" JOHANNES KEPLER
UNIVERSITAT LINZ

Netzwerk fir Forschung, Lehre und Praxis

DYNAMIC ORDERED INHERITANCE AND FLEXIBLE
METHOD DISPATCH

Paradigm, Concepts, and Use Cases

Dissertation zur Erlangung es akademischen Grades
Doktor der tedhnischen Wissenschaften
in der Studienrichtung Informatik

Angefertigt am Institut flr Praktische Informatik

Betreuung
0. Univ.-Prof. Dr. Hanspeter Mdssenbdck

Von:
Dipl.-Ing. Gerhard Schaber

Gutadter:
0. Univ.-Prof. Dr. Hanspeter Mdssenbdck
0. Univ.-Prof. Dr. Wolfgang Pree

Linz, Juli 2003

Johannes Kepler Universitédt Linz
A-4040 Linz ® Altenberger StraBe 69 ® Internet: http://www.uni-linz.ac.at ® DVR 0093696






© DI Gerhard Schaber, 2003

This work is subjed to copyright. Some concepts and source code in this thesis are intellecual
property of WindRiver Systems, Inc., and must not be used exadly as presented here withou
explicit permisgon of the author or WindRiver Systems. WindRiver Systems has contracually
granted all rights to use and present the concepts that are described in this thesis to the author.
All rights are reserved, whether the whale or part of the material is concerned, spedficdly the
commercia rights of trandation, reprinting, re-use of illustrations, citation, broadcasting,
reproduction on microfilms or in any other way, and storage in data bases. Commercia
dudication of this pulication in its current version, and permisson for use must always be
obtained from the author. For educaional, noncommercial purposes, the use and eledronic
dudication d this pulicationis granted.






Eidesstattliche Erklarung

Ich erklére an Eides statt, dassich die vorliegende Dissrtation selbsténdig und ohre fremde
Hilfe verfasg habe. Ich habe keine weiteren als die angefiihrten Hil fsmittel benutzt und die aus
anderen Quell en entnommenen Stellen als lche kenntli ch gemadt.

Linz, 2003






Abstract

The aim of comporent-oriented programming is to construct large software applications out of
sets of small comporents with low complexity, rather than building mondithic applicaions
which usually are difficult and expensive to maintain and extend. This enables rapid applicaion
development, makes maintenance eaier, and therefore dso reduces development costs.

Using third-party comporents further reduces the efforts, but it also has its shortcomings.
Developers are often confronted with the ladk of flexibility of third-party comporents to be
adapted to their needs. Companies offering comporents are confronted with the problem to
anticipate how devel opers (customers) and users might want to adapt the comporents. They have
to buld in hools that al ow to customize and extend the comporents.

The other way is to offer a solution that allows developers and users to dynamicdly modify
comporents withou being limited to a few hooks. However, current approaces for componrent
modification are still not satisfying or sufficient. The suppat is often only avail able at compil e-
or link-time. Current approadies that provide generic (unanticipated) suppat for dynamic
comporent modificaion are not sufficient.

Thisthesis presents a small framework which suppats dynamic comporent modificaion through
a flexible method dispatch medhanism. Method dispatch is the medhanism for delegating a
method cdl from the objed where the method has been invoked to the objed, respedively class
where the method is implemented. The framework aso provides proper base clases and
template configurations for components, which can help to significantly simplify development of
applicaions and their comporents. The framework is cdled PCoC which is the abbreviation for
Prioritized Coupling and Control of objeds and componrents. Many of its concepts and faaliti es
can aso be deployed independently of ead ather if necessary.

We use a refledion-based (meta-programming) approach where operations are treded as first-
classobjeds. So-cdled Dispatchers, similar to the Microsoft .NET delegates (type-safe method
pointers), are resporsible for dynamic method dispatch. The approadc enables to add, remove, or
replaceoperations at runtime, and to attad li steners to method objeds, which are natified before
or after ead cdl. It smulates delegation—a dispatch medianism in which an objed (the
recaver) delegates a message to ancther objed (the method holder and delegate) in resporse to a
message. The delegate caries out the request on behalf of the original objed, and may send
subsequent messages to the original recever. Thisincludes the invocaion o methodks.

A priority ranking of comporents determines in which order requests for operations are
forwarded, which gives the framework its name PCoC. This ranking can change through user
interadion (focus change in the GUI), or explicitly.

There are implementations of PCoC in C++ and Java. These are parts of two integrated
development environments (IDEs) avail able on various platforms, including Sun Solaris, Linux,
and the Microsoft Windons NT line.



Kurzfassung

Das Ziel von Komponrenten-orientierter Programmierung ist es, grosse Anwendurgen aus einer
Menge von kleinen Komporenten mit niedriger Komplexitdt zusammenzustellen, anstatt
mondit hische Anwendurgen zu bauen, die schwierig und teuer zu warten und erweitern sind.
Dieser Ansatz unterstiitzt eine schnelle Entwicklung von Anwendurgsprogrammen und deren
Wartung, undsenkt damit auch Entwicklungskosten.

Die Verwendurg von Komporenten von Drittanbietern reduziert den Aufwand nochmals, aber
hat auch Schattenseiten. Entwickler sind oft mit einem Mangel an Flexibilité von solchen
Komponrenten konfrontiert, welche sich oft nicht an Ihre speziellen Bedirfnise anpassen lasen.
Firmen, die Komporenten anbieten, sind ihrerseits oft mit dem Problem konfrontiert,
herausfinden und vorausshen zu missen, wie (kinftige) Benutzer der Komporenten diese
erweitern undanpassen wollen.

Ein anderer Ansatz ist eine allgemeine Losung, die es Entwicklern und Benutzern erlaukt,
Komporenten dynamisch zu verandern, ohne auf wenige vorgesehene Call badk-Funktionen und
Konfigurationsmogli chkeiten beschrankt zu sein. Jedoch sind aktuelle Ansétze fur dynamische
Komporentenmodifikation immer noch nicht sehr befriedigend und ausgereift. Modifikationen
sind meistens nur zur Compile- oder Linkzeit moglich. Aktuelle Ansétze fir eine algemeine
Unterstitzung fir dynamische Komponrentenmodifikation sind nach nicht zufrieden stell end.

Diese Arbeit présentiert ein kleines Framework, das dynamische Komporentenmodifikation
durch enen flexiblen Vertellungsmedanismus fir Methodenaufrufe redisiert. Dieser
Medhanismus delegiert dynamische Methodenaufrufe von den Objekten, wo Operationen
aufgerufen werden, zu den Objekten, wo die entsprechenden Methoden implementiert sind. Das
Framework bietet auch geagnete Basisklassen und Konfigurationsvorlagen fur Komponrenten,
die die Entwicklung von Anwendurgen und deren Komponrenten um vieles vereinfachen konnen.
Die Bezeichnurg des Frameworks ist PCoC, als Abkurzung fir Prioritized Coupling and Control
of objeds and comporents.

Wir verwenden einen Refledion-basierten Ansatz, bel dem Operationen as First-ClassObjekte
behandelt werden. Sogenannte Dispatcher, dhnlich der Microsoft .NET Delegates (typsichere
Methodenzeiger), sind fur die Vertellung von dynamischen Methodenaufrufen zustéandig. Der
Ansatz ermoglicht das Hinzufiigen, Entfernen, und Ersetzen von Operationen zur Laufzeit, und
das Anmelden von Listener-Objekten, die vor und nach jedem Aufruf oder Statusdnderung der
jeweiligen Operation benadirichtigt werden. Der Ansatz simuliert Delegation—ein
Vertellungsmedanismus fir Methodenaufrufe, bei dem ein Objekt (der Empfanger eines
Aufrufes) Aufrufe zu einem oder mehreren anderen Objekten (wo die Methode implementiert
ist—der “Delegate” eines Aufrufes) weiterleitet. Ein Delegate fuhrt die entsprechende Operation
aus und kann selbst weitere Operationen am urspriinglichen Empféngerobjekt aufrufen, welche
dann mdgli cherwei se wiederum weitergel eitet werden.

Eine Reihung von Komporenten nach Prioritét bestimmt in welcher Reihenfolge die Aufrufe von
Operationen zu welchen Komporenten weitergeleitet werden, was dem Framework seinen
Namen PCoC gibt. Diese Rethung kann enerseits durch Benutzinteraktion geéndert werden
(Fokus-Anderung in der Benutzerschnittstell e, behandelt durch das Framework), oder explizit im
Client-Code.

Es gibt Implementierungen von PCoC in C++ and Java. Sie sind Teile von zwe integrierten
Entwicklungsumgeburgen (IDEs) auf Sun Solaris, Linux, und ar Microsoft Windonvs NT-Linie.



Acknowledgments

First and foremost | want to expressmy gratitude to my advisor, Hanspeter Mdssenbdck. None of
this would have been posgble withou his guidance and suppat. His constructive criti cism of my
thinking and writing helped to keep me on tradk, to develop new idess, and to avoid pitfalls. His
guidanceon literature and reseach | shoud focus onwas invaluable.

| would like to thank my parents, Waltraud and Georg Schaber, who made my educaion possble
and suppated by during my study.

| would like to expressmy appredation to my sister, Karin Schaber, who gave me the inspiration
and motivation that kept me ontrad. | have always admired her ambiti on and determination, and
| still do. She has always been a person to whom | have looked up to, and avery goodfriend. Her
adviceregarding the writing of this thesis was also most helpful.

| also would like to expressmy appredation to Michad Scharf whois a grea software archited.
We had many redly gooddiscussons. Our work as atean and al the nightly discussons we had
were sources for many new ideas and steady motivation. The whole framework presented in this
thesiswould na have been passhble withou him.

My thanks go also to Werner Kurschl who suppated me with goodliterature and advice

Our technicd writers, Jyo Samjee and Eric Strobl, helped to improve the English. | am truly
thankful for their help. | appredate the persondlity of both, and our many and extensive talks.
Many thanks go to Eric who proof-read this thesis, and to Jyo who always had a good advice and
isone of my best friends.

Last, but not least, | would like to thank my former employer, WindRiver Systems GmbH, more
predsely Tomas Evensen and Ruddf Frauenschuhfor giving me the permisgon to use concepts,
documents, and source code | creded during my work for WindRiver for this thesis. | have
leaned alot in this company.

| started working for Takefive Software in Salzburg in 1997.The company was acquired first by
Integrated Systems, and then by WindRiver Systems. | want to thank all my coll eagues there for
our grea cooperation in the last yeas, and many good ideas. | appredate al of them as grea
developers and coll eagues: Helmut Haigermoser (who does grea work as developer, workspace
and system administrator, and Harry Potter and Lord of the Rings story teller), Walter Brunauer,
Christian Linhart (the living C++ standard—he knows everything abou C++), Max Weninger,
Edi Vorauer, Robert Lichtenberger, Johann Draschwandtner, Toni Leherbauer, Martin
Gutschelhofer, Laszlo Juhasz, Ruddf Zimmel (agrea projed manager).






Contents

N 015 = T ST RPPPTUTTPTTRR i
[0 T4 = S V] o USSP il
ACKNOWIBAGMENTS. ...t e e e e e e ettt et e e e e e meessam e e e e e e e eetmaaaeameeeeams iii
I 1 (o To (1 o1 o o PP 1
1.1IMOtIVAiON ANA GOAIS........coiieeeeiiiiiiiir ettt mr e e e e e e e eeens 1
1.2 A Flexible Method DispatCh MeianiSIM.........ccoviceiie it ere e e 3
1.3The PCOC FrameWOrK........cccoiiiieeeeeiiiieieeeiiiiiiiesesse s e e e eeeeeeeeeesnesssssnnnnnnnnnssseeeeeessseesssmmhinnns
1.4Deployment Of PCOC.....c.cooiuiiiieiise e e me st me s 4
L D KEYWOITS. ..ottt ettt e+ttt ettt e e et er et mrn e e 5
I G YO0 1Y 1o oSSR 5
1.7 DEfINING ROIES. ... ottt ettt et e era e e era e e 6
2 Method Dispatch and DEl@QELION.........uuveeiiiiiiiiiiiiieeeeeeee et e e e e e e e e e e e e e e e e e e el
2. L OVEIVIBIW. ..ttt ettt bttt e e s e e e e e e e e e e e e e e eeeee e e bt bbe st bbbt a e a e e e e aaeaeeaeas 7
2.2SAE Of TN Aot e e e e et e et e 7
2.2.1Smalltalk MethOd DiSPaiCh......c..veimiiiiit i 8
2.2. 2V -TADIES. .. ettt ettt e e e e e e e e bbb 9
2.2.3MESAGE O RAS. .. .t eieii ettt ar e e r e 10
2. 2. ADEIEQAION......ccceeiiie e e e aaaaaa 12.......
2.2.5Type-Safe Delegation and Dynamic Comporent Modification............ccccceveeneeneenen. 15
2.3Fexible MethOd DiSPaCh.......cccoiiiieiiiiiie e 19
2.4Method Dispatch USINg REFI@AION. ......euuuiiiciiiiiii it e 20
2.5 Dispatcher-Dictionary Implementation.............cuuuuueerriieecimiiiiiee e e s 24
2.6 DispatCher IMPIEMENEELION. .. ...ttt ettt e e e e e sn e e e e e e 25
2.7Using Dispatcher Dictionaries and Indired REfErenCes............ooocevvvviviiiiiiiiac e 27
2.8Dynamicdly Adding ASpedsto MethOs..........c.uuuiiiiiiiiiiiiii e meece e 29
P2 ]\ o (] o= (o] o ST PPPPPTRR 31
2. 10FIeXiDIE DEEQALION. ... ittt e e e e e e e n 33
2.11Prioritized Flexible Method DiSpatCh.........c..iiiiiiviiiie e 36
2.12ContaiNMmeEnt HIEIrarChY ... ....uu ettt ar e e s s e eene 38
2 ABREMAIKS. ... 39.........
GO0 G I 1 PPN 45
L OVEIVIBW. ..ottt e e e s e e e e e et e e et et e e et et ettt e e e e e eeeaaaeeeeeeeeaesssssssansaaaeeeeaseeaaeeeaneeennnnns 45
.2 ACHVItI €S PIOVITENS. .....eeieiieeeiieie e e e e ettt ereeeetime e e e e e e e e e e amr e e e e eeansamr s s s e e e eeeeameeeeeeeeeeens 45
G N Y= a1 = S 45
I O = 1 (=) TSR PP PP 46
LB ACHIVITY SELS....ceiieiiiiiit ittt ettt ettt ettt ettt e et bbb e e e e e e e e e e e e e nanneeeaa 46
GG TR K Y= a1 = PSPPSR 46
IR I O =1 (== TP 46
G0 o o, PP TRTPPRPRRRRPPY ¥ 4
G N Y= a1 = PSPPSR 47
4. 2EXAMPIES. ..ot et ——————————— 47
B T @1 =1 (== SRR 48
oA AREMAIKS......eeeeiiiimm e e e et e et e ettt m e e e ettt ——tn————— e e e e e e e e e aeeetnnns 48
3 D SEIVICE PIOVITENS. . .oee ittt e et ae e et e e e eea et ar e e e ee e e e ern s e er e e e ae e s s 48
R TN O Y= a1 = S 48
I O = 1 (=) T PRSP PP PP 49
5. BREMAIKS.....ceeeeiiimm ettt ———— e e e e e e e eeernnns 49
G oY== PP 49



B0, L OVEIVIEW. ettt ettt et e et e e et e e et e e e e e et e e e e sae e e eee e s eta e e e et e e e e emn e e s 49

B G O = 3 () T TP UPORRPPPPPI 50
BB . BREMAIKS. ...t e aat e b n 50
T\ = < = PP TTTR 50
ST L OVEIVIBW. ... ettt ettt ettt e+ttt ettt e e e era e e e e en e 50
G L O =1 (== SRR 51
BB DIGPAICHEIS. ... ——————————— 51
BB L OVEIVIBIW. ...ttt ettt e+ttt ettt ea e e en e 51
R S O = 1 () T TP UPORRPPPPPI 51
S TR o 1 0= PP 51
G R I NSRS 52
e I O Y 41 USRI 52
I O = 3 () TP UPORPPPPPPI 52
L0 . BREMAIKS.....eeeeeietieeeee et e et ettt ettt mm e e e e e e ettt et m——— e e e e e e e e e ee e 52
3.10Case INSensitiVitY INPCOC.........oii i eeeee e ene e 52
I N O > 1S o 1= V2SSOSR 53
T LS o N o PSP 55
AL OVEIVIBW. ...ttt e e e e e ettt ettt ettt et s e a2 e e e e et e et ee e et e et e at bbb b e e e e e eeeeaaeeeeeeeeanesssnseas 55
A I SN 1 £ A o Lo H PP PPURRPPPPPPP 55
A.3USING ACHVITIES. ... et e e e et et mmmm e e e e et e e e e e e aaa e eeeeeesn 59
4. 3. LACLIVILY ClaSSINTEITACE. .......oiiiie et e 59
4.3.2ACLIVItY LiStener INEITACE. ... .ot iiiiceeiiiiae et 60
4.3.3PCCMaterial: Container for Arguments and Return ValUes..............cvvviivicevineeee 61
4.3.4Dynamic Activity Type EXPlaiNed..........covuiimiiiiiiieieee e 62
4.3.5Creding and Setting Up ACHVITIES.......oooice i 63
4.3.61MPlemMenting ACHVITIES.....c...iuiiiiiiiiie s ettt e et e 66
4.3.6. 1SUBCIESING. ... e ———————— 66
4.3.6.2Performing ACHVITIES........uuuii it e e 67...
4.3.7State HaNdliNg Of ACHVITIES.......vueiiiiiiiiiee ettt sn e e 67
4.3.8Fetching Context Data Of ACHVItIES.....c.coiveiuiiaeiiiimie e 69
4. 4USING DISPALICNENS. ... eeiiee ettt ettt s e 71
4. 4. 1INVOKING ACHIVITIES. ..ottt sttt e e et e et e e e e et e e e e e e e e s e e e e e eane 71
4.4.2State Handling Of DiSPaiCNENS. .......uuiueiieiiiiiiiiiee e 74
4.4 .3Fetching Context Data From DiSpatChers..........ccovveeivvieiiiinesse e £ 4
.5 USING TASKS. ..ottt ettt e e e e e ent et e e e e e e e e e 75
T @ V< V= O 75
4.5.2SIMPIE TASKS. ..o ceteiee ettt ettt e e 76
T TG 11V =T PP 79
4.6 Delegation LBING PCOC.......c.coiii et mt e e e e e e e e e eees 82
5 Detail ed Concepts and IMplementation...........c..ieriiiar e e e e eaans 87
5.1 PCoC-Related Padkages and Resporsibiliti €S.........cccoccvueeiiie i e 87
0 I L @o o o 71 o o 1O 38
5.1, 2FrameE MaNAOET ... .oeiei ettt e et et a e e aaa, 88
5.1.3C0MMANA MENAGEY ... .ciieieeeie ettt e e e et e e et it se s e s e et e e e s s e e e s e e saieeeees 89
5.1.4PCOC COIE....ccuuuuiieeieiitiea e e ettt memm e e e et s e e e e ee et e e e e e eesmmnn e e e eeessa e eeeaeesnanaeeean 89
5.1.5Simple and Combined TOOIS.....c..uuiiiie et 89
5.1.6Standard Widgets/ Standard TOOIS.........ceeiiuiiiiiiiiiiiis e 89
ST A 0= PP 89
5.2 ACHVITI ES PrOVITE ... ettt et or et e e e e e ers e ere e e er e e e enn e ssre e e ee e e e enns 89
5.3ContaiNMENt HIEIrarChY.........o.uuiiie et e 91
5.3.1SamMPle HIEIarCNY.....cuuuceiiie ettt e e e e e e sa e e enne 91



5.3.2Modifying a Containment Hierarchy.............cccccevviiiiiiiii e 92

5.4 Acquisition: Dynamic Comporent INNErtanCe...........oeeviviariiiei it 95
5.4 L OVEIVIEW. ...ttt ettt e+ stttk e+t e 44t e et sn e 95
5.4.2Environmental ACQUISITION.........cuuuiiiiieiiiiiie e e e et e e et e e e e eaaa e e e eeean 95...
5.4.3DITE0 ACQUISIEION. .. ueettieeeiieeetireesireesiresasssss s s s s s s e s s s e s 95

5.4.3.1ACqUISIIONTN PCOC. ... ..ottt e eeaaaas 96
5.4.3.2S5ample ACQUISITION.......ciiiiiiiiie e e e e e e et eeees o 97
5.4.3.3Acquiring / Discarding @ COMPONENL........ccoeeeiieiiie e s 99
5.4.3.4Changing the Prioriti es (the Ranking) of Acquired Activity Sets................... 100
5.4 AREMAIKS......ceeiitiim e e e e ettt e e e e e e e e et ettt ettt ra ittt 101

5.5Activities and their INTEITaCES........c.vvvevvie e e 101
5.5. 1INterfaceSPEATICAION. ... ..uueiiiiiiieeie i 101
5.5.2REtrieVing INTEITACES.........uiiiiiiiiiiiii e 102..
5.5.3ACtVItY INTEITACECIESS .......uee ettt 102
5.5.4Type Safety / Implementation d Perform.........cccoviie e e 103

5.6 Dispatchers and Activity Sets: D|spatch| ng Requests ................................................... 105
5.6.1Activity and Dispatcher Tables... TR PUTPPRUPPRRPPRN! I 0 Lo
5.6.2Dispatching ACtiVILY REQUESES.......uiiieiieiee ettt sttt e ars s e sn e ere s ereaens 106

5.7 TaSKSTN DELAI ......ueeeeieiee e 1009......
5. 7. 1SUCIUIE OF TaSKS.....eueeiiiieei ettt 109
5.7.2Dispatching REQUESIS USING TASKS. ... ceeiieeieriieee i ieie st see s se s 111

5.8 Activity Sets: Putting Everything Together............occoiieiiieicenvee e 112
5.8.1AIChItEAUIE OVEIVIEW....oceceeeiiee ettt sre e er e e ee e er e e e er s se s sn s sre e ereeees 112
5.8.2Dispatching Activity Requests in ACIVITY SELS........coeiiviieiiiecieeee e 114
5.8.3Dispatcher Proxy ManagemMeENt..........c..ooiouurreirtri e sre e 114

5.91IMPIemMENntatioN ISTUES.........ooiiiiieiiieeee i mr et e bbb mr e e e e e e e s e e e s 116
5.0, 0JAVA0OF G2, et e et e e e e e e e e ar e ane 116...
5.9.2Suppating Implicit Generation d ACHVILIES.........vevvvveriiii i see e eveaeanns 116
5.9.3Explicit and Semi-automatic Generation o ACHVILIES..........ccccvvviiiecviiiiei e 119

6 Comparison with Related APPIrOAMIES.........ccvuuriii e e e 123...

6.1Environmental ACQUISILION........cceiieiiiei ittt a e 123
6.1.10verview of Environmental ACQUISILION..........cooeiviiiiiiiieeieiiiee e 123.
6.1.2Environmental ACQUISIEION TN LITEratUrE. .........uuuviiiiieiiieiie e 123
6.1.3SIMpPle IMPIEMENLALION. ..ottt 124
6.1.41MPIICIt ACQUISIEION.....ciiiiieieiieee et eer e e e e e e e e e e e e e 126
6.1.5EXPICIt ACQUISITION......evveieieiiiiiiee e e r e e e e e e e e e e e e e 127
B. L. OREMAIKS. ....eeeeeeeeteeeteeee e e e e e e ettt e e e e e e e e e e ettt aa et it e et 127

6.2 Asped Oriented ProgramimiNg..........coeeeeeeeeeesimeeieeeeeees o e e e e e e s s eeeeeeeee e 127
8. 2. LOVEIVIBW. ..ottt ettt ettt e ettt e+ sttt e e sttt ettt s e e e 127
B.2. 2 ASPEAT. ..ttt oa e s an e e e nn e 129
6.2.30ther MeaniSIMS.......coiiiiieiiiiee e e e 131
B. 2. 4AREMAIKS. ..ottt ettt ettt ettt ettt ettt 133

B.3EVENt ChannEliNG.......cciiiiiiice e e e e e e e e e 133

6.4 JAVAREIICAION.... .o 134
8.4, LOVEIVIBW....coe et se e e eree e e ettt e e e et e e e e sttt e e e e et e e e e s e e e e e 134
6.4.2Refleding Clas®es and MethoOs iN JaVa.........cccoveveceeceeiriince e L34
6.4.3JaVA TYPE CNEGKING. ...ttt e e e e e e e e e e e e e e 135....
6.4.4Dynamic Method INVOCETON IN JAVAL.......uuiiiiiiiieiiiieee e 135
6.4.5Java Refledion: INVOKING CONSITUCTONS. . ......ui et e e 136
6.4.6Java Refl@@iON: FIElAS.....ccee i 136
6.4.7Dynamic Classesin Java ClasSPrOXY.....cuiiiuiiiiiiiiae i sseve e e sn e 137

Vil



.4, 7 OV O VI BN, . et e e e et e e e e e e e e e e e e e e e e a e 137...

6.4.7.2Methods Duplicated in Multiple Proxy Interfaces............c..eveeeieeeeaviiiimnninns 141
B.4.7.3REMAIKS......iiiiiieiiiiii ettt ettt a e e e 141
6.5JaVA SWING ACLIONS.....ceieiii et e e e e e e e e e a e e e e earaan s 142
B.5. LOVEIVIBW. ..ottt ettt ettt e+t e e 24ttt e e e s sttt e e e ettt 142
6.5.2USINg JAVa SIWING ACHIONS. .. ... iiieiiiceriie e ee e e eittme e e e e eaimm e e e et e e e e e e et e e s on 143
6.5.3Using Actionsfor FOrWarding.............uuviieriiiiiiieeeeiiiie e 145
B.5.4AREMAIKS. .....oeiiitite ettt ettt bbb 147
6.6 MethOdPOINTEIS TN CA. . e e 148
A8\ 1 o 0o A N | O 149
B. 7. LOVEIVIBW. ..ot ceeeeee e s e et e s e e e men e e e e s e e e e s e e e e sea st e e e e e st e e e e sn s et e e e 149
6.7.2CrHI Cal ISTUES OF INET ... i eeceee ettt re e sre e s e er e e e er e e are s sre e ere e e 150
6.7.3Language Independent Objed Model of .INET........ccccoeeeceriiiiiiiiei e 150
B.7. 40VEIVIEW OF CH....ceeieee ettt e eer s se et e e e e e stre e e e mra e s e e ern e 150
B.7.5 NET DEIEGALES. ... ..o e e e e e e e e e e e e eaeeee s 151..
8.7 . 5. LOVEIVIBW. ...ttt e e e e e e et e e et et bbb e e e e e e e e e e e e nn 151...
6.7.5.2USING DEEQALES.....uvui it e ettt e e me e e e e e mr e e e e e 152
B.7.5.3REMAIKS......ciiiiiieiiiiii ittt e e 155
6.7.6 NET Late Binding and Dynamic Method Invocaion..........ccccocoevevveiiiiiiicniineeeee, 156
8.7 .6. LOVEIVIEW. ...ttt e e e e e e e e et e e et ettt bbb e e e e e e e e e e e e e e nn 156...
6.7.6.2DynamiCc MethOod INVOCETON...........c.uueiiiiei et 156
T 4= €S 157
6.7.7Name SPACES ON NET ... ..ot 158
O (O Y= a1 = 158...
6.7.7.2USING NAIME SPACES. ... ottt ettt ira bt e e sttt e e me e 158
6.7.7.3NAME-SPACEAITBSES. ... cou ettt ettt sr st 159
6.7.7.4ANeSted NAME SPACES........uuuiiieiiiiiiiie et e e e e et e e e e e et e e e e e oo 160
B.7.7.5REMAIKS......iiiiiieiiiiii ettt 160
6.7.8 NET PrOPartiES......coiiiiiiiiiiiee et 161
B. 7. 9REMAIKS. ....ceeiittite ettt ettt 162
B.8 SMAIIEAIK....coveee ettt 163
6.90beroN MeSSAE ODJEAS.......vviii e e errr e e e e e e e e earaan 164
B.9. LOVEIVIBW. ..ottt ettt s st me e e srs e e e e s e e e e sea st e e e e sn st e e e e sn s s s e e 164
B.9. 2REMAIKS. ....ceeeetetim e e et e e ettt e e e e e e e e ettt t ettt nn e 164
G0 0 SO 166
L0 0 00 = = T O 166
6.10.2Prototyping VS. ClasSINNENTaNCE........c..uuiiie ettt 166
6.10.3Prioritized Multi ple INNEITANCE ... e 168
B.10.3. JOVEIVIBIN. ...ttt ettt a et e e e e e e e e e e e e e e e e eeetnneee e 168...
6.10.3.2DSIgN PriNCIPIES. .. ..ot 170
B.10.4REMAIKS.... .o 172
6.11System Objed Model (SOM, By IBM)......coiiiiieiiirs e s 173
B.12DESIgN PalEINS.....euiii e aaa 174...
6.12.2C0oMMANG PaLLEIN. ...t mtt et e e e e e e e e e e e b e e e eeeeas 174
6.12.2Strategy PatterN. ... ... 174....
6.12.3ACtIVIti€S: First ClasSODJEAS. . .....uuiiiaiiiie sttt 174
6. 12. 4D I SPAICNENS. ...ttt ettt 175
4o 7o LU= o o 177
A8 O Y= /=SS 177
7.2Which MeaniSMSWREN?. ...ttt ettt et ee e ee e et an e e e 177
7.2.1Static Interfaces/ MEthOOS ... ... e 177



WA A Y= 0| = 178

7.2.3PCOC / DyNamiC DISPACR ......cooiiiiiiiiiiieee ettt 178.
AT R = 1071 G 179.......
A 1o 1 < Lo 180
ST 100 TS o 181






1 Introduction 1

1 Introdu ction

1.1 Motivation and Goals

In order to simplify the development of large applicaions, they can be constructed out of small
comporents with low complexity. The assembly of applicaions from existing comporents
shoud increase reuse, thus alowing developers to concentrate on value-added tasks and to
produce software with high quality within a shorter time.

In the literature, the term software comporent is diversely defined. The nation of the term as
found in [SZYPE98] on Page 34, is in line with this thesis. The book provides a detail ed
discusson abou what a comporent is and what is not. Other definitions of the term and
comments on the definitions can be found onPages 164-168.

“A software comporent isaunit of compasition with contracuall y spedfied
interfaces and expli cit context dependencies only. A software comporent can be
deployed independently and is subjed to composition by third parties’.

With this definition we find a comment that a software comporent must be a binary unit. We
agree with this nation, but we use the term also for sets of clasqes) together with a proper
configuration (how a comporent or applicaion is customized) from which a software comporent
isbuilt.

Comporent oriented programming promises the flexibility to adapt ready-made comporents to
the user's neals. Comporent modificaion includes the replacement of comporents and
operations by others that are better suited for spedfic tasks. It also includes the customization of
thelook & fed and aher properties of comporents and whole goplications.

When devel oping comporents, we often encourter one or more of the foll owing requirements:
* the aility to add, remove, and replacedata sources and targets at runtime
* the aility to add, remove, and modify functionality at runtime

* multiple reuse of comporents as instances in different applicaions or within the same
applicaion

* priority management, for example for interadive cmporents and their operations
» single, broadcast, andfiltered dspatch of operation requests
* deferred exeaution d operations

» application control via menus, toadlbars, scripting, and remote requests—preferably withou
the neal to implement separate dispatch functions for ead operation and their different
deployments

The ned for the ability to dynamicdly add and remove data sources and targets is given in
amost every interadive applicaion. Think of a file-browser as source comporent, in which we
interadively seled a particular file. We might need to dynamicdly assciate a spedfic target
comporent with the seleded fil e, depending on itsfil e type. The target comporent may be a part
of a newly installed application, and shoud be loaded when we doulde-click the file in the file-
browser.

It is sometimes necessary to extend the assciated target componrent by additional functionality.
For example, we might want to extend a word-processor componrent by functionaity to caculate
particular statistics or to do additional highlighting of speaa phrases of a text document, which
is not suppated by the origina componrent. In the case of third-party comporents, we usually do
not have the source code which we could modify, so we need a medanism that enables us to



2 1 Introduction

modify comporents dynamicdly. The ability to extend and modify a comporent is cdled
dynamic componrent modifi cation, or dynamic comporent adagation.

In order to get asingle look and fed for applications, and to save development time and costs, we
shoud be aleto reuse omporentsin dfferent applicaions or within the same gplicaion.

In certain cases it isrequired to switch between several implementations of an operation, classor
whae comporent, and to introduce a ranking for the different implementations. For example,
when applying visua effeds on an image, or filtersin atext-seach dialog, then it isrelevant in
which order the dfedsor filters are gplied. If the dfeds andfilters are redized as clases with a
methodapply , we nead assemblies, or more predsely ordered coll edions, where their instances
can be put into. The ranking within such an assembly could determine in which order the effeds,
respedively filters, are applied. The user could interadively change the ranking, as well as the
developer could changeit in source @de.

Speda method dispatch strategies are needed for certain use cases. To invoke single methods is
the most common case, but also broadcasts (multicasts) are nealed, for example, for shutting
down al services and saving al documents when an application is going to be terminated. In
some cases, multi cast messages shoud be sent only to certain comporents. We cdl this dispatch
mode filtered broadcast.

It is necessry that time-consuming tasks are exeauted asynchronowsly, usualy in a separate
thread. This concept, cdled deferred exeation or late invocation, helps to prevent that the
correspondng application, respedively its current threal, is blocked, as it would be the case if
the task was exeauted synchronotsly.

Most applicaions have a user interface a scripting interface and maybe an interfaceto control
them remotely, for example via Web-browsers. Usudly, for ead interface and required
operation, proper dispatch functions or hooks (cdlbadk methods) must be implemented. In
addition to that, the same operations may be invoked from various places in the source code. To
simplify development, it is reasonable to introduce a uniform method dispatch mechanism for
handing all of these interfaces, and which is easy to adapt to new interfaces. The componrent
developer can then concentrate on implementing the core functionality (the purpose) rather than
having also to handle dl kinds of interfaces over which the comporent functionality is expased.

In addition to the already mentioned requirements, some applicaions have to be portable to
various platforms. An architedure is required that is able to cope with small as well as huge
applicaions, providing easy concepts and usage. In order to be able to find defeds in the
software, a fadlity to insped objeds and classes at runtime can be helpful. Such a fadlity to
display information abou objeds is cdled introspedion and is based onrefledion. Refledionis
the ability to obtain information abou the fields, constructors and methods of any class or
comporent. See Devdoping JAVA Beans [ENGLA97] on Pages 40-42 for a short introduction
into Javarefledion.

In short, we need a flexible, scdable, and easy to use approach for dynamic comporent
modificaionwith suppat for introspedion.

In [KNIES99] on Pages 1f, Kniesel G. classfies known approaches of dynamic comporent
modificaion acording to:

* their neal for preexisting hooks in the applicaion as either suitable for anticipated or
unarticipated changes

 thetime when amodificaionis made & either static, load-time or dynamic (runtime)

* their ability to adapt whole comporent types or individual comporent instances as ether
globd or sdledive Seledive approaches can be further classfied as either replacing or
preserving, depending on whether they replace an existing comporent instance by its
modified version a let both be used simultaneously.



1.1 Motivation and Goals 3

* the applied techniques as either code-modifi cation-based, wrapper-based or meta-leve-
based.

The nedal of unanticipated dynamic componrent modificaion has been repeaedly pointed out in
literature (e.g. [MAETZ97)).

When developing a comporent, we may not always know which hooks might be neeled in the
future by users of the componrent. We canna always anticipate which enhancements users might
want to make, and we usually do nd want to make the source ®de avail able.

Global approadies affed classes, whereas seledive approadhes affed objeds. A modificaion of
a classhas an impad on al its instances, whereas a modificaion of an objed has only a locd
impad.

By introducing wrappers for comporents, the interfaces and functionality can be adapted to the
client’s neals withou changing the original comporents. A wrapper ads as proxy (a surrogate or
placéndder) of its associated comporent, and may load it on demand. If the comporent canna
be loaded, the wrapper can throw an error.

A more detailed dscusgon d thisclasgficaionisgivenin Sedion2.2.5

Our god is an approach that offers suppat for dynamic comporent modificaion and which
meds the requirements mentioned ealier in this edion.

1.2 A Flexible Method Dispatch Mechanism

With resped to the classficaion above, we introduce a flexible method dispatch mecdhanism that
offers suppat for dynamic, seledive, wrapper-based comporent modificaion. This approach is
objed-preserving when applied at instance-level (a generic comporent-instance wrapper handes
dynamic operations; such an operation is represented as objed with a reference to the wrapper).
When integrated at classlevel (wrappers for classs rather than instances; operations do not have
a reference to a wrapper), it is globa and meta-level-based. The flexible method dispatch is
based on refledion, more predsely on dynamic method cdls. No proprietary compiler and
preprocessng of source @deis necessary.

The approacdh enables to add, remove, or replaceoperations (method objeds) at runtime, and to
attach listeners to operations, which are natified before or after ead cdl. We cdl these
operations Activities. An Activity can ether be diredly added to a so-cdled Activity Set, or
acquired from ancther. In our approach, ead comporent is asociated with an Activity Set.
Acquisition denotes a delegation medhanism. That is, when an Activity Set (the child) aauires
from ancther (the parent), and an operation is cdled on the child, and the child does not provide
the operation, the cdl is delegated to the parent. A referenceto the recever (where the operation
has been invoked) is pased with ead operation, so that the parent can invoke subsequent
operations onthe origina recaver (the cild).

The difference to what we understand as delegation is that our approad uses sets of dynamic
operations (Activity Sets) rather than oljeds. However, the dispatch algorithm is the same.

As oppased to classinheritance which is used to share behavior between classs, delegation (and
aqquisition) is used to share behavior between objeds. The delegation concept is described in
detail in Sedion2.2.4

Activities are treaed as first-classobjeds. So-cdled Dispatchers, similar to the Microsoft .NET
delegates (type-safe method-painters), are resporsible for dynamic method dispatch, or more
predsely for delegating operation requests. The main difference to delegates is that Dispatchers
can be used for delegation, whereas delegates can only be used for forwarding. With forwarding,
the objed where a method originally has been invoked (the recever) is not known to the method
holder (where the methodis adually exeauted), and therefore the method halder canna use it for
subsequent methodcdls.



4 1 Introduction

Dispatchers are automaticdly generated when an Activity is added to a comporent, respedively
to its aswociated Activity Set, or aqquired from another. Their type safety is ensured at runtime,
whereas the type safety of .NET delegatesis ensured at compil etime.,

Activities can be extended by aspeds at runtime. Aspeds are well-moduarized reusable cross
cutting concerns in software: Code fragments can sometimes be separated into their main
functionality and several aspeds. Such an asped applies to a set of code fragments, and thusis a
means of reusability. Examples are plausibility chedks for method arguments and return values.
They also include tradng capabiliti es, additional data-types for algorithms, etc.

“Asped oriented programming does for concerns that are naturall y cross-cutting what
objed-oriented programming does for concerns that are naturally hierarchicd.” -
[KICZALOQ], Page 1.

1.3 The PCoC Framework

We present asmall framework that suppats the flexible method dispatch mecdhanism, and meds
the requirements discussed ealier in this chapter. The framework aso provides proper base
clases and template configurations for comporents, which can help to significantly simplify
development of applicaions and their comporents. The method dispatch medianism including
its suppat for different comporent interfaces is encgpsulated in the base classs, as well as the
processng of comporent startup, initialization, and termination. This approach allows
developers to concentrate on value-added tasks such as implementing the core functionality (the
purpose) of ead comporent.

The framework is cdled PCoC as abbreviation for Prioritized Coupling and Control of objeds
and comporents. The name denotes the suppat for prioritized dynamic inheritance (aayuisition),
and the already mentioned generic, flexible method dispatch medhanism used for comporent
interoperation (cougding) and applicaion control. A priority ranking of acquired comporents
determines in which order requests for operations are delegated. This ranking can change through
user interadion (focus change in the GUI), or explicitly.

All operations of al comporents are automaticaly exposed in a generic way for their use in the
GUI (menu bars, tod bars, etc.), for scripting, for comporent interoperation, and for remote
control viaXMLRPC (XML-based remote procedure cdls), etc.

Many of the concepts and fadliti es of PCoC can be deployed independently of ead other if
necessry. There are implementations of the framework in C++ and Java. These are parts of two
integrated development environments (IDES) that have been relessed on various platforms,
including Sun Solaris, Linux, and the Microsoft Windows NT line.

The Javaversionis used as abasis for thisthesis.

Some concepts and source code in this thesis are intelledua property of WindRiver Systems,
Inc., and must not be used exadly as presented here withou explicit permisgon of the author or
WindRiver Systems. However, they may help to find similar solutions. WindRiver Systems has
contracdually granted all rights to use and present the concepts that are described in this thesis to
the author.

1.4 Deployment of PCoC

PCoC is made for all kinds of applicaions that require extensive user interadion or scripting.
The goal is to provide a comfortable framework that reduces the implementation overhead for
comporent interoperation and controlling by separating the comporent assembly from source
code, providing built-in priority management of componrents, and a medianism for dynamicaly
dispatching method cdl s based onthis priority management.



1.4 Deployment of PCoC 5

Priority management means that comporents are ranked by time of last usage. The most recently
used comporent gets the highest priority. When sending a message to agroup of comporents, the
message is sent to the first comporent in the ranking that is interested in this message and which
subsequently performs an operation associated with the message.

PCoC is nat a competing comporent standard to CORBA, COM, .NET, JavaBeans, etc. Rather,
it works together with, a ontop d, these standards.

It is also not a reasonable basis for applicaions withou a graphicd user interface for
applicaions providing only one interadive comporent, or generally for limited-functionality
applicaions. Althowgh the framework would be a too big an overheal for such small
applicaions, it may nevertheless be used to quickly aciieve a running and extendable
applicaion.

When developing smaller applicaions, in most cases standard operations (methods, functions)
and comporent interfaces would be sufficient. When developing larger applications (over 20
comporents), developers often miss mechanisms for organizing al the comporents of an
applicaionand their operations.

PCoC addresses this isaue by providing medanisms for dynamic method dispatch over diff erent
comporents, organizing comporentsin alogicd containment relationship, prioritizing them and
their operations, automaticdly expasing operations via an applicaion plugin interface and
defining exeaution relevant states per operation, e.g. “Enabled”, “Disabled”.

Compasition and couding (conreding for interoperation) of comporents is configurable,
maximizing reuse. To kee the customization effort low, the visual representation of different
operations of the same kind, for example, operation copy provided by many comporents, can be
defined in a uniform way. A definition in the configuration can be shared by any operations. It
can include text strings for menu and toadl bar entries, the help string in a status line, an icon, and
also aswociated keyboard shortcuts. The whale configuration of an applicaion can be modified
and reloaded at runtime.

Concepts presented in this thesis nead not be used as a mondit hic pad<age. Some of the concepts
and petterns are versatil e, meding requirements also in fields other than IDE devel opment.

1.5 Keywords

Dynamic Cougding, Comporent Interoperation, Dynamic Comporent Modificaion, Dynamic
Comporent Adaption, Menu and Todbar Setup, Scripting, Applicaion Control, (Priority, Focus)
Management, Activity, Delegate, (Method, Request, Message) Dispatching, Dynamic
Inheritance, Acquisition, Delegation, Very Late Binding, Meta-Programming, Refledion, Code
Reuse, Objed-Oriented, Comporent-Oriented, Appli cation Framework, IDE, Todls, Services.

1.6 Conventions
The foll owing typefaces are used in thisthesis:
For source mde, monao-space(Courier New)
* Example: getX
To emphasize aword or text, or to introduce terminology, italics
« Example: An applicaion may consist of comporents cdled Tools and Service Providers.
Types begin with a caital letter, operation names with alower case letter.
* Examples: Point , getX



6 1 Introduction

Classes of the PCoC framework have the prefix “PCC’. This prefix is sometimes omitted for
simplicity in dagrams, figures, and text sedions where the mntext is sif-explanatory.

* Example: PCCDispatcher

1.7 Defining Roles
We distinguish the following roles for developersin this thesis:

1. Framework developer: Resporsible for the concepts and the architedure behind an
applicaion.

2. Comporent developer: Develops comporents withou nealing to know much about the
architedure and how messages are sent between comporents to perform operations. There
is aso not much neeal to know about customizing the representation of operations in the
application's menu or todbars. The comporent developer concentrates on developing the
functional part of a cmporent.

3. Customizer / Configurator. Asembles comporents to an applicaion in a reasonable
manner and configures, for example, menus and tod bars.



2 Method Dispatch and Delegation 7

2 Method Dispatch and Delegation

2.1 Overview

This chapter gives a short overview of the Smaltalk, C++/Java, and Oberon method dispatch
medanisms, and some thoughts that lead to the development of new concepts such as aflexible
method dspatch medhanism.

We propacse a solution to make inheritance rel ationships and scopes more flexible. The approach
is useful for dynamicaly adding operations to objeds or for dynamicdly changing inheritance
relationships such as repladng parent classes, respedive parent objeds.

The concepts introduced in this sedion are the basis for the PCoC framework described later in
thisthesis.

2.2 State of the Art

Two well-known method dispatch fadlities are the Smalltalk method dictionaries and the
C++/Java virtual tables. Method dispatch is a medhanism to forward method cdls to the classes
where the methods adually are implemented. It comprises two basic steps. the methodlook-upin
a method dictionary or v-table, and the exeaution in the correspondng class The process of
finding the classwhere a method is implemented, and the subsequent invocaion on this classis
similar to delegation. Seelater in this sdion.

The Smalltalk method dictionaries are dictionaries (key/value maps) containing references to
methods of a class Eadh class has one such method dictionary. When invoking a method,
respedive when sending a message to invoke it, the correspondng method is searched by name
in the classhierarchy of the correspondng objed. This method dispatch is done by a comporent
cdled message hander, respedively dispatcher. This medianism is very flexible, since all
methodinvocaionis done using messages, and methods are dispatched by name; methods can be
atered, added or removed at runtime. This flexibility hasits price this medhanism is slower than
v-tables (seelater in this dion).

As optimization, Smalltalk holds a cade of recently sent messages; acrding to [KRASN84],
an appropriate method cade can have hit ratios as high as 95%, reduce method lookuptime by a
fador of 9, andincrease overal method system speed by 37%.

The Smalltalk method dspatch medhanism is described in detail in Sedion2.2.1

More efficient than the Smalltalk method dispatch using method dictionaries are v-tables (virtual
method tables)—arrays where the method pointers of a classand its base classes are stored, and
the indexes of the method painters are caculated at compil e time. Method lookupin C++ works
withou any kind of engine or dispatcher. A methodcdl isjust acdl to the method pointer at the
correspondng index in the v-table. The compiler generates code to exeaute the method. No
further look-up hesto be dore. This medhanism isfast, bu naot very flexible.

“Adding or removing a C++ methodrequires recompil ation d potentially many v-
tablesto preserve their parall e structure. And athough we know that polymorphic
client code does nat need to be rewritten, it must still be recompil ed to aceurt for
new off sets to the paintersin the tables. This recompil ation owerhead discourages
exploratory programming. On the other hand, C++ cooperates readily with foreign
languages, while Smalltalk’ s runtime engine getsin the way of cdling into or out of
the Smalltalk image.” - [LIU96], Pages 183f (Sedion 16.3.

A detalled description o v-tablesisgivenin Sedion2.2.2



8 2 Method Dispatch and Delegation

The method dispatch faaliti es have one thing in common—delegation. Delegation is a dispatch
mechanism originaly introduced by Henry Lieberman in [LIEBER86]. As oppced to
forwarding, with delegation a method can always refer to the objed where the method has
originally been invoked, regardiess of the number of indiredions due to objed composition or
classinheritance Delegation is relevant for method cdls in objed-oriented languages, but aso
for comporent interoperation. This mechanism is explained by means of virtua methodcdlsin
Sedion2.2.4

Methods are not the only way to handle messages. The Oberon system (Oberon is a descendant
of the programming language Modua-2, which itself foll owed Pascd) suppats, besides ordinary
methods, so-cdled message objeds. Message objeds are data padkages. They are subjed to be
passed to so-cdled method interpreters (speda methods) for processng. A method interpreter
may implement functionality for certain message types; it may also ignore message objeds of
some types, or forward message objeds to ather message interpreters.

Objed-oriented programming with message objeds is similar to the way how Smalltalk
dispatches method cdls; the main difference is that in Smalltalk the dispatcher is integrated in
the system, and in Oberon the message interpreter must be implemented per objea by the
developer. Smalltalk holds method references in method dictionaries; this can be implemented
for eath message interpreter in Oberon. Results are stored in the message objed passed to a
method. An overview of Oberon message objeds is given in Sedion 2.2.3 H. Mésenbéck
describes the Oberon message objeds in more detail in [MOSS5|, on Pages 127f (German
edition: [MOSg)).

2.2.1 Smalltalk Method Dispatch

Each Smalltalk classhas a dictionary (key/value-map) that contains references to the methods of
the class When amethodis invoked, it is first searched in the dictionary of the objed’s class If
it isnot foundthere, it is sached in the base dasses urtil it i sfound.

To illustrate how the Smalltalk method dispatch works in detail, let us take a look at the
following example.

object p class MyPoi nt ) class hje ct
<<derived from>:
- MyPoint <<instance of>: MyPoint - Obj ect <<derived from>>
nil
/7
<<ref to superclass>>
X:int
y:int
<<dispatch>> \ <<dispatch>>

int equaJs(Object)\

int getX() int equals(Object)

method setX(int)
dictionary

int getY() . <<dispatch>> method
setY(int) dictionary

m
int equals() executable methods
method code

executable methods

Figure 2.2-1 Method dspatch asin Smalltalk

ﬂ’,

In the given example we see objed p, its class MyPoint , and the base class (superclasg of
MyPoint , Object . MyPoint definesthe methods equals , getX , setX , getY , and setY ,
i.e. its method dictionary contains references to these methods. Object defines, for example,
the methods hashCode andequals .



2.2 State of the Art 9

In Smalltalk, methodinvocation comprises the foll owing steps:

1. Get the dassobjed
(MyPoint ) of the objed (p) where the method (getX ) was invoked

2. Get the method dctionary
The entriesin this key/value map are painters, respedively references, to methods.

Look upthe methodin the method dctionary of the aurrent class
If found,invoke the method code (getX ) and go to step 7

If not foundthen continue with the base dass(Object ) at step 2
If thereis no bese dass then throw an error and go to step 7

o o bk~ w

7. Done

In our example, the classobjed is MyPoint . When cdling setX , the methodis seached and
founddiredly in the classof p, MyPoint (light grey path in Figure 2.2-1). In the case of method
hashCode , no method reference can be foundin classMyPoint , so the seach is continued in
the base class Object . Finally, hashCode is found and exeauted there (dark grey path in
Figure2.2-1).

2.2.2 VV-Tables

V-tables (virtual method tables) are arrays holding method pointers of a class and its base
classes. Each method corresponds to an index in av-table. The indexes are cdculated at compile
time. When a method is invoked on an objed, the method pointer at the correspondng index in
the v-table of the objed’s classis retrieved and the methodfinally exeauted.

Let ustake alook at the foll owing example to ill ustrate how v-table method dspatch works.

object p class MyPoin t
p: MyPoint <<instance o>4 \yPoint Object <<derived from>>

d <d nil
. / . . /7
<<pointer to base class>> <<pointer to base class>>
X:int
\<<dspach>> \ <<dispatch>>

) class Objec t
<<derived from>>

y:int

1| int equals(Object)\ int equals(Object)| | v-table
2.n1 N
n int getX() <<dispatch>>
v-table
1 setX(int)

n+2 int getY()

3 setY(int)

executable methods

Figure 2.2-2 V-tables

Figure 2.2-2 shows an objed p and its class MyPoint and the base class Object including
their v-tables. Note that the indexes of method pointers for the v-tables are cdculated by the
compil er.



10 2 Method Dispatch and Delegation

A v-table always starts with the v-table-entries of the base clasqes), but contains aso the
pointers to the methods of the adual class The indexes of the method panters of base dasss are
aways the same as in the base clases. For example, in Figure 2.2-2 the pointer to method
hashCode may get the index O (cadculated by the compiler) in the v-table of Object , so
hashCode has aso index O in the v-tables of all classes derived from Object . So, in Figure
2.2-2 the v-table of MyPoint starts with the method pointer to hashCode . After the Object
method panters we find the painters to the methods of MyPoint , e.g. getX , etc.

An equivaent implementation d MyPoint in Java can be foundin Program 2.2-5.
The methodinvocation wsing v-tables comprises the foll owing steps:

1. Get the dassobjed
(MyPoint ) of the objed (p) where the method (getX ) has been invoked

2. Get the v-table
The vaue entriesin this array are pointers to methods.

3. Get the method pointer at the index represented by method getX . The index was arealy
cdculated at compile-time, so you are adually not cdling method getX , but method 3
(asuuming a dass $ructure asin Figure 2.2-2)

4. Invoke the correspondng method,with oljed p asimplicit parameter (“this’).
5. Dore

Basicdly, method look-up reduces to retrieving the method painter at the index for the invoked
methodin the v-table of the current class This medhanism is fast, but nat very flexible; since v-
tables are creaed at compil e-time, there is no way to add or remove methods at runtime. Even if
v-table information could be changed at runtime, it would carry some difficulties; if we added or
removed a method in a base class it would be necessary to reorganize the v-table indexes of all
derived classes. This would be very time-consuming. With multiple base classes, this is even
more difficult—the index of a method must be the same in eath base class derived class and the
current classproviding the method.

Besides in objed-oriented languages as Java or C++, the v-table concept is aso used, for
example, in the Microsoft comporent standard COM and its derivatives (DCOM, etc.). Clemens
Szyperski has areview of these mmponrent standards in [SZY PE98] on Pages 194ff.

2.2.3 Message Objects

Oberon provides, besides ordinary method dispatch via v-tables, the concept of message objeds
and interpreters. Message objeds are data padkages that can be sent to message interpreters
(message handlers) in order to be processed. As method of an objed, a message interpreter may
implement functionality for some message types; it may also ignore messages or forward them to
other interpreters.

This concept neads one or many message interpreters resporsible for handing incoming message
objeds. The message handler analyzes the dynamic type of a message and performs a spedafic
operation acardingly.

Let ustake alook at some sample @de. First, we define some message types.

Program 2.2-1 Message Types

TYPE
Message = RECORD END; (* empty message, base type for all messages *)
SetXMessage = RECORD (Message) x: INTEGER END; (* a concrete message *)
GetXMessage = RECORD (Message) x: INTEGER END; (* a concrete message *)




2.2 State of the Art 11

As base class of our messages, we define the type Message. Concrete types are
SetXMessage and GetXMessage . Both dedare amember variable x.

To send amessage to an ojed, we write:

\Program 2.2-2 Sending messages

VAR

setXMsg: SetXMessage;
getXMsg: GetXMessage;
result: INTEGER,;

setMsg.x := 10;
obj.Handle(setMsqQ);
obj.Handle(getMsg);
result := obj.x;

We crede instances of types SetXMessage and GetXMessage . Furthermore, we initialize x,
and pass the message objed setXMsg instance to the message interpreter Handle of objed
obj (it can be any objed of any type). Then we passthe message objed getXMsg to Handle .
Finally, we assgn the result of the processed getXMsg to result

\Program 2.2-3 Interpreting (handing) messages ‘

PROCEDURE (VAR m: Message) Handle;
BEGIN
WITH
m: SetXMessage DO
... (* do something *)
|m: GetXMessage DO
... (* do something else *)
|m: ... (* handle another message *)
ELSE
(* ignore other messages *)
END
END Handle;

Program 2.2-3 is asimple dispatch code in Oberon. Each message type has a meaning; it usually
stands for an operation. However, the adua behavior (the code that is to be exeauted) is
determined by the dispatch code. The content of a message objed is data needed to processthe
message; in our case the SetXMessage caries a value to set the x-position of a point-objed,
for example, to move agraphicd objed to that position.

In some cases it may make sense to forward messages to other objeds, for example to a child
objed of a graphicd composite-objed. Asauming that objed obj of Program 2.2-2 is such a
compaosite objed containing two redangles, we can add the following statement to the
SetXMessage sedion d the WITH-DO-clause of Program 2.2-3:

Program 2.2-4 Sending messages |

PROCEDURE (VAR m: Message) Handle;
BEGIN
WITH
m: SetXMessage DO
childRect.Handle(m);
childRect2.Handle(m);
|m: GetXMessage DO
... (* do something else *)




12 2 Method Dispatch and Delegation

where childRect  and childRect2  aso must implement the method Handle in order to
hande message SetXMessage .

Thisis a powerful way to forward messages, including the passhility to forward them through
objedswhich do na implement all methods associated with the given messages.

Message objeds have some advantages over methods ((MOS28)):
* Messages are data padages; they can be stored and forwarded later on.

* A message objed can be passed to a method that forwards it to different objeds. This
allows broadcasts, which are nat or difficult to redize with methods.

* |t is sometimes easier if the sender does not have to care abou whether a recever
understands a message (implements a @rrespondng method) or nat.

* |t isaso posshle to accessthe message interpreter (handler) through a procedure variable,
which enables usto replaceit by ancther at runtime.

Message objeds also have disadvantages:

* Theinterfaceof a classdoes nat refled which messages can be handed by instances of the
class It is difficult to redize at compile time which objeds are related through message
forwarding at runtime.

* Messages are interpreted and forwarded at runtime, which is much slower than dired
method cdls. It depends on how fast dynamic type information is evaluated, or in the case
of handing messages using their names, how fast strings are parsed.

* Sending message objeds requires more code to be written. Arguments must be paded into
the message objed. A regular interfacesuch as for methodsis not avail able.

* Invalid messages are not reaognized at compile time. Although this provides the flexibility
to forward messages through objeds that canna hande them themselves, it can be
troudesometo find errors.

Generally one shoud use methods rather than message objeds. However, in some cases it is
useful to use message objeds (see avantages).

2.2.4 Delegation

Delegation is a dispatch medanism to share behavior between objeds. An objed (the recever)
delegates a message to ancther objed (the method holder and delegate) in resporse to a message.
The delegate caries out the request on behalf of the original objed, and may send subsequent
messages to the origina recever. This includes the invocaion of methods. Using delegation, a
method can always refer to the objed on which it has originally been invoked, regardiessof the
number of indiredions due to ojed composition a classinheritance

Basicdly, there are two types of methods: virtual and nonvirtual methods. Virtual methods are
dynamicdly boundmethods. In a virtua method invocaion, the runtime type of the instance for
which the invocaion takes placedetermines the adua method implementation to invoke. In a
nornvirtual method (staticdly boundmethod) invocation, the compil e-time type of the instanceis
the determining fador. The implementation of a nonvirtua method is invariant: The
implementation is the same whether the methodisinvoked on an instance of the classin which it
is dedared or an instance of a derived class In contrast, the implementation of a virtual method
can be superseded by derived classes. The process of superseding the implementation of an
inherited virtual methodis known as overriding the method.

Messages are commonly used to send information from one objed or comporent to anather, for
example to exeaute a method on an objed. Basicdly, there are two ways to send messages.
forwarding and d=legation. The foll owing picture ill ustrates the diff erence between these two.



2.2 State of the Art 13

this

message sender message receiver delegation method holder
(the caller of amethod)  (the receiver of a method call) (where the method
is implemented and
finally executed)
this

message sender message receiver forwarding method holder
(the caller of amethod)  (the receiver of a method call) (where the method
is implemented and
finally executed)

Figure 2.2-3Delegation versus Forwarding

Therecaver of amessage, or more predsely the objed where amethodis invoked, may delegate
the method cdl to a base class if its own classcanna hande it. The classthat implements the
method, i.e. the dasswhere the methodis finaly exeauted, is cdl ed method hadder. In contrast to
simple forwarding, with delegation, messages to “this’ or “self” are sent to the original message
recaver. Note that many sources confuse delegation with forwarding. For instance .NET
delegates simply forward method cdls, athough the name may imply another meaning. Some
sources describe delegation as message dispatch concept for prototypes (cloning instead of
deriving from classes) only. We think, this concept is similar to the method lookupalgorithmsin
classrelationships (Smalltalk method dspatch, v-tables).

Let ustake alook at the invocaion d ordinary virtual methods.

invoking methods of MyPoint3D instances

| | [ J | I

classes: V V V V
MyPoint3D int equals(Object) V V V V int getZ() setZ(int) set(int, int, int)

this MyPoint V int equals(Object) | | int getX() setX(int) int getY() setY(int) 4
Object int hashCode() int equals(Object) |

Figure 2.2-4 Virtual methodcalls

In our example (Figure 2.2-4), we find three clases. MyPoint3D (top row), its base class
MyPoint (midde), and the base classObject (bottom). Ead instance of class MyPoint3D
combines all threeclasses to a unit. In the scope of these classes, the implicit parameter “this”
(C++, Java) or “self” (Smalltalk) refers to the current instance (the objed where a method has
been invoked).



14 2 Method Dispatch and Delegation

\ Program 2.2-5 ClassMyPoint

public class MyPoint extends Object {
private int x;
private inty;

public MyPoint() {x =0;y =0;}
public int equals(Object obj) {
if (obj != null && obj instanceof MyPoaint) {
MyPoint p2 = (MyPoint)obj;
if (getX() != p2.getX() || getY() |= p2.getY()) { return -1; }

return super.equals(obj);

}

public int getX() { return x; }

public void setX(int x) { this.x = x; }

public int getY() { returny; }

public void setY(int y) { this.y =y; }
}

We use Program 2.2-5 as implementation of MyPoint ; MyPoint3D adds the methods getZ
andsetZ , and owerrides the virtual methodequals .

\Program 2.2-6 Using MyPoint ‘

MyPoint p = new MyPoint();
int val = p.getX();
int hc = p.hashCode();

In the example &owve, we cdl various methods of aMyPoint instance

‘ Program 2.2-7 ClassMyPoint3D

public class MyPoint3D extends MyPoint {
private int z;
public MyPoint() { z=0; }
public int equals(Object obj) {
if (obj != null && obj instanceof MyPoint3D) {
MyPoint3D p2 = (MyPoint3D)obj;
if (getz() != p2.getZz()) { return -1; }

return super.equals(obj);

}
public int getZ() { return z; }
public void setZ(int z) { this.z = z; }

}

In this example, the method equals of MyPoint3D cdlsthe equals method of MyPoint
whichinturn cdlsequals of Object ;dl cdlsare exeauted at the same objed (“this’).

The dassmay be used as foll ows.

\Program 2.2-8 Amethodcall \

MyPoint3D p = new MyPoint3D();
MyPoint3D p2 = new MyPoint3D();
int result = p.equals(p2);

int resultX = p.getX();

Since p has the static type (the type at compile-time) MyPoint3D . The method equals is
exeauted in MyPoint3D , no matter, if it is avirtual or nonvirtual method, since MyPoint3D

itself providesit. If equals did nat exist in MyPoint3D , cdlsto it would be forwarded to the
base class (MyPoint ), and so forth until a base classis foundthat provides the correspondng
implementation. For example, a cdl to getX must be forwarded this way. getX is seached in



2.2 State of the Art 15

the scope of MyPoint3D ; sinceit is not implemented there, the cdl is forwarded to MyPoint ,
whereit isfinally exeauted.

\Program 2.2-9 Amethodcall (2) \

MyPoint p = new MyPoint3D();
MyPoint p2 = hew MyPoint3D();
int result = p.equals(p2);

int resultX = p.getX();

In Program 2.2-9, we assgn MyPoint3D instances to variables of type MyPoint (in Program
2.2-8, we used variables of type MyPoint3D ). In this example, equals is exeaited in
MyPoint3D , if it isavirtual method,and in MyPoint , if not. getX isexeauted in MyPoint
as before.

Generally, for avirtual method the method dispatch always starts the search in the dynamic type
of the objed, where the method has been invoked; if the methodis not foundthere, it is searched
in the base class and so on, until a classis foundwhich implements the method. In the case of
nonvirtual methods, the seach starts in the scope of the static type of the objed (the type at
compile-time, MyPoint ). The same is valid, for example, if equals is cdled in getY
(implemented in MyPoint ): if equals isavirtual method, it is exeaited in MyPoint3D (see
dark grey path in Figure 2.2-4); if nat, it is exeauted in MyPoint .

Generally, all method cdls to an objed and within an objed (method cdls withou explicit
spedficdion of the recever objea), are delegated to the same unit “this’ or “self”, no matter if
the methods are implemented in the objed’s classor one of of its base classes. With delegation,
as the term is used in prototypicd programming languages, Object , MyPoint , and
MyPoint3D can be different instances (rather than classes), and we would get the same
behavior (seeFigure 2.2-4).

Note that delegation is not classinheritance It is aso nat (only) forwarding; when a methodis
invoked on an objea, the cdl may be delegated from the objed’s classto a base class which
implements the method (in the case that it is not diredly implemented in the classof which the
objed isan instance). In short, delegationis forwarding plus the mncept of a cmmon “self”.

2.2.5 Type-Safe Delegation and Dynamic Component Modification

Before we go on with an introduction of our new approadh, let us take a look at the following
reseach projed. Kniesel G. describes in [KNIES99] a concept for dynamic comporent
modificaion and delegation through objed-based inheritance, and discusses its advantages and
issues. The mncept was developed in the frame of the reseach projea Darwin.

The goa of the projed is described onthe mrrespondng Internet pages as foll ows:

“The Darwin projed aims to improve the foundition d objed-oriented systems by
bridging the gap between the two families of objed-oriented languages known today:
classbased and prototype-based ores.”

“The Darwin model describes typed, classhbased inheritance extended by static and
dynamic objed-based inheritance”

The Darwin model is redized in the programming language Lava, an extension of Java. Its type-
safe delegation concept and integration into a programming language provides the developer
with a high degree of usability through the posshility of static type-cheding, while aso
providing the flexibilit y of dynamic comporent modificaion.



16 2 Method Dispatch and Delegation

Dynamic comporent modification includes the customization of comporents such that they are
better suited for spedfic tasks. Kniesal proposes a classficaion of known approades of
dynamic comporent modificationacmrding to

 their neal for preexisting “hooks’ in the applicaion as ether suitable for anticipated or
unarticipated changes.

* the time when a modification is made as either static, loadtime or dynamic (runtime). We
asume that the reader is familiar with the meaning of these terms.

* their ability to adapt whole comporent types or individual comporent instances as either
globd or seledive Seledive approadhes can be further clasdfied as either replacing or
preserving, depending on whether they replace an existing comporent instance by its
modified version a let both be used simultaneously.

* the applied techniques as either code-modifi cation-based, wrapper-based or meta-levd-
based.

The neda of unanticipated dynamic comporent modificaion has been repeaedly pointed out in
literature (e.g. [MAETZ97]). When developing a comporent, you may nat aways know which
hooks might be needed in the future by users of your comporent. Users of your comporent might
want to make enhancements to your comporent (withou having the source code), as well as you
might want to make modificaionsto third-party comporents.

With global approades, changes are applied to a comporent type rather than to its instances, so
the change affeds every single instance of such a comporent. This may be comfortable, becaise
changes must be applied at one placeonly, but raises an evolution problem: some clients might
still require access to instances of the comporent using its “original” interface and semantics.
You canna simply bre& their code. On the other hand, seledive approaches aso have their
shortcomings. For instance, the comporent to be replaceal might not be prepared to hand over its
private data to its new version, if the modification was not anticipated. The application might
also require smultaneous use of the ammporent’sorigina and rew version.

Code-modification uses two inpus, a class to be modified and a spedficaion of the
modificaions. For instance asped-oriented programming uses this approadh. Aspeds are
“weaved” into functional code, i.e. code is generated from the origina source code and aspeds,
seeSedion6.2

Meta-level-based architedures allow manipulation of a system at runtime. Examples for meta-
level-architedures are Smalltalk and the IBM System Objed Model (SOM); seeSedions 6.8and
6.11 Kniesel argues in [KNIES99] on Page 3 that meta-level-architedures have two main
limitations: they defed static type system and are inefficient.

When adive comporents neither can be diredly modified, nor unloaded from the system, we are
facel with the problem to change their behavior. One way to cope with this problem are
wrappers. Clients do not diredly send messages to the original comporent, but to wrapper(s).
The wrappers may implement the correspondng functionality, or simply forward messages to the
original comporent.

With resped to this classficaion, the Darwin model presents an approad to unanticipated,
dynamic, seledive, wrapper-based, objed-preserving componrent modification. Like in Darwin,
our flexible method dispatch can be used for dynamic, seledive, wrapper-based, obed-
preserving comporent modificaion, when it is applied at instancelevel (generic comporent
instance wrappers hand e dynamic methods and forward cal s to static ones). When integrated at
classlevel like shown in Program 2.7-1, we use it rather globally and meta-level-based. The
concept is the same. The meta-level-approadh has one maor shortcoming: the programming
language or more predsely its refledion fadliti es have to be adapted. Refledion is the ability to



2.2 State of the Art 17

obtain information abou the fields, constructors and methods of any class or comporent at
runtime. See[ENGLA97] on Pages 40-42 for ashort introduction into Javarefledion.

Now badk to delegation. In contrast to code modificaion, dynamic comporent modificaion
based on delegation does nat require the source code of the comporents to be adapted. It can be
deployed at runtime.

Many “simulations’ of delegation have been propcsed, either as language-spedfic idioms
[COPLI9]] or general patterns [GAMMAO95]. Simulation techniques and their drawbadks are
discussed and summarized in [HARRIS97] and [KNIES9S§].

The main disadvantages of the simulations are:

* the nedl to anticipate the use of a pieceof software as part of a larger composite and to
provide “hooks’ that all ow the corred treament of “this’ in the mntext of the cmpasite.

* the neal to oley rigid coding convention to implement the hooks.

* the nedal to edit or at least recompile the wrapper class (the delegating clasg when the
interfaceof the original class(delegated-to clasg changes.

According to [KNIES99], ead of the simulation techniques has additional shortcomings in terms
of limited applicability, limited functionality, limited reusability and excessve @sts:

« Storing a reference to “this’ or “self” in parent objeds (or base classs) has limited
applicability. Sharing of one parent by multi ple delegating children canna be expressed at
al and reaursive delegation can only be simulated with significant runtime and software
maintenance osts.

» Passng areferenceto “this’ as an argument of forwarded messages requires to extend the
interfaceof methods in parent objeds, which might not be possble, if the parent objed is
part of a ready-made, bladk-box comporent (a third-party comporent). Furthermore, the
typing of the explicit “this” argument interads in subtle ways with the construction of
subclasses of parent classs. In the end, the simulation either does nat read full
functionality of delegation or it does so at the price of excesgve costs for managing class
hierarchy changes, rendering reuse al absurdum.

In Darwin / Lava, objeds can delegate to others referenced by their delegation attributes. If a
classC dedares a delegation attribute of type P, we say that Cis adedared child classof type P
(and of its subtypes), and P is a dedared parent classof C. A classcan use the methods of its
dedared parent clases asif they were dedared in the same dass or in abase dass

Delegation attributes are dedared in an objed’s classby adding the keyword delegatee to an
instance variable dedaration. There are two types of delegation attributes. mandaory and
optiond. An attribute is cdled mandatory if it must have anonnull value; optional otherwise.

As example we use a classShape. A Shape represents avisua objed and haolds the necessary
data structure for the objed. Concrete examples are redangles, poygons, images. Painter sare
resporsible for adualy drawing Shape oljedsona cawvasin agraphicd user-interface

In this code fragment we dedare Painter to be a dedared parent classof class Shape. As
painter we instantiate a BorderPainter which paints a Shape objed and its enclosing
border.



18 2 Method Dispatch and Delegation

\Program 2.2-10 Dedared paent

public class Shape {
/l the delegatee " painter " must not be null
nandat ory del egat ee Painter painter;
public Shape() {
painter = new BorderPainter(); // draws the object and its border

}

/I switch paint strategy

void setPainter(Painter painter) { this.painter = painter; }
Point getPos() {...}

}

The following picture ill ustrates how the classes are related to eat other. We use the extended
UML-notation “delegates to”.

extended UML-notation:

C delegates to P
C P
Shape <>_B> Painter
draw) {
Poi nt p=thi s. get Pos() ;
Point getExtent() draw() —_— Poi nt e=this. get Extent() ;
Point getPos() Point getExtent() y
[
SimplePainter BorderPainter

Figure 2.2-5 Dedared paent andchild

Since Shape is a dedared child class of Painter and its derived classs, the methods of
BorderPainter can be used asif they were dedared in Shape or one of its base dasses.

In the foll owing case, we cdl the methoddraw on ¢, an instance of classShape. The method
cdl will be delegated to p, an instance of classBorderPainter  ; draw in turn cdls getPos
which isimplemented in classShape, so the method cdl is delegated bad to c. In short, ¢ and
p are united by a ommon “this’.

draw() draw()
E— c: Shape P  p: BorderPainter

this.getPos()

Figure 2.2-6 Delegationto dedared parent

Note that if BorderPainter introduces methods that are neither dedared in Painter  (the
dedared parent of Shape), nor in a base class Shape, e.g. an own getPos -method, then cdls
to such methods are nat delegated badk to Shape instances (one would exped that a child
aways overrides methods of the parent). Thisis a speda behavior of the Darwin model and is
described in [KNIES99] onPage 11.

The Darwin model offers a certain level of flexibility while providing good performance and
type-safety. On the other hand, a shortcoming is the necessty to staticdly dedare parents.
Posgble future comporent enhancements must be anticipated; hooks like in Program 2.2-10
(mandatory delegatee Painter ) are necessary.

Read more abou the Darwin / Lava delegation mechanism and a summary of dynamic
comporent modificaion feaures andisauesin [KNIES99] and the crrespondng Internet pages.



2.3 Flexible Method Dispatch 19

2.3 Flexible Method Dispatch

The method look-up and invocaion (also cdled method dispatch) can be optimized so that
methods of base classes need not be seached in the class hierarchy as necessary in Smalltalk
method dictionaries, while keging method dispatch dynamic like in Smalltalk and unlike v-
tables.

Based on this ideawe propose a flexible message dispatch medhanism and show examples for
the usage. The medanism has been designed to be deployed on top of the refledion fadliti es of
common programming languages. We understand refledion as the ability to obtain information
abou the fields, constructors and methods of any classor componrent.

Before we take a closer ook at the dynamic cgpabiliti es of the flexible method dispatch, let us
see how the medhanism basicdly works and how it is redized in contrast to the medanisms
described in the previous ®dions.

Figure 2.3-1 depicts the same objed p and its classes as Figure 2.2-1, with one difference
method references of a base class(e.g. Object ) are aso in the method dictionaries of derived
clases (MyPoint ). Note that in Smalltalk eat class has a method dictionary with dired
references to its methods. Methods of base classes are not stored in method dictionaries of
derived classes. In C++, v-table (virtual method tables) entries are dired pointers to the methods
of the classor its (dired or indired) base classes. With the optimization shown in Figure 2.3-1, a
value in a method dictionary is a structure containing a dired reference to a method (getX ) of
the same classand alist of indired references to dictionary entries (hashCode ) of other classes
(Object ). The key is amethod name. We cdl such a structure a method reference, respedively
a Dispatcher.

object p class My Poi nt class Obj ect
. i <<instance of>: i i i i
p_: MyPoint MyPoint <<derived from>> Object <<derived from>>
= = /7 nil
<<ref to base class>> 7 <<ref to base class>> ]|
X int
y:int

<<dispatch>>

<<dispatch>>
method
dictionary

<<dispatch>x \

<<dispatch>>

int equals(Object) <<SM

2\ | noatification>>
method int getX()
dictionary

<<state change
notification>>

setX(int) <<dispatch>>

int getY()

setY(int)

<<state change <<dispatch>> executable methods
notification>>

int equals()
method code

executable methods

Figure 2.3-1 Method dspatch using indired methodreferences

This approad al ows us to replacebase classes and methods by others at runtime. In contrast to
v-tables no indexes must be recdculated in this case. Method references are notified whenever
the state (“Enabled”, “Disabled”, etc.) of an associated method changes. For such a natification,
the methodreferences (for example, hashCode in MyPoint ) nead nat be looked up, sincethey
are listeners of ether the method objed itself (method hashCode in Object ), or an other
asociated method reference (method reference hashCode in Object ). Furthermore, the



20 2 Method Dispatch and Delegation

approach alows us to attac li steners also to methodreferences (not only to methods), which are
natified with ead method invocaion or state change. Note that method states are a fedaure
introduced with this method dspatch medhanism. See &so Sedion 4.3.7.

We can also use this medhanism for multi casts (broadcasts) by delegating method calsto a set of
Dispatchers (equivalent to .NET delegates). Like .NET delegates, our Dispatchers can reference
method oljeds of different classes and oljeds.

When a method is invoked, the method is seached by simply following the Dispatchers
(hashCode in classMyPoint ) to ared method (methodhashCode of classObject ).

The flexible methodinvocaion comprises the foll owing steps. Compare to the Smalltalk method
dispatch agorithm in Sedion 2.2.1 (Pages 8f) and the v-table-based dispatch in Sedion 2.2.2

(Pages 91):

1. Get the dassobjed
(MyPoint ) of the objea (p) where the method (getX ) was invoked

2. Get the method dctionary
adictionary (key/value map) where the entries are references to methods and the keys are
the arrespondng method rames.

3. Look upthe methodreference (Dispatcher)
for getX inthe Dispatcher dictionary of the aurrent class

4. If found,then resolve the methodreference

a) If the methodreferenceis ared method, then invoke the method code (getX ) and go to
step 6

b) If the methodreferenceis an indired referenceto a method,then dereferenceit (take the
value which it references) and continue with step 4a

5. If not foundthen throw an error (the method daes not exist) and go to step 6
6. Done

2.4 Method Dispatch Using Reflection

In the following ill ustrations, code fragments and explanations are based on the refledion
fadliti es of Java. One reason why we choose a refledion-based approac rather than a dired
integration of the flexible method dispatch mechanism into the Java programming language is
that we want to avoid confusion with code-fragments of the Java programming language (what is
part of the Java development kit and what is new?). Anather reason is that this mechanism was
mainly designed for dynamic objed-based use. More éou that later.

To avoid confusion with the well-known classconcept and its implementations, we introducethe
term Activity Set for sets of operations (seealso Sedion 1.2). The concept is similar to the class
concept. Like aclass an Activity Set is a named scope and contains a dictionary (key/value map)
with references to operations. In our case, operations are cdled Activities, and reference objeds
to Activities are cdled Dispatchers. Activity Sets can be nested (so they have a path) and can
aqquire from (delegate to) others. The main difference to classes is that Activity Sets are based
on objeds rather than on static type-information. Their Activities can be defined in different
objeds. An Activity Set treds its Activities, respedively their associated objeds, as unit, so it
suppats delegation to independent objeds. But more éou that later.

In the following, we do not use the terms “base class' or “derived class' together with the
flexible method dispatch, but rather the terms * parent and “child”. Note that an Activity Set may
diredly berelated to a dass



2.4 Method Dispatch Using Refledion 21

To refled that we choose a dynamic objed-based approach rather than class inheritance, we
dightly adapt Figure 2.3-1.

<<caller>>
object p Activity Set myPoin t Activity Set obj ect
p : MyPoint myPoint: ActivitySet <<acquires from>> | object: ActivitySet ﬁ“"es"w> i
<<ref to class>> <<ref to parent>> - <<ref to parent>> -
X:int
y:int
<<dispatch>> \<<dispatch>>
<<dispatch>>
int hashCode() — int hashCode() Dispatcher
N\ dictionary
<<dispaich>> int equals(Object)
int equals(Object) | <<staie change
Dispatcher <<state change‘
dictionary notification>>

setX(int)
int getY()

setY(int)

<<state change \ <<dispatch>>
notification>> JA\ WXL SV

int equals()
Activity

Activity

Figure 2.4-1 Method dspatch using Dispatchers and Activity Sets

There is not much difference to Figure 2.3-1—we use the classes MyPoint and Object , or
more predsely their Activity Set equivalents, for this example. We asaume that the class
MyPoint isnat staticdly derived from the classObject anymore. The correspondng Activity
Set myPoint isachild of object and “acquires’ from it, that is it dynamicdly inherits from

object . So we get a dynamic relationship between these classs instead of the static one of
Figure 2.3-1.

The cdler of an Activity (a “dynamic” method) makes an assciation between the involved
objed and an Activity Set. More predsely, the Activity Set is initialized with the methods of the
objed’s class the Activity Set can then be used to dynamicaly invoke methods.

Activity Set nyPoi nt3 C

Dispatcher

dictionary /7
int hashCode()

Dispatcher ) Activity
<<dispatch>>

i ivi Poi nt
<ncim§aﬁgﬁ2€>’e Activity Set ny
Dispatcher Activity

Activity Set objec t
Dispatcher Activity ;
other Activity Sets

Dispatcher

>! int equals(Object) |<—_>

\/

Figure 2.4-2 Dispatcher chain



22 2 Method Dispatch and Delegation

Figure 2.4-2 ill ustrates how Dispatchers and Activities are related to ead other. An entry in a
Dispatcher dictionary—here that of Activity Set myPoint3D —is a reference to a Dispatcher in
the same Activity Set. Note that the Dispatcher dictionaries of the other Activity Sets are not
shown here. The Dispatcher may have a referenceto an Activity of the same Activity Set and/or
references to Dispatchers of other Activity Sets (the parent Activity Sets in a delegation
relationship). The parent of myPoint3D ismyPoint , andthat of myPoint isobject

In the foll owing we seethe flexible method dspatch algorithm as pseudo code.

\Program 2.4-1 Methodlook-up wsing (indired) Dispatchers (pseudo code) \

Object perform(ActivitySet a, Object p, String activityName, Object[] arguments) {
Di spatcher m = a. get Di spatcher(activityNanme); // geta dispatcher
if (m !=null) {
while (ImisActivity()) {

[1] m = m get Di spat cher (); /I get dispatcher target
[2] return mgetActivity().perform(p, argunents); //invoke the retrieved
/I activity
else {

... Il throw an error (activity not found)

}

}

An Activity Set is passed to the perform -method. It contains Dispatchers (method references)
to the objed p. Program 2.4-3 describes how an Activity Set can be generated from an objed.
We asaume that the classActivitySet provides amethodgetDispatcher ~ which returnsa
(dired or indired) reference to the Activity associated with the given Activity name
(activityName ); theimplementation of the classis shown later. Actualy a Activity signature,
i.e. the Activity name including parameter and result types, must be spedfied for
getDispatcher , but for the simplicity of the example we ignore that for now. If the vaue
returned by getDispatcher is not null, we cdl getDispatcher until we get the acdual
Activity [1]; otherwise we throw an error (Activity not found. Finaly we exeaute the Activity
(getActivity().perform() ) [2].

Note that the code fragment above is pseudo code and may not compile. However, there is a
conceptually equal implementation in the PCoC framework. The term Activity is used for method
objeds in the context of PCoC; their Activity Sets are dynamic scopes where Dispatchers of
different objeds can be added to; method reference objeds containing the forwarding logic are
cdled Dispatchers. SeeSedion 5.6. A more detail ed description d Activity Setsis given later.

Program 2.4-2 ill ustrates a simple implementation of an Activity. When perform iscdled, the
argument types are chedked and finadly the template method doPerform is cdled. As
containers for arguments and return values we use instances of class Material . The
implementation d classMaterial  istrivial.

SeeProgram 4.3-5 for the arrespondng implementation d an Activity in PCoC.



2.4 Method Dispatch Using Refledion 23

Program 2.4-2 A simple Activity implementation ‘

class Activity {

Method performMethod;

String name;

Object provider;

Activity(Method nm) {

nanme = m get Nanme();
performvethod = m
provider = null; /1 is set when added to an Activity Set

public Material perform(Object o, Material args) {
if (checkArguments(args)) { // do a dynamic type check
return doPerform(o, args);

return null;

protected Material doPerforn{Object o, Material args) {
Object result = null;

try { result = performvethod.invoke(o, args.toArray());
} catch ... // NoSuchMethodException, lllegalAccessException,...

return new Material(result);

}

}

As example we dynamicdly invoke the method hashCode of an instance of the class
MyPoint  using an Activity Set. We asume that the method is expased as Activity by the
parent Activity Set object |, that isit isimplemented in the associated class Object , and not
by myPoint :

Program 2.4-3 Invoking amethod wsing Dispatchers (pseudocode) |

MyPoint p = new MyPoint();

// use the methods of the object’s class to initialize an Activity Set

ActivitySet myPoint = PCCRegistry.getOrCreateActivitySet(p.getClass());
ActivitySet object = PCCRegistry.getOrCreateActivitySet(Object.class);
myPoint.acquire(object);

Object[] arguments = new Object([] {}; // no arguments

activityName = "hashCode";

hject result = perform(nmyPoint, p, activityNanme, argunents);

First, we retrieve the dassof objed p (where the speafied methodwill beinvoked) and wseit for
theinitialization o anew ActivitySet instance

Note that such an Activity Set is generally creaed only once and reused many times. For that
reason, we crede the Activity Set using the Activity Set registry (PCCRegistry ). The registry
isasingleton and asaures that there is only one Activity Set per class respedively classname, in
the system. As arealy mentioned, we dedded nat to integrate the flexible method dispatch
approad into a programming language in order to be able to use conventional compilers. On the
other hand, if we integrated it into a progranming language, classes would be cgpable of
generating and delivering correspondng Activity Sets. However, it may not make sense that eah
class(or objed) has an own Activity Set, and there may be Activity Sets which are not associated
with only a single classor objed. An Activity Set may have method references (Dispatchers) to
several independent classes and/or objeds.

The second Activity Set in our example corresponds to the methods of the classObject , andis
aaquired by the myPoint Activity Set. The Activity Sets stay related to eat other, unlesswe
cdl discard (the oppasite of acquire ).



24 2 Method Dispatch and Delegation

We use the method perform of Program 2.4-1 to invoke hashCode on the obed p.
myPoint does nat diredly offer the method, therefore it has an indired Dispatcher pointing to
the Dispatcher of hashCode in Activity Set object . The Activity and the associated method
are finaly foundand exeauted in object , respedively in the classObject . The reasons why
we use dynamic methodinvocation, i.e. methodinvocation based on refledion, rather than static
methodinvocaion bkecome dea when we go into detall .

But first, let us take ancther look at the method dispatch agorithm of Smalltalk and compare it to
the flexible method dispatch. We use Javalike pseudo code in order to make the comparison
easier:

Program 2.4-4 Methodlook-up dgorithm of Smalltalk (pseudocode) |

oj ect perforn(C ass c, Object p, String nethodNane, Object[] argunents) {
Method m;
Class pc =c;
while (pc != null) {
m = pc. get Met hod( met hodNane) ; // get the method, if defined in the
Il current class
if (m!=null) {
[2] return minvoke(p, argunments); //invoke the retrieved method

}

[1] pc=pc. get Super cl ass(); /I provided that there is only one base class

}
}

The main difference to the flexible method dispatch medhanism is that the requested methodis
retrieved by seaching it in the classhierarchy (see[1] in Program 2.4-4); in contrast to that the
flexible method dspatch retrieves amethod by resolving indirea Dispatchers (see[1] in Program
2.4-1). More predsely, in the worst case Smalltalk does a lookupin the method dictionaries of
the classand eadt base classof the given objed, whereas the flexible method dispatch does only
one lookup in the Dispatcher dictionary of the objed’s Activity Set, respedively class and
traverses the hierarchy by resolving (dereferencing) Dispatcher references.

Note that some Smalltalk systems may have dlightly different implementations of this look-up
algorithm.

2.5 Dispatcher-Dictionary Implementation
A Dispatcher dictionary for Figure 2.4-1 could look like Program 2.5-1 (smplified).

In this Dispatcher dictionary classwe define methods for adding and removing methods. When
an Activity or Dispatcher is added, a new Dispatcher is creaed as wrapper of the original one and
stored in the dictionary. Take alook at Program 2.4-1 to seehow Dispatchers are resolved.

Note that, for example, in Java, aMethod ohjed (as needed for addActivity ) of a dassc
can beretrieved by cdling c.getMethod("<methodName>", Class][]

parameterTypes) . aslInterfaceString , amethod d PCCActivityInterface,
generates an interfacespedfication string for the parameter type li st of the given method. See
Sedions4.3.4and 5.5.1for descriptions of the dynamic Activity type concept and the
PCCActivityInterface class

The implementations of asInterfaceString and methods of DispatcherDictionary
are omitted here, sincethey are nat relevant to explain the concept.



2.5 Dispatcher-Dictionary Implementation

25

Program 2.5-1 Dispatcher dictionary (pseudo code)

public class DispatcherDictionary {
private HashMap dispDict;

public DispatcherDictionary() {

HashMap dsps = (HashMap)dispDict.get(m.getName());

if (dsps == null) {
dsps = new HashMap(); /l create a hash map for methods
dispDict.put(m.getName(), dsps); [/ with the same name

// build a signature from the parameter types and use it as key for

/l the hash map

String signature = PCCActivitylnterface.asInterfaceString(
m.getParameterTypes());

dsps.put(signature, new Dispatcher(new Activity(m)));

/I it by another Dispatcher
... I/ the same as above, except last line
dsps.put(signature, new Dispatcher(d));

String signature = PCCActivitylnterface.asInterfaceString(
parameterTypes); /I and remove the
if (dsps = null) { // Dispatcher
Dispatcher m = (Dispatcher)dsps.remove(signature);
if (dsps.size() == 0) {
dispDict.remove(dispName);
}

return m;
return null;

public Di spatcher getDi spatcher(
String di spNane, Cl ass[] paraneterTypes) {
HashMap dsps = (HashMap)dispDict.get(dispName); // get method ref
String signature = PCCActivitylnterface.asInterfaceString(
parameterTypes); // from the hash map
if (dsps = null) {
return (Dispatcher)dsps.get(signature);

return null;

String di spNane) { /I with name
HashMap dsps = (HashMap)dispDict.get(dispName);
if (dsps !=null) {
return dsps.values().toArray(); // returns a set of Dispatchers

return null;

public Dispatcher[] getDi spatchers() { // getall Dispatchers
... Il returns a set of Dispatchers

public String makeSi gnature(C ass[] paraneterTypes) {
... Il concatenate class names

}

public void addActivity(Method n) { // add method and wrap it by a dispatcher

public void addDi spatcher (Di spatcher d) { // add Dispatcher and wrap

public Dispatcher[] getDi spatchers( Il get all Dispatchers

public Dispatcher renoveDi spatcher(String di spNane, C ass[] paraneterTypes) {
HashMap dsps = (HashMap)dispDict.get(dispName);  // get method hash map

di spNane

2.6 Dispatcher Implementation

For the foll owing code fragments we assume that methods are always represented by instances of
the class Activity and that they are subjed to be explicitly used by the developer (not only

implicitly by the refledion system of the programming language).



26 2 Method Dispatch and Delegation

The orrespondng Dispatcher classcould look like Program 2.6-1.

\Program 2.6-1 Dispatcher implementation (pseudo code)

public class Dispatcher {
private Activity a;
private Dispatcher dsp; // for simplicity of this example only one acquired
/I dispatcher; normally this is an object array
/I (for multicasts)

public Dispatcher(Dispatcher dsp) {
this.dsp = dsp;
a =null;

}

public Dispatcher(Activity a) {
this.a = a;
dsp = null;

public boolean isActivity() { return dsp == null; }
public Dispatcher getDispatcher() { return dsp; }
public void addDispatcher(Dispatcher dsp) { this.dsp = dsp; }

public Activity getActivity() { return a; }
public void setActivity(Activity a) { this.a=a; }

public String getName() {
if (a!=null) {
return a.getName();
} else if (dsp != null) {
return dsp.getName();

return

public setName(String name) {
if (a!=null) {
return a.setName(name);
} else if (dsp != null) {
return dsp.setName(name);

} }
hj ect perforn(Chject p, hject[] argunents) {
if (isActivity()) {
return getActivity().perform(p, argunents);//invoke retrieved Activity
}else {
return get Di spatcher (). perforn(p, argunents); // getDispatcher target
}

}

The classDispatcher  suppats dired references to Activities and indired ones (references to
other Dispatchers). Dispatchers can be linked in chains (new Dispatcher(dsp) ), whereas
the ends of such chains are dways dired references to Activities.

Note that we have two member variables—a referenceto an Activity and ore to ancther
Dispatcher. For multi ple delegation parents you may introduce an array of Dispatchers and
extend a shrink it on demand.

Dispatcher provides a method perform  which corresponds to the method dispatch
algorithm of Program 2.4-1, bu as reaursive implementation. The Dispatcher for a given Activity
name and oljed p isretrieved somewhere dse:



2.6 Dispatcher Implementation 27

\Program 2.6-2 Retrieving aDispatcher (pseudo code) \

Cass pd = p.getd ass(); //orMyPoint.class

Class[] parameterTypes = new Class[] {Object.class};

Object[] arguments = new Object(] {};

ActivitySet myPoint = PCCRegistry.getO CreateActivitySet(pd);
Di spat cher dsp = nyPoi nt. get Di spat cher ("get X", paraneterTypes);
Integer result = (Integer)dsp.perforn(p, argunents);

When the cdler does not need (or want) to kegp Dispatchers for later use, there is a smpler way
for invoking Activiti es, respedively their associated methods:

Program 2.6-3 Dynamically invoking amethod (pseudo code) |

ActivitySet nyPoint = PCCRegi stry.getO CreateActivitySet(p);
Integer result = (Integer)nyPoint.perfornm(p, "getX', argunments);

This assumes that the class ActivitySet provides a few convenience methods. For instance,
there is a methodthat allows us to spedfy an objed insteal of a classwhen creaing an Activity
Set. The method perform  of classActivitySet may automaticaly determine the signature
of the requested method. It can do so by looking for a Dispatcher in the Dispatcher dictionary,
whaose signature matches the given method name and the types of the given arguments. If there
are ambiguities, an error could be thrown. Note that such type-chedks are performed at runtime,
therefore arors can also be reported orly at runtime.

The Activity Set is normally reused many times, so it may be stored as member variable in a
class
2.7 Using Dispatcher Dictionaries and Indirect References

Now, let us take a look at the implementation of the class ActivitySet and how it
coll aborates with its Dispatcher dictionary:

\Program 2.7-1ClassAct i vi t ySet ‘

public final class ActivitySet {
private DispatcherDictionary dd,;
private ActivitySet parent;

ActivitySet (Cl ass cl) { //canonly be created by the Activity Set registry

nd = new Di spatcherDictionary();

if (cl '=null) {
int i;
Met hod[] met hods = cl. get Met hods();
for (i=0; i<methods.length; i++) { // add all nethods of the given class

addActivity(nethods[i]);

}
parent = PCCRegistry.getOrCreateActivitySet(cl.getSuperclass());
acquire(parent);

The Activity Set constructors take either a classas argument, an objed, or a name (which may
correspondto a classname). In al cases the methods of the given classare exposed as Activities
and added to the Activity Set at credion time. If there is a base class a correspondng parent
Activity Set is creaded and aoquired, that isits Dispatchers are wrapped and added to this Activity
Set (iterate over al Dispatchers of the parent and add it by using addDispatcher ).



28 2 Method Dispatch and Delegation

\Program 2.7-2 ClassActi vi t ySet (2)

mAct i vitySet (Cbj ect o) { //canonly be created by the Activity Set registry
this(o.getClass()); // add all methods of the object’s class

ActivitySet (String nane) {// can only be created by the Activity Set registry
this(Class.forName(name)); // add all methods of the class

}

mpubl ic void addActivity(Method nm { // creates an Activity from the given
dd.addActivity(m); /I method object

public void addDi spat cher (Di spat cher dsp) {
dd.addDispatcher(dsp);

public void renoveD spatcher(String di spNane, C ass[] paraneterTypes) {
dd.removeDispatcher(dispName, parameterTypes);

publ i c Di spatcher getDi spatcher(
String di spNane, C ass[] paraneterTypes) {
return dd.getDispatcher(dispName, parameterTypes );

public Method[] getDi spatchers() {
return dd.getDispatchers();

}

We use the method getMethods  of the Java refledion padkage to get al methods of the given
class Generaly, Activities and Dispatchers can be added or removed at any time. For the
retrieval of asingle or al Dispatchers we can use the methods getDispatcher | respedively

getDispatchers

Note that we use the Dispatcher dictionary class of Program 2.5-1 and the Dispatcher class of

Program 2.6-1.

\Program 2.7-3 Implementation o per f or min classAct i vi t ySet (pseudocode)

public Object perforn{Qoject p, String di spName, Cbject[] argunents) {
int i=0;
/1l get all Dispatchers with the given nane
Di spatcher[] dsps = dd. get D spatchers(di spNane);

while (i < dsps.length) { /] iterate over all Dispatchers
Cl ass[] paraneterTypes = dsps[i]. getParaneterTypes();
i f (paraneterTypes.length() == argunents.|ength) {
int j=0; /1 search for a Dispatchers with a

while (j<arguments.length) { // matching interface; the paraneter
/1 types must match the types of the
/1 given argunents (actual paraneters)
if (!paraneterTypes[j].islnstance(argunents[j])) { break; }
j ++;

/1 found a matching Dispatcher; invoke it

if (j > argunents.length) { return dsps[i].performp, argunents);
i ++;
}
/1 throw error
return null;
}
}

}

The implementation of the perform method is shown abowe. It retrieves a Dispatcher with a

matching interfacefrom the Activity Set’s Dispatcher dictionary.




2.7Using Dispatcher Dictionaries and Indired References 29

The Dispatcher dictionary dd returns an array of Dispatchers which match the given Dispatcher
name. The array is seached for a Dispatcher whose parameter types match the types of the
arguments (adual parameters) passed to this method (perform ). If there is a matching
Dispatcher, it isinvoked, and thus its associated Activity; otherwise an error is thrown.

Now let us make use of the dynamic method cgpabiliti es of the flexible method dspatch:

\Program 2.7-4 Addingindired Dispatchers to aclass(pseudocode) \

ActivitySet myPoint = PCCRegistry.getOrCreateActivitySet(MyPoint.class);
ActivitySet object = PCCRegistry.getOrCreateActivitySet(Object.class);
myPoint.acquire(object);
Class[] parameterTypes = new Class][] {Integer.class, Integer.class};
nmyPoi nt . addAct i vi ty( // add new method
"setXY"
new Activity("setXY", paraneterTypes) {
public Object doPerform Cbject obj, Object[] args) { // executed when the

setX((Integer)args|[0]); /I Activity is invoked

setY((Integer)args[1]);

return null; // the actual functionality

}
o

First, we creae an Activity Set from the class MyPoint . Remember, an Activity Set adds
Activities and Dispatchers for all methods of the spedfied classto its Dispatcher dictionary at
credion time. In the given example all MyPoint methods are added as Activities and
Dispatchers to the Activity Set myPoint . After that, we explicitly add an Activity (method
objed) setXY . The Activity may contain functional code in its (static) methoddoPerform , or
simply forward cdls to the correspondng methods of the objed obj . In the example abowe, the
functional code is diredly implemented in the Activity’s methoddoPerform

The implementation d addMethod can be foundin Program 2.5-1.

2.8 Dynamically Adding Aspects to Methods

We may want to wrap existing methods in order to add aspeds. An asped is spedfic code to
validate adual parameters, to trace cdls, etc. The following example shoud ill ustrate why
flexible method dictionaries (Dispatcher dictionaries) are useful for this purpose. We add aspeds
before and after the original methodequals .

For ill ustration of this example, we use Figure 2.3-1 and adapt it acordingly. See Figure 2.8-1.
eg_aspect_in  andeq_aspect_out arethe aspedswe want to add. They are implemented
as Activitieswhich shoud be cdled before and after the original Activity equals isinvoked.



30 2 Method Dispatch and Delegation

<<caller>>
objectp Activity Set nyPoi nt Activity Set obj ect
p: MyPoirt myPoint: ActivitySet w object: ActivitySet w il
<<ref to class>> <<ref to parent>> - <<ref to parent>> -
x:int
y:int
Dispatcher

int equals(Object)

'

<<state change
natification>>

Activities

Activities

Figure 2.8-1 Dynamically addng aspeds

The following code fragment shows the implementation:

\Program 2.8-1 Adding aspeds to Dispatchers (pseudo code)

ActivitySet myPoint = PCCRegistry.getOrCreateActivitySet(MyPoint.class);
ActivitySet object = PCCRegistry.getOrCreateActivitySet(Object.class);
myPoint.acquire(object);
Di spat cher dsp = nyPoi nt.renoveDi spat cher ("equal s", paraneterTypes);
dsp. set Nane("equal s_orig");
myPoi nt . addDi spat cher (dsp); // add the original "equal s"-Dispatcher as
/1 "equal s_orig"
myPoi nt . addAct i vi ty( /1 add new Activity and Di spatcher "equal s",
/1 including new aspects
new Activity("equal s", paraneterTypes) {
public Object doPerform Object obj, Ooject[] args) {
ActivitySet as = PCCReqgistry.getActivitySet(obj);
as. get Di spatcher ("eq_aspect _in").performobj, args);
Chj ect ret = as.getDi spat cher(
"equal s_orig").performobj, args);
as. get Di spat cher ("eq_aspect _out"). perform(obj, args);

We use the equals method of the classMyPoint for our example. The methodis exposed as
Activity, respedively as Dispatcher. To wrap our origina Dispatcher, we remove it, rename it to
equals_orig and add it again with the new name. Now the origina Dispatcher name
equals isnot used any more, so we can use it for our own Dispatcher wrapping the original
one. In the body of method doPerform we cdl eq_aspect_in , then the origina equals-
Dispatcher equals_orig , and then eq_aspect_out . Note that the implementations of
eg_aspect_in and eq_aspect_out do nat give any new insight into the discussd
concept, therefore they are not shown here.



2.8 Dynamicdly Adding Aspedsto Methods 31

After having replacel the original equals Dispatcher with a wrapper, whenever client code is
using a Dispatcher with this name, our new Dispatcher, including the aspeds eq_aspect_in
and eq_aspect_out , is used. Client code neads no change; existing cdls to the Dispatcher
equals can stay syntadicaly the same, but lead to the invocaion of the wrapper Activity rather
than the original Activity.

2.9 Notifications

Ancther fedure of the introduced method dispatch medhanism is the ability to attach listeners to
Dispatchers. Listeners are used when additional operations shoud be exeauted before or after the
exeaution of a Dispatcher, or when an Activity or Dispatcher is added or removed or their states
change. In contrast to aspeds as described abowve, natifications canna be used to override the
behavior of the original Dispatcher. The adual Dispatcher and its associated Activity are
exeauted in any way. To ill ustrate this cgpability, we enhance Program 2.6-1 by a natificaion
mechanism.

Program 2.9-1 Dispatchers with ndifi cations (pseudo code) |

public class Dispatcher {
Object listeners;

Object perform(Object p, Object[] arguments) {
Object result;
noti fyLi st ener sBef or ePerform(p, argunents);
if (isActivity()) { // if there is an Activity associated, invoke it
result = getActivity().performp, argunents);

else if (getDispatcher() != null) { // otherwise use an attached Dispatcher
result = getDispatcher().perfornm(p, argunents);
}

notifyLi stenersAfterPerform(p, argunents, result);

void addListener(DispatcherListener listener) {
if (listeners == null) { listeners = new ArrayList(); }
((ArrayList)listeners).add(listener);

void notifyListenersBeforePerform(Object p, Object[] arguments) {
ArrayList | = ((ArrayList)listeners);
if (I == null) { return; }
for (int i=0; i<l.size(); i++) {
((DispatcherListener)l.get(i)).beforePerform(p, arguments);

void notifyListenersAfterPerform(Object p, Object[] arguments, Object result) {
ArrayList | = ((ArrayList)listeners);
if (I == null) { return; }
for (int i=0; i<l.size(); i++) {
((DispatcherListener )l.get(i)).afterPerform(p, arguments, result);

The dso modify the methods for adding and removing Activiti es and Dispatchers.



32 2 Method Dispatch and Delegation

\Program 2.9-2 Dispatchers with ndifi cations (pseudo code)

public void addDispatcher(Dispatcher dsp) {
this.dsp = dsp;
notifyListenersActivityAdded(dsp);

public void removeDispatcher(Dispatcher dsp) {
this.dsp = null;
notifyListenersActivityRemoved(dsp);

}
public void setActivity(Activity a) {
notifyListenersActivityRemoved(this.a);
this.a = a;
notifyListenersActivityAdded(a);
}
}

notifyListenersActivityAdded and notifyListenersActivityRemoved are
implemented equivaently to notifyListenersBeforePerform and
notifyListenersAfterPerform . We do nd show the implementationin detail, sinceit

does not add relevant information to this example.
The orrespondng li stener interfacemay look as foll ows:

\Program 2.9-3 Dispatcher listener interface (pseudo code)

public interface D spatcherlListener {
void beforePerform(Object p, Object[] arguments);
void afterPerform(Object p, Object[] arguments, Object result);
void activityAdded(AbstractActivity a); // AbstractActivity is the base
void activityRemoved(AbstractActivity a); // class of Dispatcher and Activity

The  relevant statements  in Program 2.91 ae the method cdls
notifyListenersBeforePerform and notifyListenersAfterPerform . Ead
Dispatcher  managesalist of listeners (also cdled observers), and ndifies with these methods
the listeners whenever the Dispatcher is invoked, i.e. whenever the method perform is caled.
Note that listeners attach to spedfic Dispatchers and not diredly to methods. This gives us the
flexibility to get natificaions of invoked Dispatchers only for spedfic children of an Activity Set
providing the correspondng method. For example, we may want to be natified whenever the
method hashCode isinvoked on the Activity Set myPoint , but we do not want to be natified
when hashCode isinvoked on other children of the Activity Set object or onobject itself.
Remember, the method hashCode is implemented in the class Object and added to the
correspondng Activity Set, therefore all children of object dynamicdly “inherit” the
Dispatcher.

The following code fragment ill ustrates how to make use of the natification cgpability. First, we
creae an instance of MyPoint . After that, we retrieve a Dispatcher for method hashCode in
classMyPoint . Then we attach alistener to the Dispatcher and invoke the Dispatcher on objed
p. The listener will be natified before and after the Dispatcher is invoked, respedively its
asociated methodhashCode of objed p.



2.9 Notifications 33

Program 2.9-4 Using Dispatcher natifi cations (pseudo code) \

public void foo() {
MyPoint p = new MyPoint(10,20);
ActivitySet myPoint = PCCRegistry.getOrCreateActivitySet(p);
ActivitySet object = PCCRegistry.getOrCreateActivitySet(Object.class);
myPoint.acquire(object);
Di spat cher dsp = nyPoi nt. get Di spat cher ("hashCode", new C ass[] {});
dsp. addLi st ener (new MyLi stener());
int hc = ((Integer)dsp.perfornm(p, "hashCode", new oject[] {})).intValue();

public class MListener inplements DispatcherlListener {
bef or ePerform( Obj ect p, Object[] argunents) { ... }
afterPerformObject p, Object[] argunments, Cbject result) { ... }

}

This example is quite simple. There is only one place where the Dispatcher hashCode is
invoked and and we know which arguments are passd. In this example, we adually need no
natificaion. We can modify the code diredly, for example, to trace the method cdl. In red
applicaions it is more usua that there are many code fragments where a spedfic method is
cdled. As users of third-party libraries or frameworks, we might want to be able to hook into
methods of library or framework classes to tracemethod cdls, trigger related operations, or to
cancd method cdls, but we do nat have the source code and therefore canna diredly modify it,
respedively, we shoud nat do that for the sake of encapsulation. As library or framework
developers we may want to provide such hooks rather than alow clients to modify our source
code.

Note that with the PCoC framework, this natification medhanism is not diredly provided by the
Dispatcher class bu by abase dass SeeSedion4.3.2

2.10 Flexible Delegation

So far, we have got insight into the most common fadliti es for method and message dispatch:
method dictionaries, v-tables, and message interpreters. We have leaned that delegation is a
dispatch medanism to share behavior between objeds. We know that delegation may be used
together with any of the dispatch fadliti es described abowve. In Sedion 2.2.5we finaly read abou
the Darwin model—a mecdhanism for type-safe delegation and dynamic comporent modification
([KNIES99)).

With a flexible method dispatch, we propase a more drastic approach than the Darwin model in
terms of flexibility. It offers much flexibility (method objeds and comporents can be added and
removed entirely at runtime like in Smalltalk), no static dedarations of parents are necessary, and
“standard” compilers can be used (no proprietary compilers are necessary). Like Darwin, this
medanism can be integrated into an existing projed (at least, if the flexible-method-dispatch
framework has been implemented in the correspondng programming language) with littl e eff ort.
Client code that needs to use the flexible method dispatch, must invoke methods via the
perform -method of Activity Sets, instead of diredly cdling methods on the correspondng
clases or objeds. Known drawbadcks are the worse performance compared to the static
dedaration system of Darwin, and the missng type-safety at compil e time (type-safety is asaured
a runtime only).

The Dispatchers we first encountered in Sedion 2.3 can be enhanced to passthe recever Activity
Set (where amethodis invoked) as argument to the dispatch methodperform . The Activity Set
is passd on to the adua method which can use it for subsequent method cdls. This concept
makes delegation possble aaoss independent objeds. We say it is a smulated
delegation—Activity Sets are not integrated in a programming language and therefore must be
passed explicitly when invoking Activities (no implicit “self” parameter; seebelow).



34 2 Method Dispatch and Delegation

Compare the foll owing implementation d the perform methodwith that of Program 2.6-1.

Program 2.10-1 Dispatchers with recéver contex (pseudo code) |

public class Dispatcher {
."ij ect perfornm(ActivitySet context, Object[] arguments) ({
if (isActivity()) { // invoke retrieved method
return getActivity().perfornmcontext, argunents);

else { /I get method ref target
return getDi spatcher (). perforncontext, argunents);
}

}
=

The perform  method passes on the (recaver) Activity Set from Dispatcher to Dispatcher and
finally to a mncrete Activity.

The correspondng modificaion in the perform  method of the Activity Set classis ill ustrated
below (compare to Program 2.7-3).

Program 2.10-2 Dispatchers with recever context (pseudo code) |

public final class ActivitySet {

Chj ect perform(String di spName, Cbject[] argunments) {
int i=0;
/Il get all Dispatchers with the given name
Dispatcher[] dsps = dd.getDispatchers(dispName);
while (i < dsps.length) { /I iterate over all Dispatchers
Class[] parameterTypes = dsps]i].getParameterTypes();
if (parameterTypes.length() == arguments.length) {
int j=0; /I search for a Dispatcher with a
while (j<arguments.length) { // matching interface; the parameter types
/l must match the types of the given
/I arguments (actual parameters)
if (IparameterTypes[j].isInstance(arguments[j])) {
break;

}

j++;

if (j >= arguments.length) {// found a matching Dispatcher; invoke it
return dsps[i].perforn(this, argunents);
}
}

i++;

... I throw error
return null;

}
=

Basicdly this implementation is very similar to Program 2.7-3. We do not pass the recever
objed asfirst argument any more. Instead, with this implementation the Activity Set passes itself
as argument to the correspondng Dispatcher. Pasgng the Activity Set instead of the origind
objed may not make sense if all Dispatchers and Activities come from the same Activity Set, but
it does if some Activities are associated with different Activity Sets. This is similar to the
invocaion of an instance method of a class where we (implicitly) pass the recever obed
(“this’) as argument, but the invoked methods may be defined in the classor any of the dired or
indired base dasss of the objed.

When a method is invoked, the method cal must be delegated to the correspondng classof the
objed where it has been invoked. If norecever is spedfied explicitly, the current objed (“this’)



2.10Flexible Delegation 35

is used. All objed-oriented programming languages suppat this “classbased delegation” by
means of the implicit “this” parameter.

For dynamic comporent modificaion it makes sense that objeds of independent classes can also
be combined to units, quite like an objed represents a unit combining the behavior of its class
and its base classs. There is only Lava which has a built-in objed-based delegation medianism
in addition to classbased delegation. Other approaches simulate objea-based delegation by, for
example, using hooks or storing references in the parent objeds of delegation relations.
Simulation techniques and their drawbadks are discussed and summarized in [HARRIS97] and
[KNIES9§]. [KNIES99] summarizes disadvantages of simulation techniques (Pages 6f).

The mandatory static dedaration d parentsin Lava (seethe beginning of this ssdion) may not be
flexible enough for some cases, sinceit requires anticipation for where a hook might be needed.
Thisleals us bad to ou delegation approac.

Now that the Activity Set where a Dispatcher is invoked (the recaver) is passed to the Activity,
we can invoke other Dispatchers on the same Activity Set from within that Activity. In this case
the Activity Set has the same meaning for dynamic method cdls acoss different objeds as the
implicit parameter “this’ has for static method cdl s acossdifferent classes.

\Program 2.10-3 Delegation acrossdifferent objeds (pseudo code) \

/I add all methods of MyPoint to a new Activity Set: setX, setY, getX,...

MyPoint p = new MyPoint(); // a point object

Integer z = new Integer(17); // the z-value which extends p to a 3D point
ActivitySet a = PCCRegistry.getOrCreateActivitySet(p);

a. addActivity( // add new method "setZ"
new BoundActivity("setZ", new Cass[] {Integer.class}, z) {
public Object doPerform(ActivitySet a,

oject[] args) /I executed when the method
/l'is called
( (I'nteger)obj).set((Integer)args[0]);
return null;
}
}; .
a.addActivity( // add new method "getZ"

new BoundActivity("getZ", new Cass[] {}, z) {
public Object doPerform(ActivitySet a,

oject[] args) I/l executed when the method
{ /l'is called
return obj;
}
D .
a.addActivity( // add new method "setXYZzZ"

new BoundActi vity("set XYZ",
new Cl ass[] {Integer.class, Integer.class, Integer.class},

z) {
public Object doPerform(ActivitySet a,
oj ect[] args) /I executed when the method
{ /l'is called

a.perform("set X", new Cbject[] {args[0]}

a.perform("setY", new bject[] {args[1]}

((I'nteger)obj).set((Integer)args[?2]);
return null;

}
D
a.perform"setZ", new hject[] {10});

Integer result = (Integer)a.perform"getZ", new hject[] {});
a.perform("set XYZ", new Object[] {10, 20, 30});

~——

)
1




36 2 Method Dispatch and Delegation

In this example, we extend an Activity Set by an Activity from another Activity Set in order to
show the value of the flexible method dspatch. As basis for this example we use dassMyPoint
of Program 2.2-5 (Page 14), and the Activity Set client code of Program 2.7-4 (Page 29).

In this example we introduce our own Activity-class BoundActivity . As oppced to
instances of classActivity , aboundActivity is assciated with a particular objed. This objed
is passd as additional argument (z) to the BoundActivity constructor and is stored as
member variable obj . The method getOrCreateActivitySet credaes an Activity Set and
initi ali zes it with Activities for the methods of p. Instances of BoundActivity are creged and
added to the Activity Set for ead method of p, as oppacsed to Program 2.7-1 where instances of
classActivity were alded.

We explicitly add the methods setZ , getZ , and setXYZ to the Activity Set a. Although point
p has only two dimensions (x, y) and the z-parameter is stored in a separate objed, the
asociated Activity Set a can be used as 3D-point. We say, it smulates a 3D-point. Dispatcher
cdls are either delegated to Activiti es associated with the original objed p (setX , setY ) ortoa
boundActivity added explicitly to the Activity Set (setZ ).

As long as our objeds or comporents are used through Activity Sets, we or users of our
comporents have the flexibility to modify the functionality at runtime withou the neel to
recompil e and reload the arrespondng client code.

Note that we used an argument array in this example, but in a concrete implementation of this
concept we may rather use an argument list classwhich suppats named parameters. In addition
to that, we can introduce convenience methods to make the use of the flexible method dispatch
easier.

Y ou find more information abou delegation and its integration in the framework introduced in
thisthesisin Sedion4.6. Also relevant are Sedions5.4and 6.1

2.11 Prioritized Flexible Method Dispatch

Now let us take a closer look at parent/chil d-relationships between Activity Sets. We know that
an Activity Set can aqquire (dynamicdly inherit from) other Activity Sets, just like a classcan
inherit from other classes.

* .
V <<parent>> acquire

:ActivitySet

* <<child>>

Figure 2.11-1 Parent/child relationship

This relationship can be used to switch between different implementations of the same kind of
service Thisincludes particular operations or whole objeds or componrents.

To illustrate this ideg we take the example of Figure 2.2-5 and adapt it dlightly. Instead of
classes and their instances, we use the correspondng Activity Sets. We asume that the class
Shape as2ciated with the Activity Set shape contains only the data structure for a particular
shape. It has methods for setting and getting its position, extent, etc., but no method for
displaying the shape on the screen.



2.11 Prioritized Flexible Method Dispatch 37

list of parents
(acquired Activity Sets)
:Arrayl ist list of parents
0 (acquired Activity Sets
shape: ActivitySet 14 =~ simplePainter: ActivitySet  [p—s=| :Arraylist
) @ —: A ) 0
Point getPos() =] 2 \ void draw() ;
Point getExtent() . N Point getExtent() n. 1
borderPainter: ActivitySet ; :Arrayrrsr .
n-1 = q
void draw() .
Point getExtent() nl 1
converters: ActivitySet ‘_ Aoyt

boolean exportTo(...)

Figure 2.11-2 Prioritized acquisition

Using Activity Sets, we can dynamicdly enhance shape by additional functionality. We may
provide severa painters to display Shape objeds on the screen. Each painter implements the
method draw which does the adual job. We let the Activity Set shape aauire our painters,
respedively their methods. Additionally we aqquire a converter which provides functionality to
export the shape to agraphicsfile.

Note that an aqquisition relationship all ows multi ple parents, therefore acdl of acquire addsa
new parent, and daes not replace goreviously aaquired parent.

\Program 2.11-1 Acquisition d Activity Sets (pseudo code) ‘

ActivitySet shape = PCCRegistry.getOrCreateActivitySet( new Shape());
ActivitySet sinplePai nter = PCCRegistry.getOrCreateActivitySet(
new Si npl ePai nter());
ActivitySet borderPai nt er = PCCRegistry.getOrCreateActivitySet(
new Bor der Pai nter());
ActivitySet converter = PCCRegistry.getOrCreateActivitySet(
new Converter());
shape. acqui re(si npl ePai nter);
shape. acqui re(border Pai nter);
shape. acquire(converter);

For eat Dispatcher of the acquired Activity Sets (parents), a Dispatcher is added to shape . We
can then invoke, for example, the Dispatchers draw and exportTo on shape , even if the
classShape does not provide the correspondng methods. When such a Dispatcher is invoked,
the cdl is delegated, following the correspondng Dispatchers to the Activity Set which has the
adua (boung Activity. Finaly the static method associated with the boundActivity is invoked
onthe wrrespondng objed.

In our case, we have two painters and therefore we get a name clash with the draw Dispatchers.
We could remove one painter, but we assume that one painter reuses Dispatchers or more
predsely the associated Activity and static method d the other, and therefore bath are required.

To cope with this problem, the parents, respedively their Dispatchers, are ranked. The ranking of
a parent is determined by its position in the list of parents. We say, Activity Sets with a lower
index have ahigher priority.

In order to give borderPainter , respeaively its Dispatchers a higher priority in shape , we
can use awy of the foll owing statements:

‘ Program 2.11-2 Setting the focus to barderPainter (pseudocode)

shape. noveTo( border Pai nter, 0);
bor der Pai nt er. set Focus() ;



38 2 Method Dispatch and Delegation

Both statements lead to a new ranking in the list of parents of the Activity Set shape . In contrast
to moveTo, a cdl of setFocus gives borderPainter the highest ranking in al its
(aaquisition) children, and nd only in shape .

list of parents
(acquired Activity Sets)
Arraylist list of parents
0 (acquired Activity Sets
N
shape: ActivitySet 1 - = simplePainter: ActivitySet @ — Aralist
. ‘— . 0
Point getPos() =] ZA\ void draw() .
Point getExtent() . 3\ Paint getFxtent() n- 1
borderPainter: ActivitySet @ — Aralist [—
n-1 = 0
void draw() :
Point getExtent() n; 1
converters: ActivitySet ‘_ Prroyetor
0

boolean exportTo(...)

n-1

Figure 2.11-3 Prioritized acquisition (2)

When we invoke the Dispatcher draw on shape , the cdl is delegated to borderPainter
rather than to simplePainter now. When we invoke the Dispatchers exportTo , thecdl is
delegated to converter  as before, since nore of the higher priority Activity Sets provide the
correspondng Activity.

For broadcasts, that is when requests are delegated to two or more Activity Sets, the order in
which the adual methods are exeauted is determined by the ranking of the Activity Sets in the
list of parents. In order to suppat broadcasts, we have to make some enhancements to the
Dispatcher class

\Program 2.11-3 Dispatcher implementation (pseudo code) ‘

public class Dispatcher {

Chj ect broadcast (ActivitySet a, Ohject[] argunments) {
if (isActivity()) {
return getActivity().perform(p, arguments); // invoke retrieved Activity
}
else {
inti;
for (i=0; i < dsps.size(); i++) {
((Dispatcher)dsps.get(i)).performp, argunents);

return null;

}
}

'r;.rivate Activity a;
private ArraylList dsps;
}

The most relevant changes are the list of (parent) Dispatchers instead of a single Dispatcher, and
the new broadcast methodwhich delegatesto ead Dispatcher in thelist (cf. Program 2.6-1).

2.12 Containment Hierarchy

Besides the posshility of ordered aayuisition (dynamic inheritance) and delegation, we may need
to groupActivity Sets, like dasss can be grouped through name spaces. For that reason, Activity
Sets have apath instead of only aname. See &so Sedion 5.3,



2.12Containment Hierarchy 39

shapePainters: ActivitySet textPainters: ActivitySet
simplePainter: ActivitySet simplePainter: ActivitySet
void draw () void draw()
Point aetF xtent() Point aetExtent()
borderPainter: ActivitySet borderPainter: ActivitySet |
void draw() void draw()
Point getExtent() Daint neotEvtent()
highlighter: ActivitySet [~
void draw()
Point getExtent()

Figure 2.12-1 Activity Set hierarchy

In this example, we have two Activity Set groups: shapePainters  and textPainters

The correspondng paths are “|ShapePainters 7 and “|TextPainters ”. We use charader
“I" as path delimiter to avoid confusion with file paths (“/”, “\") or operators “.” and “->". The
group shapePainters contains the two Activity Sets simplePainter and
borderPainter . The group textPainters contains the Activity Sets highlighter ,
simplePainter and borderPainter . The latter two are identicdly named but different
from those of shapePainters

The given Activity Set tree results in following Activity Set paths. “|ShapePainters :
“|ShapePainters|SimplePainter “|ShapePainters|BorderPainter

“|TextPainters , “| TextPainters|Highlighter ", etc.
The path of an Activity Set can be set asfoll ows:

\Program 2.12-1 Setting the path (pseudo code)

bor der Pai nt er. set Pat h("| ShapePai nt er s| Bor der Pai nter");
bor der Pai nt er . set Cont ai ner (shapePai nters);

Both statements are equivadent. shapePainters beomes the container of
borderPainter . Once geded, the Activity Set can beretrieved from the registry as foll ows:

Program 2.12-2 Setting the path (pseudo code) |

ActivitySet borderPainter =
PCCRegi stry. get ActivitySet ("| ShapePai nt er s| Bor der Pai nter");

Activity Set groups have only one purpose: to distinguish between semanticdly similar Activity
Sets with the same name, but different behavior. They are ordinary Activity Sets and therefore
they can also aayuire their nested Activity Sets (such with subpeths), which we cdl elements.
However, by default, containers do not automaticdly aqquire their elements. They may provide
their own Activities. The path is stored as member of the ActivitySet class We use the
terms container and elements for containment relationships, in order to avoid confusion with the
terms parent and children used in delegation relationships.

2.13 Remarks

So far, we have seen how method dictionaries (Smalltalk) and v-tables (C++/Java) work, what
delegationis and how it can be redized. We aso leaned abou the Darwin model, its delegation
concept, and its redi zation in the programming language Lava.

We have introduced a new message dispatch mechanism that gives a certain level of flexibility,
but requires a different way of method invocaion (more predsely, dynamic method invocation)



40 2 Method Dispatch and Delegation

compared to ordinary method cdls. To leave existing code unchanged, a code generation tool
could be provided which merges functionality or code into existing classes or comporents. This
has some drawbadks:. the code generator must replaceevery single methodcdl by adynamic one,
which is error-prone unlessthe code-generator includes a perfed source-code parser, or the code-
generator is perfed, and thus expensive and slow; the code generator must be invoked for your
original source @de dter ead change. Ancther way is to integrate the dispatch medhanism into a
programming language, respedively a compiler. An approach for dynamic comporent
modificaion and integration into a JAVA -based language is shown by Kniesel G. in Type-Sde
Delegation for Run-Time Comporent Adaption [KNIES99]. The paper resumes in avery detail ed
way the advantages and isaues of dynamic comporent modificaion and delegation through
objed-based inheritance

With resped to the classficdion in Sedion 2.2.5 the flexible method dispatch presents an
approadh to unanticipated, dynamic, seledive, wrapper-based, objed-preserving componrent
modification, quite like the Darwin mode. With this approach we need not anticipate possble
future requirements for enhancements of our comporents, since modificaions are generaly
possble at runtime. Therefore this approach is dynamic and unanticipated. It is also seledive,
becaise with boundActivities an Activity Set is associated with particular objeds rather than
with a class On the other hand, Activity Sets can aso be used with unboundActivities only, and
therefore the concept is also suitable as classbased (global) approad. The approad is wrapper-
based (Activity Sets can be wrappers for objeds or comporents). The adapted wrapper can
coexist with the original comporent, or replaceit. There can also be many wrappers of the same
objed or comporent at the same time.

Let use resume some other aspeds of the flexible method dspatch introduced in this thesis.
The advantages of the flexible method dspatch are:
* Dynamic modificaions

—Method objeds (Activities) can be added and removed at runtime, while amost no
reorganization of Dispatcher dictionaries is necessary for subclasses after adding or
removing method olheds to/from a parent obed.

x Incontrast, v-tables (like in C++ or Java) are static and the entries have static indices;
a method has the same index in the v-table of derived classes as in that of the base
class reorganizing the related v-tables of derived classes after changing entries in the
base class would be very time-consuming at runtime; parts of v-tables of derived
classes have to be moved acardingly, if a base classgets a new method. SeeFigure
2.2-2.

x Smalltalk method dictionaries need no reorganization at all after such a change, since
the base class methods are only referenced in the base-class method dictionary.
However, for looking up a method, the class hierarchy must be seached for the
method, which is time-consuming at runtime. A method lookup cade optimizes the
message dispatch drasticdly (acording to [KRASN84], an appropriate method cade
can have hit ratios as high as 95%, reduce method lookup time by fador 9, and
increase overal method system speed by 37%).

x With the flexible method dispatch, Dispatcher dictionaries only keep indired
references to method objeds (Activities). When an Activity is added to an Activity
Set, al delegation children get Dispatchers to the correspondng Dispatchers of their
parents.

x SeeProgram 2.5-1 and Program 2.7-4 for Dispatcher dictionary and references.

—With boundActivities (see Program 2.10-3), functionality can be added to an Activity
Set, dthough it is defined in anather: boundActivities store a reference to its asciated



2.13Remarks 41

Activity Set, respedively its provider. This way, an Activity can aways acces the
environment (Activity Set) where they are deployed, and the environment, where they are
creded (the Activity Set of the original provider).

—Activities, respedively their Dispatchers can be wrapped dynamicdly, aspeds can be
added to Dispatchers. code can be added before and/or after the original method code by
wrapping it. SeeProgram 2.8-1.

Efficient dynamic methodlook-up

—A method objed (Activity) respedively Dispatcher only needs to be looked up in the
Dispatcher dictionary of an objed’s associated Activity Set, and nat also in its parents
like in the Smalltalk methodlook-up agorithm. We follow Dispatchers, starting with the
looked-up ore until we get an Activity. SeeProgram 2.4-1.

—Seach of Activities in parents is dore through diredly linked Dispatchers. See Program
2.4-1 and Program 2.6-1.

—This solutionis not as fast but more dynamic than v-tables where methods are looked up
with their integer index creded at compil e time.

—It is more efficient than message interpreters of Oberon where message is chedked for its
type with WITH-DO clauses. The message type cheding has runtime complexity O(n) ,
where n is the number of types to be chedked. In contrast to that, the lookuptime of the
flexible message dispatch is constant.

Dynamic reorganization of acquisition (dynamic inheritance) relationships. An Activity Set
can aayuire or discard another at any time. SeeProgram 2.11-1.

Activity Sets can be dynamicdly grouped by setting their path adequately, or by setting the
parent path.

Ordered multi casts (broadcasts) and other speaal dispatch strategies can easily be redized
(like in the message objeds of Oberon), respedively are even included in the dispatch
mechanism. (Bound method objeds can be added to an Activity Set even if they belong to
others. All added Activities can be readed through Dispatchers. A Dispatcher may colled
all its descendants and cdl perform for ead.

Activities can be padkaged with arguments and invoked later on. You find this fedure also
in the Oberon message interpreter medanism.

Delegation through passd reference to the recaver. The scope (the Activity Set) where an
Activity originally was requested can be passed through the involved Dispatcher chain and
can be used for subsequent requests; different objeds can use the same Activity Set; the
concept provides a mmmon “this’ for instances of independent classes.

Encapsulation of the distribution of comporents. Activity Set contents can live behind
interfacestandards such as COM, XMLRPC, etc., but these interfaces can be hidden to the
developer for convenience comporents and operations from various sources can be
attadhed and asociated with Activity Sets dynamicdly.

Hooks for method cdls. Listeners can be attached to Dispatchers. They are natified before
and after an Activity is requested, respedively a correspondng Dispatcher is invoked. See
Program 2.9-1 and Program 2.9-4.



42 2 Method Dispatch and Delegation

* Method state suppat. Since methods are represented by objeds, more preasaly Activities,
they can be enhanced by feaures such as states—typicd states are “Enabled”, “Disabled”,
etc. For example, beside method perform  the Activity classcould provide a method
getState  to retrieve the current state, and a method stateChanged to natify listeners
of changes. States can be set and switched at any time. They may depend on fadors such as
given applicaion licenses (full version, demo version), etc. Activities may have different
behavior depending on the state. Common objed oriented programming languages do not
suppat such afedure.

Disadvantages are:
* Increased memory footprint for Dispatcher dictionaries

—Compared to Smalltalk method dictionaries, additional entries for Dispatchers of parents
are necessry in Dispatcher dictionaries of children.

—Compared to v-tables, Dispatcher dictionaries are lessmemory-efficient. Dispatchers are
stored in dictionaries with strings as keys, insteal of flat, memory-saving method pointer
arrays. V-tables also contain method pointers of base classs like the optimized
Dispatcher dictionaries, bu aflat array isaways snaller.

—There nedals to be an Activity Set for eat objed or comporent where the flexible
method dispatch is applied. To avoid massve memory consumption it is reasonable to
useit rather for comporents than for ead small objed.

» Slower than v-tables. Dispatchers have to be looked up in dictionaries using their name,
respedively the hash-code of the name, as key. It depends mainly on how much time the
look-up of a Dispatcher name takes. The time for resolving Dispatchers is not relevant
(following the Dispatcher chain to a concrete Activity). In v-tables, the index representing a
method is cdculated a compil e-time; method look-up is only the access to the method
pointer at an index in the arrespondng v-table.

* The static interfaceof a classdoes nat refled which messages can be handed by instances
of the class It is difficult to redize at compile time which objeds are related through
message forwarding at runtime.

* Invalid dynamic method cdls are not recmgnized at compile time, as oppased to static
methodcdls.

In contrast to the proposed solution (indired references), a less time-consuming solution is to
store references to the Activities of parents diredly in the Dispatcher dictionaries of the children,
similar to v-table-approac.

However, in the case of a v-table-approad, method indexes have to be recdculated. Parts of v-
tables of derived classes must be moved when a methodis added or removed in a base class For
example, if the methodclone isadded to the base classObject , a painter to this method has
to be added to the v-table of MyPoint aswell asto thase of al other derived classes. The tricky
thing is that the new method must be added to the v-table of MyPoint at the end of the sedion
that comes from Object and before the pointers to the methods implemented diredly in
MyPoint . It gets even more complicaed, if multiple inheritanceis suppated (which we use for
multi casts). In this case, it must be ensured that a method that is inherited from more than one
base classgets the same method index in the v-tables of al related classes. SeeFigure 2.2-2 for
an owverview of v-tables.

Also, like v-tables, Dispatcher dictionaries of al child Activity Sets have to be reorganized,
when an Activity is added to a parent. The difference is, that the positions of Dispatchers in
Dispatcher dictionaries are not relevant, since they are looked up via hames and not via pre-
cdculated indexes.



2.13Remarks 43

When using dired references or pointers to methods (such as v-table method paointers), the
method look-up may be slightly faster (for inheritance depth > 1) than with indired references,
but theimpad isonlyn x <time for a method call> (seeProgram 2.4-1), wheren is
the inheritance depth of the aurrent class

With our approad, client code can attad li steners to Dispatchers at ead indiredion level, which
allows clients to be natified whenever an Activity on a spedfic classis invoked. This is useful
for tradng cdls or adding aspeds from diff erent sources.

Finally, the flexible method dispatch enables delegation aaossindependent objeds, and dynamic
comporent modificaion, using Activity Sets, Dispatchers, and boundActivities. Each Activity
of an Activity Set may be boundto a different objed. In fad, in PCoC, eadh Activity isin any
case boundto an objed. There are no unboundActivities. That is, they are always used on objed
level (seledive gproad), rather than onclasslevel (global approad).

Like .NET delegates, Dispatchers can be used for multi casts, and for forwarding to methods (in
our case through Activities) of different objeds or class.

Nevertheless there ae still some open isaues. The performance and memory-consumption can be
improved through better implementations. The current implementation as framework isused in a
productive environment (for a commercia applicaion), and will be reworked in order to get
cleaner code. The dispatch mechanism could be integrated in a programming language in order to
make it easier to use.

The foll owing sedions give adetall ed insight in haw these mncepts are deployed.



44

2 Method Dispatch and Delegation




3 PCoC Terms 45

3 PCoC Terms

This sedion explains esential basics of PCoC for better understanding its usage as shown in
Chapter 4, Using PCoC.

3.1 Overview

An applicaion can basicdly consist of interadive and nornrinteradive parts—so-cdled
comporents.

In the context of this thesis, we use the term Tod for interadive comporents of (G)UI
applicaions. A Tod provides a user interface(expeds user interadion) and operations which we
cdl Activities. For example, aword processor comporent can be aTodl.

Tods nead Materials to work on. For this resson we use the term Material for containers of
Activity arguments and return values.

The meanings of the terms Tod and Material are quite similar to those of the WAM-metapha.
WAM stands for Werkzeug-Automat-Material (Tool-Automaton-Material). See[ZULL1G98].

Note that the term Tod is used for many diff erent things in other sources. People use it for whole
applicaions (grep tod, shell tod, image manipulationtod), for objeds (a seleded brush, pen, or
crop utility in an image manipulation program), and also for very basic things such as the mouse
CUrsor.

The nortinteradive componrents of PCoC applications are cdled Service Providers. For example,
a comporent providing file system functionaity (moveFile , openFile, etc. ) via
Activities is a Service Provider. Both, Tods and Service Providers are so-caled Activities
Providers—componrents which expose apart of their functionality as Activities.

The foll owing sedions describe PCoC terms and their meanings, and diff erences to definiti ons of
the WAM-metaphar.

3.2 Activities Providers

3.2.1 Overview

An Activities Provider isacomporent providing its functionality via Activities. The figure below
illustrates how PCoC classs are related to ead ather; the annaations explain the resporsibiliti es
of the framework classs.

The classes highlighted in grey are those implemented by the comporent developer: Service
Providers, the services they provide, and Simple Todls. A Combined Tod is a generic class and
iscreaed and initialized by PCoC depending onthe configuration. SeeSedion 4 for detail s.

The Activities, Dispatchers, and dynamic containment and acdquisition information of an
Activities Provider are kept in its Activity Set which is creaed when the Activities Provider is
initiali zed.



46 3 PCoC Terms

Activity St
aoquiredSas .
container {oderedy  <<eoqure>>
thename sarvice
1 V * * used for loosdly coupling
* ﬁaivig_'sc‘;vwidas providing
N ierarchicd structuring,
Activity Set aocgisition, and priority
1 menagement & runtine
ServiceProvider adivitySe Tool
<<conponert corfiguration>> | | <Insantiation>>
(resources, properties)
provis awitthet
damart ¥ corfiguration 1 canbedeployed
* ‘ 1 i independently of its
g_zlrcmmt. Cortains
I Activities Provider properties and resources.
container * . .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Adivities Provides
<use>> providing spedific services
| ViaAdivitiesend fevinge
* L """"""""""""""" presentation--agraphical
| 4T " I or cheradter based
. . . . us interface
SaviceProvider <<sarvice>> CombinedTod @ SnpleTod |~
i <<ingtantiation>>
1 0.1
icsnvices, D) i * 0.1 L toinplement:
besic savices, Gawicdly V b wowaystoinpl :
an Adivities Provider w eanple géa_i_edfrqn o ondass
providngspedfic ilesystem initionin <<dda <<presentaiors> |- "
il ol A Z a @npositi on crested
savicss viaAdivities operatiors gwfm moce>> (view) by thotoo

Figure 3.2-1 Activities Provider Architedure

Seethe sedions below for definitions of Todl, Service Provider, Activity, Dispatcher, and Task.

3.2.2 Class(es)
The oorrespondng classis PCCActivitiesProvider

3.3 Activity Sets

3.3.1 Overview

An Activity Set is an objed providing a set of operations cdled Activities, their Dispatchers
(which delegate requests for invoking Activities to the correspondng Activity Sets), and a
correspondng lookup medchanism for Activities and Dispatchers. It is often assciated with an
Activities Provider (see abowe). Activity Sets are distinguished by their path (for example,
“|AIB™).

This concept is useful for bullding aqquisition relationships, and for groupng semanticaly
related olgeds or componrents. See &so Sedion 2.4and Sedion2.12

Activity Sets are added automaticdly to a registry. The registry is redized as a singleton class
PCCRegistry . It can be used to look up Activity Sets (using their path), and their associated
Activities Providers.

3.3.2 Class(es)
The orrespondng classis PCCActivitySet



3.4Tods 47

3.4 Tools

3.4.1 Overview

A Tod is an Activities Provider which expeds user interadion. Todls provide a spedfic objed
as visual representation, for example a JComporent in Java. The main functionality (operations
on chta, algorithms, etc.) is diredly implemented in the Todls class

In the WAM-metaphar, the term Tod can, for example, stand for a notepad or organizer
applicaion. In the context of this thesis, Tods are rather thase parts of applicaions that adually
provide the functionality. As in the WAM-metapha, [ZULLI1G98], Page 280, Simple Tods can
be combined to more complex Todls, which are then cdled Combined Todls.

Tool component .

provides
<<Tool class> | andparforme
Adivities
SRR B ¥
1
v vi
<<Activity Set>> <<GUI representation>>
NN

namingsavicead . exiding PCoC-
oortext, hddngan independant coporert,

AdivitiesProvider's for exanplea

oparatiors (Adivities) JCoporent in Java
for Shing
coylingandoortra
of conporents

Figure 3.4-1 A Tod
Figure 3.4-1 depicts the rel ationships between some dasss that form aToad.

3.4.2 Examples
Figure 3.4-2 shows what Todslooklike in the context of PCoC and this thesis.

Application

Tools

Project Fle o View Lo Wincows bl
=P (K]

— o =10 =
File - g

Fiter:

] packagehtmi
D] package him!
(o]

50X

o when
OR339 03 W00 T &
1 0rt04 193003 MT0200 2001

-1
EEF]

Bulld Manager] File Browser

Figure 3.4-2 A PCoC apgication

e

Toads can be compased to more complex Toadls. The foll owing figure shows a typicd Combined
Tod (ProjectManager ) containing some Simple Todls.



48 3 PCoC Terms

ProjectManager: CombinedTool

:ProjectBrowserTool .FileSelectionTool
Proiect Mana _|O
roject File
E\@ pecoc com.windriver ) : | File Project
El docked_close.gif peoc T corm windriver rame pe s |

peoc.rescfy col
] proc.resefy.

docked_iconify.gif peoc.im com.windriver.rome.po
FMOockedRegion.java peoc.fm comawindriver.rome.po
FMFloatingRegion java peoc fm cormowindriver rame. pe—
FMFocushananer.java peoc.fm comwindriver.rame. e
FMFrameBlocker.java peoc.fm comawindriver.rame.po
FMFrameManager java peocfm cormoawindriver rome. po
FMFrameManageriain ... peoc.fm comawindriver.rome.pe
FMGlassPane java peoc.fm comawindriver.rame.po
FMMDIRegion java peocfm cormoawindriver rome. po
FMRegion java peoc.im com.windriver.rome.po
FMRegionimpl.java peoc.fm comawindriver.rame.po
FMSimpleRegion java peocfm cormoawindriver rome. po
FMTool java peoc.im com.windriver.rome.po
FhyWindow.java peoc.fm comawindriver.rame.po
FhWindowsLookandFee . pooc.fim comowindriver rame. po
GenericGomponentPane... peoc.fm com.windriver.rome.pe
J_fm.proj peoc.fm comawindriver.rame.po
J_pee_tools proj peoctools comowindriver rame
J_pcoc.proj peoc com.windriver.rame.proc
J_rescfy.proj peoc.rescly com.windriver.rom

J_types proj peocrescfy types com Wmdri_vi_'l
»

e e e e

b peoc.fm com.wi
~- 4] peoc.tools com:

_@@@@@BBBBBBBBBBBBHBBB@

Alemiln

Figure 3.4-3 A Combined Todl

ProjectBrowserTool and FileBrowserTool are Simple Tods—they are dasses
(diredly or indiredly) derived from PCCSimpleTool . Combined Tod isageneric dassnot
subjed for deriving subclasses. Instances, such as ProjectManager , are aitomaticdly
generated from configurationfil es.

Simple Tods can also contain other Simple Tods, but they are nat generated automaticaly in
contrast to Combined Tods. Composition must be dore in source code. This may be solved
differently in ather frameworks.

3.4.3 Class(es)
The correspondng classes are PCCSimpleTool and PCCCombinedTool .

3.4.4 Remarks
Chapter 4, Using PCoC, explains Todls and their coll aborationin more detail .

3.5 Service Providers

3.5.1 Overview

Services, such as file system functionality, can be redized as Service Providers. A Service
Provider is a noninteradive Activities Provider, as oppcsed to Toadls. It exposes services via
Activities.

It is basicdly implemented like a Toodl, except that it does not provide a spedfic GUI
representation objed. Figure 3.5-1 depicts the relationship between some classes that form a
Service Provider.



3.5Service Providers 49

Service Provider component

provides
<<Service Provider class> - andpafome

Adivities
- ly
ly
<<ActivitySet>>

naringsavicead
cortext, ddngan
AdivitiesProvider's
opaaiors (Adivities)
Usad for
coyplingand cortrd
o carporats

Figure 3.5-1 A Service Provider

3.5.2 Class(es)
The orrespondng classis PCCServiceProvider

3.5.3 Remarks

Chapter 4, Using PCoC, describes a sample implementation and configuration of a Service
Provider.

3.6 Activities

3.6.1 Overview

Activities are operations provided by Activities Providers (Tods, Service Providers). An Activity
isimplemented as classandistreaed asfirst classobjea by PCoC.

Activities correspond to bound method objeds as described in Sedion 2.10 (Program 2.10-3).
An Activity can be instantiated by an Activities Provider, and can subsequently be performed. A
single method (doPerform ) of an Activity implements its adual functionality. See Program
4.2-3.

Activities can be retrieved, and added to and removed from Activity Sets at runtime. Thisis an
enhancement to Javarefledion, which suppats retrieving of methods at runtime, but not adding
them to oljedsat runtime.

Activities suppat different states, including “Enabled” and “ Disabled”.
Detail ed concepts and examples of Activities are described in the following sedions.



50 3 PCoC Terms

AbdiractActivity
0"1> <<corfiguratior>>
Mecro <<sript>> 1 corfiguratior (resources, properties)
*
Ly :
sk ] Tk <<indartietiorr>
ad \\
iz ?* Ad?v?ﬁmaaia" T?’.[aeaé”am o ;
10nt1Z¢ /, A ( X
gdeqiim N 1 mmivs Adivity ggigdm b;sqr}agaewts
(dstribution) V = ortodters ren
* Dispetcher * : <<ingtartigtiors> " (for user coc)
Qregteor upce adivi X aoquiredSets .
1 Digpatcher when ivitySet ortdne  {odged <<euire>
01 | o | ¢ oy o
" 0
v Adtivity St v .
Activity 7>1 Activity Set
* <<ingartigtiors>| 1 adtivitySet
damet
* 1 provice 1 povider
1 Activities Provider

corntainer

Figure 3.6-1 Activity relationships

This picture ill ustrates how Activity Sets, Activities, Dispatchers, and Tasks are related to eat
other. Seelater in this chapter for definitions of the terms Dispatcher and Task.

3.6.2 Class(es)

Base classfor al kinds of Activities is PCCAbstractActivity . Concrete classes must be
derived from PCCSingleActivity or PCCMultiActivity which are both derived from
PCCActivity . A PCCSingleActivity represents a single operation, e.g. moveFile to
move afile in a file system. PCCMultiActivity represents a group of Activities with the
same interface e.g. showRecentFile  to reopen arecantly opened file in a proper Tod. The
Activities of thisgroupare accesed with an index.

Note that there are other classes derived from PCCADbstractActivity which semanticdly
differ from single and multiple Activities. Examples are PCCDispatcher and PCCTask (see
Figure 3.6-1).

3.6.3 Remarks

Do nat confuse PCoC Activities with COM+ Activities. In the context of COM+, respedively
Microsoft Transadion Server (MTS), Activities are logicd threals running aaoss different
macdhines. They are used for cooperation of COM+, respedively MTS objeds. See also
[STALO1], Page 291.

3.7 Materials

3.7.1 Overview

In [ZULLIG98], Page 86, Material is defined as an objed, which can be an element in a
container, and on which Toadls can operate in a working environment. For example, documents
and files are considered as Materials. We agree with this definition, although the term is more
limited in this thesis (seebelow).

According to [ZULLIG98], on Page 89, an objed hoding Materials is defined as a container,
therefore an argument list would be a ontainer.



3.7Materids 51

In the context of thisthesis, aMateria isalist of arguments passed to Activitiesor alist of return
values provided by them. A Material can also contain other Materias, but thisis an exception to
the rule. Usually, a Material is just a container and something that a Tod can operate on. An
Activity (for example cut ) of a Tod can only be performed with a speafic Materia type (the
parameter types must match the Activity interface.

3.7.2 Class(es)
The correspondng classis PCCMaterial

3.8 Dispatchers

3.8.1 Overview

One of the most relevant concepts of PCoC are Dispatchers. A Dispatcher forwards or delegates
requests for the invocation of a speafic type of Activity to Activities Providers. Dispatchers are
used for comporent coll aboration and within Tasks. A set of diredives speafies how to forward
requests, e.g., as sngle or multicasts.

Dispatchers correspondto indired method references as described in Sedion 2.4. Figure 2.4-2
ill ustrates rel ationships between Dispatchers, Activities, and Activity Sets.

Dispatchers are simil ar to the Microsoft .NET delegates (type-safe method-pointers). SeeSedion
6.7.5 The main difference to delegates is that Dispatchers can be used for delegation, whereas
delegates can only be used for forwarding. With forwarding, the objed where a method
originally has been invoked (the recaver) is not known to the method hader (where the method
isadually exeauted), and therefore the method hdder canna use it for subsequent methodcals.

Dispatchers are automaticaly generated when an Activity is added to a comporent, respedively
to its associated Activity Set, or aqquired from anather. Their type safety is ensured at runtime,
whereas the type safety of .NET delegates is ensured at compil e time,

The set of Dispatchers available in an Activity Set builds a kind of method dictionary. A
Dispatcher has a referenceto an Activity (if one with the same name exists in the same Activity
Set), and alist of references to “acquired” Dispatchers (seeProgram 2.6-1). When a Dispatcher is
invoked (for example, by using its perform  method), it gathers all Activities by following the
diredly or indiredly conreded Dispatchers and invokes them, depending on spedfied diredives.
Diredives determine how Activities are invoked. This includes single casts or multi casts. We say
that these Activities arein the dispatch ar aqquisition kranch of the Dispatcher.

SeeProgram 2.6-1 and Program 2.11-3.

3.8.2 Class(es)

The correspondng classis PCCDispatcher . An instance of this classserves as proxy for an
PCCDispatcherimpl objed, i.e. it forwards method cdls to its associated Dispatcherlmpl
objed, which does the adua forwarding to Activities. A referenceto a Dispatcher can be kept,
even if the correspondng Dispatcherlmpl is not available (any more). As soon as the
Dispatcherimpl beames available (after loading or adivating the correspondng Activities
Provider and its Activities), its Dispatcher becomes functional. See5.8.3

3.8.3 Remarks
SeeSedions 5.4 and 5.6 for more detail s abou Dispatchers.



52 3 PCoC Terms

3.9 Tasks

3.9.1 Overview

A Task isameaningful unit of work, composed of a series of steps that lead to some well -defined
goal. In the context of this thesis, it is a complex Activity compaosed of a series of Dispatchers
including diredives and arguments, and/or other Tasks. Spedfied condtions must be met to
enableit for invocation.

A simple Task is the opening of atext editor comporent with a subsequent loading of atext file
and the positioning of the caet at the beginning of the mrrespondng text view.

The term Task corresponds to the term automaton of the WAM-metaphar. [ZULLI1G98] defines
the term automaton on Page 89 as a madiine that is used to perform a spedfic task. It can
autonamously operate on given Materials. It has precondtions that must be met, and if they are,
then the automaton performs a series of steps to finish the task. Note that the term automatonis
mostly used with another meaning—for state madines (for example, deterministic and non
deterministic finite aitomaton).

The main view of this thesis is not the automatism, which alows performing a Task, but the
Task itself. The ability of autonamously exeauting a Task is a fedure of a Tod or Service
Provider in the mntext of thisthesis, rather than a separate operative objed (automaton).

3.9.2 Class(es)
The correspondng classis PCCTask.

3.9.3 Remarks

Seealso Sedion 4.5for usage of Tasks, and Sedion 5.7 for more detail ed concepts of this design
element.

3.10 Case Insensitivity in PCoC

Activity, Dispatcher, and Activity Set names are always handed case insensitively. This is for
the convenience of framework users. No one intuitively distinguishes, for example, between
copy , Copy, and cOpy, even if most programming languages force developers to dothat.

Activity Sets and Activities can be looked upcase-insensitively. For example, an Activity creaed
with name “cOpy” can be looked up as “copy”. All Activities with the same case-insensitive
name in the system must have the same interface (argument and result types) at runtime. If an
Activity with name “Copy” and runtime interfacevoid Copy(Selection) is added, and
another Activity “cOpy” with interfacevoid cOpy() , an error will be thrown.



3.11ClassHierarchy 53

3.11 Class Hierarchy
Figure 3.11-1 shows the hierarchy of PCoC classs.

Object

— PCCADbstractActivity

— PCCACctivity

— PCCSingleActivity

— PCCMultiActivity

PCCDispatcher

PCCDispatcherimpl

PCCTask

— PCCActivitylnterface

— PCCMaterial

— PCCDirectives

— PCCActivitiesProvider

— PCCSimpleTool

— PCCCombinedTool

— PCCServiceProvider

— PCCActivitySet

Figure 3.11-1 PCoC classhierarchy
These dasses are named as described in Chapter 3, where detail ed explanations to these dements
are provided.

Note that all PCoC classes have the prefix “PCC’. In most of the figuresin thisthesis the
prefixes have been amitted for simplicity.



54

3 PCoC Terms




4 Using PCoC 55

4 Using PCoC

This chapter describes the implementation and customization d comporents based onPCoC.

4.1 Overview
PCoC comporents can be eaily creded in afew steps:

* Derive a class from a small base class For interadive comporents (comporents with
graphicd user interfacg derive from PCCSimpleTool , and for norninteradive
comporents from PCCServiceProvider . SeeSedion4.2

» Set up aset of Activities. SeeSedion 4.3
» Use Dispatchers or Tasksto invoke Activities. SeeSedions 4.4and 4.5.

4.2 The First Tool

Program 4.2-1 and Program 4.2-3 show a first Smple Tod. The class SimpleTooll  derives
from PCCSimpleTool , overriding makePresentation  to return avisual representation of
itself. All presentation oheds of PCoC Todls currently require Java Swing (respedively ET++ in
C++). In this case a JScrollPane containing a list of four strings is displayed.
makePresentation is subjed to be overridden by ead Smple Tod.

‘ Program 4.2-1 SmpleToadl 1.java (1) ‘

package examplel;
import pcoc.tools.*;
import javax.swing.*;

/** A Tool providing and displaying a list of strings.
*/

public class SinpleTool1l extends PCCSi npl eTool {
JList fList;

/** Constructor. Base classes do some initialization.
*/
public SimpleTool1() {}

[** Set up the Tool's GUI
* @return A JComponent representing the GUI of this Tool
*/
public JComponent makePr esent ati on() {
String[] data = "Hello World!";
fList = new JList(data);
return new JScrollPane(fList);

}

[** Set up the Tool's Activity Set which holds and manages an
* Activities-Provider's Activities.
*
protected void set upActi vitySet () {
super.setupActivitySet();
addActivity(new C i pboardPast eActivity()); // addan Activity and set this
} /I as its provider (fProvider)

setupActivitySet instantiates and adds Activities (operations) to this Activities Provider.
In this case we add an instance of ClipboardPasteActivity . See Program 4.2-3 for the
implementation d this class



56 4 Using PCoC

\Program 4.2-2 SmpleToad 1.java (2)

/** Do some extra initialization. doActivate is called after basic
* initialization of the Activities Provider. */
public void doActivate(){
... Il do something, for example synchronize data models between siblings

}

/** Do some extra deinitialization. doTerminate is called before basic
* deinitialization of the Activities Provider. */
public void doTer m nat e() { ... // do something }

doActivate  and doTerminate can be overridden to perform required tasks in the startup
and termination phase of a comporent. Examples for required tasks are data synchronization,
sharing of data, adding referencesto aher objeds, or removing references.

\ Program 4.2-3 SimpleToal 1.java (2) \

[** A concrete Activity which is an implementation of a specific operation-in
* this case paste from clipboard.
class Cl i pboar dPast eActi vi t y extends PCCSingleActivity {
/** Activity constructor. It sets the "dynamic" type of this operation.
* Type declaration: name "clipboardPaste”, category "Edit",
* result type (void: "), parameter types (void: ")
ClipboardPasteActivity() { super ("cli pboardPaste", "Edit", "", ""); }

/** Perform an Activity. It throws an exception if an unexpected error
* occurs during its execution.
* @param si Sender and receiver context (involved Activity Sets)
* @param arg The argument list provided for the execution
* @return The result(s) of the performed Activity
*/
protected PCCMaterial doPer f or {PCCSenderinfo si, PCCMaterial arg)
throws PCCPerformException {
String str = Clipboard.getAsString(); // add clipboard content
if (str = null && !str.equals(™)) { // to list
((SimpleTool1)fProvider).addElement(str);

return null;

}

/** Get the current state; is triggered by a direct call of updat e or
* indirectly by a call of updat eActi vi ty of the provider of the Activity.
* @return The current state of this Activity
*/
protected String doGet St at e() {
return defaultState(true); // is always " Enabled" in this case

}

... Il other Activity classes
}// end of SimpleTooll

Program 4.2-3 shows a simple implementation of an Activity. In the constructor, we spedafy its
“dynamic” type (its name, caegory, and interfacg. The dynamic type of Activitiesis described in
Sedion4.3.4

doPerform implements the core functionality of this Activity defined in the context of the
comporent in Program 4.2-1. It is the most relevant method and must be overridden. It is cdled
indirealy when we cdl the perform  method d this Activity.

The PCCSenderinfo objed hdds references to the Activity Set where the Activity has been
invoked (the recaver), and to the cdler (the sender). The recaver is nat necessarily the Activity
Set where the Activity finally is exeauted. The structure usualy isfill ed by PCoC.



4.2TheFirst Tod 57

doGetState returns the current state of this Activity. This method must also be overridden. It
can return any state represented as a string. For the most common states, there are predefined
methodk: defaultState(bool) , disabledState() (corresponds to
defaultState(false) ), enabledState() (corresponds to defaultState(true) ).
In the disabled state an Activity is not exeautable, i.e., doPerform  will not be exeauted when
the Activity is invoked. In the enabled or ancther state, the Activity is exeautable, i.e., acdl of
perform will | ead to an invocaion d thedoPerform  method.

Note that in the given example, an Activity is explicitly defined. There are easier ways to credae
Activities. Seethe following code fragment.

\Program 4.2-4 Semi-automatic generation d Activiti es \

public class SinpleTool1l extends PCCSi npl eTool {
protected void setupActivitySet() {
super.setupActivitySet();
addActivity("doPaste", "getPasteState");

voi d doPaste(String, String) {..}
String getPasteState() {...}
}

With this code fragment, an Activity is implicitly creaed by the framework, and added to the
Activity Set of SimpleTooll . The framework uses the Java refledion mechanism to retrieve
the methods doPaste and getPasteState via their names and assciate them with the
methods doPerform and doGetState of the newly creded Activity. When the Activity
doPaste isinvoked (by cdling perform ), the cdl is delegated to the correspondng method
doPaste using refledion. When the state of the Activity is retrieved, the correspondng method
getPasteState isinvoked. This approach is explained in detail in Sedion5.9.3

A Tod'’s visual representation is automaticaly embedded in a windowv by PCoC's frame
manager. How this is dore depends on the application’s configuration. Program 4.2-5 shows,
how SimpleTooll may be embedded into a Combined Tod (CombinedTooll ). After the
Tod islaunched, it is $hrown as child window of the gplication main window.

\Program 4.2-5 Comporent configuration ‘

<?xml version = "1.0" encoding = "UTF-8"?>
<ResConfig name="Examplel" xsi:schemalocation="www.windriver.com/ResConfig
file:///pwe/rome/config/tools/ResConfig.xsd" xmIns="www.windriver.com/ResConfig"
xmins:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance">
<RCCombinedTool>
<name>FrameManager</name>
<menuBarName>FrameManagerMenuBar</menuBarName>
</RCCombinedTool>
<RCSi npl eTool >
<nanme>Si npl eTool 1</ nane>
<cl assNarme>exanpl el. Si npl eTool 1</ cl assNane>
</ RCSi npl eTool >
<RCConbi nedTool >
<name>Conbi nedTool 1</ nanme>
<wi ndowTi t| e><dockedTi t| e>My Conbi ned Tool </ dockedTi t| e></w ndowTi t| e>
<par t ><si npl eTool Nane>Si npl eTool 1</ si npl eTool Nanme></ part >
</ RCComnbi nedTool >

This configuration contains all necessary definitions to set up an applicaion to be able to launch
our first Todl. It contains definitions of our Simple Toadl, and a Combined Tod containing it.

Definitions for a menu bar (FrameManagerMenuBar ), a menu (ExamplelToolsMenu ),
and amenu entry (showCombinedTooll ) follow below.



58 4 Using PCoC

\Program 4.2-6 Comporent configuration: menu items andtasks

<RCMenuBar>
<name> Fr aneManager MenuBar </name>
<menuNames>
<menuName> Exanpl elTool sMenu</menuName>
</menuNames>
</RCMenuBar>
<RCMenu>
<name> Exanpl elTool sMenu</name>
<mnemonic>T</mnemonic>
<shortDescription>Tools</shortDescription>
<items>
<item name=" showComnbi nedTool 1" type="task"/>
</items>
</RCMenu>
<RCTask>
<name> showConbi nedTool 1</name>
<mnemonic>1</mnemonic>
<shortCut>control 1</shortCut>
<dispatcher>|Application| | aunchComnbi nedTool 1</dispatcher>
<RCStates>
<RCState nhame="Enabled">
<shortDescription>Show CombinedTooll</shortDescription>
</RCState>
<RCState name="Disabled">
<shortDescription>Show CombinedTooll</shortDescription>
</RCState>
</RCStates>
</ RCTask>
</ResConfig>

Now, we can use the menu item showCombinedTooll to launch our Tod.
showCombinedTooll causes the Dispatcher launchCombinedTooll to be invoked
which delegates cdls to the asciated Activity. The framework generates such an Activity for
eath Combined Tod. The name of the Activity is that of the Combined Tod prefixed by
“launch ”.

An RCTask defines the look and fed and behavior of a Task. The structure defines the
mnemonic key Alt/1 , and the keyboard shortcut Ctrl/1  for invoking the task. The
RCStates sedion describes the look of the menu or todbar item for the current state of the
asciated Task.

A Task consist of a Dispatcher and the arguments necessary for the exeaution of the Task. Each
argument can itself be a Dispatcher or Task returning an objed as argument for the main
Dispatcher in the Task. A Task has aso alist of references to other Tasks to be used as a maao
(script).

We can simply add a menu item for our Activity ClipboardPasteActivity to menu
ExamplelToolsMenu by inserting the following lineinto itsitems  sedion.

\Program 4.2-7 Comporent configuration: using RCTask definitions \

<i tem nanme="cl i pboar dPast e" type="task"/>

In addition, we have to define a RCTask and associate it with the menu item. See Program 4.2-
8. The correspondng Task objeda (Activity) will be generated by the framework when the
configuration is loaded. When a menu or todbar item associated with this Task is seleded, the
method perform  of the assciated Dispatcher clipboardPaste in Activity Set
Application is invoked. The Dispatcher delegates the request to the correspondng Activity
of the Activity Set that has the focus. That is, the method doPerform  of this Activity isfinaly
exeauted.



4.2TheFirst Tod

59

Program 4.2-8 Comporent configuration: RCTask definition

<RCTask>
<name> cl i pboar dPast e</name>
<shortCut>control v</shortCut>
<dispatcher>|Application|clipboardPaste</dispatcher>
<RCStates>
<RCState name="Enabled">
<shortDescription>Paste</shortDescription>
</RCState>
<RCState name="Disabled">
<shortDescription>Paste</shortDescription>
</RCState>
</RCStates>
</ RCTask>

SeeSedions4.5and 5.7 for detail s abou Tasks.

4.3 Using Activities

In the sedions before we saw how an Activities Provider looks like and how its body can be
implemented. Now we concentrate on the implementation of Activities, sending requests for

performing Activities, and dynamic cougding and control of Activities Providers.

4.3.1 Activity Class Interface
This sdion describes the most relevant methods of Activities.

‘ Program 4.3-1 Classinterface of PCCAbstractActivity (1)

public PCCAbstractActivity(String nanme, String category,
String resultType, String argunentType) {...}

/** Get activity name specified in the constructor.
*/
public String getNane() {...}

/** Get activity category specified in the constructor.
*
/

public String getCategory() {...}

/** Perform an Activity
* |t throws an exception if an unexpected error occurs during its execution.
* Calls the method doPerform
* @param arg The argument list provided for the execution
* @return the result(s) of the performed Activity
*/

public PCCWvaterial perform PCCMVaterial arg) throws PCCPerfornException {...}
/** Returns the current state; is triggered by a direct call of updat e
* or indirectly by a call of updat eAct i vi ty of the provider of the Activity.
* Calls the method doGet St at e, if the state was previously
* invalidated with updat e.
* @return The current state of this Activity
*/
public String getState(PCCvaterial arg) {...}
/** Invalidate the state of this Activity. A subsequent call of get St at e leads
* to a call of doGet St at e. If updat e has not been called, the cached state is
* returned by get St at e.
*/
public void update() {...}
Program 4.3-1 shows the most relevant methods of a PCCADbstractActivity . The class

provides default implementations for Activities, Dispatchers, and Tasks. The class
PCCActivity  is the base classfor Activities which are subjed to be derived in client code.



60 4 Using PCoC

Actually, we derive from its subclasses—the classes PCCSingleActivity and
PCCMultiActivity . When deriving from these classes, we have to override at least the
methods doPerform and doGetState  (which are cdled from the template methods
perform andgetState ).

A PCCSingleActivity represents asingle operation, e.g. moveFile to moveafileinafile
system. PCCMultiActivity represents a group of Activities with the same interface e.g.
showRecentFile  to reopen a receantly opened file in a proper Tod. The Activities of this
groupare accesd with an index parameter (thefirst argument inarg ).

Although Activities shoud rather be used together with Dispatchers (see Sedion 4.4), they may
also be used diredly. However, in this case it makes more sense to use ordinary methods insteal
of Activities.

The following methods are lessfrequently used, bu neverthelessimportant.

\Program 4.3-2 I nterface of PCCAbstractActivity (2)

/** Get the activity path. It consists of the path of the Activity Set to which
* this Activity has been added, and the Activity name.
*/

public String getPath() {...}

/** Set context specific data, for example, additional information to the current
* selection in the GUI. Context data is used, for example, for context sensitive
* menu entries. This method must be used in doCet St at e of this Activity
* @param key The key for a new entry in the context data table of this Activity
* @param value The value to be associated with the given key
*/
public void setContextData(String key, String value) {...}

/** Get context-specific data, for example, additional information on the current
* selection in a text editor.
* @param key The key for a new entry in the context data table of this Activity
* @param value The value to be associated with the given key
*/
public String getContextData(PCCvaterial arg, String scope, String key) {...}

/** add listener to this Activity
* @param the listener to add
*/
public void addLi stener (PCCActivityListener listener) {

/** remove listener from this Activity
* @param the listener to remove
*/

public void addLi stener (PCCActi vityListener listener) {

SeeSedion 4.3.7for a detail ed description of Activity states and context data. See Sedion 4.3.2
for adescription d the listener interface

Context data denotes a set of strings, representing data in additi on to the return value and state of
an Activity.
4.3.2 Activity Listener Interface

The following interfaceis used to send natificaions for state changes of Activities, and when
Activities are added to or removed from a Dispatcher, Task, etc.



4.3Using Activities 61

Program 4.3-3 ActivityListener interface (1) \

/** ActivityListener interface
* Used for Activities, Dispatchers, and Tasks
*/
public interface PCCActivityListener {
/** Activity has changed its state. This method is called in a.update().
* Retrieve the current state by using a.getState()
* @param a the Activity whose state has changed
*/
public void activityChanged(PCCAbstractActivity a);

[** Activity is added to a. a must be Dispatcher, a Task, or a
* MappedActivity (an Activity associated with a Task)
* @param a the Activity to which another Activity has been added
*/

public void activityAdded(PCCAbstractActivity a);

[** Activity is removed from a. a must be Dispatcher, a Task, or a
* MappedActivity (an Activity associated with a Task)
* @param a the Activity from which another Activity has been removed
*/

public void activityRenmoved(PCCAbstractActivity a);

The following methods are cdled in the perform  method d the given Activity a.

\ Program 4.3-4 ActivityL istener interface (2)

.../** Activity is going to be performed. This method is called before a.doPerform
* @param a the Activity to be performed
*/

public void beforePerforn{PCCAbstract Activity a, PCCMvaterial args);

[** Activity has been performed. This method is called after a.doPerform
* @param a the Activity which has been performed
*/
public void afterPerform PCCAbstractActivity a, PCCMaterial args,
PCCMvat eri al result);

4.3.3 PCCMaterial: Container for Arguments and Return Values

PCCMaterial isatyped container for arguments and return values of Activities. The types of
objeds contained inaPCCMaterial must match the interfacespedfied in the mnstructor of an
Activity.

See 4so Sedion5.5.1for detail s abou Activity interfacespedfication and cheds (type-safety).

The PCCMaterial classas ill ustrated in Program 4.3-5 offers constructors for primitive data
types, for an objed, and a default constructor. For single values, the constructors shoud be
sufficient. For more complex lists there are methods for adding values to, or setting valuesin, the
container. Theinterface ca be retrieved as gring by using the getinterface method.

We use an ArrayList to hold the objeds added to a Materia, which is enowgh for our
purpose. We may use HashMap instead, for accessng arguments by name, instead of by index.
However, this would make the spedfication of Activity interfaces and arguments via Materials
even more cmplicaed, so we dedded to use ArrayList



62 4 Using PCoC

\Program 4.3-5 PCCMaterial.java (except)

public class PCCvaterial {
final public static int NPOS = -1;
Arraylist fArgs;

/* Default Constructor. Empty list. */
public PCCMaterial() {...}

/* Constructors for convenience. Basic data type values are automatically
* converted to appropriate objects */

public PCCMaterial(Object value) {...}

public PCCMaterial(String value, boolean splitString) {...}

public PCCMaterial(boolean value) {...}

public PCCMaterial(char value) {...}

public PCCMaterial(int value) {...}

public PCCMaterial(double value) {...}

/* Get a value */

public Object getObject(int index) {...}
public boolean booleanValue(int index) {...}
char charValue(int index) {...}

public int intValue(int index) {...}

public double doubleValue(int index) {...}

/* Add a value */

public void add(Object element) {...}
public void add(boolean element) {...}
public void add(char element) {...}
public void add(int element) {...}
public void add(double element) {...}

/* Set a value */

public Object set(int index, Object element) {...}
public Object set(int index, boolean element) {...}
public Object set(int index, char element) {...}
public Object set(int index, int element) {...}
public Object set(int index, double element) {...}

/* Remove values */
public void remove(int index) {...}
public void clear() {...}

/* Content checks */

public int size() {...}

public boolean isNull() {...}

public String getinterface() {...} // get types of contained objects as
[/l interface string "String,Boolean”

public Class getType(int index) {...}

public boolean isSubclass(int index, Class cl) {...}

Note that primiti ve data types are converted to instances of the correspondng class For example,
anint value 17 isconverted to an Integer instancewith value 17.

The @mncrete implementation d this classis not shown, sinceit istrivial.

4.3.4 Dynamic Activity Type Explained
Activities have a static type which isits class and a dynamic type which consists of its name, its

interface and category. For example, an Activity might have the name clipboardPaste , the
interface “void  clipboardPaste(void) ", and might belong to caegory Edit (cf.
Program 4.23 and Program 4.36). The name spedfied in the constructor
(“clipboardPaste ") may be different to the dassname (ClipboardPasteActivity ).

The result type and the list of parameter types are spedfied as comma-separated lists of class
names. PCoC creaes and shares instances of the class PCCActivitylnterface for the
spedfied type lists. SeeSedion 5.5.1for more detail s about PCCActivitylnterface



4.3Using Activities 63

Program 4.3-6 An Activity with noreturn value and paameters \

/** Activity constructor. It sets the "dynamic" type of this operation.
* Type declaration: name "clipboardPaste", category "Edit",
* result type (void: "), parameter types (void: ")
ClipboardPasteActivity() { super( "clipboardPaste", "Edit", "", "");}

In this example, the Activity does nat need parameters and dces not return aresult.
An Activity with amore complex interfaceis ill ustrated below:

\Program 4.3-7 An Activity with areturn value and paameters

/** Activity constructor. It sets the "dynamic" type of this operation.
* Type declaration: name "moveFile", category "File", returns a Boolean object,
* needs two strings, the original file path and the new one
MoveFileActivity() { super( "moveFile", "File", "Boolean", "String, String");}

The Activity takestwo String  objeds as parameters and returns aBoolean objed asresult in
the template method perform , respedively in the method doPerform  which implements its
concrete behavior.

Activity Categories, such as “File ” in the example abowve, can be used, for example, for
colledively invalidating states, or triggering the invocdion of adivities. Generally, caegories
have been introduced only for convenience A category name is part of the (dynamic) type of an
Activity.

An Activity nameis boundto a caegory. For example, it is not al owed to add an Activity copy

with caegory Edit , and one with category Clipboard  to the system. This would cause a
clash in an Activity Set that aajuires two others, one containing a Dispatcher to one of these
Activities, and one containing a Dispatcher to the other Activity (see Sedion 5.4.3. The
Dispatcher in the aaquiring Activity Set would have to delegate requests to Dispatchers with
different dynamic types—in this case different caegories. Such a clash of Dispatcher types is
always reported by the framework.

Remember, Dispatchers always have the same dynamic type as the assciated Activities,
respedively its acquired Dispatchers. We say, an Activity Set A or Dispatcher DA aqquires
(“dynamicdly inherits’) a Dispatcher DB when A aqquires Activity Set B containing DB, where
DAand DB have the same name.

A clash would also exist if an Activity copy with interfacevoid copy(selection) and
one with boolean copy(void) was added.

See Sedion 5.5.1for a detailed explanation of the usage and concepts of result and parameter
types of Activity.
4.3.5 Creating and Setting Up Activities

In the constructor of an Activity we spedfy its dynamic type. This includes its name, category,
return value and parameter list interfaces. See Sedion 4.3.4 for a detailed description of the
dynamic Activity type.

Seealso Sedion 5.5.1for a description of the Activity Interfaceclass Instances of this classare
used to represent the parameter and result type of an Activity.

Note that Activities shoud always be an inner class of an Activities Provider to have a clea
design.



64 4 Using PCoC

\Program 4.3-8 PCCSingleActivity constructor

public class PCCSingleActivity {

[** Activity constructor. It sets the dynamic type of this Activity and
* must be called in the constructors of derived classes.
* @param name The name of the Activity. All Activities with the same
* name must have the same dynamic type (category, resultType, argumentType)
* @param category A virtual category to which this Activity belongs. This
* can be used to update the states of all Activities of a category at once,
* or to remove them from their Activity Sets.
* @param resultType Result type. See PCCActivitylnterface.
* @param argumentType Parameter types. See PCCActivityInterface.

public PCCSingleActivity( String nanme, String category,

String resultType, String argunent Type);

}
The following methods of PCCActivitiesProvider are used for adding and removing
Activities. Usualy, these methods are used in setupActivitySet , Which is cdled after a

comporent has been initialized and while it is being adivated. They can also be used during the
whale lifetime of a omporent, i.e. urtil the cmporent isterminated.

\Program 4.3-9 Adding andremoving Activiti es in PCCActiviti esProvider \

public class PCCActivitiesProvider {
/** Add an Activity to this Activities Provider, respectively its Activity Set.
* @param activity an Activity instance
* @return true, if the Activity was successfully added; false, otherwise
* (e.g., if an Activity with the same name already exists in this provider).
public bool ean addActivity(PCCActivity activity) { ... }

/** Removes an Activity from this Activities Provider, respectively its
* Activity Set.
* @param name The name of the Activity to be removed
* @return the Activity removed from this Activities Provider, or null.
protected PCCActivity renoveActivity(String nane) { ... }

}

The following example is an exceapt from Program 4.2-1 and Program 4.2-3. SimpleTooll
implements an Activity ClipboardPasteActivity . This Activity is added in
setupActivitySet . Note that when Activities are not removed explicitly, this is dore
automaticdly when the comporent terminates.

\Program 4.3-10 Adding anActivity to a Smple Toal ‘

public class SimpleTooll extends PCCSimpleTool {

/** Set up the Tool's Activity Set which contains and manages an
* Activities-Provider's Activities.
*/

protected void setupActivitySet() {
super.setupActivitySet();

addActivity(new d i pboardPasteActivity());
}

/** A concrete Activity which is an implementation of a specific operation--in
* this case paste from clipboard.
class ClipboardPasteActivity extends PCCSingleActivity {
[** Activity constructor. In sets the dynamic type of this operation.
* Type declaration: nhame "clipboardPaste", category "Edit",
* result type (void: "), parameter types (void: ")
ClipboardPasteActivity() { super ("cli pboardPaste", "Edit", "", ""); }




4.3Using Activities

65

Seethe following sedions and Sedion 5.5.1for more detail s about Activities. Program 4.2-3 has

amore detail ed implementation d the Activity shown above.
The example below shows how an Activity can be removed.

\Program 4.3-11 Removing Activiti es

public class SimpleTooll extends PCCSimpleTool {
/** Remove some Activities.
*/

void removeSomeActivities() {
renoveActivity("clipboardPaste");
/1 assuming, the Activity is stored in a nenber variable
/'l clipboardPaste of this conmponent, the followi ng is al so possible:
/'l removeActivity(clipboardPaste);

Activities can also be added to and removed from an Activities Provider different from their
current providers (their credors). This feaure can be used to implement a comporent which

enhances functionality of another by providing Activitiesfor it.

When such Activities are performed at their adual provider, they have access to the context

(environment) in which they have been added.

\Program 4.3-12 Adding andremoving Activiti es through aneher PCCActiviti esProvider

public class PCCActivitiesProvider {
/** Add an Activity to this Activities Provider.
* @param activity an Activity instance
* @param toPath the Activity Set where the Activity should be added
* @return true, if the Activity was successfully added; false, otherwise
* (e.g., if an Activity with the same name already exists in this provider).
public boolean addActivity(String toPath, PCCActivity activity);

/** Removes an Activity from this Activities Provider.
* @param name the name of the Activity to be removed
* @param fromPath the Activity Set where the Activity should be removed
* @return the Activity removed from this Activities Provider, or null.
protected PCCActivity renoveActivity(String fronPat h, String name);
}

These methods can be used to add Activities to or remove from an Activities Provider diff erent
from its adual provider. The target Activities Provider, respedively its Activity Set is spedfied

as path.

Once added to a different Activities Provider, the new “owner” can be retrieved via the Activity

Set currently associated with this Activity.

\Program 4.3-13 Retrieving the aurrent Activity owner

class MyActivity extends PCCSingleActivity {
M2Activity() { super("MyActivity", "Methods", ", "); }
protected PCCMaterial doPerform(PCCSenderinfo si, PCCMaterial args) {
/I retrieve the Activity Set, respectively the associated provider where
/l this Activity is currently added to. Note that getProvider() delivers
Il the actual creator of the Activity, which may be different to the current
[/l "owner" getActivitySet().getProvider().
PCCActi vi ti esProvi der currentProvider = getActivitySet().getProvider();
/l do something
return null;
}
}




66 4 Using PCoC

4.3.6 Implementing Activities

4.3.6.1 Subclassing

Program 4.3-14 shows the two methods, doPerform and doGetState , that must be
overridden in  concrete Activity classes, for example, those derived from
PCCSingleActivity

‘ Program 4.3-14 Sulzlassinterface of PCCActivity \

/** Perform an Activity.
* |t throws an exception if an unexpected error occurs during its execution.
* @param si Sender and receiver context (involved Activity Sets)
* @param arg The argument list provided for the execution
* @return the result(s) of the performed Activity
*/
protected abstract PCCMaterial doPerfornPCCSenderlnfo si, PCCMaterial arg)
t hr ows PCCPer f or nExcepti on;

/** Returns the current state; is triggered by a direct call of updat e or
* indirectly by a call of updat eAct i vi t y of the provider of the Activity. Is
* called by get St at e, if the state was previously invalidated with updat e.
* @return The current state of this Activity
*/

protected abstract String doGetState();

The following example shows an rough implementation of an Activity class for a file system
Service Provider.

Program 4.3-15 An Activity with parameters |

/** A concrete Activity which is an implementation of a specific operation-in
* this case noveFi | e.
class MoveFil eActivity extends PCCSingl eActivity {
[** Activity constructor. In sets the dynamic type of this operation.
* Type declaration: name "moveFile", category "File", returns a Boolean
* object, needs two strings, the original file path and the new one
MoveFileActivity() { super( "moveFile", "File", "Boolean", "String, String");}

[** Perform an Activity. It throws an exception if an unexpected error
* occurs during its execution.
* @param si Sender and receiver context (involved Activity Sets)
* @param arg The argument list provided for the execution
* @return the result(s) of the performed Activity
*/
protected PCCMaterial doPer f or mM{PCCSenderinfo si, PCCMaterial args)
throws PCCPerformException {
boolean done = moveFile(
(String)args.getObject(0),

(String)args. getObject(1)));
return new PCCMaterial(done);
}
[** Get the current state; is triggered by a direct call of updat e
* or indirectly by a call of updat eAct i vi ty of the

* provider (component) of the Activity.
* @return The current state of this Activity

*/
protected String doGet St at e() {
return defaultState(true); // is always " Enabled " in this case

}

Get more dou concepts and interfaces in the sedions below, andin Sedion 5.5.



4.3Using Activities 67

4.3.6.2 Performing Activities
The foll owing example shows the use of the most relevant methods of Activities.

‘ Program 4.3-16 Invoking Activity methods

PCCMaterial args = new PCCMaterial();
args.add("fromfile.txt");
args.add("tofile.txt");

PCCActivity activity = new MveFil eActivity();
String currentState = activity. get St at e(args);
boolean readyToPerform =
activity. canPerf or margs); // is equal to getState(...) |= disabledState()
Boolean result = (Boolean) activity. perfornargs);

We crede an Activity instance and provide arguments for the invocaion of Activity methodks.
getState  returns the current state of the MoveFileActivity instance canPerform is
used to chedk if an Activity is exeautable for a subsequent invocaion with perform

Note that perform and getState  are template methods. The concrete behavior is defined in
derived classes by overriding the methods doPerform  and doGetState . See aso Sedion
431

4.3.7 State Handling of Activities

The state of an Activity can be changed at any time. It represents a spedal attribute of an Activity
which can be used to determine whether an Activity is exeautable at a spedfic paint in time, or
not.

The state can be any string. There ae some predefined states:

» “Enabled ": Can be used to spedfy that the correspondng Activity can currently be
performed.

» “Disabled ": A spedfic state in which the Activity canna be performed. The framework
ignores requests for performing Activities which are in this gate.

» “Default ”: This state is adualy only avail able for the configuration. Definitions for this
state in RCTasks are used if they shoud be shared by concrete states. For example, if the
description of a menu item shoud always be “Browse Selection " no matter which
state its asciated Activity has, the slot description can be defined for state “Default  ”. If
thereisno cefinition for a spedfic state, “Default " isused instead.

\Program 4.3-17 Sate definition in the mnfiguration \

<RCTask>
<name>Copy</name>
<dispatcher directives="First">|Application|Copy</dispatcher>

<!I-- Default state. Definitions can be overridden by concrete states-->
<RCState name="Default">
<description>Copy Selection<description>
<icon>displaySelectionlcon</icon>
</RCState>
</RCTask>

This exceapt of the configuration of a menu item shows how the definitions of the Default
state is used for any state of the Dispatcher copy asciated with RCTask “Copy”. The
Dispatcher represents all copy Activities of this applicaion (path “Application ).

See Sedion 5.7 for a more detailed description of Tasks, and Sedion 5.4 for details abou
Dispatchers.



68 4 Using PCoC

\Program 4.3-18 Retrieving anActivity state

public class GetSelectionActivity extends PCCSingleActivity {
public GetSelectionActivity() {
super("getSelection", "SelectionCategory", "Selection", "");

protected String doGet St at e() {
return def aul t St at e( hasSel ecti on()); // returns "Enabled" or "Disabled"

}

The state of an Activity can be invalidated by cdling update for this Activity or by cdling
updateActivity in the Activities Provider where it was added.

\Program 4.3-19 Invalidating anActivity state ‘

PCCActivity activity = new GetSelectionActivity();
addActivity(activity);

activity. updat e();

updat eActi vity("get Sel ection");

The last two lines have the same effed. In fad, the framework retrieves in updateActivity
the given Activity and cdlsits update method. Listeners of activity  , if there are any, are
natified in update .

\Program 4.3-20 Validating anActivity statein alistener ‘

public class M/Listener inplenments PCCActivityListener {
public void activityChanged( PCCAbstractActivity a) {
String currentState = activity.getState();

}
public void activityAdded(PCCAbstractActivity a) {}
public void activityRemoved(PCCAbstractActivity a) {}

}

SeeSedion 4.3.2for adescription o the PCCActivityListener class

The next time when we cdl getState |, the stateisvalidated (in doGetState ). Oncethe state
is validated, it is caded and used for subsequent cdls of getState , until update is cdled

again.

\ Program 4.3-21 Invalidating anActivity state ‘
public class PCCActivity extends PCCAbstractActivity {

mpubl ic String getState(PCCvaterial arg) {
if(fState == null) { fState = doGetState(arg); }
return fState;
}
protected abstract String doGetState(PCCMvaterial arg) {}
[** Update / invalidate the state of this Activity.
*
/
public void update() ({
resetState();
super. updat e();

void resetState() { fState = null; }

}

This code fragment ill ustrates the implementation of the methods update and getState . See
aso Sedion4.4.2



4.3Using Activities 69

4.3.8 Fetching Context Data of Activities
The foll owing code fragment describes how to set context datafor an Activity.

\Program 4.3-22 Setting context data

public class GetSelectionActivity extends PCCSingleActivity {
public GetSelectionActivity() {
super(" get Sel ecti on", "SelectionCategory", "Selection”, ");

protected String doGetState() {
set Cont ext Dat a(/*key*/ "selection”, /*value*/ getSelectionAsString());
set Cont ext Dat a(/*key*/ "length", /*value*/ getSelectionAsString().length());
return defaultState(hasSelection()) ;
}
}

Depending on whether there is a seledion or nat, the state “Enabled ” or “Disabled is
returned. The seledion as string is associated with the key “selection " and the length of the
string seledion is associated with key “length " in this case. The context data is valid until the
next state change. The context data can be explicitly accessed via the Activity’s interfaceor that
of its Dispatchers. Theimplementation d setContextData  is srown below.

Program 4.3-23 Setting context data |
public class PCCActivity extends PCCAbstractActivity {

mpublic void setContextData(String key, String value) {
if (fContextData == null) { fContextData = new HashMap(1); }
fContextData.put(key.toLowerCase(), value);

}
public String getContextData() {
String contextData = "";
if (fContextData != null) {
contextData = (String) fContextData.get(key.toLowerCase());

if (contextData == null) { contextData =", }
return contextData,;

}
HashMap fContextData;
}

Context data can be diredly fetched from the Activity providing it, asill ustrated in the foll owing
example.

\Program 4.3-24 Fetching context data \

PCCMaterial args = new PCCMaterial();
PCCActivity activity = new Get Sel ectionActivity();
String data = acti vi ty. getContextData(args, " get Sel ect i on", "selection")

A context data entry can be referred in a context sensitive menu entry as in Program 4.3-25
(excerpt from an RCTask definition).

Context data references are enclosed by curly braces. “getFileSelection " is the Activity,
respedively the Dispatcher of the Activity, spedfied as argument for the adual BrowseFile
Activity in the RCTask. “selection " isthe name which refers to a string defined as context
data by the Activity (the key for the context data table). <30 means that only the left 30
charaders of the string representation are shown.

Context data table entries must be set when the state of an Activity changes, i.e, in
doGetState . SeeProgram 4.3-22.



70 4 Using PCoC

\Program 4.3-25 Using context data in context sensiti ve menus

<RCTask>
<name>BrowseFile</name>
<dispatcher directives="First"> | Appl i cati on| BrowseFi | e</dispatcher>
<args>< dispatcher> get Fi | eSel ect i on</dispatcher></args>
<RCStates>

<RCState name="Default">
<description>Browse File<description>
<icon>browseFileSelectionlcon</icon>

</RCState>

<RCState name="Enabled">
<description>Browse ' {getFil eSel ection: sel ecti on, <30} '<description>

</RCState>

<RCState name="Disabled">

</RCState>

<RCState name="Active">
<description>Browse ' {getFil eSel ecti on: sel ecti on, <30} '<description>
<checkMarked>true</checkMarked>

</RCState>

<RCStates>
</RCTask>

The basic dgorithm for retrieving context data (used with getContextData ) isquite Smple:

\Program 4.3-26 Expandng daceholders with context data \

abstract public class PCCAbstractActivity {
/** Expand a text with placeholders
* @param orgText A text containing placeholders
* @param map A map containing data to be filled into the placeholders
* @return the expanded text
*/
String expand(String orgText) { // pseudo code
int lasttoken = 0O;
int token = 0;
int septoken = 0;
int maxlen = 0;
String expTxt;
/1 find placeholders in the text
while ((token = orgTxt.indexOf("{", lasttoken)) < orgTxt.length()) {
expTxt.append(orgTxt.substring(lasttoken, token-lasttoken));
lasttoken = orgTxt.indexOf("}", token);
if (lasttoken < 0) { lasttoken = orgTxt.length(); }
/1 find length specification, if there is any
septoken = orgTxt.indexOf(",", token);
if (septoken < 0 || septoken > lasttoken) {
septoken = lasttoken;
maxlen = 0;

else { maxlen = Integer.valueOf(orgTxt.substring(septoken,
lasttoken-septoken-1));

String id = orgTxt.substring(token+1,lasttoken-token-2);

String data = expTxt.append( get ContextData(id)); // get context data

if (maxlen > 0 && maxlen < data.length()) { /'l cut to specified length
data.substring(0, maxlen-1);

}

expTxt.append(data); /| append expanded pl acehol der

lasttoken++;

}

// append the rest of the string
expTxt.append(orgTxt.substring(lasttoken, orgTxt.length()-lasttoken-1))
return expTxt;

}

Read more a&ou thistopic in Sedion4.4.3



4.4 Using Dispatchers 71

4.4 Using Dispatchers

Actualy, Activities are never invoked dredly, bu rather via Dispatchers.

Dispatchers have been introduced in Sedion 3.8 Y ou can find implementation detail sin Sedion
5.6.

4.4.1 Invoking Activities

The most relevant Dispatcher methods are getState , canPerform , and perform . The
methods can either be diredly cdled on Dispatchers (Program 4.4-1), or through convenience

methods with the same names provided by the class PCCActivitiesProvider (Program
4.4-3) or PCCActivitySet

Let us asaume, we have an Activity Set with path “|Application|AllServices| " that
aqquires ancther Activity Set “|Application|FileSystemService| " (we aso say, it

aqquires its Dispatchers, respedively its Activities). FileSystemService provides two
Activities, MoveFile and CopyFile , and aauires ancther Activity Set. Requests on
Dispatchers in AllServices (for simplicity we only use the Activity Set name, since the full
path is nat relevant here) are delegated to Dispatchers, respedively their associated Activities, in
either FileSystemService or theindiredly aqquired Activity Set.

A state change through method update in the Activity MoveFile is propagated bad the
delegation chain. More predsely, Dispatchers listen to state changes of their aquired
Dispatchers or their associated Activities. In the example below, first, the MoveFile Dispatcher
in the same Activity Set is natified and then the MoveFile Dispatcher in AllServices
Subsequent cdls of method getState  on one of the Dispatchers lead to an update of the state
inthe MoveFile Activity. See &so Sedion4.3.7.

Activit_y Set ) Activit_y Set )
"|Application|AllServices|" "| Application|FileSystemService"
Dispatchers _ 1 Dispatchers Activities |
<<dispatch>>! <<dispatch>> ;
MoveFile — = MoveFile —
CopyFile e = CopyFile CopyFile
<<state change
Foo = Foa tification>> -
<<\St_?Ie o X Adivity S
&m cation>> \ Dispatchers <<dispatch>> Activities
N e = e )
<<state change
notification>> |

Figure 4.4-1 Invocation d Dispatchers

We asame, that the signature of MoveFile is Boolean MoveFile(String
fromFile,String toFile) , that of CopyFile is Boolean CopyFile(St ring
fromFile,String toFile)

The following code fragment shows the use of Dispatchers, using the example aove.



72 4 Using PCoC

\Program 4.4-1 Diredly calling Dispatcher methods

public class AllServices extends PCCServiceProvider {

public void foo() {
PCCMaterial args;
args.add("fromfile.txt");
args.add("tofile.txt");
/I Note: The methods below also take an Object array for convenience:
/I Object[] args = {"fromfile.txt", "tofile.txt"};

PCCDi spat cher di spatcher = getDi spatcher("| Application| Al Servi ces| MoveFile");
String currentState = di spat cher .getState(
args, PCCDirectives.first());

boolean readyToPerform = di spat cher .canPerform(
args, PCCDirectives.first());

Boolean result = (Boolean) di spat cher .perform(
args, PCCDirectives.first());

String contextData = di spat cher .getContextData( /l return context data
args, "MovekFile", "selection", PCCDirectives.first()); // set in doGetState

}

In this case, Dispatchers are retrieved and stored for later use. Note that
getDispatcher(...) adualy cdls getActivitySet().getDispatcher(...)
Compare the aode fragment to Program 4.4-3.

The parameter spedfied with getDispatcher is the path and name of the Dispatcher that is
used to delegate the request for performing Activities with the same name. In this case, the
exeattion of MoveFile is requested. We use the Dispatcher of Activity Set

“|Application|AllServices . With the request we deliver an argument list, args . The
last parameter speafies  diredives  for forwarding the  request (e.0.
PCCDirectives.first() , PCCDirectives.broadcast() , €tc.) Diredives spedafy,

how a Dispatcher delegates requests to Dispatchers of aauired Activity Sets. More predsely,
they spedfy how a Dispatcher gathers Activities with the same name (“MoveFile ") of diredly
and indiredly aaquired Activity Sets. The spedfied method, for example, perform or
getState , isinvoked on al resulting Activities. See Sedion 5.6.2for the implementation of
the correspondng method findAllActivities . Seealso the dired aqquisition medianism
explained in Sedion5.4.

In this example, requests (perform , getState ) are delegated to a MoveFile Activity of an
Activity Set aquired by AllServices . Due to diredive PCCDirectives.first() :
requests for the invocaion of MoveFile are delegated to the Activity Set with the highest
priority providing an Activity with the given name (seedired aqquisition in Sedion 5.4). In our
example, the Activity of FileSystemService is used. If there was ancther Activity Set
aquired by AllServices , that also provides a MoveFile Activity, the Activity Set that
most recantly got the focus would be used. If diredive PCCDirectives.broadcast() was
spedfied, requests would be delegated to bah Activity Sets providing the Activity.

canPerform chedks if the spedfied Dispatcher, respedively the correspondng Activity is
exeautable. It hasthe same dfed as getState(...) != disabledState(...) :

The following picture ill ustrates which methods are invalved for an Activity request through a
Dispatcher.



4.4 Using Dispatchers 73

Activity Set Activity Set
"|Application|AllServices|" "|Application|FileSystemService"
Dispatcher Dispatcher _ Activity :MoveFileActivity |
) <<dispatch>> <<dispatch>> - i
MoveFile MoveFile |
: <<find Activities>>
publ ic PCCM aterial perfor n( /pubr]cclas s PCCAlstractA  ctivity {
PCCMatriala  rgs, / |<<find Activities>> -
PCCDir ectives d) { publicP  CCMater i alper form(
PerformS t rategy strat = "7 PCGenderl nfosi
new Perfo rmStrat egy( P PCQteria | args) {
args,di rectve s) - if(! canPerf orm()) { retur n nul };
findMatc hingAct i vites (straf) = check Materia | Type(g erArgum entType ()arg, ..) ;
retum( PCCMater ial)st T at.per form() ; PCCMaerial ~ result = doPer fom(ar g,s) ;
- check Materia | Type(g etRetur nType() resul t.)
. retur n resul t; /
, ) }
cla ssPerfo rmStat e {
Qojectp erform( )
PCCMgerial  resutt = nul ; K -
for(_i=0jic fActvi tiessi ze(). +) { publicclas s MoveH leActi  vit y:
PQCActivi tyact vity extends PCCSingl eActiv ity {
PCCAct i fA tiesge t() ; i .
acti(vity. pg/%)rrn ("CWI ¢ 0 publicP  CCMater i aldoP erform (
fSende rInfo , PCGenderl nfosi
fArgum ents) ; P_C(Mal.ena | args) {
%etur n resul t; retur n resul t;
}
} }

Figure 4.4-2 Dispatchers delegating requests

The Activity MoveFile isan instance of the classMoveFileActivity and has been added
to the Activity Set FileSystemService . The concrete behavior is implemented in the
method doPerform , respedively doGetState . Note that we use the implementation from
Program 4.3-15.

When perform is cdled on Dispaticher MoveFile in AllServices (path
“|Application]AllServices|MoveFile "), we gather al Activities in the aajuisition
relationship using findActivities (seeSedion 5.6.2for a detail ed description). In this case,

we get a list (ass a member of the strategy objed strat— an instance of class
PerformStrategy ) with only one edement—the MoveFile Activity  of
FileSystemService . In the perform  method of strat , we invoke the template method
perform of eat Activity in the list. Finaly, doPerform is cdled. Note that there are
different strategy classes for diff erent requests (perform , getState |, etc.).

We only describe the invocaion and delegation of the perform request on a MoveFile
Dispatcher in the picture above. Other requests, such as getState , canPerform , etc., maybe
using other Dispatchers, are handed the same way.

Here an overview of requests that are suppated by Activities:

\Program 4.4-2 Activity methods (PCCAbstractActivity)

public boolean canPerform(PCCMaterial arg);

public String getState(PCCMaterial arg);

public PCCMaterial perform(PCCSenderinfo si, PCCMaterial arg)
throws PCCPerformException;

public String getContextData(PCCMaterial arg, String scope, String key);

Note that the correspondng methods of Dispatchers have an additional parameter holding
dispatch dredives.

PCCActivitiesProvider provides methods that simplify the use of Dispatchers, if they
need nat be stored for later use. The foll owing code fragment is semanticaly equal to Program
4.4-1.



74 4 Using PCoC

\Program 4.4-3 Calli ng Dispatcher methods via PCCActiviti esProvider

public class AllServices extends PCCActivitiesProvider {

public void foo() {
PCCMaterial args = new PCCMaterial();
args.add("fromfile.txt");
args.add("tofile.txt");
/I Note: The methods below can also take an Object array for convenience:
// Object[] args {"fromfile.txt", "tofile.txt"};

String currentState = get St at e(
"|Application|AllServices|MoveFile",
args, PCCDirectives.first()); // directive first is the
/I default and can be omitted

/I canPerform is equal to getState(...) != disabledState()
boolean readyToPerform = canPer f or m(
"|Application|AllServices|MoveFile",
args, PCCDirectives.first());

Boolean result = (Boolean) per forn
"|Application|AllServices|MoveFile",
args, PCCDirectives.first());

String contextData = get Cont ext Dat a( // context data is set in doGetState
"|Application|AllServices|MoveFile",
args, "MoveFile", "selection”, PCCDirectives.first());

}

}
Using these convenience methods, you save to use explicit references to Dispatchers. For
example, instead of getDispatcher(...).perform(...) , we can smply write
perform(...)

4.4.2 State Handling of Dispatchers
SeeSedion4.3.7for an introduction in state handing for Activities.
The foll owing code fragment retrieves the aurrent state of an Activity via aDispatcher.

\Program 4.4-4 Getting the state of an Activity via a Dispatcher

public class AllServices extends PCCActivitiesProvider {

"~ public void foo() {
PCCDi spat cher di spatcher = get D spatcher("| Applicati on| get Sel ection");
String currentState = di spat cher .getState(args, PCCDirectives.first());
}
}

If the state of the Activity has been invalidated, a subsequent cdl of getState leadsto acdl of
methoddoGetState . If the state has not been invali dated, the caded state is used instea (the
most recent state).

4.4.3 Fetching Context Data From Dispatchers

SeeSedion4.3.8for an introduction into context data retrieval for Activities.



4.4 Using Dispatchers 75

Program 4.4-5 Fetching context data via a Dispatcher \

public class AllServices extends PCCActivitiesProvider {

"~ public void foo() {
PCCDi spat cher di spatcher = getDi spatcher("| Applicati on| get Sel ection");

String data = di spatcher. get ContextData(null, null, "selection",
PCCDirectives.first());
data = get ContextData("| Application|getSel ection”, null, null, "selection",

PCCDirectives.first());

In this example, we use Dispatchers to retrieve the context data entry with name “selection ”
of an associated Activity. The last two statements have the same dfed.

Program 4.4-6 Fetching contex data via a Dispatcher

final class PCCDispatcher extends PCCAbstractActivity
implements PCCActivityListener {

/** Returns context data of an activity/activities.
* @param args the arguments for the activities which provide context data
* @param scope reserved. The scope is mainly used by PCCTask.
* @param key the name of a data entry in the associated Activities.
* @param directives the directives for searching activities
* @return the retrieved context data.
*
public String getContextData(PCCMaterial args, String scope, String key,
PCCDirectives directives) {
if (directives.isBroadcast()) {
GetContextDataStrategy strat = new GetContextDataStrategy(args,
directives, scope, key);
findMatchingActivities(strat);
return (String) strat.perform();

else {
PCCActivity activity = findMatchingActivity(args, directives);
if (activity != null) {

return activity.getContextData(arg, scope, key);

}
return ";

}

}
}

This code fragment describes how a Dispatcher retrieves context data from associated Activities.

A sample configuration for retrieving context data from a Dispatcher for use with a context
sensitive menuitem is snown in Program 4.3-25.

4.5 Using Tasks

4.5.1 Overview

In the context of this thesis a Task is a complex Activity which is compased of condtions that
must be met for exeaution, a Dispatcher and its argument list, and/or alist of references to other
Tasks. For example, a simple Task could be the launching of a text editor comporent with a
subsequent loading of a text file and the positioning of the caet at the beginning of the
correspondng text view.

Tasks are used mainly for menu entries, toolbar buttons, scripts, etc.



76 4 Using PCoC

AbstractActivity *< \

fActivitySet: ActivitySet <<listener>>
fName: String

fCategory: String

fListeners: ArrayList
fResultType: Activitylnterface
fArgumentType: Activitylnterface

0.1

fActivity

Task ———————=> Dispatcher _— = Activit
fDispatcher P i Y
<<macro| fDispatcher: Dispatcher — [<<7 fActivity: Activity fDispatchers fProvider: ActivitiesProvider
entry>> fArguments: Material *> fDispatchers: ArrayList  |ez—
= fPreConditions: ArrayList [<<preconditions> *
«| fMacro: ArrayList P * A |
A * 0.1 <<arguments>>
L == Material = Object
fArguments *
fArgs: ArrayList <<String, Integer, Float, or Boolean>>
<<arguments>>

Figure 4.5-1 Task relationships

A Task has usudly a reference to a PCCDispatcher instance and a list of arguments
represented as instance of the PCCMaterial class The argument list can contain instances of
primitive types (String , Integer , Float , Boolean , ArrayList ) as well as of more
complex types. It can aso contain references to Dispatchers and Tasks which are performed and
replaced by their return value, when the mntainer Task is performed.

A Task ads as maao, if alist of references to other Tasks is provided via configuration. See
Sedion4.5.3

The list of precondtions can contain references to Dispatchers and Tasks, which must be
exeautable (canPerform() == true ) in order to be aleto perform the Task.

The foll owing sedion gives an introduction into these fegures. Sedion 5.7 has more detail s.

4.5.2 Simple Tasks
Program 4.5-1 shows a Task configurationin XML.

\Program 4.5-1 A Task definitionin aconfiguration

<RCTask>
< name>displaySelectionTask</name>
< dispatcher directives="First"> | Appl i cati on| di spl aySel ect i on</dispatcher>
<args>
<di spat cher >get Sel ecti on</ di spat cher >
<i nt eger >2</i nt eger >
</args>
<!-- Default state. Definitions can be overridden for concrete states>
<RCState name="Default">
<description>Display Selection<description>
<icon>displaySelectionlcon</icon>
</RCState>
<RCState name="Enabled">
<description>Display ' {get Sel ecti on: sel ect i on, <30} '<description>
</RCState>
<RCState nhame="Disabled">
</RCState>
<RCState hame="Active">
<description>Display ' {get Sel ecti on: sel ecti on, <30} '<description>
<checkMarked>true</checkMarked>
</RCState>
</RCTask>




4.5Using Tasks 77

Usually, Tasks are invoked through user interadion (seleding a menu entry, etc.) They can also
be used explicitly in source @de (seeProgram 4.5-2 and Program 4.5-3).

\Program 4.5-2 Performing aTask \

public class MyActivitiesProvider extends PCCServiceProvider {

public void foo() {
/I Get or create a Task; calls getActivitySet().getOrCreateTask(...);
PCCTask task = get Or CreateTask("di spl aySel ecti onTask");
if (task.canPerform()) { // if state != disabledState(), and all Dispatchers
task.perform(); /l are available and executable, and all arguments
/l are provided via the configuration, and the
/I types of the passed arguments match the dynamic
} /I type of the Dispatcher

The Task configuration associated with the given name (“displaySelectionTask ") isused
to initialize an instance of the class PCCTask (see Program 4.52). See Sedion 5.7 for
implementation detail s abou this class After the Task is creaed, we invoke it using perform

The method foo2 in the following code fragment is semanticdly equivalent to method foo of
Program 4.5-2.

\Program 4.5-3 Performing aTask \

public class MyActivitiesProvider extends PCCServiceProvider {

"~ public void foo2() {
performTask("displaySelectionTask");

The Task can aso be put into a queue using performTaskLater  , whereit is performed when
al other Tasks previously added to the same queue ae finished.

Program 4.5-4 Adding aTask definitionto amenu

<RCMenu>
<name>ExampleTasksMenu</name>
<mnemonic>E</mnemonic>
<shortDescription>ExampleTasks</shortDescription>
<items>

<item name="displaySelectionTask" type="task"/>

</items>

</RCMenu>

This example shows the same Task used with a menu item in the menu ExampleTasksMenu .
Seleding this menu item causes the framework to cdl
performTask("displaySelectionTask")



78 4 Using PCoC

displaySelectionTask: Task

fDispatcher = :Dispatcher
interface= void displaySelection(Selection, Integer)
fArguments= :Material

¢

:Material = :Integer
fArgs = {:Selection, :Integer’ value = 2
T ‘
—

V <<data sink>> —

displaySelection: Dispatcher

path = "|Application|displaySelection”
interface = void displaySelection(Selection,Integer)
fDispatchers = {...}

=| getSelection: Dispatcher ——=
<<data source>>

path = "|Application|getSelection”
interface = Selection getSelection()
fDispatchers = {...}

L=

Figure 4.5-2 Assembled Task
The Task of this example is associated with a Dispatcher displaySelection in Activity Set
“|Application ". This Dispatcher, and therefore aso the Task, expeds a Selection  and

an Integer  ohjed as arguments.

When the Task is performed, it first uses the Dispatcher getSelection to invoke the Activity
getSelection , Which returns a Selection objed. Then the Task uses the Dispatcher
displaySelection of Activity Set Application to request the invocaion of method
perform on an “acquired” Activity. It passes the previously retrieved seledion objed and an
Integer objed with value 2 as arguments. The arguments are passed via an instance of class
PCCMaterial by the framework.

Since the getSelection Dispatcher does not have a path in this example, the Dispatcher of
the Activity Set where the current Task objed has been creaed, is used. This means that a
comporent that creaes and performs a correspondng Task objed, and which provides a
getSelection Activity, would pass its own seledion objed to this Task. The target
comporent (the comporent providing the displaySelection Activity) is determined
through the aaquisition graph beginning with the Application Activity Set. A target
comporent, respedively its Activity Set is foundif it has diredly or indiredly been aayuired by
the Application Activity Set and provides the Activity displaySelection , and the
aqquisition branch to it has a higher priority than those of other Activity Sets possbly providing
this Activity.

If no Activities displaySelection and getSelection are creaed and aqquired, yet, the
whoe Task is not exeatable When the Dispatchers displaySelection and
getSelection are  avalable, respedively  correspondng  Activities, and
displaySelection has the state “Enabled”, but getSelection has the state “Disabled”,
then the Task displaySelectionTask is vaid, but canna be performed due to the
“Disabled” state of getSelection

A list of precondtions and the dispatcher diredive also regulate whether a Task can be
performed. A condtion can itself be a Task or a Dispatcher that must be available and
exeautable.



4.5Using Tasks 79

Program 4.5-5 Defining aTask via configuration \

<RCTask>
<name> displaySelectionTask</name>

<preconditions>
<dispatcher>|Application|foo</dispatcher>
<task>myCondition</task>
</preconditions>
</RCTask>

<RCTask>
<name>myCondition</name>

</RCTask>

In this cese, the Dispaicher foo and the Task myCondition  must be exeautable
(canPerform  must return true for ead condtion). Only if this is true, the Task
displaySelectionTask can be performed.

See 4so Sedion 5.7 for implementation cetail s of Tasks.

4.5.3 Macros

Tasks can be used as maaos. Therefore they provide a slot do which can contain a list of
references to other Task definitions or inlined Task definitions. When a maao-Task is
performed, the Tasks referenced in thislist are performed in the given arder.

f<initiaJize>> 4 taskl: Task
Configuration II " <<macro>> path = "|Applicationjtask1"
fooMacro: Task fDispatcher = :Dispatcher\

path ="|Application|fooMacro” fArguments = Material \

MMecro: Araytist={..} ‘} displayFilteredSelection; Dispatcher
! path = "|Application|displayFilteredSelection”
taskl :Task <<arguments>> interface = boolean displayFilteredSelection(
:Material Selection, String, Integer)
task? :Task

value = {:Dispatcher, 2,_"foo’
| S

, task3 :Task \
V \ .

task4 :Task
\

getSelection: Dispatcher :Integer :String
path = "|Application|getSelection” value =2 value = "foo"
k * interface = Selection doSomething(void)
task3: Task <<macro>> * task2: Task
— task4: Task 7 doSomething: Dispatcher
path = "|Application|task3" path = "|Application|task2" | —
fDispatcher = :Dispatcher path = "|Application|task4" fDispatcher = :Dispatcher =] path = "|Application|doSomething"
fArguments = :Material fMacro: ArrayList ={...} fArguments: Material = null interface = void doSomething(void)

Figure 4.5-3 Aseembling aTask

Figure 4.5-3 shows amaao fooMacro . The @nfiguration may look asin Program 4.5-6.

Thefirst two entriesin thedo-list, taskl andtask2 , areinlined Tasks. The other two, task3
andtask4 , arereferencesto ather Task definitions.

Note that definitions can be distributed over several fil es.

taskl is aswociated with a Dispatcher displayFilteredSelection in Activity Set
Application . A Dispatcher (getSelection ), a string (“foo ") and an integer (2) are
passed as aguments to taskl , respedively its aswociated  Dispatcher
displayFilteredSelection

task2 is associated with Dispatcher doSomething and has no arguments. Since no Activity
Set path is spedfied for doSomething , the Activity Set of the Task is used (Application ).
We asumethat task3 isnomaao, andtask4 isamaao-Task.



80 4 Using PCoC

\Program 4.5-6 Defining amacro (script)

<RCTask>
<name> fooMacro</name>
<do>
< RCTask>
<name> t askl</name>
<dispatcher directives="First">
| Appl i cation|displayFilteredSel ecti on</dispatcher>

<args>
<di spat cher >| Appl i cati on| get Sel ecti on</ di spat cher >
<string>foo</string>
<i nt eger >2</i nt eger >
</args>
</RCTask>
<RCTask>
<name> t ask2</name>
<dispatcher directives="First"> doSonet hi ng</dispatcher>
</RCTask>
<task> t ask3</task>
<task> t ask4</task>
</do>
</RCTask>
<RCTask>
<name> t ask3</name>
</RCTask>
<RCTask>
<name> t ask4</name>
<do>
</do>
</RCTask>

When fooMacro is performed, taskl isperformed first. On successul completion of taskl |,
task2 is performed, etc. If a Task of the maao canna be completed succesSully, the exeaution
of the maao is stopped per default. That is, the subsequent Tasks in the do-list are nat
performed.

Y ou can change this behavior by setting the stopOnError  -flag correspondngly.

\Program 4.5-7 Defining amacro (script)

<RCTask>
<name>fooMacro</name>
<st opOnErr or >0</ st opOnErr or >
<do>
<RCTask>
<name>taskl</name>

Note, that, when a maao-Task is invoked, all paths of referenced Dispatchers are temporarily
replaced by the paths of concrete Activities right before it is adually exeauted. This prevents
unexpeded behavior, if the aaquisition prioriti es (the ranking) of Activity Sets change during the
exeaution of the maao, for example, if a new comporent is loaded or removed during the
exeaution, a the ranking is changed explicitly.

Let us assume that the Activity Set with path “|Application|MyView " provides an Activity
displayFilteredSelection . The Activity Set isaaquired by Application and has the
highest ranking in the list of parents in Application . In this case, the Dispatcher path
“|Application|displayFilteredSelection " will be replacal by the path
“|Application|MyView|displayFilteredSelection ”



4.5Using Tasks 81

Here the relationships of some Dispatchersin the maao when it isinvoked:

Activity Set Activity Set

"|Application” "|Application|MyView"
<<Task>> =~ <<Task>> =~ <<Dispatcher>> |~ <<Dispatcher>> =~ <<Activity>>
fooMacro : taskl displayFilteredSelection =—| displayFilteredSelection displayFilteredSelection

N\

Figure 4.5-4 Replacing Dispatchers paths (1)

taskl usesthedisplayFilteredSelection Dispatcher of Activity Set Application
The following picture ill ustrates the relationships after repladng the Dispatcher paths before the
adual exeaution d fooMacro .

Activity Set Activity Set
"|Application” ~ "|Application|MyView"
| <<Task>> <<Task>> <<Dispatcher>> <<Dispatcher>> <<Activity>>
fooMacro :> taskl \\ displayFiItFéredSelection ?I displayFiItZredSeIection —— displayFiIteredt}éZIection
Figure 4.5-5 Replacing Dispatcher paths (2)
Now, taskl diredly uses the displayFilteredSelection Dispatcher of Activity Set
MyView.

The maao may then look as foll ows:

\Program 4.5-8 Defining amacro (script)

<RCTask>
<name> fooMacro</name>
<do>
< RCTask>
<name> t askl</name>
<dispatcher directives="First">
| Appl i cation| MyVi ew di spl ayFi | t eredSel ecti on</dispatcher>
<args>
<dispatcher>
| Application| Text Edi tor[ 0] | Text Edi t or Tool [ 0] | get Sel ecti on
</dispatcher>
<string>foo</string>

Note that the maao is only changed temporarily until the exeaution has ended. The change has
noimpad onthe original configuration.

How a Dispatcher determines its currently associated Activity or Activities, is described in 5.6.2
Normally, a Dispatcher gathers aaquired Activities (depending on the spedfied diredives) and
invokes methods on them, but in this case only their paths are determined and finally used as
Dispatcher paths in the maao. So, when the maao is adually exeauted, the same Dispatchers are
used, even if the ranking has changed.

For example, if the Activity Set “|Application| My Vi ew2|displayFilteredSelection ”
gets the highest priority in “|Application " during the exeaution of the maao, the
displayFilteredSelection Dispatcher will still be used from Activity Set
“|Application| My Vi ew’. Seebelow.



82 4 Using PCoC

Activity Set Activity Set
"|Application” "|Application|MyView"
‘ <<Task>> |~ <<Task>> <<Dispatcher>> 771 <<Dispatcher>> [~ <<Activity>>
fooMacro taskl \ displayFilteredSelection )/ 7| displayFilteredSelection displayFilteredSelection
Activity Set
"|Application|MyView2"
<<Dispatcher>> |~ <<Activity>>
displayFilteredSelection displayFilteredSelection

Figure 4.5-6 Replacing Dispatcher paths (3)

4.6 Delegation using PCoC
Asweleanedin Sedion2.2.4 delegationis adispatch medanism for objed compaosition.

The overhead for managing (classbased) method dispatch for implementation inheritance is
relatively low. The concept is very mature. However, objed composition has some advantages
compared to implementation inheritance We get the flexibility to compose obed sets at
runtime, which increases the level of reusability of single objeds, and which adds more
dynamics to a system. However, objed compasition usually does not suppat (objed-based)
delegation, but only forwarding. In order to acamplish delegation aaoss different objeds, we
can make the forwarding medhanism stronger. That is what PCoC tries to achieve—a delegation
medhanism (using Dispatchers) that passes information about the Activity Set (the context) in
which an Activity isrequested, as sparate parameter to the Activity.

Program 4.6-1 shows an implementation of a classC as PCoC Service Provider. We define class
C and the Activities M1 and M3 M1 cdls M2 which may be defined in another provider. M3
exeautes me mde. Note that the adual implementation d doPerform isnat relevant here.

\Program 4.6-1 Delegation wsing PCoC (1) ‘

public class C extends PCCsServiceProvider  {
public C() {
activate(); // creates an Activity Set with the class name
Il ("C") as name. Use setType("<typename>") for setting another
} /I name, or use constructor of the base class:
super("<typename>")

protected void setupActivitySet() {
super.setupActivitySet();
addActivity(new MLActivity());
addActivity(new MBActivity());

}

class MLAct i vi t y extends PCCSlngIeActMty{
M1Activity() { super("M1", "Methods", "™, "); }
protected PCCMaterial doPerform(PCCSenderInfo si, PCCMaterial args) {
// do somethlng
/1 invoke M2 in the original context
si.get Receiver().perform("M", null, PCCDirectives.first());

return null;
}
}
class MBAct i vi ty extends PCCSlngIeActlvity{
M3Activity() { super("M3", "Methods", "', "); }

protected PCCMaterial doPerform(PCCSenderlnfo si, PCCMaterial args) {
.. /1 do sonething
return null;
}
}
}




4.6 Delegation using PCoC 83

Now that we have Activities Provider C with Activities M1 and M3 we also nead an Activities
Provider CBwhich defines the Activity M2

\Program 4.6-2 Delegation wsing PCoC (2) \

public class CB extends PCCServiceProvider {
public CB() {
activate(); // creates an Activity Set (Activity Set) with the class name
/I ("CB") as name. Use setType("<typename>") for setting another
/l name, or use constructor of the base class: super("<typename>")

}
protected void setupActivitySet() {
super.setupActivitySet();
addActivity(new M2Activity());
}

class M2Activity extends PCCSingleActivity {
M2Activity() { super("M2", "Methods", "', "); }
protected PCCMaterial doPerform(PCCSenderinfo si, PCCMaterial args) {
/I do something
/1 invoke M3 in the original context
si.get Receiver().perform("M3", null, PCCDirectives.first());
return null;
}
}
}

Now the Activity M2 is also defined. It invokes an Activity M3 in the context of the origind
recever—the Activity Set where M2was invoked (si.getReceiver() ).

The following client code credes a delegation relationship by conneding the Activities Providers
from abowve.

Program 4.6-3 Delegation tsing PCoC (client code) |

/** create components */
PCCActivitiesProvider ¢ = new C();
PCCActivitiesProvider cb = new CB();

/** create composite context */

PCCActivitySet context = PCCRegistry.getOrCreateActivitySet("|CombinedSet");
context. acquire(c.getActivitySet());

context.acquire(cb.getActivitySet());

/** perform (invoke) the operation M1 */
context.perform"M", null, PCCDirectives.first());

We instantiate two Activities Providers, ¢ and cb. Then, we creae an Activity Set
“CombinedSet ” that aaquires from ¢ and cb, respedively their Activity Sets. CombinedSet
represents a common “self” (we say, a common context) for the acquired Activity Sets. The
perform methodof Activity Set context isused to invoke Activity M1, which isin this case
provided by c. We say, the request for exeauting Activity M1is delegated to ¢. M1invokes M2
(as shown in Program 4.6-1). This request will be delegated to cb . M2 subsequently invokes M3
on the Activity Set context where the first Activity (M1) in the delegation sequence was
invoked (seeProgram 4.6-2). context  was the origina receaver of the M1 request, and then of
the M2request.

If ¢ diredly aoquires from cb, we need no separate Activity Set to spedfy a common context. In
thiscase, ¢, or more predsely its Activity Set, provides the common context for ¢ andcb.



84 4 Using PCoC

\Program 4.6-4 Delegation wsing PCoC (client code)

PCCActivitiesProvider ¢ = new C();
PCCActivitiesProvider cb = new CB();

c.add(ch); // add child; or call c.acquire(cb) directly without adding cb as child
c.perform("M1", null, PCCDirectives.first());

In this example, cb is added as element to container ¢ (i.e., the Activity Set path of cb is
contained in that of ¢), andisaso aayuired by c. If cb needs nat be an element of ¢, we can also
diredly cdl c.acquire(cb) . In bah cases, ¢ becomes the delegation child of cb.

We invoke Activity M1by using Activities Provider c. The delegation sequenceisthe sameasin
Program 4.6-3.

We can use the same medanism for simple forwarding, simply by not using the sender info
parameter. Instead, we can use the current Activity Set (the current owner of the Activity) within
an Activity. Compare the foll owing code fragment to Program 4.6-2.

Program 4.6-5 Delegation tsing PCoC (3) |

public class CB extends PCCServiceProvider {

class M2Activity extends PCCSlngIeActmty{
M2Activity() { super("M2", "Methods",
protected PCCMaterlaI doPerform(PCCSenderlnfo si, PCCMaterial args) {
. /l do something
/1 invoke M3 in the sane Activity Set; corresponds to
/1 getActivitySet().perforn("M", null, PCCDirectives.first())
perfornm("M3", null, PCCDirectives.first());
return null;
}
}

}

In this case, the exeaution of Activity M3 by Activity M2will fail, since M3is neither provided,
nor aqquired by Activity Set CB (the current owner of Activity M2. However, we can
neverthelessrequest Activiti es using the registry.

Program 4.6-6 Delegation using PCoC (4)
public class CB extends PCCServiceProvider {

mclass M2Activity extends PCCSingleActivity {
M2Activity() {
super("M2", "Methods", ™", ™);

protected PCCMaterial doPerform(PCCSenderinfo si, PCCMaterial args) {
/l do somethlng
/1 invoke M3 in the given Activity Set
PCCRegi stry. get ActivitySet ("|CB").perform"M3", null,
PCCDi rectives.first());
return null;
}
}
}




4.6 Delegation using PCoC 85

Activities can be provided by one Activity Set, but added to ancther.

\Program 4.6-7 Delegation wsing PCoC (5)

public class CB extends PCCServiceProvider {
public CB() {
activate(); // creates an Activity Set (Activity Set) with the class hame
/I ("CB") as name. Use setType("<typename>") for setting another
/l name, or use constructor of the base class:
super("<typename>")

protected void setupActivitySet() {
super.setupActivitySet();
addActivity("C', new M2Activity()); // add Activity to Activity Set "C', but
/1 its provider is the current ("CB")
addActivity(new M4Activity()); // add Activity to the current Activity Set

class M2Activity extends PCCSingleActivity {

M2Activity() { super( "M2", "Methods", ", "); }

protected PCCMaterial doPerform(PCCSenderinfo si, PCCMaterial args) {
[/l do something

} }
class M4Activity extends PCCSingIeActivity {
M2Activity() { super("M4", "Methods", "™, "); }

protected PCCMaterial doPerform(PCCSenderInfo si, PCCMaterial args) {
[/l do something
}

}
}

In this case, the Activity M2is added to Activity Set C (the Activity Set asociated with Activities
Provider C). However, it will be performed in CB. We say, we enhance C by an Activity of
Activities Provider CB This is useful, for example, if we do not have accessto the source code
of C. SeeProgram 4.3-12for adescription d the addActivity method.

Program 4.6-8 Delegation tsing PCoC (client code) |

[** create components */
PCCActivitiesProvider ¢ = new C();
PCCActivitiesProvider cb = new CB();

[** perform (invoke) the operation M1 */
c.perform("M", null, PCCDirectives.first());

Since Activity M2 is drealy added to C, is not necessary that C aqquires CB Compare to
Program 4.6-3 and Program 4.6-4. The advantage of this approad is, as oppacsed to aqquisition,
that M2 has access to both Activity Sets—the one where it has been added, and that of its
provider (which may implement other Activities or methods necessary for the exeaution d M2).

\Program 4.6-9 Delegation wsing PCoC (5) ‘
public class CB extends PCCServiceProvider {

class M2Activity extends PCCSingleActivity {
M2Activity() { super( "M2", "Methods", ", "); }
protected PCCMaterial doPerform(PCCSenderinfo si, PCCMaterial args) {
/1 invoke M3 in the Activity Set,where this Activity has been added ("C")
getActivitySet().perform("M3", null, PCCDirectives.first());
/1 invoke M4 in the Activities Provider, respectively Activity Set,
/1l where this Activity has been created ("CB")
get Provider().perform("M4", null, PCCDirectives.first());
return null;
}
}

}




86 4 Using PCoC

Note that, aslong as there is areferenceto asingle Activities Provider, al related objeds such as
Activities, Dispatchers, (acquired) Activity Sets, etc., are prevented from being garbage
colleded. In order to clean up and remove an Activities Provider, terminate  has to be cdled.
Its Activity Set will be urregistered from the PCoC registry and released for later cleanup
together with al related objeds.

\Program 4.6-10 Cleaning upActivities Providers ‘

cb. terminate(); // terminates cb, removes its Activities, and discards its
/I Dispatchers from acquiring Activity Sets (in this case,
/[ that of ¢)

c.terminate(); // terminates c

Delegation is discussed in more detail in [SZYPE98] on Pages 119f. Other related pages are
155 (Events and messages), 159f (Very late binding: dispatch interfaces and meta-
programming), and 324ff (On the horizon). [GRIFFO8] also describes common isdles of
delegation onPages 254f (Event chanrels), and 424f (Delegation).

Apart from dynamic and late objed composition, the availability of delegation is aso a
requirement of prototypicd programming languages. Read more abou delegation in prototypicd
systemsin [LIEBERSE].



5 Detail ed Concepts and Implementation 87

5 Detailed Concepts and Implementation

This chapter explains the design and most essentia concepts of PCoC.

5.1 PCoC-Related Packages and Responsibilities
This sedion describes dependencies between PCoC and other padkages, as well as the
responsihiliti es of these padkages.

The padkages are not described in detail, and there may be other required feaures that have not
yet been considered. However, this sedion may help to get an overview of how PCoC is
structured.

We have dhosen the foll owing set of padkagesto buld a PCoC application:

PCoC Other Services
Daa Services
Fame Maneger
NI
Tools
Threading
Sarvice Providers _
XML reader/writer
Corfiguration Application interfaces
Widgets
Tables
) 2]
o)
Trees % % =
= > o
Graphe

Figure5.1-1 Overall Architedure

PCoC includes Tods, Service Providers, a configuration library (reading and writing data
structures used to customize Activities Providers and a whale applicaion), and a frame manager
resporsible for menu and toadlbar setup, for window management, and for composing, starting up
(initi ali ze), and terminating Activities Providers.

Widget libraries include view classs for tables, trees, and graphs, and proper data models and
painters.

Other services are data services (general data models and accessoperations), a threading model,
and comporent and appli cation interfaces.

Figure 5.1-2 ill ustrates how these padkages are related to ead other. There may be changes in
detail, e.g. the padkage structure, implementation detail s, etc. This does not have an impad on

the overall design.



88 5 Detail ed Concepts and Implementation

1
. clients can derive
FrameManager client component from a StdTool of
packagg: pcoc.fm the StdWidgets package,
Classes: FMFramemanager, [/ \ . | or directly from a class of
FMWln_dow, ----------------- the PCoC package:
FMRegion, PCCSimpleTool for GUI
etc. components, or
PCCServiceProvider for
<<uses>> I <<uses>> <<uses>> non-GUI components
<<uses>> i
— V (service components)
CommandManager J_|
package: pcoc.cm
classes: ZI%CMenuMaker, StdWidgets / StdTools
<<uses>> Tables
——1 W4
PCoC core
package: pcoc.core ]
classes: PCCAbstractActivity,
<<uses>>| <<uses>> PCCActivity, Graphs
PCCDispatcherimpl, |~ <<yses>>
PCCDispatcher,
PCCActivitySet, —
PCCActivitiesProvider,
PCCRegistry, Editor
etc.
<<uses>> <<uses>>

A v / /

Configuration
package: pcoc.rescfg
classes: ResConfigMap,
ResldMap,
ete.

Figure 5.1-2 PCoC andrelated packages

Padkages and classes, as shown in Figure 5.1-2, have only dependencies in one diredion. This
layered design with only one-way dependencies makes it easy to make modificaions
(extensions) to padkages, or to replacethem by other implementations withou having an impad
onthe padages they use.

5.1.1 Configuration

The configuration, respedively the Configuration Manager, is used to customize the look and
fed of an application. This includes layout definitions for the whole application and its Todls,
definitions for menus and toolbars and their assciated Tasks, etc.

A central XML-based configuration file is used as root configuration, and can import others.
Preferably ead Activities Provider has its own configuration file. The configuration (all
configuration fil es of an application) can be reloaded at runtime. Definitions are loaded from the
configuration files into a hash map (ResConfigMap ) where they can be looked up by name.
Ancther map (ResldMap ) alows the lookupwith integer keys. For example, menu items may
be aswociated with integer keysinsteal of strings.

5.1.2 Frame Manager

The Frame Manager is resporsible for the window credion, layout management (positioning of
windows, cascaded or tiled layout, storing and rel oading layout information), region management
(repainting of invalidated regions), focus management (set focus and caet acording to user
inpu), status line management (switching displayed information on focus changes), drag and
drop management.



5.1 PCoC-Related Padkages and Resporsibiliti es 89

5.1.3 Command Manager

The command manager is resporsible for menu and todbar management (setting up and
updating), acceerator keys handing, and command management (handing do, undo, and redo
operations).

5.1.4 PCoC Core

The PCoC core padkage contains almost all classes relevant for this thesis. Thisincludes Activity
classes (abstrad base classfor al kinds of Activities, and base classes for deriving in client
code), Dispatcher and Dispatcherlmpl (the proxy and its implementation), Task and TaskQueue
(aqueue for the asynchronous exeaution of Tasks), Materia (argument container clasg, Activity
Set and Activity Set Registry, and the Activities Provider class

5.1.5 Simple and Combined Tools

The base classes for client comporents, PCCSimpleTool , and PCCServiceProvider can
be foundin the PCoC roat padkage (pcoc ), as well as the PCCCombinedTool class (the
generic container for Simple Toadls).

5.1.6 Standard Widgets / Standard Tools

Sandad Widgets are GUI elements (e.g. edit views, table views, graph views, etc.) that are
nealed to make templates for most common Tools—so-cdled Sandad Tods. A Sandad Tod
isa Simple Tod containing a table, treg graph, or editor. Such a Todl, respedively its template
implementation (base dasses), is aseembled from a data model, aview, painters, etc.

The main purpose of Standard Widgets and Standard Todls is to provide uniform and basic
implementations of common Todls. This reduces implementation and maintenance time and
effort for this kind of comporent. A comporent developer can concentrate on implementing the
adual functiondity of his comporent, insteal of credaing solutions for common issues from
scratch.

5.1.7 Remarks

We have chosen this architedure, because () it allows clea separation of responrsibiliti es and (b)
dependencies are uni-diredional. This moduar (layered) architedure enables us to make
modifications to padkages, or completely replacethem by others, withou having an impad on
padkages they use. SeeFigure 5.1-1. This is the software design recommended in the technicd
literature.

Higher layers use those below and “pull” information from them. Padkages on a lower layer may
provide extensions for higher layer padkages, for example, abstrad base classs, template
methods, listener interfaces, etc. This can ke the dependencies clea and uni-diredional and
keeps the maintenance dfort low.

5.2 Activities Provider

Activities Providers are comporents based on the PCoC framework. Figure 5.2-1 ill ustrates how
al PCoC classes are related to eadt other, and describes their meanings. The elements shown in
grey are thase implemented by componrent developers. Others are creaed automaticdly, such as
Dispatchers, or generated depending onthe cnfiguration, such as Tasks.



5 Detail ed Concepts and Implementation

90

] (ven) Lonenbiuco 6 Spe| oSBpEkIq
poLay A <<ppow EnbL 10 WD[EIOAUIRINUBK/G 8L UISSHAIDY BUD 0
pemouonsedunoe- | || yoney pes s S raoduoap oresdo ok Bup o UDIECOLIaL] ENEBI G5 UED 1| BPNOLISS DY
0 E EEp> uluonuigp ussfea|y BPIOUS INDY L S} Jopoyrw ‘enpinAgssod
SLePUWVOSH - A Wwoy s B3 : S S| AJlersn 1 pRwoLBd S AYADY L. J|
2eusdul oy semam | T0 * Apotes ‘S0INES OB ‘SAeIp fupewo) pue
N : noud Bs APy a0 Bupedp
170 1 | Uupssay) ulapywile AMAIDY 9p.oUm
©0}SBPEAsIg Auau J0auo A pepewoy
<<LO[RIERUD> sfemp ae sganbei Uo1EcoAUl AYAIDY LS
LB BN oo e us <€ [001BuIUOD <<SOINBS>> BPNOIPIINES “(.Adop [ 103 1p3 |uo 1782 1 |ddy | ., W Jo 4 1ad
gm%ﬂtc e | H 0 (,Adop |uo 11e2 1 |ddy |, JuJo Jiad
puydefe-voeresod | 4, ‘‘‘‘‘ =T N , ‘[0 ‘B e AU AfeIp J|
ebure) plesnnpyen [T .
A s BupKoX <> 101 1p3 |uo 1189 | |ddy | BS AMipy 0 Adop
mosmm mw_%w W % _\._A,_wm Aoy a|duexe Jo—KInipysp.oice o) sanbe)
’ o * BUELID apsapedsppue uo | 10 | [ddy BS AInpy
I ojHuop o Adop |uo 1 e | |ddy |
BLppdsie Ul pnov Adopasym
m\m@%rfwﬁm BpiN0od SIAPY ‘(o AdaD ,, selw Jo } 1ad sduspue
SUELO0 1| “LELLLOIA SINPYSFUS P WA 10} pEsNaq U 1|
" s p Apepuedpul T T = S1EenGe pesapEdsq
g d P UoRRUIGUCD e P AUBSELICD ILNSNOULDLOY
“““““““““““ T co_m:m_too.m< 18uBp esI LYW SBe] Basn Siiuexe 104
Bpnod Bpnod
’ “Bpekiq
(Snedoxd ssonass)) J0>2] e Bupjonul Ag AYAIDY U2 D LD EoonU
<IOIRNERUD> <<torenbiuco Leuoduoo>> ; a) 5anbe) Ueo )] 'ssssep SaAIowe 10 Bul
i LD NADY DD BPIO- SINPY Le
oL - <LOENERIP> BPIOIEONES | |\
T * :
Ao nkoe T Anmoyinp Anmoyepu
JLUO ‘uons
e Potbnt S ANy < | Aoy e n 5
Bupnoid SEPNOH S INPY ¥ : :
fu iichoo Apsoo| o} pesn > ’ Mm%ﬁmm | pa |gqes o pa |qeuq Ba
N SONESALELIY) ¥ ox T I I sihmmpyie | ¢ O WINEB3.0H] PIEI] TRV EETT) SREL =
A BLD] UD lpIyMeEEesSeH Sepse PUe BOULNUBLIBUM SUBLU
<einme> foeol g Esfpe| | ALAPEGD T peLELB Ul LR L2 AOBUSIS NM LA P S
; . Jojpesn swnunI e Anmpy
i pefueLpaq Ueo pUe puLUBEP o
Awowd \byay | i BLOECSH !
.%Ecw_ys_ucﬂ;w_ﬂm@ (€pco Esn 1)) - <UOENERIP> * s * w_ummwm@ﬂm%
WBuNBI “BS AIADY Aeodie) o (98 A (omqusp) j A OB INAPY J0 BALNU
Buunide au) 10 51| PPBP.O SUEL ‘S [00} 10)) snmeipbusn | ¥ T * fupemo) [ S— : KeIGE bl
alpuisced B1ly01pEAaLIS| efeop 18KERd Aunpy " sprter mziuoud N MHBLESIES
¥ PesS004S1 BS AIAIDY L. §| mRIrtDe 0 EO| U000 AJAIDY o
 seppdsiaAgsEntel P o} T oo * 1 sm .
?Bﬁ%&;%ﬂmﬂw_v_ﬂm <diOENERIB> 'l = = KuAoypedde
S Ainipy buunbe ayy * N i
JPSBPEXIQ0}SEPREIA I
SHPpLE 51| PEpD Le 0} T ¥ b
5 Ainipy pinkoeay spe (sanuedod ‘ssonasay) tonenbipico <<xlips>>00au LofENbIL
: < B UISLO JUIEP
A AACO_WSO 1J0o>> 0 @._mgzww_mrcum
STLEW PRSP} 10} pepaD A|prens|
UO[EBILI0 BN A [EDLBLED Anrovpemsy 2028111 B
J0EHO0E0.NCS ULIM 8N Apssodeyim
o Ao Yyim el eo) Bidpe
Awipy (idus) epsoduo pue o} Axoide
038 fuE SoUoAPUASE
bwdco._tL\m
(1wBUOdWO0) P10 I SPNAIDY

Figure 5.2-1 Activities Provider Architedure

explanatory. Please read the notes. Note that, when an Activity is

creded and added to an Activity Set, the Activity Set automaticdly creaes and adds a

correspondng Dispatcher.

The picture shoud be self



5.3 Containment Hierarchy 91

5.3 Containment Hierarchy

Activities Providers (PCoC comporents), respedively their Activity Sets can be organized in a
logica containment hierarchy, like a padage hierarchy in Java or a diredory treein file system.
Containment hierarchies may depend (partially) onthe hierarchy of GUI elements.

<<is container of>>

*

Activities Provider

i 1

Figure 5.3-1 Containment hierarchy

Figure 5.3-1 shows the containment relationship of Activities Providers. An Activities Provider
can be the container of no, ore, or many others.

The nodes in a containment hierarchy are distinguished by path. A path is, for example, used to
lookup Activity Sets in the PCoC registry, and to lookup Activities, Dispatchers, or Tasks via
Activity Sets. Paths are used case insensitively in PCoC.

We use “|" as path separator. Paths garting with charader “|” are dsolute paths.

Program5.3-1 Using an alsolute Activity Set path

PCCRegistry.getActivitySet("|Application™).perform( "| Appl i cati on| Copy", null,
PCCDirectives.first())

In this case, we invoke the Dispatcher Copy in the Activity Set associated with path
“|Application ",

If the first charader is nat “|’, the path is considered relative to the path of the current Activity
Set. For example, cdling the method perform  with path “TextEditor|Copy " in an
Activity Set “|Application " isresolved to “|Application| TextEditor|Copy

\Program 5.3-2 Using arelative Activity Set path

PCCRegistry.getActivitySet("|Application™).perform( "Text Edi t or [ 0] | Copy", null,
PCCDirectives.first())

5.3.1 Sample Hierarchy

A containment hierarchy is defined by the paths of Activities Providers, respedively their
Activity Sets. Compare thisto adiredory treein afil e system.

Figure 5.3-2 depicts a redistic containment hierarchy for an IDE applicaion. The Activity Sets
asciated with the given Activities Providers are organized acordingly. See Figure 3.4-2 and
Figure 3.4-3 for screen shats.



92 5 Detail ed Concepts and Implementation

lication
path = "|Application”
<<is container of>> +oontainer +oontainer <<is container of>>
+element <<is container of>> +element
ProjectManager: CombinedTool :FleSystemService TextEditor: CombinedTool
path = "|Application|ProjectManager[0]" path = "|Application|FileSystemService" path = "|Application| TextEditor{0]"
+container +container +container
<<is container of>> <<is container of>> <<is container of>>
+element +element +element
:ProjectBrowserTool :FileSelectionTool lexiEdtorTool
path = "|Application|ProjectManager[0]| = |App||caI|on|PrOJectManager[O]| Tgith—dIJgg%g?tl]On|Te)¢EdItOI'[0]|
ProjectBrowserTool[0]" F|IeSeIect|onToo [o]"

Figure 5.3-2 A possble mntainment hierarchy

In our example, a text editor comporent (a classderived from PCCSimpleTool , respedively
its instance) has the path “|Application|TextEditor[0]| TextEditorTool[0] "ot
isa dild o the Combined Tod TextEditor[0]

Service Provider FileSystemService is child of the root Service Provider Application :
therefore it has the path “|Application|FileSystemService ",

Note that indexes (for example, in TextEditorTool[O] ) are automaticdly creaed by the
framework in order to get unique names for the Activity Sets of multiple instances of Activities
Providers. Activities Providers have amethodgetPath  which returns their current path.

5.3.2 Modifying a Containment Hierarchy

Activities Providers can be added manualy to the containment hierarchy by spedfying the
container objed or path.

\Program 5.3-3 Methods for setting acontainer ‘

void setContainer(PCCActivitiesProvider container);// from PCCActivitiesProvider
void setContainer(PCCActivitySet container); /I from PCCActivitySet
void setContainer(String container); /I from PCCActivitiesProvider

/l and PCCActivitySet

The foll owing code fragment ill ustrates the use of these methodk:

Program 5.3-4 Setting acontainer

PCCActivitiesProvider a = new PCCActivitiesProvider("A");
PCCActivitiesProvider b = new PCCActivitiesProvider("B");
b.setContainer(a); // is implicitly called when using a.add(b)

In this case, the Activities Provider b becomes the container of a. The containment relation can
also be creded via the correspondng Activity Sets. This is useful, if we only have the current
paths of the Activities Providers, or some Activities Providers are not instantiated yet.



5.3 Containment Hierarchy 93

\Program 5.3-5 Setting acontainer via pahs \

PCCActivitySet a = PCCRegistry.getActivitySet("|A");
PCCActivitiesProvider b = new PCCActivitiesProvider("B");

b.activate(); // do some initialization

b.getActivitySet().setContainer(a); // register "B" as element of "A"
b.setContainer("|A"); /I this statement has the same effect as that above

Now b hasthe path “|A|B ”. Next, we can retrieve the Activities Provider b through the registry:

\Program 5.3-6 Retrieving anActivities Provider via the registry \

PCCActivitiesProvider b = PCCRegistry.getActivitySet("|A|B").getProvider();
/I or simpler:
PCCActivitiesProvider b = PCCRegistry.getActivitiesProvider("|A|B");

Now, let ustake alook at an implementation d asimple Todl.

‘ Program 5.3-7 SmpleTool2.java (1)

package example2;
import pcoc.tools.*;

import javax. swing.*;

/** A Tool providing and displaying a list of strings. */

public class Si nmpl eTool 2 extends  PCCSi npl eTool {
JList fList;

[** The constructor. Adds a service provider as element. */

public SimpleTool2() {
PCCActi vi ti esProvi der chil dService = new Sanpl eServi ceProvi der();
add(chil dService); /I calls childService.setContainer(this)

Program 5.3-7 shows how a Simple Tod credes and adds a Service Provider as child. The Tod's
visua representation and its Activity Set may be defined as foll ows:

\Program 5.3-8 SmpleTool2.java (2) \

[** Set up the Tool's GUI
* @return A JComponent representing the GUI of this Tool
*/
public JComponent makePresentation() {
String [] data = { "Hello World!" };
fList = new JList(data);
return new JScrollPane(fList);

}

[** Set up the Tool's Activity Set */
protected void setupActivitySet() {
super.setupActivitySet();

}

Since our Tod has no container in this case, it gets the Activity Set path “|SimpleTool2 .
When this Tod is added to the GUI hierarchy, it may get, depending on the configuration (see
below), for example, the path

“|Application|CombinedTool2[0]|SimpleTool2[0]



94 5 Detail ed Concepts and Implementation

\Program 5.3-9 Comporent configuration

<?xml version = "1.0" encoding = "UTF-8"?>

<ResConfig name="Examplel" xsi:schemaLocation="www.windriver.com/ResConfig
file:///[pwe/rome/config/tools/ResConfig.xsd"

xmlns="www.windriver.com/ResConfig"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance">

<RCSi npl eTool >
<name>Si npl eTool 2</ name>
<cl assNanme>exanpl e2. Si npl eTool 2</ cl assNane>
</ RCSi npl eTool >
<RCConbi nedTool >
<name>Conbi nedTool 2</ nane>
<windowTitle><dockedTitle>My Combined Tool</dockedTitle></windowTitle>
<part> <si npl eTool Nane>Si npl eTool 2</ si npl eTool Name></part>
</ RCConbi nedTool >

The foll owing code fragment describes the class SampleServiceProvider
with the Activity Set name “SampleService ", that is, it can be retrieved
through the Activity Set registry.

. Itisinitialized
with this name

\Program 5.3-10 SampleServiceProvider.java

package example3;

import pcoc.*;
import javax.swing.*;

/** A Service Provider providing specific services (not implemented here)
*/
public class SampleServiceProvider extends PCCServiceProvider {
/** The constructor setting the Activities Provider associated with path
*"|Application|AService" as parent.
public SampleServiceProvider() {
super (" Sanpl eServi ce");
activate();

}

The Service Provider added as childService in Program 5.3-7 is then accessble with path

“|Application|CombinedTool2[0]|SimpleTool2[0]|SampleService

The container and thus the path of the correspondng Activity Set can be changed dynamicadly.

Seebelow:

Program 5.3-11 SampleServiceProvider java

package example3;

import pcoc.*;
import javax.swing.*;

/** A Service Provider providing specific services (not implemented here)
*/
public class SampleServiceProvider extends PCCServiceProvider {

public void foo() {
PCCActi vi ti esProvi der contai ner Conmponent =
PCCRegi stry. get ActivitiesProvider("|Application|All Services");
cont ai ner Conponent . add( t hi s); // calls this.setContainer(containerComponent)




5.3 Containment Hierarchy 95

The ServiceProvider can then be looked up viathe PCoC registry:

\Program 5.3-12 Retrieving a ®rvice Provider via the registry

PCCsServiceProvider sampleService;
sampleService = (PCCServiceProvider)
PCCRegi stry. get Acti vitiesProvider(
"| Appl i cation| Al | Servi ces| Sanpl eServi ce");
sampleService = (PCCServiceProvider)
PCCRegi stry. get Acti vi tySet (
"| Appl i cation| Al | Servi ces| Sanpl eServi ce"). get Provider();

Both statements have the same dfed.

5.4 Acquisition: Dynamic Component Inheritance

This sedion roughly describes the environmental aaquisition concept, and provides detailed
insight into the PCoC aaquisition concept.

5.4.1 Overview

Acquisition is a delegation medianism that lets objeds and componrents aqquire functionality
from others at runtime. As oppased to class inheritance attributes and operations can be
distributed over various objeds or comporents, independent of the dasshierarchy.

There ae two forms of aqquisition:

» Environmental aqquisition: A mechanism that all ows an objed to obtain a requested fedure
from its environment (its parents in a containment hierarchy), if neither its classnor its base
class provides the fedure. There are two styles of environmental aaquisition, implicit
(automatic) and explicit aayuisition.

» Dired aqquisition: A medanism that allows objeds or comporents to aajuire (dynamicaly
“inherit”) fedures from others independent of the class hierarchy. The difference to
environmental aqquisition is that dired aqquisition is independent of the containment
hierarchy of an ojed.

Both forms of aaquisition are neaded in cetain cases. In the context of this thesis, the term
acquisitionrefersto either dired or environmental acquisition, depending onthe ntext.

5.4.2 Environmental Acquisition

Environmental aqquisitionisimportant where the spedafic environment of objeds or comporents
provides attributes or a context that has, or can have, an impad on these objeds and comporents.

Think of a diredory tree of Web pages. The Web pages may inherit attributes from their parent
diredories, if these attributes are nat foundin the same diredory. In this case, parent diredories
provide the environment for the child diredories and contained Web pages. Thisisthe main idea
of Zope, aweb server and content management system (see[ACQU98)).

See 4s0 Sedion 6.1 for more detail s.

5.4.3 Direct Acquisition

In contrast to environmental aaquisition, dired aaquisition is usualy independent of the
containment hierarchy. However, in a containment hierarchy, containers may nevertheless
aqquire functionality from their children, or, like with environmental aayuisition, children may
aquire from their containers.



96 5 Detail ed Concepts and Implementation

5.4.3.1 Acquisition in PCoC
In an aqquisition relationship between Activities Providers, respedively their Activity Sets, the
aqquiring comporent has areferenceto its acquired comporents, and viceversa.
<<aoouire>>
*

Adiivities Provider
ST

Figure 5.4-1 Acquisition

See 4so Figure 5.4-3 for an example of an aqquisition graph.

Acquisition relationships are managed by Activity Sets and Dispatchers. An Activity Set has a
dictionary of Dispatchers and an ordered list of aaquired Activity Sets. A Dispatcher has a
reference to an Activity and/or Dispatchers of acquired Activity Sets. Seeaso Sedions 2.3 and
later.

The following picture ill ustrates two Activity Sets, their Dispatchers, and Activities, for the
following aaquisitiorvdiscard algorithm.

Activity Set A/ Activities Provider A
Activities
<<dispatck;cm) seeaire>, - Adtivity Set B/ Adtivities Provider B
Dispatchers / 3 =—>  Dispaichers _ Activities
MoveFile/A <<acquire>>, <<discard>>, <<dispatch>> v >. Y <<dispatch>>
= =
AN

Figure 5.4-2 Acquire/ discard Dispatchers

When an Activity is added or removed, or ancther Activity Set is aajuired, the Dispatcher
dictionary and the list of acquired Activity Sets are brought up to date acordingly:

* When A aaquires another Activities Provider B, respedively its Activity Set, add areference
to B to the list of acquired Activity Setsin A. Add areferenceto A to thelist of listenersin
B.

* When an Activity MoveFile is added to an Activity Set A, and no Dispatcher
MoveFile/A  with thisname existsin A, crede one with the same name (MoveFile ) and
dynamic type (for example, Boolean  MoveFile(String fromFile, String
toFile) ). Add a reference to this Activity to the Dispatcher. Note that Activity and
Dispatcher names globaly identify a dynamic type. In this case, al Dispatchers and
Activities in the system must have the signature Boolean  MoveFile(String,
String)



5.4 Acquisition: Dynamic Comporent Inheritance 97

* |f B provides a Dispatcher MoveFile/B  with the same name and type as the Dispatcher
MoveFile/A  of Activity Set A, add areferenceto it to the list of acquired Dispatchersin
Dispatcher MoveFile/A . If no Dispatcher with this name exists, crede onre. If thereis a
type mismatch (for example, if MoveFile/B  returnsvoid instead of aBoolean ), throw
an error and do no add MoveFile/B

Note that in this case, Activity MoveFile/A  in Dispaticher MoveFile/A  adualy
overrides MoveFile/B . However, when we invoke Dispatcher MoveFile/A , we can
spedfy adiredive (sendDeep ) to send the request through the aquisition kranch to aled,
in this case Activity MoveFile/B

Boolean result = (Boolean)perform("|A|MoveFile", args,
PCCDirectives.first().sendDeep());

* |f B provides a Dispatcher Foo/B , and A does naot provide aDispatcher with the same name
(and dynamic type), crede anew Dispatcher Foo/A in A and add areferenceto Foo/B to
the list of acquired Dispatchers in Foo/A . If an Activity is added to B after the aaquisition
relationship from A to B has been establi shed, notify A (aswell as al other listeners of B) in
order to updite the Dispatchersin A.

Discard algorithm:

* When Activity Set A discads B, that is, when it bre&ks the aayuisition relationship, remove
the reference to B from the list of acquired Activity Sets in A. Remove A from the list of
listenersin B.

* Remove al references to Dispatchers of B (MoveFile/B  and Foo/B ) from the lists of
aqquired Dispatchers in the Dispatchers of A (remove MoveFile/B  from MoveFile/A
and Foo/B from Foo/A ).

* When an Activity Foo/B is removed from an Activity Set, remove it from the
correspondng Dispatcher Foo/B .

» |f a Dispatcher Foo/A bemmes empty, that is, if it does not contain references to an
Activity or acquired Dispatchers (Foo/B ) anymore, remove it from A.

These steps are partly reaursive. For example, an Activity Set A might aaquire B and B might
aqquire C and so forth. When an Activity is added to an Activity Set C, a correspondng
Dispatcher is creded in C, then in B, andfinally in A.

When an Activity is requested (by invoking a Dispatcher), the request is delegated to that
Activity Set providing the Activity.

SeeSedions 5.6 and later for a detail ed explanation o Dispatchers. SeeSedion 5.8for a detail ed
description d Activity Sets.

5.4.3.2 Sample Acquisition

An aquisition graph as shown in Figure 5.4-3 denctes a delegation relationship. Eadh Activity
Set hdds an ordered list of acquired Activity Sets which defines a priority ranking. If one of the
aqquired Activity Sets gains focus, for example through user interadion, the lists of acqquiring
Activity Sets are rearanged, such that this Activity Set becomes the first entry, and therefore gets
the highest priority.

Figure 5.4-3 ill ustrates how Activities Providers aaquire others, respedively their Dispatchers,
and hav messages are dispatched through the given aqquisition kranches.



98 5 Detail ed Concepts and Implementation

:Application
path = "|Application”

<<acquire>>, . . <<acquire>>,

N . + N B

<<is container of>> +child <F z; <; child <<is container of>>
H L™ ™ ann

LLS
| i) <<acquire>>, 5
+parentV V <<is parent of>> V +child
ProjectManager: CombinedTool :FileSystemService TextEditor: CombinedTool
path = "|Application|ProjectManager[0]" path = "|Application|FileSystemService" path = "|Application| TextEditor[0]"
+child +child ) A +parent +child o
) <<use>> f <<acquire>> § <<acquire>>,
<<acquire>>, H V«is container of>>
+parent V <<is container of>> y +parent +parent
:ProjectBrowserTool :FileSelectionTool i chid TexEdiorToo
path = "|Application|ProjectManager(0]| path = "|Application|ProjectManager[o]] | """ttt ?lethE:dit'g‘%‘@,"(ﬁfé']‘?”'TeXtEd"m[O]'
ProjectBrowserTool[0]" FileSelectionTool[0]"
Legend:
ProjectBrowserTool has the focus: —
TngdntoTTool hasthefocus: ... —
FileSelectionTool has the focus:
Note: A component having the focus =
means that its acquisition branch has
the highest priority.
Figure 5.4-3 An Acquisition Graph
The Service Provider Application aquires the Toods TextEditor and
ProjectManager , and a Service Provider FileSystemService . More predasdy, its

Activity Set aaqquires the Dispatchers of their Activity Sets. This is smilar to a multiple
inheritance If the exeaution of an Activity is requested in Application , then the request is
delegated to the Activity Set providing the Activity. If more than one provides it, the most
recently focussed isused, o in the cae of abroadcast, al are used.

The priority used for delegating Activity requests is determined by the order in the list of
aaquired Activity Sets. In our example, the order of aaquired Activity Sets in Application IS
ProjectManager (index 0 in the list), FileSystemService (index 1), and
TextEditor  (index 2). However, the node (in the aqquisition branch) where a Dispatcher is
invoked in order to delegate an Activity request, has always the highest priority. Note that
indexes in Activity Set names (for example, in TextEditorTool[0] ) are automaticdly
creaed by the framework in order to get unique names for the Activity Sets of multi ple instances
of Activities Providers. They do nd refled the priority ranking in the aquisition graph.

In this case, Application has the highest priority. If itself does not provide a requested
Activity, the request is delegated via the Activities Provider, respedively Activity Set, with the
highest priority in Application  , which is in this case ProjectManager . The request is
then delegated further to ProjectBrowserTool

We say, the branch Application- ProjectManager-  ProjectBrowserTool has the
highest priority. That is, the ProjectManager  Activity Set is at the first position (index 0) in
the list of aqquired Activity Sets in Application , and that of ProjectBrowserTool a
the first position in ProjectManager . Let as assume that the priority changes through user
interadion, more predsely through a mouse-click into TextEditorTool . In this case, the
branch Application-TextEditor- TextEditorTool gets the highest priority.
FileSystemService gets in this case the highest priority relative to TextEditorTool :
but may still have alower priority relative to Application

Sedion 5.6 describes the dispatch medanism in detalil .



5.4 Acquisition: Dynamic Comporent Inheritance 99

5.4.3.3 Acquiring / Discarding a Component

We asume an aaquisition relationship like ill ustrated in Figure 5.4-3, where Application is
the container of FileSystemService andaquiresit.

Program 5.4-1 Fil eSystemServicejava

package example4;
import pcoc.*;

/** A Service Provider for file system operations */
public class Fi | eSyst enfSer vi ce extends  PCCSer vi ceProvi der {
/** The constructor setting the name and id to "MyFileSystemService".
* |f the constructor of the base class is not explicitly called with a
* string argument, the class name is used as name.
*
public FileSystemService() {
super(" M/Fi | eSyst enSer vi ce");
activate();

[** Set up the Activity Set */
protected void set upActi vitySet () {
super.setupActivitySet();
addActi vity(new MoveFil eActivity()); //add an operation

/** An Activity for moving a file on the file system.
cl ass MoveFil eActivity extends PCCSingl eActivity {
MoveFileActivity() {
super ("noveFile", "File", "Boolean", "String, String");
}

In Program 5.41 we see a filesystem Service Provider which adds the Activity
MoveFileActivity in setupActivitySet . This Activity gets the name “moveFile ”.
It overrides the method doPerform  which defines the adual behavior of this Activity, and
doGetState  which returns the current state. See a more detail ed implementation in Program
4.315.

Note that the dired base class of FileSystemService (PCCsServiceProvider ) or
indired ones may aready have alded Activities.

Program 5.4-2 is anather implementation of a Service Provider. It serves as root comporent of a
PCoC applicaion. It instantiates FileSystemService and adds it as element.

\ Program 5.4-2 Application.java \

package example4;
import pcoc.*;

[** A root component in the acquisition graph of an application
*/

public class Appl i cationextends PCCServi ceProvider {
public Application() {
activate();

PCCActi vitiesProvider fsProvider = new Fil eSystentService();
add(fsProvider); [/l calls acquire(fsProvider)




100 5 Detail ed Concepts and Implementation

With the current implementation, by default, a container aqquires al its elements, and thus ads
as their delegation child. This behavior can be changed individually by either using ancther cdl
add(fsProvider, fal se), or subsequently removing the aqquisition relationship to the
child using the method discard . For the example abowe we would cdl
discard(fsProvider)

Activities Providers can aqquire others independent of their containment relationship by using
acquire(<parent>) . Seethe example below.

\ Program 5.4-3 All Services.java \

package example4;
import pcoc.*;
import javax.swing.*;

I** A Service Provider combining other Service Providers through acquisition
*/
public class Al'| Servi ces extends PCCSer vi ceProvi der {
[** The constructor acquiring from known Service Providers.
*/
public AllServices() {
activate();
acqui re( // calls getActivitySet().acquire(...)
PCCRegistry.getActivitySet("|Application|MyFileSystemService"));
acquire(
PCCRegistry.getActivitySet("|Application|MyOtherService"));

.
)

The Activities Provider AllServices , respedively its Activity Set, becomes an aqjuisition
child of the Activity Sets MyFileSystemService and MyOtherService . We use the
registry to look upthe Activity Sets.

In order to bre&k up an aqquisition relationship, we can use the method discard . When
discarding an Activities Provider or Activity Set, it is not necessarily destroyed. Other objeds
may still have references to fileSystemService and prevent it from being garbage
colleded.

Program 5.4-4 Discarding acquisition relationship |

PCCActivitySet fileSystemService =
PCCRegistry.getActivitySet("|Application|MyFileSystemService");
PCCActivitySet allServices =
PCCRegistry.getActivitySet("|Application|AllServices");
al | Servi ces. di scar d(fileSystemService); // discard fil eSystentervi ce from
I al | Services

/I semantically equivalent:
al | Servi ces. get Provi der (). di scar d(fileSystemService.getProvider());

5.4.3.4 Changing the Priorities (the Ranking) of Acquired Activity Sets

The following code fragment ill ustrates how the priority ranking of an aaquisition relationship
can be dhanged. We use the aqquisition graph d Figure 5.4-3.



5.4 Acquisition: Dynamic Comporent Inheritance 101

Program 5.4-5 Changngthe priority rankingin an aquisition gaph ‘

PCCActivitySet app = PCCRegistry.getActivitySet("|Application™);
PCCActivitySet pm = PCCRegistry.getActivitySet("|Application|ProjectManager[0]");
PCCActivitySet te = PCCReqgistry.getActivitySet("|Application| TextEditor[0]");

app.moveFirst(pm); // ProjectManager[0] has/gets the highest priority;
/I corresponds to app.moveTo(pm, 0)
app.moveFirst(te); // change the focus to TextEditor[0]
app.movelast(te); // give TextEditor[0] the lowest priority
app.moveTo(te, 2); // move TextEditor[0] to position 2 in the priority ranking

app.perform(“copy”, PCCDirectives.first()); // directive first is the default
/I and can be omitted
app.perform("moveFile");

The most common case is that an Activity Set is moved to the first position in the priority
ranking of an aaquiring Activity Set. For example, a frame manager (a layout manager for Todls
in the GUI of an application), may cdl moveFirst for the Activity Set of a Tod when the user
interadively adivates the Tod. A Dispatcher delegates Activity requests to the Activity Set with
the highest priority ranking (the foremost Activity Set in the ordered list of aajuired Activity
Sets) which provides the requested Activity. If atext editor Tod has the focus and Dispatcher
diredive PCCDirective.first is used, copy is delegated to this Tod. moveFile is
nevertheless delegated to FileSystemService , dthouwgh it has not the highest priority.
However, since there is no Activity Set with a higher priority that provides a moveFile
Activity, that of FileSystemService is used. Sedion 5.6.2describes the dispatch algorithm
in more detail .

5.4.4 Remarks

Both, environmental and dired aaquisition suppat delegation. Objeds or comporents can be
aqquired at runtime, either automaticaly or explicitly. In contrast to environmental aqquisition,
dired aqquisition allows also discarding of acquisition relationships.

PCoC suppats baoth kinds of aqquisition, but uses mainly dired aqquisition. Acquisition can be
applied to Activities Providers, or more predasely their Activity Sets only.

5.5 Activities and their Interfaces

We asaume that the reader has real the general definitions in Chapter 3, and the basics of
Activitiesin Sedion4.3.5

This sedion describes the Activity interface—an interface that is spedfied and cheded at
runtime, and its use with Activities. It is a combination of a parameter and a return value
interfaceof an Activity. These interfaces spedfy sets of types and are stored as instances of the
class PCCActivityInterface . This class ensures type safety for arguments and return
values of Activities at runtime. See Sedion 4.3.4for a description of the dynamic Activity type,
and Sedion 4.3.3for adescription d the agument container classof PCoC.

5.5.1 Interface Specification
The interfaceof an Activity is gedfied in its constructor.



102 5 Detail ed Concepts and Implementation

\Program 5.5-1 PCCSingleActivity constructor

public class PCCSingleActivity {
[** Activity constructor. Sets the dynamic type of this operation and
* is called in subclasses.
* @param name The name of this Activity. All Activities with the same
* name must have the same interface (resultType,
* argumentType) and category.
* @param category A virtual category to which this Activity should belong.
*  This can be used to update the states of all Activities of a category
*  atonce, or to remove them from their Activity Sets.
* @param resultType Return value interface. See PCCActivityInterface.
* @param argumentType Parameter interface. See PCCActivityInterface.
public PCCSingleActivity(String name, String category,
String resultType, String argunent Type);
}

Activities must be derived from PCCSingleActivity or PCCMultiActivity . The latter
is not described here, since it does not add any relevant concepts. The only difference to
PCCSingleActivity is that its instances represent sets of Activities which are distinguished
by a separate index parameter. The index parameter is aways the first parameter in the Material
passd to a multi-Activity. An Activity class must pass an interface spedficaion to this base
class

\Program 5.5-2 A User Implemented Activity \

public class MoveFileActivity : PCCSingleActivity {
/** Activity constructor. Sets the dynamic type of this operation.
* Type declaration: name "moveFile", category "File", returns a Boolean
* object, needs two strings, the original file path and the new one
MoveFileActivity() {
super ("noveFile", "File", "Boolean", "String, String");

)

In this example an Activity is spedfied as having a Boolean return value, and two String
objeds as arguments. PCoC converts these String  spedfiers to PCCActivitylnterface
objeds. These are managed by the framework in a lookup table to share them with Activities
with the same interface

5.5.2 Retrieving Interfaces

The following methods of PCCADbstractActivity retrieve the return value and parameter
types of a PCCAbstractActivity

\Program 5.5-3 Parameter and Return Value | nterface of PCCAbstractActivity \

public PCCActivitylnterface get Argunent Type();
public PCCActivitylnterface getResultType();

These interfaces are used by the framework in order to ched the types of the arguments passed
to an Activity when it isinvoked, and its return value.

5.5.3 Activity Interface Class

The interfaces spedfied in the constructors of Activities are managed by the class
PCCActivityInterface . The interfacededaration strings spedfied in Activity constructors
are passd to the fromString method of PCCActivitylnterface . The most relevant
methods of PCCActivitylnterface arelisted in Program 5.5-4.



5.5Activities and their Interfaces 103

Program 5.5-4 PCCActivitylnterfacejava (except) \

/** PCCActivitylnterface. This class holds interfaces of Activities and can
* be retrieved by using the Activity methods get Resul t Type and get Argunent Type.
class PCCActivityInterface {
[** Create an activity interface.
* The passed string has the following interface:<br><pre>

* Interface = ([InterfaceEntry] {"," InterfaceEntry} ["," "..."]1) | "...".
* InterfaceEntry = Classnane ["=" DefaultValue] [MuyBeNull].

* DefaultValue = "(" Value ")".

* Defaul t Accessor = "{" ActivityName "}".

* MayBeNull = "[0]".

* <[pre>

* Classname ... a fully qualified classname or java.lang. - Datatype

* (String, Integer, Boolean, etc.)<br>

* A trailing "..." stands for an arbitrary number of arbitrary arguments<br>
* @param iSpec a string in the given EBNF format

*/

static public PCCActivityInterface fromString(String iSpec) {...}
private PCCActivityInterface(String iSpec) {...}

String asinterfaceString(Class|[] typeList) {...}

/** Get the size of this interface.
* @return The number of defined interface entries.
*/

int size() {...}

[** Get the variable argument status.
* @return true, if this interface allows a variable number of arguments
*/

boolean hasVariableArgs() {...}

/** Check if a PCCMaterial matches this Interface.
* @param material the argument list or return value to check
* @return true, if mat eri al matches this interface; false, otherwise
*/

boolean isMaterial OK(PCCMaterial material) {...}

}

5.5.4 Type Safety / Implementation of perform

Activity interfaces are used to ensure type safety for arguments and return values of Activities.
Materials passed as arguments and returned must match the Activity interface represented
through PCCActivityInterface obeds.

The methodisMaterialOK  (seeProgram 5.5-4) is cdled for ead invocaion of an Activity. If
the type chedk for the passed arguments fail s, the exeaution is stopped by throwing an exception
of type PCCPerformException . The sameisdoreif the return value type does not match the
spedfied interface

Program 5.5-5 Type Checks in PCCAbstractActivity |
public class PCCAbstractActivity {

public PCCMaterial perform(PCCSenderInfo si, PCCMaterial arg)
throws PCCPerformException {
if (lcanPerform(arg)) {
throw new PCCPerformException("Cannot perform.");

}

checkMaterialType(getArgumentType(), arg, "argument");
notifyListenersBeforePerform(this, arg);

PCCMaterial result = doPerform(si, arg);
checkMaterialType(getResultType(), result, "return value");
notifyListenersAfterPerform(this, arg, result);

return result;




104 5 Detail ed Concepts and Implementation

The template method perform is resporsible for cheding argument and return value types
using method checkMaterialType . checkMaterialType cdls isMaterial OK on
the speafied Activity interfaceif the interfaceis not null . Before cheding the argument types,
the Activity is chedked as to whether or not it is in an exeautable state (a state other than
“Disabled 7).

The following code fragment shows some erroneous return statements that lead to exceptions
becaise of type arors, anda mrred statement.

PProgram 5.5-6 Checking the return value type |

public class MoveFileActivity : PCCSingleActivity {
[** Activity constructor. In sets the dynamic type of this operation.

* Type declaration: name "moveFile", category "File", returns a Bool ean

* obj ect, needs two strings, the original file path and the new one
MoveFileActivity() { super( " moveFile", "File", "Bool ean", "String, String");}
protected PCCMaterial doPer f or mMPCCSenderinfo si, PCCMaterial args)

throws PCCPerformException {

boolean done = moveFile(
(String)args.getObject(0),
(String)args.getObject(1)));

/[ return new PCCMaterial();  // exception: returns no value

/l return new PCCMAterial(17); // exception: returns an Integer object
I/l return new PCCMAterial("foo"); // exception: returns a String object
return new PCCMaterial(done); // ok: returns a Boolean object; equal to:

/I PCCMaterial retv;
/I retv.add(done);

The framework-internal type ched reports no erors if a Boolean objed is returned, as
expedaed.

The following code fragment shows some incorred usage of MoveFileActivity by passng
arguments of wrong types.

\ Program 5.5-7 Checking the argument types

void testActivity() {
PCCActivity activity = new MoveFileActivity();
PCCMaterial result = null;
PCCMaterial args = new PCCMaterial();
String argumentinterface;

PCCActivitylnterface argumentTypes = activity.getArgumentType();

System.out.printin( ar gunent Types.getinterface()); // prints "String, String"
PCCActivityInterface resultType = activity.getResultType();
System.out.println( r esul t Type.getinterface()); // prints "Bool ean"
System.out.printin( ar gs.getinterface()); I prints ""
result = activity. perfornm(null, args); // exception: passed an empty

I argument list
args.add("/tmp/fromFile.tmp"); /I add a String object
System.out.printin( ar gs.getinterface()); I prints "String"
result = activity. perfornm(null, args); // exception: passed only one String,

I two expected
args.add(17); // add an Integer object (a plain int value is

[/l automatically converted to an Integer object)

System.out.printin( ar gs.getinterface()); I prints "String,|nteger"”
result = activity. perfornm(null, args); // exception: passed a String and an

I Integer, but two String

I objects are expected
args.set(1, "/tmp/toFile.txt"); I/l replace the second argument

/Il (index 1) with a String
System.out.printin( ar gs.getinterface()); I prints "String, String"
result = activity. perfornm(null, args); // ok: passed two Strings

}




5.5Activities and their Interfaces 105

Only thelast perform  statement works, sinceonly in this case the types of the aguments match
the spedficaionin the mnstructor. Print statements are used to print current interfaces.

5.6 Dispatchers and Activity Sets: Dispatching Requests

One of the most important concepts of PCoC are Dispatchers. They are used for delegating
requests for the invocaion of Activity requests through an aqquisition graph. SeeSedion 5.4.3.2
for an aqquisition example. We asaume, the reader hasread Sedion4.4.

5.6.1 Activity and Dispatcher Tables

An Activity Provider, respedively its Activity Set has a set of Activities and Dispatchers
managed in dctionaries (key/value-maps).

<<prioritized component coupling>>

Actvities Provider | ActivitiesProvider
provides =] Dispetcher kK> =
:ActivitiesProvider —1 and performs Dipetcher >
Activities = :Dispatcher K >
<<create>> <<:ilr.1t6rnal dispatch>>  <<extemnal dispatch>>
ey = Dispatcber * ActivitiesProvider
1 1 1 *
v 1 | = :nadiviy T | :Dispaicher |8 | _| Dispatcher (>
| 1 * || =
:ActivitySet Activity [= || :Dispatcher §7—> Dispatcher K >-=
* .
T 1 — :Dispatcher :7—> :Dispatcher K>~
: * = |
AN L :Dispatcher \g
naming service and i v v
context, holding an i
ActivitiesProvider's Create or update Dispatcher — -
Activities and Dispatchers; Dispatcher when dictionary, similar ActivitiesProvider
used for component anﬁkgtlp\gy is adsgted toamethod
coupling and control of totl ivity dictionary e
components ={ :Dispatcher K >=
= :Dispaicher K >-=

Figure 5.6-1 Comporent Couding using Dispatchers

Figure 5.6-1 shows how Activities Providers can be conreded via their Dispatchers. Activities
Providers crede Activities which are then stored in the Activity dictionary of its Activity Set.
The dictionary is used, for example, for introspedion. For ead Activity, a Dispatcher is either
creded or, in the case that the Dispatcher arealy exists, updeted (seeSedion 5.4.3. Dispatchers
are stored in the Dispatcher dictionary. The key for looking up a Dispatcher is its (lower-case)
name (or its signature, in an extended version of the framework). Remember, a Dispatcher holds
alist of references to aaquired Dispatchers, and an optional referenceto an Activity (seeProgram
2.6-1).

Figure 5.6-2 ill ustrates the Activity and Dispatcher dictionaries of a spedfic Activities Provider.
The tables are managed by its Activity Set. See Sedion 5.4.3for a description of how Activities
are alded to an Activity Set, and the dgorithm for credaing correspondng Dispatchers.

When a Dispatcher is invoked, it uses its own Activity reference and/or gathers all Activities
from diredly and indiredly aajuired Dispatchers in a distinct and ordered list and delegates the
request to one or many Activities of the resulting set (depending on the spedfied diredives).
Note that we do not diredly store aaquired Activities in Dispatchers, but only references to their
asciated Dispatchers, in order to save memory and to kegp upcdites smpler.

In the given example, foo is aquired from ancther Activity Set, and thus requests for
performing it are in eat case delegated to this Activity Set, whereas copy requests may be
performed locdly (for example, when using diredive PCCDirectives.first() ).



106 5 Detail ed Concepts and Implementation
Activities Provider
provides
:ActivitiesProvider -1 and performs
Activities
E‘% 1 prower| 1 <<intemal dispatch>> <<external dispatch>>
<<create>> 1 ] *
copy. <<Activity>> < copy. Dispatcher Ko——=
1 1
ly - . < N *
getSelection: <<Activity>> getSelection: Dispatcher Ko——= .
<7
Activi 171 N E%
displaySelection: <<Activity>> < displaySelection: Dispatcher <> 1= ém
e foo: Dispatcher : ﬁg
naming service and = 1=
context, holding an
ActivitiesProvider's ‘ i
Activities and Dispatchers; Create or update .
used for component Dispatcher when _ Dispatcher.
coupling and control of an Activity is added dictionary, similar
components tothe Activity Set toamethod
dictionary

Figure 5.6-2 Activity and Dispatcher Tables of a Comporent

5.6.2 Dispatching Activity Requests
Figure 5.6-3 depicts the coupding of four Activities Providers by their Dispatchers.

Application aquiresAPland AP2. AP1 aquiresAP11.
AP1: <<Activities Provider>>
Application: <<Activities Provider>> = clear [T = clear
- 3 copy E— copy
= displaySelection -
° clear <<dispatch>> Dispatcher
table, similar .
° copy to a method Activities
° displaySelection dictionary
o o - | AP11: <<Activities Provider>>
[ paste \L ————————————— >i displaySelection
° getSelection L
- clear Dispatcher B
cut table, similar .
to a method Activities
paste dictionary
E% getSelection
AP2: <<Activities Provider>>
Dispatcher copy = copy \Eli‘
table, similar L =e L=
to a method Activities —e ——
dictionary
Dispatcher Activi
table, similar table 4
to a method (internal
dictionary operations)

Figure 5.6-3 Dispatching Activity Requests

Some of the comporents in Figure 5.6-3 provide a copy Activity, therefore ead of them has
automaticdly creaed a Dispatcher for copy .



5.6 Dispatchers and Activity Sets: Dispatching Requests 107

A request for performing copy in Application IS sent via its Dispatcher to the Activities
Provider, respedively Activity Set, that most recently had focus and that provides a copy
Activity.

\Program 5.6-1 Invoking aDispatcher

Application app = new Application();
app.invoke("copy", null, PCCDirectives.first());
app.getActivitySet().invoke("copy”, null, PCCDirectives.first());

This code fragment shows the invocaion of the copy Dispatcher. The last two statements are
semanticdly equivalent.

In this case, the request might be sent to AP1, i.e., the Dispatcher agorithm follows its first
branch to AP1, getsthe copy Activity there, and invokesits perform methodin a second step.
We say that a perform request is sent to the copy Activity of AP1 in this case. On the other
hand, getSelection would be performed dredly in Application

A request for performing displaySelection would always be sent to AP11 over AP1, since
AP11 isthe only componrent that provides this Activity.

\Program 5.6-2 Dispatch agorithm ‘

final public class PCCDispatcher extends PCCAbstractActivity
implements PCCActivityListener {

/** finds activities starting the search at the current dispatcher and
* using a given strategy. Found activities are stored in the strategy object.
* This framework-internal method is mainly used for broadcasts.
* @param strat the strategy used for searching activities
*/

void findMatchingActivities( Act Strategy strat){
PCCDirectives directives = strat.getDirectives();
if (fActivity != null) {

strat.addActivity(fActivity);
if (Idirectives.sendsDeep()) { return; }

}
PCCDispatcherimpl activity = null;
if (directives.isBroadcast()) {

int sz = fDispatchers.size();

inti=0;

int endv = sz;

int offset = 1;

if (directives.sendsBackward()) {
i=sz-1;
endv = 0;
offset = -1;

while (i = endv) {
activity = (PCCDispatcherimpl) fDispatchers.get(i);
if (activity != null &&
(!directives.sendsToActiveOnly() ||
activity.getActivitySet().isActive())) {
activity.findMatchingActivities(strat);

if (i==endv) { //iis an int, therefore we must check the value
break; I/l before getting an underrun with i--

i += offset;
}
}
}

This code fragment shows the agorithm for gathering Activities through al aayuisition branches
of a Dispatcher.



108 5 Detail ed Concepts and Implementation

Basicdly, the dispatch algorithm of PCoC consists of two pheses: the search and the exeaution.

* Follow one or many aayuisition branches of the given Dispatcher in the given order
(priority) and colled all Activities belonging to the given Dispatcher in a distinct and
ordered list. This can be dore independently of Activity Sets, since Dispatchers store the
references to Activities and aaquired Dispatchers with the same name. The resulting set has
no dugicae Activities. In the case of a single request, for example using spedfier first
only the branch with the highest priority is visited. In the case of broadcasts all acquisition
branches are visited in the given order.

* Invoke amethod onead Activity inthe retrieved set, e.g. getState , perform , etc.

The diredives are used to filter the seach while iterating over the list of acquired Dispatchers
(fDispatchers ). If an Activity (fActivity ) is found,it is added to the resulting strategy
obed.

Program 5.6-3 is an excerpt of the base classfor strategy objeds passd to the dispatch algorithm
(cf. Program 5.6-2).

Program 5.6-3 Dispatch-strategy dass(1) |

abstract class ActStrategy implements PCCActivityListener {
ActStrategy(boolean robust, PCCMaterial arg, PCCDirectives directives,
String filter, ArrayList activities) {

[** performs this strategy on each activity found by
* <code>findMatchingActivities</code> using this strategy
*/
Object perform() {
inti=0;
while (i < fActivities.size()) {
PCCActivity activity = (PCCActivity) fActivities.get(i);
if (activity != null) { doPerform(activity); }
i++;

performed();
return fResult;
}
}

The method perform is cdled by client code and represents the adual strategy. Subclasses
must override the methoddoPerform

\Program 5.6-4 Dispatch-strategy dass(2) ‘

class PerformStrategy extends ActStrategy {
PerformStrategy(PCCMaterial arg, PCCDirectives directives, String filter) {
super(true, arg, directives, filter, null);

/** invokes a method corresponding to this strategy class on a single activity.
* @param activity the activity to be performed
*/

protected void doPerform(PCCSenderInfo si, PCCActivity activity) {
try { fResult = activity. per f or n{si, (PCCMaterial) fArg); }
catch (PCCPerformException pe) { fResult = pe; }

}

}

In this case, the perform  method of every single Activity is invoked. Beside
PerformStrategy  , there are severa other strategy classs, one for eat Activity request that
a Dispatcher can delegate: getState , countActivities , getContextData (see
Sedion4.4), etc.



5.6 Dispatchers and Activity Sets: Dispatching Requests 109

Program 5.6-5 Using a dspatch-strategy dass \

final public class PCCDispatcher extends PCCAbstractActivity
implements PCCActivityListener {
public void perform() {
PerformStrategy strat = new PerformStrategy(arg, directives, filter);
findMatchingActivities(strat);
Object result = strat.perform();

}

}

Having different strategy classes, the Dispatcher can reuse the same algorithm for different
things.

Using strategies instead of dugicaing an algorithm is a good way to reduce the danger of
making mistakes during maintenance or extension of the agorithm. It aso reduces the
maintenance effort, since the redly difficult code is just in one place and has only to be
maintained there.

5.7 Tasks in Detall

We asaume, the reader has read Sedion 4.5 as introduction to the concept of Tasks. Now we go
more into detail .

5.7.1 Structure of Tasks

Tasks are usually defined via configuration. The following excerpt of a configuration file shows
adefinition d aTask (basicdly equivalent to Program 4.5-1).

\Program 5.7-1 Defining aTask Via configuration \

<RCTask>
<name>displaySelectionTask</name>
< dispatcher  directives="First"> | Appl i cati on| di spl aySel ect i on</dispatcher>
<args>

<di spat cher >| Appl i cati on| get Sel ecti on</ di spat cher >
<i nt eger >2</i nt eger >
</args>
<preconditions>
<dispatcher>|Application|foo</dispatcher>
<task>myCondition</task>
</preconditions>

</RCTask>

SeeSedion4.5for adescription d this ssample configuration.

\Program 5.7-2 Using aTask

public class MyActivitiesProvider extends PCCServiceProvider {

public void foo() {
/I Get or create a Task; calls getActivitySet().getOrCreateTask(...);
PCCTask task = getOrCreateTask("displaySelectionTask");
if (task.canPerform()) { // if state != disabledState(), and all
task.perform(); // Dispatchers are available and executable, and
/l all arguments are provided via configuration,
/I and the types of the passed arguments match
} /l the dynamic type of the Dispatcher

In this example, we use the method getOrCreateTask , provided by
PCCActivitiesProvider and PCCActivitySet  , to crede atask.



110 5 Detail ed Concepts and Implementation

PCoC creaes an instance of the PCCTask class and initializes the objed with the given
RCTask definition.

\Program 5.7-3 Using aTask \
public final class PCCActivitySet implements PCCActivitySetListener {

[** Create new or get existing Task associated with the given name. If no

* Task instance with this name exists in this Activity Set, it is created

* and initialized with the corresponding RCTask definition from the

* configuration. References to already created Tasks are stored in a

* hash map (fTaskMap) in this Activity Set.

* @param name The name of the item used to get or create a task.

*/

public PCCTask get Or CreateTask(String nanme) {
PCCTask task = (PCCTask) fTaskMap. get (nane.toLower Case());
if(task == null) {
task = creat eAndRegi st er Task( ResConfi gMap. get Task( name)) ;

}

return task;

}

public PCCTask createAndRegisterTask(RCTask item) {
if (item == null) { return null; }
PCCTask task = new PCCTask(this, item);
if(task.isUnusable()) { // check if the arguments match the dynamic type
task.cleanup();
task = null;

}
else { fTaskMap.put(item.getName().toLowerCase(), task); }
return task;

Note that ResConfigMap is a singleton that holds a representation of the whole XML-
configuration of a PCoC application. All definitions are avail able as objeds in ResConfigMap
and can be looked up using their name. The name is the value enclosed in the correspondng
name-tag of the XML-configuration. See Program 5.7-1
(<name>displaySelectionTask</name> ).

\Program 5.7-4 PCCTask constructor \

[** create a PCCTask from RCTask
* @param as the Activity Set the Task belongs to
* @param rcTask defines the Task (name, associated dispatcher, arguments, etc.)
*/
PCCTask(PCCActivitySet as, RCTask rcTask) {
String name = rcTask.getName();
String associatedDispatcher = null;
String directives = null;
RCDispatcherReference dispRef = rcTask.getDispatcher();
if(dispRef = null) {
associatedDispatcher = dispRef.getContent(); // set dispatcher, can be null
// for macros
directives = dispRef.getDirectives(); I set dispatcher directives

}
PCCMaterial args = null;
RCArray rcArgs = rcTask.getArgs();
args = convertRCArrayToMaterial(rcArgs); Il set arguments
setupConditions(rcTask); Il set up preconditions
/I for performing this Task
/l initialize member variables, and macro (if this Task represents a macro)
init(as, name, associatedDispatcher, args, directives, rcTask);

The implementation of the PCCTask constructor is shown above. This code fragment shoud
help to get a rough overview of how the configuration and instances of PCCTask are related to



5.7 Tasksin Detall 111

eadh other. We do nat show the whae implementation of the PCCTask class sinceit is too
huge to be described here, and it does not add relevant information to get more insight into the
concepts of the framework.

The member variables (fActivitySet , fName, fArguments , etc.) of the Task are set in
init . The values are taken from the configuration passd to the cnstructor.

Arguments are conwerted in a method convertRCArrayToMaterial from a string
representation to correspondng primitive data-type objeds. For example, a value following an
<integer> tag in the configuration (Program 5.7-1) is converted to an Integer  objed, etc.
The method aso chedks whether the argument types match the dynamic type of the main
Dispatcher of the Task (if thereis any). If an argument is areferenceto a Dispatcher or Task, the
referenced Dispatcher or Task is performed and temporarily replaced by its return value when the
current Task is performed.

For eat precondtion (if there is any), a correspondng reference to a Task objed or Dispatcher
is stored in an ArrayList (fPreConditions ) using the method setupConditions
When the Task is performed, for ead Task and Dispatcher in this list the method canPerform
iscdled in order to chedk whether the Task can be performed.

5.7.2 Dispatching Requests using Tasks

Figure 5.7-1 ill ustrates how Dispatchers of a Task delegate Activity requests to diff erent acquired
Activities Providers. Note that the prefix PCC of class names are omitted in this diagram
(PCCDispatcher ,PCCActivity |, etc.)

We asaume that the Activity Set of an Activities Provider Application aquires threeothers,
AP1, AP2, and AP3.

The Task displaySelectionTask is defined in the context of the Application
Activities Provider. The two Dispatchers associated with this Task, displaySelection and
getSelection , delegate requests for retrieving states and performing Activities to the
aqquired Activity Sets.

Requests are always delegated to the Activities Provider, respedively Activity Set with the
highest priority cgpable of handing the request. In the case of a broadcast (spedfied as
Dispatcher diredive), all cgpable Activities Providers are addressd in the order of their priority
ranking.

Let us asume that we have the foll owing priority ranking in the list of acquired Activity Setsin
Application - AP2, AP3, APL

In this case, displaySelection requests are delegated to AP2 while getSelection
requests are delegated to AP3. Note that the priority ranking can change & any time.

The return value of getSelection is used as argument for the invocaion of the
displaySelection Dispatcher. We say, getSelection is a data source and
displaySelection the data sink for displaySelectionTask



112 5 Detail ed Concepts and Implementation

Application: ServiceProvider

path = "|Application"
fAcquiredActivitySets: ArrayList = {AP2, AP3, AP1}

displaySelectionTask: Task

fDispatcher = :Dispatcher
interface= void displaySelection(Selection, Integer)
fArguments= :Material

:Material

V AP1: ServiceProvider
:Material = :Integer path = "|Application|AP1"
fArgs = {:Selection, :Integer value = 2 =I>{ displaySelection: Dispatcher —>(dis laySelection: Activit )
I
V <<data sink>> —=F| getSelection: Dispatcher —>(get$election: Activity )

displaySelection: Dispatcher

path = "|Application|displaySelection" e
interface = void displaySelection(Selection, Integer) AP2: SimpleTool
fDispatchers = {...}

path = "|Application|AP2"

= getSelection: Dispatcher ——P>{ displaySelection: Dispatcher —>Giis laySelection: Activit )

<<data source>> - —

path = "|Application|getSelection” ——#] getFoo: Dispatcher —>(getFoo: Activity )
interface = Selection getSelection()
fDispatchers = {...}

getFoo: Dispatcher AP3: SimpleTool

path = "|Application|getFoo" path = "|Application|AP3"

interface = Selection getSelection()

fDispatchers = {...} —:>| getSelection: Dispatcher |—>( etSelection: Activit )

Figure 5.7-1 A Task Couding Comporents With Dispatchers

5.8 Activity Sets: Putting Everything Together

We have seen how Activities Providers expaose Activities, how Activities are invoked via
requests from Dispatchers, and how Activities Providers coll aborate using these elements. We
have also seen how Activities Providers are organized in dynamic containment hierarchies and
aqquisition relationships.

Activity Sets are resporsible for keeuing al dynamic elements and structura information
together. They are creded automaticaly and invisibly to comporent developers by Activities
Providers when they are initialized. They can aso be creaed independently of Activities
Providers, smply providing sets of operations.

Please read Sedion 3.3for ashort introduction into Activity Sets.

5.8.1 Architecture Overview

Figure 5.8-1 ill ustrates how Activity Set, Activities Provider, Activity, and Dispatcher classes are
related to ead ather, and roughly explains the meaning of the dasses.

SeeSedions 5.3and 5.4.3for the most relevant fadliti es suppated by Activity Set: containment
hierarchy and prioriti zed acquisition.



113

5.8 Activity Sets: Putting Everything Together

Sl DSEPEEIJ P UoEDAUIBNUBESa Ul
SNIPY BYD P LONEXOAIA D8I GSE UED 1| "BONO SO INIDYSH
PPoyRU ‘EHAARESod S|EOAjrEn 31 FELIOLEd ST AJAIDY U2 LBUM
SAPpaIp Aupewojpesonioud s ANDY
auo Bupuecsp WBE/SaU) UIRBYWLE A IDYSPOUCDE 0)SELPEGS (]
210U Dao Ag pEp WD) Sfavpae SENBI LD DO AN DY LS
BUEBLOO
’ 1 ( A .\aoo__\m_um_ccﬁo__m%__wéem
0 LAdoDjuoned ,,JULLIO]
wom NOS) _ﬂmm@_«mﬂm Bprnod SSnnmpy “_Eze&u.m.t_mﬁn_m?.%:
SUBLOD RBLLOING | - . oyp3juogedyddy| BsAnpY p AdoD  Anmpyepluse o—AInpy
st @&ﬁ%& T T SpOUDE 0] DBl SAPESAPE U opedyddy BS AIApY
Bjne 1 wrenbim T |/ 1815p aifuopgupum’ A doojuonedddy| BpEOSITRSOMIPOV
i Bonod Bpnod Adoo wwrw_, ( _ b.maoo__v_mﬁéo%% sdus mwwmmw_g_gw?m
nos ' NECDAI D} [EENaq LED) SLenBe pesapedsiq P UOREUIIGLD
AAb_wwmm_Faob S0 w e p BUIBBU0D JUNSALOUOYE LESILPLMW 2] easn Siduee o4
<D EeRu>> : h\g ﬁ\mbegv
T “BPESI] 10 2] e Aubonul Ag Ay Le o Lofenonulal) Enkel
. <IDERERIE> A UeD ]| SBEPpAUIoLE 10 BIUIS2 D INDY SSEB.D BDN0H SSNAIDY U2
T * | ,
\w_c%_m_ o vﬂwmm:mu:m T Anpyn Anmyepu
BUMNpE L] S Anmpy L — ST NPYINA INPWRUE
fupnod SEPNOH SIIAPY * fan ; =
fuichoo Ap=0o) .o} esn A N 1 0 mmom@_mk on N p sgesig b p dqeuy B
N ressw : ; ISR G P ek | i
<ot fpel - ame e | SESES T mrRLBIORED 2 AoRyaisumousse || oy
i : I JAIDY
; i pEAUELP 0 UED pUB [BULLLBED B
,mo_amw_us_wﬁﬂw%mmu - JDELERUE> * Bpesa * j mgcﬁgé%
m,m__ m._*_\H,mBE B ANy m:m-m_ S Hbumwwv T\ (omausp) ) PSNADY J0 BNU
mﬂzm._momﬂﬂm%% _Eﬁ_ _wmu%_ mmmb%Q vmumm,.mw Awnipy sApaipfusn | 7 % T * UOIEBED @ A Aenoe es1ssxb)
11 pBST0}S| BS AINDY LB J| . paInkoe 10 EoOo| Gﬁge_masm_uq@ pezhiod
.- i ,
N ol pyaepDaL <<opERIb> ol S Anmypedidey
“BS Aoy buunoe sy * . ,
PSEPEGIoISBPESa
SHpUE BI|REPD LB 0} *
B AIniDy mintoeapgre @nedod sonos)) | ey T ossomu ey
N <doErbpos> T Busn A IRLOTE
LA pue 1.0, je2122) )
E_m:@_gmsm\ﬂmo Anmpypesgy ace1BIBuULBD
DDIONTE ULIM Apiepdeyim
suonpuaadyim > eo) Bie
Anpy (dios)sisoduo pe oy hoxe
Jafus souorpuise
JDS0UOLPUS
BSSSAIPY

Figure 5.8-1 Activity Set Architedure



114 5 Detail ed Concepts and Implementation

5.8.2 Dispatching Activity Requests in Activity Sets

\Program 5.8-1 Activities Provider methods

public class PCCActivitiesProvider {
[** Lets a Dispatcher perform an Activity using forwarding
* directives.
* @param dispatcher path and name of an activity Dispatcher,
* e.g. "|Application|Copy"
* @param arg The argument for the Dispatcher to perform.
* @param directives the forwarding directives for the Dispatcher,
* e.g. PCCDirectives.defaultDirectives()
* @return The result of the performed activity
*/
public PCCMaterial perform(String dispatcher, PCCMaterial arg,
PCCDirectives directives)
throws PCCPerformException {
if (isInitialized()) { return null; }
return getActivitySet().perform(dispatcher, arg, directives);
}
}

PCCActivitiesProvider provides a perform  method which is used to send a request
for the exeaution of an Activity through the acquisition graph, starting at a spedfic Dispatcher.
The methodcdlsthe mrrespondng methodin its Activity Set if it is creaed and initialized.

\Program 5.8-2 Activity Set methods \

public final class PCCActivitySet implements PCCActivitySetListener {

[** Lets a Dispatcher invoke (forward) an Activity using forwarding directives.
* @param dispatcher path and name of a Dispatcher, e.g. "|Application|Copy"
* @param arg The argument for the Dispatcher to invoke.

* @param directives the forwarding directives for the Dispatcher,
* e.g. PCCDirectives.defaultDirectives()
* @return The result of the performed Activity
*/
public PCCMaterial perform(String dispatcher, PCCMaterial arg,
PCCDirectives directives)
throws PCCPerformException {
PCCDispatcherlmpl dispatcherlmpl = getDispatcherimpl(dispatcher);
if (dispatcherimpl != null) {
return dispatcherlmpl.perform(new PCCSenderInfo(this), arg,
directives, null);
}

else {
throw new PCCPerformException("No Dispatcher ™ + dispatcher + "");
}
}

The user passes a path that describes a Dispatcher. This includes the path of the Activities
Provider, respedively its Activity Set, where the Dispatcher shoud be retrieved, and its name.
For example, “|Application|copy " means Dispatcher “copy ” in the Activities Provider
with path “|Application|

Note, if no “|" is spedfied as first charader, the path is considered relative to the path of the
current Activity Set. For example, cdling perform  with path “TextEditor[O]|copy " in
an Activity Set “|Application " isresolved to “|Application| TextEditor|copy "

5.8.3 Dispatcher Proxy Management

In Program 5.8-2 a Dispatcherimpl instance is used to forward or delegate requests for
exeauting Activities. A Dispatcherimpl instance provides the behavior of a Dispatcher,
whereas instances of the dassDispatcher  are proxiesto Dispatcherimpl instances.



5.8 Activity Sets: Putting Everything Together 115

Beside using the perform method d an Activities Provider or Activity Set

\Program 5.8-3 Invoking anActivity
perform("|Application|copy”, null, PCCDirectives.first());

we can use Dispatcher proxiesto invoke Activities

Program 5.8-4 Invoking anActivity using aDispatcher proxy

Dispatcher dispatcher = getDispatcher("|Application|copy");
dispatcher.perform(null, PCCDirectives.first());

Program 5.8-3 and Program 5.8-4 are equivalent. The Dispatcher proxy (Program 5.8-4) can be
stored for later use regardless of whether the underlying Dispatcherimpl instance exists or
not. So we can attad listeners to the Dispatcher proxy withou caring abou the lifetime of the
correspondng Dispatcherlmpl instance. A Dispatcher proxy sends natifications whenever
its Dispatcherimpl instance s creaed or destroyed, and it forwards al natifications that its
Dispatcherimpl provides, e.g., state changes of Activities.

\Program 5.8-5 Dispatcher lookup (classPCCActivitySet) ‘

/** Gets a Dispatcher.
* @param dispatcher the name or path of the requested Dispatcher
* @return the Dispatcher; null if not found
*/
publ i ¢ PCCDi spat cher getDi spatcher(String path) {
int lastsep = path.lastindexOf(fcPathSeparatorChar);
if (lastsep >=0) {
PCCActivitySet as = null;
String asName = path.substring(0, lastsep);
as = getOrCreateChild(asName); // get Activity Set associated with given path
if (as = null) { return as.getDispatcher(path.substring(lastsep+1)); }
return null;

String lowername = path.toLowerCase();
Di spat cher Tag di spatcherTag = (Di spatcherTag) fDi spatcher Map. get (| ower nane) ;
if (dispatcherTag == null) {
dispatcherTag = new DispatcherTag();
f Di spat cher Map. put (| ower name, di spat cher Tag) ; // create new Dispatcher entry

}
PCCDispatcher dispatcher = null;
if (dispatcherTag.fDispatcher != null) { // get the corresponding Dispatcher
dispatcher = (PCCDispatcher) di spat cher Tag. f Di spat cher. get ();
I (proxy), if any
if (dispatcher == null) { /I create new one if necessary
dispatcher = new PCCDispatcher(this, path);
dispatcherTag.fDispatcher = new WeakReference(dispatcher);
if (\dispatcherTag.fRemoved) { /l add a reference to the
/I Dispatcherlmpl, if not
di spat cher. acti vi t yAdded(di spat cher Tag. f Di spat cher| npl ) ;
} // removed since the last change
} Il propagation of this Activity Set
return dispatcher;

}

For example, for some reason, we might want to use and store a Dispatcher
“|Application|FileSystemService|getDirectories " in one of our classes,
whilst the correspondng Activities Provider (FileSystemService ) and Activity
(getDirectories ) have not been loaded, yet. When the Activities Provider and its Activity
are instantiated, a Dispatcherlmpl objed is creaed and associated with the Activity and a
possbly existing Dispatcher. The Dispatcher is then natified by its Dispatcherimpl . Finaly,
the Dispatcher natifies its listeners. Let us assume that our objed holding a reference to the



116 5 Detail ed Concepts and Implementation

Dispatcher is alistener of it. The objed might instantly invoke the Dispatcher after the Activity is
creaed (for example, in order to display the resulting diredories in a list view, or to do some
initiali zation or synchronization of data between various Activities Providers and the newly
loaded ore, etc.).

Dispatcher instances are stored in the same table as Dispatcherimpl instances. They are
stored and looked up sing their lower case names (seeProgram 5.8-5).

If no Dispatcher with the given name has ever been looked up before, an instanceis creded. It is
stored in aWeakReference |, thereforeit will be cleaned up by the garbage coll edor as soonas
it is not used by client code anymore. We asuume that the reader is familiar with the
WeakReference classof Java.

If there is a correspondng Dispatcherimpl for the requested Dispatcher  instance, the
framework adds a reference to it using activityAdded . If there is no Dispatcherimpl
instance, then the referenceis st whenever an instanceis creaed and added to the Activity Set.

5.9 Implementation Issues

5.9.1 Java or C++?

As mentioned ealier in this thesis, the PCoC framework was implemented in C++ and later
ported to Java. The reason for the migration to Java was that Java provides a platform that is
avail able on many operating systems. This includes a sophisticaed standard set of classlibraries.
Usually, classlibraries either have to be bought and integrated with others in an application, or
implemented from scratch. There are also open-source class libraries, which can be adapted,
integrated, and used.

However, the seledion, integration, implementation, and maintenance of class libraries are
expensive and ongoing tasks. Particularly, the training of new developers is expensive and time-
consuming. Hencewe dedded to move to Java, which provides a ommonly known and accepted
set of libraries, respedively padages.

5.9.2 Suppo rting Implicit Generation of Activities

Activities can be generated implicitly from method definitions. We had not to implement
Activities, since, for example, al puldic method would be automaticadly exposed as Activities.
The implementation d the generic Activity classcould look like Program 5.9-1.

The constructor takes a method objed as argument and initi ali zes the Activity with the method
name and its result- and parameter-types.

asInterfaceString generates interfacespeafication strings for the parameter type list and
the return value type of the given method. The implementation of this methodis omitted, sinceit
does not add relevant information to this example. See Sedions 4.3.4and 5.5.1for descriptions
of the dynamic Activity type mncept and the PCCActivitylnterface class

When the Activity isinvoked, its arguments are unpadked and pas<ed to the method. The method
isinvoked by using dynamic methodinvocation (perform ).



5.9 Implementation Issues

117

Program 5.9-1 A generic Activity

class GenericActivity extends PCCSingleActivity {
Method performMethod;
Method stateMethod;
GenericActivity(Method m Method stateMethod) {
super (m get Name(), "Generated",
PCCActivitylnterface. aslnterfaceString(m getReturnType()),
PCCActivitylnterface. asl nterfaceString(m get Paramneter Types()));
this.performvethod = m
if (stateMethod != null) { // check method interface
Class[] parameterTypes = stateMethod.getParameterTypes();
Assert.assert("Wrong state method interface. No parameters expected.",
(parameterTypes == null || parameterTypes.length == 0));
Class returnType = stateMethod.getReturnType();
Assert.assert("Wrong state method interface. Must return a string.",
(returnType != null && returnType == String.class));

this.stateMethod = stateMethod;

protected PCCVat erial doPerforn(PCCSenderlnfo si, PCCMaterial args)
throws PCCPerformException {
Object result = null;
Class cl = fProvider.getClass(); // provider is set in addActivity
Object[] arguments = args.toArray();
try { result = performvethod. i nvoke(fProvider, argunents); }
catch ...  // NoSuchMethodException, lllegalAccessException,
/I InvocationTargetException
return new PCCMaterial(result);

protected String doGetState() {
if (stateMethod != null) {
String result = s
Class cl = fProvider.getClass()
try { result = (String)stateMethod.invoke(fProvider, new Object[] {}); }
catch ... /I catch exceptions as above
return result;

return defaultState(true); // is always "Enabled " in this case

}

The framework retrieves methods by using getMethods  of the Javarefledion padkage:

\Program 5.9-2 Automaticall y generating Activiti es
public class PCCActivitiesProvider {

bool  addMethodsAsActivities () {
I create Activities from public methods
Method[] methods = getClass().getMethods();
int i=0;
while (i < methods.length) {
PCCActivity activity = new Generi cActivity(nethods[i], null);
addActivity(activity); // calls also activity.setProvider(this);
i++; [/ search the first method with the given name
}
}
}

The framework iterates over al pulic methods of the Activities Provider, and adds them as

Activities by using addActivity

This approach looks comfortable for developers, since it is not necessry to implement,
instantiate, and add Activities explicitly. However, we threw away this approach. There are

several reasons for not generating Activiti es automaticdly:



118 5 Detail ed Concepts and Implementation

* We nedl arule to determine which methods shoud be expased as Activities and which nat,
in order to limit the number of alocaed objeds. We usualy only want methods to be
expased, which are reasonable for comporent coll aboration and control.

One solution is to let the framework only generate Activities from pulic methods with a
cetain name prefix (programmnming by convention), but this might not be appropriate for al
use caes. SeeProgram 5.9-3.

* It might cause seaurity problems if al methods were available as Activities, since they
would be automaticdly accessble via all applicaion interfaces. All Activities would be
exposed, for example, via XMLRPC. This might include aso file system operations. Java
provides a seaurity medianism, but if a methodis forwarded via JNI to native code in C++,
then there is definitely a seaurity problem.

* If we do nat crede Activities for ead method, then heuristics or other, maybe semi-
automatic mecdhanisms must be used to seled the methods for which Activities have to be
creded. This makes it amost impossble for the comporent developer to get and retain an
overview of which Activitieswill be avallable & runtime.

* “Thereis alot of magic inside”. Automatic mecdhanisms can make the implementation and
maintenance of comporents more difficult. Even withou automatic medanisms, a dynamic
approad such as PCoC may make the development of client code more difficult withou
proper utiliti es. For example, searching for errors in the behavior of a comporent is amost
impassble, if we do not have an overview of which Activities and Activity Sets are creded
at runtime. However, there ae two approades that can help us with this problem:

—The framework provides an introspedion mecdhanism that allows the browsing of
Activity Set hierarchies and aqquisition relationships, including Activities, Dispatchers,
Tasks, etc., per Activity Set. This helps us to get an overview of available Activities at
runtime.

—If we implement eat Activity in a separate class we can browse al Activities at
development time with source code and class browsers. The implementation effort is
slightly higher in this case.

* We could use JavaBeans, but they do not have a built in suppat for state handing.
Activities have a state which can be set at runtime. Examples are “Enabled”, “Disabled”,
“Active”, etc. This does not mean that JavaBeans canna be used together with Activiti es;
onthe contrary, an Activity can be used to control aJavaBean or viceversa

The advantage of suppating implicit generation of Activities is the reduced implementation
eff ort.

\ Program 5.9-3 Automaticall y generating Activiti es, using a naming convention

public class PCCActivitiesProvider {

bool addMethodsAsActivities() {

/I create Activities from public methods

Method[] methods = getClass().getMethods();

int i=0;

while (i < methods.length) {

if ( met hods[i].get Nane(). substring(0, 3).equal s("pcc")){

PCCActivity activity = new Generi cActivity(methods[i], null);
addActivity(activity); // calls also activity.setProvider(this);

i++; // search the first method with the given name
}
}
}




5.9 Implementation Issues 119

As mentioned, a better approad isto limit the implicit generation of Activities through a naming
convention (using a name prefix), but it neverthelessis not satisfying. For completeness the
correspondng implementationis ill ustrated abowve.

The framework iterates over al pulic methods with prefix “pcc” of the Activities Provider, and
adds them as Activities by using addActivity

5.9.3 Explicit and Semi-automatic Generation of Activities

After many discussons with framework users we came to the conclusion that, although the
implicit generation of Activities is comfortable, the crossrelations in the source code are easier
to uncerstandif the aedion d Activitiesis driven by the developer.

The foll owing aspeds must be considered:

» Explicit medanisms are more acceted by PCoC users than implicit ones. Implicit feaures
are fine as long as they do exadly what is desired. As soon as there is unexpedaed or
unwanted behavior, it is a huge effort to find out how to change it. For example, it is
difficult to find out at design time which Activities or better Activity instances will be
generated at runtime. Other examples are spedal feaures (such as personaized menus)
newly introduced to an operating system. For a user, it is difficult to switch afedure off, if
he does not know yet, how the fedure is adualy cdled and where he can find proper
information (withou reading a huge user manual).

* Current PCoC users are content with the explicit definition of Activities. There is little
reason why we shoud change asuccesgul system.

The solution we chaose was to suppat explicit definition of Activities (see Program 5.9-4) and
user-driven generation d Activities (seeProgram 5.9-5 and Program 5.9-6).

The foll owing code fragment shows the explicit definition d an Activity:

\Program 5.9-4 An Activity (explicit definition)

public class FileSystemProvider extends PCCServiceProvider {

public void foo() {
addActivity(new MuwveFil eActivity());
}

class MoveFileActivity extends PCCSingleActivity {
MoveFileActivity() {
super("moveFile", "File", "Boolean", "String,String");

protected PCCMaterial doPerform(PCCSenderinfo si, PCCMaterial args)
throws PCCPerformException {
bool ean done = noveFil e(
(String)args. get j ect (0),
(String)args.getChject(1)));
return new PCCMaterial(done);

}
protected String doGetState() {
return defaultState(true); // is always " Enabled " in this case

}
}

}




120 5 Detail ed Concepts and Implementation

Activities can be generated from amethod wsing refledion:

\Program 5.9-5 Semi-automatic generation d Activities

public class FileSystemProvider extends PCCServiceProvider {

public void foo() {
addActivity("noveFile");

publ i c bool ean noveFile(String, String) { ...}/l some code

}

The methodwill be cdled inthedoPerform method d the Activity.
If state handiing isrequired for a generated Activity, a separate method can be spedfied:

\Program 5.9-6 An Activity(with an addtiond state-retrieval method) \
public class FileSystemProvider extends PCCServiceProvider {

public void foo() {
addActivity("noveFile", "getMveFileState");
public bool ean noveFile(String, String) { ... } //some code

public String get MoveFileState() {
return enabledState(); // equivalent to "Enabled"

The aditional methodwill beinvoked inthe doGetState method d the Activity.

The advantage of this approad is that a comporent developer can explicitly spedfy the methods
to be exposed as Activities. For ead Activity, no matter if implicitly generated or explicitly
defined, a Dispatcher is creded.

addActivity is a convenience method of PCCActivitiesProvider . It generates an

Activity from a spedfied method,adds it to the Activities Provider’s Activity Set, and does some
additional chedks. Seethe implementation kelow:

\ Program 5.9-7 Explicitly generating Activities \
public class PCCActivitiesProvider {

Bbol addActivity(String performMethodName, String stateMethodName) {
/I create Activities from public methods

Method[] methods = getClass().getMethods();
inti=0;
Method performMethod = null;
Method stateMethod = null;
while (i < methods.length) {
String methodName = methods][i].getName();
i f (et hodNane. equal s( perfornvet hodNane)) {
per f or mvet hod = net hods[i];
}

el se i f (nmethodNane. equal s(stat eMet hodNane)) {
stateMet hod = methods[i];

}
if (performMethod != null && stateMethod != null) {
break;

i++; // search the first method with the given name

PCCActivity activity = new Gener at edActi vity(performvethod, stateMethod);
addActivity(activity); // callsalso activity.setProvider(this);




5.9 Implementation Issues 121

The implementation d classGeneratedActivity can befoundin Program 5.9-1.

For most cases the framework-suppated generation of Activities (Program 5.9-5, Program 5.9-6,
and Program 5.9-7) will do. However, in some cases one may want to do some speda things
where information is needed abou the Activity (its environment, etc.), or one wants to group or
encgpsulate functionality in one Activity. In such a case, it makes sense to explicitly define
Activitiesasin Program 5.9-4.



122 5 Detail ed Concepts and Implementation




6 Comparison with Related Approaches 123

6 Comparison with Related Approaches

This chapter describes other approadies and fadliti es that are similar or at least related to those
of PCoC.

6.1 Environmental Acquisition

This sedion gives an overview over the conventional aauisition medanism cdled
environmental acquisition and how a simple implementation could look like. It explains
diff erences between implicit (automatic) and explicit aayuisition.

We asaume that the reader has read Sedion 5.4 as general introduction into the acqquisition
concept.

The following sources relating to this topic are strongly recmmmended: [GIL96], [ACQUO0Q],
[ACQUO1], and some other aqquisition dacuments [ACQU9S].

6.1.1 Overview of Environmental Acquisition

Environmental aqquisition is a medhanism that alows an objed to obtain a requested fedure
from its environment (containment hierarchy). It is used where the environment of objeds or
comporents provides attributes or a context that has or can have an impad on the objeds and
comporents.

Let us assume we are implementing an interadive comporent, for example, a source-code editor.
It may consist of different replacedle parts. One part could be the editor view, where we can edit
source code. Ancther might be a visual comporent showing line numbers. A third could be a
status information pane that shows the caret paosition and other status information. All of these
comporents have something in common: the file buffer and caret information. It makes sense to
make this information automaticaly accessble to all of the comporents so that they can useiit as
if they themselves owned it.

Generally we can say that environmental aqquisition is necessary to share data among
comporents in a containment hierarchy. The medanism alows comporents to redefine
attributes they aaquired from their environment. For some comporents it might make sense to
manage information or redefine some methods independently of their environment, or to wrap
shared information a functionality.

6.1.2 Environmental Acquisition in Literature
[GIL96] explains the motivation for introducing environmental aayuisition as foll ows:

To give the reader a taste of the motivation for this reseach, consider the following example
which may occur in an automobile industry applicaion: An objed of a class Car depicted in
Figure 6.1-1 isa composite which comprises comporents sich as objeds of classDoor .



124 6 Comparisonwith Related Approaches

1 1 *

Color f==—— Car K>— Door

Sedan Hatchback

Figure 6.1-1 Environmental acquisitionin the problem space Class
Door acquiresits color from Sedans andHat chbacks alike

Suppcee that it is known that a car is colored red, then we are likely to infer that its doars are red
as well. However, athough the doa “inherits’ its color from the car of which it is part, it would
be wrong to derive Door from Car . Color -inheritanceisrelated to the “in-a” (reverse-“has-a”)
link which binds doasto cars.

This becomes also clea when examining Car subclasses, say Sedan and Hatchback , which
are distinguished among other things by the number of doas. ClassDoor inherits its color from
Sedan and Hatchback alike, just as it would from ancther hypotheticd class Airplane
which hasno“is-a” (“a-kind-of”) relationship with Car .

We cdl this kind of inheritance environmental acquisition and distinguish it from classbased
inheritance (inheritancefor short) in its common meaning in olged oriented programming.

[ACQU9g], [ACQUOQ], and [ACQUO1] are hepful for understanding the basics of
environmental aayuisition.

6.1.3 Simple Implementation

The foll owing code fragment shows a simple implementation d environmental aajuisition.

Program 6.1-1 Acquisition (Java) |

public class AcquisitionBase {
protected Object parent;
public AcquisitionBase() { parent = null; }
public printResult(String methodName) {
hj ect o = perform net hodNane) ;
if (0 != null) { System.out.printin("Result: " + 0); }

public Object perforn(String methodName) {
Object result = null;

try {
Met hod m = get d ass(). get Met hod( net hodNane, null);

result = minvoke(this, null);

catch (Exception ex) {
if (parent != null) { result = parent. perforn(nmethodNane); }
else { System.err.printin("no such method: "+methodName); }

return result;

}

}

In this example, we can dynamicdly invoke methods by using the method perform . The
spedfied method is looked up in the current objed first, respedively in its class and its base
classes, and then in the parent objed.

The example is based on Java refledion. See [ENGLA97] on Pages 40-42 for a short
introduction into Javarefledion.



6.1 Environmental Acquisition 125

‘Program 6.1-2 Acquisition (Java) ‘

public class A extends AcquisitionBase {
public A() {

public A(Object p) {
parent = p;

}
public String getAValue() {
return "A";
}
}

public class B extends AcquisitionBase {
public A a;
public B() {
a = new A(this);

public String getValue() {
return "B";
}
}

public class C extends AcquisitionBase {
public A a;
public C() {
a = new A(this);

}
public String getValue() {
return "C";

}

}

Program 6.1-1 and Program 6.1-2 show a simple implementation of an environmental acquisition
medhanism for invoking methods. AcquisitionBase is a class introduwing the method
perform for dynamicdly invoking methods using the Java refledion medhanism and providing
implicit (automatic) environmental acquisition.

If a method canna be found in the current objed, the request for invoking a method named
methodName is delegated to its container. perform succealsif an objed isfoundproviding a
correspondng method. It fails if the root objed in the containment hierarchy is found withou
finding amethodwith the given name.

Note that with the given implementation it is only possble to invoke methods withou
parameters using the perform  method, but it shoud be enough to provide a rough overview of
how aaqquisition works.

Let ustake alook at ause cae for our example &ove:

Program 6.1-3 Using Acquisition (Java)

A a=new A();
B b = new B();
C c =new C();

b.a.printResult("getValue");
-->"Result: B"
c.a.printResult("getValue");
-->"Result: C"
a.printResult("getValue");
-->"no such method: getValue"
a.printResult("getAVvalue");
-->"Result: A"

If method getValue is invoked on b.a or ca, it is found in the container
AcquisitionBase . If it isinvoked diredly on a, which does nat provide the method and no
container which could provideit, the cdl resultsin an error.



126 6 Comparisonwith Related Approaches

The Python programming language (see [ROSSJM90]) provides much more flexible usage of
aqquisition than Java, since no method or attribute dedarations are necessary. The following
code fragment shows the built-in acquisition mechanism of Python.

\ Program 6.1-4 Acquisition (Python) \

class AcquisitionBase:
def _ getattr__ (self, attribNane):
if self.parent:
return getattr(self.parent, attribNanme)

class A(AcquisitionBase):
def __init__(self, parent=0):
self.parent=parent
def getAValue(self):
return "A"

class B(AcquisitionBase):
def __init__(self):
self.a=A(self)
def getValue(self):
return "B"

class C(AcquisitionBase):
def __init__(self):
self.a=A(self)
def getValue(self):
return "C"

If Pythondoes nat find a requested attribute or operation either in the classof the given objed or
in one of its base classes, it tries to find the method __getattr . In this method we can
define what Python shoud do in this case, for example, seach for the method in the parent
objed, asin the example &owe.

The example code for utili zing acqquisitionlooks smilar to that in Java:

\ Program 6.1-5 Using Acquisition (Python)

a=A();
b =B();
c=C();

print 'Result: ' + b.a.getValue()

-->"Result: B"

print 'Result: ' + c.a.getValue()

-->"Result: C"

print 'Result: ' + a.getValue()

--> runtime error (TypeError: 'NoneType' object is not callable)
print 'Result: ' + a.getAValue()

-->"Result: A"

If amethodgetValue isinvoked onb.a orc.a , it isfoundin the container. If it is invoked
diredly on a, which does nat provide the method and no container which could provide it, the
cdl resultsin an error.

Note that acquisitionis not only possble with methods, bu also with attributes.

6.1.4 Implicit Acquisition

We have seen what environmental aqquisition is in general. Now, let us take a look at the
diff erences between implicit and explicit acquisition.

Implicit aqquisition automaticdly seaches for attributes and methods in the environment
whenever they canna be obtained dredly from an oljed or through classinheritance



6.1 Environmental Acquisition 127

According to the sedion abowve, we cdl it implicit or automatic acquisition of method cdls,
whenever we invoke methods using perform of AcquisitionBase . If amethodis cdled
thisway, it isfirst seached in the classor base classs of the objed itself, and then of the parent
objed, and so on(cf. Program 6.1-1 and Program 6.1-2).

6.1.5 Explicit Acquisition

When explicit aqquisition is used, attributes are not automaticdly obtained from the
environment. Instead, an acquire  method must be used.

Let us assume, we invoke methods as usual (ordinary methodcdls), withou using aqquisition. In
some caes, though, it is useful to use the aquisition mechanism. In these caes we can explicitly
use method perform  (seeProgram 6.1-1) which seaches and invokes spedfied methods in the
environmental context of the spedfied oljed.

\Program 6.1-6 Using Explicit Acquisition (Java) \

a=A();
b = B();
c=C();

System.out.printin("Result: " + b.a.getAValue());

-->"Result: A"

System.out.printin("Result: " + b.getValue());

-->"Result: B"

System.out.printin("Result: " + b. a. perforn("getVal ue"));
--> "Result: B"

System.out.printin("Result: " + c.a.perform("getVal ue"));
-->"Result: C"

In the example abowve, the methods b.a.getAValue() and b.getValue() are cdled
diredly. The other cdls use environmental aqquisition, eg., for
b.a.perform("getValue") the methodgetValue isseachedinb.a , respedivelyinits
base dasses, andthenin b, whereit isfinaly invoked.

The main difference between explicit and implicit aqquisition is that one can dedde for eadh
methodto invoke it normally or using environmental acquisition (using methodacquire ).

6.1.6 Remarks

Environmental aqquisition is, for instance used and promoted by Zope—a software system
combining a Web-server and a mntent management system.

Following sources cover concepts of environmental aqquisition: [GIL96], [ACQUOQ],
[ACQUO1], and [ACQU9E]. Environmental aqquisition is compared to a similar approac of
PCoC in Sedion5.4.

6.2 Aspect Oriented Programming

This sedion provides an rough overview of asped oriented programming and ill ustrates this
software-technicd paradigm with afew examples.

6.2.1 Overview

Asped-oriented programming (AOP) is a programming technique first defined by Xerox Palo
Alto Reseach Center at the beginning of 1997. See [XEROX0297, [XEROX1297, and
[XEROX0697. Some sources sy that the term already came upin OOPS_A circlesin 1995.



128 6 Comparisonwith Related Approaches

Traditional software units of moduarity in programming languages include modues, classs, and
methods. However, some functionality canna be encgpsulated in single modues. Some units are
multi ply implemented acossthe dasshierarchy.

Asped-oriented programming (AOP) brings new units of moduarity, cdled aspeds. Aspeds are
constructs, respedively implementations as classs, representing fadors of behavior (feaures)
and can be invaved in more than one objed or comporent. AOP bulds on traditional
techndogies, including procedural and objed-oriented programming, which have aready made
significant improvements in software moduarity.

Aspeds eliminate objed and comporent borders. Code relating to aspeds is often expressed as
small code fragments tangled and scattered throughou several comporents. Because of the way
they crossmodue boundhries, it is said that aspeds crosscut the program’s hierarchicd structure.
Aspeds encgpsulate aosscutting concerns.

As mentioned, aspeds can be invoked on different parts of a system, and they are not limited to
pulic interfaces of objeds and comporents.

Typicd aspeds are:
* tradng/logging/monitoring
* error/exception handing
* synchronization/thread-safety
» cading strategies
* persistency
* resource sharing
* distribution concerns
e optimizations
* etc.

Asped compilers are used to generate code from adual source code and aspeds. When using
such language extensions, one does not adually seethe existence of aspeds in the source code
where they are later invoked. The code produced by the asped compiler can then be compil ed by
anorma compiler. The term “code-weaver” is often used for this kind of compiler to ill ustrate
what it does. However, AOP is also passhble withou preprocesors. Aspeds can, for instance, be
invoked through templates, name spaces, and inheritance (see later). PCoC, for example,
suppats crosscutting concerns at runtime (cf. Sedions 2.8and 5.4).

An example for an asped-oriented programming language is AspedJ (see[KICZALOQ]). It isa
general-purpose AOP extension to Java and product of yeas of reseach at Xerox PARC. The
projed is partially suppated by the Defense Advanced Reseach Projeds Agency (DARPA).

AspedJ enables the moduarization of crossutting concens as described above. A
correspondng asped compiler is cdled AspedaWearer™ (gjc). It runs right before the Java
compil er.

The main design goals of AspedJ were to make it a compatible extension to Java and as simple
aspaosshble.

Compatibility includes:
» Upward compatibility: all regular Java programs must also be regular AspedJ programs.

» Platform compatibility: regular AspedJ programs must run on standard Java virtual
madhines.



6.2 Asped Oriented Programming 129

» Tod compatibility: it must be posgble to work with AspedJ using existing todls, including
IDESs, documentation and design toadls.

* Programmer compatibility: programming with AspedJ must fed like natural extension of
programming with Java.

AOP is said to become a powerful means of coping with the rising complexity of modern
software applicaions. Enabling highly moduar software, it holds the potential for simplifying
the development of complex software applicaions, for improving the reuse of code fragments,
andfinally for reducing maintenance df orts and costs.

A good introduction into asped-oriented programming can be foundin [CZARNO1]—an article
in the iX magazine of 2001—and in subsequent articles of the series. Other useful sources for
this dionwere [LUTZ01] and [KICZALOQ].

6.2.2 AspectJ

A criticd element in the design of any asped-oriented programming language is the join point
model. The join point model provides the frame of reference that makes it possble for exeaution
of aprogram’s asped, and nonrasped code to be mordinated properly.

AspedJ is based on a model in which so-cdled join points are nodes in a simple runtime objed
cdl graph. These nodes include paints at which an objed recaves a method cdl and paints at
which a field of an objed is referenced. The edges between nodes represent control flow
relations. In this model ead nock is visited twice—once when walking down the cdl graph for
subnodks, and orce when coming bad from the cdl of subnodes.

Thefollowing join pants are possble (taken from [KICZALOQ]):

join point pointcut designator syntax explanation
cdling calls(<signature>) a method or constructor of a classis
method and cdled. Cal join ponts are in the
constructors cdling objed or naot related to an objed

if astatic methodis cdled
reception of receptions(<signature>) an objed receéves a method or
method and constructor cdl. Receotion join points
constructor are before method or constructor
cdls dispatch, i.e., they happen inside the

cdled objed. Control flow has arealy
been transferred to the cdled objed,
but no particular constructor and
method has been cdl ed yet.

exeaution of executions(<signature>) an individual method or constructor is

methods and invoked

constructors

getting fields gets(<signature>) afield (member variable) of an objed,
gets(<signature>) [<value>] classor interfaceis read

setting fields  sets(<signature>) afield of an oljed or classis %t

sets(<signature>) [<value>]

sets(<signature>)
[<oldvalue>] [<newvalue>]

exception  handles(<throwable type an exception hendler isinvoked
handing name>)




130 6 Comparisonwith Related Approaches
Note that pointcuts identify join points of spedfic types. Here are some more complex pointcut
designators:
join paint pointcut designator syntax explanation
any instanceof(<currently matches join points if the currently
executing object type exeauting objed is of the given type
name>)
any within(<class name>) matches join points if the the currently
exeauting code is contained within
class<classname>
any withincode(<signature>) matches join points if the the currently
exeauting code is contained within the
member defined by the method or
constructor signature
any cflow(<pointcut matches join points of any kind that
designator>) occur within the dynamic extent of any
join point matched by <pointcut
designator>
methodcadls call(<pointcut designator>) matches method cdl join points that in
one step lead to any reception or
exeaution join points matched by
<pointcut designator>

Note that a pointcut is a set of join points that optionally exposes some of the values in the
exeaution context of these join points. Pointcut designators can be combined using AND OR and

NOToperators (‘&&, ‘|| 7, ‘! ).

Before we take alook at using pointcuts, we define asimple dass

\Program 6.2-1 Sample dass

/I A regular class
class MyPoint {
private int fx;
private int fy;

public void setX(int x) {
fx = x;

}

public void setY(int y) {

}W=w

public int getX() {
return fx;

}
public int getY() {
return fy;

}

}

Now we can define asimple pointcut:

\ Program 6.2-2 A simple pointcut

poi nt cut nyPoi nt Moves():
receptions(void MyPoint.setX(int)) ||
receptions(void MyPoint.setY(int));




6.2 Asped Oriented Programming 131

Pointcut myPointMoves identifies whenever the pasition of an objed of class MyPoint is
changed.

Ancther fadlity of AspedJ is cdled advice An advice is a methodlike medhanism used to
dedare that certain code shoud exeaute at ead of the join paints in the pointcut. AspedJ
suppatsbefore , after ,andaround advice

before andafter are quite self-explanatory. around is invoked even before the before
sedion. There can be many around sedions for a join paint, these are invoked with the most
speafic piecefirst. The body of an around advice can cdl runNext which invokes the next
most spedfic piece andif no aher around body isleft, before isinvoked.

Hereisasimple example of an after advice

\ Program 6.2-3 A simple advice

static after(): nyPointMves() {
System.out.printin("Point moved.");
}

Parameters can be passed to advices as well as to paintcuts. Read more abou these constructsin
[KICZALOQ] and [XEROX02].

Aspeds are defined by asped dedarations, which are similar to class dedarations. They may
include pointcut dedarations, advice dedarations, as well as al other kinds of dedarations
permitted in classdedarations.

\Program 6.2-4 Aspedsin AspedJ \

/I Define a tracing aspect for set methods and copy
aspect MyTracer {
poi ntcut tracedCall s():
call s(void MyPoint.set*(int)) & calls(void MyPoint.get*());
before(): tracedCalls() {
System.out.printin("Invoking: " + thisJoinPoint)

}

}

In the example above we register all set and get methods of classMyPoint in the pointcut
tracedCalls

The ideabehind al this is to extend existing classes and methods by spedfic behavior and to
keep these extensions out of regular code. These units supfying the spedfic behavior are cdled
aspeds. An asped can cover different classes and methods at the same time, thus combining
their common functional behavior (asped) at one locaion. This makes it not only easier to
maintain common aspeds such as tradng or precndtions—it kegs code more readable. A
disadvantage is the need for additional compil e runs using asped parsing toals.

6.2.3 Other Mechanisms

Beside the most advanced and sophisticaed tod AspedJ, there are some other medianisms and
development todls avail able for asped-oriented programming. One is the programming language
D, aso developed by Xerox. Read more a&ou it in [XEROX1297.

The idea behind all available approaches and tods is the same—to provide a mechanism for
weaving code. Diff erent aspeds of code can be developed and maintained separately.

[CZARNO1] describes a concept for asped-oriented programming with C++. It uses name spaces
to separate pure functional code from aspeds.



132 6 Comparison with Related Approades

The foll owing example ill ustrates this approad:

\Program 6.2-5 Defining aspeds by using name spacesin C++ (1)

namespace original

/I A regular class
class MyPoint {
private:
int fx;
int fy;
public:
MyPoint()
: 1(0), y(0) {}
void setX(int x) { fx = x; }
void setY(inty) {fy =vy;}
int getX() { return fx; }
int getY() { return fy; }

Note that we define the original classin the name spaceoriginal . Having defined it, we can
go onand cefine an asped for this classin another name space

Program 6.2-6 Defining aspeds by using name spacesin C++ (2) |

namespace aspect

t ypedef original:: M/Point MPoint;
/I A regular class
class MyPoi nt WthTracing : public original::MPoint {
public:
void setX(int x) {
MyTracer: : before("setX");
MyPoi nt : : set X(x);

}

void setY(int y) {
MyTracer:: before("setY");
MyPoi nt : : set Y(y);

}
int getX() { return MyPoint::getX(); }
int getY() { return M/Point::getY(); }

class MyTracer {

static void bef or e(char* str) { cout << "before " << str endl; }
static void af t er (char* str) { cout << "after " << str endl; }
}
}
In the program abowve, we first define MyPoint as original::MyPoint for simplification

of the rest of the code. We traceead cdl of setX andsetY by invoking our trace. Of course,
we then have to cdl the adual method d the base dass

Now that we have defined the asped, we can make use of the dassin any user code:

\Program 6.2-7 Aspeds using name spacesin C++ (3)
namespace composed

I typedef aspect:: MyPoint MyPoi nt; // original point class
t ypedef aspect:: MyPoi nt Wt hTraci ng MyPoi nt; // point class with tracing

/l use that point class configured in hame space "composed"”
usi ng nanespace conposed;

MyPoi nt p;

p. set X(10);




6.2 Asped Oriented Programming 133

Note that in this case the base class original::MyPoint neal nat dedare its methods as
virtual. The nicething abou this concept is that neither client code, nor code of the original class
is affeded by the asped. Aspeds can be switched on and off just by configuration of the
compased name space (which itself can happen outside client code, maybe in a speda header
file). It may not be as convenient as AspedJ, and it is not passble to define paintcuts, but it is a
way to introduce aspeds in existing code withou bothering with alanguage and todls for asped-
oriented programming.

6.2.4 Remarks

Asped-oriented programming (AOP) brings new units of moduarity and thus reusability, cdled
aspeds. Aspeds are constructs, respedively implementations as classes, representing fadors of
behavior (fedures) and can beinvolved in more than ore objed or componrent.

AOP is said to become a powerful means of coping with the rising complexity of modern
software applicaions. Enabling highly moduar software, it halds the potential for simplifying
the development of complex software applicaions, for improving the reuse of code fragments,
andfinally for reducing maintenance dforts and costs.

There ae drealy red AOP solutions such as AspedJ. See[KICZALOQ].

The PCoC framework suppats crosscutting concerns at runtime, like AOP does at compil e time.
Different aspeds can dynamicdly wrap Activities (see Sedion 2.8) or Activity Sets (acquisition
in PCoC, see Sedion 5.4). Clients can aso attach as listeners to Dispatchers and Activities, so
they get natified before and after the Dispatchers or Activities are invoked or their state is
changed (seeSedion 2.9). On ndification, clients can take crrespondng adion.

Since operations (Activities) are objeds in PCoC, they can be traced and extended by advice
medanisms as in AspedJ. For example, a comporent developer has to override the method
doPerform of an Activity base class(cf. Program 4.3-15). SincedoPerform iswrapped and
invoked by the base-class method perform , the framework can do a grea ded of
administrative work before and after the invocaion of adual user code. This approad is, for
example, used for tradng invocaions of Activities for later replay through scripting (maao
recording and replay).

Currently, there is no sophisticated implementation of pointcut and join point registration and
evaluation in PCoC (except tradng Activity invocaions for the purpose of maao recording).
However, it is possble to attach listeners to Dispatchers. They can provide exeaution state
information (before exeaution, exeauting, after exeaution) and other refledive information
(current Activity Set, etc.) The refledion fadliti es together with the li stener suppat can be used
to smulate pointcuts for the invocation d Activities.

Read more abou asped-oriented programming in [XEROX0297, [XEROX1297,
[XEROX0697), and [KICZALOQ].

6.3 Event Channeling

Events are an important communication mechanism for many domains. We distinguish between
direded events where the recever of an event is gedfied by its snder, and event channels.

An event channel is a channel at which interested recevers can register. The sender does not
normally know the adual recavers. The advantage of this concept is that it can be used to
demupeinvaved oheds.

However, distribution and handing of events over event channels also leads to some problems.
For example, it may be difficult to find out the sender of an event, or the reason why it was
triggered. There is aso an increased effort to hande different events that are sent through the



134 6 Comparisonwith Related Approaches

same event channel. Generdly, analyzing and dispatching an event via event-channeling may
require more dfort onthe recaver-side than for direded events.

A solution can be a mediator instance within an event channel that seleds and invokes spedal
cdlbadks on recevers. Such a mediator can be a table that associates events with concrete
methods. PCoC has a similar approach. A request is diredly delegated to Activities on recever
side, which are assciated with the request. More preasely the method perform  of ead
associated Activity is cdled, when a Dispatcher delegates a correspondng request. An Activities
Provider can register at akind of event channel or even creae it by adding an own Activity to an
Activity Set that is in the aqquisition branch of the Dispatcher (via proper dispatch diredives). In
order to make an Activity Set and a correspondng Activity readable to a Dispatcher, either the
Activity Set must be aaquired by one that is arealy in the current acquisition branch of the
Dispatcher, or the diredives must be properly adapted. No analyzing and dspatching is necessary
ontherecever side. Read more @ou the dispatch medanism of PCoC in Sedion5.6.2

Events and espedaly event channeling are described in grea detall in [GRIFF98] on Pages
254,

6.4 Java Reflection

This sedion describes Java refledion fadliti es such as dynamic method invocaion, dynamic
classlookupandinstantiation, and proxy class Concepts are mmpared to those of PCoC.

6.4.1 Overview

The Java programming language provides a faality cdled refledion. It allows an exeauting Java
program to examine (introspea) itself, and to manipulate internal properties of the program. For
example, it ispossblefor a Java dassto oltain the names of all its members.

The ability to examine and even manipulate a classfrom within itself may not soundimpressve,
but in other programming languages this feaure does nat exist. For example, thereisnoway in a
Pascd, C, or C++ program to obtain information abou the functions defined within that
program. Microsoft's .NET introduces refledion fadlities for its suppated programming
languages. Visual Basic, Managed C++, C#, and Microsoft's version of Java. Currently,
developers are restricted to Microsoft’s compiler and their operating systems to make use of
NET anditsfadliti es. See &so Microsoft’s .NET RealinessKit, [MICROS01].

One tangible use of refledion is in JavaBeans where software componrents can be manipulated
visually via a builder tod. The tod uses refledion to obtain the properties of Java comporents
(classes) asthey are dynamicdly loaded.

Compare Javarefledionto NET refledion fadliti esin Sedions 6.7.6and 6.7.5

6.4.2 Reflecting Classes and Methods in Java

The classClass is a meta-classthat halds information about other classes. It can be used to
instantiate objeds of a given class The following two accesses are probably the ones used most
often:

Program 6.4-1 Retrieving aclassobjed |

Class cl = Class.forName("MyClass");
Class cl = MyClass.class;

These are aimost equivalent in meaning, however, the first statement throws an exception if the
spedfied class does not exist (ClassNotFoundException ). In either case cl gets a
referenceto a dass which can then be used to look upthe methods of the dass



6.4 Java Refledion 135

For primitive data types the arrespondng classcan be retrieved as foll ows:

\Program 6.4-2 Retrieving aclassobjed for primitive data types

Class c = int.class;
Class ¢ = Integer.TYPE;

Both statements are equivalent. Primitive datatypes are not redly relevant here; these goproades
are mentioned for completeness

The following nonstatic methods of Class are the most interesting for dynamic method
invocaion:

Program 6.4-3 Retrieving method oljeds |

public Method getMethod(String name, Class[] parameterTypes);
public Method[] getMethods();

getMethod returns a Method objed that refleds the spedfied pubic member method of the
classor interfacerepresented by thisClass objed.

getMethods returns an array containing Method objeds refleding al the puldic member
methods of the classor interfacerepresented by this Class objed, including those dedared by
the dassor interface ad and those inherited from base dasses and super-interfaces.

There are similar methods getDeclaredMethod and getDeclaredMethods that return
only methods dedared in the given class bu not in ore of its base dasses or base interfaces.

The JDK 1.2 API documentation [JDK12] provides more detail ed description d these methods.

6.4.3 Java Type Checking
We may want to chedk whether an ojed is an instanceof a spedfic dass

\Program 6.4-4 Checking the dassof an ohed

Class cl = Class.forName("MyClass"); // or cl = MyClass.class
boolean classOK = MyClass.class.isInstance(new Integer(10));
System.out.printin(classOK); // output is false
boolean classOK = MyClass.class.isInstance(new MyClass());
System.out.printin(classOK); // output is true

In this example, a Class objed for MyClass is creaed, and then some objeds are chedked to
seewhether they are instances of MyClass or of any of its subclasses. new Integer(10) is
not, but new MyClass() is. The method isInstance is the dynamic equivalent of the
instanceof  operator.

6.4.4 Dynamic Method Invocation in Java

In Java, methods can be invoked dynamicdly by using methodinvoke of classMethod . This
fedure is ill ustrated in the the following example. Note that the Method classis in the Java
refledion package java.lang.reflect

Program 6.4-5 shows an application of Java refledion on a String objed (string ). We spedfy
the kind of method we want, which is in this case the method concat with parameter types
parameterTypes . getMethod returns a method reference to a correspondng method, or
throws an exception if an error occurs. With invoke we spedfy the objed where method m
shoud be invoked, and the arguments that shoud be passed to the method—in this case the
string “def ”. Finaly, we print the result.



136 6 Comparisonwith Related Approaches

\Program 6.4-5 Dynamic methodinvocation

String string = "abc";

String result = null;

Class[] parameterTypes = new Class|[] {String.class};
Object[] arguments = new Object([] {"def"};

try {
Method m = String.class.getMethod("concat", parameterTypes);
result = (String) m.invoke(string, arguments);

}

catch (NoSuchMethodException e) { System.out.printin(e); }
catch (lllegalAccessException e) { System.out.printin(e); }
catch (InvocationTargetException e) { System.out.printin(e); }
System.out.printin("Result: " + result);

Real more &ou dynamic methodinvocaion onthe .NET platform in Sedion6.7.6

6.4.5 Java Reflection: Invoking Constructors

Invocaion of constructors is dlightly different to that of methods. An example for constructor
invocationis given below:

\ Program 6.4-6 Invoking constructors

import java.lang.reflect.*;

public class MyClass {
public MyClass() {
}

public MyClass(int x) {

public static void main(String[] args) {
try {

Class cl = Class.forName("MyClass");
Class[] paramaterTypes = new Class[1];
paramaterTypes[0] = Integer.TYPE;
Constructor ct = cl.getConstructor(paramaterTypes);
Object[] arglist = new Object[1];
arglist[0] = new Integer(10);
Object retobj = ct.newlnstance(arglist);

}
catch (Throwable e) {
System.err.printin(e);
}
}

}

First, we get the classreference for classMyClass . Then, we spedfy the parameter types of the
constructor we want to get, which is in this case a constructor with asingle int parameter. We
retrieve the constructor, and use it to creae a new instance of MyClass , and passan Integer
objed with the value 10.

6.4.6 Java Reflection: Fields

Anather fedure of the Java refledion API is the passhility to insped fields and to modify their
values at runtime. Thisisill ustrated in the foll owing example.



6.4 Java Refledion 137

Program 6.4-7 Retrieving fields ‘

import java.lang.reflect.*;

public class MyField {

public int val;

public MyField() { val = 10; }

public static void main(String[] args) {

try {

Class cl = Class.forName("MyField");
Field f = cl.getField("val");
MyField fObj = new MyField();
System.out.printin("val = " + fObj.val); // output is 10
f.setInteger(fObj, 20);
System.out.printin("val = " + fObj.val); // output is 20

catch (Throwable e) { System.err.printin(e); }

}
}

Weretrievetheint fiedval andsetitsvaluefrom 10 to 20.

This feaure is nealed for JavaBeans where it is possble to change the value of a field via
introspedionin the GUI of a JavaBean.

6.4.7 Dynamic Classes in Java: Class Proxy

All the software constructs of the refledion padkage presented so far have one thing in
common—they canna be assmbled at runtime. They can only be inspeded. In the cae of fields,
also the mntent can be modified. This may, however, na always be sufficient.

In Java 1.3, Sun introduced a new class cdled Proxy , which alows dynamicaly assembling
classes, so-cdled dynamic proxy classes, or proxy classes for short. This sedion describes the
classandits use.

Sources for information about Dynamic Proxies are [JDK13P], [JDK13D], and [BLOSS0Q]. The
following sedions contain large excerpts of these documents.
6.4.7.1 Overview

Proxy alows assmbling a class at runtime, a so-cdled (dynamic) proxy class A list of
interfaces spedfies which interfaces the proxy class implements. Method invocaions on the
proxy classare dispatched to an invocaion hendler.

The dassProxy isderived from Object :

\Program 6.4-8 ClassProxy

public class Proxy
extends Object
implements Serializable { ... }

A proxy class can be creaed with the following static method of Proxy , given a list of
interfaces and a dassloader.



138 6 Comparisonwith Related Approaches

\Program 6.4-9 Methodfor creating Proxy dasses

public class Proxy
extends Object
implements Serializable {

5ub|ic static Class getProxyClass(ClassLoader loader, Class[] interfaces)
throws lllegalArgumentException {

=

}

The list of classes contains only interfaces, not classes or primitive types. The spedfied
interfaces must be visible by name through the dassloader.

All nonpulic interfaces must be in the same padage. There must not be methods with the same
name and parameter lists and dfferent return values in the given interfaces.

Given theinterface

\Program 6.4-10 Sanpleinterface

public interface IPoint {
void setLocation(int x, int y);

}

we can crede aproxy classasfollows:

Program 6.4-11 Creating aProxy dass

Class proxyClass = Proxy.getProxyClass(IPoint.class.getClassLoader(),
new Class][] {IPoint.class});

This proxy classimplements interfacelPoint . Note that the methods of interfaces for a proxy
classaso suppat primitive data types as parameters. They are mapped to correspondng objed
types, e.g. int bewmmesInteger , boolean bewmmesBoolean , etc.

A proxy classitself canna do much. For instantiation of the classwe need an invocaion hander
to dspatch method cdlsinvoked onthe proxy class

InvocationHandler isan interfacethat dedares only the following method

\ Program 6.4-12 InvocationHander interface

public interface InvocationHandler {
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable;
}

invoke is cdled whenever a method is invoked on an associated proxy instance The proxy
instance passes itself, the invoked method, and the argument list of the invoked method as
arguments.



6.4 Java Refledion 139

Given theinvocaion hander:

\Program 6.4-13 Sample invocation hander

public class Point ProxyHandl er inplenments |InvocationHandl er {
public Object invoke(Object proxy, Method nethod, Object[] args)
throws Throwabl e {

try {
Systemout. println("nethod: " + nethod. getNanme());
String str = "arguments:";
for (int i =0; i <args.length; i++) { str =str +" " + args[i]; }

Systemout.println(str);

catch (InvocationTargetException e) { // an invoked method threw an exception
throw e.getTargetException();  // forward this exception

catch (Exception e) {
throw new RuntimeException("Unexpected exception " + e.getMessage());

}
finally { System.out.printin("after method: " + method.getName()); }

and the proxy classof Program 6.4-11, we can creae aproxy instance & foll ows:

\Program 6.4-14 Creation d a Proxy instance (1)

Class proxyClass = Proxy.getProxyClass(IPoint.class.getClassLoader(),
new Class][] {IPoint.class});
IPaint pointProxy = (IPoint) proxyClass.
getConstructor(new Class[] { InvocationHandler.class }).
newlnstance(new Object[] { new PointProxyHandler() });

Mostly the proxy classobjed is not nealed; one can use asimpler method of Proxy , combining
proxy definition and instantiation:

\Program 6.4-15 Creation d a Proxy instance(2) \

IPoint pointProxy = (IPoint) Proxy.newProxylnstance(IPoint.class.getClassLoader(),
new Class][] {IPoint.class},
new PointProxyHandler() });

Now we can invoke methods on ou proxy instance

\Program 6.4-16 Invocation d a Proxy instance

pointProxy.setLocation(10, 20);
if (pointProxy instanceof IPoint) { System.out.printin("ok"); }

In this case, the invocaion of al methods on pointProxy will be dispatched to
PointProxyHandler . This includes, besides setLocation , the methods hashCode,
toString , andequals which are dedared in java.lang.Object

The cast operation (IPoint) will succeal and nat throw a ClassCastException . The
proxy can be casted to al interfaces gedfied at proxy credion.

instanceof  will alsoreturntrue for al interfaces that have been spedfied for a proxy class



140 6 Comparisonwith Related Approaches

Sometimes we may want the invocaion hander, in our case PointProxyHandler

dispatch method cdlsto aspeda objea:

, 1o

\Program 6.4-17 Invocation hander forwarding methodcalls

public class PointProxyHandler implements InvocationHandler {
Object point;
public PointProxyHandler(Object point) {
this.point = point;

public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {
Object result;
try {
result = nethod.invoke(point, args);

catch (InvocationTargetException e) { // an invoked method threw an
throw e.getTargetException();  // exception; forward this exception

catch (Exception e) {
throw new RuntimeException("Unexpected exception " + e.getMessage());

>
finally {

return result;

The objed that shodd adually perform invoked methods is passed as an argument with the
constructor. In any case, the invocaion handler of a proxy class either dispatches any method
cdls to various objeds or diredly provides the implementation for the methods dedared in the
interfaces added to the associated proxy. With PCoC, a Dispatcher only delegates requests for the
invocaion of Activities with the same name (and signature) as the Dispatcher. Each request is

delegated to Activities. An Activity implements a single operation.

If we cdl any methodin the invocaion hander of aproxy, we have to passthe proxy instance as

recaver in order to use delegation rather than forwarding.
otherMethod.invoke(proxy, args).

Given the dassimplementing the IPoint  interface

example,

\ Program 6.4-18 | nterface implementation for a Proxy instance

public class Pointimpl implements IPoint {
int x;
inty;
void setLocation(int x, int y) {
this.x = x;
this.y = y;

}
public String toString() { ... }
public boolean equals(Object obj) { ... }

the aedion d aproxy will | ook as foll ows:

\Program 6.4-19 Invocation d a method wsing aProxy instance

IPoint pointProxy = (IPoint) Proxy.newProxylnstance(IPoint.class.getClassLoader(),
new Class|[] {IPoint.class},
new PointProxyHandler(new Pointimpl()) });
pointProxy.setLocation(10, 20);
if (pointProxy instanceof IPoint) { System.out.printin("ok"); }




6.4 Java Refledion 141

In this case, the invocaion of all methods on pointProxy will be dispatched to
PointProxyHandler , respedively to Pointimpl . This includes, besides setLocation
methods hashCode , toString , andequals which are dedared in java.lang.Object

The cast operation (IPoint) will succeeal, and nat throw a ClassCastException . The
proxy can be cated to al i nterfaces gedfied at proxy credion.

instanceof  will alsoreturntrue for al interfaces edfied for aproxy class

6.4.7.2 Methods Duplicated in Multiple Proxy Interfaces

When two or more interfaces of a proxy class contain a method with the same name and
parameter signature, the order of the proxy classs interfaces becomes significant. When such a
dupicae method is invoked on a proxy instance the Method objed passd to the invocaion
hander will not necessarily be the one whose dedaring classis assgnable from the reference
type of the interfacethat the proxy’s methodwas invoked through. This limitation exists becaise
the correspondng method implementation in the generated proxy class canna determine which
interfaceit was invoked through. Therefore, when a dugicae method is invoked on a proxy
instance, the Method objea for the method in the foremost interfacethat contains the method
(either diredly or inherited through a superinterface in the proxy classs list of interfaces is
passd to the invocdion hander's invoke method, regardless of the reference type through
which the methodinvocation cccurred.

If a proxy interface contains a method with the same name and parameter signature as the

hashCode , equals , or toString  methods of java.lang.Object , When such a method
is invoked on a proxy instance the Method objed passd to the invocaion handler will have
java.lang.Object as its dedaring class In other words, the pulic, nonfinal methods of
java.lang.Obiject logicdly precale al of the proxy interfaces for the determination of

which Method olbjed to passto theinvocaion hender.

PCoC has a similar model for dispatching requests to Activities with the same name and
signature, acquired from different Activity Sets. Let us asume, an Activity Set A has aajuired
Dispatchers with the name copy from the Activity Set B and then from C (in this order). When
the copy Dispatcher is invoked in A, it delegates requests with diredive
PCCDirectives.first to an Activity in (or aaquired by) the first acquired Activity Set B.
With diredive PCCDirectives.broadcast , requests are delegated to B and C. The ranking
of the aqquired Activity Sets can be changed at any time, for example, uponfocus changesin the
GUI, etc. SeeSedions5.4.3and 5.6.2

6.4.7.3 Remarks

Proxy alows the assembling of so-cdled proxy classs at runtime from alist of interfaces. By
providing an invocaion hander one can credae a proxy instance from a proxy class A proxy
instance will behave like an instance of ared class It is allowed to cal al methods dedared in
the spedfied interfaces. These method cdls will be dispatched to the spedfied invocaion
hander, as well as thase of the methods hashCode , equals , or toString dedared in
java.lang.Obiject . The operator instanceof on a proxy instance returns true, if the
correspondng proxy classimplements the spedfied interface

Although this faality makes Java more dynamic, it also has its limitations. For example, as
already mentioned, a list of interfaces has to be spedfied. This means that proxy classes are not
fully dynamic. So, although they are asssmbled at runtime, it is nat possble to add classes and
instances at runtime where interfaces do nd exist at compil e time.

PCoC has a dlightly different approad; it allows adding operations, respedively Activities, to a
comporent at runtime. Imagine a source-code editor Tod providing only the following basic
operations. loadFile , saveFile , cut, copy, paste, getSelection :



142 6 Comparisonwith Related Approaches

setSelection , insert . Say, we want to write an extension to this editor, but do not have
the source code (or do not want to pay additional license fees). We may just want to reduce
compil e time, and the freedom to change the source code withou forcing third-parties to rebuil d
everything. Anyway, let us assume, we want to add some code cleanupfeaures to the editor, that
all ow formatting source code foll owing some coding conventions. In this case the foll owing new
operations have to be introduwced (they are self-explanatory): indentLine , comment,
reformat . PCoC alows to add these Activities to the editor at runtime. Users of the editor
would think these Activities originally were provided by the editor itself. The Activities belong
to the same Activity Set as the editor, but they may be creaed by ancther, external componrent
conreded to the goplication ia XMLRPC over TCP/IP (locdly or remote).

Other advantages compared to proxy classes are the posshility to change the ranking of acquired
Activity Sets, respedively their Dispatchers, at runtime, the suppat for multi casts, and no need
to define interface classes. Java Proxies and PCoC Dispatchers both suppat delegation. An
Activity can send requests to the original recever (Activity Set) where the Activity has been
requested. When an invocaion hander of a proxy uses the proxy instance as recever for further
method cdls, we aso have delegation. Note that the proxy instance where a method has been
invoked onis passed as first argument to an invocaion hander. SeeProgram 6.4-13.

The advantages of proxy classes are alower memory consumption, better performance, and their
simple use—methods of proxy classinstances are invoked like instance methods of any other
classs:

pointProxy.setLocation(10, 20)

In contrast, with PCoC, we have to use Dispatcher requests and to padk arguments into an
argument container:

activitySet.perform("|MyPoint|setLocation”,
(new PCCMaterial(10)).add(20))

6.5 Java Swing Actions

This sedion presents the Java Swing action pattern and some typica use cases, and discusses
differences to PCoC. We will seehow to use adions to share commands among diff erent user
interfacecomporents such as menu items and toolbar buttons. We will also seehow to change
status info when the mouse moves over adion-based regions of a comporent. Ancther example
will show us how adion events can be forwarded from one classto ancther. Finally, this sedion
discusses diff erences between Java adions and PCoC constructs such as Activities, Dispatchers,
and Tasks.

This sedion refers mainly to the following articles: [DAVID0Q], and [TOEDTO01] on Pages 32ff.
For a more detailed description of Java Swing adions, see [WALRA99] on Pages 389f, and
459f.

6.5.1 Overview

A Java Swing action is an implementation of the command design pattern. It separates the
controller logic of a command from a visua representation such as menu items or toolbar
buttons. This is useful becaise the look of a menu or todbar item can be changed just by
changing its configuration, instead of making the changes in source code. Actions suppat
property changes, for example, their short description, their state (“Enabled”, “Disabled”), etc.

So far, Swing adions are similar to PCoC Tasks together with the Dispatchers it uses and
Activities—the classes that adually implement operations. Before getting too deep into detail ed
differences, take amore detail ed look at Java Actions.



6.5 Java Swing Actions 143

6.5.2 Using Java Swing Actions

The javax.swing.Action interface extends ActionListener . It inherits the method
dedaration d actionPerformed from ActionListener

\Program 6.5-1 ActionListener interface \

public interface ActionListener extends EventListener {
public void actionPerformed(ActionEvent e);

This methodis invoked when an ActionEvent  ocaurs, and an objed of a classimplementing
this interface has been registered with a Java comporent, using the comporent’s
addActionListener method.

\ Program 6.5-2 Using ActionListeners ‘

JMenultem menultem = new JMenultem("Foo");
public class MyActionListener implements ActionListener {
public MyActionListener(JMenultem menultem) {
menultem.addActionListener(this);

public void actionPerformed(ActionEvent e) {
System.out.printin("actionPerformed triggered by ", e.getSource);

Later we will seethat an Action implicitly becomes an ActionListener of menus, menu
items, or toolbar buttons where the Action  instanceis added.

Now to the adual Action interface

\ Program 6.5-3 Action interface

public interface Action extends ActionListener {
public static final String DEFAULT = "Default";
public static final String NAME = "Name";
public static final String SHORT_DESCRIPTION = "ShortDescription";
public static final String LONG_DESCRIPTION = "LongDescription";
public static final String SMALL_ICON = "Smalllcon";
public static final String ACTION_COMMAND_KEY = "ActionCommandKey";
public static final String ACCELERATOR_KEY = "AcceleratorKey";
public static final String MNEMONIC_KEY = "MnemonicKey";

public Object getValue(String key);
public void putValue(String key, Object value);

public void setEnabled(boolean b);
public boolean isEnabled();

public void addPropertyChangeListener(PropertyChangeListener I);
public void removePropertyChangeListener(PropertyChangeListener [);

In addition to actionPerformed , the Action interface adds some string definitions and
method dcedarations.

It defines a set of keys, such as Action.SHORT_DESCRIPTION , where a key represents the
name of a property of an adioninstance

These keys together with the methods putValue and getValue are used to set and examine
properties such as descriptions, icon, and asociated keystrokes.



144 6 Comparisonwith Related Approaches

Here, the meanings of some keys:

* DEFAULTIs a constant that can be used as a key for getvValue or as a vaue for
putValue cdlsfor text properties andicons.

* SMALL_ICONisused for asmall icon d an adionin todbar buttons.

* ACTION_COMMAND_KEYs used to determine the command string for the
ActionEvent  that will be creded when an adionis going to be natified as the result of
residing in aKeyMap associated with aJComponent .

There ae many others; most rather self-explanatory.
Now let us use the property methods of Action . Since we cannd instantiate an interface we

use AbstractAction . This classimplements the Action interfaceand adds property change
suppat and storage and retrieval for key values. All we have to do is to subclass
AbstractAction to add spedfic key values (name, description, or icon) and implement the

actionPerformed method.
For example, the property value of an adioninstance can be set as foll ows:

\Program 6.5-4 Using actions (1)

Action copyAction = new AbstractAction() {
public void actionPerformed(ActionEvent e) {
System.out.printin("copy action triggered by ", e.getSource);

}
copyActi on. put Val ue( Acti on. SHORT_DESCRI PTI ON, " Copy sel ection");

The foll owing code fragment does the same as that in the example dove:

\Program 6.5-5 Using actions (2)

Action copyAction = new AbstractAction( "Copy selection"){
public void actionPerformed(ActionEvent e) {
System.out.printin("copy action triggered by ", e.getSource);

}

Note that the domain where adions are used is the same as that of PCoC Tasks (see Sedions 4.5
and 5.7). Like adions, Tasks aso provide a listener mecdhanism (see Sedion 4.3.2. The sender
of amessageis passed with aPCCSenderinfo  instance

Now bad to adions. Action listeners attached with addPropertyChangeListener are
natified whenever a property is changed using putValue (cf. Program 6.5-4), or by setting the
state  property using setEnabled . Listeners can be detached using

removePropertyChangeListener

All objeds that have been added as listeners to an adion will have a property-change li stener;
this will resporse to the PropertyChangeEvent sent by the adion and change the state of
the comporent.

Program 6.5-6 PropertyChangeListener interface |

public interface PropertyChangeListener extends EventListener {
public void propertyChange(PropertyChangeEvent evt);

iIsEnabled andsetEnabled are used to accessthe state of an adion. Comporents, such as
menu items or todlbar buttons, which have been attached to the same adion will share some



6.5 Java Swing Actions 145

properties. Changes will be propagated to al listeners. For example, if the adion becomes
disabled by cdling setEnabled(false) , then all comporents that use this adion will aso
be disabled.

Say, we have an adion attached to a menu item, and change the state from “Enabled” to
“Disabled” using setEnabled(false) , the menu item will change its look appropriately
upon a property change natificaion. For example, AbstractButton , a base class of
JMenultem , and JMenultem provide a method for creding a property-change listener that
changes the look d the control to enabled or disabled if the state of an attached adion changes.

PCoC Tasks provide a generic state concept for Activities (see Sedion 4.3.7). There are some
predefined states, such as “Disabled”, and “Enabled”. However, Activity states can be defined
arbitrarily, sincethey are simple strings. Another useful stateis, for example, “Active”, dencting
a dhedkmarked state of a menuitem.

Some comporents, such as JButton and JMenultem , have constructors that take an adion as
argument and use its properties for their construction. Some Swing container comporents, such
as JToolBar and JMenu, have add methods that take an adion as an argument and crede a
comporent, such as JMenultem , from that adion.

6.5.3 Using Actions for Forwarding

For adions that extend AbstractAction , we only have to implement the
actionPerformed method. As described ealier, an adion may be attached as an
ActionListener to other objeds, such as menu items, todbar buttons, etc. The event source

cdls actionPerformed for al attadched listeners and passes an adion event instance which
halds information such as the source of the event. The distribution of an adion event may be
initiated by auser seleding a menu item of which the acionisalistener.

In some cases we may want to forward an adion event to an intermediate objed insteal if
handling the event in the adion itself. The delegates of the adion would do the adual work,
whil e the adion would be used only as a dispatch instance This concept makes sense if behavior
and/or data must be shared among many adions, such as editing commands (copy , paste ), or
if an abstradion layer is needed for services, such asfil e system operations.

‘Program 6.5-7 Command dspatch using action events ‘

public MyDispatchAction extends AbstractAction {
public MyDispatchAction(String name) {
super(name);
putValue(Action. ACTION_COMMAND_KEY, name);

void addActionListener(ActionListener listener) {
if (fListeners = null) {
fListeners = new EventListenerList;

fListeners.add(ActionListener.class, listener);

}

void removeActionListener(ActionListener listener) {
if (fListeners == null) {
return;

fListeners.remove(ActionListener.class, listener);
if (fListeners.length == 0) {
fListeners = null;

}

.. Il see below

The following methodis caled when an adionisinvoked.



146 6 Comparisonwith Related Approaches

‘Program 6.5-8 Dispatching an ation event

... I/ see above
[** Forwards the ActionEvent to all registered listeners.
*

public void actionPerformed(ActionEvent evt) {
if (fListeners != null) {
Object[] listeners = fListeners.getListenerList();

/I Create a new ActionEvent with the original source and the
/I command property associated with this action
ActionEvent e = new ActionEvent(evt.getSource(), evt.getlD(),
(String)getValue(Action. ACTION_COMMAND_KEY));
// forward the new action event object to all listeners
for (inti = 0; i <= listeners.length-2; i+=2) {
((ActionListener)listeners]i+1]).actionPerformed(e);

}
}

private EventListenerList fListeners;
} /I MyDispatchAction

In Program 6.5-7 and Program 6.5-8 we generate a new adion event objed and forward it to al
listeners of thisadion.

The next example shows how such dspatcher adions can be used.

\Program 6.5-9 Using dspatch actions

public class MyMenuManager {
public MyMenuManager(MyActionProvider provider) {
fMenuBar = new JMenuBar();
JPopupMenu menu = new JPopupMenu();
ArrayList actions = provider.getActions();
for (int i=0; i<actions.size(); i++) {
menu.add(actions.get(i)); // add action provider actions

fMenuBar.add(menu);

}
public JMenuBar getMenuBar() { return fMenuBar; }
JMenuBar menuBar;

}

public class MyActionDelegate implements ActionListener {
public void actionPerformed(ActionEvent evt) {
String command = evt.getActionCommand().toLowerCase();
if (command.equals(“cut”)) { ... } // do the actual work
else if (command.equals("copy™)) { ... }
else if (command.equals("paste™)) { ... }

}
}

public class MyActionProvider {
public MyActionProvider() {
fActions = new ArrayList();
fActions.add(new MyDispatchAction("Cut")); // create some dispatch actions
fActions.add(hew MyDispatchAction("Copy"));
fActions.add(new MyDispatchAction("Paste"));

MyActionDelegate mydelegate = new MyActionDelegate();
for (int i=0; i<fActions.size(); i++) { Il register mydelegate as
actions.get(i).addActionListener(mydelegate); // handler for all actions

ArrayList getActions() { return fActions; }
ArrayList fActions;

}

As expeded, the menu manager just iterates over the list of adions and associates menu items
with them. Of course, the GUI properties could be taken from a configuration so that the adions



6.5 Java Swing Actions 147

redly only ad as dispatch objeds resporsible for forwarding events to delegates which do the
red work.

MyActionProvider creaes some dispatch aaions that are used by the menu manager. In this
case we attach an instance of MyActionDelegate  aslistener and adual handler of the adion
events; there may also be other adions in other objeds that use the same hander. This design
alows dharing of behavior acossdifferent classes.

Now, let us deploy these dassesin an applicaion:

\Program 6.5-10Using ection providersin an aptication

public class MyDelegateDriver {
public MyDelegateDriver() { }
public static void main(String[] args) {
MyActionProvider actionProvider = new MyActionProvider();
MyMenuManager menuManager = new MyMenuManager(actionProvider);
JFrame myframe = new ...

.rﬁyframe.setJMenuBar(menuManager.getMenuBar());
myframe.pack();
myframe.setVisible(true);

}

}

First, we crede an adion provider—an objed delivering alist of adions. Then, we instantiate a
menu manager, which creaes menus and a menu bar and associates the menu items with the
aaions delivered by the adion provider. Finaly, we assciate the menu bar with a new frame,
and show the frame including the menu bar. This code fragment shows how to separate GUI
from functional code. The adion povider could equally be deployed completely withou GUI.

With PCoC, the message dispatch concept is separated from GUI-spedfic data and behavior.
Dispatchers are resporsible for forwarding and delegation (the latter is not suppated by Swing
adions) and contain no GUI-spedfic data and code (see Sedions 4.4 and 5.6). Tasks are used
mainly for GUI-spedfic purposes, and therefore are associated with GUI-speafic definitions
from the wnfiguration (seeSedions4.5and5.7).

6.5.4 Remarks

The concept of Java Swing Actions , respedively ActionListener s, is powerful and
important. It allows to a certain level the separation of interadive (GUI) and functional part of a
comporent.

Actions can be used for the following domains:
* Enable or disable aset of controls based onadions.

* Provide descriptions of the adion for menus, toodbars, and for the status bar in resporse to
mouse gestures.

» Forward adion events of adionsto ather objeds attached as li steners.
» Abstradion d dispatchers and celegates for forwarding methodcdlss.

Though this concept is very versatile, it also has some limitations. Actions are, as oppcsed to
PCoC Dispatchers and Tasks, not designed to pass arguments other than adion events to their
listeners. Of course, an adion could assemble arguments from its environment and forward them
together with a cmmand rame in an instance of anew adion event classto its i steners.

One problem is also that adions, in contrast to PCoC Dispatchers and Activities, carry some
information for GUI elements. Most literature praises the power of Action to decoupe GUI
elements from functional logic. This is only true to a certain level. Actions are designed to be



148 6 Comparisonwith Related Approaches

attached to menus, or todbars, otherwise it would not make sense for them to hold a description
string and icon name. Although adions can be used for other things, their suppat for GUI-
spedafic propertieswould be an owverkill .

Although adions can be compaosed to groups, they miss some abstradion layers. There is no
general concept for groupng adions.

States are limited to “Enabled” and “Disabled”, whereas the set of PCoC Activity states is not
limited at all.

Actions have no built-in priority management (focus management) that changes the order of
li steners with focus changes in the Ul, and the adion event may be sent seledively to either only
onerecever or al recevers (broadcast).

Actions canna be configured to take explicit arguments. Think of menu items and toolbar
buttons for commands such as cut and copy , or one to show context help for a seledionin a
text view. They may take the current seledion as argument and do something with it. In the case
of adions, ead comporent providing such an adion would have to get the current text seledion
itself and copy it into the clipbaard. In the case of PCoC, one would define the Activities cut ,
copy , and showContextHelp  so to exped a seledion as argument. Any comporent could
provide seledions for them. There would be only one configuration for ead of these Activities,
that says that they are coupged with Activity getSelection  , no matter by which comporent(s)
it is provided. Whenever a comporent is added that suppats an Activity getSelection to the
application, the existing Activities cut , copy , showContextHelp  would automaticaly use
this new Activity when the new comporent has focus (the highest priority). There would not be
the need to add li steners to ead type of adion that operates on seledions.

PCoC aims at more moduarity. It is possble to define Activities that deliver objeds such as
seledions, etc., and to define Activities that need one or many objeds as arguments. It is aso
possble to combine Activities, respedively Dispatchers, to Tasks. For example, one can
combine Dispatchers Selection getSelection() with copy(Selection) to a Task
copy(getSelection()) . In PCoC, such conredions are made only by configuration. The
framework automaticdly registers and urregisters li steners, etc.

A big advantage of Java Swing adions is the simple concept. The concept can be understood
very quickly. It ismore difficult to understand the PCoC concepts.

6.6 Method Pointers in C++

The C++ standard ([ISOCPPR8], page 83) defines member pointers. This feaure is rather
unknown.

\Program 6.6-1 Method panters in C++ \

class MyClass {
void foo(int i) {};

void (M/dass::* x)(int) = & ass: : foo;
MyClass* o = new MyClass();

0->*x(10);

MyClass 02;

02. *x(10);

In this case, x is a pointer to a method of MyClass with void as return value and int  as
argument. foo can be a static or nonstatic method. If it is a static method, x is a plain function
pointer. Operators ->* and.* provide accessto the member associated with x. In the example,
we passthe integer value 10 as argument to foo .



6.6 Method Pointersin C++ 149

As oppcsed to method objedsin Java or C#, which are used for dynamic methodinvocaion, this
construct is fully typed at compile time. With dynamic method invocaion, argument types are
chedked at runtime (seeSedions6.7.4 6.7.6 and 6.4.49).

An extended version of this method pointer concept is avail able in the form of delegates with the
NET platform (seeSedion6.7.5.

For more information abou dynamic type information of C++ in the ANS| C++ standard, see
[ISOCPP8] onPages 71ff, 128,and 34X, andin [STROU97] on Pages 407f.

6.7 Microsoft .NET

This sedion describes refledion and dynamic method dispatch medanisms of Microsoft’s .NET
architedure, and shows ome aiticd issuesfor itsusein red applicaions.

6.7.1 Overview

Microsoft introduced the first release candidate of its new techndogy product .NET at the end of
the yea 2001. What Microsoft cdls a framework is a combination of a so-cdled Common
Language Runtime (CLR), class libraries, services, and a set of programnming languages and
utiliti es that suppat software devel opment.

NET introduces a new programming language cdled C# that is said to combine the best of C++
and Java. Other suppated languages are Visual Basic, Managed C++ which is an adaptation of
the C++ programming language, and a Java-clone cdled Visua J++, and a JavaScript-like
programming language cdl ed JScript.

The core of a .NET environment is cdled Common Language Infrastructure (CLI), and
Microsoft’ s concrete implementation Common Language Runtime (CLR).

“At runtime, the coommon language runtime is responsible for managing memory,
starting up and stopping threads and processes, and enforcing seaurity padlicies, as
well as stisfying any dependencies that one cmmporent may have on any other
comporent.” - [MSNETO1] onPage 13.

Basis for this environment is a common standard for objed oriented programming languages
(Common Language Spedficaion) and a common type system (Common Type System).
Compilers of .NET do nat creae madine dependent binaries, but objed-code in the Microsoft
intermediate language (MSIL). This code is then trandated and optimized by a just-in-time
compiler to be exeauted natively on a spedfic target madhine. A garbage colledor automates
memory management.

The common type system (CTS) provides a programming language-independent concept of data
types, enabling many more programming languages to share data and code onthe .NET platform.
In this case, Microsoft learned from their mistakes in the past—for example the difficulties when
sharing data among different programming languages when using COM, DCOM, COM+, etc.
For more information abou the CTS, see[MSCTS01] onMicrosoft’s .NET RealinessKit CD.

For Web services, .NET suppats protocols such as HTTP, XML, SOAP. SOAP is an XML-
based messaging protocol, which, by the way, will also be suppated by PCoC.

NET also suppats aurity medanisms for communication between comporents.

More relevant for this thesis is the improved suppat for name spaces and name-space
hierarchies. A name spaceuses a “dot syntax” natationto logicaly grouprelated classs together.
For example, System.Web.Services conweys that contained classes provide functionality
that is somehow related to Web services. When organizing classes this way it is easy to
understand what functionality they provide. Actualy this is the same reason why the concept of
Activity Set containment hierarchy was introduced to PCoC.



150 6 Comparisonwith Related Approaches

The foll owing sedions shoud provide an overview of refledion fadliti es suppated by .NET and
its programming languages. We will concentrate mostly on C# for simplicity.

Compare .NET refledionto Javarefledion fadliti esin Sedion 6.4, and espedally Sedion 6.4.4

6.7.2 Critical issues of .NET

Software companies are often not able to change existing architedures, becaise of the effort and
risk that have to be invested. Although they may neel some of the concepts, they may still be
content with their existing applicaion design. They may only need parts of various frameworks.
So, a cruciad question is whether frameworks are moduar in design, i.e, if parts of the
frameworks can be deployed independently.

In the case of .NET, the framework fadliti es can hardly be deployed independently. Developers
who want to use single fedures have to use the whole architedure which is huge. Spedfic
programming languages or language extensions (Managed C++, C#, Visua Basic) are required
to make use of the .NET feaures. We may have the same problem with other architedures or
frameworks, e.g. Java and PCoC. However, PCoC is quite small, and can easil y be deployed with
existing (C++ or Java) applicaions. The framework can be used withou GUI extensions (Tasks,
configuration, etc.), in the case that only the delegation faalities (Dispatchers, Activities,
Activity Sets) arerequired.

On the other hand, a big advantage of .NET isthat it suppats amost everything that is needed to
creae a modern applicdion. It suppats interoperability between comporents written in diff erent
programming languages, it provides a seaurity concept, classlibraries (colledions, strings, etc.),
and much more.

Ancther criticd iswue is the availability of a framework on different platforms. Companies
providing their software for different platforms, cannat use proprietary programming languages.
Reasons are the higher development costs caused by maintenance eff ort for diff erent source code
on different platforms, extensive developer educaion, higher effort for integration of a common
architedure for all suppated platforms, etc. There are arealy (open source) projeds such as
Mono for Linux to suppat .NET on other platforms than Microsoft's operating systems. See
[MONOO3].

6.7.3 Langu age Independent Object Model of .NET

COM and COM+ provides only aminimal set of properties of diff erent programming languages.
With COM, it is, for example, not passble to use C++ interna data structures in other
progranming languages. This causes a limited interoperability with other programming
languages unlessa custom seridi zation mecdhanism is put on top of these interfacestandards. See
also [iIX1207]], Pages 123, and 128.

With .NET, Microsoft introduces a language-independent objed model. There are vaue types
and reference types that are stored on the heg. The former are used for basic data types,
enumeration types, etc., the latter for classes, delegates (type-safe function painters), and
pointers. See[iX1201] onPages 123, [WESTP01] onPages 112, and [MOS02].

6.7.4 Overview of C#

Microsoft introduced a new programming language cdled C# (C-sharp) with .NET. It combines
some feaures of C++ and Java and adds some new ones. Microsoft states that C# is the first
comporent-oriented programming language available. See [MSCSHO1] on Microsoft's .NET
RealinessKit CD, Page 7, for detail ed information.

The most interesting feaures are, beside the garbage coll edion provided by the .NET Common
Language Infrastructure for all .NET languages, enumeration types (currently not suppated by
Java; will beintroduced in Java 1.5), properties (value assgnment of member variables as setter



6.7 Microsoft NET 151

and getter methods; see Sedion 6.7.8 and indexers (spedal case of properties, see Sedion
6.7.9, attributes (meta information that can be attached to program elements such as classs,
methods, etc.; seeSedion ), and delegates. A concept cdled boxing al ows to ke primitive data
types sich asint compatible to Object .

The refledion medianism suppats retrieving and using types, methods, fields, properties, and
others at runtime. See &so [MICROS01] onMicrosoft’s .NET RealinessKit.

Methods are no first class objeds in C#, or in .NET in genera. When method pointers and
dynamic invocaion is required, one can use delegates, or .NET refledion fadliti es for dynamic
invocaion (GetMethod ).

The foll owing sedions offer an insight into some .NET and, mainly, C# capabiliti es.

There is a good comparison of C#, Java, and C++ in [BREYMOZ2] (in German) on Pages 98ff; a
comparison table is on Page 105.

6.7.5 .NET Delegates

6.7.5.1 Overview

With the .NET platform, Microsoft has introduced a powerful concept of type-safe method
pointers cdled delegates. A .NET delegate represents a class derived from
MulticastDelegate rather than a raw memory address The main differences to C++
method ponters are:

* A delegate stores the target objea (the recever) if associated with a nonstatic method.
However, delegates can also be asociated with static methods. In this case, the target objed
iIsnot set.

* A delegate can be asciated with more than ore method,for so-cal ed multi casts.

It is quite common that objeds engage in two-way conversation. To cope with threading issues,
cdlbadk methods are frequently used. In objed-oriented languages these must also be able to
point to nonstatic methods (objed methods). This is where delegates are useful. Although the
C++ standard aready suppats method pointers to nonstatic methods (see Sedion 6.6), .NET
delegates are eaier to use and more extensible.

In contrast to method objeds provided by the refledion medianisms of Javaand .NET, delegates
arefirst classobjeds. The advantage of .NET delegates compared to dynamic method cdls using
refledion, and to PCoC, is their type-safety at compil e-time. This helps to find wrong argument
types ealier than with dynamic methodinvocaion.

PCoC Dispatchers are basicdly similar to delegates (they also dispatch requests to methods and
suppat multicasts) and to method objeds provided by the Java and .NET refledion (they are
invoked dynamicdly; argument types are chedked at runtime). However, as oppased to delegates,
Dispatchers suppat delegation, and nd only forwarding.

Activities and their Dispatchers can be assembled at runtime, and can be added and removed at
any time. So-cdled remote Activities can be attached to an Applicaion using XMLRPC (and
also RMI when using Java).

With .NET it is also possble to define (or better assemble) behavior at runtime. Assembilies,
clases and methods can be defined completely a runtime using the
System.Reflection.Emit name space See [LIBERTO1], Chapter 18. PCoC is not that
powerful (the implementation of Activities can only be defined at runtime if they are attached via
aremote cnredion), but this makes, onthe other hand, the framework easier to use.



152 6 Comparisonwith Related Approaches

The capability for adding Activities or methods at runtime is useful if some functionality of a
comporent shoud be loaded, or better extended via a remote conredion or through
configuration at runtime.

Delegates were first introduced in Microsoft’s Visual J++, aso designed by Anders Hel sberg,
andwere a case of much technicd andlegal dispute between Sun and Microsoft.

Sun states in [SUNDLG99] that boundmethod references such as delegates add complexity, the
concept results in loss of objed-orientation, delegates are limited in expressveness—they are
all egedly nothing more than function pointers (which is naot true; seethe description of delegates
abowe), and they are no more convenient than adapter objeds. Note that these comments do nat
refled the opinion of the author. With these results in hand, the designers of the Java
programming language dedded to introduceinner classes, which can be used for purposes where
usually delegates are used in NET, for example, for cdl-bads, etc.

Sun also states in this article that any implementation of boundmethod references would either
be inefficient or nonportable. A portable implementation of delegates that generates code
cgpable of running on any compliant implementation of the Java platform would have to rely on
the standard Java Core Refledion API.

Microsoft states in [MSDLG99] that delegates are simpler and more efficient and portable than
inner classes. They also say that delegates are better for multi casting, and reduce the number of
classes drasticdly, which leads to small er binaries.

For more information, see Sun's original article [SUNDLG99], and Microsoft’s respornse
[MSDLG99].
6.7.5.2 Using Delegates

Delegates are dedared using the delegate  (C#, Visua Basic) or __ delegate  (Managed
C++) keyword.

Let us compare delegates to Java adion listeners in the foll owing example.

\Program 6.7-1 Using anActionListener in Java

public class MyClass i mpl enent's ActionLi stener {
public MyClass() {
button = new JButton("Test");
butt on. addActi onLi stener(this);
}

public void actionPerforned(ActionEvent e) {

}

}

In the constructor of MyClass , we creae a new JButton instance and add this as adion
listener. JButton hods alist of adion listeners and natifies ead, when the button is clicked.
More preasdly, it cdls the method actionPerformed . As adion listener, MyClass must
implement the ActionListener interface including the actionPerformed method.



6.7 Microsoft NET 153

Here asemanticdly equivalent implementation using delegates:

\Program 6.7-2 Dedaring a dllegate in C#

public del egate void ActionListener(Acti onEvent e);
public class Button {
public ActionListener click;

}
public class MyClass {
public MyClass() {
button = new Button();
button.click += new ActionLi stener (Acti onPerformned);

public void ActionPerfornmed(ActionEvent e) { ... }

}

In this C# code fragment, we dedare a delegate ActionListener . In the Button class we
use this delegate to hdd and ndify listeners of button clicks (in contrast to JButton  in Program
6.7-1, where we use a list of adion listeners). In the constructor of MyClass , we add a new
ActionListener delegate which is assciated with the method ActionPerformed . Note
that the return type and parameter types of the delegate and the associated method must match.

With the Java adion listener concept, we can add and remove listeners (listener objeds)
arbitrarily. All listeners must implement the ActionListener interface including the method
actionPerformed . With .NET, al methods which match a delegate's return type and
parameter types can be alded to and removed from the delegate.

Let us asume that we want to implement a logging fadlity that takes a message id and a string
message & parameter:

\Program 6.7-3 Dedaring a dllegate in C# \

/I This delegate actually represents a class encapsulating a function pointer to
/I some method taking an integer and string argument and returning void.
public del egate voidLogger( int id, string nsg);

Such a delegate can be dedared inside of a class or stand-alone. The given delegate adually
represents a class encgpsulating a function pointer plus a recever to some method taking an
integer and string argument and returning void.

Note that sincebeta 2 of .NET, all delegates are multi cast del egates, therefore able to send events
to ore or many targets.

A compiler implicitly generates a delegate classfor eat delegate dedaration. These classs are

aways derived from System.MulticastDelegate (C#, Visual Basic), respedively
System::MulticastDelegate (Managed C++), and acordingly in other programming
languages.

The C# compil er produces the foll owing classfrom the dedaration above:

Program 6.7-4 A delegate dassin C#

public class Logger : System.MulticastDelegate {
Logger(object target, int ptr);
/I The synchronous Invoke method

public virtual voi d Invoke( int id, string nmsg);
/I The asynchronous version
public virtual IAsyncResult Begininvoke( int id, string nsg,

AsyncCallback cb, object 0);
public virtual voi d Endinvoke(IAsyncResult result);




154 6 Comparisonwith Related Approaches

This classis only creaed implicitly by the compil er; thisis not source @de.

Now that we have dedared the delegate, we can make use of it. The following class respedively
its method, writes messages to the mnsole:

Program 6.7-5 A console logger in C# |

public class ConsoleLogger {
public ConsoleLogger() { }
voi d PrintMessage( int id, string nsg){
Console.WriteLine("Message {0}: {1}", id, msg);
}

}

Note that the PrintMessage  method hes the same parameter and result types as the del egate.
The foll owing logger writes to afil e:

\Program 6.7-6 Afilelogger in C# ‘

public class FileLogger {
public FileLogger(string logfilepath) {
FileInfo f = new Filelnfo(logfilepath);
f.Open(FileMode.OpenOrCreate,
FileAccess.ReadWrite, FileShare.None);
sw = f.AppendText();

~FileLogger() { sw.Close(); }
voi d LogMessage( int id, string nsg){
sw.WriteLine("Message {0}: {1}", id, msg);
sw.Flush();

private string logfilepath;
private StreamWriter sw;

}

Note that we are intentionally using another method name (LogMessage ) to demonstrate that
only parameter and result types are relevant to delegates.

Now we implement adriver class our applicaion entry point:

Program 6.7-7 Our main classin C#

public class MyApp {
public static int Main(string[] args) {
ConsoleLogger cl = new ConsoleLogger();

Logger | ogger = new Logger(cl.PrintMessage); // logs to console
| ogger (100, "Sanple Message");

}

In Program 6.7-7, we crede a logger delegate from the PrintMessage  method of a
ConsoleLogger instance When we invoke the logger, the cdl is adualy forwarded to
cl.PrintMessage(100, "Sample Message")

For static methods, the target is not spedfied (cf. oed cl isinthe example dowe).

Program 6.7-8 A static method @ call back

public static void StaticLog(int id, string nmsg) { ... }
Logger | ogger = new Logger(StaticlLog);




6.7 Microsoft NET 155

Program 6.7-8 shows nathing but the use of a delegate as an ordinary function pointer. However,
delegates can aso be useful for other things such as multi casting to different methods, which is
not possble with C(++) function panters.

Compare delegates to C++ method pantersin Sedion 6.6.

Now badk to our example. If we want to log to the console and to a file, we can simply do the
foll owing:

Program 6.7-9 Our main classin C# |

public class MyApp {
public static int Main(string[] args) {
FileLogger fl = new FileLogger("c:/test.log");
ConsoleLogger cl = new ConsoleLogger();

Logger consoleLogger = new Logger( cl . Print Message); // logs to console
Logger fileLogger = new Logger( fl.LogMessage); //logsto afile
Logger | ogger = (Logger)consol eLogger +fil eLogger;
| ogger (100, "Sanple Message"); /1 logs to console AND a file

}

In Program 6.7-9, respedively Program 6.7-30, the methods of the console logger and the file
logger are cdled acardingly. To log to the mnsole only, we can remove the file logger again:

\Program 6.7-10 Removing a ctlegate \

Logger logger = (Logger)consoleLogger+fileLogger;

logger(100, "Sample Message"); /l'logs to console AND a file
| ogger -= fil eLogger;
| ogger (100, "Sanple Message2"); /1 logs to console only

6.7.5.3 Remarks

The delegate concept was introduced as part of Microsoft’s .NET platform. Delegates are method
pointers that are more powerful than function pointers of C and C++. Each .NET programming
language suppats this concept.

One important fedure of .NET delegates is the ability to use nonstatic methods as calbadks.
The C++ standard already suppats method pointers to nonstatic methods, but delegates are
eaier to use. Another important feaure of delegates is the ability to combine methods to
multicasts—if such a delegate is invoked, it forwards cdls to al attached methods. The
advantage of delegates as oppased to dynamic method cals using the Java or .NET refledionis
their type safety at compil e time.

In contrast to method objeds provided by the refledion medianisms of Javaand .NET, delegates
arefirst classobjeds. The advantage of .NET delegates compared to dynamic method cals using
refledion, and to PCoC, is their type-safety at compil e-time. This helps to find wrong argument
types ealier than with dynamic methodinvocaion.

PCoC Dispatchers are basicdly similar to delegates (they also dispatch requests to methods and
suppat multicasts). However, as oppcsed to delegates, Dispatchers suppat delegation, and not
only forwarding.

When invoking a Dispatcher one spedfies the Activity Set, the name of the method and an array
of arguments. Dispatchers automaticaly combine methods of the same name and signature, as
oppased to delegates, which can be used to explicitly combine methods with a spedfic parameter
and result types signature. Both can be used to make single or multicasts (broadcast to attadhed
methods). Both all ow attaching and detaching cdlbadk methods at runtime. In the case of PCoC



156 6 Comparisonwith Related Approaches

the cdlbadks are again Dispatchers or Activities (operations that adually perform requests). See
also Sedion4.4.

For a good and detailed description of C# delegates, see [TROELO1] on Pages 250ff, and
[LIBERTO1] on Pages 277f. The latter describes delegates also for Managed C++ and Visua
Basic.

6.7.6 .NET Late Binding and Dynamic Method Invocation

6.7.6.1 Overview

Like Java, .NET suppats refledion fadliti es such as dynamic exploration of types and dynamic
methodinvocation. Late binding is a mecdhanism that all ows resolution of the existence and name
of a given type and its members at runtime rather than at compil e time. Once the presence of a
type has been determined, we can dynamicdly invoke methods, access properties, and
manipulate the fields of agiven entity.

Read abou dynamic methodinvocaion d Javain Sedion6.4.4

6.7.6.2 Dynamic Method Invocation

The following example illustrates dynamic method invocaion in .NET. We use the
System.Activator class to instantiate the class MyClass , which we have put into an
asembly MyAssembly .

\Program 6.7-11 Classinstartiationin .NET \

public class MyApp {
public static int Main(string[] args) {
/I Load MyAssembly
Assembly a = null;
try{a= Assenbl y. Load(" MyAssenbl y"); }
catch(FileNotFoundException e) { Console.WriteLine(e.Message); }

/I Get MyClass

Type cl = a. Cet Type(" MyAssenbl y. MyCl ass");
/I Create an instance of MyClass
object o = Activator. Createlnstance(cl);

=
}

Now, cl paints to a classMyClass loaded from assembly MyAssembly . o paints to a new
instance of this class

Now, let ustake alook at the implementation d MyClass :

Program 6.7-12 ClassMyClass

public class MyClass {
public void foo() { Console.WriteLine("Hello World!"); }

For simplicity of this example, this classcontains only one methodwithou any parameters.

Next we retrieve a MethodInfo  objed for method foo , which we can then invoke by using
the MethodInfo.Invoke method.



6.7 Microsoft NET

157

Program 6.7-13 Dynamic methodinvocationin .NET

public class MyApp {
public static int Main(string[] args) {

/I Get MethodInfo
MethodInfo mi = cl . Get Met hod("fo0");
/I Invoke method without arguments
m .1 nvoke(o, null);
return O;
}
}

Let usasamethat MyClass aso has amethodthat takes a string and an integer parameter.

\Program 6.7-14 ClassMyClass(2)

public class MyClass {
public void foo() { Console.WriteLine("Hello World!"); }
public void printMessage(int id, string msg) {
Console.WriteLine("Message {0}: {1}", id, msg);
}

}

Theinvocaion procedure looks alittl e more compli cated:

‘Program 6.7-15 Dynamic methodinvocation with argumentsin .NET

/I Get MethodInfo

MethodInfo mi = cl . Get Met hod( " pri nt Message") ;
object[] argunments = new object[2];

arguments[0] = 100;

arguments[1] = "A Message";

I/l Invoke method with arguments

m . |1 nvoke(o, argunents);

If the invoked methodreturns avalue, it hasto be cated to the crred type.

To clealy determine the right method, we may want to spedfy the full signature of the methodto

be invoked:

\Program 6.7-16 Dynamic method lookup with parameter types

/I Get MethodInfo

Type[] paraneterTypes = new Type[2];

par anet er Types[ 0] = Type. Get Type(" System I nt eger");

par anet er Types[1] = Type. Get Type(" System string");

MethodInfo mi = cl . Get Met hod( " pri nt Message”, paraneterTypes);

The simil arities to Java shoud be apparent (cf. Sedion 6.4.4abou dynamic method invocaion

in Java).

6.7.6.3 Remarks

Late binding and dynamic method invocaion is mostly needed for componrent interoperability
and dynamic (re-)use. Almost every modern programming language such as Java and the .NET

platform languages suppat refledion, which is necessary for dynamic methodinvocation.

We remember that PCoC Activities are method objeds and include references to their providers.
Activities can be added to/removed from a comporent al at runtime. Dispatchers are similar to
method pointers and delegates, and delegate requests to Activities. When invoking a Dispatcher,
we spedfy the Activity Set, the name of the method and an array of arguments. Seealso Sedion

4.4. The PCoC constructs are not type safe & compil e time, but at runtime.



158 6 Comparisonwith Related Approaches

6.7.7 Name Spaces on .NET

6.7.7.1 Overview

When developing applicaions, it may be useful to group semanticdly related types into custom
name spaces. For this reason, eaty .NET platform language suppats name spaces, and Java
suppats them with the padage concept.

In C#, name spaces can be defined using the namespace keyword.

6.7.7.2 Using Name Spaces
The foll owing example @rrespondsto the examplein [TROELO1] on Pages 23-24.

\ Program 6.7-17 Using name spacesin .NET

/I Hello world in C#
using System;
public class MyApp {
public static void Main() { Console.WriteLine("Hello World!"); }
}

In this case, we use name space System where the Console classis defined. There are only
dlight syntadica diff erences between the various .NET programming languages, which is elegant
for developersusing .NET.

\ Program 6.7-18 A stack implementation \

using System;

using System.Collections;

namespace OriginalNamespace {

public class MyStack {
private Stack stack;
public MyStack() { stack = new Stack(); }
public void Push(int i) {
if (i >= 0) { stack.Push(i); }

public int Pop() {
if (stack.Count > 0) { return stack.Pop(); }
else { return -1; }

}

public int Peek() {
if (stack.Count > 0) { return stack.Peek(); }
else { return -1; }

}
public int Size() { return stack.Count(); }
}

}

Name spaces are a way to group semanticdly related types such as classes, enumerations,
interfaces, delegates, and structures. They are dso useful to dstinguish diff erent implementations
of syntadicdly equal types.

The stadk implementation of Program 6.7-18 allows adding of positive numbers, we use the
Stack classof the name spaceSystem.Collections

Now we may want to add trace cagpabiliti es to this class but only for debug reasons. In the
relesse version of our applicaion we may not want such time-consuming cheds. In the
foll owing code fragment, we do not change the original implementation, but rather override it in
another name space



6.7 Microsoft NET 159

Program 6.7-19 Added tracing capalility for the original stack implementation \

namespace MyDebugNamespace {
class MyStack : public OriginalNamespace.MyStack {
private Stack stack;

public void Push(int value) {
int prevsize = Size();
Console.WriteLine("MyStack.Push: {0}", value);
base. Push(val ue);
if (Size() != prevsize+1) {
Console.WriteLine("Error in MyStack.Push: value not added");

else if (base.Peek() = value) {
Console.WriteLine("Error in MyStack.Push: wrong last element”);

}

}
public int Pop() {
int value = 0;
if (Size() > 0) {
int prevsize = Size();
val ue = base. Pop();
Console.WriteLine("MyStack.Pop: {0}", value);
if (Size() != prevsize-1) { Console.WriteLine(
"Error in MyStack.Pop: value not removed correctly"); }

else {
Console.WriteLine("Error in MyStack.Pop: stack is empty");

return value;

Now we have a stadk classthat overrides the original class and adds some traang. Our client
code might look like the foll owing:

\ Program 6.7-20 Using name spaces \

using OriginalNamespace; // Original MyStack without tracing
I/l using MyDebugNamespace; // MyStack with tracing

MyStack stack = new MyStack();
stack.Push(10); // push an integer value into the stack

Depending on the name spacewe use, either the original implementation of MyStack is taken,
or that with tradng capabilities. The client code can stay the same in any case. During the
implementation and test phase of source code we may use the name spacewith added traang,
and for therelease version d the gplicaion, the origina name space

Note that Java suppats a padkage concept. A Java padckage is a named scope and can be
imported by using theimport  keyword. For example, import java.lang.*

Name spaces are used often for asped-oriented programming, where they can help to smplify
the replacement of implementations, or the sharing of aspeds among many classes. See also
Sedion6.2

6.7.7.3 Name-Space Aliases

A cleaner and more convenient approach to resolve name space ambiguity are name-space
aliases. For example, we can use them instead of the name-spacetype definitions of Program 6.7-
20:



160 6 Comparisonwith Related Approaches

\Program 6.7-21 Name-spacealiasesin C#

/I A name-space alias
usi ng MyStack = MyDebugNanespace. MyStack; // or: using MyDebugNanespace

MyStack stack = new MyStack();
stack->Push(10); // push an integer value into the stack

The foll owing code fragment ill ustrates the suppat of aliasesin PCoC:

\Program 6.7-22 Name-spacealiasesin C#

PCCActivitySet a = PCCRegistry.getOrCreateActivitySet("A");
PCCRegi stry. set Alias("MStack", "A"); /1 or: a.setAlias("MStack")
a = PCCRegistry.getActivitySet("MyStack"); // returns Activity Set "A"

6.7.7.4 Nested Name Spaces
Like Java packages, .NET name spaces can be nested.

Program 6.7-23 Nested name spacesin C#

nanespace MyApp {
nanespace MyServices {
class Assert{ ...

class Tracing { ...

}
namespace MyWidgets {
class TableView { ...

class GraphView { ...

}
}

}

Now, the name spaces can be imported seledively:

‘Program 6.7-24 Name-spacealiasesin C#

using MyApp.MyServices;
using MyApp.MyWidgets;

Almost every modern programming language suppats nested name spaces. In PCoC, we use
Activity Sets. They are named scopes like name spaces, but can be credaed at runtime. Seealso
Sedions3.3and 5.8

6.7.7.5 Remarks

The concept of name spaces or padkages, including nesting, is suppated by aimost all modern
objed-oriented programnming languages. Name spaces allow groupng of different, mostly
semanticdly related types. They can aso be used to vary aspeds of source code simply by using
the one or other name spacedefining the same types, bu with dff erent implementations.

In short, name spaces can help to increase moduarity, reusability, and to replace
implementations of aspeds by others withou aff eding client code.

We may encounter situations where these fadliti es are needed even at runtime. The name spaces
suppated by .NET are static. Once a .NET program is compiled and exeauted, it is no longer
possble to reorganize its name spaces.



6.7 Microsoft NET

With PCoC Activity Sets, the feaures of name spaces can be adieved at runtime.
See 4s0 Sedions 3.3, 5.3 5.4.3and 5.8,

6.7.8 .NET Properties

Properties are a new concept introduced with C#. A property is not aregular datafield of aclass
but amethodpair set/get  that just lookslike afield (seeProgram 6.7-25). It usually hides and
encgpsulates data fields. Properties are said to be a natural extension of data fields, and are

known as snart fields in the C# community.

In the following example, we define the propertiesx andy:

\Program 6.7-25 A C# property

public struct Point {
double fx;
double fy;

public double x {
set {
fx = value;
}
get{
return fx;

}

}
public double y {
set {
fy = value;

}
get{
return fy;
}
}
}

We can then accessthe properties as foll ows:

\Program 6.7-26 Accessng aC# property

Point g = new Point();
g.x = 20; // set-method is called implicitly
Console.WriteLine(qg.x); // get-method is called implicitly

g.Xx can be accesxd like adatafield, but adually the correspondng set and get methods are

cdled. Usually there may bered datafields behind poperties, likefx in Program 6.7-25.
Indexers are aspedal case of properties. They al ow indexed accessto user defined classes.

\Program 6.7-27 C# indexe

public enum CoordinateDimension : short{ X =1,Y =2}
public double this[CoordinateDimension which] {
set {
if (which == CoordinateDimension.X) fx = value;
else fy = value;
}
get{
if (which == CoordinateDimension.X) return fx;
else return fy;
}
}




162 6 Comparisonwith Related Approaches

Program 6.7-27 shows the implementation of an indexer in the classPoint of Program 6.7-25.
The indexer is spedfied by using the keyword this. The parameter and return types can be
seleded arbitrary.

This concept is nat available in Java. In C++ the same effed can be achieved by overloading the
index-operator [] .

The foll owing example shows the use of an indexer:

\Program 6.7-28 C# indexe usage

Point g = new Point();
g[CoordinateDimension.X] = 20;
g[CoordinateDimension.Y] = 30;

The members are accesed by using indexes. Theset andget methods are cdled implicitly.
See &so [TROELO1] onPages 147-149.

6.7.9 Remarks

The refledion fadliti es described in this chapter are only a small excerpt of what .NET adually
provides. However, all fadliti es relevant for this thesis were explained, or at least mentioned, to
get a rough overview what is possble with .NET. Ancther rarely described feaure suppated by
.NET is Expandq an interfacethat all ows to add and remove members at runtime:

\Program 6.7-29 Expando(except) ‘

/I System.Runtime.InteropServices.Expando:

public Fieldinfo AddField(String name);

public MethodInfo AddMethod(String name, Delegate method);
public Propertylnfo AddProperty(String name);

public void RemoveMember(Memberinfo m);

The System.Reflection.Emit allows more dynamic things such as defining assemblies,
modues, types, and methods completely at runtime.

The following code fragment ill ustrates a possble use of the System.Reflection.Emit
name space

\Program 6.7-30 Dynamically creating aclassand amethod (C#) (1) \

using System;
using System.Reflection;
using System.Reflection.Emit;

public class TestFoo

{
Type t;
public TestFoo() {
MakeFoo() ;
UseFoo() ;

UseFoo()

object o = Activator.Createlnstance(t);
t. CGet Met hod( " Foo"). I nvoke(o, null);




6.7 Microsoft NET 163

\Program 6.7-31 Dynamically creating aclassand amethod (C#) (2) \

mMakeFoo()

/I Create a dynamic assembly in the current domain

AssemblyName assemblyName = new AssemblyName();

assemblyName.Name = "FooAssembly";

AssemblyBuilder fooAssembly = Thread.GetDomain().DefineDynamicAssembly(
fooAssembly, AssemblyBuilderAccess.Run);

/I Create a module in the assembly and a type in the module
ModuleBuilder fooBuilder = fooAssembly.DefineDynamicModule("fooModule™);
TypeBuilder fooType = fooBuilder.DefineType("FooType",
TypeAttributes.Public);
/1 Add a Foo nethod to the type
Met hodBui | der fooMethod = fooType. Defi neMet hod(" Foo",
Met hodAttri butes. Public,
null, null);
/I Generate the implementation for "Foo"
ILGenerator ilg = fooMethod.GetlLGenerator();
ilg.EmitWriteLine("Hello World!™);
ilg.Emit(OpCodes.Ret);
// Finalize the type so we can create it
fooType.CreateType();
/l Create an instance of the new type
t = Type.GetType("FooType");
}

}

In the constructor, we first cdl the method MakeFoo which creaes an assembly, a modue, a
type, and a method dynamicdly. We define the new method“Foo” to write “Hello  World! ”
to the standard ouput. In UseFoo, we dynamicdly invoke the newly creaed method.

NET provides powerful refledion faaliti es, equal or even surpassng those of Java. However,
isaues for its deployment may be the Microsoft licensing model, and whether it will be avail able
on operating systems other than the Microsoft Windows family. In any case, the concepts are
useful for moduarity and reusabilit y of software comporents.

More details abou .NET attributes can be found in [TROELO1] on Pages 373f, and
[LIBERTO1] onPages 457t.

As oppased to .NET delegates and name spaces, the PCoC approach is a purely dynamic one. As
mentioned ealier in thisthesis, the framework introduces dynamic fadliti es sich as Activity Sets
and the ability to add and remove operations at runtime. This alows to dynamicdly organize
objeds and comporents in groups and prioritized acquisition relationships, to apply different
aspeds to objeds, to switch Activity Sets, and to modify objeds (adding and removing
members). These fedures may not aways be neeaded, but they are useful for reusability and
interoperability of objeds or comporents.

PCoC does nat provide suppat for fields, but only for operations, more predsely Activities.
Fields must be accessed through operations. Note that even .NET properties encgpsulate field
access

Compare .NET refledionto Javarefledion fadliti esin Sedion 6.4, and espedally Sedion 6.4.4

6.8 Smalltalk

Smalltalk is a purely objed-oriented programming language based on classs. It has affeded or
was even the basis for the design of many modern programming languages such as, for example,
Java.



164 6 Comparisonwith Related Approaches

In Smalltalk, even primitive data types and methods are objeds—so-cdled first class objeds.
Classes are also objeds. All Smalltalk processng is acammplished by sending messages, like in
Sdf (cf. Sedion 6.10.

Objeds are instances of classes. The messages that an objed can respondto are defined in the
interfaceof its class Methods define how messages are exeauted and represent a dassbehavior.

Sending a message to an objed causes the method seach to begin with the receving objed
itself. If the methodis not foundin the classof the objed, the methodis seached for up the class
hierarchy. The sameis also valid for sending messages from within an objed to itself using the
identifier self

See [FOOTES89], [GOLDB83], [IBMST95], and [GITTIOQ] for descriptions of the Smalltalk
language and its concepts.

With PCoC, operations are exposed as Activities. They are treaed as first class objeds like
methods in Smalltalk. With Dispatchers, PCoC offers a message dispatch medhanism that
suppats delegation. When a Dispatcher is invoked, it seaches its aqquisition parents for one or
many Activities (like in Smalltalk where methods are seached in an objed's classand then in its
superclasses), gathers them in a distinct list and finaly invokes them. As oppased to PCoC,
Smalltalk does not suppat multi casts for the message dispatch. The structure of objed sets can
be modified at runtime by adding or removing Activities. In Smalltalk it is possble to add,
remove and wrap methods at runtime. See Chapter 2 for a detail ed comparison of the message
dispatch medhanisms of Smalltalk and PCoC. Sedion 5.6 describes PCoC Dispatchers in more
detail .

6.9 Oberon Message Objects

This sedion provides an overview of the message objed concept proposed with Oberon-2, and
how this relates to similar concepts in PCoC.

6.9.1 Overview

“Oberon-2 is a general-purpase programming language in the tradition o Pascd and
Modua-2 and was developed at the ETH Zurich. Its most important fegures are
block structure, moduarity, separate compil ation, static typing with strong type
cheding (also aaossmodue boundries), and type extension with type-bound
procedures.

Type extension makes Oberon-2 an oljed-oriented language. An oljed isavariable
of an abstrad datatype wnsisting of private data (its gate) and procedures that
operate onthis data. Abstrad datatypes are dedared as extensible records. Oberon-2
covers most terms of objed-oriented languages by the establi shed vocabulary of
imperative languages in order to minimize the number of nations for similar
concepts.” - [MOSP1].

SeeSedion 2.2.3for an overview of Oberon message objeds and interpreters.

6.9.2 Remarks
Message objeds have some alvantages over methods ((MOS28)):
* Messges are data padkages; they can be stored and forwarded later on.

* A message objed can be passed to a method (the message interpreter) that forwards it to
different objeds. This al ows broadcasts, which are nat or difficult to redize with methodks.

* It is sometimes easier if the sender does not have to cae abou whether a recaver
understands a message (implements a arrespondng method) or naot.



6.9 Oberon Message Objeds 165

* |t is aso posshble to accessthe message interpreter (hander) through a method reference,
which enables to replaceit by another at runtime.

Message objeds also have disadvantages:

» Theinterfaceof a classdoes not refled which messages can be handled by instances of the
class It is difficult to redize at compile time which objeds are related through message
forwarding at runtime.

* Messges are interpreted and forwarded at runtime, which is much slower than dired
method cdls. It depends on how fast dynamic type information is evaluated, or in the case
of handling messages using their names, how fast strings are parsed.

» Sending message objeds requires more code to be written. Arguments must be padked in
the message objed. A regular interfacesuch as for methods is not avail able.

* Invalid messages are not recognized at compil e time. Although this provides the flexibility
to forward messages through objeds that canna hande them themselves, it can be
troudesometo find errors.

Generaly, one shoud use methods rather than message objeds. However, in some cases it is
redly useful to use message objeds.

PCoC also sends message objeds, or kind of. Messages in PCoC consist of the following parts:
the message path including the name of the Dispatcher that shoud be used, where the Dispatcher
name corresponds to the name of the message that shoud be forwarded; some diredives for
delegating the message (for example, broadcast or single cast); an argument container (a Material
instance); the method (perform , getState , etc) which shoud be invoked on the
correspondng Activities. Objeds can register for spedfic messages. To dothis, it is necessary to
spedfy name and dynamic signature (parameter and return value types) of the message. For
example, for a message with signature void  select(int from, int to) , we would
write:

\Program 6.9-1 A PCoC Activity in Java \

addActivity(new PCCSingleActivity("select”, "SelectionCategory", ", "int,int") {
}

Note that this statement registers the recever for messages with the name select . It does nat
represent an adual messge objed. The recaver itself is an operation implemented as an
anonymous class derived from PCCSingleActivity . Whenever a message with name
select is delegated to the Activity Sets of the objed that registered the Activity, the Activity
will be invoked, which itself can delegate the message or simply cdl amethod d the surroundng
objed.

The interface definition ensures that the argument lists of al select messages sent to the
current objed will havethe given interface theinvocaion d Activitiesistype-safe & runtime.

PCoC Digpatchers ad as what we cdled “hander” or “message interpreter” ealier in this
sedion.

Recever operations are also objeds, becaise this provides the flexibility not only to hande
messages at runtime, but also to extend recaver objeds with operations at runtime. The state of
recavers can also be handled with PCoC. Possble states are “Enabled” or “Disabled”, and any
other strings. Implementations such as li cense management for operations can be encgpsulated or
at least simplified by this approadh. With the PCoC architedure, it is passble to let obeds
dynamicdly aajuire operations, or better, correspondng Dispatchers, from other objeds. This
improves code and ohed reuse and sharing.



166 6 Comparisonwith Related Approaches

Generdly, al the advantages and disadvantages mentioned here for message objeds are also
valid for PCoC.

An introduction into message objeds is given in Sedion 2.2.3 Real more abou PCoC in
Chapters 4 and 5, espedally Sedions 5.4 and 5.5. Information and references to Oberon-2 are
availablein [MOS1], [MOSg], [WIRTH9Z].

6.10 Self

One of the most closely related sources of this thesis is a former feaure of the programming
language Self: prioritized multiple inheritance The feaure was removed in version 3.0. This
sedion gives an owverview of this programming language, and haw it isrelated to thisthesis.

6.10.1 Overview

“Self isan ojed-oriented language for exploratory programming based ona small
number of simple and concrete ideas: prototypes, slots, and kehavior. Prototypes
combine inheritance and instantiationto provide aframework that is smpler and
more flexible than most objed-oriented languages. Slots unite variables and
procedures into asingle wnstruct. This permits the inheritance hierarchy to take over
the function d lexica scoping in conventional languages. Finally, because Self does
not distinguish state from behavior, it narrows the gaps between ardinary objeds,
procedures, and closures. Self's smplicity and expressvenessoffer new insightsinto
objed-oriented computation.” - [UNGARS7].

Unlike other objed-oriented programming languages, Self suppats neither classes, nor variables.
Instead, Self has adopted a prototype metapha for objed credion. Furthermore, while other
objed-oriented programming languages suppat variable accessas well as message passng, Self
objeds access their state information solely by sending messages to “self”. The programming
language is named after this messaging concept. Due to this approadh, message passng is more
fundamental in Self than in other programming languages. Methods and fields are stored in so-
cdled dots. Methods are objeds assciated with code, as oppased to fields which contain data.
Normally slots are readable, no matter if accessng data or methods. If there is a correspondng
assgnment gdlot (for example, “x: ) for a data dot (“x”), the member variable (“x”) is
considered read-write. Microsoft lately introduced a similar concept cdled properties with its
new platform .NET (abou 15 yeas after Self showed up the first time). Read more abou .NET
propertiesin Sedion 6.7.8

6.10.2 Prototyping vs. Class Inheritance

[UNGARS87] describes on Page 3 the differences between classbased programming languages
and Self asfollows:

facility class-based systems Self: no classes
N N instance of o
inheritancerel ationships inherits from

subclassof

credion metaphar build acwording to plan clone an ojed
initi ali zation exeauting a “plan” cloning an example
one-of-a-kind need extraobjed for the dass noextraobjed nealed
infinite regress classof classof classof ... nore required

Creaing new objeds from prototypes is accomplished by a simple operation, copying. This
approadh has a simple biologicd metaphar, cloning. Creaing new objeds from classs as in



6.10Self 167

classbased programming languages is acomplished by instantiation, which includes the
interpretation of format information in a class Instantiation is similar to building a house from a
plan. Copying is often perceved to be a simpler metapha than instantiation, sinceit is known
from processesin nature.

Self allows multiple inheritance, which requires a strategy for deding with multiple parents. It
has block closure objeds, and threads.

In prototype languages the structure of objeds is not defined separately in classes. Existing
objeds can be apied and and extended and/or modified.

Let us take a look at the following example which ill ustrates differences to classbased
approades:

@ print
move(x,y)
L
@ parent*
X 10
—>y 10
X -
Y -~
|
parent* parent*
OIE O
y o y 15
X: - X: -
y: - y: -

Figure 6.10-1 Seif objeds

Here we have some prototypicd objeds. These Self objeds describe point structures. Each of
them describes its own format, but some refer to members of other objeds.

Objed 1 isacopy of parent 3 and redefines dlot (field) x. Slot y stays the same as in objed 3.
Objed 2 is also a copy of 3 and redefines both slots. Objed 3 is a copy of 4, thus it aso has
methods move and print , so doobjeds 1 and 2. Each objed has a pointer to its parent, except
objed 4, which fully describes its own format.

Note that objeds can have more than one parent objed—Self suppats multiple inheritance
(through delegation).

Slots of Self objeds can ether be readable, or assgnment slots. For example, x, y, print , and
move of the example above are considered to be readable dlots. x: andy: are assgnment slots
for assgning valuesto x andy. The — represents the assgnment primitive operation, which is
invoked to modify the contents of correspondng data slots. Note that values x and y are
accesd through messages only, aswell asprint  and move, which are cnsidered as methods.

Methods are Self objeds that include code. Note that in other programming languages, such as
Smalltalk and Python, methods are aso first-class objeds like in Self (cf. Sedion 6.8 and
[ROSSUMAQ).



168 6 Comparisonwith Related Approaches

Theobed inthe print  slot above includes code and thus serves as a method. However in Self,
any objed can be regarded as a method. A “data” objed contains code that merely returns itself.
See 4s0 [UNGARS87] and [SMITH9Y5].

If accesgng dlots in a prototypicd objed, and the objed itself does not define these dlots, then
the parent objed is eached, and then slots in the parent’ s parent, and so on.

Generally, it is much easier to use templates such as prototypes and modify them, instead of
creding something new from a plan. Think of planning and building a house—doing everything
yourself starting with a basic plan isalot of work and needs a lot of understanding. Seleding an
existing and appropriate plan, letting someone build a house acwording to that, and finaly
making own modificaionsis easier and faster.

PCoC provides proper base classes and configurations which shoud simplify comporent
development. They can be considered as templates for concrete comporents.

6.10.3 Prioritized Multiple Inheritance

6.10.3.1 Overview

Prototypicd programming languages do not include classes, but instead alow individual objeds
to delegate to (dynamicdly inherit from) other objeds. [CHAMB91] describes the inheritance
and encgpsulation medhanisms designed and implemented in ealy versions of Self. The
inheritance system of Self suppats a unique sender-path tie-breser rule that resolves many
ambiguities between unrelated unadered (not ranked) parents in multiple inheritance
relationships, and dynamic inheritance which al ows an objed to change its parents at runtime to
effed significant behavioral changes due to changesinits gate.

Earlier versions of Self (before version 3.0) suppated prioritized multi ple inheritance. Randall
B. Smith explains in [SMITH95] on Page 6 that it was a mistake introducing prioriti zed multiple
inheritanceinto Self:

“It is aways tempting to add a new fedure that handles sme example better.
Although the feaure had made it possble to dredly handle some examples, the
burden it imposed in al reasoning abou programs was just too much. We dandored
it for Self 3.0. Although adding fedures sesans good, every new concept burdens
every programmer who comes into contad with the language”.

Note that Self still suppats multi ple inheritance, but parents are not prioriti zed any more.
Thereason for introduwcing thisfeaurein an ealy versionis explained as foll ows:

“We prioriti zed multi ple parent slotsin order to suppat amix-in style of
programming. The sender-path tie-breaker rule dlowstwo dsjoint objedsto be used
as parents, for example aredangle parent and atreenocde parent for aVLSI cdl
objed. The method-halder-based privacy semantics allowed olgeds with the same
parents to be part of the same encagpsulation damain, thereby suppating binary
operationsin away that Smalltalk canna”.

The statement continues:

“But ead feaure dso caused usnoend d confusion. The prioriti zation d multiple
parents implied that Self’ s resend (cdl -next-method) lookup tad to be prepared to
badkup davn parent linksin order to foll ow lower-priority paths. The resultant
semantics took five pages to write down, bu we persevered. After ayea’s
experiencewith the feaures, we foundthat ead of the members of the Self group
had wasted nosmall amourt of time dasing compil er bugs that were merely
unforeseen consequences of these fedures. It becane dea that the language had



6.10Self 169

strayed from its origina path.

We now beli eve that when fedures, rules, or elaborations are motivated by particular
examples, it isagood ket that their additionwill be amistake. The secondauthor
(David Ungar) once mined the term “archited’strap” for something similar in the
field of computer architedure; this phenomenonmight be cdl ed “the language
designer’strap”.

If examples canna be trusted, what do we think shoud motivate the language
designer? Consistency and mall eability. When there is only one way of doing things,
it iseasier to modify and reuse mde”.

We fully agree with this statement. The prioritized dynamic inheritance model of PCoC aso
causes some problems. It requires that developers lean this different model. On the other hand,
the PCoC approadh is smpler. Seelater.

The prioriti zed multi ple inheritance concept of Self (before version 3.0) combines unardered and
ordered multi ple inheritance That is, on one hand, the parents of an objed are ranked by their
priorities. Slots of higher priority parents take precelence over that of parents with a lower
priority. On the other hand, parents at the same priority level are unardered with resped to ead
other, and accesses to any clashing slot definitions will generate an ambiguous message aror.

parent A parent B parent C parent D parent E

\\ /\ //

<<ordered list
of parents>>
I

child F

Figure 6.10-2 Prioritized multi ple inheritancein SHif

In this case, the parent objed A has the highest priority (0), the highest ranking. B and C have the
same priority (1). A so-cdled sender-path tiebreaker rule resolves ambiguities when the same
slots are inherited from different parents with the same priority. Parents can dired subsequent
messages (resends) badk to the origina recever, or via other inheritance paths of the origina
recever (in our case child ), or to one of their own parents. This makes the concept even more
complex. Read amore detail ed description d this concept in[CHAMB91].

Some older programming languages such as New Flavors, CommonLoops, and CLOS, suppat
ordered multiple inheritance These languages lineaize the inheritance graph, in addition to the
ordering of parents. That is, they construct a total ordering of al classes that is consistent with
eat class locd ordering, defined as the class followed by its dired parents in order.
[CHAMB91] mentions two drawbads of this lineaization: ambiguities between otherwise
unardered parents are ignored, and the concept fails if the locd ordering of a class parents is
inconsistent with the global classordering.

PCoC neither provides a global ordering of objeds or classs (a lineaization) like the mentioned
programming languages, nor a mix of ordered and unadered multiple inheritance like the
prioritized multiple inheritance feaure of former Self versions (before version 3.0). It only
suppats aranking of acquired parents.



170 6 Comparisonwith Related Approaches

The medhanism can be used to invoke Activities synchronouwsly or asynchronously. Activities can
be reused for various purposes. For example, they can be assciated with menu entries and
todlbar buttons, accessed via scripting and remote interfaces, etc.

PCoC users have afew thingsto lean:

1. an objed can aqquire (dynamicdly inherit) a set of operations (so-cdled Activities) from
another objed—the so-cdled parent. Acquired parents are ranked (prioritized). The
ranking can be dhanged at any time.

2. how to send a message in order to perform such an operation. A message is always sent via
the highest priority path which provides the spedfied operation. Multicasts are also
posshle.

3. resends to the original recaver are suppated. When an Activity is invoked, it can invoke
other Activities using Dispatchers of the original recever of the current Activity request.
The recever (the Activity Set where a Dispatcher has been invoked) is passed as explicit
parameter to the requested Activity. However, requests to other Activity Sets are also
suppated.

4. how to register and expose Activities (addActivity ) and Activity Sets (spedfied name
in the constructor of an Activities Provider). SeeChapter 4.

The prioritized-aqquisition medhanism of PCoC is mainly used for focus management of PCoC
Toodls and Service Providers, but is aso useful for simple task scheduling, or smply for hiding
the fad that some comporents may define the same operations. Many comporents provide
semanticdly and syntadicdly equal operations such as getSelection , copy , checkout
and others. A getSelection message is automaticaly sent to the comporent with the highest
priority. Thisis convenient for developers, since they need not bother abou focus management,
and the code stays the same, no matter if operations are invoked via script, GUI, or even if there
iIsnoGUI at all.

Unlike in Sdf, there canna be multiple parents with the same priority. This makes the
medanism easier to uncderstand.

PCoC has some introspedion built in to help in cases of confusion. Of course, prioritized
multi ple inheritance and dynamic method invocation can be a red burden. However, with an
introspedion fadlity that gives a lot of feedbad, developers can get and retain an overview of
which instances of Activity Sets, Dispatchers, Activities, etc. exist at runtime and how they are
related to ead other. This helps to understand the behavior of the system and suppats us to find
errors. We foundthat developers are able to use this programming model efficiently and withou
getting lost in seaching for bugs. For operations that shoud not be exposed through a user
interface scripting or remote interfaces, using normal methods is recommended.

SeeSedions 5.4.3and 5.6 for detall s abou the aquisition mecdhanism of PCoC.

6.10.3.2 Design Principles

One way to achieve mall eaility and reusability is sharing. So, one important concept of Self is
that parents of an objed are treaed as shared subperts of the objed. Message lookupin parentsis
dore by treding the parents as part of the recaver.



6.10Self 171

shared

B

(*)
Figure 6.10-3 Parents as Shaed Objeds
The parent P of objed A and B istreded aspart of AandB. self awaysrefersto the recaver of
a message, regardlessof inheritance Inherited methods are considered to be shared parts of the
same recever objed. For example, a method of P being invoked on A refers to the same recaver

objed A. A and P together form one recever objed, as well as B and P. If A canna hande the
message, it is sached for in parent P, and so on.

One problem of multiple inheritance is to resolve ambiguities between multiply-inherited
corflicting behavior and states (methods and fields). Two or more parents may define the same
dlots. Schemes for automaticdly resolving such conflicts may be confusing to users.

Some older programming languages such as New Flavors, CommonLoops, and CLOS suppat
ordered (ranked) multiple inheritance This is useful if the objed is more like one parent. This
one parent would have ahigher rank than the others.

The oppasite approadch is to leave the resolving of ambiguiti es to the programmer. Programming
languages such as Common Objeds, TrellisOwl, Eiffel, C++ trea parents as equals withou
ordering. Ambiguities must be resolved explicitly be the developer. This unadered inheritance
works best with relatively unrelated parents.

Both approaches have advantages and disadvantages. Earlier versions of Self combined these
approadhes by suppating prioritized inheritance Parents with the same priority were unardered,
and such with a higher priority had precedence over parents with lower priority. This means that
dlots of the parents with a higher priority had precaldence over that of lower-priority parents. Slots
of the objed itself took precalence over inherited ones. If the same slot were inherited from two
or more parents of the same priority, then the system generated a messageAmbiguous error.

In Self, parent slots are asggnable like other dots, so it is passble to change the inheritance
structure & runtime. Thisfeaureis cdled dynamic inheritance

PCoC uses a similar approach. Parents can be assgned to comporents at runtime, and aso
removed. The correspondng operations are cdled “acquire” and “discard’. Actualy PCoC
suppats more akind of ordered inheritance rather than different priorities and unardered parents
per priority level. The ranking can be changed at runtime. No clashes of dots, i.e., no ambiguous
slots, can occur.

The PCoC inheritance mechanism can produce quite the same annoying effed as the prioriti zed
multi ple inheritance feaure of ealier Self versions. The following drawbadks were reasons to
abandonthisfeaure in new versions of Self (borrowed from [CHAMB91], Pages 28-29):

“One consequenceof using higher-priority parents to implement mixinsin Self is
that these mixin ojeds shoud amost always be defined with no @rents. Otherwise,
the dots of the mixin's ancestors, nomatter how general, would override any slotsin
lower-priority parents, nomatter how speafic. Thisis amost never what the
programmer intends.



172 6 Comparisonwith Related Approaches

Ancther potentially surprising effed of ordering an oljed’s parentsisthat a dhain o
resends may eventually “badtradk” and cdl amethod defined in alower-priority
parent of a descendant of the sending method hdder, if no more ancestors of the
descendant’ s higher priority parent contain matching slots. Thisis adesirable feaure
of ordered multiple inheritance and resends, sinceit al ows mixinsto invoke the
methods that they override, which are defined in lower-priority “cousins.” However,
badktrading to lower-priority branches may surprise the novice programmer in ather
situations, espedaly if the lower-priority branch isa dild of the resending method.

Ordered multi ple inheritance, resends, and dynamic inheritance have complex
interadions. Dynamic inheritancedoes not normally affed message lookup,since
assgnable parents canna change while amessage send is being handed. However,
they may change between resends within a dhain o resends. Thiswould na be a
problem in a system with single inheritance or unardered multi ple inheritance since
the message lookupcould always begin with the resending method hdder’s parents
and procea upwards. But with the introduction o ordered multi ple inheritance, a
resend might have to badktrac to alower-priority parent of a descendant of the
resending method hdder to find the next matching slot. If a parent between the
recever and the resending method hdder were changed between resends, it would be
difficult to determine what the next matching slot shoud be, espedally if the
resending method hdder were no longer an ancestor of the recever at al.”

Inheriting objeds through dff erent paths, and thus also through different priorities, can indeed be
troudesome. But, PCoC does not offer a complex medhanism to continue the seach for a
method or better an Activity, when a matching Activity has aready been found. Either an
Activity, or aset of Activities in the case of multicasts, is foundor nat, but the searcch cannat be
continued. This may be a limitation, but it is still possble to invoke Activities explicitly in a
parent.

Resends to the original recaver (Activity Set) of an Activity request are possble, but the resends
are treded the same way as any other Activity request. More predsely, a resend is the use of a
Dispatcher in the recever Activity Set which is passed as explicit parameter to the current
Activity. Ambiguiti es between parents, or better their Dispatchers, does nat have to be resolved.
Because of the ranking of parents, there canna be ambiguities. For a few cases, some Activities
may be aauired through different aaquisition branches (an indired parent can be reated
through different priorities), but we did not encourter problems because of this. Operations that
are inherited from the same comporent through different paths are only taken from the higher
priority occurrence

In short, the complexity is quite low. Resends are treded like any other Activity requests, no
ambiguities between parents have to be resolved, and there is no suppat for continuing the
seach for an Activity. There is only one dispaich mechanism, and a request can be sent by
explicitly using a Dispatcher of an Activity Set (the recever). Read more abou the dispatch
algorithm of PCoC in Sedion5.6.2

[CHAMB91] explains the prioritized multi ple inheritance feaure of ealier Self versions and its
drawbadksin detail .

6.10.4 Remarks

Sdf is an objed-oriented programming language based on prototypes. Objeds are creaed by
cloning objeds instead of classinstantiation. No classobjeds are nealed. The state information
of objedsis accessd solely through messages to “self”, which gave the programming language
its name. Methods are objeds assciated with code, as oppased to variables. For datathereisthe
concept of assgnment slots. Normally slots are readable, nomatter if accessng data or methodks.



6.10Self 173

The developers of Self abandored prioritized multi ple inheritance They say it was a mistake to
introduce it in an ealier version. Too many ways to do things made it hard to get used of this
programming language. They wanted to keep it minimal, so they removed this feaure in version
3.0. Note that Seif still suppats multiple inheritance, but without prioriti zation of the parents of
objeds.

Self' s problem with managing prioriti zed inherited operations with the same name from diff erent
parent objeds is adually afeaure in PCoC. The approach is not as powerful as that of Self, but
therefore easier to understand. The idea of PCoC is to manage cases where an objed aaqjuires
from others which may define the same operations, by ranking the aqquired parents. Although
PCoC introduces another programming model for invoking methods, it is kept minimal.
Experience has shown that devel opers understand the basic concepts of PCoC quickly. Problems
during debugging are reduced by supdying some introspedion fadlities for PCoC. To get
detail ed information abou PCoC’ s priority management, seeSeadions 5.4.3and 5.6.

PCoC has also quite the same drawbadks as the prioritized multi ple inheritance fedure of ealier
Self versions. Inheriting a componrent through two diff erent branches with diff erent priorities can
be troudesome, although we have not encountered such troudes with PCoC yet (due to its
dispatch algorithm; cf. Sedion 5.6.2. Changing parent ordering during the processof delegating
messages (and invoking operations) can have strange effeds. We try to reduce these effeds by
simply letting the framework determine the current recaver paths for a set of Dispatchers before
adually invoking them. If the adual recevers are determined before Dispatchers are invoked,
then priority changes during the exeaution do not have any impad on the seledion of the
Activities to be invoked. This behavior is described for maao-Tasks in Sedion 4.5.3 In Self, a
priority change during the exeaution of a methodwith subsequent resends may leal to surprising
results. Depending on the priority change, the method lookupfor the resends may continue with
different methods.

For more information abou Self, see [UNGAR87], [CHAMBS89], [CHAMB91], [AGESE9Y,],
and [SMITH95]. [LIEBER86] discuses delegation in prototypicd systems and may be
interesting in this context.

6.11 System Object Model (SOM, by IBM)

For the sake of completeness IBM’s System Objed Model shoud also be mentioned here. SOM
is a techndogy that was designed to overcome several mgjor issues of using objed class
libraries. So-cdled system objeds can be distributed and subclassed in binary form. Subclassng
is suppated aaoss different programming languages; users may use class libraries in their
preferred programming language.

SOM provides suppat for the fragile base class problem (when a class and its subclasses can
evolve independently) and subsequent updating. Changing interfaces in base classes or
comporents affeds existing client code. SOM suppats upward binary compatibility, which
ensures that client code will still run after updeting comporents.

Anocther interesting feaure of SOM is its naming service Instances of naming services can be
organized in hierarchies—a fedure that is suppated by aimost any new programming language
(through name spaces, packages) and also by PCoC (through Activity Sets).

Resolution of multiple inheritance is dore as foll ows: when the same method is inherited from
multi ple ancestors, the leftmost ancestor spedfied in the base-classlist is used. This medanism
iscdled |eft path precedencerule.

SOM fully suppats meta-programming. A program based on SOM can define new interfaces,
synthesize new classes matching them, and creae new instances of the new classes. SOM even
alows intercepting the exeaution of operations. Distributed SOM makes use of this and
integrates distribution suppat ontop d SOM.



174 6 Comparisonwith Related Approaches

Read more aou SOM in [IBMSOM94]. You can register a  http://www
3.ibm.convsoftwar e/ad/sonmysom30tk.html for more SOM documentation and reference guides.

6.12 Design Patterns

Whil e developing PCoC the question arose whether or not Activities and Dispatchers are simil ar
to known patterns of software engineeaing literature. This sedion answers this question by
comparing PCoC patterns to existing ones. Detailed descriptions of common design patterns
mentioned here can be foundin [GAMMAZ95)].

6.12.1 Command Pattern

A commandis an operation encgpsulated as an objed. Although an Activity aso encgpsulates an
operation as an objed, there are not many other simil arities between these concepts. Command
objeds are more basic. They usualy alow do, undo, andredo -operations. In order to exeaute
a command, a command objed must be creaed. For example, on the seledion of a menu entry
(e.g., “undd’), such a command objed may be creded. In contrast, Activities are usualy creaed
only once per comporent. They must already be present in order to perform them. An Activity
may creae a @mmand ohed onits exeaution. However, itself isno command ohed.

6.12.2 Strategy Pattern

The strategy pattern provides a concept to define sets of agorithms, to encgpsulate them in
classs, and to vary agorithms independently of clients that use it. For example, we may define
various classes with the same interface ead implementing a different graph layout algorithm.
Such a classis cdled strategy. In PCoC, the strategy pattern is used for Dispatchers to gather
aqquired Activities (Activities from aqquired Activity Sets) using the spedfied diredives, and
subsequently to invoke different methods of the resulting Activities, for example getState
perform , getContextData . The seach agorithm is implemented just once See Sedions
4.4 and 5.6.2 This is useful, since such algorithms are often complex, and it is reasonable to
maintain it only once in the source code. The strategy objeds do the adua work on the objeds
delivered by the dgorithms.

Although, Dispatchers make use of the strategy pattern, neither Dispatchers, nor Activities are
strategy objeds.

6.12.3 Activities: First Class Objects

Some of the patterns used in PCoC are conventional ones, such as bridge, singleton, observer,
strategy pattern or combinations of these. Some patterns may be, in part, similar to existing
patterns.

Basicdly, Activities are method objeds. On framework-level, they are treded as first-class
objeds. They can be aeaed, asciated with a concrete method, added, and removed at any time.

Activities are also similar to the command pattern, or Java Swing Actions (see Sedion How to
Use Actions in [WALRA99]), but adually they are quite different (see the previous sedions).
Activities are similar to method descriptors of Java Beans, but additionally make it posgble to
add and remove them at runtime, to spedfy and change state, for example, “Enabled” or
“Disabled”, and provide additional context data, for example, data additional to return value of
an Activity delivering the aurrent seledionin atext editor Toadl.

See[ENGLA97] on Pages 205f, for an explanation of method descriptors. Seeaso the Sedions
Using Java Refledion and Finding the method and Pages 41f for the basics of the Java
refledion.



6.12Design Patterns 175

6.12.4 Dispatchers

There is no pattern for gathering possble recavers of requests ranked by priority (depending on
the focus history of their comporents) and subsequently sending the requests. Dispatchers might
be used withou Activities, for example, with method references as in Java refledion, or as
function panters, etc. These a¢ualy do nd require Activities.

However, Dispatchers can be described as smart method references holding dired or indired
references to Activities (which, in fad, are method objeds); they provide forwarding and
delegation capabiliti es and can be deployed independent of other Dispatchers; Dispatchers are
boundto a spedfic Activity name and interface(simil ar to method signature).



176 6 Comparison with Related Approades




7 Conclusion 177

7 Conclusion

This chapter summarizes feaures, advantages, and disadvantages of the framework presented in
this thesis. It describes the impad of PCoC on red applicaions, and impressons and feedbad
provided by current users of PCoC.

7.1 Overview

Through its suppat for dynamic comporent modification and delegation, PCoC can be used to
introduce some flexibility into applications. Comporent functiondlity, as well as its look and
fed, can be customized a runtime, separating the implementation process from the
customization. Operations, or more predsely Activities, can be reused for various applicaion
interfaces such as the user interface scripting, remote control, etc., thus they need only be
implemented once The framework automaticdly exposes Activities, or better their Dispatchers,
for their use with these interfaces.

The use of thin base classs provided by PCoC as templates for comporents can help to further
reduce the implementation effort. The method dispatch medhanism including its suppat for
different comporent interfaces is hidden in the base classs, as well as the processng of
comporent startup, initidization, and termination. This approach alows developers to
concentrate on value-added tasks such as implementing the core logic (the purpose) of eah
comporent.

7.2 Which Mechanisms When?

This sedionisthe result of many team discusgons of framework architeds at Takefive Software,
respedively WindRiver Systems, including the author of thisthesis.

7.2.1 Static Interfaces / Method s

Static interfaces, or more predsely ordinary methods or functions, shoud be used in cases where
tight binding is necessary or desired, for example, for high performance more convenience
syntax chedking at compil e time, simple static source @de browsing, etc.

Advantages:

» Compile-time type cheding for method arguments and return values helps to find errors
ealier than with dynamic method cdls or other refledion-based dispatch mecdanisms,
where types can orly be dhedked at runtime.

» Static method invocation kegos client code small and readable, as oppacsed to refledion
based medanisms where arguments and return values mostly must be padked into speaal
container objeds, and type-casts are necessry (e.g., in Java, from Object to concrete
types), and where the method cdl it self is more compli cated.

* As oppced to refledionbased medianisms, static method invocaion is a widely
understoodand preferred model for synchronous cdls.

Disadvantages:

* Methods shoud only be used for nonblocking and short-term operations. For long-term
operations which block the current thread, asynchronous concepts such as events shoud be
used.

* Methods are nat suitable for asynchronous cdls. For deferred exeaution, we need an objea
that represents an operation including its arguments. For such purposes, command objeds
or events $oud be used. PCoC suppats Tasks for this purpose.



178 7 Conclusion

* Methods are not suitable for conreding user interface(menu, toolbar) code to componrents.
For example, there is no suppat for state-change natificaions (“Enabled”, “Disabled”,
etc.), customization, visua representation, etc. For this purpose, for example, command
objeds, Java Swing adions, or PCoC Tasks, are better suited.

7.2.2 Events

Events are the most genera form of comporent communicaion and can aso be used to model
dynamic dispatch.

Advantages:
* Themodel and wsage is commonly acceted and uncderstood.
» Events can be used for one-to-one, one-to-many, and two-way communicaion.

* An event system can be structured to prevent deadlocks and race condtions. Events in a
gqueue can be rearanged in order to prevent deallocks depending on the resources they
require, whereas g/nchronows methodcdls canna be rearanged in a cdl stack.

Disadvantages:

* Events are lesscomfortable to use than methods. For example, arguments must be padked
into the event objed, and thus canna be passd as easy as with methods. Debugging is
more difficult, because we lose information abou when an event has been sent (thereis no
useful bactrace.

* Events are objeds which must be asembled and put into a queue. This causes a
performance penalty compared to static interfaces.

7.2.3 PCoC / Dynamic Dispatch

Activities and Dispatchers provide something that is missng or at least less satisfying in Java
and other programming languages. flexible method dispatch, including delegation and the
posshility to add operations to comporents or objeds at runtime, or to modify them.

Java provides a similar concept with Swing Actions, but they canna take arguments, do not have
return values, and thereis aso no delegation medhanism.

NET delegates are similar to Dispatchers, but they are less dynamic. They canna be dedared
and boundto methods at runtime, but they are neverthelessvery useful for various purpases such
as multi casts, as grategy objedsin agorithms, etc.

.NET provides with the name space System.Reflection.Emit a fadlity that allows to
define and creae asemblies, modues, types and methods at runtime. With PCoC, Activities and
Activity Sets can be defined and creaed at runtime. For the invocation of Activities, Dispatchers
are used.

As oppased to the Dispatcher dictionaries of PCoC, v-tables are static and canna be modified at
runtime.

As oppased to PCoC Activities and Dispatchers, the Smalltalk method dispatch does not offer
suppat for method states, attaching of li steners to method references, and multi casts.

Advantages of the flexible method dspatch mecdhanism, respedively PCoC, are:

* PCoC suppats single- and multicasts through Dispatchers. Spedfied diredives (e.g.,
first  or broadcast ) determine how requests are delegated.

» Activities can be defined, added, and removed at runtime. This introduces some flexibility
into a system.



7.2 \Which Mecdanisms When? 179

* PCoC Tasks can be used for synchronous and asynchronous cdls. For asynchronous cdls,
Tasks are put into a queue (task.performLater() ).

» Tasks, Digpatchers, and Activities provide suppat for states and state natifications
(“Enabled”, “Disabled”, etc.) This fedure is neaded for menu entries, todbar buttons,
scripting (for chedking the avail ability and state of an operation), etc.

» Activity Sets can be organized in hierarchies in order to group semanticdly related sets, and
therefore providing dynamic scopes.

» Activity Sets can aqyuire others, respedively their Dispatchers. This concept is useful to
share behavior between comporents.

* License management is handed genericdly. It is only necessary to spedfy alicense string
when creding an Activity or Activities Provider. The license management is dore by the
framework (using alicense management library such as FlexLM).

* PCoC suppats reusability of code. Activities are genericdly exposed through various
application interfaces, including user interfaces (for menu and toolbar entries), scripting,
remote control interfaces (e.g. XMLRPC), and for the use within the source code of the
comporents providing them.

Disadvantages:
* The PCoC approach leals to an increased memory footprint compared to method ponters.
* Type-chedks are only passble & runtime, since Activities areinvoked dynamicdly.

|t is difficult to get an overview of the relationships between Activity Sets, Activities,
Dispatchers, and Tasks through source-code browsing. Althowh there are sophisticated
introspedion fadliti es avail able to insped the relationships at runtime, and detail ed error
logs for type- and dispatch-errors, etc., the seach for errorsis not as efficient as with more
static approadhes like classes and methods. Some annoying drawbadks of a prioriti zed
multi ple inheritance medhanism such as that of PCoC and in the programming language
Self are discus=d in Sedion6.10.3

* The PCoC approach is initialy unfamiliar to users. Using Activities instead of only
methods and sending requests through Dispatchers is lesscomfortable than ordinary method
cdls. For example, arguments must be padked into argument containers (instances of
Material), and there ae different diredives for single- and multi casts, etc.

* PCoC leals to a performance penalty compared to static interfaces (methods, functions),
since Activities, Dispatchers, Activity Sets, etc., must be creaed and managed. However,
this approach has not been designed for performance relevant purposes, but rather for
medium- to long-term operations.

7.3 Remarks

Ead of the mentioned dispatch medhanisms solves a spedfic, somewhat orthogonal problem
quite well. Even thowgh Activities and Dispatchers can be considered as a spedalization of
methods, initial user acceptanceis hesitant. Nevertheless experience has shown that developers
begin to like the cncept and undrstandits grength after having tried it for afew comporents.

PCoC is not a replacement for interface standards such as DDE, COM, CORBA, .NET,
XMLRPC, etc. It just provides fedures missng in most programming languages, interface
standards, and frameworks: dynamic scopes, delegation, dynamic comporent modification, and
priority management for comporents and operations.

Some developers require PCoC to suppat static binding, for example, in order to invoke
Activities like norma methods rather than using dynamic invocaion with Dispatchers; they



180 7 Conclusion

require Activities that are, like methods, staticdly boundto classes, and maybe not even separate
objeds; argument and result types shoud be chedked at compile-time, etc. This is nat what
PCoC has been designed for. In such cases, static interfaces (functions, methods) shoud be used.
However, if an applicaion must suppat control via scripting, or there is a neal for a genera
concept for events and dynamic methodinvocaion, PCoC can save development effort. It can be
used for operations that are generaly user or script driven. Although the performance is quite
good, it is nat good enough to use Dispatchers, for instance, in performance-criticd program

loops.

Disadvantages and limitations of PCoC are the incressed memory consumption and lower
performance compared to language suppated fadliti es, since ead Activity, Dispatcher, Activity
Set, etc., is a separate objed.

When using PCoC, we have to worry about the number of Activities to be creded, in order to
keeg the memory consumption low, and for seaurity reasons. It would not be acceptable to
expose ead method as an Activity. Whenever ordinary methods can be used, they shoud be
used.

Note that some memory and performance is consumed through refledion medanisms already
suppated by platforms such as, for example, .NET and Java. Besides that, current applications
generally consume alot of memory, so that the portion of PCoC is rather irrelevant. For example,
a concrete applicaion has an average consumption of abou 2.1 MB for the framework (100
loaded componrents and Activity Sets x approx. 200 bytes, 5000 Activities x approx. 160 bytes,

10000 Dispatchers x approx. 40 bytes, 2000 Tasks x approx. 240 bytes), whereas the whole
application needs over 200 MB. We canna give more predse numbers, since the memory
consumption depends on many fadors. Beside the number of objeds, it depends on the number
of aqquisition relationships between Activity Sets, the complexity of Tasks, the number of
different Activity interfaces (equal interfaces are shared), the string lengths of names, paths, etc.

In any case, development and maintenance costs are much more crucial for software
development than memory consumption (the latter is aso very important to be considered,
though).

7.4 Discussion
The foll owing questions arose during the devel opment of PCoC.

Why do we choose such a design?

It has proved to suppat rapid applicaion development and needs low effort to train developers.
It does nat claim to be suitable for every kind of comporent, but for a large areaits use makes
sense. The moduar architedure and the dynamic binding between comporents enables
modifying existing comporents withou the need to recompile comporents that use them.
Comporents can be loaded on demand, or unloaded, or replacad by other implementations
dynamicdly.

Is it not better to provide tool developers with a maximum of freedom
instead of providing component templates?

First of all, for intra-componrent communicaion it makes no or not much sense to use PCoC.
Within a comporent, developers can use programming languages, language constructs, patterns,
etc., asthey like and asit makes snse.

However, for operations that must be accessble via several application interfaces, or used for
inter-comporent communicdion, it makes sense to use PCoC concepts. This includes interfaces
such as menus, todbars, scripting, remote invocation, and other interfaces. PCoC guides us



7.4 Discusson 181

through componrent development by providing comporent templates. We can concentrate on
value-added tasks such as implementing the core functionality (the concrete purpose) of a
comporent, rather than having to cae abou comporent interoperation, different componrent
interfaces, existence of other comporents, startup and termination issues, etc.

The Eclipse platform of OTI, an IBM reseach institution, is ancther good example of how a
framework can provide some simple rules to crede larger applicaions. Their plugin architedure
is in some ways similar to that of PCoC. It has built-in suppat for comporent startup,
termination, configuration, interoperation with other comporents, etc. See [OTI100] and
[OTI1107].

But what is it good for? Where is the gain?

PCoC offers a uniform message dispatch medanism that can be used for various purposes. This
includes synchronous and asynchronous (deferred) invocation of operations, delegation, license-
management for operations (Activities can be associated with license strings), focus
management, state suppat for operations, including change natificaions (“Enable”, “Disable”,
etc.), wrapping operations in order to add aspeds, and dynamic comporent modification. The
suppat for various comporent standards (COM, CORBA, etc.) is encgpsulated in the PCoC
dispatch medhanism. This makes client code smaller, more readable, and easier to maintain.
Because of the uniform way to solve different problems, this approacd also reduces training time
and costs for new developers.

How long do es it take to educate a new developer to make him
und erstand an architecture and able to implement a new component?

With PCoC, we saw that developers can lean the necessary things to start implementing their
first comporent within a few hous. They can immediately concentrate on implementing the
adual functionality of their comporents, instead of thinking abou the architedure and
comporent interfaces of an applicaion,and d re-inventing solutions for various isues.

7.5 Future Work

We are currently introducing a threading model to PCoC; this shoud help comporent devel opers
to reduce the effort of managing common threading isaues such as deallocks by automaticdly
rearanging Tasksin aqueue, depending onthe required resources.

Beside possble deallocks, there are other isaues such as blocking the AWT event dispatch
thread in Java programs, and the misgng read/write cgpabiliti es of semaphares. Java semaphares
do not suppat simultaneous read-only locks, while blocking write locks, and vice versa. For
more information about current threading issues in Java, see[HOLUBOZ2] on Pages 275f.

Work is in progress to forward SOAP cdls to invocaions of PCoC Tasks, which would
standardize the interprocesscommunicaion with other applicaions. Sincethe structures of these
two fadliti es are simil ar, they can be eaily mapped.

Ancther ideaisto use the framework for task scheduling, bu we have not started onthis, yet.

PCoC could also be used for managing administrative processes in firms, and espedally in
fadories. For example, in a firm a manager requires tasks to be exeaited. He or she delegates
tasks to workers on different tools and devices, or delegate them to services. Each task can again
consist of subtasks. Materials are neaded in order to exeaute tasks, and tod's and workers must be
available. If atod or worker is no further avail able, or the used materia is nat appropriate, the
manager will be natified. PCoC provides fadliti es for this kind of administration. The concepts
and proceses are quite similar. There are managers cdled Dispatichers, resporsible for
delegating the exeaution of spedfic adivities. A task is a combination of adivities performed on
different devices or tods and/or by diff erent services.



182 7 Conclusion




183

Bibliography

[ACQUOQ] Simpson E., Untandging Acquisitionwith Trees,
http://www.zope.org/Members/4am/ag_trees, 2000

[ACQUO1]] Udell J., Tanded in the Threads: Nature \s. Nurture, BY TE Magazine,
http://www.byte.com/documents/s=705BY T2001061460001, 6, 2001

[ACQU98] Fulton J., Zope Corporation, Acquisition,
http://www.zope.org/M embers/michel/ Projedd/ I nterfaces/Rel easeDocumentation,
http://www.ccs.neu.edwhome/lorenz/reseach/aaquisitiory,
http://www.zope.org/Members/jim/Info/IPCB/AcquisitionAlgebra/siframes.htm, 1998

[AGESE95] Agesen O., Holzle U., Type Fealback \s. Concrete Type Analysis. A Comparison o
Optimization Techniques for Objed-Oriented Languags, OOPI_A '95 Conference
Procedalings, http://www.cs.ucsb.edwoocsh/papers/oopsla95-tf.pdf under
http://www.cs.ucsb.eduw/oocsb/papers/tf-vs-ti.html, ACM SIG-PLAN, 1995

[BLOSS)Q] Blosser J., Explore the Dynamic Proxy API, Java World,
http://www.javaworld.com/javaworld/jw-11-2000jw-1110proxy_p.html, 11, 2000

[BREYMOZ] Breymann U., Loviscad J., Die neue C-Klasse: C#im Vergleich mit C++ und
Java, c't: Magazin fur Computertechnik, http://www.heise.de/ct, Heise, 2, 2002

[CHAMB89] Chambers C., Ungar D., LeeE., An Efficient Implementation d SELF, a
Dynamically-Typed Objed-Oriented Language Based onPrototypes, OOPS_A '89
Conference Proceedings, http://reseach.sun.com/self/papers/oopsla89.ps.Z under
http://reseach.sun.com/self/papers/implementation.itml, ACM SIG-PLAN, 1989

[CHAMB91] Chambers C., Ungar D., Holzle U., Chang B.-W., Parents are Shaed Parts of
Objeds: InheritanceandEncapsulationin SELF, LISPand Symbalic Computation,
http://reseach.sun.com/self/papers/papers.html, Computer Systems Laboratory, Stanford
University, 1991

[COPLI91] Coplien J. O., Advanced C++: Programming Syles andldioms, ISBN0-201-54855
0, Addison-Wesley, 1991

[CZARNO1] Czarnedki K.,Dominick L., Eisenedker U. W., Aspektorientierte Programmerung
in C++: Teil 1, Erste Ausschten, 2001

[DAVIDOQ] Davidson M., Using the Snving Action Architedure,
http://java.sun.com/products/jfc/tsc/articles/adions/index.html, 2000

[ENGLA97] Englander R., Devdoping JAVA Beans, ISBN1-565922891, O'Rellly, 1997

[FOOTES89] Foote B., Johmrson R. E., Refledive Faciliti esin Smalltalk-80, OOPS_A '89
Conference Procealings, ftp://www.laputan.org/pub/foote/Refledionrtf, ACM SIG-PLAN,
1989

[GAMMA95 GammaE., Helm R., Johrson R., Vlisgdes J., Design Patterns. Elements of
Reusable Objed-Oriented Sdtware, ISBN0-201-633612, Addison-Wesley, 1995

[GIL96] Gil J., Lorenz D., Environmental Acquisition: A New Inheritance-Like Abstraction
Medhansm, OOP3A 1996Conference Proceadings, http://www.bell -
|abs.com/peopl e/cope/oopsl a/Oopsl a96T echnicd ProgramA bstrads.htmI#Gil Lorenz,
http://www.cs.technionacil/ Labs/Lpcr/pubi caions/Ipcr9507.hml,
http://www.ccs.neu.edwhome/lorenz/reseach/aaquisitior/, 1996

[GITTIOQ] Gittinger C., Die Unified Smalltalk/Java Virtual Machinein Smalltalk/X, OOP 2000
Conference Procealings, 10Ilcommunications LLC, 2000



184

[GOLDB83] Goldberg A., Robson D., Smalltalk-80: The Language andits Implementation,
ISBNO-201-113716, Addison-Wesley, 1983

[GRIFFO8] Griffel F., Comporentware: Konzepte und Techniken eines Sdtwar eparadigmas,
ISBN3-932588029, dpunk, 1998

[HARRISO7] Harrison W., Ossher H., Tarr P., Using Delegation for Objed and Suped
Compasition, Research Report RC 20946(922723,
http://www.research.ibm.com/sop/abstrads/delegation.itm, 1997

[HOLUBOZ] Holub A., Taming Java Threads, ISBN1-8931151G0, Apress 2000

[IBMSOM94] Objed Techndogy Products Group, The System Chjed Model (SOM) andthe
Comporent Objed Model (COM), http://www-
4 .ibm.com/software/ad/som/library/somvscom.html, 1994

[IBMST95] Khor K. K., ChavisN. L., Lovett S. M., White D. C., IBM Smalltalk Tutorial,
http://media.dml.cs.ucf.edwWCOP433YTutorials/Smalltalk/, 1995

[ISOCPP8| American National Standards Institute, Programmng Languages--C++, ISO/IEC
14882 1998

[(X120] Stal M., C#- und NET-Tutorial: Tel 1, iX: Magazin fur professonelle
Informationstechnik, http://www.ix.de/ix/artikel/2001/12/122/, Heise, 12, 2001

[JDK12] Sun Microsystems, Java 2 DK, Sandad Edition Documentation, Version 1.2.2
http://java.sun.com/products/jdk/1.2/docs/api/index.html, 1999

[JDK13D] Sun Microsystems, Java 2 DK, Sandad Edition Documentation: Dynamic Proxy
Classes, http://java.sun.com/j2se/1.3docs/guide/refledion/proxy.html, 2001

[JDK13P] Sun Microsystems, Java 2 DK, Sandad Edition Documentation: ClassProxy;,
http://java.sun.com/j2se/1.4/docs/api/j avallang/refled/Proxy.html, 2001

[KICZALOQ] Kiczales G., et a, An Overview of AspedJ, technicd report,
http://aspedj.org/documentati orVoverview/aspedj-overview.pdf, 2000

[KNIES98] Kniesdl G., Delegation for Java: APl or Languag Extension? Tednicd Report
IAI-TR-98-4, ISSN 09448535, htp://javalab.cs.uni-bonn.d/reseach/darwin/papers.htmi;
http://javalab.cs.uni-bonn.a/data2/papers/darwin/patterns.|Al1-TR-98-5.pd, 1998

[KNIES99] Kniesdl G., Type-Sde Delegation for Run-Time Comporent Adapation, Procealings
of ECOOP99, Htp://javalab.cs.uni-bonn.ad/reseach/darwin/papers.html, 1999

[KRASN84] Krasner G., Smalltalk 80: Bits of History, Words of Advice, ISBN0O-201-116693,
AddisonWesley, 1984

[LIBERTO1] Liberty J., Programming C#, ISBN0-596-00117#7, O'Reill y, 2001

[LIEBER8G] Lieberman H., Using Prototypical Objedsto Implement Shaed Behaviour in
Objed Oriented Systems, OOP3_A '86 Conference Proceadings,
http://lcs.www.media.mit.edu/people/li eber/Lieberary/OOP/Del egatiorn/Del egation.hitml,
http://Icswww.media.mit.edu/people/li eber/Lieberary/ OOP/OOP.html, ACM SIG-PLAN,
1986

[LIU96] Liu Ch., Smalltalk, Objeds, andDesign, ISBNO-132-683350, Manning Publications,
1996

[LUTZO01] Lutz D., Aspekt-Orientierte Programmerung, OOP 2001 Conference Procealings,
10Icommunicaions LLC, 2001

[MAETZ97] Métzel K. U., Schnaf P., Dynamic Comporent Adaption, Technica Report 97-6-1,
http://www.goeast.ch/madzel/ Publi caionli st.html, 1997



185

[MICROS01] Microsoft, Refledion: Leveaaging the Power of Metadaa, Microsoft .NET
Developer Tods ReadinessKit, NETRK CD:/modues/Refledion.pg, 2001

[MONOO3] Ximian, Inc., Mong, http://go-monocom/, 2003

[MOSS02] Bea W., Birngruber D., Mésenbick H., WORA., Die .NET- Techndogie:
Grundagen undAnwendungsprogramnierung, ISBN3-898641740, dpunk, 2002

[MOS21] Mésenbick H., Wirth N., The Programning Language Oberon-2, technica report,
http://www.oberon ethz.ch/books.html, 1991

[MOSD5] Mésenbick H., Objekorientierte Programmierungin Oberon-2, ISBN3-540-60062
0, Springer, 1995

[MOS8 Mésenbick H., Objekorientierte Programmnierungin Oberon-2, ISBN3-540-57789
0, Springer, 1998

[MSCSHO1] Microsoft, C#, Microsoft .NET Developer Tods ReadinessKit, NETRK
CD:/moduesyCSHARP.DOC, 2001

[MSCTS01] Microsoft, Comnon Type System, Microsoft .NET Developer Tods ReadinessKit,
NETRK CD:/modues/Common_Type System.DOC, 2001

[MSDLG99] Microsoft Corporation, The Truth abou Delegates,
http://msdn microsoft.com/visualj/t echnicd/articles/del egates/truth.asp, 1999

[MSNETO1] Microsoft, .NET Framework Overview, Microsoft .NET Developer Tods Realiness
Kit, NETRK CD:/modues/NET_Framework_Overview.doc, 2001

[OTI1100] Arsenault S., Contributing Actions to the Eclipse Platform, Technicd
Documentation, htp://www.edipse.org/articles/index.html;
http://www.edi psecorner.org/articles/index.html, 2001

[OTI1110] Springgay D., Creating anEcli pse View, Tedhnicd Documentation,
http://www.edi pse.org/articles/index.html;
http://www.edi psearner.org/articles/index.html, 2001

[ROSUMI0] Rosum G. v., What is Python?, http://www.python.ag/doc/essays/blurb.html,
1990

[SMITH95] Smith R. B., Ungar D., Programning as an Experience The Inspiration for SELF,
ECOOP '95 Conference Procealings, http://reseach.sun.com/self/papers/programming-as-
experience ps.Z under http://reseach.sun.com/self/papers/programming-as-
experiencehtml, ACM SIG-PLAN, 1995

[STALO]] Stal M., Reich der Mitte: Die Komporententechndogien COM+, EJB und"CORBA
Comporents’, OOP 2001 Conference Procealings, 10lcommunicaions LLC, 2001

[STROU97] Stroustrup B., The C++ Programming Languagg, ISBN0-201-889544, Addison-
Wesley, 1997

[SUNDLG99] The Java Language Team, JavaSoft, Sun Microsystems, Abou Microsoft's
Delegates, http://www.javasoft.com/docs/white/delegates.html, 1999

[SZY PE9S] Szyperski C., Comporent Sdtware: Beyond Objed-Oriented Programming, ISBNO-
201-178885, Addison-Wesley, 1998

[TOEDTO1] Todter K., Let's Swing: JFC fur Fortgeschrittene, OOP 2001 Conference Handou,
http://www.toedter.com, 2001

[TROELO]] Troelsen A., C# andthe .NET Platform, ISBN1-893-115593, Springer, 2001

[UNGARS87] Ungar D., and Smith R. B., SELF: The Power of Smplicity, OOP3_A '89
Conference Procealings, ACM SIG-PLAN, 1987



186

[WALRA99] Walrath K., Campione M., The JFC Swing Tutorial: A Guide to Constructing
GUIs, ISBNO-201-4332%4, Addison-Wesley, 1999

[WESTPO1] Westphal R., Einflihrungin die Microsoft .NET Plattform, OOP 2001 Conference
Procealings, 10Ilcommunications LLC, 2001

[WIRTH92] Wirth N., Gutknedt J., Projed Oberon: The Design d an Operating §/stemand
Compiler, ISBN0O-201-544288, Addison-Wesley, 1992

[XEROX02] AspedJ Team, The AspedJ Programming Guide, technicd article,
http://aspedj.org/doc/dist/progguide/, 2002

[XEROX0297 Mendhekar A., Kiczales G., Lamping J., RG: A Case-Study for Asped-Oriented
Programming, Tedhnicd report SAL97-009,P9710044,
http://www.parc.xerox.com/csl/ groups/sda/puli caions/papers PARC-AOP-RG97/, Xerox
Palo Alto Research Center, 1997

[XEROX0697 Kiczales G., Mendhekar A., Maada C., et al, Asped-Oriented Programming,
http://www.parc.xerox.com/csl/groups/sda/pulli cations/papers/Kiczal essECOOP97/,
Xerox Palo Alto Reseach Center, 1997

[XEROX1297 Kiczales G., LopesC. V., D: A Languag Framework for Distributed
Programming, Tedhnicd report SAL97-010,P9710047,
http://www.parc.xerox.com/csl/groups/sda/publi caions/papers PARC-AOP-D97/, Xerox
Palo Alto Reseach Center, 1997

[ZULL1G98] Zlllighoven H. et d., Das objekorientierte Konstruktionshandbuch, ISBN3-932-
588053, dpunk, 1998



187

Ind ex
A invocaion d Activities 28, 34, 105,
Acquisition 114
aauisition algorithm 96 relationships 90, 105, 113
aqquisition graph 08 removing Activities 65
changing priorities 100 Activity Set Registry
dired aqquisition 36, 95 definition 23, 46
dispatch algorithm 107 examples 23, 27
environmental a(I]UiSition 95, 123 Asped_oriented p*ograrnming
examples 37, 83, 96, 98, 100, 124, 126 sgvice 131
explicit 127 AspedJ 128
ImpIICIt 126 aspeds 131
Activities Provider in PCoC 133
adivation 56 join pants 129
adding Activities 64f, 117, 120 overview 127
containment hierarchy 91 pointcut 130
definition 45 typicd aspeds 128
examples 77,82, 84,98 99 using name spaces 132
in detail 89
relationships 90, 105 C
removing Activities 65 C#
termination 56, 86 delegates 152
Activity dynamic methodinvocaion 156
adding Activities 30, 35, 64 hame spaces 158
classinterface59f OVErview 150
COM+ adivities 50 properties 161
definition 49 C++
dynamic type 62 method ponters 148
examples 23, 30, 35, 56, G366, 69, v-table 9
104, 119 Combined Tod
flexible method dspatch 21 definition 47
generic Activity 117 examples 48
implementation 66, 103, 117 Configuration
in cetail 101 definition 88

interface tass102

invocaion

relationships 90, 105
removing Activities 65

state 67ff
type safety

67

103

using Activities

Activity Set

adding Activities
changing priorities

definition

46

dired aqquisition

dispatching requests 72, 105, 114

examples

flexible method dspatch 21

in detail

23, 27

112

examples 57f, 70, 76, 80, 94, 109
Containment Hierarchy

changing the mntainer 39, 92
examples 91
in detail 91
59 modificaion 39, 92
overview 39
paths 91
igfo 35, 65, 117, 120 Context Data
definition 60
95 examples 69f

using Activities 69
using Dispatchers 74
using Tasks 69f



188

D

Darwin
classficaion 16
examples 17

overview 15
type-safe delegation 15
Delegation

delegation s. forwarding 13

drawbadks of simulationtechniques 17

examples 13, 34, 83
flexible delegation 33
in PCoC 82
inSelf 167, 169
overview 12
type-safe delegation 15
using Activities 82
using Dispatchers 83
Developer Roles
comporent developer 6
customizer / configurator 6
framework developer 6

Dispatcher
contextdata 74
definition 51

delegation 34,72
dictionary 24, 115
dispatch algorithm 107
dispatching requests 106
examples 27,72

flexible method dspatch 21
implementation 25f, 107#

in detail 105
invocation  26f, 31, 71, 105
proxies 114

relationships 22, 71, 90, 105
state 71,74
using Dispatchers 71

Dispatcher Dictionary
examples 27
using 27

Dynamic Comporent Modificaion
clasgficaion 16
dedared parents/ children 18
examples 17
overview 15

E

Events

advantages 178
channeling 133
disadvantages 178

F

Flexible Dispatch
adding aspeds 29
advantages 40
changing priorities 100
dired aqquisition 36
disadvantages 42
dispatch algorithm 20, 107
dispatch code 22
Dispatcher dictionary 24
examples 21
linked Dispatchers 21
natifications 31
overview 3,19
using refledion 20

Forwarding
delegation vs. forwarding 13

J

Java
adion listeners 143
adions 143
dispatching adions 145
dynamic dasses 137, 140
dynamic methodinvocaion 135
overview 134

ranking for multi ple proxy interfaces

141
refledion 134
Swing adions 142
v-table 9

L

Lava
type-safe delegation 15

Listener
Activity listener interface 60
Activity state natification 68

M

Material
classinterface62
definition 50
in detall 61
Message Objeds
advantages 12
disadvantages 12
dispatch code 11
message interpreter 10
overview 10

Method Dictionary
Smalltalk 8



189

criticd issues 150
delegates 151f

dynamic methodinvocaion 157

dynamic modificaions 16X
indexers 161
late binding 156
multicasts with delegates 155
name spaces 158
objed model 150
overview 149
properties 161

Multi cast
dispatch code 38
Dispatcher diredive 72,178
flexible method dspatch 20, 38
ordered multi cast 41, 98, 108
overview 2
using .NET delegates 151, 155
using Java Swing adions 148
using Oberon message objeds

N

Notifications
Activity states 68
Dispatchers 31
examples 32, 68
listener interface 60

O

Oberon
advantages of messages objeds 164
disadvantages of messageobjeds 165
dispatch code 11
messgeinterpreter 10
message objeds 10, 164

P

Patterns
Activities 174
command pettern 174
Dispatchers 175
strategy pattern 174

PCoC
advantages 178
case-insensivity 52
classhierarchy 53
disadvantages 179
discusson  180f
futurework 181
overview 4,55
related packages 88
what is PCoC? 4
what isPCoC nat? 5

12, 164

Priority Management
flexible method dspatch 37
in PCoC 4f
in Self 168
ordered dispatch of Activity requests

72,101, 105, 108

ordered dispatch using Tasks
111
ordered multicasts 38
ordered multiple inheritance 171
prioriti zed (ranked) aayuisition
97,101, 171
prioriti zed multi ple inheritance
unadered multi ple inheritance

S

SELF
delegation 169
message dispatch
overview 166
prioriti zed multi ple inheritance
prioritized parents 169
ranked multiple inheritance 169

Service Provider

78, 81,

4, 37,

168
171

171

168, 171

definition 48

examples 77,82, 84,94, 99
Simple Tool

definition 47

examples 48, 55, 93
Smalltalk

dispatch agorithm 9
method dctionary  7f
methodlookup 24
overview 7,163

State
handling Activity states 67
invalidation 68
retrieving an Activity state 57
update 68

Static Interfaces
advantages 177
disadvantages 177

System Objed Model
overview 173

T

Task
configuration 58f, 70, 76, 81, 109
credion 110
definition 52
dispatching requests 111
examples 58f, 76, 78f, 109, 112



190

implementation 110 Type-Safe Delegation

in detail 109 Activities 103

invocaion d Activities 111 clasgficaion 16

maao 79 Darwin 15

precondtions 79 examples 17

preserving paths 81

relationships 75, 90 v

using Tasks 75 V-Table

WAM-metaphar 52 dispatch algorithm 10
Tool ind_ex_cdculation 10, 40, 42

definition a7 optimi zedl 19

examples 47,55, 64, 93 overview 7,9

reorganization 42



Lebenslauf

9.Feb. 1972
1978- 1982
1982- 1986
1986- 1991
Mai 1991

Juli 1991-
Feb. 1993

Méarz 1992

Okt. 1992 —
Mai 1997

Seit 1995
Mai 1997
Juli 1997

Seit 1998
Seit 1999
Okt. 2000

Geboren in Braunau, OberOsterreich
Volkshule Altheim

Hauptschule Altheim

HTBLA Braunau / Zweig Informatik
Matura mit gutem Erfolg
Milit&rmusik Linz / Ebelsberg

Beitritt Shotokan Karate International / Osterreich
Informatikstudium an der Johannes Kepler Universitét Linz
Wahrend des Studiums tétig bei:

Tednodat GmbH, Salzburg (Programmierer)

TakeFive Software GmbH, Salzburg (Programmierer)
Karatetrainer
Studienabschlussund Sporsion zum Dipl.-Ing.

Anstellung as Softwareachitekt bei WindRiver GmbH, Salzburg (vormals
TakeFive Software GmbH)

Obmann Shotokan Karate International / Landesverband Oberosterreich
Mitglied des Nationalteams bei Shotokan Karate International / Osterreich
Inskription zum Doktoratstudium der technischen Wissenschaften

Seit Nov. 2002 Anstellung al's Softwareentwickler bel eurofunk Kappader, St. Johann/ Pg.



