
index

1

Open Boek: technical report and manual, version

1.0

Hans Paijmans, Sander Wubben

Abstract

This report provides a description of the Open Boek intelligent retrieval
system version 1, and of its care and feeding. It combines the user manual
and the administration guide. Finally, it provides detailed descriptions of
the scripts and fileformats.

1 Introduction

Open Boek is the ’use case’ of the two CATCH projects RICH and MITCH.
It aims ultimately at the extraction and combination of textual and visual
data from written documents so that databases of images and correspond-
ing data can be created from reports in natural language. As a first stage,
we implemented a system that can recognize the semantics of numeric data
for, e.g. chronological search and retrieval[4, 5].

This report is a description of this first stage of Open Boek. It pro-
vides information for the end user, for the administrator and for hackers
who want to improve or enlarge the system. Our programs and scripts are
published under the GNU license, but please note that SMART, TiMBL
and perhaps other programs are published under different conditions, al-
though the source of everything that is directly related to Open Boek is
available.

The end user will want to skip the technical details and only read
section 2. This is why we put this section right below. The administrator
should read the two following sections about installation and indexing. If
you want to change the system, or want to change how it works, read
everything.

Version 0 and version 1

Version 1 differs from version 0 for the most part in that the individual
html-files are discarded in favour of stand-off organisation, where tokens
and tags are stored in different files, and are only combined at display time.
This should improve the speed of indexing. Also, the directory system is
overhauled, so that a single installation of Open Boek can access several

databases. Finally, we added an annotation tool (see section 5) so that the
user can create or tune the MBL data for his own databases.

DISCLAIMER No warranties are given as to the performance of
Open Boek and its useability in certain areas. This manual naturally
lags behind the development. Differences between the description of the
system on these pages and the real thing may and will occur. Your Mileage
May Vary.

more

2 User manual

Here we describe the user interface to Open Boek and the details of retrieval
within the system in some detail. Apart from this interface, there is also
an automatic way of putting queries to the system. This will be described
in more detail in section 3 on page 23.

2.1 Selecting a database and simple retrieval

When Open Boek is opened by entering the URL in a browser, the system
first lists the available databases and their state of indexing. You select
one (unless it is marked as not indexed) and the browser will display the
search interface (see figure 1). If the database is marked as ’indexed on
pages’ only, you can only list and display the files (with the special query
’filelist’) but not search for keywords, place names or chronology.

Retrieval in Open Boek is very simple: just type the keywords in the
space provided and press ’submit’. After a few moments you will be pre-
sented with a list of links that point to pages or documents that may be
relevant to your query. Click on the link, and you will see the text of
the page. Words or phrases in that text that caused the document to be
flagged as relevant, are in red. It is possible to search for keywords, for
timespans or for geographic locations, and for combinations of any or all
three semantic concepts.

For every concept there is a separate inputfield (see 1). There is also a
simple syntax to enter timespans and locations directly in the first input-
field: see the paragraphs 2.2, 2.2, 2.3 and 2.4).

Finally there is a reserved word: filelist. If you enter the word filelist
as keyword, you will get a list with all documents in the database.

2.2 Keyword search

Keywords are just typed in the first inputfield, without operators such as
AND or OR. Never forget that the more keywords you enter, the higher
the chances to find relevant information. Overload is largely avoided by
ordering the results of your query on estimated relevance. See below for an
explanation of the three ways they can be combined, weighted and sorted.

3

Figure 1: User interface (’show options’ active)

Wildcards

A recurring problem in keyword retrieval is that of homonyms, words that
are spelled similarly, but mean very different things, like ’bow’, which may
be either the front part of a ship, an instrument to shoot arrows or the act
of bending before a king1. That is why we encourage you to describe your
information need in several words: ’bow waves sea’ will bring you to pages
about the nautical meaning, whereas ’bow arrow’ will get you to Robin
Hood. That may look obvious, but research has shown that the average
query on e.g. Google is shorter than two words (1.7 to be precise), and are
for the most part four letters long.

Dutch, english and most other European languages use suffixes for plu-
rals and other variations. To avoid typing in all variations, you can just
type the beginning of a word, followed by an asterisk, and all variations will
be included in the search. So ’bow*’ as query will get you ’bow’, ’bows’,
’bowing’, ’bowman’ but also ’bowl’ and ’bowel’. In the same vein, the
point (’.’) is used for a single character: ’d.gger’ will expand to ’dagger’
and ’digger’. Of course you can combine both wildcards.

1Please understand that OB is trained on the dutch language, but in this manual we have
translated all dutch examples to their english equivalents

4

Relevancy

As we said under ’keyword retrieval’, the list with links is sorted according
to relevance, but what exactly is relevance? The answer is that we don’t
know. Or rather: relevance varies so wildly with the needs of the user,
that it is very difficult to capture. Open Boek offers three different ways
to rank the retrieved documents on estimated relevance:

Bool. We already mentioned the problem with homonyms. But apart from
that, if you are interested about information about Tom, Dick and
Harry, should the system assume that the pages where all three names
Tom, Dick and Harry occur together will be more interesting to you
than pages with only Tom and Harry? Yes, that seems obvious. Open
Book will indeed assume that this is so and offer Bool. as the default
option. But there are other options available, and you are encouraged
to use them.

Freq. The option described above does not take in account the frequency of
the individual words. But why would we want to do that? Because
we may assume that the more often the word ’Harry’ occurs on a
page, the more important the concept is (for that particular page).
If you select Freq as option, Open Boek will take the frequency
of the keywords into account when it ranks the pages on relevance.
Interestingly, it now is possible that pages with many Toms and Dicks,
but without mention of Harry, wil rank as more relevant than a page
where all three, Tom, Dick and Harry, are mentioned just once.

weighted The third option, weighted is very subtle, and will return unex-
pected, but sometimes very sophisticated results. When the ’infor-
mation value’ of the individual word on the individual page is com-
puted, it not only looks at the number of times that the word occurs
on the page (the frequency). As you can see for yourself, articles like
’the’ and ’a’ occur very often on every page, but they certainly have
no high information value. The very fact that they occur on every
page makes them very uninteresting.

When you search with this option, Open Boek will not only look at
the frequency of the words on the page, but also at their frequency on
other pages, dividing the frequency of the word (tf) by the number
of documents it occurs in (df). This called the tf.idf weight. For a
more complete treatment of such weights see [7].

In the tf.idf variant that we use here, the length of the individual
page is also considered. Again this has interesting consequences. If
the keyword happens to be on a very short page, it is marked as more
important than when it is accompagnied by a herd of other words.

All these esoteric tricks and twists cause ’interesting words’ to rank
higher than relatively uninteresting words and as we said before, it is a
good idea to experiment with these options.

5

1. cat dog horse

2. 1200-1400

3. @1200-1400

4. 1200-1400; cat dog horse

5. middle ages - second worldwar; cat dog horse

6. 1200BC-1000BC

7. amsterdam(20)

8. 1200-1400; cat dog horse amsterdam(20)

9. den bosch

Table 1: Valid queries in Open Boek

In picture 1 you will see the results of the search in two tables. The
lefthand table shows the individual pages, and the ’weight’ of that page.
The righthand table shows the list of documents ordered on the number of
pages that contain one or more ’hits’. The links will cause new windows to
be opened with either the page that is referred to (lefthand table) or with
the first page of the document (righthand table; see fig. 2).

If the text has been extracted from a pdf-file, you can inspect the
either the original page of that pdf-file or the complete file by clicking

on the button pdf (pag) resp. pdf (doc) in the upper left frame of

the window where the document is displayed. Here you also will find
navigation buttons to browse through the complete document. Individual
pages within the current document are accessed by clicking in the lefthand
frame. At the righthand side you will see a similar frame. Here you can
navigate the list with ’hits’, pages or documents that conform to your
query. If the frame is too narrow to display the title and the page, please
use the interface of your browser to adjust the width of the frame.

Strings in the text that are relevant to the query are in red. Strings that
are not relevant, but that are recognized as geographical or chronological
expressions are in blue.

You will observe that the HTML-file is not always well-aligned with the
original ’image’ of the page or that ugly overlaps or jumps in the text are
visible. This cannot be helped without major surgery, and precisely for
that reason we make the pdf-file also available to you. But in most cases
the problems with rendering are minor or not even visible.

2.3 Chronological search

Apart from searching by keywords, it is also possible to search on chrono-
logical dates. Indeed this is one of the reasons why you would use Open
Boek. Searching on dates is as simple as entering a range of years (in ara-
bics) or the name of an era in the field provided. For the impatient, the ’;’

6

Figure 2: Display window

operator can be used to enter period and keywords in the first input field
(table 2.2 lines 4, 5 and 8).

Open Boek ’knows’ what time is and what years are, and will return
all pages with dates that fall within the range you entered, regardless how
they are written in the document. ’Twelfth century’, ’1100-1200’ and ’+XII
AD’ and its variations should all be recognized.

By default a range in the document should fall entirely within the
period you entered, that is: if you enter 1000 to 1500, it will not return
pages with ’middle ages’. This is because the middle ages are defined as
500 - 1500, and to retrieve them, you should enter a start date equal to
or less than 500 and an end date equal to or greater than 1500. However,
the late middle ages are defined as between 1000 and 1500 and that will
be retrieved, as will be every period or individual date between 1000 and
1500 inclusive (see below for how such names of eras are recognized).

The operator @ (the ’at’-sign) changes this behaviour (table 2.2 line 3)
. If a timespan is preceeded by this sign, a document will be flagged as a
hit if a period in the document starts or ends in the timespan indicated
by the query. ’@1000-1500’ will return all timespans that begin or end in
that period, so now the middle ages will be retrieved.

In table 2.2 line 5 we have shown that you can enter a named period in a
timespan; in line 6 the use of BC is demonstrated (BP is allowed too, where
present is 1950). You can inspect a rudimentary list with named periods
in eras.rc (table. 3). Modifications and extensions of this list should be

7

left to the administrator (see section 3).
The recognition of chronological dates is a function of so-called artificial

intelligence, and like human intelligence it will occasionally be wrong. In
most of those cases where it errs, other numbers in the text are wrongly
marked as years.

2.4 Geographical search

Names of cities, villages and other geographic entities obviously can be
searched as keywords. However, if you want to make use of features as
distance or area search, you need extra tools.

• Distance search. The location (e.g. Amersfoort) is considered a point,
and you can search for other points within a circle with a given radius.
There is a separate inputfield for such searches, combined with a
dropdown menu for predefined distances (5-10-15-20 km). You can
also enter the location in the keyword field and add the distance
between parentheses: “Amersfoort(17)” (see table 2.2 lines 7 and
8). There is also an opportunity to enter coordinates in stead of a
geographical name.

• Area search (not yet implemented). The location is a polygon, and
the search is for coordinates that lie within that polygon. Open
questions are how the polygon is stored in the index, and how a
point inside that polygon is defined.

• Disambiguation of geographical locations (not yet implemented).

Finally, Open Boek already recognizes spatial coordinates and is able
to display the corresponding Google Maps. To do this, you just click on
the link and Googlemaps will open in a new window. Of course, your
administrator must have Googlemaps enabled on your site.

Important! Open Boek will try to ignore place names in literature
references by default. This is because of the fact that the publishing infor-
mation almost always contains a place name. Therefore you can not use
this search feature if you expect to retrieve place names in booktitles, and
you will have to enter such place names in the keyword field, which will
show you every occurrence of the word.

Finally, spaces in place names should be replaced by underscores; use
“Den Bosch” in stead of “Den Bosch”.

2.5 The ABR (discontinued)

The ABR or Archeologisch Basis Register [1] is a register with dutch arche-
ological terms that includes a simple classification in type, material and
time. In a similar way as with place names, Open Boek can recognize and
index the terms from the ABR separately.

8

ALG. SPEC. GROEP MATCAT BEGIN P EIND P BEGINJ EINDJ OMSCHRIJVI
DAKPAN — BOUW KER ROMV NTC -12 1999 Dakpan
DAKPAN DAKTGLG BOUW KER LMEB NTC 1250 1999 daktegel, geglazuurd
DAKPAN DAKVERS BOUW KER LMEB LMEB 1250 1499 dakversiering (figuraal)
DAKPAN IMBREX BOUW KER ROMV ROML -12 449 imbrex/vorstpan
DAKPAN TEGULA BOUW KER ROMV ROML -12 449 tegula
DEKSEL — VXX GLS ROMV NTC -12 1999 Deksel
DEKSEL — VXX KER NEOVA NTC -5300 1999 Deksel
DEKSEL — VXX MBR ROMV NTC -12 1999 Deksel
DEKSEL — VXX MFE ROMV NTC -12 1999 Deksel
DEKSEL — VXX ODB ROMV ROML -12 449 Deksel
DEKSEL — VXX OPH PALEO NTC -350000 1999 Deksel
DEKSEL IS66A VXX GLS ROMV ROMV -12 69 Isings 66a
DEKSEL IS66B VXX GLS ROMV ROMV -12 69 Isings 66b

Table 2: Part of the ABR (slightly edited)

2.6 Other options

Apart from the different ways to weigh the keywords, there are some other
options visible when you select “show options”.

• A KWIC index or KeyWord In Context Index shows the keyword
in its context. In Open Boek the context is rather arbitrarily set
on 40 characters before and after the keyword. More important is
that the searching algorithm for the KWIC index function does not
depend on the index of (single) keywords, but scans the full text of
the documents. Therefore it is possible to define a query that includes
spaces and other interpunction (but note that all interpunction should
be separated by a space. If you want to search for a single word using
the KWIC index, surround it with a space on either side. At the end
of the table with kwic index results, you will find a link to download
the kwic index for later reference.

The scanning of the full text may take some time on large document
collections. After the first scan, the files reside in the cache, and
subsequent scans during the same session go much faster.

• Scope Docs or Pags. The default is Pags, which means that searching
will use the pages in the document as unit, and that keywords are
weighted according to their co-occurence on the page. In the other
case, the Documents will be the units and the results will be weigthed
on the co-occurence of the keywords in the document..

• Show graph Activating this option wil cause a histogram to be
displayed, with the frequency of the individual years in the pages
found (see picture 3). Periods are expanded, so that ’middle ages’
will cause all years between 500 - 1500 to be incremented by one. In
this particular database interest seems to center on the years between
the beginning of the iron age in Holland and the end of the middle
ages. You will observe the very human tendency to gravitate towards
’round’ years, such as 500 or 1000.

9

• Show illustrations If the display of illustrations in HTML-files is
turned off, you can turn it on again with this option. The default is
off, unless overridden by ill zichtbaar=Y in the Database.rc file.

• Change database. Returns you to the first page of Open Boek, so
you can select a different database.

• Administration. Starts the administration interface for the cre-
ation of new databases, indexing and similar activities.

Figure 3: Histogram of chronological references between 1000 BC and 2000 AD

2.7 The index server

It is possible to submit a batch of pdf-document for indexing on our server
and to retrieve the indexes for your own use. Refer to the Open Boek
homepage for directions.

10

3 Installation

This section covers the installation and administration of Open Boek.
Open Boek runs as a collection of scripts under a http server such as

Apache. For these scripts and the infrastructure you must have a Linux
system available, because the Microsoft environment does not support all
necessary tools. The administrator of the system should have some elemen-
tary knowledge of Unix systems, know how to install new software, use the
command line interface and have the authority to change permissions. It
is possible that some of the third party software has to be (re-)compiled.

We will describe in detail the steps that will be necessary to index the
files in the Database-directories. There is a web-interface available with as
URL http://.../admin.php. You will need a password to enter this URL:
for the moment this is ’admin’. If you want to change it, you will have to
do this in the source of admin.php.

Requirements

The software requirements of Open Boek are:

• a modern Unix system, such as Linux, including Apache and PHP.
We used SuSE 10.1.

• the system files of Open Boek, available as a compressed tar archive2.

• the pdf to html convertor, pdftohtml version 0.363, also in the SuSE
distributions.

• a program to split a large pdf in its separate pages: pdftk4, also in
the SuSE distributions.

• a plotting program: gnuplot, also in the SuSE distributions.

• a compiled version of the venerable [6] SMART retrieval system, ver-
sion 11.05 from 1993. A linux binary can be found in the openboek
archive[3]; a clean compilation is not for the faint-hearted. In a next
version of Open Boek we may distribute an alternative indexing and
retrieval engine.

• a version of TiMBL 5.1.0 [2] 6.

For our development we used a HP compact with a pentium 4 2.60
Ghz and 790 Meg RAM memory, running Linux (SuSE 10.1). A typical
database like the RDMZ database consists of 750 pdf-files totalling 1.7 Gb
of data. The first conversion, from pdf to HTML and tag-files, takes 2.5

2http://www.referentiecollectie.nl/Openboek/openboek.tar.gz
3http://pdftohtml.sourceforge.net
4http://www.accesspdf.com/pdftk
5ftp://ftp.cs.cornell.edu/pub/smart/smart.11.0.tar.z
6The source is available at http://ilk.uvt.nl, but you will have to compile it yourself.

11

#data used by tagger.pl: use two words max for eraname, use tabs.

#Era : Begindate Enddate

Second worldwar : 1940 1945

Late middle ages : 1000 1500

middle ages : 500 1000

Roman period : -50 400

...

Table 3: The eras.rc file

hours. The indexing for keywords is very fast (one or two minutes); the
indexing of chronology of this database takes two days (but we are working
on accelerating this task). The total disk storage then is 4.2 Gig, but there
is a small amount of redundancy and superfluous data that could be deleted
(about 100 Megabyte) and if you use the link option, the original pdf-files
will not be copied.

Important: All directories in use by Open Boek, including the Database-
directories, should be read-, write- and executable for your http-server. On
a Linux system the http-server will generally be user wwwrun. You can
also assign a group, e.g.: ’users’ that wwwrun and your administration user
belong to, so that you can inspect and change scripts from the command
line, if and when needed.

3.1 Files and Directories

If you have the system up and running and have created all indexes, you
will find the following directories (we will call the directory where Open
Boek was installed originally ’home’) as depicted in fig. 4:

1. (home). here the Programs directory, the Coords directory and the
database directories are stored. It also contains default example files
for the MBL machine (time examples.ann.dutch and loc examples.ann.dutch),
a list with places and coordinates (plaatsen coordinaten.txt) and a
default eras.rc. Also the “openboek.rc” is stored here.

2. Coords. A directory with scripts to access Googlemaps for coordi-
nates. For every directory with such scripts a separate license must
be obtained from Google, although for the moment (2007) this is
without cost.

3. Programs. As we said, the directory where the programs for Open
Boek are stored and under which three other directories reside: Specs,
Data-php and Icons:

• Icons. The directory where the icons and other images that the
system needs, are stored. You can also find the style sheet for
the interface here.

• Specs. A directory where some special files are stored which are
needed for Smart and other utilities.

12

• Data-php. The php files that are needed to display the docu-
ments.

4. (Database). For every database there will be an individual directory
with a corresponding name. We will use the generic name ’Database’
for now. Here the files, specific for that individual database are kept,
and here also will be written a lot of logfiles when indexing or query-
ing that database. In the Database directory also some files with
particular options are stored. The most important is “Database.rc”
where individual settings for that database are stored. The files
“Database.jpg” and “Database.txt” may also exist. These files are
displayed if you want a visual or written description of the database.

After indexing the following subdirectories will exist in the Database-
directory:

• Docs. The SMART indexes for the retrieval of complete docu-
ments.

• Pages. The SMART indexes for the individual pages.

• Timeloc. The directory with indexes to retrieve chronological
and geographical data.

• Data. The location of the pdf-files and tag-files.

• Data/(Documents). A series of directories, each corresponding
to a single document. The name of the directory is the name of
the original document, without its extension. When we refer to
a directory ’Document’, we mean one of those directories. Every
document is split in pages (if and when possible) and every page
is split in functional files: one for the tokens, one with tags for
the layout, one with chronology tags and so on. Also, some
php-files that combine those functional files into a coherent html
file, and that govern navigation are copied from the directory
Programs/Data-php and stored here.

Almost all of these files and directories will be created automatically,
either when unpacking the Open Boek distribution or when creating and
indexing a database of documents.

3.2 Preparation

Again note that the home directory and all directories under it should be
rwx for the http server and for the administrator.

Step 1: install and prepare Open Boek

Unpack the Open Boek distribution somewhere in the document-directory
of your WWW-server. We assume that SMART and TiMBL will be res-
ident in /usr/local/bin and we have prepared defaults for that particular
case. See also the variables ’timblpath’ in classify time and ’smartbin’ in

13

complete directory open boek

open boek root dir=/Open/Paai/Test

open boek directory minus the ’document root’

open boek dir=/Paai/Test

your hostname

hostnaam=http://www.referentiecollectie.nl

preferred language of the interface

lang=EN

Table 4: The openboek.rc file

smprint, index smart and query smart. You should also have pdftohtml,
pdftk and gnuplot somewhere in your path.

After unpacking, first, edit the ’openboek.rc’ file. This file is a small
text file with some data that Open Boek should know about (see table
5). Essentially those are the name of the server and the location of the
Open Boek programs and scripts. Other things, such as preferred language
for the interface are also changed here, but for most variables reasonable
defaults exist. Note that the hashmark (#) precedes comments, that are
not interpreted by the system.

The important items in ’openboek.rc’ are open boek root dir which should
point at your absolute Open Boek directory, open boek dir, that points to
the directory relative to the wwwserver and hostname which should con-
tain the hostname of your computer, preceeded by ’http://’. If you want
to use a different language for the interface, add a variable lang. Dutch
(default) is ’NL’, english is ’EN’. Other languages can be added, but you
should create and edit separate dialogs- and help-files in that language. If
you want to add, e.g. german, you would choose ’DE’ as the value of lang
and create the ’dialogs.DE’ and ’help.DE.html’ files as translations of their
dutch and english counterparts.

Nota Bene: the language of the interface is not necessarily the lan-
guage of the database. If you want to add a database with documents in
a language other than dutch, please refer to subsection 3.6.

At this point you should also have registered the Coords-directory with
Google, if you want to use Googlemaps. If you use SMART and/or TIMBL,
see to it that you have read the license agreements, and have installed the
binaries in /usr/local/bin. The same is true for pdftohtml. and pdftk.

Step 2: select the documents

With an ASCII editor, create a list of the pdf-files or html-files you want
to include in your database, with complete path information. It is a good
idea to move this file to your Open Boek home directory and keep it there.
Please choose your pdf-names so that no spaces, commas or other special

14

database−
specific
files

Icons
System dir

System dir
Specs

System dir

index dir
Docs

Pages
Index dir

Data

Programs

Coords

Database 1

Database 2

Database...

System dir

System dir

Document...

Document 1

Document 2

Document...

Document...

Data−php

Index dir
Timeloc

Open Boek home

Figure 4: Directory structure

characters are part of the filename (and change the original name of the
pdf-file if necessary).

Step 3: prepare the database

Open de URL http://whatever/your/open boek dir/admin.php (protected
with password) and select the uppermost option (Create new database)(see
5).

A new screen is displayed (6): give a name for the new database that
starts with a capital and the file with pdf-files. There are a few parameters
that you should know about.

The first is whether you want the pdf files copied to the Open Boek
structure, or just have them linked there. The default is linking; but if you
want to burn your database on a CD, you will want to copy the original
pdf-files.

The second is whether Open Book will try to recognize pages that
contain literature references. Such references almost always contain place
names and years, but such data are mostly ’uninteresting’ as search argu-
ment. For instance: many archeological texts are published in Amersfoort;
and such occurrences will strongly interfere with a search for archeological
finds in or round Amersfoort. The default is therefore to ignore literature
lists.

Then, you can protect every database with a password. This password

15

Figure 5: Menu 1 for database administration

is stored in plain text in the database.rc file, so it is not a very strong
protection. (passwd)

Now press ’submit’. A new directory with the name of your database
is created and the pdf files from the list will be copied (or linked) to their
appropriate sub-directories under Database/Data. This can take some
minutes for very long lists. It then displays the list of pdf-files at their new
location.

Under the surface the following actions will also have taken place:

• A number of specification files for SMART are copied from the Specs
directory to the Database-dir.

• The file ’eras.rc’ is copied to the Database directory. This file con-
tains named chronological periods (see fig. 3) and you should edit it
according to your needs. Of course you can add new periods at will,
as long as you conform to the examples: a colon between the name
and the years, and white space between the years. Years before christ
are preceeded by a minus sign. The language of eras.rc should match
the language of your documents.

• If you want special features for this database, a file ’Database.rc’
should exist in the Database directory. This file is an extension of
the ’openboek.rc’ file so that variables specific to that database can be
defined, e.g: ’filecopy’ if you want to copy the files in stead of linking

16

Figure 6: Creating a new database

them. This file is created automatically. here also the variable LANG
is specified if the language of the documents is other than dutch.

• There will be a file created called ’Database.lst’ (or whatever the
name of your Database directory), that contains a list with the loca-
tion of the documents, number of pages and some related information.
See table 6.

• If in the home-directory files exist with the same basename as the
Database-directory, they will be copied also, but you can insert them
at a later date, as they are not compulsory. Such files may include:
Database.jpg, for the logo (about 550 x 175) and Database.txt for a
short description.

Step 4: creating the text- and tag files

Reload the page with the administrative interface. Your new database
should now be visible. Select it, so that the menu in figure 7 is displayed.
you will observe that the actions you can perform on every database are
governed with a few buttons. Every database can have different indexes
activated: they are recognizable by the fact that the text ’already done’ is
displayed behind the appropriate checkbox. Nevertheless, you can ’redo’
such actions, although this is only useful if you want to experiment with
the system.

17

password

passwd=apekool

ignore pages that look like bibliographies (Y or empty)

ignore lit=Y

local options (Y or empty)

local options=

display illustrations (Y or empty)

ill zichtbaar=Y

language of the database (NOT language of the interface)

LANG=dutch

Table 5: The database.rc file

If indexing is in progess, you will be notified by the fact that this is
indicated in red. Also, in the yellow box at the bottom, the tasks that are
currently running, are displayed. It is generally a good idea not to start
new tasks when the yellow box is in evidence.

When you select a database, Open Boek will check if the conversion
from pdf to html by pdftohtml has already been done; if not it will proceed
to do so first and return when it has been completed. In this step, which
may take some time (approx. three or four pdf-files in a minute) OB
will convert the contents of the pdf-files to HTML, images (png-files) and
other relevant material, notably the token-lists and the taglists. The script
’prepare data’ sees to this conversion. It then reads the HTML-files that
were created by pdftohtml, and will create three separate files: one for
the tokens of the text proper (doc-x tokens), one for the interpunction
(doc-x interp) and one for the HTML tags (doc-x taglist). The ’x’ in the
filename stands for the pagenumber. From now on, Open Boek will use
these files to reconstruct the html-files at query time, and the original
HTML-file can be discarded. In the doc-x tokens-file every token is stored
on a line of its own; in the doc-x taglijst and later in the chronological
and other tag-files, every tag is preceded by a number that refers to the
linenumbers of this doc-x tokens file.

When you return to the administrative interface, and no red text is
visible, you may proceed to step 5: indexing.

Step 5: indexing, specifics

The ’Docs’ and ’Pages’ checkboxes need no special preparations, although
you may add or edit the ’stopwoorden’ file in the Database-dir. The key-
word indices will be prepared by SMART. This task only takes a few
minutes, (longer for large databases) after which you can use the advanced
keyword search features.

For the indexing of chronological expressions, you need a file with

18

Figure 7: Menu for individual database administration

tagged examples for the language of your database. The same is true
for the creation of geographical indices. These files reside in the home
directory of Open Boek. The file with tagged examples for dutch is called
’time examples.ann.dutch’.

Select the appropriate checkboxes and wait. Large databases can easily
take two or three days to complete the indexing.

Nota Bene: All actions in Open Boek leave logfiles in the Database
directory. See the section 4 on the names of the logfiles and when they are
created. At this stage of development, the logfiles are overly verbose.

This ends the instructions on how to create and index an Open Boek
database.

3.3 Some notes on document file formats

Open Boek supports both pdf and html formats. If you start with other
formats, convert them to either pdf or HTML, but note that you need a
textual representation of your document in the pdf-file.

pdf is logically structured as paged documents, and OB will take those
pages as units vor indexing and display.

HTML has no page structure. If you want to paginate HTML-files,
insert the line <!- - pagina - -> (html comment) where you want your
pagebreaks. OB will put <body>...</body> tags around the individual
pages, otherwise it is your responsibility to see that the HTML within the

19

pages always is consistent, that the tags are balanced etcetera.
By far the largest portion of the documents in our collection of about

two thousand reports of approx. fifty pages each) were originally typed on
paper, and later scanned, OCR-red and stored as PDF. In such files, the
’image’ of every page was paired by an ’invisible’ ASCII text that however
could be easily extracted and indexed. The problem here was the display of
the retrieved pages. The original pdf-images of course contain all sorts of
pictures, tables and drawings, but we did not address the technical problem
of highlighting keywords or the addition of links in that pdf-representation.
Instead we convert the contents to HTML. However: this gave rise to the
following problems.

1. One alternative, the omission of the image of the page, and the display
of only the ASCII text as HTML gave the opportunity of highlighting
and links, but omitted most visual content such as images and most
formatting.

2. The second option consisted of the projection of the HTML-ized
ASCII over the image. This combines highlighting, links and visual
content, but the result in the browser often looks messy.

Another large portion of the files was already written using a wordpro-
cessor and stored as PDF. Such files translated relatively easy in HTML,
combining highlighting, links and images. Still, the rendering of the fonts
is not always satisfactory. In any case you can switch from one method of
display to the other.

The default in Open Boek is (1). If you want to change the default, In
the database directory Database exists a file ’Database.rc’. In this file, you
can put the line ill zichtbaar=Y. In that case, the default will be that
the illustrations are visible.

Tables and other artefacts

One of the problems with the conversion program that we used is that the
resulting HTML is divided in lines (in the sense of one or more words on
the same level), and that every such line is only marked by its position on
the page and its font. Subscripts and superscrips are not considered part
of the line; they get individual tags for font and position, after which a
new ’line’ is started. Every information about e.g. the line being part of
a table, header or caption, is lost. A similar problem exists if the text is
made up in columns; our programs do not recognize the columns but read
the two lines as belonging to a single line. These problems are not solved
at this moment.

Microsoft files

A third group of documents consisted of hundreds of reports written by
individual archeological bureaus. These were stored on as many CDs and

20

almost always produced by Microsoft software. Without a doubt every
CD contains a highly artistic multimedia feast with sounds, movies and
everything, but it was absolutely impossible to extract the original reports
without a timeconsuming process of analysing the contents by hand, de-
feating the purpose of automated indexing and retrieval. But even if the
’central’ document could be identified, Microsofts OLE framework often
prevented extraction of the relevant data, at least with the tools that we
used.

Another unexpected result of the Microsoft way of doing things was
that we often found text or pictures in a Word file that were normally
not visible, and certainly not meant to be visible, such as corrections,
annotations and remarks, deleted pictures and so on. This can lead to
embarrasing situations.

3.4 The index files

The ’Timeloc’ directory contains the ’tijdlijst’ index and the ’loclijst’ in-
dexes. The ’tijdlijst’ depends on the existence of the machine learning
components TiMBL and a database with examples. In the Open Boek
distribution such a database is included (’number examples.ann.dutch’),
but you are encouraged to create your own examples. Please note that
the indexing of these numeric classes is very time-consuming, depending
on your hardware this can take several minutes for every document.

The ’loclijst’ index tries to identify place names in the same way. It
uses the file ’loc examples.ann’ for this purpose, in combination with ’plaat-
sen coordinaten.txt’. By default, Open Boek will try to recognize litera-
ture references, and ignore place names in such cases. For this purpose it
uses a rough heuristic, based on the ratio of interpunction, capitals and
words. Please note that other pages can look like literature and be ig-
nored. However, we found that place names on such pages generally were
’uninteresting’ for the same reason that place names in literature lists are
’uninteresting’. In any case, you can always use plain keyword search to
retrieve any string on such pages.

3.5 Moving databases

In the case that you want to move a complete, indexed database from one
computer to another, please note the following:

If you copy the complete Openboek installation, you need to update
the ’openboek.rc’ file.

If you only move a database, see to it that it resides directly under
the Open Boek home directory (like all other databases). Then change
the ownership and group to wwwwrun:users, or whatever is valid for that
host. The permissions should be u+rwx for all directories and files, or if
you want to experiment, ug+rwx.

21

If the original pdf-files are linked to, see that the link is accessible from
the new directory.

The original path information for every file is found in the files Database/doc loc
and in Database/Database.lst. You will have to load these files in a text
editor such as emacs, and replace all original paths by the new path. Then,
you will have to reindex the keywords (Docs and Pages) as above.

You do not need to reindex the Time index or the Location index.

3.6 Documents in other languages

Although you can easily change the language that is used for the inter-
face (see subsection 3.2), it is more difficult to prepare Open Boek for
documents in different languages.

The first restriction is that you can only do this for separate databases.
Mixing e.g, english and dutch in one collection will not work.

After that, you should realize that the really language-dependent mod-
ules are those that select the cases for the machine learning part. Let
us take the recognition and extraction of chronology data as an exam-
ple. The modules that detects potential chronology-related phrases are
paai tag time and num pick. In these modules, we have three functions:

1. The first is to detect roman numerals and convert them to integers.
This will not have to be replaced when you change from e.g., dutch
to english. The source is in eval roman.awk

2. The second function translates cardinals and ordinals to integers.
Obviously this needs to be taylored to every language you want to
use. Sources for english and dutch are in eval cardinals dutch.awk
and eval cardinals english.awk.

3. Finally, there are some heuristics expressed as rules. These too are
dependent on the particular language. They are implemented in
paai tag time and num pick themselves.

The system reads the database.rc file and extracts the parameter LANG=...
If this does not exist, dutch is assumed.

The next ting to do is to extract about 10,000 examples of potential
chronology-related phrases from a number of typical documents and cat-
egorize them by hand, possibly using the annotator described in section
5. The annotated lines are called time examples.ann with the language as
suffix: e.g. time examples.ann.dutch. See table 10.

There exists a dirty trick to extract such lines from the databases. What
you do is take an empty example file and proceed to create a chronlogy
index. After completion, there exists a Database/Temp directory, with for
every page in your database a file ending on ...txt.num. Now collect from
those files as many lines as you need, and categorize them according to
your system...

22

3.7 Automated Retrieval

The Open Boek system can be queried without using the user interface
described in section 2. In that case, the query must be sent as a GET
parameter to the following URL: http://.../json.php. The result will be
returned in josn-format.

If you want to hack this...

23

4 Detailed description of the programs

This section contains detailed information on the Open Boek internals:
scripts, logfiles and other stuff that you need when you want to develop
your own Open Boek modules.

4.1 Prepare data

The first program that will be run for a new database is prepare data.

• (if called with option pdf) it calls pdftohtml to extract from the
pdf-file the individual pages as numbered HTML-files and separate
images. It also creates an index-file, called name ind.html, and OB
uses this index file to keep track of the pages.

• it extracts the text proper from the HTML-files, so that SMART can
later index those files, adding the markers <PAGE...>, <DOC ...>,
<TEXT> and <STOP> for the SMART preprocessor.

• it extracts the tokens from the individual pages (HTML-files) and
stores them in * token files. Dito for the HTML-tags, which are stored
in the * taglijst files and punctuation information (* interpunction).

• it adds a number of files in every directory: index.php, knoppen.php,
hitknoppen.php lijst.php, hitlijst.php and pasop.html. OB needs
those files to display the HTML-files later and to allow you to navi-
gate through the pages of the documents.

• finally it writes the files ’doc loc’ with the filenames (needed by
SMART) and ’Database.lst’ (see table 6) with a concordance of pa-
genumbers and documents to the home directory.

Prepare data keeps a log of its actions in the database directory as
prepare data.log.

cum# pag# full pathname

27,27,"/Open/Test/Demo/Data/Aalburg",

98,71,"/Open/Test/Demo/Data/Aalsmeer",

125,27,"/Open/Test/Demo/Data/Aalten",

143,18,"/Open/Test/Demo/Data/Aardenburg",

...

Table 6: The Database.lst file, showing from left to right the cumulative number
of pages, the number of pages and the complete name of the document.

24

filename start end

Aalburg-26 +19870101 +19871231

Aalburg-27 +19300101 +19301231

Aalburg-27 +19000101 +19001231

Aalburg-27 +19000101 +19001231

Aalburg-27 +19360101 +19361231

Aalsmeer-1 +19920801 +19920831

Aalsmeer-2 +19300101 +19301231

...

Table 7: The ’Timeloc/tijdlijst’ index

4.2 Creating the keyword indexes

At this point the keyword indexes can be created, after which Open Boek
can already be used as an advanced VSM-based retrieval system. In the
home directory, you will see a number of files, beginning with ’spec.’. These
files govern the behaviour of SMART. It should not be necessary to change
anything in those files, but note that if you want to use a list of stopwords,
it should be called ’stopwoorden’. This file has to be present, but it can
be empty.

We will assume that the binary ’smart’ is copied to ’/usr/local/bin’.
index smart. This script is executed twice; once for the indexes on

document level, and once for the indexes on page-level. Actually, this is
redundant, so we will change that some day. The script calls smart to create
the frequency- and atc (tf.idf) indexes. The results are stored in the direc-
tories ’Docs’ and ’Pages’ respectively. Then the script smprint is called to
create human- readable indices (word weights.atc and word weights.nnn).
Finally it creates the ’inverted file’ files in Docs and Pages that are used
for the traditional (Conj way of searching.

Logs are kept in the database directory as index smart.log and in-
dex time.log.

4.3 The time indexes

classify time. This script handles the recognition and indexing of chronol-
ogy and other numeric data. It calls wintok and numpick to make lists of
numbers in context. The script paai tag time recognizes whether the ex-
pressions are chronological or spatial coordinates and creates the * taglijst chron
files with the timespan tags for every page. Then, index time extracts the
’Timespan’ information from those files and stores it in ’tijdlijst’ as an
index (see table 7).

The logfiles are : classify time.log, numpick.log, paai tag time.log and
wintok.log.

25

4.4 The location indexes

classify loc. This script handles the recognition and indexing of place
names from the list ’plaatsen coordinaten.txt’. It calls wintok and loc pick
to make lists of place names in context. The script paai tag loc recog-
nizes whether the expressions are proper place names and creates the
* taglijst loc files with the timespan tags for every page. Then, index loc
extracts the information from those files and stores it in ’loclijst’ as an
index.

The logfiles are : classify loc.log, loc pick.log, paai tag loc.log and win-
tok.log. There is also a lit.log that records which pages were not indexed
because they were flagged as ’literature’.

4.5 Retrieval

Retrieval is based on the indexes in the Pags en Docs directories, on the
indexes in the Timeloc-directory and on the file ’Database.lst’. The results
are written to temporary files in the Database-directory, prefixed with
’tmp...’. Every query has an unique number, so that the tmp-files can be
inspected in case something unexpected happens, but all tmp files older
than 24 hrs are deleted whenever index.php is called.

• a php-script (index.php) is called in a browser. Keywords, chrono-
logical queries and geographical queries (class queries) are entered
in separate fields. The intermediate results are stored in tmp-files,
which then are joined.

• the script query smart calls smart with a query; generally as a back-
end of the php-interface script. It also can read the inverted files and
perform a boolean query. ’Database.lst’ is used to find the name of
the document from the page. The SMART engine is used by creating
a file with the commands that would be given from the interactive
interface of SMART, and collecting the output from SMART in a file.
Long live the Unix pipe! The logfile for this action is query smart.log;
the resultfile something like ’tmp result 12345 key’.

file-page starttime endtime

4+Grensmaas-3 +19980101 +19980101

04+Grensmaas-5 +20040101 +20040101

04+Grensmaas-5 +19990101 +19990101

04+Grensmaas-5 -501230 +5000101

04+Grensmaas-5 +5000101 +5000101

05+natte+archeologie-10 +20020101 +20020101

05+natte+archeologie-11 +20010101 +20010101

05+natte+archeologie-11 +20040101 +20040101

05+natte+archeologie-12 +19400101 +19450101

Table 8: The time index.

26

• query time queries the ’tijdlijst’ file. It also does a last check on
consistency. logfile: query time.log. The resultfiles something like
’tmp 12345 chron’and ’tmp 12345 chron tmptijd. This last file is cre-
ated to create a graph with ’tijdsgraaf’.

• query loc queries the ’loclijst’ file. logfile: query loc.log. The resultfile
something like ’tmp 12345 loc’.

• The final results are written to temporary files (see table 9). It con-
tains from left to right the weight, the absolute pagenumber, the
page in thedocument and the document path. If both query time
and query smart were called, the result is the join of both results.The
resultfile something like ’tmp result 12345’.

• The php-interface reads this file and displays the list of pages and
documents.

• Each page links to the file index.php in the subdirectory of that doc-
ument. This script displays the corresponding page, using the script
highlight to highlight selected markups and where possible, to improve
rendering. It leaves the following logfiles in the document-directory:
tmp.html, combine.log, highlight.log, index time.log and wintok.log.

The queries are solved as follows: the temporal, geographical and key-
word indexes are scanned for matches; the matches are stored in ’tmp result 12345 key’,
’tmp 12345 loc’ and ’tmp 12345 chron’. These files then are combined ac-
cording to the genre of the query (boolean, frequency or advanced) and
stored in the ultimate resultfile ’tmp result 12345’.

tmp_chron_1200991778

tmp_chron_1200991778_tmptijd

tmp_result0_1200991778

tmp_result0_1200991778_docs

tmp_result0_1200991778_key

tmp_result1_1200991778

tmp_result2_1200991778

weight doc page filename

0.16 20 10 /Open/RDMZ/Data/Amersfoort

0.15 20 13 /Open/RDMZ/Data/Amersfoort

0.14 42 11 /Open/RDMZ/Data/Barneveld

0.13 20 15 /Open/RDMZ/Data/Amersfoort

0.13 168 12 /Open/RDMZ/Data/Eemnes

0.12 341 63 /Open/RDMZ/Data/Leusden

Table 9: The result of a query as stored in a tmp-file.

27

5 The annotator

As Open Boek for its special functions depends on the existence of anno-
tated examples, we have also added a simple web based annotation tool. It
is called directly from your browser or from the Open Boek administrator
interface.

To use the annotator, you must prepare a file with text windows (se-
quences of a certain number of words) with a focus of the feature that you
want to classify and a label field for the assigned class. See 3.6 for an easy
trick to do create such files from existing pdf-documents.

As an example, consider the file “time examples.ann” (table 10)
The file has nine features. The feature to be classified is in the column

’focus’ and is in our case a numeric, a cardinal or an ordinal. The purpose
of annotation is to enter the correct label in the last column.

You can start the annotator by loading the URL http://.../annotator.php.
Our annotator expects the file to be annotated to have the suffix “.ann”,
and to have spaces as separators between the attributes. This file should
be stored below the Programs directory and have the name ’Annotate’.
When you start working with the annotator, new files also get a number in
the filename, that is incremented after every save. This ensures that you
have a complete history of your efforts, in case something bad happens.

The first time you select a file for annotation, you must enter the num-
ber of classes that you will be using, and press the button ’reload’. Then,
indicate the number of features in the file, the focus field and the field with
the class, but the annotator will already have computed them. After the
first run, the annotator will save the values you have selected in a file with
a .rc suffix and reload them automatically.

The annotation is straightforward: every line presents the classes you
may to assign; just click on the corresponding radio button (see figure 8).
When you are tired, press one of the buttons with “Save” that occur every
ten lines; your work will be saved with the next highest number.

The structure of the annotation files is written in a rc-file that has the
corresponding name.

/subsectionAdding evaluation information
It is easy to apply this annotator as an evaluation tool. Given a

focus Label
telefoon : 020 - 463 4848 Zeedijk 54 telefax [Other]

AAI ’s : tussenbalans 1 januari 2000 , Maastricht [E52 Timespan]
o 25 - 30m 10 - 15m 3 03 [Other]

veen 0 0 0 0 1 411 20 veen [Other]
de hand . Figuur 17 (links) coupe [Reference]

Drie fibulae uit de eerste helft van de eerste [E52 Timespan]

Table 10: The contents of time examples.ann

28

Figure 8: Annotator for time examples.ann.

database filled with what Open Boek assumes are the correct instances for
every case, you only have to add a new label field with classes like ’[cor-
rect]’ and ’[false]’ and proceed to use these labels as the new classification.
You can obtain such files by collecting from the directory database/Temp
all files ending on ’.classified’ (see also 3.6). After tagging the instances
by these labels, it is relatively easy to compute the performance of Open
Boek for the given documents.

Nota Bene: the annotation task often is much easier if you sort the
records on the focus column or any other criterium that ranks them in
sensible groups. .

29

6 Acknowledgements

This work was supported by NWO/CATCH under grant 640.002.401.
No Microsoft software was used in research or production of this doc-

ument.

30

References

[1] R.W. Brandt, E. Drenth, M. Montforts, R.H.P. Proos, I.M. Roorda,
and R. Wiemer. Archeologisch basisregister, versie 1.0. Archis expertise
centrum, 1992.

[2] Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal van den
Bosch. Timbl: Tilburg memory based learner, version 5.1, reference
guide. ilk technical report 04-02. Technical report, Tilburg University,
2004.

[3] J. J. Paijmans. Indexing texts with smart. Linux Journal, (36):24–26,
april 1997.

[4] J.J. Paijmans and S. Wubben. Memory based learning and the interpre-
tation of numbers in archaeological reports. In M-F Moens, T. Tuyte-
laars, and A.P. de Vries, editors, Proceedings of the 7th Dutch-Belgian
Information Retrieval Workshop, pages 51–56, 2007.

[5] J.J. Paijmans and S. Wubben. Preparing archeological reports for intel-
ligent retrieval. In Posluschny, K. Lambers, and I. Herzog, editors, Pro-
ceedings of CAA-2007 (in press). Berlijn, Germany, volume 10 of Kol-
loquien zur Vor- und Frhgeschichte. Dr. Rudolf Habelt GmbH, Bonn,
2007.

[6] G. Salton, editor. The SMART retrieval system; experiments in au-
tomatic document processing. Prentice-Hall, Englewood Cliffs, N. J. ,
556 pp., 1971.

[7] G. Salton and M. J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill New York [etc.] - 448 pp., 1983.

31

Appendix: the Timbl license

The TiMBL License

Licensing Terms

Downloading and using the TiMBL software implies that you accept the

following license terms:

Tilburg University and University of Antwerp (henceforth

‘‘Licensers’’) grant you, the registered user (henceforth ‘‘User’’)

the non-exclusive license to download a single copy of the TiMBL

program code and related documentation (henceforth jointly referred to

as ‘‘Software’’) and to use the copy of the code and documentation

solely in accordance with the following terms and conditions:

The license is only valid when you register as a user. If you

have obtained a copy without registration, you must immediately

register by sending an e-mail to Timbl@kub.nl.

User may only use the Software for educational or non-commercial

research purposes.

Users may make and use copies of the Software internally for

their own use.

Without executing an applicable commercial license with

Licensers, no part of the code may be sold, offered for sale, or made

accessible on a computer network external to your own or your

organization’s in any format; nor may commercial services utilizing

the code be sold or offered for sale. No other licenses are granted or

implied.

Licensers have no obligation to support the Software it is

providing under this license. To the extent permitted under the

applicable law, Licensers are licensing the Software "AS IS", with no

express or implied warranties of any kind, including, but not limited

to, any implied warranties of merchantability or fitness for any

particular purpose or warranties against infringement of any

proprietary rights of a third party and will not be liable to you for

any consequential, incidental, or special damages or for any claim by

any third party.

Under this license, the copyright for the Software remains the

joint property of the ILK Research Group at Tilburg University, and

32

the CNTS Research Group at the University of Antwerp. Except as

specifically authorized by the above licensing agreement, User may not

use, copy or transfer this code, in any form, in whole or in part.

Licensers may at any time assign or transfer all or part of their

interests in any rights to the Software, and to this license, to an

affiliated or unaffiliated company or person.

Licensers shall have the right to terminate this license at any

time by written notice. User shall be liable for any infringement or

damages resulting from User’s failure to abide by the terms of this

License.

In publication of research that makes use of the Software, a citation

should be given of: ‘‘Walter Daelemans, Jakub Zavrel, Ko van der

Sloot, and Antal van den Bosch (2004). TiMBL: Tilburg Memory Based

Learner, version 5.1, Reference Guide. ILK Technical Report 04-02,

Available from http://ilk.uvt.nl/downloads/pub/papers/ilk0402.pdf

For information about commercial licenses for the Software,

contact Timbl@kub.nl, or send your request in writing to:

Prof.dr. Walter Daelemans

CNTS / Center for Computational Language and Speech Processing

Department of Linguistics

University of Antwerp

Universiteitsplein 1

B-2610 Wilrijk (Antwerp)

Belgium

33

Files in the OB distribution (version 1.0)

Specs : a directory with specification files for smart,

a file with chronological eras (eras.rc), a stoplist

for the dutch language and an example bibref file.

Coords : a directory with scripts for Googleearth.

admin.php : the administrative interface

check tasklist : a script to see if OB-related tasks are running

classify time : the envelope script for chronology-indexing

classify loc : the envelope script for location-indexing

combine : a script to combine stand-off files into a single

HTML file

eras.rc : a list with time periods and years.

functions.php : a collection with php functions

highlight : a script to highlight hits in the HTML version

index.php : the query interface

index smart : a script to index using smart.

index time : a script to extract time information and index

it.

loc pick : selects expressions containing placenames.

numpick : selects expressions with numbers or digits.

openboek.rc : global parameters for Open Boek

paai tag time : a rule-based postparser for chronological expressions

paai tag loc : a rule-based postparser for chronological expressions

prepare data : the script that extracts the html from pdf and

creates

the stand-off files.

query smart : pipes a query into smart and collects the output

query time : solves chronological queries

query loc : solves geographical queries

tijdsgraaf : draws a graph of chronological references

wintok : writes text in columns.

check lit : checks a page if it is a literature list

dialogs.EN : screen texts in two languages

dialogs.NL

help.EN.html : help in two languages

help.NL.html

time examples.ann : the database for MBL based chronological

tagging.

loc examples.ann : the database for MBL based place name recognition.

plaatsen coordinaten.txt : the database with locations and coordinates.

34

Files used for the MBL examples

01+inleidings.html 02+doelstellingen+en+organisaties.html

03+Zandmaass.html 04+Grensmaass.html

05+natte+archeologies.html 06+steentijds.html

07+metaaltijds.html 08+romeinse+tijds.html

09+middeleeuwens.html 10+conclusiess.html

11+samenvattings.html 12+Zusammenfassungs.html

13+publicatiess.html HOP1_Gasleidings.html

AAIrap14-1.html AAIrap14-10.html

AAIrap14-11.hml AAIrap14-12.html

AAIrap14-13.html AAIrap14-14.html

AAIrap14-15.html AAIrap14-4.html

AAIrap14-5.html AAIrap14-6.html

AAIrap14-7.html AAIrap14-8.html

AAIrap14-9.html AAIrap20s.html

AAOrap02s.html AAOrap14s.html

AAOrap15s.html AAOrap22s.html

AAOrap29s.html AAOrap33s.html

AAOrap36s.html AAOrap38s.html

Hanzelijn7s.html NO1328-LOEBs.html

NO1342-BOHAs.html NO1353-VREIs.html

RA1156-NEBENs.html RA969-NLDAs.html

RAM_79_01_Hoge_Vaart-A27s.html RAM_79_03_Hoge_Vaart-A27s.html

RAM_79_04_Hoge_Vaart-A27s.html RAM_79_05_Hoge_Vaart-A27s.html

Rapport+86s.html archol_06s.html

archol_08s.html archol_15s.html

archol_18s.html archol_21s.html

archol_22s.html archol_26s.html

archol_27s.html archol_30s.html

archol_37s.html archol_41s.html

fratsen_1s.html fratsen_3s.html

fratsen_5s.html inhoudsopgaves.html

ockenburgh-jaarverslag-1993s.html page5.html

F1+format+selectieadvies+waarderend+onderzoek+Maaswerkens.html

F2+format+programma+van+eisen+waarderend+onderzoek+Maaswerkens.html

F4+format+standaard+bepalingen+veldwerk+Maaswerkens.html

F5+format+standaard+bepalingen+uitwerken+Maaswerkens.html

F8+format+standaard+bepalingen+eindrapport+Maaswerkens.html

14+medewerkers+Projectteam+Archeologie+Maaswerkens.html

RAP+515_4100420_Eelde+Kosterijwegs.html

RAP+521_4100020_Beesel+Hoeve+Oud+Waterloos.html

RAP+558_4094100_Ede+Tuinderslaans.html

Selectieadvies+definitief+onderzoek+Lomms.html

HIO01_project_metainformaties.html

35

Index

A
administration1, 33
annotator2

C
chronology1, 33
combine33

D
dialogs33
display1

G
geography33
Google33

H
helpfiles33
highlight33
HTML1, 33

I
index1, 33
index.php33

L
literature33

M
Microsoft29

P
PDF-files33
periods33

S
semantics1
SMART33

T
TiMBL1, 31

U
user1, 2

36

Contents

1 Introduction 2

2 User manual 3
2.1 Selecting a database and simple retrieval 3
2.2 Keyword search . 3
2.3 Chronological search . 6
2.4 Geographical search . 8
2.5 The ABR (discontinued) . 8
2.6 Other options . 9
2.7 The index server . 10

3 Installation 11
3.1 Files and Directories . 12
3.2 Preparation . 13
3.3 Some notes on document file formats 19
3.4 The index files . 21
3.5 Moving databases . 21
3.6 Documents in other languages 22
3.7 Automated Retrieval . 23

4 Detailed description of the programs 24
4.1 Prepare data . 24
4.2 Creating the keyword indexes 25
4.3 The time indexes . 25
4.4 The location indexes . 26
4.5 Retrieval . 26

5 The annotator 28

6 Acknowledgements 30

37

