
Reflections on Symmetry

Harold Thimbleby
UCLIC, University College London Interaction Centre

26, Bedford Way, LONDON, WC1H 0AP, UK

h.thimbleby@ucl.ac.uk; http://www.uclic.ucl.ac.uk

ABSTRACT
Symmetry is routinely used in visual design, but in fact is
not just a visual concept. This paper explores how deeper
symmetries in user interface implementations can be ‘re-
flected’ in the design of the user interface, and make them
easier to use. This deeper application of symmetry for user
interface design is related to affordance, and therefore makes
that concept constructively applicable. Recommendations
for programming better user interfaces are suggested.

“Symmetry, as wide or as narrow as you may de-
fine its meaning, is one idea by which man through
the ages has tried to comprehend and create order,
beauty, and perfection.” Hermann Weyl [16]

Categories and Subject Descriptors
D.1.5 [PROGRAMMING TECHNIQUES]: Object ori-
ented Programming; H.5.2 [INFORMATION INTER-
FACES AND PRESENTATION (e.g., HCI)]: [H.5.2
User Interfaces (D.2.2, H.1.2, I.3.6)]; J.4 [SOCIAL AND
BEHAVIORAL SCIENCES]: Psychology

General Terms
Algorithms, Documentation, Design, Human Factors, Lan-
guages, Theory

Keywords
Affordance, object orientation, statechart, symmetry, user
interface design

1. INTRODUCTION
We are most familiar with symmetry in the spatial and vi-
sual domains, perhaps most especially as occurring in two
dimensional pictures and patterns. For example, a reflection
symmetry is a feature of an object that is unchanged when it
is reflected in a mirror. A translation symmetry is a feature

AVI 2002, Advanced Visual Interfaces International Working Conference
Trento, Italy. http://www.diel.univaq.it/avi2002/

of an object that is unchanged as it is moved to another po-
sition. Wallpaper patterns are familiar objects that combine
reflection, translation and sometimes rotational symmetries.

In general, symmetry occurs when a property of an object
(e.g., a visual property) is unchanged through a transfor-
mation of the object (e.g., a rotation or reflection) [16]. Of
course, most transformations change objects in one way or
another, but when they do not change some properties a
symmetry is involved. Symmetry, then, is a sort of consis-
tency.

In the natural world, attacks and threats to survival are
never specialised to the left or right: when one survives
a threat from one side, one’s chances of survival are im-
proved by assuming the lesson learnt is symmetrical — fu-
ture threats are equally likely from left or right (or even
front and back).

Imagine an image of a human face. Faces have an approxi-
mate vertical bilateral mirror symmetry, and more symmet-
ric faces are more attractive. Facial asymmetries, which are
not so attractive, arise mainly through imperfections. Im-
perfections to one’s appearance may be caused by disease
or trauma, and such accidents rarely have any underlying
structure that can maintain symmetries. Somebody who
is symmetrical is therefore more likely to be healthy, and
therefore likely to be more reproductive. To some extent, ev-
idently, symmetry has evolutionary significance, which goes
some way to explaining the widespread appeal of symme-
try to humans, including in more abstract domains such
as in patterns and rhythms. In human culture, symmetry
has acquired æsthetic significance: it is exploited in art in
the widest sense, whether the visual arts, music, poetry or
rhetoric.

As we develop we learn many symmetries that become ob-
vious and trivial to adults. For example, numerosity is
unchanged under many everyday transformations (such as
movement, rearrangement, or hiding and revealing). Child-
hood magic is entertaining because it breaks symmetries:
what was empty space in a hat is transformed into a rab-
bit! Outside of deliberate entertainment, however, breaking
everyday symmetries is generally unwanted: as in the pick-
pocket’s artful transformation of a full pocket into an empty
one.

Computers can do anything; therefore the behaviour of com-



puters has to be carefully programmed to ensure they behave
as required. It follows that if computers are to behave in a
useful way (rather than seem magical or irritating) then the
appropriate everyday symmetries must be programmed into
them. The question is, what are the appropriate symme-
tries, and how can they be programmed? The answers to
this question must be sought from two different directions:
what is applicable and effective in programming, and what
is applicable and effective for the uses of programs. Pro-
grams are not just abstract conceptions, they have meaning
when executed.

When users see interactive systems, they do not see all of
the systems: they can only see traces. Their user models
are therefore incomplete, even if what they do know of the
system behaviour is sound. To be able to operate a sys-
tem beyond their direct experience, they will implicitly use
ideas like symmetry: the transformation is changing to an-
other context in the system, and the unchanged property is
(hopefully) the same interaction behaviour of the system in
the new context. When a symmetric user model is valid,
it can be much simpler and smaller than one where each
context in the system has to be understood independently.

When programmers build systems, they want to make their
programs more reliable, easier to maintain, and so on. But
these seem different criteria, and certainly of different im-
portance, than the criteria that are important to the users
of programs. An important way to improve programs is
to replace repeated code with function calls, which creates
shorter programs that are more manageable, and usually
more elegant. Each function call expresses an implicit sym-
metry: what were different parts of the program — and in
fact are different parts when the program is run — become
the same.

That the same concept, symmetry, is worthwhile for both
programmers and users is highly suggestive.

2. SYMMETRY AS A FORMAL CONCEPT
Define an image of a face by a function p(x, y), which spec-
ifies what pixel to paint at co-ordinate (x, y). An idealised
face might be mirror symmetric about the vertical line x = 0.
Here, the transform is x goes to −x, and the unchanged
property is p, since p(x, y) = p(−x, y).

In general, if p(v) = p(T (v)) then a property p is symmetric
under the transformation T . Further, T must be invertible,
so p(v) = p(T−1(v)) as well — e.g., if T is a rotation, the
property is unchanged through a rotation, and a rotation
back. This formal description of symmetry clearly captures
the essence of the visual or physical symmetries of objects.

Symmetry allows the description of a function to be com-
pressed. In the simple case of the face p, instead of storing
all of p, we could store it only for x ≥ 0 together with the
simple fact of its mirror symmetry. Since we might assume
p is an arbitrarily large pixel map, exploiting this symmetry
halves the storage requirements.

Other sorts of symmetry can be used to compress p fur-
ther; for instance, run length encoding exploits the trans-
lation symmetry that for many x and y, ∃k : ∀i, 0 < i ≤

k : p(x, y) = p(x + i, y). Each use of this symmetry saves k
pixels (say, 32k bits) in an explicit representation of p for
the smaller cost ≈ log2 k bits of storing k. Mirror and run
length encoding and other symmetries can be used together,
and hence obtain further compression.

As a function is compressed, it is described more and more
implicitly by the rules it obeys. Thus instead of describing at
length all the explicit transitions of a state transition system,
one might write a program that represents the transitions
more briefly. The program thereby defines (some) symme-
tries of the state system: the transformation is the change of
state the program is applied over, and the unchanged prop-
erty is the invariant meaning of the relevant fragment of
the program. For example, if the program had a statement
state := OFF; then the symmetry is: however the initial
state this is applied to changes, the next-state property (in
this case, going to the state OFF) is the same. The range of
symmetries open to programmers is much more general than
the conventional mathematical symmetries, such as group
actions.

Symmetry can be exploited at higher levels of programming
too. If the source code of a program has a translation sym-
metry — a pattern of at least two fragments of code that
are the same but in different places — then the program
can be made shorter by replacing the two pieces of code
with common function calls (or using other programming
techniques such as inheritance). This can be thought of as
text compression, making the program shorter, by exploit-
ing the notation of the programming language. It is well
known that as a program is compressed by such techniques,
it is likely to become more reliable: there is less code to
maintain, and things that are supposed to be the same be-
come guaranteed to be the same. Programs also become
more reliable because of an ‘amplification’ effect in debug-
ging: when a bug is fixed in a function, there is a corrective
impact on very many parts of the program (everywhere the
function is invoked). Conversely, since a single function is
exposed to test in more contexts, it is likely to have more of
its bugs detected per test.

Since symmetry is so useful, different specialist terms are
used to describe the properties involved in different areas;
invariant being a common term, and one used in program-
ming.

3. SYMMETRY IN USER INTERFACES
The behaviour of a modeless user interface does not depend
on what state it is in: so a change in state does not change
the property ‘future behaviour.’ Hence modelessness is a
symmetry.

There are typically a huge number of states in everyday state
machines (such as digital clocks, mobile phones, etc) but it is
unreasonable, on various grounds, to expect the user’s model
to be so large. Therefore, the user must rely on symmetries:
the user must assume that certain transformations leave the
user’s model unchanged.

A digital clock works the same way whatever time it is,
though obviously each individual time it displays represents
a different state. The way in which the clock can be used is



essentially unchanged as states are transformed into other
states through the passage of time.

The way a video recorder is used depends only very weakly
on the position of the video tape: the transformation repre-
sented by PLAY · · · STOP may change the picture, but changes
no properties of interaction. Both operations are reversible
(e.g., using REWIND ) even if not self-inverse.

Conversely, a lack of symmetry in a user interface makes
it harder to use. Consider a Nokia 8310 mobile phone.
Pressing MENU then � locks the keypad. Unfortunately,
and unnecessarily, this rule only works when the phone is in
standby. There is therefore no simple symmetry

meaning(MENU ; � ) = meaning(arbitrary-prefix; MENU ; � )

Even in the Nokia’s calculator mode, where MENU ; � could
have meant something sensible other than keypad lock (i.e.,
multiply), it changes the phone’s state to standby and in-
serts a star as part of a number to dial — pretty pointless. It
appears that thinking about symmetries (even modes: these
ideas were formalised over 12 years ago [11]) was not a design
issue; one infers that the Nokia’s program is larger than it
need have been — and hence is less reliable because a larger
program will have been harder to manage. These inferences
are consistent with what Nokia say about themselves: they
use explicit state transition diagrams for storyboarding [7].

The impact for the user is that the Nokia cannot have its
keypad locked reliably without first looking at it and get-
ting it into the standby state by whatever mode-dependent
means is appropriate. With a symmetric design, the Nokia
program itself would have been shorter, the user interface
would have been more consistent and easier to use, and the
user manual could have been slightly shorter (currently it
says, [only] “In standby mode, press . . . ”); there is no rea-
son for the restriction.1

4. AFFORDANCE AND DESIGN
Gibson [4] understood human vision by assuming certain
features of vision are invariant with motion and rotation,
and that the visual features, despite their physical trans-
formations, are somehow “picked up” by the observer. He
claimed the function of the brain was to “detect invariants”
despite changes in visual sensations. For instance, as a face
is rotated, it still looks like the same face, and this is the in-
variant. Once recognised, an object may stimulate some or
several sorts of action, and when it does so this is in some
sense a set of “natural” relations. Hence Gibson assumed
the human (i) recognises a set of symmetries (ii) particular
sets of symmetries stimulate particular responses. Together
these ideas constitute affordance.

1If the Nokia was location aware, and for instance knew
when it was in a pocket, handbag or holster — which is
about the only sort of situation when keypad lock is required
— there would be little need for a user interface command
for keypad lock. Other mobile phone designs use a physical
flap over the buttons, which (i) works in any state (ii) is
itself a physical interlock so the mobile cannot be packed
with the keypad unlocked (iii) does not require exceptions
for dialling 112 and 999.

The classic examples of affordance are the door plate and the
door handle, which when recognised stimulate pushing or
pulling the door respectively. Door plates (more accurately,
their visual images) are said to afford pushing; handles afford
pulling. Occasionally one comes across doors with handles
that can only be opened by pushing; occasionally one comes
across doors with plates that cannot be opened by pushing.
The behaviour inconsistent with affordance in each case is
frustrating to users.

Affordance is an informal but stimulating concept; this led
to subsequent research attempting to pin down the concept
adequately to exploit it further. Norman’s classic Psychol-
ogy of Everyday Things [9] brought affordance to the at-
tention of designers. Gaver subsequently widened the scope
of affordance to the design of graphical user interfaces [3],
where an added factor is that display screens can show pic-
tures of objects (such as push buttons) that would have had
affordances if actually present. Since user interface design-
ers want to encourage users to follow appropriate courses of
action — and this is by no means easy to do — affordance
is a key concept for interface design. If interface features
consistently “afford” certain actions, and these actions are
appropriate, the interface will be easier to use.

Because affordance seems intuitive and represents a gener-
ally “good thing” it has become a popular design concept
— but has been used increasingly sloppily by user interface
designers [10].

Regardless of the psychological validity of Gibson’s views,
affordance is clearly a valid formal description of percep-
tion and action. Understanding affordance more formally,
as generated by symmetry, may help avoid its sloppy use
in interactive systems design. As Marr put it [8], although
Gibson under-estimated the complexity of vision, his ideas
attacked implementation bias in vision research, enabling it
to focus on what vision achieves rather than, as had been
emphasised, on how vision works at the biophysical level.
Similarly in user interface design, the user is not interested
in how a system is implemented nor even in how they as
users respond to it (or its affordances): a more abstract
approach is required, and affordance-as-symmetry seems to
capture some of the crucial notions of interaction design at
the right level.

(Of course affordance is a sophisticated concept, which has
accrued nuances and caveats over decades; symmetry is not
a basis to formalise all of the issues now associated with
affordance.)

5. VISUALISING MACHINES
Machines of even modest complexity are very messy to draw
as state diagrams, and various schemes have been proposed
to make diagrams clearer. Harel’s Statecharts [5] are one
approach for simplifying state transition diagrams.

In an explicit state transition diagram, a single program rule
such as state := OFF would be represented in the diagram
by as many arrows as states to which it applies. Typically,
if a state machine S has N states, this would require N − 1
arrows just for this one rule (since a machine can usually
be switched off in all states where it is not already off).



In a statechart, however, this symmetry can be represented
directly by just one arrow. The figure below compares the
explicit and statechart representations for the case N = 5.

✐

✐ ✐

✐

✐
Off

✲

✐

✐ ✐

✐

✐
Off

✲

Amongst other symmetries, statecharts can also exploit im-
plicit cross products: if the transitions in S have a non-
trivial product structure, then the two diagrams A and B,
such that A × B = S, will be smaller than the diagram for
S. An explicit state diagram requires the product of the
number of arrows: a considerable extra visual complexity,
and a worse drawing complexity that will encourage drafting
errors.

User interfaces are very often cross products. Since a prod-
uct S = A × B can be projected onto A, the behaviour A
can be understood independently of the behaviour of other
components of S. A simple example is a window system S;
if the behaviour of window i is Wi, the overall system be-
haviour is S = W1 ×W2 ×W3 · · · , where each window has
(in the idealisation here) independent behaviour. The sym-
metry is the unchanged behaviour of all windows Wi : i 	= j
regardless of the transformations the user makes to the state
of window j. In practice this means a user can make changes
in one window, and (although this is a transformation on S)
expect the properties of all other windows to be unchanged.

The statechart representation of a window system S can rep-
resent each window as a separate box in the diagram. Thus a
statechart itself exploits symmetries corresponding to those
that may be represented in the user interface. If a state-
chart of a window system has lots of arrows criss-crossing
it, then there are interactions between windows: the window
system is nasty, and the statechart is nasty. (In general,
in any system the arrows crossing between boxes represent
non-orthogonality.) It is plausible that ‘neat’ statecharts are
easier to use than ‘nasty’ statecharts. If so, then statecharts
are a useful, constructive tool for designing interactive sys-
tems, since improving the statechart diagram improves the
user interface.

A statechart makes large parts of a system specification im-
plicit, by exploiting certain symmetries: various notational
devices (such as dashed lines) are used to imply symmetry.
The crucial insight is that to a large extent what is im-
plicit/explicit in a statechart is similarly implicit/explicit in
a user interface. Simplifying a statechart therefore simplifies
the user interface, and in turn simplifies the user model.

Thimbleby [12] gives some examples of statecharts repre-
senting user interface issues, and [13], more specifically, gives
an extended example of statecharts simplifying cross prod-
ucts but applied to a digital alarm clock rather than to a
window system

6. DEEPER CONNECTIONS
The physical interface (whether knobs and switches in a
strict physical sense, or their visual representation on a
screen) presents symmetries to the user that the user may
assume are implemented by the system. If button A looks
like button B, and A has certain affordances, then button B
should have the same affordances. On the screen there is a
translational symmetry between the buttons; in a good im-
plementation of the button behaviour, the program code will
be the same for each button. In the program, the symmetry
is that changing button does not change the code applied.
Thus there is a deeper sort of symmetry than the superficial
visual screen translation: the symmetries in the visual user
interface is connected to the symmetries of the state space
— so the affordances are consistent to the implemented be-
haviours.

The meaning of a window for the user is defined by the mean-
ing of the set of states and transitions that implement the
window (there may be ambiguities in the user interface that
the user resolves through world knowledge, so the ‘mean-
ing’ may be non-deterministic). The meaning property is
unchanged through a translation from program to screen
pixels. In short, there is a connection between the screen
and the program; and obviously the strength of this connec-
tion will depend on how well the program is constructed to
ensure the symmetry. In an object oriented programming
language, the programmer would have access to representa-
tions of Wi that are independent of other Wj (i.e., thanks
to encapsualation), hence connecting to the symmetries the
user sees. A reason for the effectiveness of object oriented
programming languages for implementing good user inter-
faces is that simplifying the program also simplifies the user
interface (compressing, exploiting invariants, etc). Good ob-
ject oriented programming therefore leads to good user in-
terfaces, a benefit that is not enjoyed by non-object oriented
imperative languages.

Many examples of good programming practice can be in-
terpreted as attempts to increase reliable symmetries. As
mentioned earlier, if a program has a translational symme-
try (the fragment of code here is the same as the fragment
of code there) then a single abstraction (procedure) should
be used. With an abstraction, the programming language
guarantees the symmetry — without an abstraction the ex-
act translational symmetry relied on the accuracy of the
programmer exactly replicating the same fragment of code.
In an imperative progamming language, the symmetry can
only be guaranteed to be preserved at run time if there are
no global state variables; in a functional programming lan-
guage, there are no state variables, so this stronger guar-
antee is automatically ensured. This leads to the principle:
when a programming language supports a particular symme-
try, the programming notation cannot refer to it (if it could,
the programmer could easily break the symmetry). This is
analogous to the elimination of arrows by statecharts: when
no arrows are drawn, but which are implicitly represented,



the programmer cannot draw them to the wrong states.

7. RECOMMENDATIONS
User interface programmers are concerned with the imple-
mentation of user interface features, but the connection be-
tween program and user interface is rarely made as explicit
as we are suggesting it can be made. As a program is im-
proved, eliminating duplicate code by using inheritance or
abstraction, there will be concomitant improvements to user
interface.

Statecharts are often used for representing system specifica-
tions. The connections with user interface affordance, how-
ever, suggests a more constructive role for them: tidying up
a statechart diagram — by changing the system specification
— is likely to tidy up the user interface in a corresponding
way. In other words, a statechart is not just a record of a
system specification, but is a design tool that can be used
to help improve usability.

Some improvements programmers will be interested in will
not be visible at the user interface, and some (e.g., some
patterns) will not have a useful impact because they intro-
duce new program objects that have no relevance to the
user. The recommendation from this paper is to prioritise
program optimisations and improvements that connect to
the user interface, so they cause optimisations there. In
turn this will make user manuals better, and so on. An op-
timisation with a widespread impact is a very worthwhile
opitimisation.

Once a symmetry is established — whether starting at the
user interface with affordances, or starting from the pro-
gram with objects and classes — other structural connec-
tions follow that may be exploited, for instance with the
user manuals. Just as the user interface should correspond
to the program in obvious ways, the user manual should too,
as should the user’s model of the system. Repetitions in a
user manual can be eliminated, making the manual shorter.
If the user manual can be compressed by using symmetries
(and remain sound and complete), then it follows that the
user model (i.e., the cognitive load for learning and using a
system) can also be reduced. As with statecharts, this pro-
cess may be used constructively: simplifying a user manual
is a process that can suggest changes to the system design
to make it easier to use. A user manual need not simply
be a natural language record of a fixed system specification:
writing a good user manual can be an active part of the
design process.

Finally, a programmer should examine programs carefully
for approximate symmetries. Can the system be modified
so that the approximate symmetries become exact? These
two parts of the system that are similar, could they be made
equivalent? These two similar parts of the user manual,
could the system specification be modified so that they were
the same?

User manuals do not describe all of a system (unless the
system is very simple), assuming the user can cope with
implicit symmetries. Yet very often the actual system will
not obey the implied symmetries. For example, in many
desktop computer applications text is edited in slightly dif-

ferent ways in different contexts (e.g., in paragraphs, tables,
diagrams, dialog boxes, file dialogs, number fields . . . ) —
typically, selection, cut and paste, undo and other features
are not implemented consistently. If the manual described
all these varieties of text editing subsystems faithfully, the
manual would be very much longer, and very tedious to read!
The success of the interactive system relies on the user cop-
ing with the inconsistencies; instead — and certainly for
safety critical applications — would it not be far better if
the different contexts used the same implementation of text
editing: thus making the program smaller, and the faithful
user manual shorter?

8. FURTHER DIRECTIONS
This is a brief paper (developed from ideas first described
in [13]), suggesting a new and as yet not thoroughly devel-
oped approach. Elsewhere, we have explored particular user
interface symmetries, though not then described as such [15,
14]. One of the clearest discusssions of symmetry in state
models is in [2]; a more exhaustive discussion is [1].

We did not attempt to formalise ‘connection’ in this paper.
An exceptionally clear discussion of formal program design,
including Galois connections (which are generalisations of
reversible transformations) is [6].

9. CONCLUSIONS
Symmetry is a universal and desirable concept at many lev-
els of system design: relevant in program design, program
representation (as in statecharts), user interface design (as
in visual design), and in perception (as in affordance), and
beyond into areas such as user models and user manuals.
When connections can be found between different sorts of
symmetries, the desirable design goals at each level are uni-
fied. Certain sorts of symmetry are desirable for program-
mers, and when these can be related to the sorts of symme-
tries desirable for users, then programmers will tend to make
user interfaces better, and users will tend to understand the
programs better.

From a user interface perspective, affordance, which is al-
ready widely accepted as relevant to ease of use, can be
interpreted as symmetry. From a program perspective, even
at the low level of state transition systems, elegance in stat-
echart representations is a symmetry. Moreover, as parts of
user interfaces and parts of statecharts can be put in corre-
spondence, the symmetries are connected. A key contribu-
tion of this new understanding of affordance and symmetry
will be a reduction in user interface implementation bugs.

Using an appropriate programming notation (of which stat-
echarts are an example), particularly one that is object ori-
ented, to implement the system means that the program-
mer can work at a higher level about the rules the program
obeys in its interaction behaviour. Improving, compressing,
programs (at least, ones expressed in suitable notations) im-
proves their user interfaces.

Finally, because symmetry creates connections through im-
plementation to affordance, and hence connections between
implementation and use, user interface designers and pro-
grammers will be able to work more constructively together
(a point Gaver also alludes to [3]).



Acknowledgments
Roland Backhouse, Ann Blandford, Paul Cairns and Peter
Ladkin made very helpful comments.

Harold Thimbleby is a Royal Society-Wolfson Research Merit
Award Holder, and acknowledges this support.

10. REFERENCES
[1] A. Carbone and S. Semmes. A graphic apology for

symmetry and implications. Oxford University Press,
Oxford, 2000.

[2] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled.
Model Checking. MIT Press, Cambridge,
Massachusetts, 1999.

[3] W. Gaver. Technology affordances. In ACM CHI’91
Conference, pages 79–84. ACM, 1991.

[4] J. J. Gibson. The Ecological Approach to Visual
Perception. Houghton Mifflin, Boston, 1979.

[5] D. Harel and M. Politi. Modeling Reactive Systems
with Statecharts: The Statemate Approach.
McGraw-Hill, New York, 1988.

[6] C. A. R. Hoare and H. Jifeng. Unifying theories of
programming. Prentice Hall, London, 1998.

[7] H. Kiljander. User interface prototyping methods in
designing mobile handsets. In Proceedings
Human-Computer Interaction Conference, Interact’99,
pages 118–125. IFIP, 1999.

[8] D. Marr. Vision. W. H. Freeman & Company, New
York, 1982.

[9] D. A. Norman. The Psychology of Everyday Things.
Basic Books, New York, 1988.

[10] D. A. Norman. Affordance, conventions, and design.
ACM Interactions, 6(3):38–43, 1999.

[11] H. Thimbleby. User Interface Desing. Addison
Wesley/ACM Press Frontier Series, New York, 1990.

[12] H. Thimbleby. Visualising the potential of interactive
systems. In The 10th. IEEE International Conference
on Image Analysis and Processing (ICIAP’99), pages
670–677, 1999.

[13] H. Thimbleby. Affordance and symmetry. In
C. Johnson, editor, Interactive Systems: Design,
Specification, and Verification, volume 2220 of Lecture
Notes in Computer Science, pages 199–217, Berlin,
2001. Springer Verlag.

[14] H. Thimbleby. Permissive user interfaces.
International Journal of Human-Computer Studies,
54(3):333–350, 2001.

[15] H. Thimbleby and C. Runciman. Equal opportunity
interactive systems. International Journal of
Man-Machine Studies, 25(4):439–451, 1986.

[16] H. Weyl. Symmetry. Princeton University Press,
Princeton, New Jersey, 1952.


