Using the Multi-Layer Model for
Building Interactive Graphical Applications

Jean-Daniel Fekete and Michel
Beaudouin-Lafon
Laboratoire de Recherche en
Informatique, CNRS URA 410
Batiment 490, Université de Paris-Sud
91405 ORSAY Cedex, FRANCE
+33-1-69-41-63-97
Jean-Danidl .Fekete@lri.fr

ABSTRACT

Most interactive graphical applicationsthat use direct manip-
ulationare built with low-levd libraries such as Xlib because
the graphic and interaction models of higher-level toolkits
such as Motif are not extensible. This results in high de-
sign, devel opment and mai ntenance costs and encourages the
development of stereotyped applications based on buttons,
menus and dia ogue boxes instead of direct manipulation of
the applications objects.

In this article we argue that these drawbacks come from the
fact that high-level toolkitsrely on a visualization model to
manage interaction. We introduce a moddl that uses severa
graphical layers to separate the graphic entities involved in
visualization fromthoseinvolvedin feedback and interaction
management. We describe the implementation of this Multi-
Layer Model and we show how it can take advantage of soft-
ware and hardware graphic extensions to provide good per-
formance. We aso show how it supports multiple input de-
vices and simplifies the description of a wide variety of in-
teraction styles. Finaly, we describe our experience in using
thismodel to implement a set of editorsfor aprofessional an-
imation system.

KEYWORDS: toolkits, multi-layer model, graphic model,
interaction, optimizations.

1 INTRODUCTION

A wide variety of graphica editors are available nowadays
for domains such as image correction and enhancement,
schematic and illustrative drawing, and more recently 3D
drawing and video editing. Despitethefact that they use simi-
lar direct mani pul ation techniques such as sel ection and drag-
ging, these editors are usualy developed from scratch with
low-level toolkits. Popular high-level toolkits such as Motif
require the developers to resort to lower level libraries such

as Xlibto program direct mani pul ation techniques adapted to
the domain covered by the editor. This situation results in
very high costs for the design, implementation and mainte-
nance of interactive graphical applications.

There have been several attemptsto provide high leve tools
for building such applications, including popular toolkits
such as Garnet [26], Unidraw [33], Fresco [21, 32] and Open-
Inventor [28]. Unfortunately, these tools are not adapted to
the devel opment of sophisticated graphical editorsbecause of
their lack of extensibility:

o their graphic models and understanding of hardware fea
tures are predefined, and

o they impose a fixed set of mechanisms to manage interac-
tion.

M ost graphic platformscan use different graphic models. For
example, both X [30] and Microsoft Windows [23] support
the OpenGL extension [27] for enhanced 2D and 3D graph-
ics. X has several other extensions such as the X Image Ex-
tension [29] for pixel image manipulation and PEX [24] to
support the PHIGS graphic model. These extensions are mo-
tivated by the availability of accelerated graphic boards that
also provide features such as overlay windows or real-time
image compression and decompression. Unfortunately, these
extensions are not used by high-level toolkits such as those
cited above.

In addition, only thetwo standard i nput devices are supported
by thesetoolkits: onemouse and onekeyboard. The manage-
ment of interaction is based on the Garnet Interactors model
[25] or on Manipulators[33]. Interactors implement the au-
tomaton that describes the interaction styles while manipula
torsa so providegraphical feedback during the manipulation.
For interfaces based on a single mouse and keyboard, asmall
set of interactors/manipulators can implement most interac-
tion styles. But with more input devices, the number of inter-
action styles becomes too large to be pre-programmed in the
toolkit and application devel opershave to buildtheir own ma-
nipulators, usualy from scratch and using low-level mecha-
nisms.

These limitations on both the graphic model and the interac-

Pixel Text 2D Vector 3D

Schematic Paint TextEdit Draw CAD

Realistic Retouch | WYSIWYG | lllustration | Realistic

Table 1: Classification of common graphic models.
bold is used when a model can be implemented on a
conventional window system. bold italic is used when
a relaxed version of a model can be implemented on a
conventional window system.

tion modd result in the following situation: either the appli-
cationisbuildwithahigh-level toolkitanditsinterface makes
a poor use of direct manipulation techniques and hardware
features (input devices and graphics hardware), or the appli-
cation isbuild with alow-level toolkit and it is more efficient
and usable but much more expensive to develop and main-
tain.

We believe that this situation comes from the fact that high-
level toolkitsrely on an output-oriented visualization model,
described in textbooks such as [13], to manage interaction.
Instead, we propose to use several superimposed graphica
layers to separate the entities involved in visualization from
those involved in interaction management and feedback.

This Multi-Layer Model was first introduced in [10]. In this
article, we focus on the description of the model and itsim-
plementation, and on our experience in using the model to
develop severa graphical editorsin the TicTacToon system
for Professional 2D Animation [11]. Before presenting the
model itself, we introduce the standard visualization model
and some existing high-level toolkits.

2 STANDARD VISUALIZATION MODEL
The standard visualization model defines three components:

e A Canvas, or virtual graphic surface (virtual surface for
short), is a data structure that stores an image asa 2D ar-
ray of pixes. It aso stores control information about the
size, position, visibility and attributes of the image'.

e A Graphic Modd is the set of functions and graphic at-
tributes used to access and modify the contents of the vir-
tual surface.

¢ A Graphic Structure is a data structure that holds the in-
formation required to display an image defined with the
graphic modd onto the virtual surface.

2.1 Graphic Models

The graphic model sused by most interactive applicationsare
summarized in table 1. We distinguish schematic models
(first line) from redlistic models (second line) based on the
number of available graphic attributes and the complexity of
atypica image. The colums represent the types of objects
represented by the models. The table also shows that current
window systems are mainly designed for schematic models.

We also introduce the notion of relaxed model: A virtual sur-
face implements arelaxed graphic model when some of the
primitivesor attributesof the model are ignored or simplified
duringimage rendering. A popul ar relaxed model isthe wire-

1This definition isinspired by Foley et al. [13, page 53]

frame drawing of 3D scenes, also used by 2D illustration edi-
torssuch as Adobe Illustrator [2]. Most WY SIWY G text ed-
itors also provide arelaxed model where page-level layout is
not displayed to speed up the redisplay and to avoid distract-
ing the typist at column or page boundaries.

Relaxed models are mainly used for performance reasons. A
realistic 3D scene can be very expensive to compute whereas
awire-frameview ismuch cheaper and is sufficient for many
editing operations. Relaxed models are common in interac-
tive graphical applications. For example, an abject being in-
teractively dragged isusualy displayed with arelaxed model
that only displaysitsoutline. In this case, the relaxed model
is used to reduce the response time and to avoid cluttering.

2.2 Graphic Structure

Thegraphic structureisusually atreeor adirect acyclic graph
(DAG) of graphic objects. Drawing the structure consists of
a preorder traversal of the tree where each node is requested
to display its contents on a virtua surface according to the
graphic model. Each node can define its own graphic at-
tributes. Other graphic attributes are maintained during the
traversal.

For interactive applications, the graphic structure al so i mple-
ments the pick operation which finds the node or set of nodes
that intercept a given position. The position usualy comes
from an event sent by a positional input device such as the
mouse. The resulting node or set of nodes can be used as the
target of astructural operation such as changing the color or
starting a direct manipulation.

2.3 Virtual Surface

The virtua suface needs to be redisplayed when a previ-
oudy invisible part becomes visible, and when its contents
has changed. All thehigh-level toolkitsimplement adeferred
redisplay mechanism. The area of the virtual surface known
to be out of date is added to the damaged region. At a later
time, usually when the application isidle, thetoolkit triggers
a redisplay that traverses the graphic structure and only re-
draws graphic objects intersecting the damaged region. The
damaged region isthen reset.

2.4 Problems

Thisvisualizationmodel workswell for applicationsthat dis-
play only one graphic structure. But for interactive applica
tions, specific objects need to be displayed in addition to the
main graphic structurein order to support interaction. For ex-
ample, when selecting an object in a 2D editor, graphic ob-
jects called handles appear, that the user can grab to start a
manipulation. These handlesdo not bel ong to the main struc-
ture and can be described with a very simple graphic model.
Similarly, when dragging an object, most programs display
an outline of the graphic object being manipulated. Again,
this outline abject does not belong to the main structure and
can be displayed with amuch simpler graphic model than that
of themain structure.

New types of interactive applications introduce even more
such objects. For example, groupware editors such as
GroupDesign [5] use specific graphic entities to display the
activity of other participantsworking on the same document.

Toolkit Graphic Graphic Domain
Structure Model
Unidraw Tree 2D structured 2D
Garnet resolution schematic
dependent
Fresco DAG 2D structured 2D
resolution schematic
independent
Openlnventor DAG 2D and 3D schematic
and realistic

Table 2: Comparison of high-level toolkits

Another example is the ink used in pen-based interface to
display a stroke before it isinterpreted by the system. Win-
dow systems provide ad-hoc solutions for managing special
graphic entities such as background images and the mouse
cursor. But they are no longer sufficient for sophisticated ap-
plications. For example, the visual feedback of a 3D mouse
requires a 3D graphic object that cannot be represented by a
window system cursor; when using multiple positional input
devices (e.g. amouse and a tablet), the window system can
only display one cursor.

3 CURRENT HIGH-LEVEL TOOLKITS

High-level toolkitssuch as Unidraw, Fresco and Openlnven-
tor are based on thevisualization model described above. Ta-
ble 2 summarizes the graphic models and graphic structures
that they use.

Unidraw [33] requires the application programmer to de-
scribe the graphic structure as atree and offers several mech-
anisms to edit it. Internally, Unidraw manages severa other
graphic structure that are hidden from the application pro-
grammer. For example, each view manages a page layer and
agrid layer, but there is no support to change their standard
behavior.

Fresco defines a clean and efficient mechanism to manage a
DAG of graphic objects. In order to optimize redisplay dur-
ing direct manipulation, the authors of Fresco have proposed
to use specia objects called Pacers [31]. Pacers can provide
a smoother feedback by relaxing the quality of their graphic
display during direct manipulation. However, redisplaying
a scene still involves redisplaying al the objects intersect-
ing the damaged region, not only the objects being manipu-
lated. Thisoptimizationisthereforeinsufficient when ascene
iscomplex.

Openlnventor is mainly oriented towards 3D graphics. The
graphic structure is a DAG that ca be edited. Redisplay is
triggered by any modification of the structure. The graphic
mode! isbased on OpenGL, whichisdesigned to take advan-
tage of any avail ablegraphic accelerator. However, theredis-
play timeisstill afunction of the complexity of ascene.

3.1 Interaction

The above high-level toolkits decompose a direct manipu-
lation in three steps: finding a handler for a starting event,
handling the direct manipulation of graphic objects, and ex-
ecuting a command upon reception of the ending event. In

Unidraw, thefirst stepisimplemented by a Tool object, which
takes a starting event and returnsa Manipulator. Thismanip-
ulator then grabs all theinput events during the direct mani p-
ulation and provides graphica feedback. When the manipu-
lationisover, it returnsa Command object that isexecuted. In
Openl nventor, some hodes of the DA G (called Manipul ators)
start a mani pulation when they receive a specific event. Like
Unidraw, manipulatorsgrab al theevents until the end of the
manipulation. The result of the manipulation is a modifica
tion of the DAG. Thetoolkitsa so manage a Selection, which
isalist of objects associated with some graphica feedback.

Apart from the main graphic structure, various graphic ob-
jects are used to display the selection and the manipulation
feedback. Unidraw hides these objects from the application
programmer whereas Openl nventor inserts them in the main
graphic structure. Fresco Pacers are also nodes of the main
graphic structure. During direct manipulation, either the
main graphic structure is incrementally modified (in Open-
Inventor and Fresco) or simple objects are directly displayed
withlittleor no control over their shape and graphic attributes
by the application programmer.

We believe that these mechanisms are inadequate for the fol -
lowing reasons:

o selection feedback and manipulation feedback do not be-
long to the main graphic structure; they need a different
graphic model, usually a relaxed one, and they should not
interfere with structural operations on the main graphic
structure.

o Specific graphic entities may need to be managed when
editing a graphic structure. Hidden mechanisms are not
sufficient to manage all the graphic entities that a domain
may require. For example, agraphical editor turned into a
groupware applicationwill requireadditional graphical ob-
jectsfor awareness of other participants(e.g., telepointers).

o Optimizationsare difficult to implement; Openl nventor ad-
vises the application programmer to use overlay planes
when they exist and Fresco proposes to use Pacers to get
smoother feedback. Such optimizations rely on specific
hardware or characteristics of atypical scene and are dif-
ficult to program in a generic, portable way.

4 THE MULTI-LAYER MODEL

We have designed the Multi-Layer Model [10] to solvethese
problems. This model uses a separate graphic layer for each
specific graphic structure or graphic model involvedinthein-
teraction. Thelayersare stacked (composed one ontop of the
other) and the appearance of the stack ismaintained by alayer
stack object. Interaction is managed by layer tool objects.

As an example, consider the main window of the graphical
editor in figure 1. We can decompose its contents into six
different layers: the background, the grid, the main graphic
structure, the sel ection handles, the direct manipul ation feed-
back and the cursor. When interacting with thiswindow, new
graphic entities appear such as a selection rectangle being
dragged. With the multi-layer model, each of these graphic
entities belong to a separate layer. We have found that most
graphical editors can be described with the following layers
(thislist isnot limitative and is not built into the model):

Figure 1: Graphic entities appearing in a 2D editor

o Background: thislayer displaysan amost constant image
for decorative purposes.

o Grid: thislayer displaysagrid used to constrain the posi-
tion and size of objects. Sometimes, it displays more so-
phisticated objects such as drawing models. The displayed
objects sometimes attract positiona input devicesin order
to enforce the constraints on object positions or sizes.

e Main: thislayer displays the main graphic structure, i.e.
the objects that the user wants to interact with.

o Sdlection: this layer displays graphic entities (e.g., han-
dles) to show that a graphic object in the main layer is se-
lected.

¢ Direct Manipulation: during direct manipulation of ob-
jects, thislayer displaysashape (e.g. arectangleor outline)
showing that agraphic object of themain layer isbeing ma
nipul ated.

e Lasso or Rectangle: during lasso or rectangle selection,
thislayer displaysasimple shape specifying aregion of the
main layer.

e Cursor: thislayer displays a graphic object showing the
position of active positiona input devices.

The main advantages of thismodel are the separation of visu-
alization frominteraction, the reusability of application com-
ponents(layersand layer tools), and the possibility to develop
the application incrementally.

4.1 Layer

A layer hastwo roles: it keeps the display of agraphic struc-
ture on avirtual surface up to date and it computesthe list of
graphic objects picked by a positiona input device.

The graphic model of the virtua surface and the nature of
the graphic structure can vary widely from one layer to an-
other. On a popular program like MacDraw [8], the main
layer manages a tree structure where each leaf is a graphic
primitivewith its attributes and where each node is a group.
Thegraphic model is2D vector-based with around 20 graphic
attributes. In contrast, a layer managing the selection rect-
angle has a very simple graphic structure: a rectangle. Its
graphic model only requires lines with a width of one pixel.
A widerangeof graphic models can beused, fromsimplelay-

ers described by only one point (the position of a cursor for
example) to very complex layers maintaining a 3D structure
with complex graphic primitives and hundreds of graphic at-
tributes.

4.2 Layer Stack

The layer stack (or simply stack) isalist of layers, their as-
sociated layer tools and a virtual surface. It has two roles:
mai ntai ning the graphical appearance of superimposed layers
on itsvirtua surface and dispatching events to the first layer
tool that accepts to handleiit.

When the contents of a layer changes, or when a layer is
added or removed, the stack redisplaysthe contentsof thevir-
tual surface. The simplest strategy isto ask each layer, from
back to front, to redisplay its contents. We describe in sec-
tion 6 some strategies to avoid expensive redisplays. Dur-
ing development, asimple strategy can be implemented first,
and optimized at a later time. Several strategies can be im-
plemented and sel ected at run-time according to the resources
available (e.g. graphics accelerator).

For handling interaction, the stack uses the following algo-
rithm: when an event isreceived by the stack, each layer tool
is asked, from front to top, whether it wants to handleit. The
first layer tool that accepts theevent stopsit from propagating
to lower layers.

4.3 Layer Tool

A layer tool (or smply tool) is responsible for deciding
whether a layer intercepts an event and, if so, for handling
it. Each tool is associated with one layer and can access it
to makeitsdecision, for example by invoking its pick opera-
tion. Some tools may decide to handle events depending on
their type or on some interna state, or to never handle any
event. For example, thetool associated with acursor layer is
usualy insensitiveto al events.

With the di spatch mechanism used by thestack, alayer andits
associated tool can filter any event from the layers below it.
For example, a pen-based interface is likely to use a Stroke
layer to display the eectronic ink left by the pen. In order
to implement gesture recognition, the associated layer tool
will intercept the pen up, down and move events and inter-
pret them. These events will never reach the lower layers.

5 MULTIPLE GRAPHIC MODELS

The stack composes the contents of each layer to make it ap-
pear in awindow. Therefore, the graphic model of the vir-
tual surface of the stack is defined by the window system (or
derived from it). An important property of the Multi-Layer
Mode isto let each layer use thegraphic model it needs. The
stack is responsible for optimizing the resources according
to the demand of the graphic models of the layers. Here are
some exampl es:

o Background: since the background almost never changes,
it should be kept in an off-screen imageif itislongtoredis-
play. Somewindow systems, e.g. X, can manage the back-
ground directly.

¢ Grid, Lasso and Rectangle: these layers usually display
one-pixel thinlinesin black and can use arelaxed graphic
modedl.

e Selection: most 2D editorsuse one or two colorsfor selec-
tion feedback with simple outlines or rectangles (handles).
Evenin 3D, thegraphic mode used for the sel ection isusu-
ally relaxed (wire-frame).

o Direct Manipulation: most 2D editors use a relaxed mode
for the feedback of objects being manipulated. Some edi-
tors use the same model as the main layer’s model.

e Cursor: the cursor layer usualy displays small images us-
ing few colors. All window systems can manage one cur-
sor.

We now describe three mechanisms to compose the virtua
surface of the layer onto the virtua surface of the stack:
trand ation, use of extensions and software rendering. These
mechanisms convert the layer’s graphic model into a model
compatible with the window system'’s graphic model.

5.1 Translation

The graphic model used by a layer can be smpler than or
equivalent to the stack’sgraphic model. Inthiscase, the stack
can provide the layer with an object that trandates al the
function call srequired by thelayer’ sgraphic model intofunc-
tion calls understood by the stack’s graphic model. The most
frequent case of trandation is ssimply the identity, when the
graphic modd of the stack is a superset of thelayer’s model.
Another frequent case isthetrand ation from arel axed model
into the stack model. For example, the grid layer, the selec-
tion layer, the direct manipulation layer and the lasso layer
only draw thin lines with a single color. It is easy to trans-
late thisgraphic model into thestack graphic model, sincethe
only requirement it that thelines should bevisible. Thetrans-
lation mechanism can choose any color and drawing mode
that fit this requirement. Often, the color will be black and
the mode will be XOR.

Trandating a graphic model can aso be used to relax a
graphic model on the fly. This is the case when a layer’s
model is complex and cannot be trandated into the stack’s
model faithfully. Thetrandationisusedto simplify or ignore
some graphic attributes, which results in a relaxed graphic
model. Thistypeof trandationisalso useful to achieve good
performance at the expense of graphic quality when no spe-
cialized hardware is available,

5.2 Use of Extensions

Some window systems have extensionsthat give access to a
larger range of graphic models. For example, OpenGL and
Display PostScript [4] are availablefor the X Window System
and can be used on any virtual surface (drawable) managed
by X, in combination with X’s native model. In this case,
alayer’s model can be trandated into a graphic model sup-
ported by an extension.

However, someextensionscannot usevirtual surfacesthat are
also used by the native graphic model. For example, some
video boards can only display frames in shared memory. In
such cases, the layer’s image must be generated off-screen
and composed by the stack onto itsvirtual surface. With this
technique, it is gtill possible to use different graphic models
in astack.

5.3 Software Rendering

When no appropriate extension is available to trandate a
graphic model, theonly solutionisto use software rendering.
The graphic primitives and graphic attributes are interpreted
to update a 2D image which is composed onto the stack vir-
tual surface. Performance depends both on the graphic model

and on the mechanism to transfer animage from user memory

to screen memory.

5.4 Implementation of a Graphic Model

By encapsulating the graphic model into an object, each ap-
plication can specialize alayer’s graphic model according to
severd criteria, such as the graphic properties of the layer’s
content, the graphic resources available at run-time, or spe-
cific design choices.

For example, in the FontStudio vector-based font editor [20],
the main layer displays the character outlinesin black. The
selection layer can therefore use any other color (FontStudio
uses pink). In contrast, a paint program such as Adobe Pho-
toShop [3] cannot ensure that a specific color will ways be
distinguishablefrom the main layer’s contents. Thus, Photo-
shop displays the selection with animated dashed lines. In a
multi-layer implementation of these editors, the same selec-
tion layer could be used for both editors but the stack would
choose a different object for the trandation.

6 OPTIMIZING REDISPLAY

When aregion of alayer isdamaged, the stack needsto redis-
play the correponding region of itsvirtual surface. The sim-
plest method isto ask each layer, from back to front, to redis-
play its content and compose it onto the virtual surface. Sev-
eral optimizations can be implemented by the stack to avoid
expensive partial redisplays of undamaged layers. These op-
timizations depend on the nature of each particular layer and
also on thelayout of the stack. For example, if acursor layer
is always on top of the stack, saving the contents of the vir-
tual layer under each cursor enables the stack to quickly erase
cursors when they move (this is how most window systems
implement the cursor).

We use two methods to optimize redisplay in a stack:

e aset of attributes associated with each layer that describe
the optimizationsthat are likely to be effective,
o the specialization of the stack for each application.

With simpleapplications, the standard stack can useareason-
ably efficient implementation by using the attributes. More
demanding graphica applicationsrequire the stack to be spe-
cialized. Theredisplay attributesthat we use include thefol-
lowing:

e singlecolor: this attribute informs the stack that only one
color isrequired by the layer. When the layer ison top (or
the layers above it are empty), the stack can use optimiza-
tions such as using an overlay plane if available, or one
plane in the color look-up table, or XOR mode when the
look-up tableis correctly set up, etc.

e transient: thisattributeinformsthe stack that the contents
of the layer should be updated as fast as possible. It is
used for example for the direct manipulation layer and for
astrokelayer that displaystheink of apen. When thelayer
isontop and agraphic object appearson it, the stack caches

theimagebelow it and ignoresother layers’ redisplaysuntil
all graphic objects have disappeared from the layer.

e cache: this attributeinforms the stack that the contents of
the layer should be cached because it is expensive to com-
pute and does not change often. The stack layer alocates
an offscreen virtual surface with a mask or apha channel
to storethe contents of thelayer. Thisoffscreen virtual sur-
faceis used during aredisplay triggered by another layer.

e animated: thisattributeinformsthe stack that the contents
of the layer changes frequently. When such a layer is on
top, the stack saves the contents of the image under the
graphic objects. When it is not on top, the stack maintains
amask of modified regions above it and a copy of theim-
age below it. When the content is modified, the mask is
installed as a clip to protect pixels modified by the layers
above. The image below is then redisplayed to erase the
previous content of thelayer and the new layer’s content is
redisplayed with the clip mask still installed. Finaly, the
clip mask isreset.

More specific optimizations can be useful when a layer is
very specidized. For example, when alayer displaysavideo
stream in afixed region, the layer is animated but the image
below it does not need to be maintained.

Note that the redisplay optimizations can be implemented at
any time during the development cycle. In particular, they
can be implemented when the application is complete and
works, or in parald with the development of the layers. We
view this as a mgjor advantage of the Multi-Layer Model: a
graphical application can be optimized at alate implementa-
tion stage.

7 INTERACTION

Layers delegate the management of interaction to layer tools.
At any onetime, each layer has exactly one associated layer
tool. An interaction mode isimplemented by a set of coop-
erating layer tools. When the interaction mode changes (e.g.
when selecting atool in atool palette), the layer toolsare dy-
namically changed. Unlikethe layers, the layer toolsin a set
are generaly dependent from each other. The communica
tion between cooperating tool sis done through direct method
cals.

Table 3 describes theimplementation of the standard interac-
tion style for selection/dragging objects. It uses five layers
and associated layer tools. The first column is the name of
the layer associated with the layer tool. The second column
specifies the precondition that must be true for the event to
be managed by thelayer tool. In column 3, we use a notation
similar to UAN [18] to describe input events. M represents
the mouse, the arrows represent button down and button up,
and the star represents a mouse move. The tilde-expression
representsthe context of theevent, inthiscase either an object
o or aposition z, y. Column 4 describes the actions executed
by the layer tool on its associated layer. Column 5 describes
the actionsexectued in other layer toolsor globally. Eachline
describes alayer, from bottom to top.

Thefirst linereads: when a“mouse down” reaches the back-
ground layer tool, call the “unselect_all” method of the main
layer and cdll the“start” method of therectanglelayer. Since

the mouse down event has reached the background layer, it
has not been intercepted by any other layer tool above it and
therefore the event occured outside any graphic object. The
external actions clear the selection and start the dragging of
a selecting rectangle in the rectangle layer. We can seeinthe
last line of the table that the rectangle layer only intercepts
events when started.

The second line of the table describes the main layer tool.
When a mouse down event occurs on a graphic object of the
main layer, the object isselected by thelayer action. A notifi-
cation mechanism is used to synchronize the selection of the
main layer and the handles managed by the selection layer.

The selection layer tool (line 3) handles mouse down events
when they occur inside one of its objects, i.e. ahandle. The
external actions create ghost objects in the direct manipula-
tion layer and start the direct manipulation. The direct ma
nipulation layer tool (line 4) only handles events when it is
started. Mouse move events are handled by updating the po-
sition of ghost objects, while a mouse up event terminates
the direct manipulation, deleting the ghosts and moving the
“real” objectsintheMain layer. Therectanglelayer tool (line
5) works in a similar way. When started, it handles mouse
move and mouse up events to manages the selection rectan-

ge

In thisexample, the selection layer manages alist of handles,
the direct manipul ation layer manages alist of ghosts and the
rectangle layer manages a rectangle. The following exam-
ple (table 2) describes the implementation of the free-hand
sketching tool in our animation editor.

The Strokelayer tool handles the mouse eventswhilethe pen
is down and appends a graphic object in the main layer when
the pen goes up. The methods start, continue and finish dis-
play theink according to the pressure p and store the samples
(position and pressure) in alist. The method glyph creates a
graphic object by interpolating a spline from the samplesin
the list. The object isthen inserted in the Main layer and the
ink removed from the Stroke layer. At the next redisplay, the
graphic object of theMain layer replacestheink of the Stroke
layer. Thisexample shows how interaction styles can be eas-
ily implemented with new layers. The Strokelayer described
here can be added to any graphical editor based on the Multi-
Layer Moddl. It can be specialized very easily in order toin-
terpret the stroke as a command instead of just converting it
into a graphical object, resulting in a mark-based interaction
style.

A set of layer tool sisfunctional ly equival ent to amanipul ator
in Unidraw, with the following differences:

¢ no explicit grabbing is necessary during adirect manipula
tion;

¢ with an object-oriented language, each tool can be reused
or specialized.

These properties facilitate the reuse of layer components
within an application and between applications, reducing de-
velopment costs and improving the homogeneity of the user
interfaces. In our experience, the level of reuse can be very
high, as described in section 9.

Layer Precondition Event Layer Action External Action
Main
unselect_all()

Background ~[z,y]M | “Rectangie
start(z, y)

Main ~ [o]M | | select(o)

Direct Manipulation

Selection ~[o]M] create_ghosts()
start(z, y)

Direct started() ~[=',y'IM continue(z’, ')

. . - Main

Manipulation | started ~ [z", y"IM finish(z", y"

P 0 70" e hohdy | move(ds, dy)

Rectangle started() ~[=',y'IM continue(z’, ')

H H i~ H H Maln
started() ~[z",y"IM finish(z", y"') select(rectangle())

Table 3: Description of the Layer Tools operations used to implement the Selection/Dragging Interaction Mode

Layer | Precondition Event Layer Action External Action
Main
Stroke ~[z,y,pIM | | start(z, y, p)
~ [z,y,p]M * | continue(z, y, p)
- Main
~ [z,y, p]M finish(z, y,
[z,y,pIM 1 (=,y,p) append(glyph()

Figure 2: Freehand drawing in the animation editor.

8 IMPLEMENTATION

We have implemented the Multi-Layer Model first with
Unidraw and then directly inthe InterViewstoolkit [22]. The
implementation is divided in three parts: the InterViewsker-
nel, the Multi-Layer kernel and a set of predefined layers,
toolsand stacks.

8.1 Modification to the InterViews Kernel

The InterViews virtual surface is called a Canvas. It imple-
ments a graphic modd close to the PostScript model. The
graphic structureis a DAG of Glyphs[7]. Only events gen-
erated by the core X Window System are handled by Inter-
Views. We added a Device class and support for extended
events similar to the X Input Extension [12]: each event is
generated by a Device object that maintains a state. The
events contain the device that generated them, details about
the state changes and the time of the changes.

The Canvas class was dlightly modified: the snapshot opera-
tion was added to implement the save under layer attribute. 1t
returnsascreen region or nil depending on the Canvasimple-
mentation. We aso added an offscreen Canvas class, which
maintains a 2D image and an optiona mask of modified pix-
els. Both theimage and themask can be used for drawing and

clipping.

These modifications are compatible with the origina Inter-
Viewsimplementation: the whole source tree can be recom-
piled without further modifications. The only problem we
have encountered comes from the fact that InterViews wid-
gets are not designed to support several active positiona de-

vices. For example, the scrollbar widget starts the manipu-
lation on a mouse down event, then processes mouse move
events and finishes when it receives a mouse up event. The
behavior of the scrollbar isunpredictableif it receives events
from several devices, such asapen down event whilethe ma-
nipulation has already been started by a mouse down event.
This can be solved easily by storinginthe scrollbar thedevice
that generated the starting event and only processing events
from this device until the end of the manipulation.

8.2 Multi-Layer Kernel Classes

The Multi-Layer kernel requires three basic classes: Layer,
LayerStack and LayerTool. The InterViews Canvas class is
used as the lowest common denominator of all graphic mod-
els and the InterViews Glyph class is the base class for al
graphic objects. Both the LayerStack class and the Layer
classes inherit from Glyph, with the constraint that they can-
not be shared like other InterViews glyphs. The LayerTool
classinheritsfrom the Layer class and implements the Deco-
rator Design Pattern [14]: it containsa pointer to alayer and,
by default, forwards each method call to thislayer. Special-
ized tools redefine one or severa layer methods in order to
implement their behavior. For event handling, layer toolsre-
define the pick method; for event management, they redefine
the event method. In principle, they could redefine any other
method but we never used thisoptionin our editors.

Thisimplementation requires that the region managed by the
layer stack isnot shared with any other InterViewsglyph, be-
cause InterViews does not use subwindows. We avoid con-
flicts either by alocating a top-level window for the layer

stack or by making sure that no object intersects the layer
stack. 1n a native implementation of the model, this problem
would not arise.

8.3 Layer Library

The rest of the implementation is a set of specidized layers,
stacks and tools. When specializing a layer, we can specid-
ize either itsvirtual surface or its graphic model. In order to
simplify the inheritance tree, we always derive virtua sur-
faces from the Canvas class. The original Canvas trand ates
itsgraphic modd intothe X Window System model. We have
added a SubCanvas class that implementsthe Decorator pat-
tern and forwards any call to a Canvas. By deriving this Sub-
Canvas, we can relax the graphic model of a Canvas. For ex-
ample, arelaxed graphic model for rubberbanding is imple-
mented by deriving a RubberBandingCanvas from the Sub-
Canvas. When asked to fill a polygon, the RubberBanding-
Canvas only strokes its outline with a one-pixel wide black
line and ignores changes in the color attributes.

To specidize a graphic model, we derive a class from Can-
vas and add the graphic attributesor functions specific to this
model. We then specialize the graphic structure managed by
the layer by defining a root graphic structure derived from
Glyph with a draw method specialized for the new graphic
model. The other graphic structures involved in the graphic
structure then inherit from this specialized Glyph.

A specialized layer class manages aspecialized graphicstruc-
ture and receives a specialized virtual surface for drawing.
It implements the pick operation and defines the operations
that manage its graphic structure. For example, the rectangle
layer defines the operations start, continue, stop, started and
rectangle: start definestheanchor point of therectangle, con-
tinue changes the position of the point oppositeto the anchor,
stop erases therectangle, started returnstrueif arectangleis
being defined and rectangle returns the current rectangle.

Specializing thelayer stack usually consistsin redefining the
draw method which is called when a region of the stack vir-
tual surface has been damaged. This method looks up which
layers are damaged in that region. Depending on the charac-
teristics of the damaged layers, several optionsare available
to optimize the redisplay. The simplest option isto redisplay
all thelayers from bottom to top, using cached images when
available. When only the top-level layer is damaged and the
save under attributeis set, it can be erased first and redrawn
afterwards, avoiding theredisplay of other layers. Inthegen-
eral case, the layers above the damaged layer are erased and
all thelayers are redisplayed, from back to front. For exam-
ple, consider astack consisting of aCursor layer, aDirect Ma
nipulation that can be erased, a Selection layer and a Main
layer. When the Selection layer is damaged, the Cursor, the
Direct Manipulation and Selection layers are erased, the Se-
lection layer isredrawn and the Direct Mani pul ation and Cur-
sor layers are drawn again. This saves the redisplay of the
Main layer which can be expensive.

9 RESULTS

We have used the Multi-Layer Modd to build severa di-
rect manipulation graphical editors in the TicTacToon sys-
tem[11]. TicTacToon isasystem for professional 2D anima-

tion studios that replaces the traditional paper-based produc-
tion process. It usesvector-based sketching and painting. For
sketching, the trgectory of the pen captured by a pressure-
sensitive tablet is transformed in rea-time into a stroke of
varying thickness. Fast response time and ease of use are es-
sential for such editors to be used routinely by professional
animators.

TicTacToon has six main editors: character sketching, char-
acter painting, vector-based background painting, image edi-
tion and animation layout. With the Multi-Layer Model, we
were ableto reuse alarge number of classes between the dif-
ferent editors without sacrificing performance and we were
able to implement specialized graphic models.

9.1 Reusability

All six editors share the following layers: background, se-
lection, direct manipulation, rectangle, center feedback and
stroke. The center feedback layer is used to display a small
rectangle representing the center of rotation or center of scal-
ing depending on the interaction mode. The stroke layer is
used to display the ink during real-time sketching. We have
used three graphic models (see table 1): 2D redligtic (reso-
[ution independent) for character sketching, character paint-
ing and background painting, pixel (high resolution RGBA)
for background image color correction and edition. and 3D
schematic for animation layout. As described below, sev-
eral variationsof these model swereimplemented withalarge
amount of code sharing between them.

9.2 Multiple Graphic Models

The graphic model we use for 2D animation is similar to
the PostScript graphic model [1] except that it defines more
graphic attributes and uses quintic Bézier curves. For real-
time editing, the character editor and character painting ed-
itor use a main layer that implements a relaxed version of
this graphic model relying on the primitives of the X Win-
dow System. Thebackground editorisalmost identical to the
character editor but usesamain layer implementingthewhol e
graphic moddl with a software renderer.

The look and fedl of the editorsis very similar, except for
some additional controls to manage graphic attributesin the
background editor. Moreover, most of the source code is
shared between the editors. We are currently testing amain
layer based on OpenGL and still have not modified a single
line of code outside the implementation of the layer.

We have also implemented a tracing paper layer to display
a drawing under the main layer as a model. This layer im-
plements a relaxed graphic model where each colored zone
isrendered using afixed grey level. Thisisdoneusingasim-
pletransformation that ignores color changes. Therest of the
code is shared with the main layer.

9.3 Performance

By speciaizing the graphic model to the layers’ needs, the
implementation can be almost as fast as the window system
allows. Most of the overhead comes from the programming
language (forwarding method calls and virtual method calls)
and fromthetrandgl ation of the graphic model into the window
system’s primitives.

The character animation tool is used by professiona anima-
tors who sketch directly with the pressure-sensitive tablet:
unlike other animation systems, the drawing are not scanned
in. Since each stroke is an object, images often contain sev-
eral thousands of strokes. Yet, most animators can flip be-
tween images with no perceived delay. Even the software
renderer has acceptable performance for interactive use. The
flexibility of our architecture allows us to provide the user
with controlsto balance rendering quality and speed for very
sophi sticated backgrounds.

Infact, thetoolswould just not been used by professiona an-
imators if they were too ow. The Multi-Layer Model has
allowed us to implement new features easily, to make them
availableinstantlyin severa editors, to tunethe optimizations
to the users need and to adopt an iterative style of develop-
ment.

10 RELATED WORK

The notion of layer is not new to the Multi-Layer Moddl.
Others systems have used some notion of layering. We a-
ready mentioned Unidraw which internally manages layered
graphic structures. HyperCard [15] has two graphical layers
(card and background) and six abstract layers for event han-
dling. The NeWS Window System [16] had an overlay can-
vas to manage transient graphic objects. The See Through
Tools [6] use a specific layer containing translucent tools.
The Display PostScript manual [4] describes the use of lay-
ers for interaction management. GroupKit [17] uses a layer
for displaying telepointers and annotations and SLICE [19]
uses layersin alogical model of shared editors.

The common characteristic of these systemsisthat they man-
age afixed set of layers, sometimes invisibly from the appli-
cation programmer. In contrast, the Multi-Layer Model man-
ages any number of explicit layers and clearly separates the
graphics from the interaction.

11 CONCLUSION AND FUTURE WORK

Compared with the traditional visualization-oriented struc-
tured graphic model, the Multi-Layer Model offers the fol-
lowing advantages:

o modularity: each graphic structurebel ongsto a specific ob-
ject, i.e. thelayer;

o reusability: layers and tools can be reused within and
across applications;

o performance: layers and stacks can use the graphic capa-
bilities of each specific platform such as window system
extensions and graphic accel erators.

Asaresult, sophisticated editorscan be devel oped without re-
sorting to low-level libraries. This reduces the devel opment
costsand increases theflexibility of the devel opment: thelay-
ers, thestack and theinteraction styles(setsof layer tool s) can
be devel oped independently.

We are now exploring the use of the Multi-Layer Model for
two other domains: high performance image edition and 3D
graphics. Both these domains require asynchronous redis-
play and multi-threading to achieve good performance. For
3D graphics, the stack virtual surface maintains a 2D image
and its Z-buffer. The cursor of a 3D Mouse can be drawn on

the cursor layer with the save under attribute: the stack saves
both the image and the Z-buffer under the cursor region. For
interaction, we are currently experimenting severa styles of
ghosts and sel ection feedback.

Another direction for future work is to implement tradi-
tional toolkit control objects (widgets) with the Multi-Layer
model. We have already validated this approach by rebuild-
ing the InterViews scrollbars and panners using the Multi-
Layer model. This has allowed us to implement additional
features. the panner object has been speciaized so that the
viewpoint can be turned (animators need to be able to turn
their drawings to sketch more comfortably); scrollbars have
been specialized to display information as described in [9].
Based on these experiments, we believe that the Multi-Layer
Model would be a good foundation for a new generation of
widget toolkits.

REFERENCES
1. Adobe Systems Incorporated. PostScript Language
Reference Manual. Addison-Wesley, Reading, MA,
USA, second edition, 1990.

2. Adobe Systems Incorporated, 1585 Charleston Road,
P. O. Box 7900, Mountain View, CA 94039-7900, USA,
Tel: (415) 961-4400. Adobe lllustrator 3.0 User Guide,
1991.

3. Adobe Systems Incorporated, 1585 Charleston Road,
P. O. Box 7900, Mountain View, CA 94039-7900, USA,
Tel: (415) 961-4400. Adobe PhotoShop 2.5 User Guide,
1993.

4. Adobe Systems Incorporated. Programming the Dis-
play PostScript System with NeXTstep. Addison-Wes-
ley, Reading, MA, USA, 1993.

5. Michel Beaudouin-Lafon and Alain Karsenty. Trans-
parency and awareness in a rea-time groupware sys-
tem. In Proceedings of the ACM Symposiumon User In-
terface Software and Technol ogy, pages 171180, 1992.

6. Eric A. Bier, Maureen C. Stone, Ken Fishkin, William
Buxton, and Thomas Bauddl. A taxonomy of See-
Through Tools. In Proceedings of ACM CHI’94 Con-
ference on Human Factors in Computing Systems, vol-
ume 1, pages 358-364, 1994.

7. Paul R. Cader and Mark A. Linton. Glyphs: Flyweight
Objectsfor User Interfaces. In Proceedings of the ACM
Symposiumon User Interface Softwareand Technol ogy,
pages 92-101, 1990.

8. Claris Corporation, 5201 Patrick Henry Drive, Box
58168 Santa Clara, CA 95052-8168, USA. MacDraw
Pro 1.5 User Guide, 1991.

9. Stephen G. Eick. Datavisuaization diders. Proceed-
ingsof the ACM Symposiumon User Interface Software
and Technology, 1994.

10. Jean Daniel Fekete. A Multi-Layer graphic model for
buildinginteractive graphica applications. In Proceed-
ings of Graphics Interface’ 92, pages 294-300, May
1992.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24,

25,

Jean Danid Fekete, Erick Bizouarn, Eric Cournarie,
Thierry Gallas, and Frédéric Taillefer. TicTacToon:
A paperless system for professiona 2D animation.
In Stephen N. Spencer, editor, Proceedings of SG-
GRAPH '95 (Los-Angdles, California, August 6-11,
1995), Computer Graphics Proceedings, Annua Con-
ference Series. ACM SIGGRAPH, ACM Press, 1995.

Paula Ferguson. The X11 input extension: A tutorial.
The X Resource, 4(1):171-194, December 1992.

James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes. Fundamental s of I nteractive Com-
puter Graphics. The Systems Programming Series.
Addison-Wedley, Reading, MA, USA, second edition,
1990.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison-Wesley, Reading,
MA, USA, 1994.

Danny Goodman. The CompleteHyper Card Handbook.
Bantam, 1987.

James Godling, David S. H. Rosenthal, and Michelle
Arden. The NeWSBook. Springer-Verlag, Berlin, Ger-
many / Heidelberg, Germany / London, UK / etc., 1989.

C. Gutwin and S. Greenberg. Workspace awareness
in red-time distributed groupware. Technical Re-
port 95/575/27, University of Calgary, Dept. of Com-
puter Science, University of Calgary, Calgary, Alberta,
Canada T2N 1N4, 1995.

H. Rex Hartson, Antonio C. Siochi, and Deborah Hix.
The UAN: A user-oriented representation for direct ma-
nipulationinterface designs. ACM Transactions on In-
formation Systems, 8(3):181-203, 1990.

Alain Karsenty and Michel Beaudouin-Lafon. Group-
ware for Real Time Drawing, chapter SLICE: aLogica
Mode for Shared Editors, pages 156-173. McGraw-
Hill, New York, NY, USA, 1994.

Letraset. FontSudio 2.1 User’s Manual, 1992.

Mark Lintonand Chuck Price. Buildingdistributed user
interfaces with Fresco. The X Resource, 5(1):77-87,
January 1993.

Mark A. Linton, John M. Vissides, and Paul R. Calder.
Composing user interfaceswith InterViews. |EEE Com-
puter, 22(2):8-22, February 1989.

Microsoft Corp. Windowsinterface guidelinesfor soft-
ware design. Microsoft Press, Bellevue, WA, USA,
June 1995.

Ralph Mor. From the X Consortium: PEXlib: A new
3-D graphics API for the X window system. The X Re-
source, 6(1):21-25, March 1993.

Brad A. Myers. Encapsulating interactive behaviors.
In Proceedings of ACM CHI’ 89 Conference on Human
Factorsin Computing, pages 319-324, 19809.

10

26.

27.

28.

29.

30.

31.

32.

33.

Brad A. Myers, Dario Giuse, and Roger Dannenberg
et a. GARNET: Comprehensive support for graphical,
highly interactive user interfaces. COMPUTER maga-
zine, November 1990.

Jackie Neider, Tom Davis, and Mason Woo. OpenGL
Programming Guide—The Official Guide to Learning
OpenGL, Release 1. Addison-Wesley, Reading, MA,
USA, 1993.

Open Inventor Architecture Group. Open Inventor C++
Reference Manual: The Official Reference Document
for Open Systems. Addison-Wesley, Reading, MA,
USA, 1994,

Gary Rogers. The X Image Extension. X Consortium,
1994.

Robert W. Scheifler and Jm Gettys. The X window
system. ACM Transactions on Graphics, 5(2):79-109,
1986.

Steven H. Tang and Mark A. Linton. Pacers. Time-
elagtic objects. In Proceedings of the ACM Symposium
on User Interface Software and Technology, pages 35—
43, New York, NY 10036, USA, 1993. ACM Press.

Steven H. Tang and Mark A. Linton. The effects of
blending graphics and layout. In Proceedings of the
ACM Symposiumon User Interface Software and Tech-
nology, pages 167-174. ACM, November 1994.

John M. Vlissides and Mark A. Linton. Unidraw: A
framework for building domain-specific graphical edi-
tors. In Proceedings of the ACM Symposiumon User In-
terface Software and Technol ogy, pages 158167, 1989.

