS_WrongParameter3

• ES_RS_WrongParameter4

• ES_RS_WrongParameter5

• ES_RS_WrongParameter6

• ES_RS_WrongParameter7

• ES_RS_WrongParameter8

• ES_RS_WrongParameter9

• ES_RS_WrongParameter10

• ES_RS_WrongParameter11

• ES_RS_WrongParameter12

• ES_RS_WrongParameter13

• ES_RS_WrongParameter14

• ES_RS_WrongParameter15

• ES_RS_WrongParameter16
Meaning: Applies to commands with
more than one parameter. The symbol
specifies which one of the parameters is
wrong.

• ES_RS_Parameter1OutOfRangeOK

• ES_RS_Parameter1OutOfRangeNOK

• ES_RS_Parameter2OutOfRangeOK

84

• ES_RS_Parameter2OutOfRangeNOK

• ES_RS_Parameter3OutOfRangeOK

• ES_RS_Parameter3OutOfRangeNOK

• ES_RS_Parameter4OutOfRangeOK

• ES_RS_Parameter4OutOfRangeNOK

• ES_RS_Parameter5OutOfRangeOK

• ES_RS_Parameter5OutOfRangeNOK

• ES_RS_Parameter6OutOfRangeOK

• ES_RS_Parameter6OutOfRangeNOK
Meaning: OutOfRangeOK (warning) –
The value of the specified parameter was
out of the recommended range (but
within the valid range) and accepted.
The command was executed.
OutOfRangeNOK (error) – The value of
the specified parameter was not within
the valid range and was not accepted.
The command was not executed.

 These errors/warnings typically
apply to atmospheric values such as
temperature and pressure. The system
can still perform the requested action,
but the result will not be within
specifications.

 In case of OutOfRangeOK, the user
should be aware that the system may not
deliver highest accuracy.

• ES_RS_WrongCurrentReflector
Meaning: An invalid reflector was set (e.g. if
the parameter of command SetReflector
applies to a non-existing reflector ID or to an
ID of an existing but inaccurate reflector.
Note: This is usually a programming error in
the application. The application should not
allow the user to set an invalid reflector. The

85

application should query the IDs of valid
reflectors with the command GetReflectors
and then offer these as possible parameters

•
n the

ode. The calculation of the circle

ibe

meters may not

roperly.

• terFound

 not have been set properly

eParams'.

•

s

 or if
the boot process failed for some reason.

for the SetReflector command.

ES_RS_NoCircleCenterFound
Meaning: This error occurs only i
continuous measurement mode,
CircleCenterM
center failed.
Note: The measurements represent either a
very small sector of the circle and/or descr
a circle not within the required accuracy,
which is not sufficient for calculation. The
Circle Center Mode para
have been set p
 See command
'SetCircleCenterModeParams'.

ES_RS_NoSphereCen
Meaning: Similar to
ES_RS_NoCircleCenterFound.
Note: The measurements represent a very
small sector of the sphere. For good results,
at least half of the sphere should be covered
by measurements. The Sphere Center Mode
parameters may
 See command
'SetSphereCenterMod

ES_RS_NoTPFound
Meaning: There is no communication
between the tracker controller and the
tracker server. Either the connection is
broken or the tracker controller did not boot
and connect properly. Often this error occur
if the application tries to access the tracker
server before the boot process is finished

 For version 1.5 and abo
recommended to await the
ES_SSC_ServerStart

ve, it is

ed event before trying to

86

issue a command.
Note: This problem can occur w
External Tracker Server (cable
unplugged/damaged, plugged to wrong
connector). This problem is minimized
LT Controller plus/base since both the
tracker serve

ith use of an

for

r and controller are integrated

•

l weather station.

wer is

ion.

•
nd

t. There is no last measured point to go

tion

nt has been measured since last

•

ur
rview Camera is attached to the

 commands, if

in one unit.

ES_RS_NoWeathermonitorFound
Meaning: A command or polling mechanism
could not access an externa
The weather station is not
present/connected/switched on.
Note: If there is a weather station connected,
check the cable and make sure the po
switched on. If no weather station is
connected, set the SystemStatusFlag
HasWeatherMonitor to zero. (Command
SetSystemStatus). The flag must be ≠ 0, in
order to access the weather stat

ES_RS_NoLastMeasuredPoint
Meaning: This error occurs after a comma
GoLastMeasuredPoint, when no stationary
point has been measured since last system
boo
to.
Note: Ensure that the user or the applica
does not call GoLastMeasuredPoint, if no
stationary poi
system boot.

ES_RS_NoVideoCamera
Meaning: A command could not access the
Overview Camera. This error can only occ
if no Ove
system.
Note: If no camera is connected, set the
SystemStatusFlag HasVideoCamera to zero.
(Command SetSystemStatus). The application
should not call camera related

87

there is no camera attached.

 There exist different types of overview
cameras that differ in internal parameters
(focus distance, CCD chip size). Older
emScon versions were not able to detect
whether an overview camera was moun
or not, not to speak of type recognitio
(indeed it was the overview camera
hardware that did not support type
recognition). For that reason, the flag
'HasVideoCamera' was originally
introduced. Thus, the user had to 'tell' the
system when an overview camera was
mounted. Newer EmScon versions (2.0 and
up) are able to detect the camera type
automatically. Hence, this flag theoretically
has become obsolete. However, currently t
camera type is recognized only when the
'hHasVideoCamera' flag is enabled.
If your system is equipped with an overview
camera, it is highly recommended to always
having this flag checked (default is
unchecked). Otherwise, the system may
detect the correct camera type and use
wrong (default) parameters.
However, wrong parameters do not cause
any fatal failures. The only effect will be that
the 'Find Reflector' feature by clicking to the
live video image by mouse pointer will move
the tracker inaccurately (typically, the tracke
will move double or half the amount of the

ted
n

he

 not

r

).

•

).
ckers,

'clicked' distance

ES_RS_NoAdm
Meaning: A command could not access the
absolute distance meter of the tracker. This
error should only occur if a tracker is not
equipped with an ADM (i.e. LT- series only
Note: If this error occurs for LTD tra

88

this probably ind
failure.(Refer to Leica service).

ES_RS_NoNivel
Meaning: A command could not access th
external Nivel20 inclination sensor. Either it
is not present or not correctly connected.
Note: If there is a Nivel20 connected
the cable. If no Nivel20 is present, set the
SystemStatusFlag HasNivel to zero

icates a hardware

•
e

, check

. The flag must

•
he installed Firmware on the

e.
 (Refer to Leica

• eNotFound

ters
Send the

s to the emScon

•

demo dongle?).
ngle Field- upgrade at

•

et
re,

es.

(Command SetSystemStatus)
be ≠ 0, in order to access the Nivel20.

ES_RS_WrongTPFirmware
Meaning: T
Tracker controller does not match the actual
hardwar
Note: Upgrade the firmware
service)

ES_RS_DataBas
Meaning: No database could be found on the
tracker server.
Note: There are no compensation parame
found for the attached sensor.
respective parameter file
server using the transfer tool.

ES_RS_LicenseExpired
Meaning: The Copy- Protection Dongle has
expired (Probably due to a
Note: Request for a do
Leica or get a new dongle.

ES_RS_UsageConflict
Meaning: Some system modes disable other
commands, because they do not make sense
in this context. For example, if the system is
equipped with a weather station and is s
up to automatically monitor the temperatu
pressure and humidity, the system will
prevent a manual setting of these valu
The command SetEnvironmentParams will
issue an error ES_RS_UsageConflict.

89

The command GetEnvironmentParams will
work and deliver the actual values measu
by the monitor. If the weather station m
is set to 'read and recalculate Refra
then the same applies to the command
SetRefractionParams. It will issue a
ES_RS_UsageConflict, since setting th
refraction index manually would conflict th
automatic mechanism and
overwritten upon the next weather sta
read cycle (~ 20 seconds).
Note: The application should not call
SetEnvironmentParams and/or
SetRefractionParams, if these va

red
ode

ction',

e
e

 would be
tion

lues are
ted by the weather

•
n unknown error occurred.

 response to a

•
rferometer has no valid

le

,

s to
utomatically as

t a ADM:

ring position

• ected
ler

 broken.

automatically upda
station, as per system settings.

ES_RS_Unknown
Meaning: A
Should never occur as a
command.

ES_RS_NoDistanceSet
Meaning: The inte
reference distance. Measuring is not possib
in this condition.
Note: Trackers with ADM may attach to a
stable reflector anywhere. Use GoPosition or
if close to a reflector, FindReflector. If 'Keep
last position is enabled', the system trie
re-establish the distance a
soon as a reflector can be tracked. For
trackers withou

- Place the reflector in the Birdbath. Do a
 GoBirdbath.

- Move reflector to the measu
 without interrupting the beam.

ES_RS_NoTrackerConn
Meaning: The connection between control
and tracker is

90

Note: Check all cables between
and tracker.

ES_RS_TrackerNotInitialized
Meaning: The tracker is not
Note: Execute the Initialize comman
environmental
(manually/weather station) bef

 controller

•
 initialized.

d. Set the
 parameters

ore

ps'

•

•
oftware

Scon server.

•
 video

r was not in camera position.
w command

•

itable for
rror cannot

ons.

•
nder

•
istent

initialization.
 See also chapter 'Initial Ste

• ES_RS_ModuleNotStarted

• ES_RS_ModuleTimedOut

ES_RS_ErrorReadingModuleDb

ES_RS_ErrorWritingModuleDb
Meaning: These errors indicate a s
installation problem on the em
Note: Reinstall emScon software.

ES_RS_NotInCameraPosition
Meaning: Application tried to grab a
image from the Overview Camera, when the
tracke
Note: Issue an ActivateCameraVie
first.

ES_RS_TPHasServiceFirmware
Meaning: The server has loaded service
firmware. This firmware is not su
ordinary tracker usage. This e
occur under normal conditi
Note: Refer to Leica service.

ES_RS_TPExternalControl
Meaning: The controller is running u
external (e.g. AXYZ) control.
Note: Reboot the tracker processor.

ES_RS_NoSuchCompensation
Meaning: The ID of a non-ex
Compensation was passed to the
SetCompensation command.

91

Note: Use the GetCompensations c
get a list of valid Compensations.

ES_RS_MeteoDataOutOfRange
Meaning: The current enviro
parameters (Temperature, Pressure,
Humidity) are out of range.
Note: Use SetEnvironmtalParams com
set these para

ion is attached, check for proper
functioning.

ommand to

•
nmental

mand to
meters correctly. If a weather

stat

 The Thommen Meteo station mu
connected to the tracker system and
switched on before booting emScon
Incorrect environmental data may be
produced, if the weather station is
connected/switched on later. Connecting
combined Temperature/Pressure device is
optional. However, if missing, the other
(small) Temperature device must be pr
If no humidity is available, a default value o
70% is assumed. Note: Other than for
temperature and pr
the humidity to the refraction index
marginal. See also
ES_RS_NoTemperatureFromWM,

st be

.

 the

esent.
f

essure, the influence of
 is

•
on

 this
ked.

• nalProcessActive

mmand has finished, before

ES_RS_NoPressureFromWM,
and ES_RS_NoHumidityFromWM.

ES_RS_InCompensationMode
Meaning: The server is set to Compensati
Mode. This is the case when the
Compensation BUI is active. During
state, all TPI commands are loc
Note: Quit the Compensation BUI.

ES_RS_Inter
Meaning: The server is still busy with a
command.
Note: The application must wait until the
previous co

92

issuing a new command (asynchronous
behavior).

ES_RS_N
Meaning: The copy protection dongle is
missing.

• oCopyProtectionDongleFound

 connected at

•

ecified module.
ive to get a

•
: The copy protection dongle does

ative to get a

• emoDongleExpired

d

• rtFromProbeFailed

ke sure Probe has information in its

• rtToProbeFailed

n conflict.

•

be

Note: Make sure the dongle is
the correct port.

ES_RS_ModuleNotActivated
Meaning: The copy protection dongle does
not qualify to use the sp
Note: Refer to Leica representat
dongle field- upgrade.

ES_RS_ModuleWrongVersion
Meaning
not qualify to use the specified module
version.
Note: Refer to Leica represent
dongle field- upgrade.

ES_RS_D
Meaning: The dongle is not activated or has
expired.
Note: Refer to a Leica representative. A fiel
upgrade might be provided.

ES_RS_ParameterImpo
Meaning: Importing of a probe
compensation failed.
Note: Ma
memory. Also check for potential version
conflict.

ES_RS_ParameterExpo
Meaning: Exporting of a probe
compensation failed.
Note: Check for potential versio

ES_RS_NotTrkCompWithMeasCamera
Meaning: The selected Tracker
Compensation was not made with a T-Cam
mounted. This compensation must not

93

used with a Tracker wit T-Cam m
Note: Select a different compensat

ES_RS_NoMeasurementC

ounted.
ion.

• amera

•

e sure mounted T-Cam matches

•
No T-Cam is defined in database.

• rCompSet
T-Cam to tracker

tion.

•

 available in database.

•

the mounted camera.
r provide a

• oMeasurementProbe
e

Meaning: No T-Cam is available.
Note: Mount the T-Cam.

ES_RS_NoActiveMeasurementCamera
Meaning: The mounted T-Cam does not
match the one stored in the database.
Note: Mak
the camera information stored in the
database.

ES_RS_NoMeasurementCamerasInDb
Meaning:
Note: Provide camera information in
database.

ES_RS_NoCameraToTracke
Meaning: No
compensation is activated.
Note: use the
'SetTCamToTrackerCompensation'
command to activate a compensa

ES_RS_NoCameraToTrackerCompInDb
Meaning: No T-Cam to Tracker
compensation is
Note: Perform a T-Cam to Tracker
compensation.

ES_RS_WrongActiveCameraToTracker
 CompInDb
Meaning: T-Cam to Tracker compensation
does not match
Note: Use the correct camera, o
compensation.

ES_RS_N
Meaning: No probe can be 'seen' by th
camera.
Note: Move the probe to the camera's
viewing space.

94

•
ected probe cannot be set

n is OK
lem?)

• b

rt probe information.

•

e a compensation.

• pInDb
robe compensation can be

ide a probe

•

ra does
n in database.

se information

• t

ocate the probe to try again. Try
ng a cordless

ount a tip.

ES_RS_NoActiveMeasurementProbe
Meaning: The det
as active.
Note: Make sure probe communicatio
(cable prob

ES_RS_NoMeasurementProbesInD
Meaning: No Probes are available in
database.
Note: Impo

ES_RS_NoMeasurementProbeCompSet
Meaning: No probe compensation is
activated.
Note: use the 'SetProbeCompensation'
command to activat

ES_RS_NoMeasurementProbeCom
Meaning: No p
found in database.
Note: Import or prov
compensation.

ES_RS_WrongActiveMeasurementProbe
 CompInDb
Meaning: The probe seen by the came
not match the informatio
Note: Replace the probe by the matching
one, or provide databa
suitable to active probe.

ES_RS_CommunicationWithMeasuremen
 ProbeFailed
Meaning: Possibly a hardware failure. The
probe should be detected automatically.
Note: Rel
with a cable connection if usi
probe. Refer to Leica service if problem still
remains.

• ES_RS_NoMeasurementTip
Meaning: No Tip is mounted at the probe.
Note: M

95

•
ected Tip cannot be set as

ase.
finition.

•

 provide a tip compensation.

•
e read

se.
. This

•

 no
system.

•
nsation missing.

tivated before it can be

•
ctorySet

d not be replicated in the

N ld not occur under
n

• ES_RS_ProblemWithCameraInternal

Meaning: There is something wrong with

ES_RS_NoActiveMeasurementTip
Meaning: The det
active.
Note: Make sure probe communication is OK
(cable problem?)

• ES_RS_NoMeasurementTipsInDb
Meaning: No Tips can be found in datab
Note: Provide tip de

 ES_RS_NoMeasurementTipCompInDb
Meaning: No Tip compensation can be
found in database.
Note: Import or

ES_RS_ProblemReadingCompensationDb
Meaning: Compensations could not b
from databa
Note:Access to the database has failed
error should not occur under normal
conditions.

ES_RS_ProblemSettingTriggerSource
Meaning: Trigger source parameters could
not be set.
Note:Probably a hardware problem, or
trigger board available with current

ES_RS_NoMeasurementTipCompSet
Meaning: Tip compe
Note:A Tip / Tip Assembly must be
compensated and ac
used for measuring.

ES_RS_ProblemStoringCameraToTracker
 Fa
Meaning: The factory parameters of the
current camera coul
database.

ote: This error shou
ormal conditions.

 Calibration

96

the internal camera calibration.
Note: This error should not occur under

• E

bly a hardware failure. The

move the Camera and mount

•
The Factory parameters of the

t occur under

• port
 data to

•
bly could not be stored.

cur under

•
e a 6DoF related

F
camera mounted) and that one of

surement modes is

•
 with

normal conditions. The camera probably
needs to be repaired.

S_RS_CommunicationWithMeasurement
 CameraFailed
Meaning: Possi
mounted camera should be detected
automatically.
Note: Re
again. If still a problem, refer to Leica
service.

ES_RS_ProblemStoringProbeFactorySet
Meaning:
current probe could not be stored in the
database.
Note: This error should no
normal conditions.

ES_RS_NoDataToIm
Meaning: Import Data failed since no
import was found.

ES_RS_ProblemStoringTipAssembly
Meaning: Tip assem
Note: This error should not oc
normal conditions.

ES_RS_6DModeNotAllowed
Meaning: Trying to execut
command with a 3D measuring system, or
system is set to 3D Mode.
Note: Make sure the system supports 6Do
(i.e. has a
the Probe (6DoF) mea
selected.

ES_RS_Bad6DResult
Meaning: The 6D coordinates delivered
this packet are not complete or even wrong
(maybe zero). This situation can occur
because of a bad rotation status or because

97

not enough LED’s were visible durin
‘long time’. In other words: the system
not able to measure as many single
measurements as specified during th

g a
was

e
 application

•

d

is
this case (Note: The influence of

x is

•

re is

e Thommen

rity.

•
be

e

e Thommen Weather
e

 fatal error since the Pressure is

• tAllowed

specified measurement-time. An
must treat such a result as an error.

ES_RS_NoHumidityFromWM
Meaning: No humidity value could be
queried from the Weather monitor. The
Humidity device is probably not connecte
to the Thommen Weather Station. This is a
legal condition. A default value of 70%
assumed in
the Humidity to the refraction inde
marginal).

ES_RS_NoTemperatureFromWM
Meaning: No temperature value could be
queried from the Weather monitor. None of
the two Temperature devices is probably
connected to the Thommen Weather Station.
This is a fatal error since the Temperatu
required for the calculation of the refraction
index. At least one of the Temperature
devices must be attached to th
Weather monitor. If both are connected, the
temperature of the combined
Temperature/Humidity device has prio

ES_RS_NoPressureFromWM
Meaning: No pressure value could
queried from the Weather monitor. Since th
pressure device is an integral, non-
removable part of th
Station, this error indicates a failure of th
Thommen Station.
This is a
required for the calculation of the refraction
index.

ES_RS_6DMeasurementFace2No
Meaning: The system is in Face II while

98

trying to do a 6D measurement.
The system
m

does not allow to perform 6D
easurements while in Face II. Change to

.

d measurement modes. Used as a
 the ES_C_SetMeasurementMode

Face I first

ES_MeasMode

This enumeration type names the currently
implemente
parameter for
command.
enum ES_MeasMode
{
 ES_MM_Stationary,
 ES_MM_ContinuousTime,
 ES_MM_ContinuousDistance,
 ES_MM_Grid,
 ES_MM_SphereCenter,
 ES_MM_CircleCenter,
 ES_MM_6DStationary,
 ES_MM_6DContinuousTime,
 ES_MM_6DContinuousDistance,
 ES_MM_6DGrid,
 ES_MM_6DSphereCenter,
 _MM_6DCircleCenter, ES
};

•
ent mode. Also known

a

ES_MM_Stationary
Stationary measurem

s 'Single Point' measurement, where the
target is stationary.

 A stationary measurement is an average
value of many tracker measurements. The
parameters for a stationary measurement,
number of measurements and the time span
can be controlled with the
ES_C_SetStationaryModeParams command.

ES_MM_ContinuousTime
Continuous measurement mode with a time
interval. a measurement is triggered after
the time interval. The behavior of a
continuous measurement can be contr
with the

•

olled

arams

•

ES_C_SetContinuousTimeModeP
command.

ES_MM_ContinuousDistance
Continuous Measurement mode with a
distance interval. A measurement is

99

triggered after the distance interval. The
behavior of a Continuous Distance

an be controlled with the

•

fter
havior of a grid

•
a

ce. The behavior for a Sphere
n be controlled with

eParams

•

hereCenter. The behavior for a
ent can be controlled

• _6DStationary

 description

• ousTime

de. See

• istance
 relative of

measurement c
ES_C_SetContinuousDistanceModeParams
command.

ES_MM_Grid
Continuous Measurement Mode by grid
interval. A measurement is triggered a
the grid interval. The be
measurement can be controlled with the
ES_C_SetGridModeParams command.

ES_MM_SphereCenter
Measurement mode to indirectly measure
sphere center point. This is achieved by a
continuous measurement scan over the
sphere surfa
Center measurement ca
the ES_C_SetSphereCenterMod
command.

ES_MM_CircleCenter
Circle measurement similar to
ES_MM_Sp
Circle Center measurem
with the ES_C_SetCircleCenterModeParams
command.

ES_MM

The Probe (6DoF) relative of
ES_MM_Stationary mode. See
there.

ES_MM_6DContinu
The Probe (6DoF) relative of
ES_MM_ContinuousTime mo
description there.

ES_MM_6DContinuousD
The Probe (6DoF)
ES_MM_ContinuousDistance mode. See
description there.

100

• ES_MM_6DGrid
The Probe (6DoF) relative of E
mode. See description there.

ES_MM_6DSphereCente

S_MM_ Grid

• r
 of

. See

• _6DCircleCenter
he Probe (6DoF) relative of

ter mode. See description

Additional status information to be delivered
us

.

The Probe (6DoF) relative
ES_MM_SphereCenter mode
description there.

ES_MM
T
ES_MM_CircleCen
there.

ES_MeasurementStatus

with each single measurement of a continuo
measurement stream

 Measurements with a status other than
ated with care.

 ES_MeasurementStatus
ES_MS_AllOK should be tre
enum
{
 ES_MS_AllOK,
 ES_MS_SpeedWarning,
 ES_MS_SpeedExeeded,
 ES_MS_PrismError,
 ES_MS_TriggerTimeViolation,
};

• ES_MS_AllOK
Measurement was carried out within
specified target speed (movement).

ES_MS_Spe• edWarning
, when target was

ed

e to a
o weak.

•

Measurement was taken
moving with a speed above warning
threshold.

• ES_MS_SpeedExeed
Measurement was taken when target was
moving with a speed above limit.

• ES_MS_PrismError
Measurement could not be taken du
prism error. Reflection is probably to

ES_MS_ TriggerTimeViolation
Those measurements marked with

101

‘TriggerTimeViolation’ in a (trigger
controlled) stream co
exact coincidence with the trigger p
This situation can occur if the trigger p
rate is very close to the maximum
measurement rate.

uld not be taken in

ulse.
ulse

t is even beyond the maximum
nt rate, probably all of the

 type names the known target
s). It is used as one of the

Settings command parameters.

If i
measureme
measurements will be marked with
‘TriggerTimeViolation’.

ES_TargetType

This enumeration
types (prism type
ES_C_SetSystem
enum ES_TargetType
{
 ES_TT_Unknown,
 ES_TT_CornerCube,
 ES_TT_CatsEye,
 ES_TT_GlassPrism,
 ES_TT_RFIPrism,
};

• ES_TT_Unknown

•

•

•
he target is a glass prism reflector.

llations) reflector.

peratureRange

t temperature range for the laser

The target type is unknown.

ES_TT_CornerCube
The target is a corner-cube reflector.

ES_TT_CatsEye
The target is a cats eye reflector.

ES_TT_GlassPrism
T

• ES_TT_RFIPrism
The target is an RFI (Reflector for fixed
insta

ES_TrackerTem

The ambien
tracker.

102

enu S_TrackerTemperatum E reRange
{
 ES_TR_Low,
 ES_TR_Medium,
 ES_TR_High
};

• ES_TR_Low
Ambient temperatures between 5 and 20 °C.

t temperatures between 10 and 30 °C.

igh
t temperatures between 20 and 40 °C.

_C emType

Coordinate system types supported by the TPI.
m E ype

ES_TR_Medium •
Ambien

• ES_TR_H
Ambien

ES oordinateSyst

enu S_CoordinateSystemT
{
 ES_CS_RHR,
 ES_CS_LHRX,
 ES_CS_LHRY,
 ES_CS_LHRZ,
 ES_CS_CCW,
 ES_CS_CCC,
 ES_CS_SCW,
 ES_CS_SCC
};

•
Rectangular (default type)

•
lar. Set by changing

 X-axis.

•
Rectangular. Set by changing

 by changing

e Z-axis.

•
ylindrical Clockwise system.

C
m.

.

ES_CS_RHR
Right-Handed

ES_CS_LHRX
Left-Handed Rectangu
the sign of the

ES_CS_LHRY
Left-Handed
the sign of the Y-axis.

• ES_CS_LHRZ
Left-Handed Rectangular. Set
the sign of th

ES_CS_CCW
C

• ES_CS_CC
Cylindrical Counter-Clockwise syste

• ES_CS_SCW
Spherical Clockwise system

103

ES_CS_SC• C
nter-Clockwise system.

it

ength units supported by the TPI. This
ype is used as a parameter for

Spherical Cou

ES_LengthUn

L
enumeration t
ES_C_SetUnits/ES_C_GetUnits.
enum ES_LengthUnit
{
 ES_LU_Meter,
 ES_LU_Millimeter,
 ES_LU_Micron,
 ES_LU_Foot,
 ES_LU_Yard,
 ES_LU_Inch
};

ES_AngleUnit

ed by TPI. This enumeration Angle units support
type is used as a parameter for
ES_C_SetUnits/ES_C_GetUnits.
enum ES_AngleUnit
{
 ES_AU_Radian,
 ES_AU_Degree,
 ES_AU_Gon
};

ES_TemperatureUnit

ts supported by TPI. This
r

Temperature uni
enumeration type is used as a parameter fo
ES_C_SetUnits/ES_C_GetUnits.
enum ES_TemperatureUnit
{
 ES_TU_Celsius,
 ES_TU_Fahrenheit
};

ES_PressureUnit

Pressure units supported by the TPI. This
en eration type ium s used as a parameter for
ES_C_SetUnits/ES_C_GetUnits.

104

enu S_PressureUnit m E
{
 ES_PU_Mbar, //default
 ES_PU_HPascal, //same as MBar
 ES_PU_KPascal,
 ES_PU_MmHg,
 ES_PU_Psi,
 ES_PU_InH2O,
 ES_PU_InHg,
};

• ES_PU_Mbar
Millibar

• ES_PU_Hpascal
HectoPascal (= Millibar)

• ES_PU_Kpascal
KiloPascal

ES_PU_Mm• Hg
eter Mercury

• O
ch Water Height

ed as parameter for
.

Millim

• ES_PU_Ps
Pounds per Inch

ES_PU_InH2
In

• ES_PU_InHg
Inch Mercury

ES_HumidityUnit

pported by the TPI. This Humidity units su
enumeration type is us
ES_C_SetUnits/ES_C_GetUnits
enum ES_HumidityUnit
{
 ES_HU_RH
};

•
 humidity, which is expressed in

ES_TrackerStatus

states. It is used as the
command parameter. The Tracker Status is

lat n the tracker head.

ES_HU_RH
Relative
percentage.

This enumeration type names the possible tracker
ES_C_GetTrackerStatus

re ed to the LED indicator o

105

enum ES_TrackerStatus
ES_API enum ES_TrackerStatus
{
 ES_TS_NotReady,
 ES_TS_Busy,
 ES_TS_Ready,
 ES_TS_6DstatusInvalid,
};

ES_TS_No• tReady
dy; currently not attached to a

Tracker is currently measuring.

•
Tracker attached to a target and is ready to

• ES_TS_6DStatusInvalid
measurement is not

Add
er eration type is used as a

para tus.

Tracker not rea
target.

• ES_TS_Busy

ES_TS_Ready

measure.

6D status of T-Probe
valid

ES_ADMStatus

itional information about the ADM of the
las tracker. This enum

meter for ES_C_GetSystemSta
enum ES_ADMStatus
{
 _AS_NoADM, ES
 ES_AS_ADMCommFailed,
 ES_AS_ADMReady,
 ES_AS_ADMBusy,
 ES_AS_HWError,
 ES_AS_SecurityLockActive,
 ES_AS_NotCompensated,
};

•

•

• S_AS_ADMReady
dy to measure.

or

• ES_AS_SecurityLockActive
ADM has been locked for security because
maximal allowed laser intensity has

ES_AS_NoADM
Tracker not equipped with an ADM.

ES_AS_ADMCommFailed
Communication with ADM failed.

E
ADM is rea

• ES_AS_ADMBusy
ADM is busy (performing a measurement).

• ES_AS_HWError
Unspecified hardware err

106

exceeded. Try to recover with powering
ontroller. If problem persists,

ervice.

ensated
all,

ver inaccurate distances.

ES_N

Additional information about the Nivel20 sensor
connected to the laser tracker. This enumeration

enum E

off/on the c
refer to Leica s

• ES_AS_NotComp
The ADM is not compensated and, if at
may deli

ivelStatus

type is used as a result parameter for
ES_C_StartNivelMeasurement.

S_NivelStatus
{
 ES_NS_NoNivel,
 ES_NS_AllOK,
 ES_NS_OutOfRangeOK,
 ES_NS_OutOfRangeNOK
};

• oNivel
onnected to

•

 measurement range, but
shold exceeded. This warning

2.0

fRangeNOK
urement could be taken; out of

his error applies when at least one
measurement value exceeds +/- 2.0 millirad.

Thes

rd efer to the Nivel20 Instruction
Man

ES_NS_N
No Nivel20 sensor found/c
tracker.

ES_NS_AllOK
Nivel measurement OK. The range of the
measurement rx/ry values is within +/- 1.5
millirad.

• ES_NS_OutOfRangeOK
Result within
warning thre
applies when the range of at least one
measurement value is within +/- 1.5 and
millirad.

ES_NS_OutO•
No meas
range. T

e tolerance- thresholds 1.5/2.0 millirad are
invariable characteristics of the Nivel20
ha ware. Please r

ual, Page 7.

107

ES_NivelPosition

Positions during orient to gravity procedure. This
enumeration type is used as a parameter for

_C ion command.
um E

ES _GoNivelPosit
en S_NivelPosition
{
 ES_NP_Pos1,
 ES_NP_Pos2,
 ES_NP_Pos3,
 ES_NP_Pos4
};

• ES_NP_Pos1
Tracker head at Nivel position 1 (90 degr

• ES_NP_Pos2
Tracker head at Nivel po
degrees).

• ES_NP_Pos3
Tracker head at Nivel position 3 (270
degrees).

• ES_NP_Pos4
Tracker head at Nivel p

ees).

sition 2 (180

osition 4 (360

Specifies status of the weather monitor. This
enum
ES_C
ES_C ands. The Tracker
serve
envir
press
ES_C
parameters. Parameters are set with
explic
enum ES

degrees).

ES_WeatherMonitorStatus

eration type is used as a parameter for
_SetSystemSettings and
_GetSystemStatus comm
r maintains one single set of current
onmental parameters – temperature,
ure and humidity. The command
_GetEnvironmentParams queries current

it/implicit methods.
_WeatherMonitorStatus

{
 ES_WMS_NotConnected,
 ES_WMS_ReadOnly,
 ES_WMS_ReadAndCalculateRefractions
};

•
ted to

. The

ES_WMS_NotConnected
There is no weather monitor connec
the system, or it is switched off
application must use
ES_C_SetEnvironmentParams to set the

108

environment parameters (explicit meth
SetEnvironmentParams also upd
refraction parameters. Therefore, it is not
necessary to use
‘ES_C_SetRefractionParams’. If
ES_C_SetRefractionParams is called
anyway, the refraction parameters are
updated with the values provided,
however, the next ca
ES_C_SetEnvironmentParams will
overwrite these values again.

ES_WMS_ReadOnly
While in this mode, if weather monitor is
connected and correctly working, the
system automatically reads the
environmental value
seconds) from the monitor and interna
updates the current environment
parameters (implicit me
repeatedly occur if no values can be read
(weather monitor switched off, or cable
connection broken).
The 'ES_C_GetEnvironmentParams'
command can be used to retrieve the
current values (Note: this command doe
not immediately trigger a measurem
from the weather monitor – it just returns
the emScon- internally buffered meteo
values, i.e. those last read from the WM),
while the

od).
ates the

ll to

•

s periodically (~ 20
lly

thod). Error events

s
ent

 command
'ES_C_SetEnvironmentParams' is not
available in this mode (Returns with an
‘usag
Refraction parameters are not influenced by
the periodical update of environmental
parameters. To change refraction values, an
explic
required. The 'ES_WMS_ReadOnly' mode is
therefore suitable if the environmental

e conflict’ error).

it 'ES_C_SetRefractionParams' is

109

values come from the WM, but the
application wants to use its own formula to
calculate refraction parameters from these
values. The mode of operation is hence as

monitor.

This mode is therefore rarely used. The normal
mo
'ES_WMS_ReadAndCalculateRefractions' (see
be

• S_WMS_ReadAndCalculateRefractions
if

s

ed.

s

Attention: The weather monitor should be
switched-on before starting the emScon server.
The weather monitor requires some initialization-

follows:

- ES_C_GetEnvironmentParams:
delivers values last read from weather

- Calculate ADM and IFM refraction
indices with application-specific
formula.

- Set the calculated refraction
parameters with
ES_C_SetRefractionParams.

de of operation is to use

low).

E
This is the normal mode of operation
using a weather monitor. It acts the same a
the 'ES_WMS_ReadOnly' mode, but in
addition, the current refraction parameters
are automatically recalculated and updat
The 'ES_C_GetEnvironmentParams' and
'ES_C_GetRefractionParams' command
can be used to retrieve the current values,
while the 'ES_C_SetEnvironmentParams'
and 'ES_C_SetRefractionParams' both are
not available in this mode (would return
with an ‘usage conflict’ error).

110

time after switching on. If values are queried

turned and the weather monitor
fferent state. This is due to a
 weather monitor hardware. It is

ommended to remove the battery from the
ea always enable its power

supply before, or at the same time, the emScon
rv d.

ES_RegionType

ed as a parameter for

during this initialization phase, wrong values
may be re
remains in indi
problem of the
rec
w ther monitor and

se er gets boote

This enumeration type is us
regions .
enum ES_RegionType
{
 ES_RT_Sphere,
 ES_RT_Box
};

• ES_RT_Sphere

• ES_RT_Box

 this enum is important. It shows
up

procedure.

 booted if there is a
con.

mpensation only if it is

t c if it has a valid
com

he ly if it is initialized.

This
ES_C

Region type is a sphere.

Region Type is a box.

ES_TrackerProcessorStatus

The sequence of
the state of the tracker processor during start
of the Tracker Server. The value issued describes
the status of the startup

- The tracker can only be
connection to emS

- It can have a valid co
booted.

- I an be initialized only
pensation.

- T tracker is ready on

 enumeration type is used as a parameter of
_GetSystemStatus.

111

enu S_TrackerProcessorStam E tus
{
 ES_TPS_NoTPFound,
 ES_TPS_TPFound,
 ES_TPS_NBOpen,
 ES_TPS_Booted,
 ES_TPS_CompensationSet,
 ES_TPS_Initialized,
};

•
Processor could be recognized.

onnection from processor to tracker failed.

booted, but there is no
ion.

ionSet

•

Additional information about the laser processor.
This enumeration type is used as a parameter for
ES_C_GetSystemStatus

ES_TPS_NoTPFound
No Tracker

• ES_TPS_TPFound
Tracker Processor is recognized, but
c

• ES_TPS_NBOpen
Connection from processor to tracker is
established, but booting failed.

• ES_TPS_Booted
Tracker Processor
valid compensat

• ES_TPS_Compensat
Compensation set available, tracker not yet
initialized.

ES_TPS_Initialized
Initialization was OK; tracker is ready.

ES_LaserProcessorStatus

.
enum ES_LaserProcessorStatus
{
 ES_LPS_LCPCommFailed,
 ES_LPS_LCPNotAvail,
 ES_LPS_LaserHeatingUp,
 ES_LPS_LaserReady,
 ES_LPS_UnableToStabilize,
 ES_LPS_LaserOff
};

• ES_LPS_LCPCommFailed
Communication to laser processor failed.
This indicates a hardware problem. Report to
Leica service representative.

ES_LPS_LCPNotAvail
The Laser processor is not available. This
indicates a hardware problem. Report to

•

Leica service representative.

112

•
his is the normal case

s

•
n, the tracker can

ee

tusChange', containing a
er ready, this

p'.

• S_LPS_UnableToStabilize
bilize. This probably

ature or a wrong
 the

tracker is used in an environment with stable
temperature. This rarely happens. Usually
the laser just takes a longer warm up phase if
environment temperature is not that stable.

• ES_LPS_LaserOff
The Laser is switched off. Use
‘ES_SwitchLaser’ to switch laser on.

ES_SystemStatusChange

Specifies status change types. This enumeration
type is used as a parameter for
ES_DT_SystemStatusChange notifications.

ES_LPS_LaserHeatingUp
Laser is warming up. T
after switching-on the laser / controller (take
about 20 minutes).

ES_LPS_LaserReady
Laser is ready. From now o
be used, but first needs to be initialized. S
chapter 'Application Initial Steps'.
Note: There is an alternative of repeatedly
polling with 'ES_C_GetSystemStatus' to
figure out whether the laser is ready. As
soon as the laser is ready, emScon issues a
so- called ‘SystemStatusChange’ event. This
is a packet of the type
'ES_DT_SystemSta
status parameter. In case of las
parameter is 'ES_SSC_LaserWarmedU

E
Laser not able to sta
indicates a rapidly changing (up and down)
of the environment temper
active Temperature Range. Make sure

113

enum ES_SystemStatusChange
{
 ES_SSC_DistanceSet,
 ES_SSC_LaserWarmedUp,
 ES_SSC_EnvironmentParamsChanged,
 ES_SSC_RefractionParamsChanged,
 ES_SSC_SearchParamsChanged,
 ES_SSC_AdmParamsChanged,
 ES_SSC_UnitsChanged,
 ES_SSC_ReflectorChanged,
 ES_SSC_SystemSettingsChanged,
 ES_SSC_TemperatureRangeChanged,
 ES_SSC_CameraParamsChanged,
 ES_SSC_CompensationChanged,
 ES_SSC_CoordinateSystemTypeChanged,
 ES_SSC_BoxRegionParamsChanged,
 ES_SSC_SphereRegionParamsChanged,
 ES_SSC_StationOrientationParamsChanged,
 ES_SSC_TransformationParamsChanged,
 ES_SSC_MeasurementModeChanged,
 ES_SSC_StationaryModeParamsChanged,
 ES_SSC_ContinuousTimeModeParamsChanged,
 ES_SSC_ContinuousDistanceModeParamsChanged,
 ES_SSC_GridModeParamsChanged,
 ES_SSC_CircleCenterModeParamsChanged,
 ES_SSC_SphereCenterModeParamsChanged,
 ES_SSC_StatisticModeChanged,
 ES_SSC_MeasStatus_NotReady,
 ES_SSC_MeasStatus_Busy,
 ES_SSC_MeasStatus_Ready,
 ES_SSC_MeasurementCountReached,
 ES_SSC_TriggerSourceChanged,
 ES_SSC_IsFace1,
 ES_SSC_IsFace2,
 ES_SSC_ExternalControlActive,
 ES_SSC_ServiceSoftwareActive,
 ES_SSC_MeasurementCameraChanged,
 ES_SSC_MeasurementCameraModeChanged,
 ES_SSC_ProbeChanged,
 ES_SSC_TipChanged,
 ES_SSC_TCamToTrackerCompensationChanged,
 ES_SSC_ProbeCompensationChanged,
 ES_SSC_TipToProbeCompensationChanged,
 ES_SSC_ExternTriggerParamsChanged,
 ES_SSC_TCamToTrackerCompensationDeleted,
 ES_SSC_MeasurementProbeCompensationDeleted,
 ES_SSC_MeasurementTipCompensationDeleted,
 ES_SSC_ManyMechanicalCompensationsInDB,
 ES_SSC_MeasStatus_6DstatusInvalid,
 ES_SSC_MeasurementProbeButtonDown,
 ES_SSC_MeasurementProbeButtonUp,
 ES_SSC_ExternalTriggerEvent,
 ES_SSC_ExternalTriggerStartEvent,
 ES_SSC_ExternalTriggerStopEvent,
 ES_SSC_CopyProtectionRemoved,
 ES_SSC_TPConnectionClosing,
 ES_SSC_ServerClosing,
 ES_SSC_ServerStarted,
};

• ES_SSC_DistanceSet
Precondition is that the system is equipped
with an ADM and is set to
‘KeepLastPosition’ (one of the parameters
controlled by Set/GetSystemSettings). This
event is fired as soon as the beam is (re-)
locked on to the target and an ADM
measurement has been performed (a few
seconds after the target has been placed to a
stable position while beam attached). From
now on, measurements can be continued.
This mode is very convenient since it is not
necessary to go back to the BirdBath after a

114

beam break.
For Probe (6DoF) measurements, this flag
MUST always be true!

 It is not fired when the system flag Keep
Last Position is not active.

• ES_SSC_LaserWarmedUp
This event is fired once the tracker is
warmed up (after system / laser start, about
20 minutes after the laser was switched on).
Also see description of enum
'ES_LaserProcessorStatus'. The laser
processor status (warmed up or not) can also
be queried in an active way (polling) by
using 'ES_C_GetSystemStatus'.

• ES_SSC_XXX_Changed
These events are fired whenever there is a
change of one of the system settings
(Parameters, Modes, Regions,
Compensations) or Hardware (those
detected automatically, such as TCam, Probe,
Tip).

• ES_SSC_MeasStatus_NotReady

• ES_SSC_MeasStatus_Busy

• ES_SSC_MeasStatus_Ready
This event informs about a Measurement
Status change (Ready, Busy, Not Ready).
Apart from evaluating these events, the
measurement status can also be asked
actively with the command
’ES_C_GetTrackerStatus’. This information is
typically used for user- interface purpose to
implement a ‘traffic-light’ with green (ready)
/ yellow (busy measuring) /red (target lost or
missing compensation) colors.

• ES_SSC_MeasStatus_6DStatusInvalid
Same comments as above. Only applies to
probe measurements. Tracking is still OK,
but the tilt of the probe is out of range so the

115

TCam cannot reliably determine the rotation
parameters. The rotation angles are not
accurate and thus, the tip- coordinates not
reliable. The recommended UI- color to
assign to this status is blue (Used in BUI/
Compensation module).

• ES_SSC_MeasurementCountReached
Stop a continuous measurement, when the
max. number of measurements are reached.

• ES_SSC_IsFace1
This event is fired whenever the tracker
changes to Face I.

• ES_SSC_IsFace2
This event is fired whenever the tracker
changes to Face II.

• ES_SSC_ExternalControlActive
This event is fired whenever the tracker
server enters external control (e.g. Axyz).
While under external control, control
through TPI commands are blocked.

• ES_SSC_ServiceSoftwareActive
This event is fired whenever the tracker
server runs with service software. While
running service software, control through
TPI commands is limited.

• ES_SSC_TcamToTrackerCompensation
 Deleted

• ES_SSC_MeasurementProbeCompensation
 Deleted

• ES_SSC_MeasurementTipCompensation
 Deleted
 Above three events inform about
 compensation deletion.

• ES_SSC_ManyMechanicalCompensations
 InDB

116

The recommended maximal number of
mechanical compensations has been
reached. Please delete some older
compensations.

• ES_SSC_MeasurementProbeButtonDown
This event is fired whenever one of the
probe buttons (measurement trigger) is
pressed.

• ES_SSC_MeasurementProbeButtonUp
This event is fired whenever the previously
pressed probe button is released.

• ES_SSC_ExternalTriggerEvent
This event is fired whenever an external
Trigger Pulse occurs. Applies to trigger
source ‘ES_TS_ExternalEvent’

• ES_SSC_ExternalTriggerStartEvent
This event is fired whenever an external
Trigger Start Pulse (trigger signal rising
flank) occurs. Applies to trigger source
‘ES_TS_ExternalStartStopEvent’

• ES_SSC_ExternalTriggerStopEvent
This event is fired whenever an external
Trigger Stop Pulse (trigger signal falling
flank) occurs. Applies to trigger source
‘ES_TS_ExternalStartStopEvent’

• ES_SSC_CopyProtectionRemoved
This event is fired if the copy protection
device (dongle) is removed. System control
through TPI commands is locked.

• ES_SSC_TPConnectionClosing
This event is fired if the server connection
gets lost. Server control through TPI
commands is no longer possible. Server
probably needs a reboot.

• ES_SSC_ServerClosing
This event is fired if the server software
terminates gracefully while the connection

117

is still established. Upon a server crash, this
event cannot be expected.

• ES_SSC_ServerStarted,
This event is fired if the server is has re-
started (supposed the connection was still
established).

ES_StatisticMode

Specifies the current statistical mode. This
enumeration type is used as a parameter for the
ES_C_SetStatisticMode command.
enum ES_StatisticMode
{
 ES_SM_Standard,
 ES_SM_Extended
};

• ES_SM_Standard
This is the default. Single- and Multi-
measurement results are provided with
reduced statistical information (without
covariance values). That is, the data
structures SingleMeasResultT and
MultiMeasResultT are used and are
compatible with the structures used in earlier
emScon versions.

• ES_SM_Extended
Single- and Multi- measurement results are
provided with enhanced statistical
information (including covariance values).
While this mode is activated, the data
structures SingleMeasResult2T and
MultiMeasResult2T are used. The only
difference is that these '2'- versions contain
extended (statistical) information.
Applications passing measurements to the
'CallTransformation' command should use
the '2'- variants since the transformation
routine requires these extended statistics.

 To maintain compatibility with earlier
versions, Single/MultiMeasResultT have not
been extended with additional parameters.

118

Newer application should always use the
Extended mode and therefore use all the ‘2’-
version structures / handlers.

ES_StillImageFileType

Specifies the format of the still image. This
enumeration type is used as a parameter for the
ES_C_GetStillImage command.
enum ES_StillImageFileType
{
 ES_SI_Bitmap,
 ES_SI_Jpeg
};

• ES_SI_Bitmap
The image arrives in Bitmap format

• ES_SI_Jpeg
The image arrives in Jpeg format.
 This format is not supported.

ES_TransResultType

Specifies the type of the Transformation
Parameters. Depending on this setting, the
transformation routine will provide the 7 result
parameters in ‘inverse’ order. This enumeration
type is used as a parameter for the
ES_C_Set/GetTransformationInputParams
command.
enum ES_TransResultType
{
 ES_TR_AsTransformation,
 ES_TR_AsOrientation
};

• ES_TR_AsTransformation
The 7 parameters are provided to be used for
a transformation from local to object
(nominal) coordinate system.

• ES_TR_AsOrientation
The 7 parameters are provided to be used as
orientation parameters
(ES_C_SetOrientationParameters).

119

ES_TrackerProcessorType

Specifies the controller type of the Tracker
Processor in use (SMART, Embedded
(LTController plus/base) etc.).
enum ES_TrackerProcessorType
{
 ES_TT_Undefined,
 ES_TT_SMART310,
 ES_TT_LT_Controller,
 ES_TT_EmbeddedController
};

ES_TPMicroProcessorType

Specifies the microprocessor type of the Tracker
Processor in use (i486, 686 etc.).
enum ES_TPMicroProcessorType
{
 ES_TPM_Undefined,
 ES_TPM_i486,
 ES_TPM_686
};

ES_LTSensorType

Specifies the type of sensors that are defined
(LT300, LTD800 etc.).
enum ES_LTSensorType
{
 ES_LTS_Undefined ,
 ES_LTS_SMARTOptodyne,
 ES_LTS_SMARTLeica,
 ES_LTS_LT_D_500,
 ES_LTS_LT300,
 ES_LTS_LT600,
 ES_LTS_LT_D_800
};

ES_DisplayCoordinateConversionType

Specifies the conversion of the coordinate system,
either base to current or vice versa. Do not use
this type. It is related to the
'ConvertDisplayCoordinates' command (not
supported)

enum ES_DisplayCoordinateConversionType
{
 ES_DCC_BaseToCurrent = 0,
 ES_DCC_CurrentToBase = 1
};

ES_TriggerStatus

Enumeration type to describe Status of Trigger
Button at T-Probe

120

enum ES_TriggerStatus
{
 ES_TS_TriggerNotPressed,
 ES_TS_TriggerPressed,
};

• ES_TS_TriggerNotPressed,
The measurement trigger button at the T-
Probe is currently released

• ES_TS_TriggerPressed,
The measurement trigger button at the T-
Probe is currently pressed

ES_MeasurementTipStatus

Enumeration type to describe Status of
Measurement Tip at T-Probe
enum ES_MeasurementTipStatus
{
 ES_PTS_TipOK,
 ES_PTS_UnknownTip,
 ES_PTS_MultipleTipsAttached
};

• ES_PTS_TipOK
A tip (adapter) is present and is working
correctly

• ES_PTS_UnknownTip
There is no tip (adapter) attached or the
currently attached tip cannot be recognized

• ES_PTS_MultipleTipsAttached
There are multiple Tips attached

ES_TriggerSource

Specifies the source for the measurement
trigger. This enumeration type is used as a
parameter for the ES_C_Set/GetTriggerSource
commands.

enum ES_TriggerSource
{
 ES_TS_Undefined,
 ES_TS_Internal_Application,
 ES_TS_External,
 ES_TS_ExternalEvent,
 ES_TS_ExternalStartStopEvent,
};

• ES_TS_Undefined
The trigger source is undefined.

121

• ES_TS_Internal_Application
The application acts as trigger source.
Mainly used for emScon internal modes.

• ES_TS_External
The trigger source is external. The ‘trigger
port’ of the controller is used for trigger
signal input. A regular clock signal is
usually used with this mode.

• ES_TS_ExternalEvent
The trigger source is external. The ‘trigger
port’ of the controller is used for trigger
signal input. The trigger signal occurs on a
specific event such as (manual) button
press, roboter elevation limit and so on.
There is no distinction between start/stop.
The application defines the behavior (for
example whether the reaction is the same
for every event, or whether there is a
‘toggle’ behavior).
An ‘ExternalTriggerEvent’ status change
event is issued on each trigger event.

• ES_TS_ExternalStartStopEvent
This type is very similar to ExternalEvent,
but there is a distinction between start and
stop (which for example allows to
distinguish between button press and
button release, or leaving/entering a valid
roboter elevation etc.)
Depending on context, an
‘ExternalTriggerStartEvent’ or an
‘ExternalTriggerStopEvent’ status change
event is issued on a trigger event.

Note: Trigger functionality is not yet available
with emScon 2.1.x releases and may be subject
to change!

122

ES_TrackerFace

Specifies the Tracker Face. This enumeration type
is used as a parameter for the ES_C_GetFace
command.

enum ES_TrackerFace
{
 ES_TF_Unknown,
 ES_TF_Face1,
 ES_TF_Face2
};

• TF_Unknown
Tracker face could not be determined.
Should not occur under normal conditions.

• ES_TF_Face1
The tracker is in face I position.

• ES_TF_Face2
The tracker is in face II position.

ES_MeasurementCameraMode

Specifies the source for the measurement camera
mode. This enumeration type is used as a
parameter for the
Set/GetMeasurementCameraMode command.

enum ES_MeasurementCameraMode
{
 ES_MCM_Measure,
 ES_MCM_Overview,
};

• ES_MCM_Measure
Measurement camera (T-Cam) is in
measurement mode.

• ES_MCM_Overview
Measurement camera (T-Cam) is in
overview mode and can be addressed by
e.g. GetStillImage.

ES_MeasurementCameraType

Specifies the measurement camera type. This
enumeration type is used as a parameter for the
GetMeasurementCameraInfo command.

123

enum ES_MeasurementCameraType
{
 ES_MC_None ,
 ES_MC_TCam700,
 ES_MC_TCam800,
};

• ES_MC_None
Type could not be determined. Should not
occur under normal conditions.

• ES_MC_TCam700
T-Cam is of series 700

• ES_MC_TCam800
T-Cam is of series 800

ES_ProbeType

Specifies the measurement probe type. This
enumeration type is used as a parameter for the
GetMeasurementProbeInfo command.

enum ES_ProbeType
{
 ES_PT_None,
 ES_PT_Reflector,
 ES_PT_TProbe,
 ES_PT_TScan,
 ES_PT_MachineControlProbe,
 ES_PT_TCamToTrackerTool,
 ES_PT_ZoomArtifactTool,
};

• ES_PT_None
Type could not be determined. Should not
occur under normal conditions.

• ES_PT_Reflector
The ‘probe’ is a reflector. No 6DoF
measurements are possible

• ES_PT_TProbe
Probe is a standard T-Probe

• ES_PT_TScan
Probe is a T-Scan

• ES_PT_MachineControlProbe
Probe is of type ‚Machine Control Probe’

124

• ES_PT_TCamToTrackerTool,
'Probe’ is the T-Cam to tracker
compensation tool.

• ES_PT_ZoomArtifactTool,
'Probe’ is the T-Cam to tracker
compensation tool.

ES_ProbeConnectionType

Specifies the measurement probe type. This
enumeration type is used as a parameter for the
GetMeasurementProbeInfo command.

enum ES_ProbeConnectionType
{
 ES_PCT_None,
 ES_PCT_CableController,
 ES_PCT_CableSensor,
 ES_PCT_IRLaser,
 ES_PCT_IRWideAngle,
};

• ES_PCT_None
No connection could be determined

• ES_PCT_CableController
Connection is through cable to controller

• ES_PCT_CableSensor
Connection is through cable to sensor
(skipping the controller)

• ES_PCT_IRLaser
There is a wireless connection (through
Infrared Laser)

• ES_PCT_IRWideAngle
There is a wireless connection (through
Infrared wide angle sensor)

ES_ProbeButtonType

Specifies the measurement probe measurement
button (trigger). This enumeration type is used as
a parameter for the GetMeasurementProbeInfo
command.

125

enum ES_ProbeButtonType
{
 ES_PBT_None,
 ES_PBT_Measurement,
};

• ES_PBT_None
The probe is not equipped with a
measurement button.

• ES_PBT_Measurement
The probe is equipped with a measurement
button.

ES_TipType

Specifies the measurement tip type. This
enumeration type is used as a parameter for the
GetTipAdapters command. Note: There exist
alternate terms for 'Tip'. Some talk of 'Stylus'.

enum ES_TipType
{
 ES_TT_None,
 ES_TT_Fixed,
 ES_TT_Scanner,
 ES_TT_TouchTrigger,
};

• ES_TT_None
Tip type is undefined or could not be
determined.

• ES_TT_Fixed
Tip tip-type is a fixed standard tip.

• ES_TT_Scanner
Tip ‘tip’ type is a scanner. I.e. a ‘virtual tip’.

• ES_TT_TouchTrigger
Tip tip-type is equipped with a touch-
trigger.

ES_ClockTransition

Specifies the trigger clock transition. This
enumeration type is used as a parameter for the
Get/SetExternTriggerParams command
(ExternTriggerParamsT sub-structure)

126

enum ES_ClockTransition
{
 ES_CT_Negative,
 ES_CT_Positive,
};

• ES_CT_Negative
The negative clock transition triggers the
event

• ES_CT_Positive
The positive clock transition triggers the
event

Note: Trigger functionality is not yet available
with emScon 2.1.x releases and may be subject to
change!

ES_TriggerMode

Specifies the trigger mode. This enumeration type
is used as a parameter for the
Get/SetExternTriggerParams command
(ExternTriggerParamsT sub-structure)

enum ES_TriggerMode
{
 ES_TM_EventTrigger,
 ES_TM_ContinuousExternalClockWithStartStop,
 ES_TM_InternalClockWithExternalStartStop,
};

• ES_TM_EventTrigger
The measurement is triggered by an event
trigger (button, touch- trigger)

• ES_TM_ContinuousExternalClockWithStart
 Stop
The measurement (start/stop) is triggered
by an external clock.

• ES_TM_InternalClockWithExternalStartSto
p
The measurement is triggered by the
internal clock, with external start/stop.

Note: Trigger functionality is not yet available
with emScon 2.1.x releases and may be subject to
change!

127

ES_TriggerStartSignal

Specifies the level of the trigger start signal. This
enumeration type is used as a parameter for the
Get/SetExternTriggerParams command
(ExternTriggerParamsT sub-structure)

enum ES_TriggerStartSignal
{
 ES_TSS_Low,
 ES_TSS_High,
};

• ES_TSS_Low
The trigger start signal is of low level.

• ES_TSS_High
The trigger start signal is of high level.

Note: Trigger functionality is not yet available
with emScon 2.1.x releases and may be subject to
change!

ES_SystemParameter

Specifies the value to be addressed by the
ES_C_Set/GetLongSystemParameter command.

enum ES_SystemParameter
{
 ES_SP_KeepLastPositionFlag ,
 ES_SP_WeatherMonitorSetting,
 ES_SP_ShowAll6DMeasurements,
 ES_SP_LaserPointerCaptureBeam,
 ES_SP_DisplayReflectorPosition,
 ES_SP_ProbeConfig_Button,
 ES_SP_ProbeConfig_ButtonEvent,
 ES_SP_ProbeConfig_Tip,
 ES_SP_ProbeConfig_SoundVolume,
};

• ES_SP_KeepLastPositionFlag
Param value: 0 = OFF; 1 = ON.
Important: Enabling the ‘KeepLastPosition’
flag is compulsory for 6D Measurement
Modes. Otherwise the Probe will not be
recognized (If beam catched at zero
position).
Alternativley, this setting also can be
controlled through the SetSystemSettings
command.

128

• ES_SP_WeatherMonitorSetting
Parameter value: see
ES_WeatherMonitorStatus.
Alternativley, this setting also can be
controlled through the SetSystemSettings
command.

• ES_SP_ShowAll6DMeasurements
Parameter value: 0 = Only show data if 6D
rotation status is OK (default); 1 = Show
always.

• ES_SP_LaserPointerCaptureBeam
Allows to control the behavior of the
'PointLaser' command if the beam is being
sent very close to a reflector. In this
situation, it is not always desired that the
laser beam locks on to the reflector.
Parameter value: 0 = Beam catch OFF; 1 =
Beam catch ON (default).

• ES_SP_DisplayReflectorPosition
Parameter value: 0 = Disable Reflector
Position Tracking (default); 1 = Enable
Tracking. This setting also can be controlled
through the SetSystemSettings command.

• ES_SP_ProbeConfig_Button
Configures the behavior of the probe-
buttons. Parameter values: see enum
ES_ProbeConfigButton

• ES_SP_ProbeConfig_ButtonEvent
Enables/disables events throwing on using
the probe buttons. Parameter values: see
enum ES_ProbeButtonEvent

• ES_SP_ProbeConfig_Tip
Configure whether 6Dof measurements are
allowed without a mounted Tip or not.
Parameter values: enum
ES_ProbeConfigTip

• ES_SP_ProbeConfig_SoundVolume
Parameter values: volume as long, 0: No

129

sound, 0..7 sound volume selected: 0 off, 1
(soft) – 7 (loud)

Note: ‘LaserPointerCaptureBeam’ and
‘ShowAll6Dmeasurements’ are non-persistent
settings. They fall back to the default value in
case of server reboot. If applies, an application
must always set these values upon startup.

ProbeConfigButton

Parameter values for
ES_C_Set/GetLongSystemParameter command in
case of ES_SP_ProbeConfig_Tip parameter type.

enum ES_ProbeConfigButton
{
 ES_PCB_SingleClick,
 ES_PCB_StartStop,
};

• ES_PCB_SingleClick:
A single button click causes a
'ES_SSC_MeasurementProbeButtonDown'
event. Typically used to trigger a
'StartMeasurement'.

• ES_PCB_StartStop:
A first button- click causes a
'ES_SSC_MeasurementProbeButtonDown '
event, releasing the button causes a
'ES_SSC_MeasurementProbeButtonUp'
event. Typically used to perform a
continuous measurement while the Button
is being hold down (i.e. Start the
measurement upon pressing the button and
stop it on releasing button).

ES_ProbeConfigTip

Parameter values for
ES_C_Set/GetLongSystemParameter command in
case of ES_SP_ProbeConfig_Sound parameter
type.

130

enum ES_ProbeConfigTip
{
 ES_PCT_OnlyWithTip,
 ES_PCT_NoTipAllowed,
};

• ES_PCT_OnlyWithTip:
Probe requires a Tip attached

• ES_PCT_NoTipAllowed:
No tip required (Scanner- probes)

ES_ProbeButtonEvent

ES_C_Set/GetLongSystemParameter command in
case of ES_SP_ProbeConfig_ButtonEvent
parameter type.

ES_API enum ES_ProbeButtonEvent
{
 ES_PBE_DisableEvents,
 ES_PBE_EnableEvents,
};

• ES_PBE_DisableEvents:
no button events are sent

• ES_PBE_EnableEvents:
server sends button events

ES_MeasurementStatusInfo

The values of this enum can be used to
identify/mask each individual bit of the long
parameter delivered by the command
ES_C_GetMeasurementStatusInfo. Hence the
power of 2 of every value. The meaning of the
values should be self-explaining according to
their symbol-names.
See description of command
ES_C_GetMeasurementStatusInfo for further
information.

131

enum ES_MeasurementStatusInfo
{
 ES_MSI_Unknown = 0,
 ES_MSI_TrackerFound = 1,
 ES_MSI_TrackerCompensationFound = 2,
 ES_MSI_ADMFound = 4,
 ES_MSI_ADMCompensationFound = 8,
 ES_MSI_MeasurementCameraFound = 16,
 ES_MSI_InternalCameraParamsOK = 32,
 ES_MSI_CameraToTrackerParamsFound = 64,
 ES_MSI_MeasurementProbeFound = 128,
 ES_MSI_ProbeParamsFound = 256,
 ES_MSI_MeasurementTipFound = 512,
 ES_MSI_TipParamsFound = 1024,
 ES_MSI_ReflectorFound = 2048,
 ES_MSI_InFace1 = 4096,
};

132

3.4 Data Structures
This section describes all data structures defined
in ES_C_API_Def.h. The data structures describe
the 'layout' of the data packets (byte arrays) to be
transmitted over the TCP/IP network. The
structures are required to construct and send data
packets, to mask incoming data packets in order
to recognize their type and to interpret their
contents.

 Note the 4-Byte alignment prerequisite for
the Tracker Server and the client. See #pragma
pack (push, 4) in file ES_C_API_Def.h. The
'pragma pack' is a Microsoft specific C-language
extension. A 4-Byte alignment may be different
for other C/C++ compilers. No change of layout (
of bytes and alignment for each member) is
permitted, during translation of these structures
to other languages.

There is a short general description for each type.
All members are not described in detail. Data
members are often self- explanatory, while
enumeration-type members have been described
under Enumeration Types. Struct variable
descriptions are provided only where necessary.

 Parameters are always in current units and
coordinate system / CS-type (where applicable) –
unless specified otherwise.

3.4.1 Basic Data Structures
This section describes those data structures that
are not directly exchanged as packets. They are
used as sub-structures to compose the real
'Packet' data types.

133

PacketHeaderT

struct PacketHeaderT
{
 long lPacketSize;
 enum ES_DataType type;
};

This basic structure is a part of all data blocks
transmitted over the TCP/IP network. The
lPacketSize has been introduced for programmer's
convenience. The value of the data structure
contains the size (in Bytes) of received packets.
Upon sending packets, this value is ignored. It is
good programming practice to initialize this
value with the correct size, even on sending data.

New for emScon V2.0 and up: The strike-
through statement above (which was valid up to
emScon 1.5 servers) is no longer true.
The lPacketSize value is no longer ignored. It is
compulsory to correctly initialize this value.
Otherwise, command calls will mostly fail.
Note that due to this change, existing V1.2 / V1.5
emScon C- clients, who did not initialize these
length variables, will fail with emScon servers
newer than V2.0. Such client applications need
to be fixed at source level.

 C- programmers have the sizeof() operator.
This is inappropriate in other languages, to
determine the size of data structures.

ReturnDataT
struct ReturnDataT
{
 struct PacketHeaderT packetHeader;
 enum ES_ResultStatus status;
};

This basic structure is part of all result data
blocks. It comprises a PacketHeaderT and a
ES_ResultStatus.

134

BasicCommandCT
struct BasicCommandCT
{
 struct PacketHeaderT packetHeader;
 enum ES_Command command;
};

This is a generic structure used to derive all other
command types from. It serves as a general basis
for sending commands.
BasicCommandRT
struct BasicCommandRT
{
 struct PacketHeaderT packetHeader;
 enum ES_Command command;
 enum ES_ResultStatus status;
};

This is a generic structure used to derive all other
result types from. It serves as a general basis for
receiving commands.

 Instead of using 'typedef' for all basic
command types / result types (commands that do
not take additional parameters or do not return
date), two data structure containing only
BasicCommandCT / BasicCommandRT member
have been introduced. This approach enables
naming consistency, with respect to struct nesting
depth.

 See chapter 'Non- Parameter Command/Return
Types'.
MeasValueT
struct MeasValueT
{
 enum ES_MeasurementStatus status;
 long lTime1;
 long lTime2;
 double dVal1;
 double dVal2;
 double dVal3;
};

This struct describes a single measurement of a
continuous 3D measurement stream. Time1
indicates seconds expired since a measurement
start. Time2 indicates microseconds expired
within the last second. The total elapsed time in
microseconds is:

T [ms] = 10e6 * lTime1 + lTime2
Position values Val1..Val3 are in current units /
CS-type and according to ap

plied orientation /

135

transformation parameters.

MeasValue2T
struct MeasValue2T
{
 enum ES_MeasurementStatus status;
 long lTime1;
 long lTime2;
 double dVal1;
 double dVal2;
 double dVal3;
 double dAprioriStdDev1;
 double dAprioriStdDev2;
 double dAprioriStdDev3;
 double dAprioriStdDevTotal;
 double dAprioriCovar12;
 double dAprioriCovar13;
 double dAprioriCovar23;
};

This struct describes a single measurement of a
continuous 3D measurement stream in case
statistical mode is set to ‘extended’. Principall
the same as MeasValueT, but with statistic
information in addition. Position value
statistic parameters are in cu

 the
y

s and
rrent units / CS-type

ee command 'SetStatisticMode' and description
eT' above, for details.

and according to applied orientation /
transformation parameters.

 S
of struct 'MeasValu

136

ProbeMeasValueT

struct ProbeMeasValueT

{
 enum ES_MeasurementStatus status;
 enum ES_TriggerStatus triggerStatus;
 long lRotationStatus;
 long lTime1;
 long lTime2;
 double dPosition1;
 double dPosition2;
 double dPosition3;
 double dStdDevPosition1;
 double dStdDevPosition2;
 double dStdDevPosition3;
 double dStdDevPositionTotal;
 double dCovarPosition12;
 double dCovarPosition13;
 double dCovarPosition23;
 double dQuaternion0;
 double dQuaternion1;
 double dQuaternion2;
 double dQuaternion3;
 double dRotationAngleX;
 double dRotationAngleY;
 double dRotationAngleZ;
 double dStdDevRotationAngleX;
 double dStdDevRotationAngleY;
 double dStdDevRotationAngleZ;
 double dStdDevRotationAngleTotal;
 double dCovarRotationAngleXY;
 double dCovarRotationAngleXZ;
 double dCovarRotationAngleYZ;
};

This struct describes a single measurement (6
degrees of freedom) in a 6DoF continuous
measurement stream. Time1 indicates seconds
expired since a measurement start. Time2
indicates microseconds expired within the last
second. The total elapsed time in microseconds is

T [ms] = 10e6 * lTime1 + lTime2
Position values, angular values and statisti
parameters are in current units / CS-type and
according to applied orientation / transformation
parameters.

The position values relate to the center of the
ruby sphere.
Rotation angles are always represented in the
interval between -PI and PI.

The following helper- structs ease the
in

:

c

tip

terpretation of the Rotation- Status:

RotationStatus

Note: If the SystemParameter flag
'ES_SP_ShowAll6DMeasurements' is set to 'False'
(which is default), then only measurements with

137

Rotation Status OK will arrive. Interpreting the

meter' command).

erpret

 rotation status in detail is
ming. Usually it is

6D’ being 0
uccess) or 1 (error) (while ‘Status6D’ is 1).

Rotation Status only becomes an issue if the
'ShowAll6DMeasurements' is enabled (By using
the 'SetLongSystemPara
The following union can be used to easily
interpret the rotation status: Assign the returned
value (a long) to URotationStatus.l, then int
the Error6D and optionally other fields. No

it is set.
te that

the fields are only valid if Status6D b
The evaluation of
subject of advanced program
sufficient just to check for ‘Error
(s

struct RotationStatus
{
 unsigned Status6D:1; // 0 => no rotation status; 1 =>
 // rotation status valid
 unsigned Error6D:1; // 1 => ERROR in rotation status
 unsigned NotEnoughLED:1;
 unsigned RMSToHigh:1;
 unsigned AngleOutOfRange:1; // Hz or Vt (see RotStatus
 // values)
 unsigned Frozen6DValues:1; // 6D values are not updated !
 unsigned DistanceOutOfRange:1;// dist too short or too long
 unsigned Reserved1:1; // always 0
 unsigned RotStatLeftRight:3; // see documentation
 unsigned RotStatUpDown:3; // see documentation
 unsigned GoodGauge:2; // 0 => All bad; 1 => 33% good
 // 2 => 66% good ...
 unsigned Face2:1; // 0 => Face1; 1 => Face2
 unsigned Reserved2:15; // always 0
};

union URotationStatus
{
 long l;
 struct RotationStatus rotStat;
};

StationaryModeDataT
struct StationaryModeDataT
{
 long lMeasTime;
 ES_BOOL bUseADM; // Caution: has no effect in 6D mode !
};

Used as parameters for the
Set/GetStationaryModeParams commands. The
measurement time parameter must lie betwee
500 ms and 100000 ms (0.5 – 100 secon
u

n
ds). The

seADM flag should be set to false, if the ADM
measurement was performed upon laser beam
attachment (FindReflector, GoPosition). Only in
exceptional cases an ADM measurement should
be performed upon a stationary measurement. (If

138

the beam always remains attached to the same
e- gap between

 or hours).

ll be ignored for

taT
ruct ContinuousTimeModeDataT

reflector and there is a major tim
measurements (several minutes

Note that the useADM flag has no effect for 6DOF
measurement modes and wi
these modes, regardless whether true or false.
Note: The ‘bUseADM’ Flag only applies to 3D
measurement modes and has no effect to 6D
modes. It can be ignored in 6D cases.

ContinuousTimeModeDa
st
{
 long lTimeSeparation;
 long lNumberOfPoints;
 ES_BOOL bUseRegion;
 enum ES_RegionType regionType;
};

Used as parameters for the
Set/GetContinuousTimeModeParams commands. A

ro means 'infinite' (in lNumberOfPoints value of ze
this case, the measurement must be stopped
explicitly with a StopMeasurement command).
Time separation is in milliseconds and can vary
between 1..99999 ms.

ContinuousDistanceModeDataT
struct ContinuousDistanceModeDataT
{
 double dSpatialDistance;
 long lNumberOfPoints;
 ES_BOOL bUseRegion;
 enum ES_RegionType regionType;
};

Used as parameters for the
S
A

et/GetContinuousDistanceModeParams commands.
lNumberOfPoints value of zero means 'infinite'

tly). Rather than based
riteria, a distance criteria is
ngth- unit. Note: One

gle measurement will be preformed upon
easurements are not

ands SetBox- /

(must be stopped explici
on a time- separation c
used. It is in current le
sin
StartMeasurement. Further m
taken until the reflector is being moved.
A region can be applied to limit the 'sensitive'
measurement space. See comm

139

SetSphereRegionParams for region definiti

SphereCe
struct SphereCenterModeDataT

on.

nterModeDataT
{
 double dSpatialDistance;
 long lNumberOfPoints;
 ES_BOOL bFixRadius;
 double dRadius;
};

Used as parameters for the
eParams commands. A

 of zero means 'infinite'
d explicitly).

adius are in current length-

inuous distance

leCenterModeDataT

Set/GetSphereCenterMod
lNumberOfPoints value
(must be stoppe
Spatial distance and R
unit. The radius can be left variable (to be
calculated by the fit- routine), or fixed, if it is
known.
Same trigger criteria as with Cont
mode.

CircleCenterModeDataT
struct Circ
{
 double dSpatialDistance;
 long lNumberOfPoints;
 ES_BOOL bFixRadius;
 double dRadius;
};

Used for parameters
Set/GetCircleCenterModeParams commands. A

f zero means 'infinite'
itly).

it.
tial distance and Radius are in current length-

ariable (to be

lNumberOfPoints value o
(must be stopped explic
Radius is in current length- un
Spa
unit. The radius can be left v
calculated by the fit- routine), or fixed, if it is
known.
Same trigger criteria as with Continuous distance
mode.

140

GridModeDataT
struct GridModeDataT
{
 double dVal1;
 double dVal2;
 double dVal3;
 long lNumberOfPoints;
 ES_BOOL bUseRegion;
 enum ES_RegionType regionType;
};

Used as parameters for the
Set/GetGridModeParams commands. T
describe the grid size in the CS. Position values
are in current units / CS-type. A lN
value of zero means 'infinite' (must be stopp
explicitly).
A region can be applied to limit the 'sen
measurement space. See commands 'SetBox-
SetSphereRegionParams' for region definition.

SearchParamsDataT
struct SearchParamsDataT

he 3 values

umberOfPoints
ed

sitive'
/

{
 double dSearchRadius;
 double lTimeOut;
};

Used for parameters of Set/GetSearchParams
commands.
The search process is aborted upon one or the
other of the two criterias is reached.
TimeOut is in milliseconds. There is a minimu
value of 10’000 ms (10 Seconds).
Note: this minimum value was 2500 ms in
previous emScon versions and has been incre
to 10000 for EmScon from Version 2.0!
SearchRadius is in current units. The timeout
parameter will interrupt the search if it takes too

m

ased

ig search radius (if no reflector
). The Search

h units and must lie

was 1.0 m in
d

long due to a too b
found within the specified time
Radius in current lengt
between 0 and 0.5 meters. (Caution with small or
even zero radius and / or small timeOut: Too
small value may cause the search process to fail.
Note: the maximum radius value
previous emScon versions and has been reduce
to 0.5 m for emScon Version!
Large search radii result in extended search

141

times, unless time is limited to a reasonable
value.
Typical values are 0.05 m for the radius and
30’000 ms for timeout.

AdmParamsDataT
struct AdmParamsDataT
{
 double dTargetStabilityTolerance;
 double lRetryTimeFrame;
 double lNumberOfRetrys;
};

Used for parameters for the Set/GetAdmParams

n 0.005

ange these parameters if
ork ironment (vibrations).
w

prec

struct

commands. RetryTimeFrame is in milliseconds in
the range between 500 and 5000.
TargetStabilityTolerance is a distance parameter
and is in current length- units.
TargetStabilityTolerance must lie betwee
and 0.1 Millimeter. Leave this value as low as
possible! (Default is 0.005).
The SetAdmParams command should be used
with caution. Only ch
w ing in an unstable env
Lo ering the stability tolerance results in loss of

ision!

SystemSettingsDataT
 SystemSettingsDataT

{
 enum ES_WeatherMonitorStatus weatherMonitor;
 ES_BOOL bApplyTransformationParams;
 ES_BOOL
bApplyStationOrientationParams;
 ES_BOOL bKeepLastPosition;
 ES_BOOL bSendUnsolicitedMessages;
 ES_BOOL bSendReflectorPositionData;
 ES_BOOL bTryMeasurementMode;
 ES_BOOL bHasNivel;
 ES_BOOL bHasVideoCamera;
};

Used
commands. The system settings are a collection of
vario
the e

• onitorStatus
cription on

•

 for parameters of Set/Get SystemSettings

us 'properties' to control certain behavior of
mScon system :

WeatherM
Indicates the WM status. See des
enum ES_WeatherMonitorStatus

bApplyTransformationParams
If this flag is set to false, the System does not

142

transform the measurements into a user-
specified coordinate system. If set to true,
transformation as per transformation
parameters is applied. If set to false, the
default transform
0, 0, 1}, regardless of the current values set
with SetTransformationParams command.
Transformations also apply to the
positioning commands (such as GoPosition)
and to part of the Input/Output filters (Box
Sphere)

bApplyStationOrientationParams
If this flag is set to true, the System uses th
given orientation parameters. If set to false
the default stat
0, 0, 0, 0, 0}, regardless of the current values
set with the SetStationOrientationParams
command. Orientations also apply to the
position

bKeepLastPosition
If this flag is set to true and the laser beam
broken, it does not leave the current posi
This allows to 'catch' the beam again, then

ation will be used {0, 0, 0, 0,

,

•
e
,

ion orientation will be used {0,

ing commands (such as GoPosition).

•
 is

tion.

placing the reflector to a stable position. The
A
and – if success- sets the measured distance as
the new interferometer distance. From then on,
it is possible to recover measuring without
h
b
If eam is disabled
(m
is
p
Im
fl
M
recognized (If beam catched at zero position).

DM then tries to perform a measurement

aving to go back to the BirdBath on beam
roken events.
 the flag is set to false, the b

irror points down). If an Overview Camera
 installed, the sensor drives into the camera
osition.

portant: Enabling the ‘KeepLastPosition’
ag is compulsory for 6D Measurement
odes. Otherwise the Probe will not be

143

•
s all

they occur. This flag
er

- change
hese events should be

•
flector / Probe

 sends

ed
 measurement is in

hey can be used to view the

re of

details.

ode

ature and therefore

•
A

or
 system

•
 flag

bSendUnsolicitedMessages
If this flag is set to true, the system send
error messages as
should always be true. Otherwise neith
error events nor system status
events will be issued. T
suppressed only in real special situations.

bSendReflectorPositionData
If this flag is set to true and a re
is locked on by the tracker, the system
the current reflector position (max. 3
measurements per second). These are issu
even when no continuous
progress. T
Reflector/probe movement on applications
with graphic representation of reflector
movement. Do not regard the position values
as accurate measurements. They a
limited accuracy!
 See structs 'ReflectorPosResultT' and
'ProbePosResultT' for

• bTryMeasurementM
If this flag is set to true, the system delivers
all results in the try mode. This is a Leica
internal fe
undocumented. It can be ignored by
application programmers. The effect is just
that – if set to true – the value is 'echoed'
with each measurement.

bHasNivel
 hardware Configuration issue. This flag

tells the system that a Nivel20 sensor is
attached. Measurements with the sensor are
now possible. The system cannot
automatically detect whether a Nivel sens
is attached. Hence you must tell it the
by enabling this flag.

bHasVideoCamera
A hardware Configuration issue. This

144

tells the system, that an Overview
present.
If your system is equipped with an over
camera, it is recommended to always having
checked this flag (even when the came
temporarily removed). Otherwise, leave it
always unchecked (= default).

Camera is

view

ra is

 In the meantime there exist different
types of overview cameras that differ in
internal parameters (focus distance, CCD
chip size). Older emScon versions were not
able to detect whether an overview camera
was mounted or not, not to speak of type
recognition (indeed it was the overview
camera hardware that did not support type
recognition). For that reason, the flag
'HasVideoCamera' was originally
introduced. Thus, the user had to 'tell' the
system when an overview camera was
mounted. Newer EmScon versions (2.0 and
up) are able to detect the camera type
automatically. Hence, this flag theoretically

solete. However, currently the
y when the
abled.

 an overview

ot
detect the correct camera type and use

lt) parameters.
ng parameters do not cause

. The only effect will be that

the

has become ob
camera type is recognized onl
'hHasVideoCamera' flag is en
If your system is equipped with
camera, it is highly recommended to always
having this flag checked (default is
unchecked). Otherwise, the system may n

wrong (defau
However, wro
any fatal failures
the 'Find Reflector' feature by clicking to the
live video image by mouse pointer will move
the tracker inaccurately (typically, the tracker
will move double or half the amount of
'clicked' distance).

145

SystemUnitsDataT
struct SystemUnitsDataT
{
 enum ES_LengthUnit lenUnitType;
 enum ES_AngleUnit angUnitType;
 enum ES_TemperatureUnit tempUnitType;
 enum ES_PressureUnit pressUnitType;
 enum ES_HumidityUnit humUnitType;
};

Use mands.
ee related enums – they explain themselves.

d for parameters of Set/GetUnits com
S

EnvironmentDataT
struct EnvironmentDataT
{
 double dTemperature;
 double dPressure;
 double dHumidity;
};

Used for parameters of Set/Ge
commands. The SetEnvironmentParams comm
mainly applies when no weather monitor is
available, or when disabled by the
bUseWeatherMonitor setting. Otherwise, these

tEnvironmentParams
and

parameters are updated implicitly and the
current values can be retrieved with the
GetEnvironmentParams. See also description of
enum 'ES_WeatherMonitorStatus'.

 See chapter 'Working Conditions'.

RefractionDataT
struct RefractionDataT
{
 double dIfmRefractionIndex;
 double dAdmRefractionIndex;
};

Used for parameters of Set/GetRefractionParams
commands. See also description of enum

S_WeatherMonitorStatus'.
dvanced and special
used in combination with

nitorStatus mode
Only'. See description there.

ion should not explicitly set
hey are set indirectly by

f no

mode 'ES_WMS_ReadAndCalculateRefractions'

'E
This is a command for a
usage. It should only be
the WeatherMo
'ES_WMS_Read

Normal applicat
refraction parameters. T
using the SetEnvironmentParams command (i
weather monitor available), or by selecting the

146

(if a WM is connected).

 Under certain conditions, the refraction
parameters are updated (set) implicitly on setting

rameters. See description of
onitorStatus'.

new environment pa
enum 'ES_WeatherM

 See chapter 'Working Conditions'.

tionOrientationDataT

Sta
struct StationOrientationDataT
{
 double dVal1;
 double dVal2;
 double dVal3;
 double dRot1;
 double dRot2;
 double dRot3;
};

Used as parameters for
Set/GetStationOrientationParams commands.

rent units and CS-type. These
abled/disabled through the
tationOrientationParams.

nsformationDataT

Values are in cur
settings can be en
system flag bUseS

Tra
struct TransformationDataT
{
 double dVal1;
 double dVal2;
 double dVal3;
 double dRot1;
 double dRot2;
 double dRot3;
 double dScale;
};

Used as parameters for
Set/GetTransformationParams commands. Va
are in current units and CS-type. These settin
can be enable
b

lues
gs

d/disabled through the system flag
UseLocalTransformationMode.

BoxRegionDataT
struct BoxRegionDataT
{
 double dP1Val1;
 double dP1Val2;
 double dP1Val3;
 double dP2Val1;
 double dP2Val2;
 double dP2Val3;
};

Used for parameters of S
commands. The parameters describe two

et/GetBoxRegionParams

147

diagonal points of a box.
Values are in current units and C

ccording to active transformation settings).
These settings only apply if the bUseRegion fla
the appropriate continuous measurement
structu

S-type (but not
a

g in

re is enabled, together with the 'Box'
egion type. r

SphereRegionDataT
struct SphereRegionDataT
{
 double dVal1;
 double dVal2;
 double dVal3;
 double dRadius;
};

Used for parameters of Set/GetSphereRegionParams
commands. The parameters describe center point

nd radius of a sphere.
s and (apart from
e and according to

a
Values are in current unit
Radius) in current CS-typ
applied transformation settings.

 These settings only apply if the bUseRegion
us measurement

Sphere' region

ersionNumberT

flag in the appropriate continuo
structure is enabled, together with '
type.

ESV
struct ESVersionNumberT
{
 int iMajorVersionNumber;
 int iMinorVersionNumber;
 int iBuildNumber;
};

Used for one of the parameters
GetSystemStatus command. Contains version
of the currently installed tracker server software

 of the
 info

.

148

TransformationInputDataT
aT struct TransformationInputDat

{
 enum ES_TransResultType resultType;
 double dTransVal1;
 double dTransVal2;
 double dTransVal3;
 double dRotVal1;
 double dRotVal2;
 double dRotVal3;
 double dScale;
 double dTransStdVal1;
 double dTransStdVal2;
 double dTransStdVal3;
 double dRotStdVal1;
 double dRotStdVal2;
 double dRotStdVal3;
 double dScaleStd;
};

Used for parameters of the
Set/GetTransformationInputParams command.
Used in order to specify (Fixing, Weight
transformation result values

ing)
.

tion

or details see Section 9.2 .

meters, use values as
er 'Constants'.

Values are in current units and (apart from
Radius) in current CS-type (No transforma
applies).

F

 For the StdDev para
specified in chapt

TransformationPointT
struct TransformationPointT
{
 double dVal1;
 double dVal2;
 double dVal3;
 double dStd1;
 double dStd2;
 double dStd3;
 double dCov12;
 double dCov13;
 double dCov23;
};

It is used as a sub- structure for the AddNominal
ommands.

gs.

onstants'.

/AddActualTransformationPoint c
Values are in current units and CS-type and
according to applied transformation settings only
in case of actual points. Nominal points are not
influenced by transformation settin
For details see Section 9.2 .

 For the StdDev parameters, use values as
specified in chapter 'C

149

CameraParamsDataT
struct CameraParamsDataT
{
 int iContrast;
 int iBrightness;
 int iSaturation;
};

U for parameters of the Set/GetCameraParams sed
command. Values of Contrast/Brightness range
from 0 to 256.

to ze

a Structures
eal data blocks

P network between the

 Saturation is currently not used and must be set
ro.

3.4.2 Packet Dat
These data types describe the r
exchanged over the TCP/I
Tracker Server and the application PC. There are
9 main types of packets (see enum
'ES_DataType'). The structures of
ES_DT_Command- type packets differ for
different commands.

 All packet types contain (directly or throug
another sub-structure such as ReturnDataT,
BasicCommandCT or BasicCommandRT) a sub-
structure of type PacketHeaderT with the size and
type of the packet.

h

•

er.

 type packets, command, error and
measurements always contain a status
parameter.

ErrorResponseT
struct ErrorResponseT

 Command type packets (apart from a certain
number of parameters), always contain an
ES_Command command type paramet

• Return

{
 struct PacketHeaderT packetHeader;
 enum ES_Command command;
 enum ES_ResultStatus status;
};

This receive-only structure ES_DT_Error packet
type describes the packet size and type. It

150

contains a standard packet header and a return

ten set to
s are often occur
e not a reaction to a

roken' error. Such
d is obviously

status, ES_ResultStatus, or a tracker error number.

The 'command' parameter is of
ES_C_Unknown since error
'unsolicited', that is, they ar
command. Consider a 'beam b
an event can happen at any time an
not caused by a command.

 See 8. Appendix at the bottom of this

nknown

document.

The command parameter is set to ES_C_U
unless the error was caused by particular
command.

SingleMeasResultT
struct SingleMeasResultT
{
 struct ReturnDataT packetInfo;
 enum ES_MeasMode measMode;
 ES_BOOL bIsTryMode;
 double dVal1;
 double dVal2;
 double dVal3;
 double dStd1;
 double dStd2;
 double dStd3;
 double dStdTotal;
 double dPointingError1;
 double dPointingError2;
 double dPointingError3;
 double dAprioriStd1;
 double dAprioriStd2;
 double dAprioriStd3;
 double dAprioriStdTotal;
 double dTemperature;
 double dPressure;
 double dHumidity;
};

This receive-only structure describes the
ES_DT_SingleMeasResult packet type. Apart from
the standard ReturnDataT structure, it contains
data specific

to a single tracker 3D measurement.

 addition to the 3 coordinate values, there is
statistical information such as standard
deviations (a posteriori and a priori) and pointing
errors. The environmental values are those
currently valid to the system (either those
explicitly set by SetEnvironmentParams, or those
last implicitly updated by the weather monitor).

In

151

The flag bIsTryMode is set if system is in 'Try
common users. Mode'. This is not relevant for

 The format of measurements, statistical
ental values depend

nts and statistical
rding current CS-

/ transformation

informations and environm
on current units. Measureme
information in addition are acco
type and applied orientation
parameters.

SingleMeasResult2T
struct SingleMeasResult2T
{
 struct ReturnDataT packetInfo;
 enum ES_MeasMode measMode;
 ES_BOOL bIsTryMode;
 double dVal1;
 double dVal2;
 double dVal3;
 double dStdDev1;
 double dStdDev2;
 double dStdDev3;
 double dStdDevTotal;
 double dCovar12;
 double dCovar13;
 double dCovar23;
 double dPointingErrorH;
 double dPointingErrorV;
 double dPointingErrorD;
 double dAprioriStdDev1;
 double dAprioriStdDev2;
 double dAprioriStdDev3;
 double dAprioriStdDevTotal;
 double dAprioriCovar12;
 double dAprioriCovar13;
 double dAprioriCovar23;
 double dTemperature;
 double dPressure;
 double dHumidity;
};

This receive-only structure describes the
ES_DT_SingleMeasResult2 packet type in case of
extended statistical mode. Use this variant if
points to be used as input for the Transformation
outine.

bIsTryMode is set, if system is in 'Try
elevant for common users.

'.

r
The flag
Mode'. This is not r

 See also command 'SetStatisticMode

 The format of measurements, statistical
tal values depend

ents and statistical
rent CS-

informations and environmen
on current units. Measurem
information in addition are according cur
type and applied orientation / transformation
parameters.

152

MultiMeasResultT
struct MultiMeasResultT
{
 struct ReturnDataT packetInfo;
 long lNumberOfResults;
 enum ES_MeasMode measMode;
 ES_BOOL bIsTryMode;
 double dTemperature;
 double dPressure;
 double dHumidity;
 struct MeasValueT data[1];
};

This receive-only structure describes the
ES_ here a
continuous stream of packets is received during a

d
t.

'
umberOfResults parameter

identifies the number of array elements, and the

DT_MultiMeasResult packet type, w

continuous measurement.
A packet consists of the single measurement an
an array of MeasValueT parameters attached to i
The MultiMeasResultT structure only contains
(covers) the first element of this array (a 'pointer
to the array). The lN

remaining elements can be iterated from data [0]
… data [lNumberOfResults - 1].

 C-arrays are always zero-based.

This structur
m

e only covers the header of a multi-
easurement packet. Measurement mode and

meters are common for the
e flag bIsTryMode is

ot relevant

environmental para
body (measurement array). Th
set if system is in Try Mode. This is n
for common users.

The format of measurements, statistical

t CS-

informations and environmental values depend
on current units. Measurements and statistical
information in addition are according curren
type and applied orientation / transformation
parameters.

153

MultiMeasResult2T
struct MultiMeasResult2T
{
 struct ReturnDataT packetInfo;
 long lNumberOfResults;
 enum ES_MeasMode measMode;
 ES_BOOL bIsTryMode;
 double dTemperature;
 double dPressure;
 double dHumidity;
 struct MeasValue2T data[1];
};

 The same as MultiMeasResultT (see above), but
 to received in case the statistical mode is set

‘extended’.

 See also command 'SetStatisticMode'.
ProbeStationaryResultT
struct ProbeStationaryResultT
{
 struct ReturnDataT packetInfo;
 enum ES_MeasMode measMode;
 ES_BOOL bIsTryMode;
 enum ES_TriggerStatus triggerStatus;
 long lRotationStatus;
 long iInternalProbeId;
 int iFieldNumber;
 enum ES_MeasurementTipStatus tipStatus;
 long iInternalTipAdapterId;
 long iTipAdapterInterface;
 double dPosition1;
 double dPosition2;
 double dPosition3;
 double dStdDevPosition1;
 double dStdDevPosition2;
 double dStdDevPosition3;
 double dStdDevPositionTotal;
 double dCovarPosition12;
 double dCovarPosition13;
 double dCovarPosition23;
 double dAprioriStdDevPosition1;
 double dAprioriStdDevPosition2;
 double dAprioriStdDevPosition3;
 double dAprioriStdDevPositionTotal;
 double dAprioriCovarPosition12;
 double dAprioriCovarPosition13;
 double dAprioriCovarPosition23;
 double dQuaternion0;
 double dQuaternion1;
 double dQuaternion2;
 double dQuaternion3;
 double dRotationAngleX;
 double dRotationAngleY;
 double dRotationAngleZ;
 double dStdDevRotationAngleX;
 double dStdDevRotationAngleY;
 double dStdDevRotationAngleZ;
 double dStdDevRotationAngleTotal;
 double dCovarRotationAngleXY;
 double dCovarRotationAngleXZ;
 double dCovarRotationAngleYZ;
 double dAprioriStdDevRotationAngleX;
 double dAprioriStdDevRotationAngleY;
 double dAprioriStdDevRotationAngleZ;
 double
dAprioriStdDevRotationAngleTotal;
 double dAprioriCovarRotationAngleXY;
 double dAprioriCovarRotationAngleXZ;
 double dAprioriCovarRotationAngleYZ;
 double dTemperature;
 double dPressure;
 double dHumidity;
};

This receive-only structure describes the
ES_DT_Single6DMeasResult packet type.

154

This structure is used to transmit the result of a
6D stationary measurement. The result depends

e coordinate
tation and transformation

 Adapter where Tip mounted including its

 values relate to the

 - Rotation Angles including their accuracy

 the

on current length and angle units, th
system type, orien
parameters applied.

It contains:

 - Status Information

 -
accuracy

- Probe position. The position
center of the tip ruby sphere.

- Probe orientation in two different
representations:

 - Quaternion or

- Environmental Data

Rotation angles are always represented in
interval between -PI and PI.

Details about RotationStatus: see chapter
'Rotation Status' just following the chapter
'ProbeMeasValueT'

Applies only to 6DoF systems.

ProbeContinuousResultT
struct ProbeContinuousResultT

{
 struct ReturnDataT packetInfo;
 long lNumberOfResults;
 enum ES_MeasMode measMode;
 ES_BOOL bIsTryMode;
 long iInternalProbeId;
 int iFieldNumber
 enum ES_MeasurementTipStatus tipStatus;
 long iInternalTipAdapterId;
 long iTipAdapterInterface;
 double dTemperature;
 double dPressure;
 double dHumidity;
 struct ProbeMeasValueT data[1];
};

This receive-only structure describes the ES_DT_
ContinuousProbeMeasResult packet type. The only

155

difference to an ES_DT_ MultiMeasResult is t
array element types. Applies only to

he
 6DoF

systems.

NivelResultT
struct NivelResultT
{
 struct ReturnDataT packetInfo;
 enum ES_NivelStatus nivelStatus;
 double dXTilt;
 double dYTilt;
 double dNivelTemperature;
};

This receive-only structure describes the
ES_DT_NivelResult packet type, which includes

cture and contains data
easurement.

s' in chapter 3.3.2
tails about supported

the ReturnDataT stru
specific to a Nivel20 m

Refer to chapter 'ES_NivelStatu
(enumeration types) for de
measurement ranges.

 The format of measurement and
environmental values do NOT depend on curre
unit settings. Nivel results always arrive in n
Nivel20 format – milliradiant for X/Y tilt and
Celsius for temperature.
ReflectorPosResultT
struct ReflectorPosResultT

nt
ative

{
 struct ReturnDataT packetInfo;
 double dVal1;
 double dVal2;
 double dVal3;
};

This receive-only structure describes the
hese are

 a

s can be

 current

entation / transformation parameters.

ES_DT_ReflectorPosResult packet type. T
received whenever the tracker is locked onto
reflector (3 measurements per second). The
receipt of these 'measurement'- type
switched on/off with the systems flag
bSendReflectorPositionData. Values are in
units / CS-type and according to applied
ori

156

ProbePosResultT
struct ProbePosResultT
{
 struct ReturnDataT packetInfo;
 long lRotationStatus;
 enum ES_MeasurementTipStatus tipStatus;
 long iInternalTipAdapterId;
 long iTipAdapterInterface;
 double dPosition1;
 double dPosition2;
 double dPosition3;
 double dQuaternion0;
 double dQuaternion1;
 double dQuaternion2;
 double dQuaternion3;
 double dRotationAngleX;
 double dRotationAngleY;
 double dRotationAngleZ;
};

The 'Probe' relative to ReflectorPosResult. Values
ding to

meters.

The position values relate to the center of the tip

etails about RotationStatus: see chapter
otation Status' just following the chapter

are in current units / CS-type and accor
applied orientation / transformation para
There are some status values in addition.
Rotation angles are always represented in the
interval between -PI and PI.

ruby sphere.
D
'R
'ProbeMeasValueT'

SystemStatusChangeT
struct SystemStatusChangeT
{
 struct ReturnDataT packetHeader;
 enum ES_SystemStatusChange systemStatusChange;
};

This receive-only structure describes the
ES_DT_SystemStatusChange packet type. These
are received when the system status has changed.

 See enum 'ES_SystemStatusChange' for
supported notification types.

ExternTriggerParamsT
struct ExternTriggerParamsT
{
 enum ES_ClockTransition clockTransition;
 enum ES_TriggerMode triggerMode;
 enum ES_TriggerStartSignal startSignal;
 long lMinimalTimeDelay;
};

Parameters 1..3: See description of appropriate
enumeration types.

157

lMinimalTimeDelay: The time delay between
trigger event and measurement.

Non- Parameter Command/Return Types

Lists all non- parameter command structures.
They are derived from the BasicCommandCT
(command-types; client to Server) and the
BasicCommandRT (return-types; Server to client).

158

struct InitializeCT
{
 struct BasicCommandCT packetInfo;
};

struct InitializeRT
{
 struct BasicCommandRT packetInfo;
};

struct ReleaseMotorsCT
{
 struct BasicCommandCT packetInfo;
};

struct ReleaseMotorsRT
{
 struct BasicCommandRT packetInfo;
};

struct ActivateCameraViewCT
{
 struct BasicCommandCT packetInfo;
};

struct ActivateCameraViewRT
{
 struct BasicCommandRT packetInfo;
};

struct ParkCT
{
 struct BasicCommandCT packetInfo;
};

struct ParkRT
{
 struct BasicCommandRT packetInfo;
};

struct GoBirdBathCT
{
 struct BasicCommandCT packetInfo;
};

struct GoBirdBathRT
{
 struct BasicCommandRT packetInfo;
};

struct GoLastMeasuredPointCT
{
 struct BasicCommandCT packetInfo;
};

struct GoLastMeasuredPointRT
{
 struct BasicCommandRT packetInfo;
};

struct ChangeFaceCT
{
 struct BasicCommandCT packetInfo;
};

struct ChangeFaceRT
{
 struct BasicCommandRT packetInfo;
};

struct StartNivelMeasurementCT
{
 struct BasicCommandCT packetInfo;
};

struct StartNivelMeasurementRT
{
 struct BasicCommandRT packetInfo;
};

struct StartMeasurementCT
{
 struct BasicCommandCT packetInfo;
};

struct StartMeasurementRT
{
 struct BasicCommandRT packetInfo;

159

};

struct StopMeasurementCT
{
 struct BasicCommandCT packetInfo;
};

struct StopMeasurementRT
{
 struct BasicCommandRT packetInfo;
};

struct ExitApplicationCT
{
 struct BasicCommandCT packetInfo;
};

struct ExitApplicationRT
{
 struct BasicCommandRT packetInfo;
};

struct ClearTransformationNominalPointListCT
{
 struct BasicCommandCT packetInfo;
};

struct ClearTransformationNominalPointListRT
{
 struct BasicCommandRT packetInfo;
};

struct ClearTransformationActualPointListCT
{
 struct BasicCommandCT packetInfo;
};

struct ClearTransformationActualPointListRT
{
 struct BasicCommandRT packetInfo;
};

struct ClearDrivePointListCT
{
 struct BasicCommandCT packetInfo;
};

struct ClearDrivePointListRT
{
 struct BasicCommandRT packetInfo;
};

SwitchLaserCT/RT

Command structures for switching the laser
on/off. The laser should only be switched off
during long breaks (overnight), while the
controller is not shut down. Switching laser on
again will take about 20 minute to stabilize!
struct SwitchLaserCT
{
 struct BasicCommandCT packetInfo;
 ES_BOOL bIsOn;
};

struct SwitchLaserRT
{
 struct BasicCommandRT packetInfo;
};

FindReflectorCT/RT

Command structures for invoking a 'Find
Reflector' sequence. dApproxDistance should be

160

specified in order to apply search radius
dependent on the distance from the tracker.
Approx distance is in current length units.

struct FindReflectorCT
{
 struct BasicCommandCT packetInfo;
 double dApproxDistance;
};

struct FindReflectorRT
{
 struct BasicCommandRT packetInfo;
};

The search time depends on the search radius
and timeout set by the SetSearchParams
command. Large search radii result in extended
search times unless limited by a reasonable
SearchTimeout. See ‘SetSearchParams’ for details.
The real search radius in addition depends on the
specified approx distance. An approx. distance,
which is 50% off the actual value, will also
influence the search radius by 50%. The system
cannot directly work with the radius. It calculates
horizontal and vertical angles for the tracker from
the specified search radius and approximate
Distance.
Although no range limitation for the approx
distance applies in theory, there is a practical
limitation given by tracker working space: 100
mm < approxDist <= 50000 mm. Note: the
minimum value is 101 mm, not 100 mm!

See also SearchParamsDataT.

Set/GetCoordinateSystemTypeCT/RT

Command structures for setting/getting the
current coordinate system type. The current CS-
type acts – like current units (and transformation
/ orientation parameters) – as a input/output
'Filter' to all coordinate-type related parameters.

161

struct SetCoordinateSystemTypeCT
{
 struct BasicCommandCT packetInfo;
 enum ES_CoordinateSystemType coordSysType;
};

struct SetCoordinateSystemTypeRT
{
 struct BasicCommandRT packetInfo;
};

struct GetCoordinateSystemTypeCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCoordinateSystemTypeRT
{
 struct BasicCommandRT packetInfo;
 enum ES_CoordinateSystemType coordSysType;
};

 See enum 'ES_CoordinateSystemType' for
details.

Set/GetMeasurementModeCT/RT

Command structures for setting/getting the
current measurement mode.

struct SetMeasurementModeCT
{
 struct BasicCommandCT packetInfo;
 enum ES_MeasMode measMode;
};

struct SetMeasurementModeRT
{
 struct BasicCommandRT packetInfo;
};

struct GetMeasurementModeCT
{
 struct BasicCommandCT packetInfo;
};

struct GetMeasurementModeRT
{
 struct BasicCommandRT packetInfo;
 enum ES_MeasMode measMode;
};

 See enum 'ES_MeasMode' for detail

s.

Set/GetTemperatureRangeCT/RT

Command structures for setting/getting the active
laser tracker temperature range. A value different
than 'ES_TR_Medium' (default) should be
selected only if special environmental conditions
apply.

162

struct SetTemperatureRangeCT
{
 struct BasicCommandCT packetInfo;
 enum ES_TrackerTemperatureRange temperatureRange;
};

struct SetTemperatureRangeRT
{
 struct BasicCommandRT packetInfo;
};

struct GetTemperatureRangeCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTemperatureRangeRT
{
 struct BasicCommandRT packetInfo;
 enum ES_TrackerTemperatureRange temperatureRange;
};

 See enum 'ES_TrackerTemperatureRange' for
details.

Set/GetStationaryModeParamsCT/RT

Command structures for setting/getting the
parameters for the Stationary Measurement
mode.

struct SetStationaryModeParamsCT
{
 struct BasicCommandCT packetInfo;
 struct StationaryModeDataT stationaryModeData;
};

struct SetStationaryModeParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetStationaryModeParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetStationaryModeParamsRT
{
 struct BasicCommandRT packetInfo;
 struct StationaryModeDataT stationaryModeData;
};

 See struct 'StationaryModeDataT' for details.

Set/GetContinuousTimeModeParamsCT/RT

Command structures for setting/getting the
parameters for the Continuous Time
Measurement mode.

163

struct SetContinuousTimeModeParamsCT
{
 struct BasicCommandCT packetInfo;
 struct ContinuousTimeModeDataT continuousTimeModeData;
};

struct SetContinuousTimeModeParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetContinuousTimeModeParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetContinuousTimeModeParamsRT
{
 struct BasicCommandRT packetInfo;
 struct ContinuousTimeModeDataT continuousTimeModeData;
};

 See struct 'ContinuousTimeModeDataT' for
details.

Set/GetContinuousDistanceModeParamsCT/RT

Command structures for setting/getting the
parameters for the Continuous Distance
Measurement Mode.
struct SetContinuousDistanceModeParamsCT
{
 struct BasicCommandCT packetInfo;
 struct ContinuousDistanceModeDataT
 continuousDistanceModeData;
};

struct SetContinuousDistanceModeParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetContinuousDistanceModeParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetContinuousDistanceModeParamsRT
{
 struct BasicCommandRT packetInfo;
 struct ContinuousDistanceModeDataT
 continuousDistanceModeData;
};

 See struct 'ContinuousDistanceModeDataT'
for deta

ils.

Set/GetSphereCenterModeParamsCT/RT

Command structures for setting/getting the
parameters for the Sphere Center Measurement
mode.

164

struct SetSphereCenterModeParamsCT
{
 struct BasicCommandCT packetInfo;
 struct SphereCenterModeDataT sphereCenterModeData;
};

struct SetSphereCenterModeParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetSphereCenterModeParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetSphereCenterModeParamsRT
{
 struct BasicCommandRT packetInfo;
 struct SphereCenterModeDataT sphereCenterModeData;
};

 Se struct 'SphereCenterModeDataT' for
details.

Set/GetCircleCenterModeParamsCT/RT

Command structures for setting/getting the
parameters for the Circle Center Measurement
Mode.

struct SetCircleCenterModeParamsCT
{
 struct BasicCommandCT packetInfo;
 struct CircleCenterModeDataT circleCenterModeData;
};

struct SetCircleCenterModeParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetCircleCenterModeParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCircleCenterModeParamsRT
{
 struct BasicCommandRT packetInfo;
 struct CircleCenterModeDataT circleCenterModeData;
};

 See struct 'CircleCenterModeDataT' for
details.

Set/GetGridModeParamsCT/RT

Command structures for setting/getting the
parameters for the Grid Measurement mode.

165

struct SetGridModeParamsCT
{
 struct BasicCommandCT packetInfo;
 struct GridModeDataT gridModeData;
};

struct SetGridModeParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetGridModeParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetGridModeParamsRT
{
 struct BasicCommandRT packetInfo;
 struct GridModeDataT gridModeData;
};

 See struct 'GridModeDataT' for details.

Set/GetSystemSettingsCT/RT

Command structures for setting/getting the
system settings parameters.

struct SetSystemSettingsCT
{
 struct BasicCommandCT packetInfo;
 struct SystemSettingsDataT systemSettings;
};

struct SetSystemSettingsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetSystemSettingsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetSystemSettingsRT
{
 struct BasicCommandRT packetInfo;
 struct SystemSettingsDataT systemSettings;
};

 See struct 'SystemSettingsDataT' for details.

Set/GetUnitsCT/RT

Command structures for setting/getting the units'
settings. The current units act – like current CS-
type (and transformation / orientation
parameters) – as a input/output 'Filter' to all
Length/Angular/Meteo-type parameters.

166

struct SetUnitsCT
{
 struct BasicCommandCT packetInfo;
 struct SystemUnitsDataT unitsSettings;
};

struct SetUnitsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetUnitsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetUnitsRT
{
 struct BasicCommandRT packetInfo;
 struct SystemUnitsDataT unitsSettings;
};

 See struct 'SystemUnitsDataT' for details.

GetSystemStatusCT/RT

Command structures for getting the system
status.

struct GetSystemStatusCT
{
 struct BasicCommandCT packetInfo;
};

struct GetSystemStatusRT
{
 struct BasicCommandRT packetInfo;
 enum ES_ResultStatus lastResultStatus;
 enum ES_TrackerProcessorStatus trackerProcessorStatus;
 enum ES_LaserProcessorStatus laserStatus;
 enum ES_ADMStatus admStatus;
 struct ESVersionNumber esVersionNumber;
 enum ES_WeatherMonitorStatus weatherMonitor;
 long lFlagsValue;
 long lTrackerSerialNumber;
};

 See description of related enumeration types
for details.

The lFlagsValue member contains some additional
status information about the tracker/tracker
processor, for advanced programming.

 The description of the nth bit of the
lFlagsValue (start with least significant bit):
Bit Description

Bit 1 Reflector was found
Bit 2 Interferometer locked
Bit 3 Positioning complete
Bit 4 Tracker initialized
Bit 5 Calibration set

167

Bit Description

Bit 6 Tracker parked
Bit 7 Motor switch is on
Bit 8 Encoder angle error
Bit 9 Sleep condition set
Bit 10 Motor power active

GetTrackerStatusCT/RT
struct GetTrackerStatusCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTrackerStatusRT
{
 struct BasicCommandRT packetInfo;
 enum ES_TrackerStatus trackerStatus;
};

Command structures for getting the tracker
status.

 See enum 'ES_TrackerStatus' for details.

Set/GetReflector(s)CT/RT

Command structures for getting/setting the
y its numerical ID. current reflector b

168

struct SetReflectorCT
{
 struct BasicCommandCT packetInfo;
 int iInternalReflectorId;
};

struct SetReflectorRT
{
 struct BasicCommandRT packetInfo;
};

struct GetReflectorCT
{
 struct BasicCommandCT packetInfo;
};

struct GetReflectorRT
{
 struct BasicCommandRT packetInfo;
 int iInternalReflectorId;
};

struct GetReflectorsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetReflectorsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalReflectors;
 int iInternalReflectorId;
 enum ES_TargetType targetType;
 double dSurfaceOffset;
 short cReflectorName[32];
};

The GetReflectors command retrieves all reflectors

et,
ins the total

number of reflectors, i.e. the total number of
packets to be expected (only for programmer's
convenience). Other properties are the targetType
a aceOffset. Surface offset is in current
length units.

defined in the Tracker Server. The answer
consists of as many answer packets as reflector
types, defined in the server database. These
resolve the relation between reflector name
(string) and reflector ID (numerical). Each pack
in addition (a redundancy), conta

nd the surf

 The reflector name is in Unicode format -
short cReflectorName[32] declaration. It can
consist of a maximum of 32 characters.

 Each tracker- compensation has its own set
of reflector- definitions! However, the mapping
between reflector-name and ID remains the same
throughout all a

vailable tracker-compensations!

Example: A T-Cam is mounted on the tracker;
hence, the active tracker compensation is one that

169

was performed with a mounted camera. Assume
this tracker - compensation has definitions for

R-0.5in.
ping between name and

D remained the same as it was in the previous

5

 the active one at the time the
 now get a 'wrong

or message on executing
Thus, the

 now available

eflector ID and

 re-query
pings upon a tracker

compensation change.

three valid reflectors as follows:

Name ID
 CCR-75mm 7
 CCR-1.5in 2
 TBR-0.5in 5

Now, the T-Cam is removed, and hence another
tracker- compensation becomes active (one that
was performed without a mounted T-Cam). Let's
assume that this compensation has only two
reflector definitions: CCR-1.5in and TB
Conveniently, the map
I
compensation:

Name ID
 CCR-1.5in 2
 TBR-0.5in

If reflector ID 7 was
camera was removed, you will
current reflector' err
reflector- dependent commands.
application must first set one of the
IDs 2 or 3 with the 'SetReflector' command.

The fact that the relation between r
Name remains the same throughout all tracker-
compensations may be convenient to application
programmers since there is no need to
all reflector map

170

Set/GetSearchParamsCT/RT
T struct SetSearchParamsC

{
 struct BasicCommandCT packetInfo;
 struct SearchParamsDataT searchParams;
};

struct SetSearchParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetSearchParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetSearchParamsRT
{
 struct BasicCommandRT packetInfo;
 struct SearchParamsDataT searchParams;
};

Command structures for setting/getting the
reflector search parameter values.

The search time depends on the search radius.
arge search radii may result in extended search L

times unless limited by a reasonable
SearchTimout.

 See struct 'SearchParamsDataT' for details.

/GetAdmParamsCT/RT

Set
struct SetAdmParamsCT
{
 struct BasicCommandCT packetInfo;
 struct AdmParamsDataT admParams;
};

struct SetAdmParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetAdmParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetAdmParamsRT
{
 struct BasicCommandRT packetInfo;
 struct AdmParamsDataT admParams;
};

Command structures for setting/g
reflector search parameter values.

etting the

 See struct 'AdmParamsDataT' for details.

171

Set/GetEnvironmentParamsCT/RT
struct SetEnvironmentParamsCT
{
 struct BasicCommandCT packetInfo;
 struct EnvironmentDataT environmentData;
};

struct SetEnvironmentParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetEnvironmentParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetEnvironmentParamsRT
{
 struct BasicCommandRT packetInfo;
 struct EnvironmentDataT environmentData;
};

Command structures for setting/getting the
environmental parameter values.

 Environmental values are updated
automatically at regular intervals, if the weather
monitor is on, connected and the
WeatherMonitorStatus (of SystemSettings) is one

MS_ReadOnly or
S_WMS_ReadAndCalculateRefractions.

of ES_W
E

 See struct 'EnvironmentDataT' for details.

/GetStationOrientationParamsCT/RT
CT

Set
struct SetStationOrientationParams
{
 struct BasicCommandCT packetInfo;
 struct StationOrientationDataT stationOrientation;
};

struct SetStationOrientationParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetStationOrientationParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetStationOrientationParamsRT
{
 struct BasicCommandRT packetInfo;
 struct StationOrientationDataT stationOrientation;
};

Command structures for setting/getting the
station orientation parameters. These settings act
–
input/output 'Filter' to all coordinate-type related

arameters.

 like current units and current CS-type – as a

p

172

 See struct 'StationOrientationDataT' for

/RT
ct SetTransformationParamsCT

details.

Set/GetTransformationParamsCT
stru
{
 struct BasicCommandCT packetInfo;
 struct TransformationDataT transformationData;
};

struct SetTransformationParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetTransformationParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTransformationParamsRT
{
 struct BasicCommandRT packetInfo;
 struct TransformationDataT transformationData;
};

Command structures for setting/getting the
 settings act –

rrent CS-type – as a
ype related

ameters.

transformation parameters. These
like current units and cu
input/output 'Filter' to all coordinate-t
par

 See struct 'TransformationDataT' for details.

/GetBoxRegionParamsCT/RT

Set
struct SetBoxRegionParamsCT
{
 struct BasicCommandCT packetInfo;
 struct BoxRegionDataT boxRegionData;
};

struct SetBoxRegionParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetBoxRegionParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetBoxRegionParamsRT
{
 struct BasicCommandRT packetInfo;
 struct BoxRegionDataT boxRegionData;
};

Command structures for setting/getting the Box
Region parameters.

 See struct 'BoxRegionDataT' for details.

173

Set/GetSphereRegionParamsCT/RT
nParamsCT struct SetSphereRegio

{
 struct BasicCommandCT packetInfo;
 struct SphereRegionDataT sphereRegionData;
};

struct SetSphereRegionParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetSphereRegionParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetSphereRegionParamsRT
{
 struct BasicCommandRT packetInfo;
 struct SphereRegionDataT sphereRegionData;
};

Command structures for setting/getting the
sphere region parameters.

 See struct 'SphereRegionDataT' for details.

GoPositionCT/RT
struct GoPositionCT
{
 struct BasicCommandCT packetInfo;
 double dVal1;
 double dVal2;
 double dVal3;
 ES_BOOL bUseADM;
};

struct GoPositionRT
{
 struct BasicCommandRT packetInfo;
};

These are structures for invoking the G
command. Valu

oPosition
es are in current units / CS-type

d,
d the IFM

g is
 from the

upplied coordinates and is set as the valid one.

uld always be set for

s in
y

combination of

and according to applied orientation /
transformation parameters. When bUseADM is
set, which is the normal case for this comman
an ADM measurement is performed an
distance is set to this new value. If ADM fla
not set, the IFM distance is calculated
s
To be used with caution!
The useADM flag sho
trackers equipped with an ADM.
No range limitations apply to these parameter
theory, but there is a practical limitation given b
tracker working volume.
GoPosition can be seen as a

174

commands 'PointLaser', followed by a
'FindReflector'.

 The sea
Large search radii may result in extended search
times. A typical value is 0.05 m. An approx.
distance e

rch time depends on the search radius.

ntry is required only for the
DM should

mand.

T

ositionHVD

 ADM flag is not set, the provided distance is
ce. To be used with

FindReflector command. UseA
normally be true for this com

GoPositionHVDCT/R

Structures for invoking the GoP
command. Same as GoPosition with the input
parameters in a spherical (tracker-) coordinate
system type, irrespective of the current CS-type.
Values are in current units.
Range limitations apply with respect to the
tracker elevation limits. The useADM flag should
always be set for trackers equipped with an
ADM.
If
taken as new IFM distan
caution!
struct GoPositionHVDCT
{
 struct BasicCommandCT packetInfo;
 double dHzAngle;
 double dVtAngle;
 double dDistance;
 ES_BOOL bUseADM;
};

struct GoPositionHVDRT
{
 struct BasicCommandRT packetInfo;
};

The search time depends on the search radius.
xtended search times

less limited by a reasonable SearchTimeout. A
.

 true for this
ommand.

d 'SetSearchParams'.

Large search radii result in e
un
typical value is 0.05 m
’UseADM’ should normally be
c

 See also comman

175

PositionRelativeHVCT/RT

itionRelativeHV
eters are angles in the

he angles are prefixed with +/-
ise is -), to specify

 direction of movement. In contrast to the

Structures for invoking the Pos
command. The input param
current units. T
(clockwise is + and anti clockw
the
MoveHV command, PositionRelative means a
one-time movement.
struct PositionRelativeHVCT
{
 struct BasicCommandCT packetInfo;
 double dHzVal;
 double dVtVal;
};

struct PositionRelativeHVRT
{
 struct BasicCommandRT packetInfo;
};

PointLaserCT/RT

Structures for invoking the PointLaser command.
ers are in current units / CS-

orientation /
ansformation parameters.

The input paramet
type and according to applied
tr
struct PointLaserCT
{
 struct BasicCommandCT packetInfo;
 double dVal1;
 double dVal2;
 double dVal3;
};

struct PointLaserRT
{
 struct BasicCommandRT packetInfo;
};

PointLaserHVDCT/RT

Structures for invoking the PointLaserHVD
command. Same as PointLaser with the input
parameters in a spherical coordinate system ty
irrespective of the selected CS. Values are in
current units.
struct PointLaser

pe,

HVDCT
{
 struct BasicCommandCT packetInfo;
 double dHzAngle;
 double dVtAngle;
 double dDistance;
};

struct PointLaserHVDRT
{
 struct BasicCommandRT packetInfo;
};

176

MoveHVCT/RT

Structures for invoking the MoveHV command.
tical/horizontal

 between 1% and 100% of the
.

Use 0 value(s) to stop a previously started
mov

quired in- between.
 contrast to the PositionRelative command,

d rather means 'Start

The input parameters are ver
speed values
maximum speed of the tracker

ement. MoveHV can be called repeatedly
with varying speed values in order to change
moving speed. No stop is re
In
MoveHV does not mean a one-time movement.
The MoveHV comman
movement'.

struct MoveHVCT
{
 struct BasicCommandCT packetInfo;
 int iHzSpeed;
 int iVtSpeed;
};

struct MoveHVRT
{
 struct BasicCommandRT packetInfo;
};

 The speed parameters are prefixed with +/-
(clockwise is + and anti clockwise is -), to specify
the direction of movement.

G

oNivelPositionCT/RT
struct GoNivelPositionCT
{
 struct BasicCommandCT packetInfo;
 enum ES_NivelPosition nivelPosition;
};

struct GoNivelPositionRT
{
 struct BasicCommandRT packetInfo;
};

Structures for invoking the GoNivelPosition
command in the orient to gravity procedure. The
input parameters are the pre-defined Ni
positions (1 to 4). This command is mainly u
for the 'O

vel

sed
rient to Gravity' command. It is rarely

used by applications unless an own orient to
Gravity procedure is implemented.

177

The tracker head moves at a slow speed to
i nsor.

kForTargetCT/RT

are in the

ected CS-type / units. The output parameters

his command is mainly used for LT- series of
DM). For LTD trackers, rather

m nimize affecting the Nivel se

Loo

Structures for invoking the LookForTarget
command. The input parameters
sel
are always angles related to the tracker
coordinate system in the current angle unit
settings.

T
trackers (without A
use 'GoPosition' instead.

struct LookForTargetCT
{
 struct BasicCommandCT packetInfo;
 double dVal1;
 double dVal2;
 double dVal3;
 double dSearchRadius;
};

struct LookForTargetRT
{
 struct BasicCommandRT packetInfo;
 double dHzAngle;
 double dVtAngle;
};

 The search time depends on the search radius.
ended search

mes. A typical value is 0.05 m.

em in

f
bination with LookForTarget).

Large search radii result in ext
ti

GetDirectionCT/RT

Structures for invoking the GetDirection
command. The output parameters are always
angles related to the tracker coordinate syst
the current angle unit settings.
This command is mainly useful for LT- series o
trackers (in com
struct GetDirectionCT
{
 struct BasicCommandCT packetInfo;
};

struct GetDirectionRT
{
 struct BasicCommandRT packetInfo;
 double dHzAngle;
 double dVtAngle;
};

178

Set/GetStatisticModeCT/RT

tinuous 3D measurement
tistical

at different data packets for
ding on which

de is used.

ption for

ct SetStatisticModeCT

Command structures for setting/getting the
statistic mode. Depending on the mode,
stationary and/or con
packets will contain more or less sta
information. Note th
the measurement apply depen
mo

See enum 'ES_StatisticMode' descri
details.
stru
{
 struct BasicCommandCT packetInfo;
 enum ES_StatisticMode stationaryMeasurements;
 enum ES_StatisticMode continuousMeasurements;
};

struct SetStatisticModeRT
{
 struct BasicCommandRT packetInfo;
};

struct GetStatisticModeCT
{
 struct BasicCommandCT packetInfo;
};

struct GetStatisticModeRT
{
 struct BasicCommandRT packetInfo;
 enum ES_StatisticMode stationaryMeasurements;
 enum ES_StatisticMode continuousMeasurements;
};

 Changing the statistical mode is for advanced
ode is

ndard' and ensures compatibility to earlier

sCT/RT

ting the
.

purposes only. Default statistical m
'Sta
versions.

Set/GetCameraParam

Command structures for setting/get
Camera parameters
See also description of struct
'CameraParamsDataT'.

179

struct SetCameraParamsCT
{
 struct BasicCommandCT packetInfo;
 struct CameraParamsDataT cameraParams;
};

struct SetCameraParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetCameraParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCameraParamsRT
{
 struct BasicCommandRT packetInfo;
 struct CameraParamsDataT cameraParams;
};

AddDrivePointCT/RT

Command to add a point to the Drive Point List
to be used by the Intermediate Compensation
process. See chapter ' Intermediate Compensation
' in main chapter 8 for details.
struct AddDrivePointCT
{
 struct BasicCommandCT packetInfo;
 int iInternalReflectorId;
 double dVal1;
 double dVal2;
 double dVal3;
};

struct AddDrivePointRT
{
 struct BasicCommandRT packetInfo;
};

CallOrientToGravityCT/RT

Command st
Gravity’ proc

ructures for executing an ‘Orient To
ess (including reception of results).

ataT, to

See special chapter 'Orient to Gravity procedure'
ter

Results are in current angle units. Typically, the
value dOmega and dPhi are set as dRot1 and
dRot2 parameters of StationOrientationD
be passed with the SetStationOrientationParams
command.

in chap 8.

180

struct CallOrientToGravityCT
{
 struct BasicCommandCT packetInfo;
};

struct CallOrientToGravityRT
{
 struct BasicCommandRT packetInfo;
 double dOmega;
 double dPhi;
};

Error code
A return status other than ES_RS_AllOK (0)

ition
ultS

command answer status can evaluate to one of
the following values:

eceiving data

ase (F)
Too many retries due to unstable Nivel

d command

(Some) Nivel results out of valid range
o Nivel connected, or Nivel flagged off

ed fatalities.

'Intermediate Compensation' sequence (including

s

means that the command could not be completed.
In add to the values defined in
ES_Res tatus, the CallOrientToGravity

Code Description
20010 An unknown error occurred (F)
20011 Socket initialization failed (F)
20012 OLE/COM initialization failed (F)
20013 Reading resource string failed (F)
20014 Error on sending data
20015 Error on r
20016 No answer within reasonable time
20017 Error on saving results to datab
20018

liquid
20019 Invalid count of samples specified(min 2,

max 10)
20020 There was an unexpecte

answer
20021
20022 N
20023 /POS270 or /POS90 expected as

command line argument (F)
Errors marked with (F) are unanticipat

CallIntermediateCompensationCT/RT

Command structures for executing an

reception of quality result parameters). TotalRMS

181

and maxDev are angular values and are in
current ang

Compensation procedure' in chapter 8.

llInt

le units.
For details see special chapter 'Intermediate

struct Ca ermediateCompensationCT
{
 struct BasicCommandCT packetInfo;
};

struct CallIntermediateCompensationRT
{
 struct BasicCommandRT packetInfo;
 double dTotalRMS;
 double dMaxDev;
 long lWarningFlags;
};

Error code
n st

In addition
ES_ResultStatus CallIntermediateCompensation

the followi
Code
23011 abase open failure (F)

23013 on database write failure (F)
ase

ker getting parameters failed

3 calculated

s
A retur atus other than ES_RS_AllOK (0)
means that the command could not be completed.

 to the values defined in
, the

command answer status can evaluate to one of
ng values.
Description
EmScon dat

23012 EmScon database read failure (F)
EmSc

23014 No points to measure in datab
23020 Tracker initialization failed
23021 Trac
23022 Tracker setting parameters failed
23030 There was an unexpected command

answer (F)
23031 Sending data via TCP/IP failed
23032 Error on receiving data (communication

error)
23033 Insufficient memory to create data (F)
23501 At least one of the

mechanical parameters is not in range
specified.

182

23502

d/or

23503 angle difference not

Errors m

Warning
Warning

et
value is z
intermed
with no warnings. Otherwise, each raised bit

s a
ne

Currentl
Bit 1
(0x1) ms

y

er than

recommendations.

Too few (less than 2) measurements
available. Calculation cannot be
performed. Either not enough driving
points, or not all could be found an
measured.
Minimum vertical
met
An unknown error occurred 23998

arked with (F) are unanticipated fatalities.

 flags
 flags are available upon a successful

compensation (Status ES_RS_AllOK [= 0]). The
param er lWarningFlags is a 32-bit value. If the

ero (none of the bits set), then the
iate compensation process completed

mean
than o

particular warning. There can be more
 warning at a time.

y, the following warnings are possible:
AverageVerticalTwoFaceErrorIsTooHigh:
Tracker service (from Leica Geosyste
personnel) is required because the vertical
index is constantly > 1 Gon. There is
currently no way for the user to reset the
approximate index.

Bit 2
(0x2)

AtLeastOneVerticalTwoFaceErrorIsTooHig
h:
If Bit 1 not raised, there is probably a ver
high error within a single two-face
measurement.
 If Bit 1 is raised too, ignore warning Bit 2.

Bit 3
(0x4)

AtLeastOneDistanceIsNotInRange:
At least one of the distances is small
the minimum or larger than the maximum
recommended distance, according to the

183

Bit 4 NotEnoughMeas
(0x8) anesWithGoodDiffOfVerticalAn

This warning covers all (except the range
criterion) possible criteria, which are not
fulfilled by the measurement configuration
according to t

InTwoOppositeVerticalPl
gle:

,

he recommendations.
edDoubledTwoFaceErrorsAr

olerance:
ement residuals are within

s.
etersAreInRange:

anical parameters
ecommended

rdware specs).

cimal value. Use a
is value to a

 flagged bits.

C++), a particular bit is
wing expression evaluates to TRUE.

Bit 5 NotAllCorrect
(0x10) eWithinCompensationT

Not all measur
recommended tolerance

Bit 6 NotAllMechanicalParam
(0x20) Not all three (3) mech

calculated are within r
tolerance (according to ha

 The lWarningFlags value is a de
scientific calculator to convert th
binary value to visualize the

 Programmatically (in C/
set if the follo

(lWarningFlags & dwCode) // where dwCode is one of the Masks
 // shown above. For example. 0x10
 // tests for 5th bit. See C- reference
 // for details (bit operations)

CallTransformationCT/RT

Command structures for executing an
‘Transformation’ process (including reception of
results). Result values are in current units CS-

r 8 fo
type . See chapter 'Transformation Procedure' in
chapte r details.

184

struct CallTransformationCT
{
 struct BasicCommandCT packetInfo;
};

struct CallTransformationRT
{
 struct BasicCommandRT packetInfo;
 double dTransVal1;
 double dTransVal2;
 double dTransVal3;
 double dRotVal1;
 double dRotVal2;
 double dRotVal3;
 double dScale;
 double dTransStdVal1;
 double dTransStdVal2;
 double dTransStdVal3;
 double dRotStdVal1;
 double dRotStdVal2;
 double dRotStdVal3;
 double dScaleStd;
 double dRMS;
 double dMaxDev;
 double dVarianceFactor;
};

Error codes
A return status other than ES_RS_AllOK (0)

d not be completed.

_ResultStatus, the CallTransformation command
he following

Error on reading input data from

e (F)
020 Least Squares Fit failed

r Fit failed
Too many unknown nominals

.

 for setting/getting the
transformation Input parameters. These are used
as input for the Transformation calculation
process to fix/weight transformation result
parameters.

means that the command coul
In addition to the values defined in
ES
answer status can evaluate to one of t
values:
Code Description
24010 OLE/COM initialization failed (F)
24011 Reading resource string failed (F)
24012

database (F)
24013 Error on saving results to databas
24
24021 Initial Approximation fo
24022
24023 Multiple solutions found
Errors marked with (F) are unanticipated fatalities

Set/GetTransformationInputParamsCT/RT

Command structures

185

 See struct 'TransformationInputDataT' for

ct SetTransformationInputParamsCT
details. Also see Section 9.2 .
stru
{
 struct BasicCommandCT packetInfo;
 struct TransformationInputDataT transformationData;
};

struct SetTransformationInputParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetTransformationInputParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTransformationInputParamsRT
{
 struct BasicCommandRT packetInfo;
 struct TransformationInputDataT transformationData;
};

AddTransformationNominalPointCT/RT

Command structures for adding a Point to t
Nominal point list. See struct
'Transfo

he

rmationPointT ' and also chapter

PointCT

'Transformation Procedure' in chapter 8 for
details.
struct AddTransformationNominal
{
 struct BasicCommandCT packetInfo;
 struct TransformationPointT transformationPoint;
};

struct AddTransformationNominalPointRT
{
 struct BasicCommandRT packetInfo;
};

AddTransformationActualPointCT/RT

 a Point to the
formationPointT

rocedure' in
pter 8 for details.

ruct AddTransformationActualPointCT

Command structures for adding
actual point list. See struct 'Trans
' and also chapter 'Transformation P
cha
st
{
 struct BasicCommandCT packetInfo;
 struct TransformationPointT transformationPoint;
};

struct AddTransformationActualPointRT
{
 struct BasicCommandRT packetInfo;
};

GetTransformedPointsCT/RT

Command structures for retrieving the
transformed points and residuals after a
successful transformation. Result values are in

186

current units and CS- type (like nominal points).
lt packets

specified points through the nominal/actual
his approach is similar to the

 8 for

esiduals are the difference between the nominal
ed actual points.

This command results in as many resu
as
input points list. T
GetReflectors command. See chapter
'Transformation Procedure' in chapter
details.

 R
and the transform
struct GetTransformedPointsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTransformedPointsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalPoints;
 double dVal1;
 double dVal2;
 double dVal3;
 double dStdDev1;
 double dStdDev2;
 double dStdDev3;
 double dStdDevTotal;
 double dCovar12;
 double dCovar13;
 double dCovar23;
 double dResidualVal1;
 double dResidualVal2;
 double dResidualVal3;
};

GetStillImageCT/RT

Command structures for getting a camera still
elivered as a BMP file. Jpeg

esult is a binary
ile'

rmat. It can directly be viewed with a bitmap

image. The data is d
format is not supported yet. The r
block (given by start address and size) in 'F
fo
viewer.
struct GetStillImageCT
{
 struct BasicCommandCT packetInfo;
 enum ES_StillImageFileType imageFileType;
};

struct GetStillImageRT
{
 struct BasicCommandRT packetInfo;
 enum ES_StillImageFileType imageFiletype;
 long lFileSize;
 char cFileStart;
};

 Only the BMP format is currently supported.

187

GoBirdBath2CT/RT

Command structures for driving the laser to the
Bird bath, either in clockwise or counter
clockwise direction.
struct GoBirdBath2CT
{
 struct BasicCommandCT packetInfo;
 ES_BOOL bClockWise;
};

struct GoBirdBath2RT
{
 struct BasicCommandRT packetInfo;
};

GetCompensationCT/RT

Command structures to read the currently active
Compensation ID.
struct GetCompensationCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCompensationRT
{
 struct BasicCommandRT packetInfo;
 int iInternalCompensationId;
};

SetCompensationCT/RT

Command to activate one of the intermediate
by tracker compensations delivered

GetCompensations by its ID.
struct SetCompensationCT
{
 struct BasicCommandCT packetInfo;
 int iInternalCompensationId;
};

struct SetCompensationRT
{
 struct BasicCommandRT packetInfo;
};

GetCompensationsCT/RT

Command structures to read all Tracker
reCompensations sto d in the database.

en ID and
pensation name is given. As many packets as

 (similar to the
.

Particularly, the relation betwe
com
compensations exist are delivered
GetReflectors command

188

struct GetCompensationsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCompensationsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalCompensations;
 int iInternalCompensationId;
 unsigned short cTrackerCompensationName[32];
 unsigned short cTrackerCompensationComment[128]
 unsigned short cADMCompensationName[32];
 ES_BOOL bHasMeasurementCameraMounted;
};

GetCompensations2CT/RT

Enhanced version of GetCompensationsCT/RT
rmation.
 has been left only for

r er applications
 u ations2CT/RT.

G tC

with some additional info
GetCompensationsCT/RT
backwa d compatibility. New
should se GetCompens

ct e ompensations2CT stru
{
 struct BasicCommandCT packetInfo;
};

struct GetCompensations2RT
{
 struct BasicCommandRT packetInfo;
 int iTotalCompensations;
 int iInternalCompensationId;
 unsigned short cTrackerCompensationName[32];
 unsigned short cTrackerCompensationComment[128]
 unsigned short cADMCompensationName[32];
 unsigned short cADMCompensationComment[128];
 ES_BOOL bHasMeasurementCameraMounted;
 ES_BOOL bIsActive;
};

CheckBirdBathCT/RT

Command structures to check the Bird bath
osition of the current, selected reflector. Values

s.
p
are in current unit
struct CheckBirdBathCT
{
 struct BasicCommandCT packetInfo;
};

struct CheckBirdBathRT
{
 struct BasicCommandRT packetInfo;
 double dInitialHzAngle;
 double dInitialVtAngle;
 double dInitialDistance;
 double dHzAngleDiff;
 double dVtAngleDiff;
 double dDistanceDiff;
};

GetTrackerDiagnosticsCT/RT

ommand structures to read tracker diagnostic
data. This is a command mainly used for service
purposes.

C

189

struct GetTrackerDiagnosticsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTrackerDiagnosticsRT
{
 struct BasicCommandRT packetInfo;
 double dTrkPhotoSensorXVal;
 double dTrkPhotoSensorYVal;
 double dTrkPhotoSensorIVal;
 double dRefPhotoSensorXVal;
 double dRefPhotoSensorYVal;
 double dRefPhotoSensorIVal;
 double dADConverterRange;
 double dServoControlPointX;
 double dServoControlPointY;
 double dLaserLightRatio;
 int iLaserControlMode;
 double dSensorInsideTemperature;
 int iLCPRunTime;
 int iLaserTubeRunTime;
};

GetADMInfoCT/RT

Command structures to read ADM-specific
cker must be equipped diagnostic data. The tra

wit an ADM.
struct GetADMInfoCT
{
 struct BasicCommandCT packetInfo;
};

struct GetADMInfoRT
{
 struct BasicCommandRT packetInfo;
 int iFirmWareMajorVersionNumber;
 int iFirmWareMinorVersionNumber;
 int iSerialNumber;
};

GetNivelInfoCT/RT

Command structures to read NIVEL20-specific
diagnostic data. The tracker must have a
NIVEL20 sensor connected and enabled.
struct GetNivelInfoCT
{
 struct BasicCommandCT packetInfo;
};

struct GetNivelInfoRT
{
 struct BasicCommandRT packetInfo;
 int iFirmWareMajorVersionNumber;
 int iFirmWareMinorVersionNumber;
 int iSerialNumber;
};

GetTPInfoCT/RT

Command structures to read TP-specific
diagnostic data. This is a command mainly use
for service purposes.

d

190

struct GetTPInfoCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTPInfoRT
{
 struct BasicCommandRT packetInfo;
 int iTPBootMajorVersionNumber;
 int iTPBootMinorVersionNumber;
 int iTPFirmWareMajorVersionNumber;
 int iTPFirmWareMinorVersionNumber;
 int iLCPFirmWareMajorVersionNumber;
 int iLCPFirmWareMinorVersionNumber;
 enum ES_TrackerProcessorType trackerprocessorType;
 enum ES_TPMicroProcessorType microProcessorType;
 int iMicroProcessorClockSpeed;
 enum ES_LTSensorType laserTrackerSensorType;
};

SetLaserOnTimerCT/RT

Command structure to set the time in hours and
minutes (rounded off to nearest ¼ hour block) to

itched-off by a
oller

ze, this
am laser-on in the

e laser can be independently switched off.
ruct SetLaserOnTimerCT

start the laser previously sw
SwitchLaser(off) command. The tracker contr
and emScon server must be switched on. Since
the laser takes about 20 minutes to stabili
command is useful to progr
morning so the system is ready when work is
scheduled to begin.

 Th
st
{
 struct BasicCommandCT packetInfo;
 int iLaserOnTimeOffsetHour;
 int iLaserOnTimeOffsetMinute;
};

struct SetLaserOnTimerRT
{
 struct BasicCommandRT packetInfo;
};

GetLaserOnTimerCT/RT

 to read the time left in
 nearest ¼

he laser. A system restart
er processor /

Scon server must be switched on.

Command structures
hours and minutes (rounded off to
hour block), to start t
sets this value to zero. The track
em
struct GetLaserOnTimerCT
{
 struct BasicCommandCT packetInfo;
};

struct GetLaserOnTimerRT
{
 struct BasicCommandRT packetInfo;
 int iLaserOnTimeOffsetHour;
 int iLaserOnTimeOffsetMinute;
};

191

ConvertDisplayCoordinatesCT/RT

tion.
is a private

ction/command and is not
upported. It should not be used for

ct ConvertDisplayCoordinatesCT

Command structures to call the
DisplayCoordinateConversion func
DisplayCoordinateConversion
fun
documented/s
any client programming
stru
{
 struct BasicCommandCT packetInfo;
 enum ES_DisplayCoordinateConversionType conversionType;
 double dVal1;
 double dVal2;
 double dVal3;
};

struct ConvertDisplayCoordinatesRT
{
 struct BasicCommandRT packetInfo;
 double dVal1;
 double dVal2;
 double dVal3;
};

Set/GetTriggerSourceCT/RT

Command structures to Set/Get Trigger Sou
See enum 'ES_TriggerSource' for details.
Note: Trigger functionality is not yet available
with emScon 2.1.x releases and may be s
change!
struct SetTriggerSourceCT

rce.

ubject to

{
 struct BasicCommandCT packetInfo;
 enum ES_TriggerSource triggerSource;
};

struct SetTriggerSourceRT
{
 struct BasicCommandRT packetInfo;
};

struct GetTriggerSourceCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTriggerSourceRT
{
 struct BasicCommandRT packetInfo;
 enum ES_TriggerSource triggerSource;
};

GetFaceCT/RT
C
w

ommand structures to query current Tracker Face,
hether in Face I or Face II position.

192

struct GetFaceCT
{
 struct BasicCommandCT packetInfo;
};

struct GetFaceRT
{
 struct BasicCommandRT packetInfo;
 enum ES_TrackerFace trackerFace;
};

GetCamerasCT/RT

C
p

ommand structure to get Measurement Camera
roperties. The GetCameras command retrieves

fined. The
s

ver database. These
n camera name (string)

et, in
ontains the total

l number of
kets to be expected (only for programmer's

rties, such as
mment, etc. serve

s information, mainly used for user-interface

all measurement cameras (T-Cams) de
answer consists of as many answer packets a
cameras are defined in the ser
resolve the relation betwee
and camera ID (numerical). Each pack
addition (a redundancy), c
number of cameras, i.e. the tota
pac
convenience). Other prope
cameraType, serial Number, co
a
purpose.

struct GetCamerasCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCamerasRT
{
 struct BasicCommandRT packetInfo;
 int iTotalCameras;
 int iInternalCameraId;
 long lSerialNumber;
 enum ES_MeasurementCameraType cameraType;
 unsigned short cName[32];
 unsigned short cComment[128];
};

GetCameraCT/RT

Command structure to get the ID of the ac
Camera. The GetCamera command delivers
currently active measurement camera by its ID
(Currently set as the active one in the datab
However, since this camera may have been
removed, an additional flag indicates wh

tive
 the

ase).

ether
the active camera is mounted or not.

193

struct GetCameraCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCameraRT
{
 struct BasicCommandRT packetInfo;
 int iInternalCameraId;
 ES_BOOL bMeasurementCameraIsMounted;
};

Set/GetMeasurementCameraModeCT/RT

tures for setting/getting the Command struc
measurement camera mode.
struct SetMeasurementCameraModeCT
{
 struct BasicCommandCT packetInfo;
 enum ES_MeasurementCameraMode cameraMode;
};

struct SetMeasurementCameraModeRT
{
 struct BasicCommandRT packetInfo;
};

struct GetMeasurementCameraModeCT
{
 struct BasicCommandCT packetInfo;
};

struct GetMeasurementCameraModeRT
{
 struct BasicCommandRT packetInfo;
 enum ES_MeasurementCameraMode cameraMode;
};

GetProbesCT/RT

Command structure to get Probe properties.
GetProbes command retrieves all probes defined
in the Tracker Server. The answer consists of as
many answer packets as probes are defined in the
server database. These resolve the relation
between probe name (string) and probe ID
(numerical). Each packet, in addition (a
redundancy), contains the total number of
probes, i.e. the total number of packets to be
expected (only for programmer's convenience).
Other properties, such as probeType, serial
Number, comment, etc. serve as information
mainly used for user

,
-interface purpose.

194

struct GetProbesCT
{
 struct BasicCommandCT packetInfo;
};

struct GetProbesRT
{
 struct BasicCommandRT packetInfo;
 int iTotalProbes;
 int iInternalProbeId;
 long lSerialNumber;
 enum ES_ProbeType probeType;
 int iNumberOfFields;
 unsigned short cName[32];
 unsigned short cComment[128];
};

GetProbeCT/RT

Command structure to get the ID of active Probe.
and delivers the currently

The GetProbe comm
active probe by its ID (Currently set as the active
one in the database).
struct GetProbeCT
{
 struct BasicCommandCT packetInfo;
};

struct GetProbeRT
{
 struct BasicCommandRT packetInfo;
 int iInternalProbeId;
};

GetTipAdaptersCT/RT

re to get measurement Tip
nd

rieves all tip adapters defined for the Tracker
erver. The answer consists of as many answer

erver

 (numerical).
ns

.

Command structu
properties. The GetTipAdapters comma
ret
S
packets as tips adapters are defined in the s
database. These resolve the relation between tip
name (string) and tip adapter ID
Each packet, in addition (a redundancy), contai
the total number of tip adapters, i.e. the total
number of packets to be expected (only for
programmer's convenience). Other properties,
such as tipType, serial Number, comment, etc
serve as information, mainly used for user-
interface purpose.

195

struct GetTipAdaptersCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTipAdaptersRT
{
 struct BasicCommandRT packetInfo;
 int iTotalTips;
 int iInternalTipAdapterId;
 long lAssemblyId;
 long lSerialNumberLowPart;
 long lSerialNumberHighPart;
 enum ES_TipType tipType;
 double dRadius;
 double dLength;
 unsigned short cName[32];
 unsigned short cComment[128];
};

GetTipAdapterCT/RT

get the ICommand structures to
apter. The GetTipAdapter co

D of active Tip
mmand delivers

e currently active tip adapter by its ID
base).

Ad
th
(Currently set as the active one in the data
In addition to the ID, the adapter number, to
which the tip is attached, is returned.

struct GetTipAdapterCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTipAdapterRT
{
 struct BasicCommandRT packetInfo;
 int iInternalTipAdapterId;
 int iTipAdapterInterface;
};

Get/SetTCamToTrackerCompensationsCT/RT

am To Tracker

ions command

racker Server. The answer consists of as many
ned in the server

.

Command structures to get T-C
Compensation properties. The
GetTCamToTrackerCompensat
retrieves all such compensations defined in the
T
answer packets as tips are defi
database. These resolve the relation between
compensation name (string) and compensation
ID (numerical). Each packet, in addition (a
redundancy), contains the total number of
compensations, i.e. the total number of packets to
be expected (only for programmer's convenience)
Other properties, such as tracker Serial Number,
comment, etc. serve as information, mainly used

196

for user-interface purpose. There is a flag
bIsActive which is true for exactly one
compensation.

struct GetTCamToTrackerCompensationsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTCamToTrackerCompensationsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalCompensations;
 int
iInternalTCamToTrackerCompensationId;
 int iInternalTrackerCompensationId;
 int iInternalCameraId;
 ES_BOOL bIsActive;
 long lTrackerSerialNumber;
 unsigned short
cTCamToTrackerCompensationName[32];
 unsigned short
cTCamToTrackerCompensationComment[128];
};

T/Get/SetTCamToTrackerCompensationC RT

of the

t/SetTCamToTrackerCompensation command
 ID as parameter.

Command structures to get/set the ID
active T-Cam to tracker compensation. The
Ge
takes/delivers the compensation
struct SetTCamToTrackerCompensationCT
{
 struct BasicCommandCT packetInfo;
 int iInternalTCamToTrackerCompensationId;
};

struct SetTCamToTrackerCompensationRT
{
 struct BasicCommandRT packetInfo;
};

struct GetTCamToTrackerCompensationCT
{
 struct BasicCommandCT packetInfo;
};

struct GetTCamToTrackerCompensationRT
{
 struct BasicCommandRT packetInfo;
 int iInternalTCamToTrackerCompensationId;
};

GetProbeCompensationsCT/RT

Command structure to get Probe Compensation

mand retrieves all such compensations
nswer

defined in the server database. These resolve the
relation between compensation name (string) and
compensation ID (numerical). Each packet, in

properties. The GetProbeCompensations
com
defined in the Tracker Server. The a
consists of as many answer packets as probes are

197

a
number of compensations, i.e. the total number of
p
convenience). Other properties, such as tracker
S
in
purpose. There is a flag bIsActive which is true
fo

st

ddition (a redundancy), contains the total

ackets to be expected (only for programmer's

erial Number, comment, etc. serve as
formation, mainly used for user-interface

r exactly one compensation.

ruct GetProbeCompensationsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetProbeCompensationsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalCompensations;
 int iInternalProbeCompensationId;
 int iInternalProbeId;
 int iFieldNumber;
 ES_BOOL bIsActive;
 ES_BOOL bMarkedForExport;
 ES_BOOL bPreliminary;
 unsigned short cProbeCompensationName[32];
 unsigned short cProbeCompensationComment[128];
};

Get/SetProbeCompensationCT/RT

active

 command
kes/delivers the compensation ID as only

C ommand structures to get/set the ID of
Probe compensation. The
Get/SetProbeCompensation
ta
parameter.

struct SetProbeCompensationCT
{
 struct BasicCommandCT packetInfo;
 int iInternalProbeCompensationId;
};

struct SetProbeCompensationRT
{
 struct BasicCommandRT packetInfo;
};

struct GetProbeCompensationCT
{
 struct BasicCommandCT packetInfo;
};

struct GetProbeCompensationRT
{
 struct BasicCommandRT packetInfo;
 int iInternalProbeCompensationId;
};

GetTipToProbeCompensationsCT/RT

Command structures to get Tip to probe
Compensation properties. The
GetTipToProbeCompensations command

198

retrieves all such compensations defined in the
ny

d in the server

 name (string) and compensation
ket, in addition (a

tal number of
 of packets

to be expected (only for programmer's

nderlying probe compensations, comment, etc.
inly used for user-

CT

Tracker Server. The answer consists of as ma
answer packets as tips are define
database. These resolve the relation between
compensation
ID (numerical). Each pac
redundancy), contains the to
compensations, i.e. the total number

convenience). Other properties, such as
u
serve as information, ma
interface purpose.

struct GetTipToProbeCompensations
{
 struct BasicCommandCT packetInfo;
};

struct GetTipToProbeCompensationsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalCompensations;
 int
iInternalTipToProbeCompensationId;
 int iInternalTipAdapterId;
 int iTipAdapterInterface;
 int iInternalProbeCompensationId;
 ES_BOOL bMarkedForExport;
 unsigned short cTipToProbeCompensationName[32];
 unsigned short
cTipToProbeCompensationComment[128];
};

G

Command structures to get the ID of active Tip to
Probe- compensation. There is no related 'Set'
c
GetTipToProbeCompensation command delivers
the compensation ID as only parameter.

struct GetTipToProbeCompensationCT

etTipToProbeCompensationCT/RT

ommand since detection is automatic. The

{
 struct BasicCommandCT packetInfo;
};

struct GetTipToProbeCompensationRT
{
 struct BasicCommandRT packetInfo;
 int iInternalTipToProbeCompensationId;
};

199

Get/SetExternTriggerParamsCT/RT

g/getting the
ee
ture for parameter

Command structures for settin
external trigger parameters. S
'ExternTriggerParamsT' struc
description.

struct SetExternTriggerParamsCT
{
 struct BasicCommandCT packetInfo;
 struct ExternTriggerParamsT triggerParams;
};

struct SetExternTriggerParamsRT
{
 struct BasicCommandRT packetInfo;
};

struct GetExternTriggerParamsCT
{
 struct BasicCommandCT packetInfo;
};

struct GetExternTriggerParamsRT
{
 struct BasicCommandRT packetInfo;
 struct ExternTriggerParamsT triggerParams;
};

ate an error
lipsoid from a given point and its error

ence command for

n current

tesian)
e

GetErrorEllipsoidCT/RT

Command structures to calcul
el
statistic. This is a conveni
user- interface purposes. Input parameters are 3
coordinate values, their standard deviations
plus the covariance matrix. Input is i
units, current CS and with applied
transformation / orientation settings. Output
parameters are 3 Std Dev values (ellipsoid-
axes), always related to X,Y,Z (RH car
and 3 Rotation angles that describe th
orientation of the error ellipsoid.

200

struct GetErrorEllipsoidCT
{
 struct BasicCommandCT packetInfo;
 double dCoord1;
 double dCoord2;
 double dCoord3;
 double dStdDev1;
 double dStdDev2;
 double dStdDev3;
 double dCovar12;
 double dCovar13;
 double dCovar23;
};

struct GetErrorEllipsoidRT
{
 struct BasicCommandRT packetInfo;
 double dStdDevX;
 double dStdDevY;
 double dStdDevZ;
 double dRotationAngleX;
 double dRotationAngleY;
 double dRotationAngleZ;
};

GetMeasurementCameraInfoCT/RT

Command structures to read T-CAM-specifi
information and diagnostic data of the active
camera. The tracker must be equipped w
Measurement camera.

c

ith a

struct GetMeasurementCameraInfoCT
{
 struct BasicCommandCT packetInfo;
};

struct GetMeasurementCameraInfoRT
{
 struct BasicCommandRT packetInfo;
 int iFirmWareMajorVersionNumber;
 int iFirmWareMinorVersionNumber;
 long lSerialNumber;
 ES_MeasurementCameraType cameraType;
 unsigned short cName[32];
 long lCompensationIdNumber;
 long lZoomSerialNumber;
 long lZoomAdjustmentIdNumber;
 long lZoom2DCompensationIdNumber;
 long lZoomProjCenterCompIdNumber;
 double dMaxDistance;
 double dMinDistance;
 long lNrOfPixelsX;
 long lNrOfPixelsY;
 double dPixelSizeX;
 double dPixelSizeY;
 long lMaxDataRate;
};

GetMeasurementProbeInfoCT/RT

Command structures to read Probe-specific
information and diagnostic data of the active
probe.

201

struct GetMeasurementProbeInfoCT
{
 struct BasicCommandCT packetInfo;
};

struct GetMeasurementProbeInfoRT
{
 struct BasicCommandRT packetInfo;
 int iFirmWareMajorVersionNumber;
 int iFirmWareMinorVersionNumber;
 long lSerialNumber;
 ES_ProbeType probeType;
 long lCompensationIdNumber;
 long lActiveField;
 ES_ProbeConnectionType connectionType;
 long lNumberOfTipAdapters;
 ES_ProbeButtonType probeButtonType;
 long lNumberOfFields;
 ES_BOOL bHasWideAngleReceiver;
 long lNumberOfTipDataSets;
 long lNumberOfMelodies;
 long lNumberOfLoudnesSteps;
};

G

ettings parameters. See enum
S_SystemParameter.

et/SetLongSystemParamCT/RT

Command structures to set / get individual
system s
E

struct SetLongSystemParamCT
{
 struct BasicCommandCT packetInfo;
 enum ES_SystemParameter systemParam;
 long lParameter;
};

struct SetLongSystemParamRT
{
 struct BasicCommandRT packetInfo;
};

struct GetLongSystemParamCT
{
 struct BasicCommandCT packetInfo;
 enum ES_SystemParameter systemParam;
};

struct GetLongSystemParamRT
{
 struct BasicCommandRT packetInfo;
 enum ES_SystemParameter systemParam;
 long lParameter;
};

GetMeasurementStatusInfoCT/R

Command structures to get information
status of all types of compensations an
hardware.

T

 about
d related

Such information is useful in cases where the
Tracker Status is not ready and one wants to
figure out why. Without the information of this
command, investigation could be difficult
because there are numerous conditions why a

202

system is not ready to measure (Missing
hed, no accurate

 applies to 6DOF

’ immediately shows
e reason.

The information data is delivered as a long
value representing a bit-mask. Use the enum
ES_MeasurementStatusInfo values to decode /
mask the 'lMeasurementStatusInfo' parameters
flags information.
Note the terminology with the 's':
GetMeasurementStatusInfo. This is because this
command relates to different types of
compensations and hardware (which are always
related)

struct GetMeasurementStatusInfoCT

compensations, Beam not attac
Reflector). This especially
modes. A look to the bits of
‘lMeasurementStatusInfo
th

{
 struct BasicCommandCT packetInfo;
};

struct GetMeasurementStatusInfoRT
{
 struct BasicCommandRT packetInfo;
 enum ES_ResultStatus lastResultStatus;
 long lMeasurementStatusInfo;
};

GetCurrentPrismPositionCT/RT

Command structures to get the 3D position of the
prism the laser is currently attached to. Delivers
the ‘same’ values as a stationary measurement
would deliver, however, less accurate than
stationary measurements. Do NOT use these
values as measurements where precise
measurements are required.
See command description
‘GetCurrentPrismPosition’ for a typical
application of this command.

203

struct GetCurrentPrismPositionCT
{
 struct BasicCommandCT packetInfo;
};

struct GetCurrentPrismPositionRT
{
 struct BasicCommandRT packetInfo;
 double dVal1;
 double dVal2;
 double dVal3;
};

204

3.5 C - Language TPI Programming
Instructions

ta

ver the

evel

fined.

 compiler

nection

e)

 Number to 700 for

 toolbox

 and

e

The C-TPI is made- up of a pure collection of
enumeration types and data structures. The data
structures reflect the 'architecture' of the da
packets (= byte arrays) sent and received o
TCP/IP network, between the Application
Processor and the Tracker Server. This (low- l
) interface serves as the basis for all higher level
interfaces (C++, COM)

Also refer to C- Language TPI Reference section
and the ES_C_API_Def.h file.

 No functions or procedures are de

 Since C++ is an extension of C, a C++
can also be used for C programming.

3.5.1 TCP/IP Con
1. Establish a TCP/IP connection to the
tracker server. This is typically achieved by
invoking a Connect function of the TCP/IP
communication library or toolbox. This function
will take the IP address (or its related hostnam
of your Tracker Server.

2. Set the TCP/IP Port
the Tracker Server.

3.5.2 Sending Commands
3. Call a SendData function from the
TCP/IP communication library or
(Function name may differ). This function
typically takes a pointer to a data packet
probably the size of it (unless the packet is
wrapped into a structure that knows its siz
implicitly, for example a Variant structure).

205

4. The architecture of the packets (TPI
rotocol) is defined by the data structures in the

oPositionCT and

p
ES_C_API_Def.h file.

5. For invoking for example a GoPosition
command, use the structure G
assign appropriate initialization values. In
particular, assign an ES_Command and an
ES_C_GoPosition as header- data and provide 3
coordinate values as command parameters.
 The compiler will not detect, if, for example, an
ES_DT_SingleMeasResult as type, or an
ES_C_SwitchLaser as command is assigned to a
GoPositionCT variable. Inappropriate initialization
values cause the command to fail.

GoPosition initialization sample:
GoPositionCT data; // declare packet variable
data.packetInfo.packetHeader.type = ES_DT_Command;
data.packetInfo.packetHeader.lPacketSize = sizeof(data);
data.packetInfo.command = ES_C_GoPosition;
data.dVal1 = -1.879;
data.dVal2 = 2.011;
data.dVal3 = 0.551;
data.bUseADM = FALSE;

Note: emScon Version 1.5 was tolerant in
initializing ‘packetHeader.lPacketSize’ upon
sending commands. This is no longer the case for
emScon V2.0 and up. Correct Initialization of
‘lPacketSize’ is compulsory!

3.5.3 Initialization Macros
6. To avoid initialization errors, which
may happen through copy/paste errors and a
difficult to trace, it is recommended to use
initialization macros for correct assignment of
type, size and command values.
An INITStopMeasurement macr

 not

re

o , for example,

 the parameter initialization
acro call). The StopMeasurement has no

additional command parameters. If there are any,
these can be incorporated into the macro.

requires two statements, the parameter
declaration and
(m

206

StopMeasurementCT cmdStop; // declaration
INITStopMeasurement(cmdStop); // initialization

3.5.4 Excurse: C++ Initialization
C++ offers a much more elegant way f
initialization – the 'constructor' approach, which
eases the initialization issues.

 See a C++ programmers referen

or

ce for details.

e data variable,
 the TCP/IP

 function is
on

d
. Alternatively, a

Sen
data packet variable, Send (&data, sizeof(data)).

3.5.5 om Tracker Server
8.
for th
reque
imme
action, the tracker server sends an answer back to
the client. Depending on the command, it may

g the

7. After initialization of th
send it to the tracker server using
SendData() function (or whatever this
called). Depending on the TCP/IP communicati
library used, the data packet may need to be
packed into a Variant vrtData variable, followe
by a SendData (vrtData) call

d() function takes the address and size of the

 Answers fr
The SendData() function does not wait

e Tracker Server (tracker) to complete the
sted action - SendData() will return
diately. On completion of the requested

take a few seconds between sendin
command and receiving an answer. This requires
some type of notification or callback mechanism.
That is, as soon as data arrives from the Tracker
Server, some sort of event needs to trigger a
ReadData() procedure in the client application.
Depending on the TCP/IP communication, this
notification could be a Windows Message, an
Event or a Callback Function.

 This type of communication is called
asynchronous.

207

3.5.6 Asynchronous Communication
9. From the programmer's point of view
asynchronous communication is much more
difficult to handle than synchronous
communication. The p

,

rogrammer must ensure,
of

ious one has returned.

()
 is called

.
epending on the toolkit:

 return a Variant
 data.

in a

 data
e,

y.

ueued,

ts may be queued

en parsing the byteArr
uffer.

not to send a new command until the answer
the prev

3.5.7 DataArrived Notification
10. All TCP/IP communication
libraries/toolkits contain either a DataArrived
notification or a similar function, which
by the framework each time data has arrived
D

• The function may directly
type parameter that contains the

• The function may deliver the data with
array. byte

• The function returns the size of the
packet that is ready to be read. In this cas
the DataArrived() function subsequently
calls a ReadData() function immediately, in
order to get the data into a local byte arra

3.5.8 Data arrival 'Traffic Jams'
11. If a 'traffic jam' occurs on the incoming
TCP/IP line, i.e., if incoming data is being q
a ReadData() call will read all the currently
available data with no notification for each
individual packet. Many packe
and only one DataArrived notification might be
issued. This means that the byteArr buffer will
contain more than one packet. This may occur on
high frequency, continuous measurement
streams. The application has to make provisions
to correctly treat such cases. The lPacketSize value
is most convenient wh
b

208

If the byteArr buffer is completely filled with da
it is likely that the last packet in the byteArr is
incomplete. The packet fragment needs to be
saved and padded to complete upon the
subsequent read-call.

 S

ta,

ee chapter 'Queued and Scattered Data' for

s

details.

12. Assuming a received data block ha
been read into a byte buffer named byteArr. In
order to interpret the data, a mask is required.
This requires knowledge of the type of data
packet (enum ES_DataType). A typical
PacketHeader interpreting code is as follows:

3.5.9 PacketHeader Masking
PacketHeaderT *pData = (PacketHeaderT*)byteArr;

13. Access the type and the size of the
packet can be with:
pData->type;
pData->lPacketSize;

The packet size is only for convenience.
Sizeof(data-type) alternatively could be used to
calculate the packet size.

 This redundancy may be used for consistency
checks and is helpful when using programming
languages other than C that lack the sizeof()
operator).

Important: The following striked-through
statement has been considered as a bug in
emScon 1.5 and former versions and is no longer
true for emScon V2.0 and up.

The packet size is reliable on received packets.
When sending packets to the Tracker Server, it is
recommended to initialize the lPacketSize variable
correctly, although the Tracker Server ignores it.
This approach has been chosen to reduce possible
programming errors.

209

From emScon Version 2.0 and up: lPacketSize

s was
ersions.

pe Switch
swers require a

nt to distinguish the command
 all

riate
s

ommand,
of the handling of a single

e wer:

must be initialized correctly also on sending
packets. This information is essential and no
longer ignored by the tracker server as thi
the case for previous emScon server v

3.5.10 Command Subty
14. Command type an
switch stateme
subtype. Non-data returning commands can
be treated the same and are handled in the
default switch statement. All other command
a wers need to be masked with the approns p
re ult structure. The code fragment below
demonstrates this with the GetUnits c
and shows part
m asurement ans

210

switch (pData->type)
{
 case ES_DT_Command: // 'command- type' answer arrived
 {
 BasicCommandRT *pData2 = (BasicCommandRT *)byteArr;

 // if something went wrong, no need to continue
 if (pData2->status != ES_RS_AllOK)
 {
 // TODO: evaluate and handle the error
 return false;
 }

 switch (pData2->command)
 {
 case ES_C_Initialize:
 case ES_C_PointLaser:
 case ES_C_FindReflector:
 break;

 case ES_C_GetUnits:
 {
 GetUnitsRT *pData3 = (GetUnitsRT *)byteArr;

 // Diagnostics - check whether packet size
 // as expected (in debug mode only)
 ASSERT(pData3->packetInfo.
 packetHeader.lPacketSize ==
 sizeof(GetUnitsRT));

 // now you can access Unit specific data.
 pData3->unitsSettings.lenUnitType;
 pData3->unitsSettings.tempUnitType;

 break;
 }

 // case XXX:
 // Todo: add other command type evaluations
 // break;

 default:
 break;
 }
 }
 break;

 case ES_DT_SingleMeasResult: // single-meas-result-
 { //type answer has arrived
 SingleMeasResultT *pData4 =
 (SingleMeasResultT *)byteArr;

 if (pData4->packetInfo.status != ES_RS_AllOK)
 return false;

 break;
 }

 // Todo: add further 'case' statements
 // for remaining packet types
}

• Declaring variables within case statements,
which are suitable for masking data, requi
curly brackets around a particular case
block. Otherwise the compiler will cla

re

im.

he top
of a switch statement, for example multi-
measurement results (not covered above).

• If-then-else can be used instead of switch
statements. However, switches are more
efficient.

• Frequent items should be treated at t

211

3.6 C Language TPI - Samples

Some older Samples distributed with former
emScon versions have been dropped because

 no longer exist for the emScon V2.0
till provided

at's the reason

owever, even if the names have not changed,
 earlier

versions. Sample 4 (see C++ section) has been
com

3.6.1
Imple
applic
overhead or MFC or ATL. This sample fits into a
single
comments and empty lines), and compiles into a
sm l

 This
and G nce no Windows
Me a
a mul
requires events and threads. For TCP/IP
communication, the Winsock API functions are
used.
Further details see 'Readme.txt' file in Sample 3
folder and code- comments in source files.

Console

The VC++ AppWizard or a text editor can be used
to create a 'Console Application' skeleton, and to
implem

they have 'expired'. For Example Samples 1 and
Sample 2 do
SDK. Nevertheless, the samples s
have not been re-named. Th
Sample 3 is the first one referenced here.
H
the samples might have improved since

pletely revised for example)

 Sample 3
ments a 'lightweight' C-TPI client
ation, with no graphical interface, GUI

 file with 350 lines of code (including

al executable file.

sample implements only Initialize Tracker
et Direction commands. Si

ss ge Loop is available, the application needs
ti threaded approach and therefore

 Application

ent the C standard entry function:

212

int main(int argc, char* argv[])
{
}

Add all
extension) and invoke the C compiler from the
command line.

Comm
These
EmsyCApiConsoleClient.cpp.

nclude <stdio.h> // standard C input/output

 the source code, save the file (.c or .cpp

ents
 comments refer to the file

The following include- files are required:

#i
#include <Winsock2.h> // win32 socket stuff

•
connection by calling the function
TcpIpConnect(), starts the Data Receiv
thread and enters an endless 'User Interfa
loop'. The default I

 The main() function first does a TCP/IP

er
ce

P address “192.168.0.1”

 passed as command- line argument

r input of one of the
s 'i' for Initialize Tracker

e

ect().

After connecting, call

 has been created

al
variable. This variable must be initialized
with the return value of a
WSACreateEvent() call.

should be adjusted to the actual server
address. Alternatively, the IP address can
be
upon running the application.

• This loop looks for use
two TPI command
and 'g' for Get Direction.

• If the user enters x, the loop is stopped, th
TCP/IP connection is closed and the
application terminates.
 The TcpIpConnect() function is
straightforward up to the call of conn

• Call WSAStartup.
WSAEventSelect(), which takes the
following parameters:

- A socket handle (that
before) as a global variable.

- An event of type WSAEVENT as a glob

213

- A flags parameter. FD_READ is passed,

n would have

ework to signal the passed event,
whenever data has arrived at the socket.

WaitForSingleObject(g_hSocketEvent, INFINITE);

indicating an interest in data-arrival
events (a realistic applicatio
to also trap FD_CLOSE events).

Calling this function will cause the TCP/IP
fram

The DataRecvThread() has an infinite loop with the
following statement:

This is a blocking call and causes the loop to sto
until the event is signaled to be read. The
blocking by the WaitForSingleObject is released
and the loop passes on.

p,

 on

sions to handle such situations with a

nsmission rate by

creasing buffer sizes.

ee Win32 documentation for more information
about Winsock API (especially the WSA…
function), threads and events.

 See also 'Sample 9' (Receiving Data) in the C++
TPI section. Notice the comments in the source
code.

Reset the event before available data is read into a
buffer.

Call a function ProcessData() that does the
interpretation of the buffer.

Queuing (Traffic Jams)
There are no provisions to handle 'traffic jams'
the network. A real application needs to make
provi
packet size transmitted in the header of each
packet. The Winsock function setsockopt() may be
used to 'tune' TCP/IP tra
in

 S

214

Remarks
This sample can easily be ported to non-Win32
platforms (Unix, Linux, and Mac).

 Creating a 'console' application requires the use

elect()
be more appropriate. It issues

insock API.

than the Winsock OCX control.

syncSocket and CSocket classes in

of the WSAEventSelect() function with events and
threads.

Excurse: Windows Application

This chapter points out the options we had if we
chosen a Windows application instead of a
Console application.

For Windows applications, the WSAAsyncS
function would
Window messages instead of events and is
simpler to handle. No separate thread is required
(the window message loop takes this part).

 See Win32 documentation on WSAAsyncSelect().

Winsock API
In Windows applications, the Winsock OCX
control could be used instead of the W
However, the Winsock API functions are more
efficient
The use of a MFC library permits even a very
convenient class wrapper around the Winsock
API.

 Refer to the CA
C++ section for details.

215

4 C++ Interface

4.1 Class- based TPI Programming
4.1.1 Preconditions

iented programming.
ass-

ous
rogramming concepts and TCP/IP socket

.

he description of the classes in this chapter may

iscrepancies, the information in the
 regarded as

t provide any additional

lasses

h data structure (of the C-

CESAPIReceive supports receiving and parsing

Using the C++ interface requires sufficient
knowledge of object- or
A programmer should at least know about cl
design, class- inheritance, virtual functions,
member function overloads, asynchron
p
programming

This chapter describes wrapper-classes for data
structures and two main classes used for sending
commands and receiving answers.

T
be slightly discrepant to the contents of the
ES_CPP_API_Def.h file in the SDK. In case of
d
ES_CPP_API_Def.h file should be
correct.

Sample 4 (former Sample 4_2 in emScon 1.5)
comprises all these topics. This sample is most
suitable for introduction into emScon C++
programming.

The C++ TPI does no
functions for the Tracker Server. It is built upon
the C TPI and is made up of one include file,
ES_CPP_API_Def.h with ES_C_API_Def.h as its
basis. The C++ interface implements two c
CESAPICommand and CESAPIReceive, apart from
wrapper classes for eac
TPI).

CESAPICommand handles sending of commands
from the client application to the TS and

216

data sent by the Tracker Server to the client
application.

 The advantage of a class design is the av
of construct

ailability
ors to perform (struct) initialization.

 every platform.

This chapter does not touch TCP/IP basic issues.

A Tracker Server C++ interface is preferable to a C
low-level interface, if a C++ compiler is available.

4.1.2 Platform Issues
Tracker Server client programming remains
platform independent since C++ compilers are
available for virtually

4.1.3 TCP/IP

See C- TPI section since this topic is independent
from the TPI- type used (except COM interface)

4.2 C++ Language TPI Reference

4.2.1 CESAPICommand class

ndPacket Se
 virtual bool SendPacket(void* PacketStart, long PacketSize);

Thi irtual function must be implemented
ass derived from CESAPICommand. Its

cket library.

s v in the
cl
implementation depends on the selected TCP/IP
so

O
m

Example for a command taking no parameters (
Initialize the tracker):
 bool Initialize();

Command Functions

nly a few sample of the class' command
ember functions are listed here since these can

be derived directly from the C- interface.

Example for a command taking basic- type
parameters:

217

 bool SetContinuousTimeModeParams(long lTimeSeparation,
 long lNumberOfPoints,
 bool bUseRegion,
 ES_RegionType regionType);

Example for a command taking a struct
parameter:
 bool SetContinuousTimeModeParams(ContinuousTimeModeDataT
 continuousTimeModeData);

The latter two functions are different ov
the same function.

Many of the command- function exist in two
different overloads. Depending on context, it
be more suitable for an application to use on
the other overload.

A complete

erloads of

may
e or

 listing of all these functions is
ommand class

ames

ied to a

 the prefix 'ES_C_' from the
ill be the name of

the C++ function. [

ters, add the

 TPI

available from the CESAPIC
definition in the file 'ES_CPP_API_Def.h' file.

Rather than redundantly listing all of these
member functions in this chapter, a general rule
is presented on how to derive the function n
from the related C-TPI structures.
(The text in [brackets] shows the rule appl
sample).

1. Look up the command of interest in the 'enum
ES_Command' (C- TPI Reference).
[ES_C_SetContinuousTimeModeParams]

2.) Remove
command tag- name. This w

SetContinuousTimeModeParams ()]

3.) For finding the input parame
Postfix 'CT' to the remaining command- tag
name. [SetContinuousTimeModeParamsCT].

4.) Look up this CT structure in the C-
reference for a description of all the
parameters.

218

4.2.2 CESAPIReceive class
ReceiveData
 bool ReceiveData(void* packetStart, long packetSize);

ReceiveData is the parser- function for incoming

ta from the emScon server.
data. It has to be called after receiving a block of
da

COMPLETE (in terms of an RT struct as defined
in the C-API). Packet fragments are not processed
co

packets. See chapter 'Queued and Scattered Data'
fo

The principle is as follows: Derive your own class
from CESAPIReceive and override those virtual

nctions on whose data you are interested in.

al data

Example for a command returning no data. If this
function is called this means the command has
successfully executed (i.e the tracker has finished
initial
 virtual void OnInitializeAnswer()

Packets passed to this method must be

rrectly. Hence the application (which calls
ReceiveData) must ensure to pass complete

r details.
Data Arrival virtual Functions

fu

Only a few sample of the class' virtu
receiver member functions are listed here since
these can be derived directly from the C-
interface.

izing):

Example for a command returning data. (Which
is the
 virtual void OnGetContinuousTimeModeParamsAnswer(

 case for all 'Get...' functions).
 const ContinuousTimeModeDataT&
 continuousTimeModeData)

A complete listing of all these functions is
availa
definition in the file 'ES_CPP_API_Def.h' file.

Rather than redundantly listing all of these
member functions in this chapter, a general rule
is presented on how to derive the function names
fro

ble from the CESAPIReceive class

m the related C-TPI structures.

219

(The text in [brackets] shows the rule applied to a
sample).

1. L o
ES_
[ES

2. Replace the prefix 'ES_C_' by 'On' and pad the
name with 'Answer' in addition. This will be
the name of the virtual C++ answer function. [
OnGetContinuousTimeModeParamsAnswer ()]

3. Fo
'On
'RT' . [GetContinuousTimeModeParamsRT].

4. L o
refe
par

Gener
 virtual void OnCommandAnswer(const BasicCommandRT& cmd);

o k up the command of interest in the 'enum
Command' (C- TPI Reference).
_C_GetContinuousTimeModeParams]

r finding the passed parameters, ignore the
' prefix and replace the 'Answer' Postfix by

o k up this RT structure in the C- TPI
rence for a description of all the
ameters.

al Data Arrival virtual Functions

 virtual void OnErrorAnswer(const ErrorResponseT& error);

 virtual void OnSystemStatusChange(
 const SystemStatusChangeT& status);

• OnCommandAnswer() is called
command, in addition to the com

 for every
mand-

unction. This function can
specially for non- parameter

rror
atus parameter indicates

at

ch
cases, the command parameter is

 every
status change event. For status values, see

related answer f
be convenient e
taking commands.

• OnErrorAnswer () is called upon an e
condition. The st
the kind of error and (if known), the
command parameter indicates the
command that caused the error. Note th
not all errors are caused through
commands (e.g. Beam broken). In su

'unknown'.
For status values, see enum
'ES_ResultStatus'

• OnSystemStatusChange() is called for

220

enum 'ES_SystemStatusChange'

• Note that virtual functions are only called if
defined int the derived receiver class.
Particular arrival data can be ignored
appropriate virtual function defin

 if the
ition is

omitted.

e signature of the
y
.

atching signatures will result in not-
calling the functions. The compiler cannot

• Attention: Make sure th
virtual function in the derived class exactl
matches the signature in ' CESAPIReceive '
However, the keyword 'virtual' is optional
in the derived class.

• Mism

detect such kind of errors.

• It is therefore recommended to copy/paste
the virtual function header from
CESAPIReceive to the derived class.

4.3 C++ Language TPI
Programming Instruc

tions

tual

 sending
uired, as they are

and instead.

ReceiveData, which is called on data arrival

4.3.1 Sending Data
The class CESAPICommand contains a vir
function SendPacket(), which must be overwritten.
This approach allows convenient 'Send…'
command functions.

 Dealing with C data structures for
commands is no longer req
completely 'hidden'. Use the related member
functions of CESAPIComm

4.3.2 Receiving Data
In order to select the data the application is
interested in, CESAPIReceive offers a method

221

events, as well as numerous virtual membe
functions..

 Dealing with C d

r

ata structures for receiving data
 no longer required, as they are completely

, apart from
 structure (of the C-

tage of
on issues. The

n,

 class is used to send
to the tracker server, the class

SAPIReceive is used to receive data.

ass

SCON_NAMESPACE

is
'hidden'. Use the related (virtual) member
functions of CESAPIReceive instead.

4.3.3 Class Design Issues
All class member functions are defined 'inline'.
Neither a library nor a .cpp file is required. One
single include file suffices. The C++ interface is
fully transparent with complete source code
provided.

The C++ interface implements two classes named
CESAPICommand and CESAPIReceive
wrapper classes for each data
TPI). A class design has the advan
constructors to delegate initializati
class CESAPICommand has a virtual functio
SendPacket(), which must be overwritten using
Send… command functions.

While the CESAPICommand
data
CE

The principle is as follows: Derive your own cl
from CESAPIReceive class and override those
virtual functions on whose data you are
interested in. Details see below in
'CESAPIReceive' chapter.

Insertion of the statement
#define ES_USE_EM

before the inclusion of the ES_CPP_API_Def.h file,
PP

name conflicts with other (third-party) libraries.

defines a namespace EmScon for the TPI C
classes. This is only required in case of potential

222

 Refer to Sample 4 in the emScon SDK, for

 Data Structure Wrapper Classes
e is

gle

 are
and structures, 'CT', not

 return structures, 'RT', since the technique for
eceiving data implements a completely different

unctions.

namespace techniques. Refer also to C++
documentation.

4.3.4
About 80 % of the ES_CPP_API_Def.h file siz
used for definition of wrapper classes for data
structures, which are required for 'internal'
purposes. These classes are seldom used directly.
Each one of these classes contains only one sin
member variable, a struct variable from C TPI
and one or more constructors. Class wrappers
only available for comm
for
r
approach through virtual f

Example: class CGoPosition

 CGoPosition::CGoPosition(double dVal1,
 double dVal2,
 double dVal3,
 bool bUseADM)
 {
 DataPacket.packetInfo.packetHeader.lPacketSize =
 sizeof(GoPositionCT);
 DataPacket.packetInfo.packetHeader.type = ES_DT_Command;
 DataPacket.packetInfo.command = ES_C_GoPosition;
 DataPacket.dVal1 = dVal1;
 DataPacket.dVal2 = dVal2;
 DataPacket.dVal3 = dVal3;
 DataPacket.bUseADM = bUseADM;
 };

 GoPositionCT DataPacket;
};

The struct member variable is declared at the
bottom and is of type GoPositionCT (definition o
C-TPI). To initialize the member variable, a so
called constructor, taking the command
parameters as input, is provided.

Certain wrapper classes implement two
constructors:

• Taking the data as individual param

• Taking the data as one single struct
parameter.

f

eters.

xample: class CSetUnits E

223

class CSetUnits
{
public:
 CSetUnits::CSetUnits(SystemUnitsDataT unitsSettings)
 {
 DataPacket.packetInfo.packetHeader.lPacketSize =
 sizeof(SetUnitsCT);
 DataPacket.packetInfo.packetHeader.type = ES_DT_Command;
 DataPacket.packetInfo.command = ES_C_SetUnits;
 DataPacket.unitsSettings = unitsSettings;
 };

 CSetUnits::CSetUnits(ES_LengthUnit lenUnitType,
 ES_AngleUnit angUnitType,
 ES_TemperatureUnit tempUnitType,
 ES_PressureUnit pressUnitType,
 ES_HumidityUnit humUnitType)
 {
 DataPacket.packetInfo.packetHeader.lPacketSize =
 sizeof(SetUnitsCT);
 DataPacket.packetInfo.packetHeader.type = ES_DT_Command;
 DataPacket.packetInfo.command = ES_C_SetUnits;
 DataPacket.unitsSettings.lenUnitType = lenUnitType;
 DataPacket.unitsSettings.angUnitType = angUnitType;
 DataPacket.unitsSettings.tempUnitType = tempUnitType;
 DataPacket.unitsSettings.pressUnitType = pressUnitType;
 DataPacket.unitsSettings.humUnitType = humUnitType;
 };

 SetUnitsCT DataPacket;
};

4.3.5 CESAPICommand

e C++ TPI may ignore all struct
rapper classes. The only important class to be

ing is CESAPICommand,

de of SendPacket

S d class must be derived. This

SendPacket(),
us n cannot be
pl he TCP/IP

ts
)

nd the size of

A class for sending commands

The user of th
w
used for programm
which is defined at the end of the
ES_CPP_API_Def.h file.

Virtual overri

In order to use the C++ TPI, a class from the
CE APIComman
derived class, a 'virtual' function,
m t be implemented. This functio
im emented without knowledge of t
communication functions the application wan
to use. The implementation of SendPacket(
depends on the TCP/IP communication
functions/library. The SendPacket() function
expects a pointer to a data packet a
that packet.

224

Class CMyEsCommand

Derived from CESAPICommand:

Class definition
class CMyEsCommand : public CESAPICommand
{
public:
 CMyEsCommand();
 virtual ~CMyEsCommand();

 // virtual function override
 bool SendPacket(void *pPacketStart, long PacketSize);

 // Todo: add members and methods used for
 // TCP/IP communication
};

Class implementation

CMyEsCommand::CMyEsCommand()
{
 // Todo: add initialization code (if any)
}

CMyEsCommand::~CMyEsCommand ()
{
 // Todo: add cleanup code (if any)
}

// virtual function override
bool CMyEsCommand::SendPacket(void *pPacketStart,
 long lPacketSize)
{
 // Todo: implement this function according to your
 // TCP/IP communication.

 return true;
}

Command Methods

The CESAPICommand class defines a 'Send'
method for each one of the TPI commands. These
methods are named according to th
they cover.

Examples of such method nam

• Initialize()

• GetCoordinateS

• SetSphereCenterModeParams()

The argument list depends on the number of
(send) parameters these commands take.
bool Initialize(); // example with no arguments

e command

es include:

ystemType()

bool GoPosition(double dVal1, // 3 position coordinate values
 double dVal2,
 double dVal3,
 bool bUseADM = false); // default parameter

These functions completely hide command-struct
and struct initialization known from the C
interface. There is only one method for each one

225

of the command-structs described. A derived
ll these

d
e members of the 'enum ES_Command'

- TPI). Just omit the prefix 'ES_C_' to get the
o a command 'packet'.

nd
ams', the related C++

 '

e methods for sending commands are
synchronous and can only be used for sending

lass from the CESAPIReceive class must be
 functions on

ror)’.

class such as CMyEsCommand inherits a
methods.

The names of the command functions are derive
from th
(C
command function related t

Example: Given the ES_C_Comma
'ES_C_SetBoxRegionPar
ommand function will be calledc

SetBoxRegionParams()'.

Th
a
commands.

4.3.6 CESAPIReceive

A class for receiving command answers

Virtual override of Answer Functions

In order to use the C++ TPI for receiving data, a
c
derived. Then override those virtual
whose data you are interested in.
Example: If your application implements a
‘GetDirection()’ call (a method of the
CESAPICommand class – see
‘ES_CPP_API_Def.h’), then you must override
the virtual function
‘OnGetDirectionAnswer(const double dHzAngle,
const double dVtAngle)’ in your derived
CESAPIReceive class in order to receive the
results. In order to track errors, you always also
should override the virtual function
‘OnErrorAnswer(const ErrorResponseT& er

226

Class CMyESAPIReceive

Code Sample: (only class and function

es for complete

declaration is shown here, not the
implementation. Refer to sampl
code).

lass CMyESAPIReceive:c

 public CESAPIReceive
{
 // override virtual functions of those
 // answers you are interested in:
protected:
 void OnErrorAnswer(const
 ErrorResponseT&);

 void OnGetSearchParamsAnswer(const
 SearchParamsDataT&
 searchParams);
};

Se
complete example on how to implement the two
cl
'C
Further see the (revised) Sample 4 (= Sample 4.2
in
CESAPICommand class (ESCppClient_Step3) and

4. ued and Scattered Data
W
th
ab
A

p to the configured buffer size), single data
re

ct to
tion by a Read call (depending on

your communication tools, this can be recv,
GetData, CAsyncSocket::Receive() etc.).

These read functions are not able to recognize
packet boundaries. Read functions read all data
that is currently available (In practice, the data

e Sample 9 (EmsyCPPApiConsoleClient) for a

asses derived from 'CESAPICommand' and
ESAPIReceive’.

 emScon 1.5) on how to deal with the

the CESAPIReceive class (ESCppClient_Step4).

3.7 Que
hen the Tracker Server delivers more data
rough the TCP/IP network than the client is
le to process, it results in 'traffic jams'.

lthough, the TCP/IP network buffers such data
(u
packets will be queued. That is, there are no mo
'gaps' between the data packets. When the client
is notified from the TCP/IP communication
framework that data has arrived, it has to rea
this notifica

227

will be read in one read- cycle, limited to a certain
ffer size).

 or only

hes:

ead-buffer and read all
on

sing the
 size of each packet.

ket, the next read-
rom the

are
obably the most

, since it minimizes the number

plex one in terms of data parsing.

e the size of
cket
Size)

ethod: 'Peek' (instead of Read) the
ithout removing data from the socket.

, read as many bytes as
ample below.

s (if data blocks
n

0 API

bu

These might be several combined packets
a fraction of a (trailing) packet.

Problem Solution

There are several possible approac

1. Provide a sufficient r
that is currently pending. The client applicati
parses the data block into packets, u
header information and
With a fragmented last pac
cycle is started and the two fragments f
previous and the current reading
assembled together. This is pr
efficient method
of reading interrupts. However, it is also the
most com

2. Read only the header to determin
the first pending packet. The rest of the pa
is estimated by reading (packetSize – header
bytes.
Variant m
header, w
With known size
indicated by packetSize. See code s

The sample code shown below demonstrates a
method to ensure complete packet
arrive scattered) and to avoid data congestio
(traffic jams). It is based on Winsock 2.
functions:

228

LRESULT CMsgSink::OnMessageReceived(UINT uMsg, WPARAM wParam,
 LPARAM lParam,
 BOOL& bHandled)
{
 // The read-buffer is kept static for performance reasons.
 // In a real application better make it a member
 // variable of CMsgSink
 //
 static char szRecvBuf[RECV_BUFFER_SIZE];

 bool bOK = true;
 long lReady = 0;
 int nCounter = 0;
 long lMissing = 0;
 long lBytesRead = 0;
 long lPacketSize = 0;
 long lBytesReadTotal = 0;
 int nHeaderSize = sizeof(PacketHeaderT);
 PacketHeaderT *pHeader = NULL;

 TRACE(_T("CMsgSink::OnMessageReceived(%lu, %lu)\n"),
 wParam, lParam);

 if (WSAGETSELECTEVENT(lParam) == FD_READ)
 {
 // Just peek the header, do not remove data from queue
 lReady = recv((SOCKET)wParam, szRecvBuf,
 nHeaderSize, MSG_PEEK);

 if (lReady < nHeaderSize)
 {
 if (lReady == SOCKET_ERROR)
 {
 if (WSAGetLastError() == WSAEWOULDBLOCK)
 Sleep(50); // busy - try later
 else
 {
 Beep(1000, 100);
 // not able to get header
 } // else
 } // if

 return true; // non-fatal only a peek, try next time!
 } // if

 pHeader = (PacketHeaderT*)szRecvBuf;

 bOK = bOK && lReady == nHeaderSize &&
 pHeader->lPacketSize >= nHeaderSize &&
 pHeader->lPacketSize < RECV_BUFFER_SIZE &&
 pHeader->type >= ES_DT_Command &&
 pHeader->type <= ES_DT_ReflectorPosResult;

 lPacketSize = pHeader->lPacketSize;

 if (bOK)
 {
 do
 {
 nCounter++;

 if (lBytesRead > 0)
 lBytesReadTotal += lBytesRead;

 lMissing = lPacketSize - lBytesReadTotal;

 lBytesRead = recv((SOCKET)wParam,
 (szRecvBuf + lBytesReadTotal),
 lMissing, 0);

 if (lBytesRead == SOCKET_ERROR)
 {
 if (WSAGetLastError() == WSAEWOULDBLOCK)
 {
 Sleep(50); // busy - try later
 continue;
 }
 else
 Beep(1000, 100);
 } // if

 if (nCounter > 64) // emergency exit
 {
 if (lBytesReadTotal <= 0)
 {
 TRACE(_T("not able to read data (recv)\n"));
 return true; // nothing read, can leave safely
 } // if

229

 else
 {
 bOK = false;
 break;
 }
 } // if

 TRACE(_T("Loop: BytesRead %ld, BytesReadTotal \
 %ld, PacketSize %ld, Missing = %ld\n"),
 lBytesRead, lBytesReadTotal+lBytesRead,
 lPacketSize,
 lMissing - lBytesRead);

 } while (lBytesRead < lMissing);

 if (lBytesRead > 0)
 lBytesReadTotal += lBytesRead;
 } // if

 bOK = bOK && lBytesRead == lMissing &&
 lBytesReadTotal <= RECV_BUFFER_SIZE;

 if (bOK)
 {
 // ProcessReceivedData() is assumed to take one single
 // (complete) data packet. It contains a 'switch'
 // statement to evaluate the packet (we have seen this
 // method several times in this manual / samples)

 if (lBytesReadTotal == lPacketSize)
 ProcessReceivedData(szRecvBuf, lBytesReadTotal);
 } // if
 }
 else
 bOK = false;

 if (!bOK)
 {
 // make sure socket is cleaned up on data jam
 // in order to recover ordinary data receiving

 do
 {
 nCounter++;
 lBytesRead = recv((SOCKET)wParam, szRecvBuf,
 RECV_BUFFER_SIZE, 0);

 TRACE(_T("Recover in loop\n"));

 } while (lBytesRead > 0 && nCounter < 128);

 TRACE(_T("Unexpected data - fatal error\n"));

 Beep(250, 10); // data lost
 } // else

 return bOK; // true when message handled
} // OnMessageReceived()

This code ensures that only complete packets are
processed. However, the client may still not be
fast enough to process all the incoming data. The
TCP/IP framework will buffer data, up to a limit.

ery
ata will be

ause of Data Loss

• The network is not fast enough.

• The client PC is not powerful enough.

If such limits are reached, arbitrary data may
arrive. The above function has (limited) recov
ability in case this should happen. D
lost in such situations.

C

230

• The application is not able to process data

signed

fast enough.

• The application is not de
appropriately.

 The client application can still buffer

ts as list elements).
This approach can be chosen if the

aused by
I

etwork
 with

incoming data, for example, in a FIFO list
(taking the data packe

performance constraint is c
intensive data processing. The Winsock AP
offers certain 'tuning' functions. These
allow, for example, to alter internal n
buffers. Increasing the receive- buffer
setsockopt(), for example, may increase data
throughput significantly.

#define SOCKET_READ_BUFFER_SIZE (256 * 1024) // 256 KB buffer

int nBufSize = SOCKET_READ_BUFFER_SIZE;
int nVarSize = sizeof(nBufSize); // it's 4 byte, but sizeof is
better style!

nRet = setsockopt(m_sock, SOL_SOCKET, SO_RCVBUF,
 (char *)&nBufSize, nVarSize);
ASSERT(nRet != SOCKET_ERROR);

See documentation on setsockopt() for further
details.

4.3.8 Partial Settings Changes
Consider the command 'SetUnits'. This command
takes all selectable unit- types (Length, Angular,
Temperature, Pressure, Humidity) as parameter
However, often one wants to change only one o
these and leave the others untouched.

The best me
fi

s.
f

thod to do so is invoking a 'GetUnits'
rst, then change only the one parameter of

etUnits'.

same
M interface).

interest and finally do a 'S

Here is a C++ sample (although the
approach also applies to C and CO

231

GetUnits(); // trigger a 'GetUnitsCommand'

// The current units are delivered in such that
// the following virtual function will be called:

void OnGetUnitsAnswer(unitsSettings)
{
 SystemUnitsDataT newUnits = unitsSettings;

 // change angle unit and leave rest untouched

 newUnits.angUnitType = ES_AU_Degree;

 // restore changed parameters
 // (assumed g_cmdObj is a pointer to your ApiCommand obj)

 g_cmdObj->SetUnits(newUnits);
}

Note: since the parameter of the
OnGetUnitsAnswer() is designed as 'const', it is
necessary to use a local struct 'newUnits'. It is not

ired

y
mand has more

truct parameter).

e

 'queue' commands
ider

.
ith a

te
s are

possible to directly change 'unitsSettings'.

Another 'favorite' for this technique is the
command 'SetSystemSettings'. Often it is requ
to change only one of the different flags of the
'SetSystemSettings' parameters.

However, this technique can be used for ever
Set/Get command pair (if the com
than one parameter or a s

4.3.9 Asynchronous Programming Issues
As already stated, all communication through th
C++ interface is asynchronous.

It is therefore not possible to
within one function call. In other words, cons
a Windows application with a graphical interface
Assume a button named 'InitialSettings' w
button- press handler as follows behind (No
this is pseudo code since no parameter
specified):

OnInitialSettingsButtonPressed()
{
 m_myApiCmd->SetUnits(...);
 m_myApiCmd->SetEnvironmentParams(...);
 m_myApiCmd->Initialize();
 m_myApiCmd->GetReflectors();
 m_myApiCmd->SetMeasurementMode(...);
}

This won't work at all because this a typical
 a

co
synchronous approach (i.e. It is assumed

mmand has finished when it returns). In an

232

asynchronous approach, each command returns
immediately. In the sample above, SetUnits() and
SetEnvironmentParams() may accidentally work
(because these commands do not take a long time
–
th
terminate – also returns immediately. The server,
however, is not ready to take the next command
un

'S

N
sy
se
H
interface, some answers remain asynchronous by
na
change events and 'multi- packet' command
an
'G

Th
never issues a command before the previous one
ha
command always indicates its termination by
sending an 'acknowledgment'. With the C++

'O
(p
no
co
ha
CE

In
iss
previous command has arrived. There are several
possible approaches to achieve correct execution
of

1.

but never rely on this!). But Initialize() – since
is command takes about 45 seconds to

til initialization of tracker is finished. Hence
the command ' GetReflectors()' would fail with a

erver busy' error.

ote: The emScon COM interface provides a
nchronous interface which allows to queue
veral commands in one and the same function.
owever, even when using the synchronous

ture. These are error events, system status

swers, such as 'GetReflectors',
etCompensations' etc.

e correct approach is that the application

s returned. Even a non- parameter returning

interface, either the general
nCommandAnswer()' can be used for that
ractically only suitable for commands that do
t return any results). In addition, every
mmand has its individual 'On..Answer()'
ndler. See 'ES_CPP_API_Def.h' file,
SAPIReceive class.

 particular, the next command may not be
ued before the 'On..Answer()' handler of the

 a series of commands :

Directly call the next command in the
'On..Answer()' of the previous command. This

233

approach is demonstrated with the
'GetReflectors' / 'GetReflector()' sequence in
Step4 of Sample 4.
Remark: There is a helper function
InitReflectorBox() in OnGetReflectorsAnswer
The next command ' GetReflector()' is called i
this 'InitReflectorBox()' function. Howev
'GetReflector()' could also be called inside
'OnGetReflectorsAnswer()' function d

Queue your commands in a list. Take the fir
command from the list and send it to the
tracker server. At the same time, set an Event
(or another synchronization object, such
Mutex or Semaphore)' that prevents taking t
next command from the list. As soon as the
answer of the pending command arrives, re
the Event, which will cause to process the next
command from the list.
In contrast to the fi
O

().
n

er,

irectly.

2. st

 as

he

set

rst approach, where each
n..Answer() handler calls a different

 is

ess

. Queue your commands in a list. Use an
dler
nd

of the list and sends it to the tracker server. To
and- chain', do an explicit first

call

dvantage of this approach is that no

f

subsequent command, this second approach
more general in such that every answer
handler does the same: 'ResetEvent'. Needl
to say that this approach means a multi
threaded application.

3
application-defined Windows message han
that removes and processes the first comma

start the 'comm
call of this message handler. In every
'On..Answer()' handler, a 'PostMessage()'
will cause to trigger the message handler in
order to process the next command. (Important
to use PostMessage, not SendMessage).
The a
multi- threaded application is required since
the Windows message loop takes care o
synchronization. On the other hand, this

234

approach only works for windows
and not for console applications or 'windowless
serve

 applications

r applications' (Hint: you may use an

is

plication

ton handler calls only
one command. The user himself must make
sure he does not press a button while a

ing command has not terminated. The
that it

con COM
nous

s COM
).

 TPI Samples

invisible window for message handling).

4. To be complete, the most simple approach
also mentioned here, although this does not
really mean an 'automated queuing' of
commands: Let the synchronization to the
user! This means that the ap
implements an individual Button for every
command, i.e. every but

pend
application can support the user in such
disables all buttons while a command is in
action. (Disable all buttons when pressing any
button, enable all again when a 'On..Answer()'
handler is called.

The 'asynchronous issues' of this chapter also
apply to the C- Interface and the emS
interface – as far as using the asynchro
interface (or those parts of the synchronou
interface that remain asynchronous by nature

4.4 C++ Language

4.4.1 Sample 4

 dialog user- interface and makes use of

d required dialog

This sample is designed as a 4 Step by Step
tutorial. It is a Windows application with a
graphical
the MFC framework.

Step1:

Step 1 offers a simple dialog- based MFC
application. It has added some dialog controls
with message handlers an

235

member variables already defined.
However, all message handlers are empty (except
Beep).

The framework has been created using the
AppWizard and ClassWizard and then a bit
cleaned up manually in order to keep the code as
slim as possible (Eliminated icon

s, rc2 and pre-
ompiled headers). In a real application, these

ould be left of course.

f

to

mechanism to achieve this.

c
things c

Note that the Step 1 application does not yet
depend on emScon at all.

Step2:

Step 2 adds TCP/IP communication to the
application. There are several ways to do this:

- use an appropriate Socket Class (that's what we
do in this application - we use CAsyncSocket o
MFC)

- use the Winsock2 C-library (as for example used
in the 'Sample9' of the emScon SDK)

- use the Winsck.ocx ActiveX control.

- use any other third-party socket library

We need to provide the following functions:

- connect to server

- disconnect from server

- write data to previously opened server
connection

In addition, we need a notification mechanism
get informed that data has arrived and is ready to
be read.

Since this is a Windows application, we can use
the window message

(Note that in a non- windows application, we
would need to use events and threads to achieve
the same - see Sample9).

236

So far nothing depends from the emScon SDK -
we do not need any emScon- include file yet. All
is provided by the VC++ developme

nt Kit. But

evertheless we will be able to connect to /

 allow to send real emScon commands and

'understandable'

'.

e

,
e answers. So we will not be

s sent,

 have
o code yet to interpret these answers. We just

tes arrive. In Step4, we will add

n
disconnect from server. But Step2 application will
not yet
receive answers to/from server.

Step3:

Step 3 introduces the emScon command class
'CESAPICommand' to SEND
data to the server. More precisely, the class is
rather used to construct data blocks
'understandable' to the emScon server. It's the
first time that the emScon SDK is involved. We
have to include the 'ES_CPP_API_Def.h' file (and
- indirectly through this file – some other include
files such as 'ES_C_API_Def.h' and 'Enum.h

As done with CSocket, we also must derive our
own class from 'CESAPICommand' because this
class contains a virtual function 'SendPacket'. It is
mandatory to provide our own implementation
of this class. The implementation depends on th
TCP/IP communication package we use.

Step3 application allows us to send commands
but not yet to receiv
able to check whether the command was
executed correctly because all commands are
ASYNCHRONOUS. That is, a command i
then the application is idle while the server
executes the command. Then the server sends
back an acknowledge or error message. We
n
see how many by
logic to receive data.

Nevertheless, supposed the server and tracker is
running, we will at least see the tracker moving
when sending a 'Initialize' tracker command.

237

If the correct reflector is set, GoBirdbath will
work and we can even perform a measurement
(but we will not see the results yet)

also

irtual

'
ommunication. All C++ TPI communication is

t

e application should always be ready to catch
us change, error events)

d
 name

s in a dropdown combo box

n
box,

t one and

ombo box, select the current reflector...)

Further details see 'Readme.txt' file in Sample 4
 code- comments in source files.

4.4

CE ding and
g other

features). Like Sample 3, Sample 9 is a simple

Step4:

Step 4 introduces the emScon class
'CESAPIReceive' to RECEIVE 'understandable'
data from the server. More precisely, the class
provides virtual functions for every type of
answer. So the user can just override those v
functions he is interested in.

Step 4 also covers the topic of 'asynchronous
c
asynchronous. That means a new command mus
not be sent before the acknowledge or result of
the previous command has arrived. In addition,
th
events (system stat

Correct reflector handling is also demonstrate
(relation between reflector ID and reflector
and how to handle thi
(do not mix up the combo index with reflector
ID). Initializing the reflector combo happens i
several steps: GetReflectors, fill them into the
then GetReflector() to get the curren
select it in the box.

Asynchronous techniques are heavily touched
with the reflectors handling (filling them into
c

folder and

.2 Sample 9
This Sample, EmsyCPPApiConsoleClient, with a

SAPIReceive class demonstrates Sen
Receiving features of the C++ TPI (amon

238

con
Sample3, it is based on the C++ TPI. In addition, it
has a more sophisticated data receiver function in
ord r scattered data.

sam
cla
'CE
de

 Set the IP address to the actual TS address,
he

IP
arg

Further details see 'Readme.txt' file in Sample 9
fol

4.4
Th torCtl sample provides an ActiveX

ref

g up a lookup table for
/Name mapping, querying all the defined

ref
appro

The Sample contains full source code (Visual C++)
nd has a compiled component Reflector.ocx,

ual C++ compiler.

Rema
• Th

before it can be used.

 The properties 'ServerAddress' and
'PortNumber' can be specified at

sole application. However, in contrast to

er to handle traffic jams and/o

The principle of using the C++ interface is the
e as used in Sample 4: Derive your own

sses from the C++ TPI classes
SApiCommand' and 'CESApiReceive' and

fine virtual methods as needed.

before building the application. Alternatively, t
address can be passed as command- line
ument upon running the application.

der and code- comments in source files.

.3 Sample 12
is Reflec

component comprising the most common
lector commands.

This control skips b
ID

uildin

lectors from the system and providing the
priate user interface controls.

a
which allows use without a Vis

rks
e Reflector.ocx control must be registered

• Only one instance of such a control can be
instantiated per Form/Dialog box.

•

239

(Form/Dialog) design time. However, this only
makes sense if these parameters are cons

tant.

The more common way is to set these

ing set the

is lets the client application,
instead of the Reflector.ocx, handle any
connecting problems.

• The client application must ignore answers
from commands triggered by the Reflector.ocx
(Get Reflectors, GetReflector and SetReflector).

• Do not implement an Error Event handler for
Reflector.ocx. The control has a built- in
handler. Visual Basic does not allow it– it
causes a compiler error. If correctly applied,
the component should never fire an error
event.

• Here is a code sequence for a VB application.
Typically executed in Form Load:

 Reflector1.ServerAddress = "192.168.0.1"

properties programmatically.

• Call the method Initialize after hav
properties and not before the client application
has successfully connected to the same
address/port. Th

 Reflector1.PortNumber = 700
 Reflector1.Initialize

• It is assumed that the client application has
already successfully connected to the same
address/port before these calls.

Keyboard Interface Limitation
• This component is primarily designed for

mouse control and does not work properly
with a keyboard interface (E.g. use of arrow
keys in VB).

 See VC/VBA/VB documentation for general
information on ActiveX controls, and how to
include them in applications.

240

Fu det
fo d c

Sample 19

rther ails see 'Readme.txt' file in Sample 12
lder an ode- comments in source files.

LiveVideo display C++ application.

See Chapter 8 / Special Functions / Live Image
display for details.

241

5 COM - Interface

5.1 High-level TPI Programming
The emScon high-level interface (COM interfac
is convenient f

e)
or creating quick applications

terface, in contrast to the C++

m rface does
t p s.

using Visual Basic, MS Excel, MS Access and MS
Word.

5.1.1 Drawbacks
The TS high-level in
TPI, may cause some performance drawbacks.
During high data rates, some data may get lost
under certain conditions. In this case, using the
C/C++ TPI would be more suitable, since this
would allow for 'tuning' the TCP/IP
co munication. The TS high-level inte
no rovide such tuning capabilitie

 The TS high-level interface is limited to

a

 and it is part of the

), execute

Win32 platforms.

5.1.2 Introduction
The TS high-level interface is made up of a COM
object, as an ATL DLL COM server. It comes as
DLL named 'LTControl.dll',
emScon SDK.

COM objects have to be registered on the
Application Computer. In order to register
LTControl.dll (Windows platforms only
the following command from the command line:
Regsvr32.exe <Path>\LTControl.dll

See chapter 'Registering COM Objects' for a more
detailed description.

242

COM Components provide standardized
programming interfaces. LTControl provides
several custom interfaces and 'Connectio
Interfaces' (of type IDispatch). This chapter li
the methods and properties of these interfaces
A type library describes COM object interfaces. Th
type library LTCont
LTControl.dll.

 All enumeration types and structures d
the C-TPI are

n Point
sts

.
e

rol.tlb is implicitly included in

efined in
also provided by the LTControl's

OM interface. These enums and structs will be
trol, when
ser-

.

o get an overview of the interfaces (including
osed

.

The LTControl component is very convenient for
deve
Visu

How
TCP/IP communication are an issue, the C/C++

It is not recommended to use the COM TPI for
writing C++ client applications, although this is
possible and also demonstrated in Sample 7.

ving data is
 the

C++
On t
Visu
recei

C
available for applications using LTCon
the programming language supports u
defined data types

T
properties, methods, events and UUIDs) exp
by a COM object, a COM viewer may be used.

• Select the tools menu of Visual Studio

• Select OLE/COM Object Viewer.

• Choose File > View Type Lib.

• Select LTControl.dll or LTControl.tlb.

loping simple tracker applications using
al Basic, MS Excel, MS Access etc.

ever, where performance and customized

interface is recommended.

However, especially recei
complicated in such applications. Rather use

TPI for C++ applications.
he other hand, using the COM interface for
alBasic is very convenient, including
ving data (through Event handlers).

243

Refer to Samples 5 (VB) and Sample 8 (Excel) for
further information on how to apply the emScon
COM interface for Visual Basic clients.
Sam
altho
applications, we rather recommend to use the
C++
Samples 14 and 15 show the usage of the COM
TPI from VB .NET and C# applications

5.2

ple 7 shows the usage from within C++,
ugh we do not recommend this. For C++

API directly.

respectively.

 COM TPI Programming
Ins

VBA Applications
7, it

000) for VBA client programming.

ply to VisualBasic/VBA

1. ferences

2.

 called 'creatable'
word 'New'.

Connect

tructions

5.2.1 VisualBasic and
Due to several problems and bugs in Office 9
is recommended to use Office 2000 (Excel
2000/Word 2

The following steps ap
(Excel, Access):

Import LTControl to the project's re
list.
Select Project > References > LTControl.dll.
(You may need to browse if dll not shown in
the list). Make sure the selected one matches
the one registered.

Declare an object of type LTConnect for each
TPI/tracker.
LTConnect is the only so
object, hence the key

Dim ObjConnect As New LT

3. Declare only one
in

of the TPI controlling
terfaces, either synchronous or

 use

 answers would be

asynchronous. It is not recommended to
both synchronous and asynchronous
interfaces from within one LTConnect
instance.
When doing so, some

244

duplicated and arrive on ‘both’ channels
making it difficult to hand
application.
The keyword WithEvents is optional, and
should only be used in combination with
LTC_NM_Event selected as

le with an

vates the related

ync

NotificationMethod. It acti
connection point interface for event
handling.

Dim WithEvents ObjSync As LTCommandS
Dim WithEvents ObjAsync As LTCommandAsync

4. Connect to the Tracker Server and initialize
n

 Visual
, this is often performed in the

Form_Load function.

interface pointers, as is typical in a
application startup procedure. In
Basic

Private Sub Form_Load()
 On Error GoTo ErrorHandler

 ObjConnect.ConnectEmbeddedSystem "192.168.0.1"
 ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, 0
 Set ObjAsync = ObjConnect.ILTCommandAsync

 Exit Sub
 ErrorHandler:
 End ' Exit application when connect failed
 MsgBox (Err.Description)
End Sub

5.

6. thod, if using
events.

7. Initialize ObjAsync pointer with the related
property of the ObjConnect.
Use error handlers as shown, since interface
methods may throw exceptions.

8. Call Tracker functions:
Private Sub Initialize_Click()

Call ConnectEmbeddedSystem() with the IP
address of the Tracker Processor.

Select the LTC_NM_Event me

 On Error GoTo ErrorHandler

 ObjAsync.Initialize
 Exit Sub
 ErrorHandler:
 MsgBox (Err.Description)
End Sub

 Invoke only one command at a time when
using the asynchronous interface. No other
command should be sent until a pending one has
completed. This behavior makes up the

245

asynchronous approach.
With the synchronous interface, calls can be

n.
rors, SystemStatusChange,
nt, reflectors) are always

ure, regardless whether
synchronous interface.

de generation for

queued within one functio
Some answer types (Er
continuous measureme
asynchronous by nat
using synchronous or a

9. Declare event handlers.
VB provides automatic co
event handler bodies.

rivate Sub ObjAsync_ErrorEvent(_ P
 ByVal command As LTCONTROLLib.ES_Command, _
 ByVal status As LTCONTROLLib.ES_ResultStatus)

 ‘For example indicates a beam broken event
 If not (status = ES_RS_Unknown) Then
 MsgBox (command & CStr(" , ") & status
 Else
 MsgBox(“unknown Error”)
 Endif
 End Sub

10. Retrieve data during continuous
measurement events.
Events for continuous measurements (and
StillImage results) do not provide the dat
directly. The data must be retrieved

a

explicitly by using ILTConnect::GetData().
lock with struct type In C++ mask a data b

casts. For VB and VBA, ILTConnect provides
some convenient functions.

246

Private Sub LtSync_ContinuousPointDataReady(_
 ByVal resultsTotal As Long,_
 ByVal bytesTotal As Long)

 On Error GoTo ErrorHandler

 Dim numResults As Long
 Dim measMode As Long
 Dim temperture As Double
 Dim pressure As Double
 Dim humidity As Double
 Dim data As Variant

 LtConnect.GetData data

 LtConnect.ContinuousDataGetHeaderInfo data, numResults,_
 measMode, temperture, pressure,_
 humidity

 For index = 0 To numResults - 1

 LtConnect.ContinuousPointGetAt data, index, status,_
 time1, time2, dVal1, dVal2, dVal3

 ‘ Todo: Do something with the measurement data here
 Next

 Exit Sub
 ErrorHandler:
 MsgBox (Err.Description)
 End Sub

ContinuousDataGetHeaderInfo()/ContinuousPointGe
tAt(rmance. They have been

r C++
t

ation' based on the

L

ing several commands). Events are

) may affect the perfo
primarily designed for use with VBA. Fo
applications and VB, there are more efficien
ways to extract continuous measurements.

5.2.2 C++ Applications
A complete C++ 'console applic
COM TPI is shown below. It shows import of the

TControl and how to declare and initialize
objects. The application uses the synchronous
interface (queu
not recognized with a 'console application'

 See Sample 9 of the emScon SDK for a

CES
minimal C++ application, demonstrating

CommandApi as well the CESAPIReceive
class

247

#include <stdio.h>
#include <atlbase.h>

extern CComModule _Module;
#include <atlcom.h>

#import "LTControl.dll" no_namespace, named_guids,
 inject_statement("#pragma pack(4)")

int main(int argc, char* argv[])
{
 CoInitialize(NULL);

 try
 {
 ILTConnectPtr g_pLTConnect;
 ILTCommandSyncPtr g_pLTCommandSync;

 g_pLTConnect.CreateInstance(__uuidof(LTConnect));

 g_pLTConnect->ConnectEmbeddedSystem("127.8.34.61");
 g_pLTCommandSync = g_p LTConnect->GetILTCommandSync();

 g_pLTCommandSync->Initialize();
 g_pLTCommandSync->PointLaser(1.7, 2., 0.6);

 g_pLTConnect->DisconnectEmbeddedSystem();
 }
 catch(_com_error &e)
 {
 printf("Exception:%s \n", (LPCTSTR)e.Description());
 }

 CoUninitialize();
 return 0;
}

 Note the statement:
#import "LTControl.dll" no_namespace, named_guids,
 inject_statement("#pragma
pack(4)")

This statement must, and not as shown, reside on
one ll
resides in the current directory, otherwise specify
the p
..\ES_SDK\lib\LTControl.dll.

single line. It is assumed that LTControl.d

ath, for example

 Other than VB applications, COM TPI- based
C++
the s
g_pLTC

applications need to call CreateInstance(), and
tatement:
ommandSync = g_pLTConnect->GetILTCommandSync();

repla
Set Ob

ces the related VB call:
jAsync = ObjConnect.ILTCommandAsync

 See Sample 7 for setting up an event sink for
a Wi
is no

5.2.3
The
diffe

ndows application (Although this approach
t recommended).

 Notification Method
following enumeration type defines the
rent methods the SelectNotificationMethod can

248

take. Only one of these methods can be active at a
time
be ca
valu

. Therefore, SelectNotificationMethod should
lled only once with one of the following

es:
enum LTC_NotifyMethod
{
 _NM_None, // No notification (using nothingLTC else
but
 // synchronous calls)
 LTC_NM_Event, // notify through connection point
interfaces
 // (Events)
 LTC_NM_WM_CopyData, // notify through copydata and pass data
 // directly with message
 LTC_NM_WM_Notify, // notify through WM message and pass
only size
 // through lParam
};

•

ld be

nc and async
he

ethod method should be

e arrived data

indow that gets the
message must be passed through

r

LTC_NM_None
In combination with the synchronous
interface, neither events nor Windows
messages are sent. Hence neither a
continuous measurement nor trapping error
events (beam broken etc.) is possible. The
targetHandle and cookie of the
SelectNotificationMethod method shou
zero.

• LTC_NM_Event:
Events are used to notify the client on
asynchronous answers (sy
interface). The targetHandle and cookie of t
SelectNotificationM
zero.

• LTC_NM_WM_CopyData
The client is notified by a WM_COPYDATA
message upon data arrival. Th
block is transferred with the message.
 See Win32 API documentation on
WM_COPYDATA for details.
The handle of the w

targetHandle. If there are multiple LTControl
instances (more than one tracker), the call of
SelectNotificationMethod for each LTControl
instance must get a different cookie, in orde
to identify incoming messages with the
respective tracker. The number of cookies is

249

unlimited. They are passed to the client
through the pCopyDataStruct → dwData
member. The transferred data needs to be
interpreted by using the structures defined

The client is notified by a user-defined
r a 'registered

ie is available as wParam at

h targetHandle.
e size of the block is passed with the

 lParam). The GetData()

ined as

in the C TPI as masks.

• LTC_NM_WM_Notify

message, WM_USER+XXX o
message'. The CopyData method has one
cookie for each tracker. Other methods have
cookies only if there is more than one
tracker. The cook
the client application. The handle of the
window that gets the message must be
passed throug
Only th
message (through
method of the LTConnect interface must be
called in order to retrieve the data.

The method SelectNotificationMethod is def
follows:
HRESULT SelectNotificationMethod(
 [in] LTC_NotifyMethod notifyMethod,
 [in] long targetHandle,
 [in] long cookie);

 Implementing an event sink in a Windows

ed.
S

ost
omplicated, the 'LTC_NM_Event' method is

 return

est these return codes,

application, using the
LTC_NM_WM_COPYDATA or
LTC_NM_WM_Notify is recommended.

Using 'LTC_NM_Event', although possible (as
Sample 7 shows), is complicat

ample 7 demonstrates all different approaches
with disabled code sections. Although m
c
enabled as the default.

5.2.4 Exceptions and Return Types
All methods/interfaces have a HRESULT
type, as per COM design. Applications are
usually not required to t

250

since method failures are signaled by exceptions.
r information

ing describing the reason for
These exceptions come with erro
(mainly a text str
failure)

 Exceptions must be 'caught'. Unhandled
exceptions lead to program aborts.

Exception Handling in Visual Basic

t before the first

ror GoTo ErrorHandler

Each VB function calling interface methods must
provide the following statemen
call:
On Er

At the bottom of the function, before the EndSub
llowing (minimal) code block

it Sub

statement, the fo
must be inserted:
Ex
ErrorHandler:
 MsgBox (Err.Description)

Err.Description is only a default minimal error
text (always in English). Of co
m

urse any other error
essage of your choice can be displayed.

her than a text, the To get the error number rat
error handler would may look as follows:
Exit Sub

ErrorHandler:
 M sgBox (CStr("Error occurred: ") &
 ObjConnect.LastResultStatus)

Do not use the term 'Err.Number'. This is a COM
eless to the application.

tively, the number of the last error
e

error number, which is us

Alterna
(lastResultStatus) can also be retrieved with th
command 'GetSystemStatus'.

 Additional or di
can be inserted after the ErrorHandler label

Exception Handling in C++

In C++ applications, exception handling
performed through 'try/catch' statements. The
caught

fferent error handling code
.

 is

 exception is of type _com_error.

251

 Se Win32API COM docum
portError Interface.

e entation for details of
ISup
try
{
 objSync->FindReflector(5.0, true);
}
catch(_com_error &e)
{
 MessageBox("Exception:%s", (LPCTSTR)e.Description());
}

An e.Description() returns the appropriate string
e failure. 'Try/catch'

 nested, and are required when

than the (default) text
is of interest, use the property

bjConnect.LastResultStatus.

that describes the reason of th
statements may be
queuing several synchronous commands within
one C++ function.

If the error number rather

o
try
{
 bjSync->FindRefo lector(5.0, true);
}
catch(_com_error &e)
{
 MessageBox("Error Nr:%d", objConnect.LastResultStatus);
}

Alternatively, the number of the last error
(lastResultStatus) can also be retrieved with the
com

a turn status

The necessary exception handling precludes
ev

mand 'GetSystemStatus'.

Ev luating the Re

aluation of the return status.

 Certain constellations such as S_FALSE
urn value require an evaluation. ret

Types of 'success' return:
S_OK
S_FALSE

S_OK is returned for ordinary success cases.

Commands that return a status of type
Ra
ES
S_ K. This means
tha
specified tolerance. As a warning no exception

il ppropriate status

Out of
nge OK- example:
_RS_Parameter1OutOfRangeOK returns
FALSE in case of Out Of Range O
t the command succeeded, but is out of

w l be thrown, but a

252

information can be obtained in two different
wa

• rty

• with

ys:

Evaluate the prope
ILTConnect::LastResultStatus.

Get the error Information (error string)
GetErrorInfo().

BSTR bstrError;
 IErrorInfo *pInfo;

 HRESULT hr = GetErrorInfo(0, &pInfo);

 if(pInfo && SUCCEEDED(pInfo->GetDescription(&bstrError)))
 {
 _bstr_t errorString(bstrError);

 pInfo->Release();
 } // if

I .

Languages

ibrary (enum, structs)
supported.

-

 and Access)

supported.

- User defined types of TypeLibrary (enum,
structs) supported with Office 2000, but not
fully supported with Office 97.

n case of command failure, E_FAIL is returned
This automatically leads to an exception (thrown
by the COM framework).

5.2.5 COM TPI Programming
• Visual C++

- All Interfaces supported.

- User defined TypeLibrary (enum, structs)
supported.

- Event and message notification methods
supported.

• VisualBasic

- All interfaces supported.

- User defined TypeL

 Event and WM Message Notification
methods supported (Events to be preferred).

• VisualBasic for Applications (VBA) (Excel,
 Word,

- All interfaces

253

- Event notification methods supported (WM
ot supported).

C# and VB .NET

- User defined types of TypeLibrary (enum,

- Event notification methods supported

- Scripting Languages (VBS, JavaScript)

 COM

Could be achieved by providing a COM
Idispatch wrapper around the LTControls

Messages n

•

- All interfaces supported.

structs) supported

Currently not supported. Support of these
languages requires 'Dual' or IDispatch
interfaces.

custom interfaces.

 It is recommended to use Office 2000 for TPI
VBA Programming. Office 97 (Excel 97, Word
lacks UDT and contains some bugs that m
development of TPI clients virtually imposs
as soon as events are involved.

Interface methods using 'struct' parameters,
which do not support user-defined types (Office
97 only), cannot be used from within

97)
ake

ible,

 VBA.
However, functions are available based on basic
data types, as a work around.

Older versions of VBA may lack support of
enum-type symbols, so they need to be passed as
4 Byte (long) values. Therefore the numerical

 representation of particular enum values must be
known. In C-language TPI, these values are
explicitly enumerated.

 See TPI _C_API_Def.h in SDK, for enum
definitions. A type library viewer will also show
the numerical values.

Example
Enum definition:

254

enum ES_TrackerTemperatureRange
{
 ES_TR_Low,
 ES_TR_Medium,
 ES_TR_High,
};

ES_ TR_Low =0, TR_Medium=1 and
ES_TR_High=2

• Command in a VB application
ObjSync.SetTemperatureRange ES_TR_High

• Command in (old version) VBA
ObjSync.SetTemperatureRange 2

Only use the second approach if the first one is
not supported
environment.

5.2.6 Proper Interface Selection
Unlike the C and C++ TPI, the COM TPI is a D
library and not an include file. This DLL provi
an easy to use programming interface for the
Tracker Server. This makes it suitable for
programmers with minimal programming
expertise to design simple tracker applications
The COM TPI also opens doors to program
languages such

 with your programming

LL
des

.
ming

 as VisualBasic, Delphi, VB.NET,

ver C++ TPI, the Win32 Sockets 2.0 API
and VC++ ATL. The

red to deal with
TCP/IP communication libraries or system
programming interfaces.

VBA (Office Macro Languages) etc.

The interface is made- up of a so-called COM
object. It is designed as an ATL DLL COM server.
The DLL is named 'LTControl.dll' and comes as
part of the emScon SDK. LTControl provides
built-in TCP/IP communication.

The LTControl COM-object DLL is based on the
tracker ser

LTControl.dll is, in a sense, a
Tracker Server C++ Client. However it acts as
Server from applications (based on LTControl)
point of view.

The programmer is not requi

255

The high-level TPI supports both synchronous
nd asynchronous methods.

Note: Using the ‘synchronous’ interface may

actions cannot be interrup
OrientToGravity..), as thi
asynchronous communic

.
B.

m
 to the synchronous

t g is more
hr

h m

se 'inte

 Librar ontrol.tlb is also

LTControl is strictly based on the C++-
 programming

terface.

a

provide some convenient properties. However,
there are also some disadvantages: Long- taking

ted (FindReflector,
s is possible with
ation on using

‘StopMeasurement’ command. Synchronous
commands also imply potential timeouts. They
also offer less transparency and control to the
programmer.
For highly professional applications, we
recommend programming in C++ or C#, hence
using the C++ or C# interface directly (which are
asynchronous be design)
interface for VB/VBA/V
programming, we recom
asynchronous COM interface

 If using the COM
NET/C# application

end to prefer the

interface! Although clien
difficult with the async
programmer has muc
transparency.

- programmin
onous interface, the
ore control and

COM objects expo
Type-Library, which is im

rfaces', described by a
plicitly included in the

y LTCDLL. A pure Type
available, although not really needed. This High-
level interface does not provide any additional
functions (in terms of Tracker Server controlling
functions).
TPI, with a high-level, convenient
in

 COM interfaces work well together wi
Visual Basic, Delphi and Office Macro

th

rogramming languages (VBA) on the Win32

r those types of languages.

p
platform, while using the emScon C or C++
interface is difficult fo

256

COM vs. C/C++ Programming

Advantages Disadvantages

No include-file to deal Comes as a DLL (AT
with on using COM TPI. COM component). Its

L

source code is not public,
which complicates
application debugging.

No TCP/IP library or
function needs to be

Is limited to Win32

provided. All these
functions are built-in.
Only the IP address of
the tracker server needs
to be provided.

platforms.

The COM interface offers
both synchronous and
asynchronous

Due to COM overhead,
the performance m
affected.

communication support.

ay be

There are wide varieties
of notification methods
for arrival data when
using asynchronous
communication.

Since TCP/IP
communication is buil
in, there are no 'tuning'
possibilities.

t-

Supports various
programming languages.
Easy to use due to
support of 'IntelliSense'
for Microsoft Visual and

The component needs to
be registered on the clie
PC.

Office programming
tools.

nt

Interfaces and Notification Methods

 See chapter 'COM Interface' for more
information on the interfaces provided.

5.2.7 Type- Library
In order to get detailed information about the
Interfaces (including data types, properties,

257

methods and events) exposed by a COM object, a
COM viewer may be used. Visual Studio offers
such a viewer: The OLE/COM Object Viewer can
be launched from the Tools menu of VC++.

.

5.2.8 COM TPI Reference
The type library of a COM object can be seen as
Interface Refe

Listing all the methods redundantly in this
manual would

The type libra
environment to provide 'IntelliSense' support.
That is, the development environment supports
the programm
parameters in

The method names of the COM TPI partly differ
from those of the C++ interface (Although most of
them – especially the 'Set/Get' functions – are
named accordingly). This 'inconsistency' comes
from the high- level approach of certain methods.
However, by viewing the list of available
functions (type- library, Intellisense), it is quite
easy to find the proper methods and their
relatives to the C / C++ interface (where the
parameters are described).

Note that asynchronous methods never return
any data. Data is returned through events in
these cases. On the other hand, synchronous
methods always return the result data (if any) as

n
serv
synchronous and asynchronous approach.

File > View Type Lib > LTControl.dll or LTControl.tlb

rence.

 not make sense.

ry enables a development

er in selecting methods and
 an active manner.

parameters.

Co cerning input parameters (sent to the tracker
er), there is no difference between the

258

5.2.9
COM objects must be registered on the

pl ed.

LTControl.dll Installation
t PC

(both developer and customer PCs

ocated in the
all

ll
from the Start/Run menu of the

 Registering COM Objects

ap ication PC before they can be us

• Register LTControl.dll on the clien

).

• If LTControl.dll is l
C:\WINNT\system32 directory, c
Regsvr32
C:\WINNT\system32\LTControl.d

explorer task-bar.

 The LTControl.dll does not
,

trol.dll succeeded'.

0000007e' most

L.dll as
escribed below. After that, repeat

A
•

indows system/system32 directory OR to

depend on any other custom DLL
it can be registered anywhere. The
Windows system directory is the
common location.

• A message box appears confirming
registration – 'Registering of
LTCon

• A message such as: Error 'Load Library
failed, error 0x
likely indicates that the PC lacks a
correct ATL.dll installation
(missing, wrong version or not
registered).
In this case, first install AT
d
registering of LTControl.dll.

TL.dll Installation
 Copy Atl.dll from ES SDK 'Lib' directory to

W
LTControl.dll directory.
Unicode version for WinNT/Win2000. ANSI
version for Win9x/Win ME.

259

 See properties of ATL.dll for operating
systems supported.

 Register Atl.dll – Regsvr32.exe
<path>\Atl.dll.

 Repeat registration of LTControl.dll.

.2.10 Synchronous versus
synchronous Interface

•

•

5
A
When designing a client application using the
L
s
u

D
a

•
rn hile the

•
 is much easier. Handling Data-Arrival

or Notifications is not required (except in

• nchronous interface and the events

ent), an

but in

event sink is not required and the WithEvents

message handlers and not event handlers, in this
case.

• With the synchronous interface, some answers
remain asynchronous by their nature - continuous
measurement packets, Reflectors and error answers

TControl COM component, either the
ynchronous or asynchronous interface can be
sed.

ifferences between the synchronous and
synchronous interface.

The functions of the synchronous interface do
not retu before the task is completed, w
asynchronous functions do so (see C/C++-TPI).

In general, programming with synchronous
functions
Events
some special cases).

With the asy
notification (that is, calling
SelectNotificationMethod with LTC_NM_Ev
Event- Sink must be implemented. In VB, this is
done by defining the WithEvents keyword,
C++ this is a bit more complicated. In addition,
the appropriate event handlers must be
implemented.
 With any other notification mechanism, the

keyword must be removed. Implement Windows

260

(these may partly occur non-command related,

ands, events or
cations must still be caught - See former

ragraph. Any other notification mechanism
 the WithEvents

ord must be removed. In this case, do not

 must be
implemented instead.

•
 – a
d p e

•

5.2.

• D

r in

for example beam broken).
With synchronous comm
notifi
pa
does not need an event sink, and
keyw
implement event handlers; appropriate
Windows message handlers

Using both interfaces in the same LTConnect
instance lthough possible – usually makes no
sense an artly leads to duplicate answers. Us
of both interfaces within one and the same
application is therefore not recommended.

5.2.11 Multi- Tracker Applications
On multi tracker (multi tracker server) systems,
create a separate instance of LTConnect for each
tracker.

12 Visual Basic Boolean variable

evaluation
o not test explicitly against the VB keyword

'True', if using the Get<FunctionName>Ex
methods of the LTControl, for those commands
returning Boolean data within their result
structure. This is because the Boolean membe
these structures, if true, is one (1). However, the
VB keyword 'True' evaluates to (-1). Always test
the variable directly, or against 'Not False'.

261

Example
ObjSync.GetContinuousDistanceModeParamsEx dataout

If (dataout.bUseRegion) Then
 MsgBox "bUseRegion is True"
End If

or

If Not (dataout.bUseRegion = False) Then
 MsgBox "bUseRegion is True"
End If

are both correct. However, the following would evaluate to a
wrong result:

If (dataout.bUseRegion = True) Then
 MsgBox "bUseRegion is True" ‘ No message even flag true!
End If

5.2.13 Reading Data Blocks with Visual
Basic

n

 also be ported to VB. Events
ith unique events for

almost every type of arrival data (especially when
 these

e

Arrival data reading with C++, as shown i
'Handling Data Arrival – Continuous
Measurements', can
for VB are used here, w

using the asynchronous interface). Most of
pass their results through basic data typ
parameters.

 See chapter 'Handling Data Arrival –
Continuous Measurements'

 Message notification methods with VB are
not demonstrated here.
However, there are some exceptions where the
data must be retrieved explicitly upon an
incoming event. These types of events can be

ng

The code below shows an implementation of the
It

eceived. This handler does some diagnostics –
checks whether the size of read data complies

identified by the DataReady term in their names.
The continuous measurement events are amo
these.

ContinuousPointMeasDataReady() event handler.
does not demonstrate the processing of the data
r

262

with the passed parameter. If OK, the size is
displayed, otherwise

B

an error message is shown.

y calling the ObjConnectGetData() function, the

nd

not

arrived data (that caused the event) is being read
into a local buffer. The application interprets a
processes the data. In order to get the
measurement values, loop through the array and
interpret the array elements with MeasValueT (
shown here).

 VB may not be the right choice to process
(high rate) continuous measurements, especially
when running the interpreter. The VB project
must be compiled first.
Private Sub ObjAsync_ContinuousPointMeasDataReady(_
 ByVal resultsTotal As Long, _
 ByVal bytesTotal As Long)
 Dim data As Variant
 Dim tp As VbVarType
 Dim sz As Long

 ObjConnect.GetData data
 tp = VarType(data) ' type; we expect a Byte arryay

 If (tp = vbArray + vbByte) Then ' Byte Array
 sz = UBound(data) + 1 ' index is zero based!

 If (bytesTotal = sz) Then
 MsgBox sz 'display # of bytes received
 Else
 MsgBox CStr("Unexpected size:") & sz _
 & CStr(", expected:") & bytesTotal
 End If

 End If
End Sub

 It is not necessary to read data here (with
GetData). Answers may be filtered out and o
those data pack

nly
ets of interest can be read.

herwise no notification
w l

The principles shown here also apply to message
handlers, if one of the message notification
me

With TCP/IP data must be read at socket level
(see previous samples) ot

i l arrive again.

chanisms is selected.

 See chapter 'Answers from Tracker Server' on
how to mask/evaluate incoming data blocks.

263

5.2.1 t

Exce

The
with

Ac e ms
are
with
parameters cannot be used. VBA that comes with

h limitations.

4 VBA Macro-Language Suppor

l, Word, Access

LTControl COM component can also be used
 VBA (Visual Basic for Applications), the

built-in Macro language of MS Excel, Word and
c ss – with the exception that structs and enu
 not fully supported with VBA that comes

 Office 97. 'Ex' functions that take struct

Office 2000 no longer has suc

 It is highly recommended to use Office 2000
or h
Office 97 (Excel 97/Word 97) - apart from a
missing UDT - contain some bugs that make
development of Tracker Server clients virtually
impo
bug
savin
For t
TPI-SDK are in Excel 2000 format. They may run
with
any changes are saved. Always maintain a safe
(read
The following remarks only apply to Office 97
prog
ordi

User
Visu

•
lo
t
S
within Visual Basic. VBA claims an error
Au
e

igher for Tracker Server VBA Programming.

ssible, as soon as events are involved. This
leads to a completely corrupted file upon file
g, after an event has arrived.

his reason, Excel samples delivered with the

 Excel 97 , but may be destroyed as soon as

-only) copy.

ramming (Office 2000 VBA behaves as
nary VB).

-defined Types, the Differences between
al Basic and VBA97

Both allow defining user-defined structs
cally. However, those structs exported by

he LTControl (such as PacketHeaderT,
ingleMeasResultT) are only recognized from

tomation type not supported if declaring, for
xample, a variable like:

264

Dim val As SingleMeasResultT // works with VB, but not VBA97

• pported by VBA97. The
c
Enums are not su
ompiler does not know the keyword Enum.

User-defined enums cannot be defined
locally, although this works with ordinary
Visual Basic. It is also not possible to use
enum- type variables that are exported by the
LTControl. Declaration as follows are not
possible in VBA97:

h VB, but not VBA97 Dim cmd as ES_Command // works wit

• When implementing an EventHandler that
rs in Visual Basic will

llows (only function header
has enum-type paramete

ad as fore
shown):

Private Sub CommandSync_ErrorEvent(_
 ByVal command As LTCONTROLLib.ES_Command,_
 ByVal status As LTCONTROLLib.ES_ResultStatus)

• When doing the same in VBA97 it will read
ws:
mandSync_ErrorEvent(ByVal command As Long, _

as follo
Private Sub Com
 ByVal status As Long)

Visual Basic keeps the enum type
information and recognizes the parameters

pecific to VBA, it also
exists in VB. There are two different

 type parameters, for
example, call SetMeasurementMode the same

ousDistance);

with their correct enum- types, while VBA just
passes them as long parameters.
However, the symbols of the enum values are
correctly recognized, although not checked
by the compiler for correct typing (which can
lead to errors, which are difficult to find).
This problem is not s

situations where enums and their value-
symbols affect the interface:

Method takes enum

way for both VB and VBA:
ICommandSync::SetMeasurementMode(ES_MM_Continu

1. ES_MM_ContinuousDistance will be
correctly recognized as having the value '2'
(see enum definition).

2. Correct typing of values: VB as well as
the VBA interpreter will not recognize typing

265

errors in enum symbols here. However, b
VB and VBA p

oth
rovide 'IntelliSense', providing

for a selection from a list rather than having
to type them in.

n

A):

3. Event handlers, as we have seen above,
pass enums as long values in VBA. The
incoming values can be tested against enum
symbols. In an event handler, the following
code might be typical (example ErrorEvent i
VB

Private Sub CommandSync_ErrorEvent(ByVal command As Long, _
 ByVal status As Long)
If (command = ES_C_Initialize) Then
 ' do something
End If

If (status = ES_RS_NoTPFound) Then
 ' do something
End If
End Sub

Use extreme caution while typing the symb
with VBA 97. No 'IntelliSense'

ols
 support is

•

•

• event functions has struct parameters
(technical restriction), and have, therefore, no
restriction with VBA97.

5.2.15 Continuous measurements and VBA
Events of continuous measurements do not
directly pass the data.

available.

Summary
There is no problem with enums and VBA97. It is
just a potential error source due to missing type
checking.

Structs (unless locally defined) are not supported
in VBA97. LTControl always offers an alternative
to those functions returning struct parameters.

None of the

 See chapter 'Handling Data Arrival –
Continuous Measurements ' for details.

Handling continuous measurements within VBA
requires care. Events can be 'subscribed' with the

266

WithEvent keyword and pending data can be read
with GetData(), as shown in:

 See chapter 'Reading Data Blocks with Visual
' for details. Basic

Masking Data
The unavailability of (LTControl) structures

he data. With the byte-layout
 appropriate bytes can be

t and exceeds the typical
pertise.

ctions, data blocks can
s

f pointer type-casts:

prevents masking t
of the data blocks the
extracted 'manually' and assigned to basic dat
types.

a

 This is not convenien
Excel programmer's ex

Even with VB, although structs are available,
masking data is not that easy as in C++. By
providing some helper fun
be copied to appropriate struct parameter
instead o
ILTConnect::ContinuousDataGetHeaderInfo()
ILTConnect::ContinuousPointGetAt()
ILTConnect::ContinuousPoint2GetAt()
ILTConnect::Continuous6DDataGetAt()

This allows extracting information of interest
from data blocks of type ES_DT_MultiMeasResult,
ES_DT_MultiMeasResult2 and
ES_DT_Multi6DMeasResult.

tation, with comments, of
tinuousPointMeasDataReady event handler

that demonstrates usage of these functions reads

A VB (VBA) implemen
the Con

as follows:

267

Private Sub LtSync_ContinuousPointMeasDataReady (_
 ByVal resultsTotal As Long, ByVal bytesTotal As Long)

 ' a continuous point meas packet came in. Note that in
 ' case of continuous measurements (due to multiple points /
 ' variable size of packet) only # of results and packet size
 ' are passed in (which both are not really needed here)
 ' So we first must GET the data, then retrieve information
 ' out of the gotten block.

 ' since we are doing function calls to a COM object
 ' (LtConnect) that can throw exceptions, we need an error
 ' handler. Note we would not require an error handler in the
 ' other Event Handlers (LtSync_ReflectorsData,
 ' LtSync_ReflectorPositionData) because (usually) no COM
 ' functions are called there subsequently

 On Error GoTo ErrorHandler

 ' 1. Get the data

 Dim data As Variant
 LtConnect.GetData data

 ' 2. Get header info. Calling this function is optional.
 ' the only thing we need here is numResults. However,
 ' it's the same as resultsTotal passed to the functions.

 Dim numResults As Long
 Dim measMode As Long
 Dim temperture As Double
 Dim pressure As Double
 Dim humidity As Double

 LtConnect.ContinuousDataGetHeaderInfo data, numResults, _
 measMode, temperture, pressure, humidity

 ' since we have numResults twice from different paths, lets
 ' check them for compliance!

 If Not (numResults = resultsTotal) Then
 MsgBox "Fatal Error - unexpected discrepancy"
 End If

 ' since we know how many results, we can loop over the index
 ' Note that index runs form 0 to numResults - 1

 For index = 0 To numResults - 1

 ' data and index are input parameters, rest output

 LtConnect.ContinuousPointGetAt data, index, status, _
 time1, time2, dVal1, dVal2, dVal3

 ' TODO: do something with each result here

 Next

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

ContinuousPointGetAt()/Continuous6DDataGetAt()
may have an impact on performance. They have
been primarily designed for use with VB(A). For
C++ applications, more efficient ways to extract
continuous measurements exist.

ata processing,
ay not have enough performance when using

versions. In special cases the incoming results
need to be buffered.

VBA applications, depending on d
m
continuous high data rates. Always run compiled

268

Use of values instead of symbols, in Visual Basic,
voids the problem of typing incorrect enum a

symbols, which cause errors difficult to detect.

 A complete .tlh file is automatically
generated when importing LTControl.tlb into a

ages VBS (Visual Basic
d

m interfaces (dual interfaces) have the
ame disadvantage as IDispatch – lack of

i

No

(Be
exceptions may not be raised in the client
applica
Do not set this property for Microsoft clients (VB,
C++, C#, Excel..), that is, leave its default value 0.

For further information, see commented code in
Sample 20 (LtcDelphiClient), where this property

 set to 1.

VC++ project.

5.2.16 Scripting Language Support
Pure scripting langu
Script), JavaScript etc. are currently not supporte
by the LTControl COM component.

This would require IDispatch interfaces rather
than custom interfaces. Combinations of IDispatch
and custo
s
performance.

5.2.17 Exception Handling for Non-
M crosoft Clients
The emScon LTControl COM interface also
supports Windows application development with

n- Microsoft Tools, such as Borland Delphi.

For such applications, it may be necessary to set
the property
'LTConnect::ExceptionHandlingPolicy' to 1

fore connecting to emScon server). Otherwise

tion.

is

Example (Delphi):
LtcConnect.Set_ExceptionHandlingPolicy(1);

269

5.3 COM TPI Samples

5.3.1 Sample 5
This chapter is related to the 'Sample5' folder o
the emScon SDK Samples.

S

f

ample 5 (LtcVBClient) comes as an LTControl-
lient.

Note: 'LTControl.dll' must be correctly registered
b

S

If LTControl is correctly registered,
ctly be opened with

Visual Basic Studio. It should be ready to compile
and run.

In order to create a Sample 5- type application
f

-

-
t as LtcVBClient.vbp (or use any name

Choose menu Project > References.

 for the

based Visual Basic emScon C

efore proceeding.

ee chapter 'LTControl.dll Installation' for details.

'LtcVBClient.vbp' can dire

rom scratch, follow the steps:

 Launch Visual Basic 6.0, choose New Project >
Standard exe. Click OK.

 Save the default Form1 as LtcVBClient.frm and
the projec
of your choice).

-

- In the 'Available References' list, look
entry 'LTControl 2.x Type Library' and check the
box in front of.

 Ensure that the file path at the bottom of
the dialog matches the control's registration
location. Otherwise browse for
location.
Finally click OK.

the correct

ol.dll,
TL-type COM object, can also be

Accessing COM Interfaces

Other than ActiveX (OCX) controls, LTContr
which is an A

270

us for non-window based
ple, it will also support, pure C-clients

sole applications).

ontrol control object to the VB application
 (as ActiveX controls require).

ed applications. For
exam
(con

It is neither necessary nor possible to place an
LTC
Form

• To a
vari
'General' declaration part of the code behind the
app
'New
Dim Ob

Interface Variable Declaration

ccess LTControl's interfaces, an object
able of type LTConnect is needed in the

lication form. Note the essential keyword
':

jConnect As New LTConnect

• Just after that, declare an object for each one of

 synchronous or an asynchronous
oth, as

ata arrivals and other

the shown types. Note the keyword
'WithEvents'.(In a real application, only one -
either a
interface – should be declared. Declaring b
done here for demonstration purposes, could
result in some duplicate d
confusion).
Dim WithEvents ObjAsync As LTCommandAsync
Dim WithEvents ObjSync As LTCommandSync

Connecting / Disconnecting to Server and
Initialization Tasks

A variable of LTConnect object is always required,
ication, only one of the

is

, LTCommandAsync or

ommandAsync
es act like 'pointers'. These 'pointers' must

b

whereas, in a real appl
LTCommandSync or LTCommandAsync objects
required. Depending on the selected notification
mechanism
LTCommandSync is to be declared with/without
event support (WithEvents keyword).

The LTCommandS
variabl

ync and LTC

e initialized with the related properties of
LTConnect:

271

• Just after calling the
ObjConnect.ConnectEmbeddedSystem()
method, initialize the 'pointers' as shown

 exceptions in case of

se (On Error Goto...). It's
ghly recommended to wrap every COM-

h an 'On Error
et

ore the

Here is a 'stripped down' version of the Samples'
'Connect' handler. It shows only the essential
ste

below (In the sample, this is done in the
event handler of the 'Connect' button).
Further, the notification method must be
selected (SelectNotificationMethod ()).

 COM methods throw•
failure. The sample code shown below shows
how to handle the
hi
method calling function wit
Got Error Handler' statement. Do not forg
the 'Exit Sub' statement just bef
'ErrorHandler' label.

ps.
See Sample code for a more sophisticated
'Connect' handler (with getting the IP address
from user- interface etc.)
Private Sub Button_Connect_Click()
 On Error goo error handler

 ObjConnect.ConnectEmbeddedSystem "192.168.0.1", 700

 ' This is important if events want to be received
 electrification's LTC_NM_Event, 0, 0

 ' NEVER FORGET to initialize the objects this way !!!!!
 Set ObjSync = Connecticut's
 Set ObjAsync = disconnectedness's

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

 The End statement in the error case exits the
application, when connection to the tracker
has failed.

To disconnect from Tracker Server use a h

server

andler
as shown below (Only essential code is shown):
Private Sub Button_Disconnect_Click()
 disconnectednesses
End Sub

 See Sample 7 for an explanation of the call
'electrification's LTC_NM_Event, 0, 0'.

272

However, for VisualBasic applications, it usually
ense to call this method with

n handler
ompleted with the following code:

does not make s
other parameters.

Implementing Synchronous Commands

Add a button named InitSync. The butto
should be c
Private Sub InitSync_Click()
 On Error goo error handler

 ObjSync.Initialize

 Exit Sub
 ErrorHandler:
 MsgBox (Err.Description)
End Sub

Since this is a synchronous call:

• ObjSync.Initialize will not return before the
tracker has finished initializing.

ached until

esides in the InitSync

tton) handler, otherwise the
pplication will terminate in case of an error

n/Handler Measure Single Point
ent the handler as shown below. It is

erver is set to 'stationary'

essage box (only x, y and z are shown).

• The Exit Sub statement will not be re
initialization is finished. A real application
would at least display an hourglass cursor
while the program r
function.

The error handler should be implemented in
every command (bu
a
(unhanded exception).

Add another Butto
and implem
presumed the tracker s
when triggering this command (In Sample 5 code,
this is ensured in the Button_Connect_Click()
handler'. Of course the laser beam must be
attached to a reflector in order to perform this
command successfully. The result – since a
synchronous answer – can be shown directly in a
m

273

Private Sub StartMeas_Click()
 Dim x As Double
 Dim y As Double
 Dim z As Double
 Dim d As Double 'd is a dummy variable
 Dim b As Boolean

 On Error goo error handler

 ObjSync.MeasureStationaryPoint x, y, z, d, d, _
 d, d, d, d, d, d, _
 d, d, d, d, d, d, b

 MsgBox (x & CStr(" , ") & y & CStr(" , ") & z)

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

 If this command was an asynchronous call, it
would not be possible to display the result with
this functio

in
n. A result display is performed in the

appropriate asynchronous answer handler.

t
ith the

t

For more details, refer to Sample 5 source code.

Implementing Asynchronous Commands

Visual Basic with 'IntelliSense' provides suppor
for the available functions of an interface w
function parameters.

Add a button named InitAsync.

 The command handler should be completed with
he following code:

Private Sub InitAsync_Click()
 On Error goo error handler

 ObjAsync.Initialize

 Exit Sub
error handler:
 MsgBox (Err.Description)
End Sub

In contrast to the synchronous initialize function,

in
se

Catching Events and Messages

For as
be handled by some event mechanism. This could
be
bound, registered, WM_COPYDATA).

this one does not stop at the Initialize() function,
Exit Sub is reached immediately. When tracker

itialization is done, a notification or event is
nt.

ynchronous commands, the answers must

 Events, Windows Messages (custom window-

274

For Visual Basic, Events are the right choice. The

_
s his
mechanism for a Visual Basic application, we
pr
d

D

event mechanism is provided by the
ILTCommandAsyncEvents interface, which is a
ubsidiary of ILTCommandAsync. To activate t

ovided the keyword WithEvents upon the
eclaration:

im WithEvents ObjAsync As LTCommandAsync

When no requirements for catching events exists,
omit the WithEvents keywords in order to save
overhead.

 Not only the asynchronous interface – where
so

erface,

nts and other
ulti- answer' results (such as results to a

ssages
 be

d synchronous by their nature.

absolutely crucial – has an Event interface. Al
the synchronous interface has an Event int
_ILTCommandSyncEvents. It is required for
receiving continuous measureme
'm
'GetReflectors' call), as well as for error me
(such as beam broken events), which cannot
handle

 Events are one of the notificatio
th
Windows messages for asynchronous
notifications the keyword WithEvents bec
obsolete. Windows messa
may be more appropriate for VC++ clients and
will be discussed later. For Visu

n methods of
e LT Control. When alternatively using

omes
ges (instead of Events)

alBasic, Events

ion

is

ill be
activated.

are always the right choice.

• The application must declare what notificat
mechanism to use. We did this with the
statement shown below. Without calling th
function in the initialization part of the
application, no notification mechanism w

 See remarks on continuous measurement
in chapter 'Handling Data Arrival – Continuous
Measurements'.

275

electrification's LTC_NM_Event, 0, 0

• As soon as the WithEvents keyword is decl
the ObjAsync object (or whatever the variable
called) is listed in the top left list box of the
Form's source code window.

ared,
 is

 Just as an experiment: Remove WithEvents
and save the code – the list entry will vanish

• If ObjAsync is selected in the list box, a l
available e

.

ist of all
vent handlers is shown in the right

drop-down list.

 for an event

erate a function
vent. Do this and

me with a

• To generate the code framework
handler, select it from the right list .

Selecting ErrorEvent will gen
named ObjAsync_ErrorE
complete the generated function fra
message box to read as follows:

Private Sub ObjSync_ErrorEvent(_
 ByVal command As LTCONTROLLib.ES_Command, _
 ByVal status As LTCONTROLLib.ES_ResultStatus)
 MsgBox (command & CStr(" , ") & status)
End Sub

This event handler will now be triggered, for
example on a Beam Broken Event.

Note: The 6Dof part of the interface conta
some event- types with a huge count of

ins

arameters. To mention
ryProbeMeasData’, which is the most

e-library for signature).

p
‘Stationa
extreme with 49 parameters (!)

Such excessive parameter lists – depending on VB
version - partly are beyond code- generating
Wizards capability. Lines may be cut, which will
lead to syntax errors (for generated code). In
these cases, the cut lines need to be completed
manually (see typ

276

Extended Synchronous Functions

asic data
ata type parameters are

irement in order to use these functions with
der versions of) VBA (Excel, Access…).

porting user-
d data types (VC++, Visual Basic), having a

e
 provides a collection

h 'extended' functions.

nded functions,

ObjSync.MeasurStationaryPoint has 18 (b
type) parameters. Basic d
a requ
(ol
For programming languages sup
define
function with only one struct parameter would b
more convenient. LTControl
of suc
Note that such extended functions cannot be
provided for Event handlers (Technical
limitation)

One of these exte
MeasureStationaryPointEx, is implemented in the
sample:
Private Sub StartMeasEx_Click()
 Dim result As SingleMeasResultT

 On Error goo error handler

 ObjSync. MeasureStationaryPointEx result

 ' display the result
 MsgBox(result.packetInfo.status & CStr(" , ") & _
 result.packetInfo.packetHeader.Type & _
 CStr(" , ") & result.dVal1 & CStr(" , ") & _
 result.dVal2 & CStr(" , ") & result.dVal3)

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

The data type SingleMeasResultT from the C-TPI
is transparent through the COM interface. The VB
application 'knows' this type, through its
reference to the LTControl.

Remark

Do not test explicitly against the VB keyword
rue', if using the Get<FunctionName>Ex methods

those commands returning

res –

evaluates to (-1).

'T
of the LTControl, for
Boolean data within their result structure. This is
because the Boolean member in these structu
if true – are (1). However, the VB keyword 'True'

277

Always test the variable directly, or against 'Not
lse'. Fa

ObjSync.GetContinuousDistanceModeParamsEx dataout

Example

If (dataout.bUseRegion) Then
 MsgBox "bUseRegion is True"
End If

or

If Not (dataout.bUseRegion = False) Then
 MsgBox "bUseRegion is True"
End If

are both correct. However, the following would evaluate to a
wrong result:

If (dataout.bUseRegion = True) Then
 MsgBox "bUseRegion is True" ‘ No message even flag true!
End If

Further details see 'Readme.txt' file in Sampl
folder and code- comments in source files.

e 5

5.3.
FC

k to
atch asynchronous answers (continuous

in
im

 Refer to a COM book for further details.

nitial steps
for a successful system start and accurate results,
with some disabled code, which demonstrates all

ich
may be more familiar to programmers than event
ha

2 Sample 7
The LtcCPPClient provides a dialog- based M
C++ application. It uses the synchronous
interface, but also implements an event sin
c
measurements and error events).

Programmers need to be familiar with ATL/COM
 order to understand the event sink
plementation.

The LtcCPPClient covers all essential i

other variants of notification methods, wh

ndling.

 See comments in source code.

The disadvantages of message notifications are:
Message Notifications

278

•

• ck is passed
w

•

'switch' statement with the ProcessData()

The result parameters cannot be received
directly.

• There are only general messages for all types of
answers.

Usually only the size of a data blo
ith the message.

The data block must be first read with
GetData() (except for WM_COPYDATA) and
then interpreted. Interpretation is done with a

sample code.

 See chapter 'Handling Data Arrival –
ntinuous Measurements '.

is sample also shows one of the features not

own to the system. It also demonstrates
ntinuous measurements.

Co

Th
shown so far: How to retrieve the reflectors
kn
co

 View the source code for details. Note that
is code contains a relatively big overhead

rver specific part is not that dominant.

rmation that is displayed in list boxes, such
as units, CS-type, is automatically read from
the Tracker

as been actually selected.

Changing the items of one list box
automatically creates a 'Set' for the newly
selected item

th
needed for user interface issues. The Tracker
Se

Source Code Description

• Info

 Server upon startup. What is seen
h

•

.

 On changing units, CS-type etc., some

 is
d'.

•
dependent information may vanish from the
related edit fields to ensure consistency. This
due to the paradigm 'What you see is selecte
Do a 'Get' to recover it, which can also be done
by the application.

279

• On setting new values, the 'Set' command is
automatically followed by a 'Get' (two beep

eps. They must be

sounds). The 'Get' is not required (only for
testing and demonstration purpose).

• Reflectors are read upon client startup. Can be
heard by characteristic be
selected in the reflectors list box.

The GetRef
'emergency' cases. If the client starts before
Tracker Server is ready and the client di
shows up, but is not able to read the reflecto
yet.

lectors button is only required in
 the

alog
rs

•
on selection. By changing the

() (all variants are
an

plete).

• s
owever,

 methods can be
activated by enabling the commented source
co

 The application is based on LTC_NM_Event
notificati
parameter of SelectNotificationMethod in
CCPPClientDlg::OnInitDialog
prepared), a different notification method c
be activated. However, there is only an
incomplete implementation of ProcessData() for
these alternate methods (reflector processing,
for example, is not yet com

 Only the LTC_NM_Event notification method i
fully implemented in this sample. H
data transfer also works with message
methods. One or the other

de.

Only the last call of SelectNotificationMeth
is effectiv

od
e (there should be only one call to this

function).

 See chapter 'Handling Data Arrival –
Continuous Measurements' for details on
obtaining data in general and continuous
measurements in particular.

280

Handling Data Arrival – Continuous Measurements

Continuous measurement streams are always
onous. That is, even if only a

lemented (through which
mmand may be
s measurement packets

 long.
 all the time.

s
•

LTC_NM_Event as

T
m
m
V

• Use one of the Windows Messages notification
m
 S
(d
These may be methods preferred with VC++
clients, especially if the programmer is not

hand, receiving Windows messages within VB
a

•
array. The rest of the

ay elements are padded

handled asynchr
LTCommandSync is imp
the Start Measurement co
invoked), the continuou
will arrive asynchronously.

 A continuous measurement may last very
It is not suitable to block execution

Methods to Catch Packet
Provide a LTCommandSync object with a call to
SelectNotificationMethod, with
first parameter.

his setting allows catching the continuous
easurement packets through the event
echanism. This is especially convenient for
isual Basic.

ethods.
ee 'Sample 7' – where this method is shown
isabled) in the source code.

familiar on setting up event sinks. On the other

pplication is permissible.

The MultiMeasResultT structure only covers the
first item of the
lNumberOfResults - 1-arr
to the packet without gaps.

Continuous measurement packets mostly
c ntain more than one measurem

ration through an array of measurements is
cessary.

o ent value.
Ite
ne

• A code fragment, on how to process a continuous
measurement packet using the event mechanism,
is shown below. This is a client implementation,

281

stripped down and altered from sample 7, of
ContinuousPointMeasDataReady event, whic

 the
h

_ILTCommandAsyncEvents interfaces
Ready(long resultsTotal,

exists for both _ILTCommandSyncEvents and

void __stdcall OnContinuousPointData
 long bytesTotal)
{
 CString s;
 VARIANT vt;
 VariantInit(&vt);

 if (m_pLTConnect == NULL)
 return;

 m_pLTConnect->GetData(&vt);

 MultiMeasResultT *pData =
 (MultiMeasResultT *)vt.parray->pvData;

 ASSERT(pData->lNumberOfResults == resultsTotal);

 for (int i = 0; i < pData->lNumberOfResults; i++)
 {
 s.Format(_T(" %.7lf, %.7lf, %.7lf"),
 pData->data[i].dVal1,
 pData->data[i].dVal2,
 pData->data[i].dVal3);

 // this is application dependent. May differ in your app
 m_pMainWnd->m_edit_Result.SetWindowText(s);
 } // for
} // OnContinuousPointMeasDataReady()

• On using a Windows message notification
method, LTC_NM_WM_Notify, it looks quite
similar. However, with the event method there
is a unique event function for just receiving
continuous results. With message notify
methods, all types of data packets come in
through the same message handler. The data
must be interpreted with a 'switch' statement.
This is done in the ProcessData() function.
 Use of the CESAPIReceive class of the C++
interface is another possibility.

• The following implementation demonstrates
receiving, not only data of continuous
measurements, but also, any kind of data.

LRESULT CCPPClientDlg::OnNotifyMsg(WPARAM wParam, LPARAM lParam)
{
 CString s;
 VARIANT vt;
 VariantInit(&vt);
 m_pLTConnect->GetData(&vt);

 // wParam = msg ID = cookie!
 ProcessData(vt.parray->pvData, wParam);

 return true; // return non-zero if msg handled
}

- Activating this function calls
SelectNotificationMethod() with the following
parameters:

282

// cookie must be in the valid range for a user defined message
m_pLTConnect->SelectNotificationMethod(LTC_NM_WM_Notify,
 (long)m_hWnd,
 MY_NOTIFY_MSG);

- The message ID (which also acts as a cookie
here) is defined as:

#define MY_NOTIFY_MSG (WM_USER+99)

- Entry in the message map must exist as
follows:

ON_MESSAGE(MY_NOTIFY_MSG, OnNotifyMsg)

Provide the ProcessData() subroutine. -
 Not every type of data packet is fully

d: implemente

283

void CCPPClientDlg::ProcessData(void *ptr, int nCookie)
{
 CString s, s2;

 PacketHeaderT *pHeader = (PacketHeaderT*)ptr;

 switch (pHeader->type)
 {
 case ES_DT_MultiMeasResult: // most frequent ones on top
 {
 MultiMeasResultT *pData = (MultiMeasResultT *)ptr;

 for (int i = 0; i < pData->lNumberOfResults; i++)
 {
 s.Format(_T("%lf, %lf, %lf"),
 pData->data[i].dVal1,
 pData->data[i].dVal2,
 pData->data[i].dVal3);

 // do something with data
 // application dependent
 m_staticContMeas.SetWindowText(s);
 } // for
 }
 break;

 case ES_DT_Error:
 {
 ErrorResponseT *pCmdData = (ErrorResponseT *)ptr;

 s.Format(_T("error: command=%d, status=%d\n"),
 pCmdData->command,
 pCmdData->status);

 AfxMessageBox(s);
 }
 break;

 case ES_DT_SingleMeasResult:
 {
 SingleMeasResultT *pData = (SingleMeasResultT *)ptr;
 ASSERT(pData->measMode == ES_MM_Stationary);

 // TODO: do something with data
 }
 break;

 case ES_DT_ReflectorPosResult:
 {
 // Not implemented
 }
 break;

 case ES_DT_Command:
 break; // nothing to do

 default:
 Beep(100, 100); // all other data currently unhandled
 } // switch
} // ProcessData()

 For further details refer to the sample source
code.

 Limitations for high frequency continuous

tions.
ests have shown that under good conditions

rogram design), the LT

measurements (like loss of data) may occur due
to hardware (LAN, PC performance) limita
T
(LAN, PC, Client p
Control is able to handle the maximum data rate
of 1000 points per second, even through the event
notification mechanism, which might have
slightly less performance than the message

284

methods – Low performance of IDispatch
Interfaces.

Known Bugs in ATL Event Sink Implementation
There are currently two known bugs confirmed

Containers

s May
Give Strange Values.

orkarounds provided in

comments in source files.

nt VBA-
ce 97) is not

by Microsoft in VC++ 6.0 concerning event
handlers.

- (Q237771): Events Fail in ATL
when Enum Used as Event Parameter.

- (Q241810) IDispEventImpl Event Handler

Apply one of the w
MSDN and in Sample 7 (file DataArrived.h) for a
practical application of one of the workarounds
provided.

Further details see 'Readme.txt' file in Sample 7
folder and code-

5.3.3 Sample 8
This sample works only with Excel 2000 and
higher, and consists of an Excel sheet with a VBA
macro LtcExcel. Tracker server clie
programming with Excel 97 (Offi
recommended.

 See chapter 'VBA Macro-Language Support
xcel, Word, Access) '.

rence between a VB client and

t goes
cells.

ments in source files.

OM
le

is on how accessing COM methods from C#. An

(E

The essential diffe
an Excel client is that the Excel sheet takes the
role of a VB Form. That is, data input/outpu
through

Further details see 'Readme.txt' file in Sample 8
folder and code- com

5.3.4 Sample 14
This sample shows integration of emScon C
TPI to a C# application. The focus of this samp

285

application just calling SetCameraParams /
GetCameraParams (using synchronous interface)

s.

T

isualStudio.NET) is required.

Further details see 'Readme.txt' file in Sample 14
folder and code- comments in source files.

5.3.5 Sample 15
This sample shows integration of emScon COM
TPI to a VB .NET application. The focus of this
sample is on how accessing COM methods from
VB .NET. The application just demonstrates some
system settings.

This sample is preliminary an might be improved
in future SDK versions.

Note: In order to build/run this sample, the .NET
framework and VisualStudio V7
(VisualStudio.NET) is required.

Further details see 'Readme.txt' file in Sample 15
folder and code- comments in source files.

5.3.6 Sample 18
LiveVideo display application. This sample is
based on the 'LTVideo2.ocx' ActiveX COM
control.

See Chapter 8 / Special Functions / Live Image
display for details.

5.3.7 Sample 20
Concerning its functionality, this sample is
similar to Sample 5, i.e. an LTControl- based

may not be very much related to practice.

This sample is preliminary an might be improved
in future SDK version

Note: In order to build/run this sample, the .NE
framework and VisualStudio V7
(V

286

cl ow i 7
in f V

If no Delphi 7 programming environment is
available, you may download a trial version from

or details, refer to the 'Readme.txt' file in the
ample20 folder and to heavily commented code.

ient. H ever, it is based on Borland Delph
stead o isual Basic.

Borlands homepage.

F
S

287

6 C# - Interface

6.1 Client Programming with C#

6.1.1 Introduction
The samples 14 and 15 (see chapter 4, COM-
Interface) show how to embed the LTControl

OM object into C# applications.
also a C# class- interface

o V7

.1.2 C# Application Programming
esented by the

ich a C# application
e

).

ike 'include-

his DLL named
rapper.dll' is also provided

C
However, there is
similar to the C++ class- interface.

In order to use this interface, the .NET
framework and VisualStudi
(VisualStudio.NET) is required for client
application programming.

6
The C# class interface is repr
include file 'ES_MCPP_API_Def.h' (MCPP relates
to 'Manged C++). This file defines two abstract
classes, 'CESCSAPICommand' and
'CESCSAPIReceive', from wh
must derive its own classes. This is quite the sam
approach as for the C++ interface.
Note the name prefixes 'CESCSAPI' (C#) versus
'CESAPI' (C++

Since C# does not support the C++ l
file' approach, the classes defined in
'ES_MCPP_API_Def.h' must be packed into a
(Managed C++) DLL. This DLL then can be added
as reference to a C# application.

For convenience, t
'ES_MCPP_API_W
with the SDK (ES_SDK\Lib\Unicode).

288

If the DLL should be missing, or if it needs to be
rebuilt due to chan
'ES_MCPP_API_Def.h' file, Sample 16 shows how
to create this DLL.
(Note: An emScon programmer may make
changes to the files 'ES_MCPP_API_Def.h' and/o
'ES_CPP_API_Def.h', although t

ges in the

r
his should

eate the required
e

s

normally neither be necessary nor recommended)

Sample 17 shows a C# Application based on the
emScon C# class interface.

6.1.3 Sample 16
This sample shows on how to cr
'ES_MCPP_API_Wrapper.dll' from th
'ES_MCPP_API_Def.h' file.

This is quite simple: There is only one source file
'ES_MCPPAPIWrapper.cpp' which contain
nothing else than the statement

#include "ES_MCPP_API_Def.h"

In addition, some well known emScon C- includ
files need to be provided in order to compile this
project. (ES_C_API_Def.h, Enum.h etc.)

Note that the resulting DLL
'ES_MCPP_API_Wrapper.dll' has already been
built and added to the
therefore not really required to build it as
in Sample16.
However, Sample16 may help developers to
debug their applications if code in
'ES_MCPP_API_Def.h' needs to be traced.

Further details see 'Readme.txt' file in Sample 16
folder and code- comments in source files.

6.1.4 Sample 17
This sample implements a C# emScon applicat
based on

e

 SDK for convenience. It is
 shown

ion
 the C# class interface. The C++ interface

cannot be used directly in C# applications. A

289

specific C# class interface is therefore provided as
described above.
Note the difference to Samples 14/15, where the
emScon COM interface was used. The one and
the same COM object ca be used for C++ and C#
as well as for visual basic, VBA (e.g. Excel) an
VisualBasic.NET applications.

d

,
e'

function

PIReceive' in which

t
s for
oked

t
'CESCSAPIReceive::ReceiveData'

mple shows one
packet

der() is

e
A

ents.

rementAnswer()' for
etails.

The programming approach is quite the same as
for the C++ interface: Derive classes from both
'CESCSAPICommand' and 'CESCSAPIReceiv
classes, override the 'SendPacket' virtual
in 'CESCSAPICommand' and override those
virtual functions of 'CESCSA
the application is interested in.

The application must provide Socke
communication, and the same conditions a
C++ applications apply: Commands are inv
by calling 'CESCSAPICommand' member
functions and arriving data from the socket mus
be passed to the
Parser. Note that only one packet at a time must
be passed to the parser. The sa
possible approach: First always peek the
header, then only read as many bytes as the
'packet- size' variable indicates. The helper
method CESCSAPIReceive::GetPacketHea
useful in this context.
There is a difference to the C++ interface
concerning continuous measurements. If a
continuous packet arrives, it contains only the
measurement header info, but not the elementary
measurements itself (like in C++ in a variable
sized array). The application must rather use th
CESCSAPIReceive :<MeasType>MeasValueGet
() function to access the measurem
See code in sample 17 (file
'EmsyCSApiConsoleClient.cs'), for example in
function 'OnMultiMeasu
d

290

As already known from C++ samples, sample 17
requires a separate Receiver Thread since it is a

onsole application. In Windows applications,
the Window Message Loop can be used instead.
Hence windows application do not require to be
designed as multi threaded applications. See
related C++ Windows emScon applications.

Make sure the 'ES_MCPP_API_Wrapper.dll' is
added as reference to the project and that the
reference path points to the correct location.
(Sample 17 expects the DLL being in the
applications runtime directory. However, this
may be changed of course).

Sample 17 in not sophisticated in terms of error
/exception handling and command
synchronization. Remember that emScon
commands are asynchronous and it is the
applications responsibility not to send a new
command to the server before the previous one
has completed.

Answer- handlers (virtual overrides) for all types
of answers are implemented.
Also calls for all emScon commands are
implemented, but all except one are commented
in the sample code (any other call may be enabled
instead). Due lack of synchronization, the
provided sample application will mostly mess-
up if sending more than one command.

The most simple way to synchronize the
application was providing an old- style key-press
user- interface (as done in Sample 9). This means
the user performs synchronization by not
pressing the next key before the answer of the
previous command has arrived.

See also the many comments in the code.

This sample is preliminary an might be improved
in future SDK versions.

C

291

Further details see 'Readme.txt' file in Sample 17
folder and code- comments in source files.

292

7 Base User
Interface (BUI)

7.1 Client Programming and BUI

Measurement BUI versus Compensation
pplications

ndalone

nd integrated applications.

e’
he designated

e to

s

e is

n in

ers
er

sted by.

sic User Interface (BUI)

7.1.1
A
The emScon software comes with several
graphical User- Interfaces represented by a WEB-
application (running on internet explorer).
It is important to distinguish between sta
applications a
The Compensation-, Field Check- and Tracker
Server modules are pure ‘stand- alon
applications. For details see t
special manuals fore these applications.
On the other hand, the so-called Measurement-
‘Base User Interface’ (BUI) does not make sens
be used as a stand- alone application, except for
system testing reasons.
This chapter exclusively addresses the
Measurement- BUI.
The BUI requires a Master- application the BUI i
hosted by. It mainly acts as a ‘Display’
component of such a host application. Ther
also a Toolbar to control the most common
Tracker actions. However, there is (other tha
the stand-alone WEB applications) no way to
perform settings such as ‘Units’, CS- Type, Filt
etc. These have to be performed by the Mast
application the BUI is ho

7.1.2 EmScon Ba
The emScon Base User Interface (emScon BUI)
provides a graphical interface to emScon's most

293

common functions. Access to it is provided
through the Microsoft Internet Explorer.

The BUI includes:

• A Toolbar for common sensor control such as
sensor moving or triggering measurements.

• A window for result display (DRO).

• Web pages providing access to selected senso
and system settings.

7.1.3 Integration of BUI into applications
The BUI can be used as standalone app
testing reasons. However, there is no
practical use for the BUI as a standalone
application.
The BUI, how

r

lication for
 real

ever, allows to be integrated to

a graphical interface to

-type etc. are not provided by the
UI. An application hosting the BUI will have to

do emScon settings control through the ordinary
TPI interface. Also retrieving measurement data
has to be provided through the TPI (Unless one
wants just to VIEW the data through the DRO).
The BUI can be launched from within an
application (see Sample 13), if not already
running. However, it is also possible to start the
BUI manually and execute a 'data- catcher'
application (without BUI launch) after that. Such
an application then is capable to process data
(triggered by the BUI) as far as appropriate
handlers are provided.

7.1.4 Sample 13
This sample is a 'BUI- launcher and - listener', to
launch the emScon BUI from within a client

client applications. This approach is
demonstrated in Sample 13.

The BUI provides
emScon. However, general system settings, such
as Units, CS
B

294

application. That is, the BUI becomes part of the
client application. The client application (= BUI
host) is mainly used to 'catch' measurements
triggered by the BUI in order to do further data
proc
The application shows how to perform initial
settings (that cannot be set with the BUI) and how
to catch the measurements (triggered from the

s are just written
 does not really

e already displayed

.)
he sample is in Visual Basic. However, the

C++

ntation (User Manual)
r details.

essing.

BUI). These measurement- result
to the applications dialog (which
make sense because they ar
on the BUI Page. A real application would do
further processing, such as storing the
measurements into a database etc
T
principles would not change for a
application.

Further details see 'Readme.txt' file and code-
comments in 'BUILaunch.frm' source- file in
Sample13 Folder.

Also refer to BUI docume
fo

295

8 Selected
Commands in
Detail

8.1 Special Functions
Some of the more complex
commands/procedures, which have been referred

l are described in detail, with

The
misinterpreted. GetReflectors is used to 'ask' the

defined, and to get the relation between reflector
names and reflector Ids.

Related Commands

to in this manua
some background information.

8.1.1 Get Reflectors Command

GetReflectors command is often

Tracker Server, which reflectors are currently

• SetReflector

• GetReflector

296

mments
tReflectors causes as many GetReflectorsRT

Co
Ge data
packets to arrive, as reflectors are defined in the

a

str

tr cker database. Each one of these packets
contains the following information:

uct GetReflectorsRT
{
 struct BasicCommandRT packetInfo;
 int iTotalReflectors;
 int iInternalReflectorId;
 enum ES_TargetType targetType;
 double dSurfaceOffset;
 short cReflectorName[32]; // Unicode!
}; of Reflector data packets of the following

iTotalReflectors

otalReflectors is just for programmers’
nvenience.

Nam

iT
co

• es the number of reflectors known to
y

•

• g packets to know when

IinternalReflectorId / cReflectorName

The commands and
c ortant information for
the user interface/programmer

• tor name is a ing value (in
Unicode), which is see on the user interface of

ion software.

ommands take/return a reflector ID as a
meter.

the system and has the same value in ever
packet.

Provides information, on arrival of the first
packet, as to how many packets are still
outstanding.

Counts the incomin
the last one has arrived.

 iInternalReflectorId
ReflectorName provide imp

 The reflec str

the applicat

• This reflector name is an alias for the reflector
ID and cannot be resolved by the system.

• The system can (internally) only deal with
reflector IDs, which are integer numbers.

• The c
para

297

• It is crucial to provide the correct reflector ID to
SetReflector.

Programmers often fill all reflector names in a
list box. When the user selects one of the

, a SetReflector

r
quence and may contain

t
er

th sequential reflector IDs starting

 system
behaves differently.

:

m 0 to 2, when
the three names are entered in a control list box,
in the order shown above. A lookup table is
therefore required to match the index values to
the reflector IDs. Such a lookup table is shown
b
Index ID
0 7

 Passing the ID of an unintended (but existing)
reflector will cause wrong measurement
results.

•

reflectors shown in the list box
command is carried out.
 Hence the need for a 'lookup table'.

List index

• It is not correct to use the index of the list box
as a reflector ID. This is because the reflecto
IDs are arbitrary in se
gaps.

• The programmer must not assume that the
reflector IDs are a sequence of 1….n withou
any gaps. Although most systems may deliv
reflectors wi
from 0 with no gaps
 This may not be presumed. Every

• GetReflectors may deliver for example 3
reflectors with the following Names and IDs

Name ID
 CCR-75mm 7
 CCR-1.5in 2
 TBR-0.5in 5

Lookup Table

The list box indices will range fro

elow:

298

1 2
2 5

 The call to SetReflector must pass the reflector ID,
not the list box index. A frequent source of a
programming error.

Reflector Name – Unicode Format

The reflector name is always in Unicode format,
irrespective of whether the application is in
Unicode or ANSI.

n

g

tion has its own set of
eflector- definitions! However, the mapping

er-compensations!

t
ra. Assume

nsation has definitions for

7
2

Names in C/C++ applications may have to be
converted accordingly.

See "Sample 7" which implements reflector
handling with a list box. It uses (rather
complicated) a MFC Map as a lookup table.
Simple solutions can be achieved with just a
integer array.

See also 'Sample 9' on how to interpret reflector
names in Unicode format correctly.

Persistence of Reflector Name - ID Mappin

Each tracker- compensa
r
between reflector-name and ID remains the same
throughout all available track

Example: A T-Cam is mounted on the tracker;
hence, the active tracker compensation is one tha
was performed with a mounted came
this tracker - compe
three valid reflectors as follows:

Name ID
 CCR-75mm
 CCR-1.5in
 TBR-0.5in 5

299

Now, the T-Cam is removed, and hence another
tracker- compensation becomes active (one that
was performed without

a mounted T-Cam). Let's

ssume that this compensation has only two
reflector definitions: CCR-1.5in and TBR-0.5in.

 the mapping between name and

 CCR-1.5in 2
T

 reflector ID 7 was the active one at the time the
 get a 'wrong

ds. Thus, the

 relation between reflector ID and
acker-

compensations may be convenient to application
programmers since there is no need to re-query

8.
For trackers equipped with an Overview Camera,

de

Related Commands

• GetStillImage

• SetCameraParams

• GetCameraParams

• StillImageGetFile (COM, not in C++)

• WriteDiskFile (COM only)

a

Conveniently,
ID remained the same as it was in the previous
compensation:

Name ID

 BR-0.5in 5

If
camera was removed, you will now
current reflector' error message on executing
reflector- dependent comman
application must first set one of the now available
IDs 2 or 3 with the 'SetReflector' command.

The fact that the
Name remains the same throughout all tr

all reflector mappings upon a tracker
compensation change.

1.2 Still Image Command

the GetStillImage command takes an image and
livers it as a file image data block.

300

 These commands are available on all TPI levels
s is not

 have to be fulfilled:

“Has video” flag activated

Ap

The application of GetStillImage is explained
below using code fragments.

ES
su

 The answer to a successfully executed
n a

G

• A
t
(
f
(

The following code accesses the core file data
a

C, C++, COM). Set/GetCameraParameter(
explained here further.

Preconditions
The following preconditions

• Camera mounted on tracker

• System settings:

• Tracker must be in camera view (command
ActivateCameraView)

plication of GetStillImage – C/C++

 GetStillImage must be called with the parameter
_SI_Bitmap. The parameter ES_SI_Jpeg is not
pported yet.

•
GetStillImage command results i

etStillImageRT data structure.

part from the common header information,
his structure echoes the file type
imageFiletype =ES_SI_Bitmap), the size of the
ile (lFileSize), and the first Byte of the file
cFileStart).

•
nd writes it to a physical disk file:

301

 // assume pData contains the data- block received
 // to a GetStillImage(ES_SI_Bitmap) command

 long lFileSize = ((GetStillImageRT*)pData)->lFileSize;
 char cFileStart = ((GetStillImageRT*)pData)->cFileStart;

 FILE *pFile = NULL;

 if ((pFile = fopen("C:\\Temp\\img.bmp", "wb")) != NULL)
 {
 long lWritten =
 fwrite(&cFileStart, 1, lFileSize, pFile);

 if (lWritten != lFileSize)
 printf("File could not be written(\n");
 else
 printf("wrote %d bytes\n", lWritten);

 fclose(pFile);
 }

• The disk- file can be skipped and a memory-
mapped file can be used instead. OR

tmap file, the
ation can be extracted from the

 and used directly with GDI

ket,

f large file data.

(~70 KB), it
le

the data packet is complete.

chieve this is shown in the

ee chapter 'Sample9' and chapter 'Queued

COM TPI within C/C++

When using the COM TPI (within a C/C++
application), the results of the LTControl's

• With the file structure of the Bi
bitmap inform
data block
functions.

• In the code above, it was assumed that pData
ained a complete GetStillImageRT structure cont

with complete file data padded.

WinSock2 API / MFC CAsyncSocket

• Using WinSock2 API or MFC CAsyncSoc
to read directly from the socket, must consider
the implications o

• Since the file data is relatively big
is very unlikely that it will arrive as one sing
data block over TCP/IP.

• Provisions must be made to repeat reading
data until

• A technique to a
OnMessageReceived code sample
 S
and Scattered Data'.

302

GetStillImage (synchronous) function can be

ing StillImage data
sly (Event Handler,

), the difference is that the data
ctly through a

er of the fileData.

etStillImage – Synchronous
Dlg::OnButtonStillImage()

assumed to be complete. See related code extract
below. When receiv
asynchronou
MessageHandler
will not be provided dire
parameter. So ILTConnect::GetData() must be used
first.

Note the Variant- type paramet

G
void CCPPClient
{
 HRESULT hr = 0;
 long lFileSize;

 VARIANT vt;
 VariantInit(&vt);

 try
 {
 if ((hr = m_pLTCommandSync->GetStillImage(ES_SI_Bitmap,
 &lFileSize, &vt)) == S_OK)
 {
 ASSERT(vt.parray->rgsabound[0].cElements ==
 (unsigned long)lFileSize);

 FILE *pFile = NULL;

 // write file to current runtime location
 if ((pFile = fopen("image.bmp", "wb")) != NULL)
 {
 long lWritten = fwrite(vt.parray->pvData, 1,
 lFileSize, pFile);

 if (lWritten != lFileSize)
 AfxMessageBox(_T("File could not be written\n"));

 fclose(pFile);

 // Display the image using MSPaint,
 // but first close previous instance
 //
 HWND hWnd = ::FindWindow(_T("MSPaintApp"), NULL);

 if (hWnd) // paint is already running - close first
 ::SendMessage(hWnd, WM_SYSCOMMAND, SC_CLOSE, 0);

 WinExec("mspaint.exe image.bmp", SW_SHOWNOACTIVATE);
 } // if
 } // if
 }
 catch(_com_error &e)
 {
 Beep(4000, 100);
 AfxMessageBox((LPCTSTR)e.Description());
 }

 VariantClear(&vt); // Avoid memory leak
}

303

GetStillImage – Asynchr

onous
void __stdcall OnStillImageDataReady(ES_StillImageFileType
 imageFileType, long fileSize, long bytesTotal)
{
 ASSERT(m_bUseAsync);

 VARIANT vt;
 VariantInit(&vt);

 m_pLTConnect->GetData(&vt);

 ASSERT(vt.parray->rgsabound[0].cElements ==
 (unsigned long)bytesTotal);

 GetStillImageRT *pData =
 (GetStillImageRT *)vt.parray->pvData;

 ASSERT(pData->lFileSize== fileSize);

 // Do something with the file, for example write out
 // to a disk file – like shown in code above

 VariantClear(&vt); // Avoid Memory leak
}

COM/VB(A)

xcel application. The

k()

Neither type-casts nor writing binary files are
common tasks in VisualBasic. In order to achieve
the same StillImage features from VB(A), some
convenience Functions have been added to the
COM TPI: StillImageGetFile and WriteDiskFile.

This is an extract from an E
image is displayed in an Image dialog control

 Image1): (named
Private Sub GetStillImage_Clic
 On Error GoTo ErrorHandler

 Dim fileData As Variant
 Dim size As Long

 ObjSync.GetStillImage ES_SI_Bitmap, size, fileData
 ObjConnect.WriteDiskFile fileData, "C:\Temp\img.bmp"

 ' Now load picture into sheet
 Image1.Picture = LoadPicture("C:\Temp\img.bmp")

 Exit Sub
ErrorHandler:
 MsgBox (Err.Description)
End Sub

Event handler

Within an event handler, the file data
must be extracted first, since Ge

structure
tData delivers the

omplete data packet including header

 (GetStillImageRT*) is

 VBA' for

c
information. A similar helper function is required
in VB, since no casting to
available.
 See chapter 'Continuous measurements and

304

similar method using
ContinuousDataGetHeaderInfo.

s Private Sub ObjAsync_StillImageDataReady(ByVal imageFileType A
LTCONTROLLib.ES_StillImageFileType, ByVal fileSize As Long,
ByVal bytesTotal As Long)

 Dim fsize as Long ‘dummy

 ObjConnect.GetData data 'Get whole packet (incl header)

 ' retrieve out size and file data
 ObjConnect.StillImageGetFile data, fsize, file

 ObjConnect.WriteDiskFile file, "img.bmp"

 ' Now load picture into sheet
 Image1.Picture = LoadPicture("img.bmp")

End Sub

Although designed for use with VB,
StillImageGetFile and WriteDiskFile can also be

sed in LTControl based C++ applications.

e currently written

l

ivate Sub Image1_MouseDown(ByVal Button As Integer, ByVal

u

Image Click Position

Click positions on the Image ar
out to Excel cells. These values can be used to
calculate relative tracker movement angles, cal
MoveRelativeHV to direct the tracker there and
then request a new Image.
Pr
Shift As Integer, ByVal X As Single, ByVal Y As Single)
 Beep
 ws.Cells(2, 2).Value = X
 ws.Cells(3, 2).Value = Y
 ws.Cells(5, 2).Value = Shift
End Sub

8.1.3 Live Image display

n be implemented into user

Live Image Control LTVideo2.ocx

The live camera display from the Overview
Camera ca
applications by using an ActiveX control,
LTVideo2.ocx. See SDK lib directory,
ANSI/Unicode subdirectories.

Registering LTVideo2.ocx

LTVideo2.ocx is an ActiveX type COM object and
requires registration on the Application
Processor.

305

From the command line perform the following

depends on the location of the file – typically
C:\WINNT\System32.

98/ME platforms
and the Unicode version for WinNT/2000.

 See Version info of LTVideo2.ocx for details,

D

For Visual Basic or Office, the ActiveX controls

 is generated using:

ts > Controls > Controls

LTVideo2.tlb

LTVideo2.tlb is the related type library delivered
f
information required.

S

L id
w
a

The port number is 5001. Any changes to the port
number must also be done on the server side.

The size must have a width/height proportion of
4 T
invoking the method Start/StopLiveImage.

 M
information on how to use ActiveX controls in
general.

command:

Regsvr32 <Path>\LTVideo2.ocx, where <path>

ANSI/Unicode Version

Use the ANSI version for Win

under File Properties > Version TAB.

evelopment Platforms

must be added as a reference.

For VC++, a wrapper class

Add to Project/Componen
type library from Visual Studio.

or convenience. LTVideo2.ocx contains all type

erver Address

TV eo2.ocx has a property server address,
hich must be set according to your server

ddress.

:3. he image must be started/stopped by

See icrosoft documentation, for further

306

Events/Methods

The essential methods of the ca

• StartLiveImage()

mera OCX are:

nt description):

• StopLiveImage()
To alter the default frame rate (15/sec), the
following methods are used:

• FrameRateStepUp()
• FrameRateStepDown()

In addition, there is a Method for advanced usage
(details see below upon eve

• GetCameraParameters()

Moreover, the following events, are defined:
void VideoClick(double deltaHz,
 double deltaVt,
 long posX,
 long posY,
 long flags);

This event occurs when clicking on the image
with the mouse. The event parameters a
follows:

• DeltaHz, deltaVt: The angles that can be
passed to the Po
order to move the tracker to the clicked pos

• PosX, posY: The pixel values of the clicked
position within the image coordinate syst
(top/left

• The flags parameter can be used to figu
out which modifier keys are pressed during the
click. The flags parameter is the same as
provided by the OnLButtonDown standard
message.
See Microsoft MFC documentation, for details.

• Server address and Port number must be

re as

sitionRelativeHV command, in
ition.

em

= 0, 0).

re

passed as properties.

• An RGB triplet can be passed to alter the
color of the crosshair

307

The following event is fired on a
GetCameraParameters method call:
void CameraParams(long brightness,
 long contrast,
 double focalLength,
 double horizontalChipSize,
 double verticalChipSize,
 VARIANT_BOOL mirrorImageHz,
 VARIANT_BOOL mirrorImageVt);

This is usually done once upon initialization to
,

wn 'image click handler', i.e.

s part
f the control’s initialization process (i.e. before

rtLiveImage’ for the first time).
ous

prone to bugs!).

ent

ers’
n may

get the actual overview properties. FocalLength
Chip characteristics and mirror status are for
advanced programming issues (If one wants to
implement it's o
determine relative tracker movement parameters
out of image coordinates).
Important Remark:
Up to LTVideo2.OCX version 2.0.0.13 (part of
emScon 2.0.54 release), it was essential for an
application to call ‘GetCameraParameters’ a
o
calling ‘Sta
Since ‘GetCameraParameters’ is an asynchron
command, calling this command upon
initialization was a somehow struggling task
because the application had to wait for the event
coming back (a synchronization issue, which is

If ‘GetCameraParameters’ was omitted, the
‘deltaHz’ and ‘deltaVt’ values of the click ev
were not correct for certain types of video
cameras.
LTVideo2.OCX versions 2.0.0.15 and higher
(delivered with emScon versions >= 2.0.55) do no
longer require calling ‘GetCameraParamet
explicitly by the application! The applicatio
call it for informational issues, but in most
applications, ‘GetCameraParameters’ may never
get used.

308

Sample 18

This Visual Basic sample demonstrates how to

omponent.

of the emScon
DK) must be registered first.

is
 ported to VBA

xcel, or any other MS Office application with
BA support).

ty of

The c
Furth
folder and code- comments in source files.

Sam

This
implement a Live Video image without using the
'LTV
It is not recommended to use this approach for
Windows- platform targeted applications.

of the

lication

 this sample, the application directly connects

mm text
:

implement a Live Video image based on the
'LTVideo2.ocx' ActiveX c

Note that 'LTVideo2.ocx' (part
S

If no Visual Basic development environment
available, the code can easily be
(E
V
Sample 18 demonstrates the full functionali
the control, including GetCameraParameters
events and 'Click- handler'.

ode is simple enough to be self- explaining.
er details see 'Readme.txt' file in Sample18

ple 19

 C++ (MFC) sample demonstrates how to

ideo2.ocx'.

For Windows based applications, we highly
recommend rather to use the 'ready to use'
LTVideo2.ocx control for implementation of
emScon LiveVideo. LTVideo2.ocx is part
SDK and its usage is demonstrated in Sample 18.

However, the current LiveVideo CPP app
might be useful for non- Windows based
applications (e.g. Linux) since support for
LTVideo2.ocx will not be available there.

In
to the Video Port (# 5001) of the emScon server.
The co and interface is based on Ansi
tokens. The following commands are supported

"LiveImageStart"

309

"LiveImageStop"

"FrameRateStepUp"

"FrameRateStepDown"

"RequestCameraParameters"

s can be sent directly to an open
s ke

A iv

- Live Image Data Blocks (Bitmap format)

ks

- Cam
Result of a 'RequestCameraParameters' call.
See source code, function OnReceive(), on
h
See source code, function OnPaint(), on how
t

The s
shoul
mentioned, using the LiveVideo TCP/IP interface
directly, as shown in this sample only is
recommended for non Windows client platforms.
Rather base clients on 'LTVideo2.ocx' for

w .
9

ents in source files.

rient

These token
oc t connection to port 5001.

rr al Data includes the following types:

Note that each image arrives in two chun
and must be composed to a complete image
before displaying it.

era Parameter Block

ow to parse incoming data.

o display image data.

ource code is commented in detail and
d be self- explaining. However, as already

Windo s platform targeted application
Further details see 'Readme.txt' file in Sample1
folder and code- comm

8.1.4 Orient To Gravity Procedure
This function is used to measure the tilt of the
tracker's primary z-axis (standing axis) with
respect to the vertical. This can be used to o

310

the measurement network to gravity. The tilt is
specified by two angula
tr

r components about the
acker's internal x and y-axes.

C

C

ination

the tracker

rement samples.

2. In addition, the station inclination
eters Ix and Iy are calculated and

es not
ientation values to

x and Iy,
must be explicitly set with the command

nParams (Rotation angles

Tr

Th
to a given set of nominal points by using a least

w
applied to the measured points in order to

Related Command

• allOrientToGravity

omments
• This command is only available in

combination with a Nivel20 Incl
Sensor.

• Executing this command drives
head to 4 different positions on the xy
plane:

1. Taking Nivel20 measu

param
returned as result parameters.

• Executing this command do
'implicitly' apply any or
the system.

• In order to 'activate' the station orientation
to gravity, the two result values, I

SetStationOrientatio
rot1 and rot2).
 See Section 9.2 for mathematical
description.

8.1.5 Transformation Procedure
See Section 9.2 for a detailed discussion of the

ansformation issue.

is procedure matches a measured set of points

squares, best fit method. The procedure calculates
the 7 parameters (x,y,z, omega, phi, kappa, scale),

hich describe the 'transformation filter' to be

311

represent these in the coordinate system defined
by

Re

•

•

• AddTransformationNominalPoint

• GetTransformedPoints

 a

ormationParams

ists,
m st be prepared. They must

contain the same number of elements.

 using the
SetTransformationInputParams command (For
example to fix certain parameters. By default,

nInputParams,

ts

 the nominal points.

lated Commands

 ClearTransformationNominalPointList

 ClearTransformationActualPointList

• AddTransformationActualPoint

• SetTransformationInputParams

• GetTransformationInputParams

• CallTransformation

Comments
The command CallTransformation displays
transformation carried out with
Set/GetTransf

Before doing a CallTransformation, both point l
no inal and actual mu

EmScon System Settings

The system settings of emScon (units, coordinate
type and coordinate system) must reflect the
current input data. Point input values
(nominal/actual) are interpreted by emScon based
on the current emScon system settings.

• Additional parameters can be set by

i.e if no call to SetTransformatio
all parameters are assumed as unknown).

• After a successful calculation, additional resul
in terms of transformed points and residuals
can be retrieved optionally by using

312

GetTransformedPoints.
e of the 7 calculated transformation

scription.

8.1.6 Automated Intermediate Compensation
The Intermediate Compensation is a simple and
fast procedure to perform a fully automated
intermediate compensation, where the tracker is
in a fixed installation.

parameters:

ee
o-face

tion. It is a simpler and faster
 a Full Compensation.

ensations do not replace Full

 full

 Non
parameters (received as output from
CallTransformation) are automatically applied to
the system. This must be done explicitly by
calling SetTransformationParams.
 See Section 9.2 for mathematical de

Tracker Geometry

Out of a total of 15 parameters, which affect the
trueness of the tracker geometry, the most
significant changes are affected by these three

 See emScon manuals, for more information.

• Transit axis tilt, i

• Mirror tilt, c

• Vertical index error, j

Intermediate Compensation refreshes these thr
parameters by taking a small number of Tw
measurements. If the result is accepted, it updates
only these three parameters and takes over the
rest of the overall 15 parameters from the last Full
Compensa
procedure than

Intermediate vs. Full Compensation

Intermediate Comp
Compensations. Regular intermediate
compensations extend the interval at which
compensations need to be carried out.

313

Setup

A
network of fixed targets. Based on a given drive
lib
points automatically and calculates the
Int m

recommended setup is shown below with a

rary the laser tracker measures the target

er ediate Compensation results.

 The automated Intermediate Compensat
routine requires that all target locations a
with reflectors (recommended 0.5” Tooling Ball
or Corner Cube), before the routine is start

ion
re fitted

ed.

Are R

Make sure that no one walks around the area
du
Vibra
walking through the beam causes the signal to
break. If a measurement fails, the system

ts the measurement to
h surement, a maximum of

e
ediate Compensation can

only be started when the Leica Tracker system is
asure.

itial setup it is required that the

a equired

ring the whole Compensation procedure.
tion can affect the measurement and

automatically repea
ac ieve a successful mea
three times.
Procedure

R quirements
The automated Interm

ready to me

For the in
locations of the fixed targets are measured
manually. These locations provide the
information for the driver points.

314

• Six Two Face measurements, in two groups
of 3 each.

• Each group of 3 points is in an app
vertical lin

roximate
e.

 have a horizontal angle
 all

 measurements reduce the
influence of errors. In addition, unstable
conditions, such as vibrations and rapid
temperature changes, make it necessary for more
measurements to be taken. The following
combinations are examples:

• Eight measurements in 4 pairs (high and
low) separated by approx. 90 degrees.

• Twelve measurements in 4 groups of 3 each
(high, low, horizontal), separated by
approx. 90 degrees.

Related Commands

- ClearDrivePointList

- AddDrivePoint

- CallIntermediateCompensation

- SetCompensation

Comments

Settings
Current emScon system settings, such as units,
coordinate system and coordinate type, are taken
over when emScon interprets point input (driver

• Minimum distance from the tracker is 2m.

• The high and low measurements should be
more than 30 degrees from the horizontal.

• The groups should
separation of about 180 degrees, i.e.
measurements should lie approximately in
the same vertical plane.

Minimum Measurements

A minimum of 4 measurements is required
(mathematically). More

315

point) values. All points in the drive library must
ce,

me u

The settings, such as units, coordinate system and
coordinate system type, must correspond to the
input data. Ensure that the settings describe the
environment of the driver points before they are
uploaded to the server.

f the automated

s

otherwise it will abort.

be known within ± 2mm (0.0787 in) toleran
otherwise this will cause an error in the

as rements.

One of the first actions o
compensation algorithm is to check the geometry
of the used driver points. If the target setup fit
the requirements (as described above), then the
process continues with the measurements,

316

Compensation Results
A successful Intermediate Compensation
procedure returns the following information:

• Total RMS

• Max. Deviation

ended
hen the maximum deviation is ≤ 0.0012 deg

cc SetCompensation the
sation can be activated.

o Face Field-Check

predefined parameters. It does not, however,
rrections.

Periodi

If the t
conduct the field check on a weekly basis. If the
field check results show no change, over a period
of six weeks, carry out field checks at least once a
month.

If the tracker has been moved, always carry out a
field check before taking measurements.

 Compensations and field checks must be carried
out in normal working conditions, under which

Field che asurement

Two f
positions, distributed over the whole object

• Error bit filed with the information of
warnings and errors.

Compensation Intervals
An intermediate compensation is recomm
w
(13). With the command
new calculated compen

8.1.7 Tw
A field check is a control process of the
Compensation parameters. It checks the
condition of the Leica Tracker, with respect to

provide for compensatory co

city

racker is used in a stationary position,

the measurements are taken.

ck two face Me

ace measurements with 4 to 5 reflector

317

range

ments
must be within the specification.

Client Routine

The Tracker Server Programming Interface does
not have a specific two face measurement mode.
A client routine is required, which can use the
basic functionality provided.

 See chapter 'Procedure – Measurement'.

Pro

The procedure requires the following three

2 One measurement set on a vertical line.

3 One measurement plus or minus 90° to the
vertical line.

Measurements on a Straight Line

1. The two measurements must be taken on a
straight line (ray) at the same level as the
as the Tilting mirror of the Tracker. Point
A <0.5 m and Point B within 5-l0 m.

1.

Measurements on a Vertical Line

.

2. Upper measurement at +40° deg.

, will indicate whether the Tracker
compensation is within specifications. To achieve
a 2-sigma accuracy, 95 % of the measure

cedure - Preparation

setups:

1 Two measurements on a straight line.

A B
<0.5 m >5-10 m

2. All 3 measurements should be taken in a
vertical line

1. Mid point 0° at Tracker head height.

318

3. Lower measurement at -40° deg.

 During measurements, the Birdbath should not
point in the direction of measurement.

Measurement ± 90° to the Vertical Line.

3. Setup the
graphic below.

 tripod at 90°, as shown in the

90

 The Tracker is setup such that it can turn to the
° position, without running into stop.

319

Procedure - Measurement

oordinate system type to spherical

 command: SetCoordinateSystemType.

ode.
e

TPI command: SetStationaryModeParams

5. Attach the reflector to the target location.

6. Point the tracker to the target location.
TPI command: e.g. GoPostion. This is only
possible when the coordinates of the point are
known within ± 2mm, otherwise track the
reflector manually from the Bird bath.

7. Execute the Stationary Measurement in Face I
and save it.
TPI command: StartMeasurement

8. Execute the command Change Face, which
puts the Laser Tracker from Face I to Face II.
 The pointing to a fixed reflector position from
a station should be the same in both faces.
TPI command: ChangeFace

9. Execute the Stationary Measurement in Face II
and save it.
TPI command: StartMeasurement.

10. Execute the command Change face, which
puts the Laser Tracker from Face II to Face I.
TPI command: ChangeFace.

11. Repeat the steps 5 - 10 for all target
locations.

Procedure - Calculation

Devvt = vertical angle Face I – vertical angle Face
II

1. Set up the tracker.

2. Set the c
clock wise, SCW,
TPI

3. Set the Stationary Measurement M
TPI command: SetMeasurementMod

4. Set the Stationary measurement parameter.
MeasTime to 10000ms

320

D ori ngle
Fa

Both measurements are in Face I representation.
Face II measurements are represented in Face I.

are:

ertical angle = ±13cc (0.0012 De)

Horizontal angle = ±13cc (0.0012 Deg)

te

evh = h zontal angle Face I – horizontal a
ce II

Example

Devvt = 90.7289893– 90.7287338 = 0.0003 Deg
Devh = 269.9877001– 269.9879985 = -0.0003 Deg
Tolerances

The recommended tolerances of the deviations

V g

 When the tolerance is exceeded, an Intermedia
Compensation is recommended.

321

9 Mathematics

9.1 Point accuracy
Throughout Emscon point coordinate

ce matrix. It is a
 matrix with the squares of the

respective standard deviations on the diagonal:

s are stored
together with a 3x3 covarian
symmetric 3x3

2
1 12 13

2
12 2 23

1

stdDev covar covar
covar stdDev covar
covar

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜
⎝

2

3 23 3covar stdDev ⎟
⎠

s defined by the
ce

The error ellipsoid of the point i
eigenvectors and eigenvalues of the covarian
matrix. If the covariance matrix is diagonal, the
axes of the error ellipsoid are parallel to the
coordinate axes. The correlations

 *
ij

ij
i j

covar
stdDev stdDev

ρ =

satisfy the relations
1 1ijρ− ≤ ≤ .

At the TPI point coordinates together with the
covariance matrix are passed in the fo
non-redundant form:

llowing

.

Coord1, Coord2, Coord3,
StdDev1, StdDev2, StdDev3,
Covar12, Covar13, Covar23

9.1.1 A priori accuracy
For continuous measurements, the a priori
covariance matrix of a point measurement is
calculated according to the tracker accuracy.
Emscon adapts the following model:

max(1.25E-5/d, 5E-6)StdDevH =

2

max(1.25E-5/d, 5E-6)

1E-10 + (1.25E-6 d)

StdDevV

StdDevD

=

= ⋅

322

where d denotes the measured distance in meters
H and V denotes the horizontal and vertica
in radians. This formula applies in the case of

.
l angle

ond

IFM measurements initialized at bird bath
distance. The angle accuracy is constant bey
2.5m and slightly poorer at close range.
Simplified homogeneous models are

max(10E-6 d, 25)StdDevXYZ µ= ⋅ or even simpler
50StdDevXYZ µ= . The a priori accuracy inc

unresolved systematic errors and indicates the
reliability of a measurement. This kind of

ludes

 used as input to any further

It

 this

9.1.3 Transformation of covariance matrices
In the (spherical) tracker coordinate system the a
priori covariance matrix of a tracker
measurement is diagonal (see formulas above).
Conversion to Cartesian coordinates results in a
full matrix. Transformation to other coordinate
systems using orientation and/or transformation
parameters (Section 9.2 below) again transforms
the covariance matrix. However, at any stage the
standard deviations, i.e. the square roots of the
diagonal entries provide a reasonable estimate on
the accuracy of the respective coordinate triple.

accuracy should be
calculation.
9.1.2 A posteriori accuracy
For single point measurements (stationary,
sphere center, circle center) also the a posteriori or
repeatability covariance is calculated from the
actual statistical variation of the many shots.
gives an indication on the stability of the
measurement environment disregarding
systematic effects. We recommend not using
accuracy for any other purpose.

9.2 Orientation and Transformation
The orientation takes the instrument coordinate
system to the world coordinate system and th
transformation takes the world coordinate system

e

323

to an object coordinate sys
e

tem. The two are used
ither by them selves or together to show

coordinates in the required coordinate system.

See Section 8.1.5 for a survey on the TPI
commands used to calculate orientation or
transformation parameters. The major input to
these calculations are the coordinates of a set of
reference points together with the corresponding
measured coordinates. The result of the
calculation is a seven parameter transformation
of the measured points onto the reference points.
9.2.1

 refers to the alignment of a tracker
oordinate system (WCS).

 point

 reference

Orientation
Orientation
with respect to a world c
The world coordinate system may be defined by
the principal measurement station (Fig. 1) or by a
CAD model (Fig. 2). The coordinates of a
with respect to the principal station or CAD
model respectively are called nominal or
coordinates. The coordinates as measured by the
active station are called actual coordinates.

Fig. 1

Setting the calculated parameters as orientation
parameters with the
SetStationO m

sure re s
al coordinates approxi qual to

rientationParams com and
and re-mea
yields actu

ment of the refe nce point
mately e

324

the nominal coordinates.

Fig. 2

9.2.2 Transformation
A transformation defines a local object coordinate
system. In this case the object coordinates play the
role of nominals. (Fig. 3). Activating the
calculated transformation parameters and re-
measurement yields actual coordinates
approximately equal to the nominal coordinate

s.

Fig 3

9.2.3 Nominal and actual coordinates
The role of nominal, actual, and world
coordinates in the orientation and transformation
alculation are summarized in Table 1.

 Nominal/reference Actual World

c

Orientation
w.r.t. CAD

CAD coordinates Measured
by active

Nominal

325

station

Orientation
w.r.t. 1st station

Measured by 1st
station

Measured
by active

ion

Nominal

stat

Transformation Object coordinates Measured
by active
station

Actual

Table 1

ion are both seven

ence

orresponding reference points in a
to

hen describing a temperature
 orientation case the

9.2.4 Orientation parameters
Orientation and transformat
parameter transformations consisting of three
translation, three rotation, and one scale
parameter. They describe a mapping of a given
set of actual points onto a given set of refer
points. The mapping is calculated such as to
minimize the deviation between the transformed
points and the c
least squares sense. Typically the scale is close
one, e.g. w
dependent dilation. In the
map assumes the form:

 () /T x t Rx s= +

with
3D translation t vector

 rotati
cale

=
 3x3

s
R
s

on matrix=
=

dinThe correspon

g residuals are:

()residual T actual nominal= −

b
 or

 of R. In terms of the rotation angles
le, zAngle the rotation matrix

he form

The map T can e interpreted as a coordinate
system with its
the columns
xAngle, yAng

igin at t and the axes given by

assumes t

cz cy -sz cy sy

sz cx+cz sy sx cz cx-sz sy sx -cy sx
sz sx-cz sy cx cz sx+sz sy cx cy cx

R
⋅ ⋅⎛ ⎞

⎜ ⎟= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟
⎜ ⎟

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠

where

326

cos()cx xAngle=

re the

sin()sx xAngle=
and similarly for the other angles.
9.2.5 Transformation parameters
Transformation and orientation equations a
inverse form to each other as mappings. For
transformations the map assumes the form:

1() ().T x sR x t−= −

9.2.6 Input to transformation computation
Orientation or transformation

In the orientation/transformation proced
first parameter of the
SetTransformationInputParams comman
is choosen as ES_TR_AsOrientation/
ES_TR_AsTransformation respectively.

ure the

d

v,

Nominal points

Nominal points are added as in the following
example:
AddNominalPoint(1.0, 2.0, 3.0, ES_FixedStdDev, ES_UnknownStdDe
ES_ApproxStdDev, 0.0, 0.0, 0.0);

The parameters are the three coordinates together
riances

ing the
defined standard deviations (see

with their standard deviations and cova
(see Section 9.1 above). We recommend us
following pre
also Section 3.3.1):
Coordinate
accuracy

Symbol Value

Fixed (exactly
known)

ES_FixedStdDev 0.0

Unknown (free) ES_UnknownStdDev 1.0E35

Approximately
known

ES_ApproxStdDev 1.0E15

(reasonable)
Weighted > 0.0,

< 1.0E10

Approximately known coordinates are used to
calculate an initial approximation of the
orientation or transformation parameters. In a
minimum configuration, the solution would be
ambiguous without this additional information.

327

Actual points

Actual points are added in the following form:
AddActualPoint(-12.487, -5.79687, 5.49683, 0.0001, 0.0001,
0.0001, 0.0, 0.0, 0.0);

The number and order of actual points must
agree with that of the corresponding set of

ominal points. Typically, actual oints are

 a

g of

If any of the seven orientation or transformation
parameters are known prior to the calculation,
their value can be fixed. Frequently the scale is

nd the other parameters are free

 1.0,

n p
obtained from single point measurements. We
recommend using the a priori accuracy (Section
9.1.1) in particular when using fixed nominal
values. Using fixed nominals together with the
posteriori accuracy provided by tracker
measurements would lead to over weightin
residuals in laser direction. The reason is that
tracker measurements are much more accurate in
the laser direction than perpendicular to it.
Parameter constraints

fixed to be 1.0 a
as in the following example:
SetInputParams(0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
ES_UnknownStdDev, ES_UnknownStdDev, ES_UnknownStdDev,
ES_UnknownStdDev, ES_UnknownStdDev, ES_UnknownStdDev,
ES_FixedStdDev);

T phe values of unknown arameters can be set
arbitrarily. Parameter constraints are not used to

unt for
imation. To fix some or all

e
oordinate type must be one f Cartesian RHR or

rmation computation

s a

h

of a fixed parameter is zero.

reduce the required number of known nominal
coordinates. They are not taken into acco
the initial approx
components of the translation vector th
c o
LHR.
9.2.7 Output of transfo
Transformation parameters

The command CallTransformation return
structure CallTransformationRT containing
the seven parameters of the transformation
(translation, rotation angles, scale) together wit
their standard deviations. The standard deviation

328

Transformed points and residuals

he command returns
ed

T GetTransformedPoint
a list of structures, each containing a transform
point together with its covariance matrix and the
three coordinates of the residual vector

residual nominal transformed= −

e transformation calculated. he covariance
matrix of the residual is obtained by adding those

als

The covariance matrix of the transformed point
takes into account the covariance matrix of the
actual point and the 7 by 7 covariance matrix of
th T

of the nominal and the transformed point.
Statistics

The command CallTransformation also
returns the

• RMS of residuals

• Maximum deviation

• Variance factor
RMS of residu

The RMS of residuals is defined as

2

 1
i

i
residual

RMS
noEquations

==
∑

where the number of equations is the number of
fixed or weighted nominal coordinates.
Maximum deviation

The maximum deviation is defin

n

ed as

1..i n residual= i

tes

alues of the transformation par eters in the
weighted least squares sense. This means that the
following target functional is minimized:

maxDev max=

where fixed and weighted nominal coordina
are taken into account.
Weighted residual square sum

The transformation algorithm determines the
v am

329

n

1i=

T
i i iRSS residual weightMatrix residual= ∑

This functional is called the weighted residual
square sum. The weight matrix is the inverse of the

s covariance matrix of the residual. For constraint
the residual and the weight matrix are scalars.
Variance factor

The variance factor (Axyz: mean error) is related to
the residual square sum through:

RSSvarianceFactor

redundancy
=

It is dimensionless, i.e. it does not depend on the
ngth or angle units. Its val e may vary

considerably depending on the accuracy of the
or, i.e. the size of the

residuals. If the residuals are systematically
igger than the standard d viations of the actual

coordinates, the variance factor exceeds one.
Otherwise, it is less than one.

ancy

The redundancy is an integer defined as

le u

input and the model err

b e

Redund

redundancy noEquations noParameters= − .

If the redundancy is zero the variance factor is
. Such cases are called minimum

ded

undefined
configurations. If the redundancy is negative, the
solution is non-unique. More fixed nominal
coordinates or parameter constraints are nee
to determine a unique solution.
9.2.8 Examples
Standard case with 3 points
AddNominalPoint(1, 2, 3, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(0, -4, 2, Fixed, Fixed, Fixed, 0, 0, 0);
SetInputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Unknown);

In this example

 3 7 2redundancy noPoints= ⋅ − = .

330

Pure dilation
AddNominalPoint(1, 1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1, 1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, -1, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1, -1, 0, Fixed, Fixed, Fixed, 0, 0, 0);

AddActualPoint(1.1, 1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint(-1.1, 1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint(1.1, -1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);
AddActualPoint(-1.1, -1.1, 0, 0.001, 0.001, 0.001, 0, 0, 0);

Se kntInputParams(0, 0, 0, 0, 0, 0, 1, Un own, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

In this example the desired transformation is th
identity with parameters 0, 0, 0, 0, 0, 0, 1. The
length of all residuals is

e

0.1 2 . Their covariance
matrix is

6−

6

6

0 10 0
0 0 10

covar −

−

⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

10 0 0⎛ ⎞

 The weight matrix is

6

6

6

10 0 0
0 10 0
0 0 10

weight
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

Thus

()264 * 10 * 0.1 2 80000RSS = =

12 6 6redundancy = − =
80000 13333.

6
varianceFactor = =

Weighting

To illustrate the influence of nominal or actual
standard deviations consider the following
example.
AddNominalPoint(1.1, 1, 0, 0.002, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1.1, -1, 0, 0.002, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1.1, 1, 0, 0.001, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1.1, -1, 0, 0.001, Fixed, Fixed, 0, 0, 0);

AddActualPoint(1, 1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);
AddActualPoint(1, -1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);
AddActualPoint(-1, 1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);
AddActualPoint(-1, -1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);

The resulting orien
0) and no rotation

tation has translation (-0.06, 0,
. The residual vectors are (-0.16,

d

0, 0), (-0.16, 0, 0) , (0.04, 0, 0) , (0.04, 0, 0). The
weighted residuals (divide by square of standar
deviation) have equal length 40000.

331

3-2-1 Alignment
AddNominalPoint(1, 2, 3, Fixed, Fixed, Approx, 0, 0, 0);
AddNominalPoint(2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(0, -4, 2, Approx, Fixed, Approx, 0, 0, 0);

SetInputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

This is a minimum configuration since

 2 3 1 6 0.redundancy = + + − =

The approximate coordinates are necessary to
select a unique solution from the eight poss
solutions. This fact can be

ible
 easily observed in the

following example:
AddNominalPoint(0, 0, 0, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, 0, 0, Unknown, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, 1, 0, Unknown, Unknown, Fixed, 0, 0, 0);

Here each of the rotation angles can be 0 or π. The
scale must be fixed in 3-2-1 situations.
Box corner

The corner of a box is defined by three mutually
perpendicular planes. In the subsequent example
each plane contains two measured points. Only
the nominal coordinate defining the plane is
exactly known.
AddNominalPoint(0, 1, 1, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint(0, 2, 2, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint(1, 0, 1, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint(1, 0, 2, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint(1, 1, 0, Approx, Approx, Fixed, 0, 0, 0);
Ad 0dNominalPoint(2, 2, 0, Approx, Approx, Fixed, 0, , 0);

Again, this is a minimum configuration provided
the scale is fixed.
Orientation using Nivel measurement

Suppose the horizontal angles xAngle and
yAngle have been obtained from a Nivel
measurement. To complete the orientation of the
station use a number of reference points together
with:
SetInputParams(0, 0, 0, xAngle, yAngle, 0, 1, Unknown, Unknown,
Unknown, Fixed, Fixed, Unknown, Fixed);

9.3 T-Probe
The coordinate system of the T-Probe is defined
as in Figure 1 with the z-axis pointing roughly
towards the camera and the y-axis opposite to
mount 1. Thus the y coordinate of a tip vector at
mount 1 is negative.

332

Figure 1

The tip position and probe orientation is returned
with respect to the user coordinate system
(transformation parameters). The probe orientation
is described by the rotation angles (xAngle,

 or the quaternion (q0, q1, q2, q3).
 the rotation matrix R is

.4 . In terms of the

-q0 q3)

q2)

0-q1*q1-q2*q2+q3*q3

yAngle, zAngle)
In terms of rotation angles
defined as in Section 9.2
quaternion it is given by

q0Rxx q0+q1 q1-q2 q2-q3 q3
Rxy=2(q1 q2
Rxz=2(q1 q3+q0 q2)
Ryx=2(q1 q2+q0 q3)
Ryy=q0 q0-q1 q1+q2 q2-q3 q3
Ryz=2(q2 q3-q0 q1)
Rzx=2(q1 q3-q0
Rzy=2(q3 q2+q0 q1)
Rzz=q0*q

= ⋅ ⋅ ⋅ ⋅
⋅⋅

⋅ ⋅
⋅ ⋅

⋅ ⋅ ⋅ ⋅
⋅ ⋅
⋅ ⋅
⋅ ⋅

ed to transform directions from
 the user system

nUser R directionProbe

This matrix is us
the probe coordinate system to
through:

 dir * .= ectio

333

10 Appendix A

10.1 TRACKER ERROR NUMBERS

The error num er. The first digit
indica c

1XX

bers that are sent with answers are all a three digit numb
at is reported. These are:tes the ategory of the error condition th

System errors.
2XX Communication errors
3XX Parameter errors.
4XX LCP hardware errors.
5XX ADM hardware errors.
6XX y service personnel (additional range to 9XX) Hardware error in the TP, repair b
7XX Operation errors.
8XX Hardware configuration error, repair by user.
9XX . Hardware error in the TP, repair by service personnel

 Additional error number for LTCplus/base, LTD600/700/800, TCAM and T-Probe

0.1.1 System Errors 1

 101 Program too large for BOOT to load.
 102 Program failed, reload or reboot.
 103 Invalid command.
 104 Boot command unable to open file in RAM disk
 105 Boot process interrupted by command
 110 Calibration not set.
 111 Tracker not initialized.
 11 reserved 2
 113 Calibration parameters sent to the wrong tracker.
 114 Target not defined (target offset for ADM measurement)
 115 No Compensation for ADM
 121 TP.PGM Software running on a LT Controller
 122 LT.PGM Software running on a SMART310 Tracking Processor
 123 Boot failed, firmware file has invalid signature for LT Controller plus/base
 130 ADM not available
 131 Video Camera not available
 132 Beam expander lens for radial searching not available
 133 Nivel not available
 13 TCAM not available 4
 135 Probe not available
 136 Probe Tip not available
 137 Additional Compensation Tool not available

 150 FlashDisk, file creation error
 151 FlashDisk, file delete error
 152 FlashDisk, disk full
 153 FlashDisk, file write error
 154 FlashDisk, file read error

 199 Command not implemented.

334

10.1.2 ation Errors

201 verflow of input buffer.

 Communic

 O
 202 Communications timeout, the string is not completed within time period.
 203 t. Frame error, the format of the received string is not correc
 205 AN communication too slow, TP runs out of recourses (buffers). L
 206 LAN name conflict (more than one station with equal names online)
 207 LAN, no session established between AP and TP
 210 Communications between TP and Laser Control Processor (LCP) has failed.
 221 Communications between TP and ADM has failed
 222 Communications between TP and Nivel20 has failed
 231 TCAM communication failed
 232 TCAM communication timeout
 233 TCAM busy
 241 Probe communication failed
 242 Probe communication timeout
 243 Probe busy
 251 Probe Tip communication failed
 252 Probe Tip communication timeout
 253 Probe Tip busy
 261 Additional Compensation Tool communication failed
 262 Additional Compensation Tool communication timeout
 263 Additional Compensation Tool busy

10.1.3
e number of the parameter. The number of

 Parameter Errors

 3xx Invalid value for parameter xx, where xx is th

the parameter depends on the command.
 399 Several parameters are invalid.

10.1.4 sor HW Errors Laser Control Proces
 401 LCP has no firmware loaded.
 402 Invalid Tracker Serial Number stored on the LCP
 403 Command not supported by the LCP
 ...
 4xx more error numbers will be defined in the future.

10.1.5 rrors
501 ADM has no firmware loaded.
 Absolute Distance Meter HW E

 502 Set frequency not locked.
 503 Set frequency, illegal state (internal software error)
 504 Measurement cycles exceeded
 505 Reserved
 50 Illegal state (internal software error) 6
 507 Minimum lost, unstable measurement conditions
 508 Reserved
 509 Start failed, hardware error
 510 Reserved
 511 Band scanning failed
 512 Frequency unstable
 513 No RF current
 514 Frequency current error
 515 Security timeout, maximal measurement time exceeded
 516 Security lock, no light from Interferometer

335

 517 Invalid distance
 518 Emergency Power Output Lock,
 519 Measurement aborted by user/Application
 ...
 550 Light polarization during ADM measurement too unstable

(happens normally only on large entry angles into prisms)
 ...
 597 ADM communication, frame error
 598 ADM –LTC communication, internal software error
 599 unknown ADM error

10.1.6 al error numbers to
he 9x ro

 Hardware Error (addition
t x g up)
 600
 601 Motor Amplifier, digital Poti set invalid
 602 Motor Amplifier, digital Poti access error
 6 03 Motor Amplifier, I2C-Bus failed
 604 LTCplus/base, front panel cable not connected
 605 LTCplus/base, fan cable not connected
 606 LTCplus/base, video output cable not connected
 607 LTCplus/base, frame grabber video cable not connected (emScon side)
 608 LTCplus/base, PC backplane to Motor Amplifier cable not connected
 609 Motor Amplifier, motor power (28V) Watchdog has locked
 610 Beam expander lens not in parking position (moved out of the beam).
 611 Beam expander lens not able to move into the beam.
 615 Collar reflector measurement, X range error
 616 Collar reflector measurement, Y range error
 617 Collar reflector measurement, target lost
 620 IFM fail signal shows always ok (also in cases where the beam is not on a target)
 621 IFM count not stable (counting error during servo control point measurement)
 622 Synchronisation line ADM to TP failed
 623 Synchronisation line TP to ADM failed
 630 Serial port COM1: not available
 631 Serial port COM1: hardware failure
 632 Serial port COM1: reserved
 63 Serial port COM2: not available 3
 634 Serial port COM2: hardware failure
 635 Serial port COM2: reserved
 636 Serial port COM3: not available
 637 Serial port COM3: hardware failure
 638 Serial port COM3: reserved
 640 No Trigger Card
 641 No internal TCAM/Probe cable
 642 No internal Trigger I/O cable
 643 No Cable Trigger to Mot.Amp.Card
 644 Incompatible program on Trigger Card (FPGA)

10.1.7 Operation Errors
 701 Target lost, tracking has failed.
 702 Interferometer has failed, lost count.
 703 to go beyond the Azimuth limit has been reached. The tracker head has attempted

±240 degrees.
 704 Elevation limit has been reached.
 705 Positioning timeout, positioning of the tracker head could not be completed within the

timeout period.
 706 Abort command.
 707 invalid angle on the azimuth axis.
 708 invalid angle on the elevation axis.

336

 710 Radial speed is within bounds. (Sent after a speed warning when the speed has
returned to acceptable bounds.)

 71 Radial speed warning. This is a warning that the movement of the refle
direction is approaching the speed limit.

1 ctor in the radial

 712 Radial speed error. This indicates that the radial speed has exceeded the capacity of
a likely loss of accurate distance setting. the interferometer and there is

 720 Intensity overflow on photosensor. This error occurs, if the intensity value from the
e of the A/D converter. The TP will change the A/D range photosensor exceeds the rang

automatically.
 721 Laser light mode has jumped. This

the laser tube. (This can be caused
 means the laser control loop wasn’t able to stabilize

a fast and large temperature change). by
 722 Laser stabilization in progress, wait until the laser is stable before tracking.
 723 Laser is unable to stabilize.
 724 Laser light is switched off.
 731 Reflector too close to the Tracker for measuring the distance with the ADM.
 732 ADM gets no signal from the reflector
 733 ADM measuring timeout, the communication with the ADM is working, but there is no

 a certain time by the ADM. completed measurment within
 734 Target was not stable during the ADM measurement
 735 Reflector too far from the Tracker to measure the distance with the ADM.
 736 Distance measured by the ADM is invalid, out of range
 reserved
 740 3D measurement on 6DoF-Probe not allowed
 reserved
 760 TCAM vertical drive not initialized
 761 TCAM zoom not initialized
 762 TCAM no Synchronization Signal
 763 TCAM zoom out of Range (1.5...15m)
 764 TCAM overload stop in vertical drive
 765 TCAM positioning timeout, didn’t get on track in a certain time
 766 Probe communication timeout, we see markers but don’t get any Info from Probe
 767 TCAM frame grabber error
 768 TCAM marker identification error
 769 Probe during ADM and 6DoF logon process not stable
 770 Laser entry angle on Probe out of range for logon with the ADM
 771 Probe recognition failed

10.1.8 (user
orrectable

Power switch from the rack is off.

 Hardware Configuration Errors
c)

 801
 802 Power switch for tracker motor is off.
 810 Cables from TP to the rack are not connected.
 811 DA-cable from TP to the rack is not connected.
 812 Encoder-cable from TP to the rack is not connected.
 813 Communication from the TP to the rack is not connected.
 820 Cables from the rack to the sensor tube are not connected.
 821 TCAM cable from LTCplus to sensor tube not connected
 831 Azimuth index offset is not suitable for this measuring head.
 832 Elevation index offset is not suitable for this measuring head.
 841 Azimuth encoder interpolation rate wrong
 842 Elevation encoder interpolation rate wrong
 843 An new LT/LTD500 Sensor in use with an old SMART310 Controller/TP, not compatible!
 844 An old SMART310 Sensor in use with the new LT Controller, it is not compatible.
 845 An old SMART310 Sensor cable is in use, it isn’t compatible with the new LT

Controller and LT/LTD500 Sensor.
 846 LTD600/700/800 sensor connected to a classic (LTD500) controller
 847 TCAM not compatible with Tracker (LTD7/800 mixed with TCAM8/700)
 850 TCAM on tracker head not locked

337

10.1.9 s service personnel) Hardware Error (require

 901 Azimuth axis is not working.
 902 Elevation axis is not working.
 903 Azimuth Tacho signal failed.
 904 Elevation Tacho signal failed.
 905 Azimuth encoder is not working.
 906 Elevation encoder is not working.
 907 Azimuth index mark does not respond.
 908 Elevation index mark does not respond.
 909 Azimuth moving range limited (can not move +/- 240 degrees).
 910 Photo sensor is not working properly.
 911 Photo sensor does not receive enough light.
 912 Photo sensor intensity signal failed
 913 Photo sensor X signal failed
 914 Photo sensor Y signal failed
 915 Calculation error while determining the SERVO CONTROL POINT.
 916 No collar reflector found for measuring the servo control point. (or the beam intensity is

not strong enough to locate the collar reflector.).
 917 Laser unable to stabilize, hardware error on the laser detected.
 918 Interferometer is not working properly. (eg, at test into the collar reflector did not work)
 919 ‘Lost counts’ signal of the interferometer is not working properly.
 921 LAN, Command line switch error.
 923 No LANtastic hardware detected.
 924 LAN, Shared RAM did not pass tests.
 925 LAN Coprocessor did not respond to reset.
 927 LAN, Interrupt level error.
 930 No encoder board detected.
 931 Encoder board, Azimuth counter is not working.
 932 Encoder board, Elevation counter is not working.
 933 Encoder board, Interferometer counter is not working.
 934 Encoder board, Azimuth index pulse failed.
 935 Encoder board, Elevation index pulse failed.
 93 Encoder board, Latch signal for counters failed. 6
 93 Encoder board, disabling of index pulses failed. 7
 938 Encoder board, cannot switch on the receiver for index pulses.
 939 Encoder potentiometer adjustments, invalid.
 940 No A/D board detected.
 941 A/D board, Unipolar/Bipolar switch is set wrong.
 942 A/D board, 8/16 channel switch is set wrong.
 943 A/D board, Analog input multiplexor error.
 944 A/D board, A/D converter is not working.
 945 A/D board, DMA data transfer is not working.
 946 A/D board, onboard clock is not working.
 947 is set wrong. A/D board, Pacer clock too slow, switch
 948 A/D board, Pacer trigger is not working.
 949 A/D board, External trigger is not working.
 950 orking. A/D board, A/D voltage range switch is not w
 951 nce. A/D board, A/D input offset is out of tolera
 952 r. A/D board, DMA transfer synchronization erro
 953 DAC in wrong position A/D board, Ref. Voltage Jumper for
 954 ce D/A board, zero point of DAC out of toleran
 955 . D/A board, both axes not working
 956 rking. D/A board, Azimuth axis not wo
 957 D/A board, Elevation axis not working.
 958 justed. Azimuth motor amplifier balance not properly ad
 959 properly adjusted. Elevation motor amplifier balance not
 960 reserved
 961 CPU board, DMA controller failed.
 962 CPU board, DMA controller wrap around error
 963 reserved
 964 CPU board, CPU clock too slow.
 968 allocation. CPU board, not enough memory for dynamic memory
 969 reserved

338

 970 cted. LTC, internal PSD input cable not conne
 971 LTC, internal Motor I/O cable not connected.
 972 LTC Digital I/O cable not connected.
 973 LTC, COM1 cable not connected
 974 LTC, COM2 cable not connected
 975 LTC, Az Encoder Cable not connected
 976 connected LTC, El Encoder cable not
 977 C card not connected LTC, Cable between A/D board and LT
 978 oder card not connected LTC, HW Trigger cable LTC card to Enc
 979 Amplifier to Encoder Card not connected LTCplus, Encoder Latch Cable, Motor
 980 LTC, +5V Power Supply failed
 981 LTC, +7V Power Supply failed
 982 LTC, +12V Power Supply failed
 983 LTC, +28V Power Supply failed
 984 LTC, -5V Reference voltage failed
 985 LTC, -7V Power Supply failed
 986 LTC, -12V Power Supply failed
 987 orking LTC, Inhibit of 28V Power Supply not w
 988 LTC, +15V Power Supply failed
 989 LTC, -15V Power Supply failed
 990 LTC, Tacho Power Supply failed (located in the measuring head)
 991 LTC, 2.5/3.3V Supply failed on LTC Card
 992 LTCplus, +5V Supply failed on Motor Amplifier
 993 r LTCplus, +12V Supply failed on Motor Amplifie
 994 r LTCplus, -12V Supply failed on Motor Amplifie
 995 LTCplus, +3.3V Supply failed on Tracker Server (emScon)
 996 con) LTCplus, +12V Supply failed on Tracker Server (emS
 997 Scon) LTCplus, -12V Supply failed on Tracker Server (em
 998 LTCplus, Power for FAN’s on Front Panel failed
 999 Unknown hardware error.

10.2 ROR NUMBERS

e ID

T- PRODUCTS ER

Uniqu Text
2150 MSGERR: ERROR, message table inconsistent (entry: %d)!
2151 MSGERR: ERROR, attachement ring buffer overrun!

2200 PARMGR: MESSAGE, New parameter initialisation!
2201 PARMGR: ERROR, CRC on parameter table!
2202 PARMGR: ERROR, not allowed range for this parameter!
2203 PARMGR: ERROR, unknown parameter id!
2204 PARMGR: REMARK, parameter table is full!
2205 PARMGR: WARNING, table size defined in code and that saved in flash differs
2206 PARMGR: WARNING, error occure during load!
2207 PARMGR: ERROR, error occure during save!
2208 PARMGR: ERROR, invalid command parameter !
2210 PARTBL: ERROR, flash table not found
2211 PARTBL: ERROR, invalid table block number!
2212 PARTBL: ERROR, invalid table data!

3000 CMDI: ERROR, unknown keyword!
3003 CMDI: ERROR, not allowed command in this mode!
3004 CMDI: ERROR, to long string parameter!

3050 DCSC: ERROR, wrong value for T-Cam mode!
3052 DSPHL: ERROR, timeout during V_INIT command
3054 DSPHL: ERROR, timeout during V_INFO command !

3110 TGT: Command parameter invalid - command not executed
3111 TGT: FGIF data invalid - data block discarded
3112 TGT: Section list overflow - line discarded

339

3113 TGT: Invalid image item - data item skipped
3114 TGT: Objects per line overflow - further objects discarded
3115 TGT: Objects in total overflow - further objects discarded
3116 TGT: Too many objects surrounding feature - feature not tracked
3117 TGT: Timeout in TGT extraction

3150 VTT: ERROR, invalid angle!
3151 VTT: ERROR, invalid distance!
3153 VTT: ERROR, invalid command parameter!
3154 VTT: ERROR, command not allowed!
3156 TT: ERROR, timeout command function! V
3157 VTT: ERROR, mode changing not possible!
3158 VTT: ERROR, error during V_OFFSET procedure!

3200 DARK: ERROR, timeout while getting image!
3203 ARK: ERROR, timeout of blende command D
3204 DARK: ERROR, camera access error !
3205 ARK: ERROR in a state! D

3300 DIFF: ERROR, timeout while getting image!
3301 DIFF: ERROR in a state!

4000 COM: WARNING, too many active ethernet clients
4001 COM: WARNING, ethernet client id not found
4010 COM: ERROR, ethernet module already initialized!
4011 COM: ERROR, init of the ethernet module failed!
4012 COM: ERROR, trying to access ethernet module in uninitialized state!
4013 COM: ERROR, receiving error occurred (error code %u)!
4014 COM: ERROR, transmit error occurred (error code %u)!
4015 COM: ERROR, transmit buffer is too big for appending!

4050 FGIF: ERROR, image memory overflow!
4051 FGIF: ERROR, image data not picked up!
4052 FGIF: ERROR, command not allowed!
4053 FGIF: ERROR, invalid command parameter!
4054 FGIF: ERROR, timeout command function!
4055 FGIF: ERROR, 100Hz synchronisation failure!
4056 FGIF: ERROR, FPGA watchdog failure!
4057 FGIF: ERROR, FPGA data overflow error!
4058 FGIF: ERROR, GBPS data failure!
4059 FGIF: ERROR, GBPS synchronisation error!
4060 FGIF: ERROR, mailbox overflow in full picture mode!

4100 MOT: ERROR, encoder failure!
4101 MOT: ERROR, wrong encoder counter direction!
4102 MOT: ERROR, motor controller failure!
4103 MOT: ERROR, motor unit is blocked or braked!
4104 MOT: ERROR, reflexion sensor failure!
4105 MOT: ERROR, unknown error in open loop check!
4106 MOT: ERROR, function call not allowed!
4107 MOT: ERROR, standstill error while closed loop check!
4108 MOT: ERROR, timeout during closed loop check!
4109 MOT: ERROR, timeout during reference search!
4110 MOT: ERROR, no index position found!
4111 MOT: ERROR, no cable feedback signal!
4112 MOT: ERROR, encoder status error!
4113 MOT: ERROR, encoder signal error!
4114 MOT: ERROR, over temperature on sensor 0!
4115 MOT: ERROR, over temperature on sensor 1!
4116 MOT: ERROR, over current on motor 0!
4117 MOT: ERROR, over current on motor 1!

4150 PROBE: ERROR, wrong command parameter!

4200 ZFCI: INFO, zoom controller is connected again to the DSP
4210 ZFCI: ERROR, no zoom controller connected to the DSP!
4211 ZFCI: ERROR, dsp-avr synchronisation error!
4212 ZFCI: ERROR, checksum failure!
4013 ZFCI: ERROR, incorrect flash or eeprom address!

340

341

4014 ZFCI: ERROR, flash or eeprom address already written!
4215 ZFCI: ERROR, zoom controller reports an error - command not executed!
4216 ZFCI: ERROR, command may not be executed at the moment!
4217 ZFCI: ERROR, invalid command parameter!
4218 ZFCI: ERROR, wrong ZFC answer!

4250 FLASH: REMARK, space in err/log message sector is running out
4251 FLASH: REMARK, err/log message sector erased successfully
4260 FLASH: ERROR, err/log message sector erase failed!
4261 FLASH: ERROR, writing of a err/log message failed!

4350 SPI: ERROR, Receive timeout occurred!
4351 SPI: ERROR, Transmit channel not ready!

4400 SYNCH: ERROR, No external synch input received!

4450 CCIR: ERROR, invalid command parameter!

4500 FLTABHD: REMARK, parameter table is empty!
4501 FLTABHD: REMARK, recovery of the corresponding table failed!
4502 FLTABHD: WARNING, read parameter table is not valid!
4510 FLTABHD: ERROR, FLASH write error!
4511 FLTABHD: ERROR, FLASH read error!
4512 FLTABHD: ERROR, reset of a parameter table failed!
4513 FLTABHD: ERROR, module initialization failed or was not done!
4514 FLTABHD: ERROR, malloc error occurred!
4515 FLTABHD: ERROR, parameter table write error (crc check was not successful)!
4516 FLTABHD: ERROR, sector erase error!

4550 CAM: ERROR, invalid Z_CAMCOM answer!
4551 CAM: ERROR, no valid camera FPGA version!

EmScon 2.1 TPI Programmers Manual - Revison: April 27, 2005

	Contents
	Introduction
	Prerequisites
	Tracker Basics/Terminology
	Abbreviations
	Hardware
	Programming Environment
	TCP/IP Protocol

	TCP/IP Communication
	Socket Functions

	Tracker Programming Interface
	Platform and Programming Language Issues
	Prefixes and Suffixes used in Type Names
	Asynchronous Communication
	Working Conditions
	Level 1
	Level 2

	Coordinate Parameter Triplets
	Persistency
	Default Settings
	Version Backward Compatibility
	Applications supporting different server versions

	Sample Code
	Error Handling
	Interface Design
	Hard Coded Information

	Application Initial Steps
	Essential Steps
	Command Sequence for 3D Measurements
	Command Sequence for 6DOF Measurements
	Initial Steps Description in Detail
	Initialize Laser Tracker
	Set Current Environmental Parameters
	Set Reflector
	Set Compensation
	Set T- Cam To Tracker Compensation
	Set Probe Compensation
	Keep Last Position Flag
	Station Parameters
	Transformation Parameters
	Coordinate System Type

	C - Interface
	Low-level TPI Programming
	Preconditions
	Recommendation
	Byte Alignment
	Little/Big Endians
	Preprocessor Statements
	TPI 'Boolean' Data Type
	Enumeration-Type Members�Numerical representation
	Basic C Data Type size of TPI Structures

	Communication Basics
	Commands
	Command Answers
	Non-data Returning Command Answers
	Property-data Returning Command Answers
	Single Measurement Answers
	Multi-Measurement Answers
	Special Command Answers

	Error Events
	System Status Change Events
	3D / 6 DOF – Related commands

	C- Language TPI Reference
	Constants
	Enumeration Types
	ES_DataType
	ES_Command
	1.) Naming Convention Send / Receive Structs
	Dimensions / Units of Parameters
	3.) Valid Parameter Ranges
	Reading Instructions Set/Get Command- pairs.

	ES_ResultStatus
	ES_MeasMode
	ES_MeasurementStatus
	ES_TargetType
	ES_TrackerTemperatureRange
	ES_CoordinateSystemType
	ES_LengthUnit
	ES_AngleUnit
	ES_TemperatureUnit
	ES_PressureUnit
	ES_HumidityUnit
	ES_TrackerStatus
	ES_ADMStatus
	ES_NivelStatus
	ES_NivelPosition
	ES_WeatherMonitorStatus
	ES_RegionType
	ES_TrackerProcessorStatus
	ES_LaserProcessorStatus
	ES_SystemStatusChange
	ES_StatisticMode
	ES_StillImageFileType
	ES_TransResultType
	ES_TrackerProcessorType
	ES_TPMicroProcessorType
	ES_LTSensorType
	ES_DisplayCoordinateConversionType
	ES_TriggerStatus
	ES_MeasurementTipStatus
	ES_TriggerSource
	ES_TrackerFace
	ES_MeasurementCameraMode
	ES_MeasurementCameraType
	ES_ProbeType
	ES_ProbeConnectionType
	ES_ProbeButtonType
	ES_TipType
	ES_ClockTransition
	ES_TriggerMode
	ES_TriggerStartSignal
	ES_SystemParameter
	ProbeConfigButton
	ES_ProbeConfigTip
	ES_ProbeButtonEvent
	ES_MeasurementStatusInfo

	Data Structures
	Basic Data Structures
	PacketHeaderT
	ReturnDataT
	BasicCommandCT
	BasicCommandRT
	MeasValueT
	MeasValue2T
	ProbeMeasValueT
	RotationStatus
	StationaryModeDataT
	ContinuousTimeModeDataT
	ContinuousDistanceModeDataT
	SphereCenterModeDataT
	CircleCenterModeDataT
	GridModeDataT
	SearchParamsDataT
	AdmParamsDataT
	SystemSettingsDataT
	SystemUnitsDataT
	EnvironmentDataT
	RefractionDataT
	StationOrientationDataT
	TransformationDataT
	BoxRegionDataT
	SphereRegionDataT
	ESVersionNumberT
	TransformationInputDataT
	TransformationPointT
	CameraParamsDataT

	Packet Data Structures
	ErrorResponseT
	SingleMeasResultT
	SingleMeasResult2T
	MultiMeasResultT
	MultiMeasResult2T
	ProbeStationaryResultT
	ProbeContinuousResultT
	NivelResultT
	ReflectorPosResultT
	ProbePosResultT
	SystemStatusChangeT
	ExternTriggerParamsT
	Non- Parameter Command/Return Types
	SwitchLaserCT/RT
	FindReflectorCT/RT
	Set/GetCoordinateSystemTypeCT/RT
	Set/GetMeasurementModeCT/RT
	Set/GetTemperatureRangeCT/RT
	Set/GetStationaryModeParamsCT/RT
	Set/GetContinuousTimeModeParamsCT/RT
	Set/GetContinuousDistanceModeParamsCT/RT
	Set/GetSphereCenterModeParamsCT/RT
	Set/GetCircleCenterModeParamsCT/RT
	Set/GetGridModeParamsCT/RT
	Set/GetSystemSettingsCT/RT
	Set/GetUnitsCT/RT
	GetSystemStatusCT/RT
	GetTrackerStatusCT/RT
	Set/GetReflector(s)CT/RT
	Set/GetSearchParamsCT/RT
	Set/GetAdmParamsCT/RT
	Set/GetEnvironmentParamsCT/RT
	Set/GetStationOrientationParamsCT/RT
	Set/GetTransformationParamsCT/RT
	Set/GetBoxRegionParamsCT/RT
	Set/GetSphereRegionParamsCT/RT
	GoPositionCT/RT
	GoPositionHVDCT/RT
	PositionRelativeHVCT/RT
	PointLaserCT/RT
	PointLaserHVDCT/RT
	MoveHVCT/RT
	GoNivelPositionCT/RT
	LookForTargetCT/RT
	GetDirectionCT/RT
	Set/GetStatisticModeCT/RT
	Set/GetCameraParamsCT/RT
	AddDrivePointCT/RT
	CallOrientToGravityCT/RT
	CallIntermediateCompensationCT/RT
	CallTransformationCT/RT
	Set/GetTransformationInputParamsCT/RT
	AddTransformationNominalPointCT/RT
	AddTransformationActualPointCT/RT
	GetTransformedPointsCT/RT
	GetStillImageCT/RT
	GoBirdBath2CT/RT
	GetCompensationCT/RT
	SetCompensationCT/RT
	GetCompensationsCT/RT
	GetCompensations2CT/RT
	CheckBirdBathCT/RT
	GetTrackerDiagnosticsCT/RT
	GetADMInfoCT/RT
	GetNivelInfoCT/RT
	GetTPInfoCT/RT
	SetLaserOnTimerCT/RT
	GetLaserOnTimerCT/RT
	ConvertDisplayCoordinatesCT/RT
	Set/GetTriggerSourceCT/RT
	GetFaceCT/RT
	GetCamerasCT/RT
	GetCameraCT/RT
	Set/GetMeasurementCameraModeCT/RT
	GetProbesCT/RT
	GetProbeCT/RT
	GetTipAdaptersCT/RT
	GetTipAdapterCT/RT
	Get/SetTCamToTrackerCompensationsCT/RT
	Get/SetTCamToTrackerCompensationCT/RT
	GetProbeCompensationsCT/RT
	Get/SetProbeCompensationCT/RT
	GetTipToProbeCompensationsCT/RT
	GetTipToProbeCompensationCT/RT
	Get/SetExternTriggerParamsCT/RT
	GetErrorEllipsoidCT/RT
	GetMeasurementCameraInfoCT/RT
	GetMeasurementProbeInfoCT/RT
	Get/SetLongSystemParamCT/RT
	GetMeasurementStatusInfoCT/RT
	GetCurrentPrismPositionCT/RT

	C - Language TPI Programming Instructions
	TCP/IP Connection
	Sending Commands
	Initialization Macros
	Excurse: C++ Initialization
	Answers from Tracker Server
	Asynchronous Communication
	DataArrived Notification
	Data arrival 'Traffic Jams'
	PacketHeader Masking
	Command Subtype Switch

	C Language TPI - Samples
	Sample 3
	Console Application
	Excurse: Windows Application

	C++ Interface
	Class- based TPI Programming
	Preconditions
	Platform Issues
	TCP/IP

	C++ Language TPI Reference
	CESAPICommand class
	SendPacket
	Command Functions

	CESAPIReceive class
	ReceiveData
	Data Arrival virtual Functions
	General Data Arrival virtual Functions

	C++ Language TPI Programming Instructions
	Sending Data
	Receiving Data
	Class Design Issues
	Data Structure Wrapper Classes
	CESAPICommand
	Virtual override of SendPacket
	Class CMyEsCommand
	Command Methods

	CESAPIReceive
	Virtual override of Answer Functions
	Class CMyESAPIReceive

	Queued and Scattered Data
	Problem Solution
	Cause of Data Loss

	Partial Settings Changes
	Asynchronous Programming Issues

	C++ Language TPI Samples
	Sample 4
	Sample 9
	Sample 12

	COM - Interface
	High-level TPI Programming
	Drawbacks
	Introduction

	COM TPI Programming Instructions
	VisualBasic and VBA Applications
	C++ Applications
	Notification Method
	Exceptions and Return Types
	Exception Handling in Visual Basic
	Exception Handling in C++
	Evaluating the Return status

	COM TPI Programming Languages
	Proper Interface Selection
	COM vs. C/C++ Programming
	Interfaces and Notification Methods

	Type- Library
	COM TPI Reference
	Registering COM Objects
	Synchronous versus Asynchronous Interface
	Multi- Tracker Applications
	Visual Basic Boolean variable evaluation
	Reading Data Blocks with Visual Basic
	VBA Macro-Language Support
	Continuous measurements and VBA
	Scripting Language Support
	Exception Handling for Non- Microsoft Clients

	COM TPI Samples
	Sample 5
	Accessing COM Interfaces
	Interface Variable Declaration
	Connecting / Disconnecting to Server and Initialization Task
	Implementing Synchronous Commands
	Implementing Asynchronous Commands
	Catching Events and Messages
	Extended Synchronous Functions

	Sample 7
	Message Notifications
	Source Code Description
	Handling Data Arrival – Continuous Measurements

	Sample 8
	Sample 14
	Sample 15
	Sample 18
	Sample 20

	C# - Interface
	Client Programming with C#
	Introduction
	C# Application Programming
	Sample 16
	Sample 17

	Base User Interface (BUI)
	Client Programming and BUI
	Measurement BUI versus Compensation Applications
	EmScon Basic User Interface (BUI)
	Integration of BUI into applications
	Sample 13

	Selected Commands in Detail
	Special Functions
	Get Reflectors Command
	iTotalReflectors
	IinternalReflectorId / cReflectorName
	List index
	Lookup Table
	Reflector Name – Unicode Format
	Persistence of Reflector Name - ID Mapping

	Still Image Command
	Related Commands
	Application of GetStillImage – C/C++
	WinSock2 API / MFC CAsyncSocket
	COM TPI within C/C++
	GetStillImage – Synchronous
	GetStillImage – Asynchronous
	COM/VB(A)
	Event handler
	Image Click Position

	Live Image display
	Live Image Control LTVideo2.ocx
	Registering LTVideo2.ocx
	ANSI/Unicode Version
	Development Platforms
	LTVideo2.tlb
	Server Address
	Events/Methods
	Sample 18
	Sample 19

	Orient To Gravity Procedure
	Related Command

	Transformation Procedure
	Related Commands
	EmScon System Settings

	Automated Intermediate Compensation
	Tracker Geometry
	Intermediate vs. Full Compensation
	Setup
	Area Required
	Procedure
	Minimum Measurements
	Related Commands
	Comments

	Two Face Field-Check
	Periodicity
	Field check two face Measurement
	Client Routine
	Procedure - Preparation
	Measurements on a Straight Line
	Measurements on a Vertical Line
	Measurement ± 90 to the Vertical Line.

	Procedure - Measurement
	Procedure - Calculation
	Example
	Tolerances

	Mathematics
	Point accuracy
	A priori accuracy
	A posteriori accuracy
	Transformation of covariance matrices

	Orientation and Transformation
	Orientation
	Transformation
	Nominal and actual coordinates
	Orientation parameters
	Transformation parameters
	Input to transformation computation
	Orientation or transformation
	Nominal points
	Actual points
	Parameter constraints

	Output of transformation computation
	Transformation parameters
	Transformed points and residuals
	Statistics
	RMS of residuals
	Maximum deviation
	Weighted residual square sum
	Variance factor
	Redundancy

	Examples
	Standard case with 3 points
	Pure dilation
	Weighting
	3-2-1 Alignment
	Box corner
	Orientation using Nivel measurement

	T-Probe

	Appendix A
	TRACKER ERROR NUMBERS
	System Errors
	Communication Errors
	Parameter Errors
	Laser Control Processor HW Errors
	Absolute Distance Meter HW Errors
	Hardware Error (additional error numbers to the 9xx group)
	Operation Errors
	Hardware Configuration Errors (user correctable)
	Hardware Error (requires service personnel)

	T- PRODUCTS ERROR NUMBERS

