
SINTEF

User's	Manual	
SiSaS	Studio	v	2.0	

	

SINTEF	ICT	

6/12/2012	
	

	

	

	 	

	

©	2009	–	2012	SINTEF	 1	

	

USER'S	MANUAL	
FOR	SISAS	STUDIO	V2.0	

	

Version:	0.1	

Contributors:	

 Franck	Chauvel	–	SINTEF	/	ICT		

Summary:		

This	 document	 briefly	 list	 the	 features	 integrated	 in	 the	 SiSaS	 Studio	 (version	 2.0)	 and	
explains	how	to	use	them.	 It	also	overview	the	development	process	underlying	the	use	of	the	
SiSaS	Studio.	

Change	History:	

Version	 Date	 Changes	Description Author
	 	
	 	
0.2	 June	13,	2012	 Main	section	filled	out F.	Chauvel
0.1	 June	12,	2012	 Initial	Outline F.	Chauvel
	

	 	

©	2009	–	2012	SINTEF	 2	

	

TABLE	OF	CONTENTS	
1 Introduction	..	3

2 Installing	the	SiSaS	Studio	..	3

2.1 Installation	From	a	Bundle	...	3

2.2 Installation	From	the	Eclipse	Update	Site	..	3

3 Developing	With	SiSaS	Studio	...	4

3.1 Modelling	with	Enterprise	Architect	..	5

3.2 Modelling	with	Papyrus	UML	..	5

4 Code	Generation	with	the	SiSaS	Studio	...	6

4.1 Building	a	"Plain	Old"	Java	Application	...	7

4.2 Building	a	JEE	3	Application	...	9

4.3 Building	Web	Services	..	9

4.4 Building	REST	Services	...	9

4.5 Building	OGC/WPS	Applications	..	9

5 Tutorials	...	9

5.1 Creating	Custom	Project	Templates..	9

5.2 Developing	New	Transformations	..	10

6 References	..	10

	

	 	

©	2009	–	2012	SINTEF	 3	

	

1 INTRODUCTION	
This	document	 is	 about	 the	SiSaS	Studio,	developed	by	SINTEF	within	 the	SiSaS	Project.	 SiSaS	
provides	 tools	 and	 methods	 helping	 SINTEF	 researchers	 to	 develop	 and	 release	 software,	
especially	scientific	software.	In	this	setting,	the	SiSaS	Studio	–	as	a	development	environment	–	
provides	users	with	the	ability	to	model	software	systems	and	to	generate	part	or	the	totality	of	
the	implementation.	

This	document	illustrates	how	to	use	the	SiSaS	Studio	to	generate	various	sort	of	code	(Java,	
XML,	 etc.)	 from	UML	models	 (mainly).	 This	 document	mainly	 focuses	 on	 the	 code	 generation	
abilities	of	the	SiSaS	Studio,	although	the	SiSaS	Studio	permits	to	build	UML	models	as	well.	As	
all	modelling	 features	 result	 from	 the	 integration	 of	 existing	 software	 (EMF	 plugins,	 Papyrus	
editor,	etc.),	the	interested	reader	shall	refer	to	the	associated	documentation	and	user	guides.	

It	is	worth	to	note	that	this	document	does	not	cover	the	internal	architecture	of	the	SiSaS	
Studio.	It	neither	explains	how	to	extend	the	SiSaS	Studio	so	as	to	generate	any	new	type	of	
code	 that	could	be	needed.	 Interested	readers	should	refer	 to	 the	companion	"Developer's	
manual".	

This	document	is	organized	as	follows.	Section	2	explains	how	to	fetch	and	install	the	SiSaS	
Studio,	and	list	third	party	software	that	are	required	to	properly	run	and	use	the	SiSaS	Studio.	
Section	3	recalls	 the	methodology	that	comes	along	with	the	SiSaS	Studio.	Section	4	dives	 into	
code	 generation	 from	UML	models,	 including	 Java	 application,	Web	 services,	 JEE	 systems,	 etc.	
Finally,	 Section	 5	 provides	 tutorial	 explanation	 on	 specific	 issues,	 especially	 regarding	
customization	of	the	SiSaS	Studio.	

2 INSTALLING	THE	SISAS	STUDIO	

2.1 INSTALLATION	FROM	A	BUNDLE	
The	 SiSaS	 Studio	 bundle	 can	 be	 downloaded	 as	 a	 zip	 file	 from	 the	 e‐room	 location:	
https://project.sintef.no/eRoomReq/Files/ikt/SiSaS/0_44b57/SiSaS_Studio_0.3.zip	

1. Unzip	the	bundle	to	your	preferred	directory	
2. Locate	the	eclipse.exe	file	and	start	Eclipse	
3. When	starting	Eclipse,	choose	your	working	directory	
4. If	desired,	you	can	import	the	projects	from	the	examples	directory	

2.2 INSTALLATION	FROM	THE	ECLIPSE	UPDATE	SITE	
Eclipse	also	includes	a	mechanism	to	automatically	fetch	and	install	additional	plugins	from	the	
Internet.	 This	 alternate	 installation	 solution	 requires	 installing	 the	 SiSaS	 Studio	 using	 the	
following	update	site:	http://www.modelbased/sisas/etc/sisas‐studio.site	

In	this	setting,	you	must	have	an	Eclipse	distribution	matching	the	following	criteria.	

 Eclipse	3.5	
 Eclipse	Modelling	Framework	
 MoFScript	Plugin	1.4	
 Papyrus	UML	Editor,	v1.12	

©	2009	–	2012	SINTEF	 4	

	

3 DEVELOPING	WITH	SISAS	STUDIO		
The	 SiSaS	 Studio	 has	 been	 designed	 as	 a	 support	 for	Model	Driven	Engineering	 (MDE).	 As	 a	
general	 paradigm,	 MDE	 advocates	 a	 special	 focus	 on	 models	 describing	 various	 aspects	 of	 a	
system,	and	from	which	part	or	the	totality	of	the	code	can	be	automatically	generated.	To	this	
ends,	 the	SiSaS	Studio	embeds	a	basic	modelling	environment	 and	a	 set	 of	predefined	models	
transformations	to	generate	code.	The	modelling	environment,	named	Papyrus	allows	users	to	
graphically	 create	 UML	models	 (it	 supports	 various	 types	 of	 diagram).	 The	 set	 of	 predefined	
model	transformation	allows	users	to	obtain	the	implementation	of	the	model,	automatically.	

	

Figure	3.1	The	process	of	developing	software	systems	with	SiSaS	Studio	

Figure	 3.1	 above	 details	 the	 process	 of	 building	 an	 application	with	 the	 SiSaS	 Studio.	 Further	
examples	are	provided	in	Section	4,	which	illustrate	the	various	types	of	applications	that	can	be	
built	with	the	Studio.	This	five	steps	process	is	structured	as	follows:	

1. Model	the	System	using	UML	and	Profiles.	 In	 this	 initial	 stage,	 the	designer	of	 the	
system	 is	 in	 charge	of	describing	 the	 system	he	needs,	 and	annotating	 the	model	with	
specific	profiles	(migration,	persistence,	etc.)	

2. Convert	to	EMF/UML	model.	The	transformations	that	are	bundled	in	the	SiSaS	Studio	
exploit	 UML	 model	 stored	 in	 a	 specific	 format,	 namely	 EMF/UML	 model.	 It	 is	 hence	
necessary	 to	 convert	 models	 stored	 in	 other	 format,	 so	 as	 to	 enable	 model	
transformation.	

3. Select	 the	 appropriate	 project	 template.	 	 The	 SiSaS	 Studio	 provides	 a	 set	 of	
predefined	 templates,	 representing	 different	 code‐level	 project	 structure	 reflecting	
specific	applicative	or	development	framework.	Each	template	specifies	a	set	of	artefacts	
to	be	automatically	generated.	The	user	has	merely	to	select	the	template	he	wants,	or	to	
defined	a	new	one	if	none	meets	his	requirements	(cf.	Section	5.1	for	further	detail	about	
template	creation).	

4. Completeness	Check.	When	 instantiating	 a	 given	project	 template	 on	 a	 specific	UML	
model,	the	SiSaS	Studio	will	first	check	whether	the	given	UML	match	the	requirements	
of	the	select	set	of	transformation.	It	is	worth	to	note	that	model	transformations	operate	
on	 specific	 subsets	 of	 the	 UML	 notation	 and	 incomplete	 or	 inconsistent	 model	 would	

Model the
System using
UML and
Profiles

Convert to
EMF/UML
model

Select the
appropriate
Project
Template

Check the
completness of

the model

Generate the
Code

©	2009	–	2012	SINTEF	 5	

	

leads	to	ill‐formed	code.	To	avoid	such	a	situation,	the	SiSaS	Studio	embeds	checkers	that	
ensure	 that	 a	 given	 models	 matches	 the	 requirements	 of	 the	 selected	 model	
transformations.	Such	checks	are	automatically	performed.	

5. Code	Generation.	Assuming	that	the	given	UML	model	is	complete	and	consistent,	the	
SiSaS	Studio	will	generate	all	the	artefacts	specified	in	the	project	templates.	This	step	is	
also	performed	automatically.	

3.1 MODELLING	WITH	ENTERPRISE	ARCHITECT	
Figure	 3.2	 below	 shows	 the	 look	 and	 feel	 of	 Enterprise	 Architect.	 Enterprise	 Architect	 is	 a	
commercial	 CASE	 tool,	 which	 supports	 the	 user	 in	 designing	 various	 UML	 models,	 but	 also	
supports	other	notations	such	as	EA	models,	workflows,	etc.	Enterprise	Architect,	at	least	in	its	
version	 8.0,	 provides	 a	 relatively	 mature	 graphical	 interface	 that	 let	 the	 user	 build	 the	 UML	
diagram	supported	by	the	SiSaS	transformations.	Unfortunately,	the	format	used	by	Enterprise	
Architect	 to	 store	 UML	 models	 in	 not	 natively	 supported	 by	 the	 transformation	 engine	
embedded	 in	 the	 SiSaS	 Studio.	 The	 resulting	 models	 hence	 have	 to	 be	 converted	 using	 the	
"Convert	to	EMF/UML"	feature	of	the	SiSaS	Studio	popup	menu	(as	shown	on	Figure	4.1	below).	
The	 resulting	models	 can	be	 instantiated	using	 any	kind	 of	 project	 templates,	 but	 can	 also	be	
visualized	in	the	Papyrus	editor.	

	

Figure	3.2	Modelling	in	Enterprise	Architect	

3.2 MODELLING	WITH	PAPYRUS	UML	
An	alternative	modelling	environment	is	embedded	in	the	SiSaS	Studio:	the	Papyrus	UML	editor.	
This	editor	has	 two	advantages:	 it	 is	 integrated	within	 the	Eclipse	 framework	upon	which	 the	
SiSas	Studio	is	built,	and	it	stored	UML	models	in	a	format	that	is	natively	supported	by	internal	
transformation	engine.	However,	the	graphical	interface	of	the	Papyrus	UML	editor	is	probably	–	
of	course	this	is	a	subjective	matter	–	less	mature	than	the	one	provided	by	Enterprise	Architect.	
Unless	the	model	under	construction	includes	very	advanced	features	that	would	be	supported	
by	the	"Convert	to	EMF/UML"	feature,	we	would	advise	to	use	the	Enterprise	Architect	modeller.	

©	2009	–	2012	SINTEF	 6	

	

	

Figure	3.3	Modelling	in	Payprus	

4 CODE	GENERATION	WITH	THE	SISAS	STUDIO	
Given	a	UML	model,	the	SiSaS	Studio	permits	to	generate	several	types	of	application.	Each	type	
of	 application	 is	 described	by	 a	 "project	 template"	 capturing	 the	 organization	 of	 the	 resulting	
code	(in	terms	of	directory	structures	and	generated	artefacts).	Project	 templates	may	contain	
several	generated	artefacts	(Java	source	code,	XML	configuration	files,	JSP	templates,	etc.)	which	
will	all	be	generated	when	instantiating	a	given	template	on	a	given	UML	model.		

Internally,	the	SiSaS	Studio	encompasses	many	models	transformations,	which,	given	a	UML	
model,	 produces	 a	 specific	 types	 of	 code.	 When	 instantiating	 a	 specific	 project	 template,	 the	
SiSaS	 Studio	will	 browse	 the	 selected	 templates,	 looking	 for	 all	 artefacts	 that	must	 generated,	
and	trigger	the	proper	transformations.	

The	 instantiation	of	project	 templates	can	be	trigger	 from	the	SiSaS	Studio	popup	menu,	as	
shown	on	Figure	4.1	below.	For	 the	record,	 the	SiSaS	popup	menu	appears,	when	users	right‐
click	on	any	type	of	file	supported	by	the	SiSaS	Studio	(Papyrus	UML	models	whose	name	ends	
with".uml"	in	the	current	version).	Each	menu	entry	that	starts	with	"Build"	reflects	one	project	
template	that	can	be	instantiated.	In	Figure	4.1	for	instance,	there	is	only	one	project	template	
available	which	permit	to	generate	Plain	Old	Java	Objects	(POJO).	

	

Figure	4.1	The	SiSaS	Studio	popup	menu	and	the	instantiation	of	project	templates	

©	2009	–	2012	SINTEF	 7	

	

This	 section	 reviews	 the	 five	main	 templates	 that	 are	 provided	with	 the	 SiSaS	 Studio,	 and	
describes,	for	each	of	them,	the	organization	the	code	that	will	be	generated.	

4.1 BUILDING	A	"PLAIN	OLD"	JAVA	APPLICATION	
The	expression	"Plain	Old	Java	Objects	(POJO)	applications"	stands	for	standard	Java	applications	
that	 do	 not	 require	 any	 specific	 framework	 or	 middleware	 to	 run.	 In	 that	 sense,	 Spring	
applications,	JEE	applications,	OSGi	bundles,	etc.	are	not	POJO	applications.	

The	SiSaS	Studio	includes	a	specific	project	template	that	can	used	to	generate	such	applications	
from	UML	models.	This	project	template	is	illustrated	by	Figure	4.2	below.	

	

Figure	4.2	Structure	of	POJO	project	template	

The	code	resulting	from	this	template	is	actually	a	Maven	[13]	project.	As	any	Maven	project,	the	
resulting	 project	 includes	 a	 directory	 named	 "src"	 containing	 the	 Java	 sources	 and	 a	 project	
descriptor	named	 "pom.xml".	All	 Java	 sources	 files	will	 be	place	 in	 the	 "src/main/java"	 and	
properly	organized	following	the	package	structure	described	in	the	UML	model.	

	

Figure	4.3	A	sample	Banking	application,	modelled	as	a	UML	diagram	in	Enterprise	Architect	

In	 this	example	we	generate	code	 from	a	UML	model	describing	a	simple	banking	application,	
which	 contains	 6	 classes:	 Account,	 AccountType,	 Bank,	 Customer,	 Transaction	 and	 User.	 The	
relationships	 between	 these	 classes	 are	 depicted	 by	 Figure	 4.3	 as	 a	 UML	 class	 diagram.	
Assuming	 that	we	need	 to	generate	 the	corresponding	 Java	code	 in	 the	 "C:\temp\sisas\demo‐
java"	directory,	we	obtain	the	following	structure:	

c:\temp\sisas\demo-java>tree /F
Folder PATH listing
Volume serial number is E215-6ABF
C:.

 class Class Model

Customer

User

- email: String
- password: String

+ login(String, String) : void

Account

- id: String
- initialBalance: Double
- type: AccountType

+ balance() : Double
+ deposit(Double) : void
+ withdraw(Double) : void

«singleton»
Bank

Transaction

- amount: double
- date: Date

«enumeratio...
AccountType

 SAVINGS
 CHECKING

+initiator 1

+transactions

0..*

+transactions

0..*

+accounts 0..*

+users

0..*

+deposits 0..*

+target 1

+withdrawals 0..*

+source 1

+owner

1

+accounts

1..*

©	2009	–	2012	SINTEF	 8	

	

│ pom.xml
│
└───src
 └───main
 └───java
 └───bank
 └───core
 Account.java
 AccountType.java
 Bank.java
 Customer.java
 Transaction.java
 User.java

Once	 the	 code	 is	 generated,	 Maven	 permits	 to	 automatically	 compiles	 and	 package	 the	
application,	as	shown	in	the	following	example.	The	reader	interested	in	using	Maven	may	refer	
to	[13]	for	exhaustive	tutorial.

c:\temp\sisas\demo-java>mvn package
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Bank 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-resources-plugin:2.4.3:resources (default-resources) @ Bank ---

[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,
i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory c:\temp\sisas\demo-java\src\main\reso
urces
[INFO]
[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @ Bank ---
[WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. b
uild is platform dependent!
[INFO] Compiling 6 source files to c:\temp\sisas\demo-java\target\classes
[INFO]
[INFO] --- maven-resources-plugin:2.4.3:testResources (default-testResources) @
Bank ---
[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources,
i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory c:\temp\sisas\demo-java\src\test\reso
urces
[INFO]
[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @ Bank

[INFO] No sources to compile
[INFO]
[INFO] --- maven-surefire-plugin:2.7.2:test (default-test) @ Bank ---
[INFO] No tests to run.
[INFO] Surefire report directory: c:\temp\sisas\demo-java\target\surefire-report
s

 T E S T S

There are no tests to run.

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ Bank ---
[INFO] Building jar: c:\temp\sisas\demo-java\target\Bank-1.0-SNAPSHOT.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.018s
[INFO] Finished at: Wed Jun 13 11:58:21 CEST 2012
[INFO] Final Memory: 10M/243M
[INFO] --

©	2009	–	2012	SINTEF	 9	

	

Once	Maven	has	compiled	and	packaged	the	source,	we	obtain	a	new	directory	called	"target",	
containing	all	 the	compiled	class,	plus	a	release	of	our	project	as	a	 JAR	 file	entitled	"Bank‐0.1‐
SNAPSHOT.jar",	which	can	be	distributed.	

c:\temp\sisas\demo-java>tree /F
Folder PATH listing
Volume serial number is E215-6ABF
C:.
│ pom.xml
│
├───src
│ └───main
│ └───java
│ └───bank
│ └───core
│ Account.java
│ AccountType.java
│ Bank.java
│ Customer.java
│ Transaction.java
│ User.java
│
└───target
 │ Bank-1.0-SNAPSHOT.jar
 │
 ├───classes
 │ └───bank
 │ └───core
 │ Account.class
 │ AccountType.class
 │ Bank.class
 │ Customer.class
 │ Transaction.class
 │ User.class
 │
 ├───maven-archiver
 │ pom.properties
 │
 └───surefire

4.2 BUILDING	A	JEE	3	APPLICATION	

4.3 BUILDING	WEB	SERVICES	

4.4 BUILDING	REST	SERVICES	

4.5 BUILDING	OGC/WPS	APPLICATIONS	

5 TUTORIALS	

5.1 CREATING	CUSTOM	PROJECT	TEMPLATES	
The	SiSaS	Studio	let	you	define	your	own	project	templates	so	as	to	customize	the	way	you	want	
the	generated	code	to	be	organized.	The	definition	of	a	new	template	is	a	two‐step	process:	

 Create	 a	 new	 Project	 Template	 (File	 	 New	 	 Others	 	 Example	 EMF	 Wizards	
Project	Template)	
o The	project	template	editor	let	you	add	new	element	by	right‐clicking	and	selecting	

the	type	of	child	element	you	want	to	append.	Figure	5.1	below	illustrate	the	use	of	
the	Project	Template	Editor.	

©	2009	–	2012	SINTEF	 10	

	

o Project	 Templates	 are	made	 of	 two	 types	 of	 elements:	 "Generated	 Artefacts"	 and	
"Directories".	 Generated	 Artefacts	 are	 artefacts	 that	 will	 be	 generated	 when	 the	
template	will	 be	 instantiated.	They	must	 have	 an	 "Artefact	 type"	 indicating	which	
transformation	 can	 be	 applied	 on	 them.	 Directories	 represent	 the	 directory	
structure	containing	the	generated	artefacts.	

 To	make	the	template	available	in	the	SiSaS	Studio	popup	menu,	you	must	register	this	
new	template,	by	using	the	"Register	Template"	entry	of	the	SiSaS	Studio	popup	menu.	It	
is	worth	to	note	that	templates	are	registered	only	during	the	current	session.	

	

Figure	5.1	Editing	Project	templates	

5.2 DEVELOPING	NEW	TRANSFORMATIONS	
The	SiSaS	Studio	can	be	extended	with	new	transformations	if	the	provided	one	does	not	cover	
your	needs.	However,	such	extension	is	consider	as	further	development	of	the	Studio	itself,	and	
does	not	really	fall	within	the	scope	of	this	document.	Adding	new	transformations,	debugging	
existing	ones,	or	adding	new	templates	are	detailed	in	the	developer	manual.	

6 REFERENCES	
1. Eric	Clayberg,	Dan	Rubel.	Eclipse	Plug‐ins.	4th	edition,	Addison‐Wesley,	2009.	

2. Bruce	Eckel,	Thinking	in	Java.	4th	edition,	Prentice	Hall,	2006.	

3. Kito	D.	Mann.	Java	Server	Faces	in	Action.	Manning	Publications,	2005.		

4. Jon	Oldevik.	MOFScript	User	Guide.	Unpublished.	Version	1.0,	February	2011.	 (available	
at	http://eclipse.org/gmt/mofscript/)	

5. Gøran	K.	Olsen.	SiSaS	Studio	–	User	Manual.	Volume1,	2	and	3.	Unpublished.	

6. Object	 Management	 Group	 (OMG).	 Service	 oriented	 architecture	 Modeling	 Language	
(SoaML)	 ‐	 Specification	 for	 the	UML	Profile	and	Metamodel	 for	 Services	 (UPMS)	 SoaML.	
ptc/2009‐12‐09.	2009.	(see	http://www.omg.org/spec/SoaML/)	

7. Object	Management	Group	(OMG).	Unified	Modeling	Language	–	Superstructure	 (v2.4.1).	
formal/2011‐08‐06.	2011.	(see	http://www.uml.org/)	

8. Open	Modelica.	(See	http://www.openmodelica.org/)	

9. Debu	Panda,	Reza	Rahman	and	Derek	Lane.	EJB	3	in	Action.	Manning	Publications,	2007.	

10. Papyrus	UML.	(See	http://www.eclipse.org/modeling/mdt/papyrus/)	

©	2009	–	2012	SINTEF	 11	

	

11. Chris	 Richardson.	 POJO	 in	Action:	Developing	 Enterprise	Applications	with	 Lightweight	
Frameworks.	Manning	Publications,	2006	

12. Wladimir	 Schamai.	 Modelica	 Modeling	 Language	 (ModelicaML):	 A	 UML	 Profile	 for	
Modelica.	(available	at	http://www.openmodelica.org/index.php/developer/tools/134)	

13. Sonatype.	Maven:	The	Definitive	Guide.	O'Reilly	Media.	September	2008.	

14. Eric	Van	der	Vlist.	XML	Schemas:	The	W3C's	Object‐Oriented	Descriptions	for	XML.	O'Reilly	
Media.	June	2002.	

