
Wing IDE Personal Reference Manual
Wing IDE Personal

Wingware

www.wingware.com

Version 3.2.13
March 2, 2011

2

Contents

Introduction

1.1. Product Levels

1.2. Licenses

1.3. Supported Platforms

1.4. Supported Python versions

1.5. Technical Support

1.6. Prerequisites for Installation

1.7. Installing

1.8. Running the IDE

1.9. Installing your License

1.10. User Settings Directory

1.11. Upgrading

1.11.1. Fixing a Failed Upgrade

1.12. Installation Details and Options

1.12.1. Linux Installation Notes

1.12.2. Installing Extra Documentation

1.13. Removing Wing IDE

1.14. Command Line Usage

Customization

2.1. Editor Personalities

2.2. User Interface Options

2.2.1. Windowing Policies

2.2.2. User Interface Layout

2.2.3. Altering Text Display

2.2.4. Setting Overall Display Theme

2.3. Preferences

2.4. Key Equivalents

2.4.1. Key Names

2.5. File Sets

Project Manager

3.1. Creating a Project

3

3.2. Removing Files and Packages

3.3. Saving the Project

3.4. Sorting the View

3.5. Navigating to Files

3.5.1. Keyboard Navigation

3.6. Project-wide Properties

Environment

Debug

Options

Extensions

3.6.1. Variable Expansion

3.7. Per-file Properties

File Attributes

Editor

Environment

Debug

Source Code Editor

4.1. Syntax Colorization

4.2. Right-click Editor Menu

4.3. Navigating Source

4.4. File status and read-only files

4.5. Transient vs. non-Transient Editors

4.6. Auto-completion

4.7. Indentation

4.7.1. How Indent Style is Determined

4.7.2. Indentation Preferences

4.7.3. Indentation Policy

4.7.4. Auto-Indent

4.7.5. The Tab Key

4.7.6. Checking Indentation

4.7.7. Changing Block Indentation

4.7.8. Indentation Manager

4.8. Brace Matching

4.9. Support for files in .zip or .egg files

4

4.10. Notes on Copy/Paste

4.11. Auto-reloading Changed Files

4.12. Auto-save

Search/Replace

5.1. Toolbar Quick Search

5.2. Keyboard-driven Mini-Search/Replace

5.3. Search Tool

5.4. Search in Files Tool

5.4.1. Replace in Multiple Files

5.5. Wildcard Search Syntax

Interactive Python Shell

6.1. Python Shell Auto-completion

6.2. Python Shell Options

Debugger

7.1. Quick Start

7.2. Specifying Main Entry Point

7.3. Debug Properties

7.4. Setting Breakpoints

7.5. Starting Debug

7.6. Debugger Status

7.7. Flow Control

7.8. Viewing the Stack

7.9. Viewing Debug Data

7.9.1. Stack Data View

7.9.1.1. Popup Menu Options

7.9.1.2. Filtering Value Display

7.9.2. Problems Handling Values

7.10. Debug Process I/O

7.10.1. External I/O Consoles

7.10.2. Disabling Debug Process I/O Multiplexing

7.11. Debugging Multi-threaded Code

7.12. Managing Exceptions

5

Advanced Debugging Topics

8.1. Debugging Externally Launched Code

8.1.1. Importing the Debugger

8.1.2. Debug Server Configuration

8.1.3. Debugger API

8.1.4. Debugging Embedded Python Code

8.2. Remote Debugging

8.2.1. File Location Maps

8.2.1.1. File Location Map Examples

8.2.2. Remote Debugging Example

8.2.3. Installing the Debugger Core

8.3. Debugger Limitations

Source Code Analysis

9.1. How Analysis Works

9.2. Static Analysis Limitations

9.3. Helping Wing Analyze Code

9.4. Analysis Disk Cache

Trouble-shooting Guide

10.1. Trouble-shooting Failure to Start

10.2. Issues on Microsoft Windows

10.3. Trouble-shooting Failure to Debug

10.3.1. Failure to Start Debug

10.3.2. Failure to Stop on Breakpoints or Show Source Code

10.3.3. Failure to Stop on Exceptions

10.3.4. Extra Debugger Exceptions

10.4. Obtaining Diagnostic Output

10.5. Speeding up Wing

10.6. Trouble-shooting Failure to Open Filenames Containing Spaces

10.7. Trouble-shooting Failure to Print

Preferences Reference

User Interface

Files

6

Editor

Debugger

Source Analysis

Network

Internal Preferences

Core Preferences

User Interface Preferences

Editor Preferences

Project Manager Preferences

Debugger Preferences

Source Analysis Preferences

Command Reference

12.1. Top-level Commands

Application Control Commands

Dock Window Commands

Document Viewer Commands

Global Documentation Commands

Window Commands

Wing Tips Commands

12.2. Project Manager Commands

Project Manager Commands

Project View Commands

12.3. Editor Commands

Editor Browse Mode Commands

Editor Insert Mode Commands

Editor Non Modal Commands

Editor Panel Commands

Editor Replace Mode Commands

Editor Split Commands

Editor Visual Mode Commands

Active Editor Commands

General Editor Commands

12.4. Search Manager Commands

Toolbar Search Commands

7

Search Manager Commands

Search Manager Instance Commands

12.5. Debugger Commands

Debugger Commands

Debugger Watch Commands

Call Stack View Commands

Exceptions Commands

Key Binding Reference

13.1. Normal Personality

13.2. Emacs Personality

13.3. VI/VIM Personality

13.4. Visual Studio Personality

13.5. OS X Personality

13.6. Brief Personality

License Information

14.1. Wing IDE Software License

14.2. Open Source License Information

Wingware, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing IDE
Professional, Wing IDE Enterprise, “Advancing Software Development” and “The Intel-
ligent Development Environment” are trademarks or registered trademarks of Wingware
in the United States and other countries.

Disclaimers: The information contained in this document is subject to change with-
out notice. Wingware shall not be liable for technical or editorial errors or omissions
contained in this document; nor for incidental or consequential damages resulting from
furnishing, performance, or use of this material.

Hardware and software products mentioned herein are used for identification purposes
only and may be trademarks of their respective owners.

Copyright (c) 1999-2008 by Wingware. All rights reserved.:

Wingware

P.O. Box 400527

Cambridge, MA 02140-0006

United States of America

8

Introduction

Thanks for choosing Wingware’s Wing IDE Personal! This manual will help you get
started and serves as a reference for the entire feature set of this product.

The manual is organized by major functional area of Wing IDE, including source code
editor, project manager, and debugger. Several appendices document the entire com-
mand set, provide pointers to resources and tips for Wing and Python users, and list
the full software license.

The rest of this chapter describes how to install and start using Wing IDE Personal.
If you hate reading manuals, you should be able to get started by reading this chapter
only, or try the quick start guide or tutorial.

Key Concepts
Throughout this manual, key concepts, important notes, and non-obvious features
are highlighted in the same way as this paragraph. If you are skimming only, look
for these marks.

1.1. Product Levels

This manual is for the Wing IDE Personal product level of the Wing IDE product line,
which currently includes Wing IDE Professional, Wing IDE Personal, and Wing IDE
101.

Wing IDE Professional is the full-featured Wing IDE product, and may be licensed for
commercial or non-commercial uses. Wing IDE Personal is for non-commercial use only
and contains a subset of the features found in Wing IDE Professional. Both products
are commercial products for sale from our website; Wing IDE Personal is not a free
download.

Wing IDE 101 is a heavily scaled back IDE that was designed for teaching entry level
computer science courses. It is free to download and use for educational and personal
use.

9

10

Wing IDE Professional, Wing IDE Personal, and Wing IDE 101 are independent prod-
ucts and may be installed at the same time on your system without interfering with each
other.

For a list of features in each product level, please refer to
http://wingware.com/wingide/features.

1.2. Licenses

Wing IDE is licensed per developer, and requires a separate license for each class of
operating system (Windows, Linux, or OS X) that is used by the developer. For the full
license text, see the Software License.

License Activation

To run for more than 10 minutes, Wing IDE requires activation of a time-limited trial
or permanent purchased license. Time-limited trials last for 10 days and can be renewed
several times.

An activation ties the license to the machine through a series of checks of the hardware
connected to the system. This information is never transmitted over the internet. Instead
an SHA hash of some of the values is passed back and forth so that the machine will be
identifiable without us knowing anything specific about it.

The machine identity metrics used for activation are designed to be forgiving so that
replacing parts of your machine’s hardware or upgrading the machine will usually not
require another activation. By the same token, activating multiple times on the same
machine (for example if the activation file is lost) usually does not increase your activa-
tion count.

Licenses come with three activations by default and additional activations can be ob-
tained from the self-serve license manager or by emailing sales at wingware.com. As a
fall-back in cases of emergency where we cannot be contacted and you don’t have an
activation, Wing IDE will run for 10 minutes at a time without any license at all.

See Installing Your License for more information on obtaining and activating licenses.

1.3. Supported Platforms

This version of Wing IDE is available for Microsoft Windows, Linux, Mac OS X (with
X11 Server), and some other operating systems where customers compile the product
from source code.

http://wingware.com/wingide/features
http://wingware.com/license
mailto:sales@wingware.com

11

Microsoft Windows

Wing IDE supports Windows 2000, XP, 2003 Server, Vista, and Windows 7. Windows
95, 98, and ME are not supported and will not work. Windows NT4 is not supported
but may work with IE5+ installed.

Linux/Intel

Wing IDE runs on Linux versions with glibc2.2 or later (e.g. Ubuntu 6+, RedHat 7.1+,
Mandrake 8.0+, SUSE 7.1+, and Debian 3.0+).

On Suse, you may need to install the gmp and python packages, or install Python from
source, since Python is not installed by default here.

Mac OS X

Wing IDE runs on Mac OS X 10.3.9+. Wing IDE for OS X also requires an X11 Server
and Window Manager. For details see OS X Quick Start Guide.

Only Python 2.2 and later are supported for Mac OS X. OS X 10.3 and later come with
a standard version of Python already installed.

Other Platforms

Wing IDE can be compiled from source by customers wishing to use it on other operating
systems (such as Linux PPC, Free BSD, or Solaris). This requires a non-disclosure
agreement.

Some contributed builds of Wing IDE for other operating systems may be available from
time to time.

1.4. Supported Python versions

Wing supports CPython 2.0 through 3.1, Stackless Python 2.4 through 3.1, and cygwin
Python 2.2 through 2.5. Wing can also be used with IronPython and Jython, but the
debugger will not work with these implementations of Python.

Wing’s debugger is pre-built for each of these versions of Python with and without -

-with-pydebug. Both 32-bit and 64-bit compilation are supported on Windows and
Linux. CPython --with-framework builds are also supported on OS X. If necessary, it
is possible for customers to compile Wing’s debugger against other custom versions of
Python.

Before installing Wing, you may need to download Python and install it if you do not
already have it on your machine.

http://wingware.com/pub/wingide/support/source-non-discl.pdf
http://wingware.com/pub/wingide/support/source-non-discl.pdf
http://wingware.com/downloads/contrib
http://python.org/download

12

On Windows, Python must be installed using one of the installers from the python.org
(or by building from source if desired).

On Linux, most distributions come with Python. Installing Python is usually only
necessary on SUSE or a custom-built Linux installation.

On SUSE Linux, you can install the gmp and python packages that come with your
distribution, or install from the materials available through the links given above.

On Mac OS X, Wing IDE only supports Python 2.2 and later.

1.5. Technical Support

If you have problems installing or using Wing IDE, please submit a bug report or feedback
using the Submit Bug Report or Submit Feedback items in Wing IDE’s Help menu.

Wingware Technical Support can also be contacted by email at support at wingware.com,
or online at http://wingware.com/support.

Bug reports can also be sent by email to bugs at wingware.com. Please include your OS
and product version number and details of the problem with each report.

If you are submitting a bug report via email, see Obtaining Diagnostic Output for
more information on how to capture a log of Wing IDE and debug process internals.
Whenever possible, these should be included with email-based bug reports.

1.6. Prerequisites for Installation

To run Wing IDE, you will need to obtain and install the following, if not already on
your system:

Prerequisites for all platforms:

• Downloaded or CD version of Wing IDE

• A supported version of Python

• A working TCP/IP network configuration (for the debugger; no outside access to
the internet is required)

Additional Prerequisities for Mac OS X:

mailto:support@wingware.com
http://wingware.com/support
mailto:bugs@wingware.com
http://wingware.com/downloads

13

• An X11 window server, such as Apple X11 for OS X (available on the OS X install
disks) or XDarwin.

• A window manager. Apple’s X11 Server includes one; other options include Win-
dow Maker and OroborOSX

See the OS X How-To for details on installing and using Wing on OS X.

1.7. Installing

Before installing Wing IDE, be sure that you have installed the necessary prerequi-
sites. If you are upgrading from a previous version, see Upgrading first.

Note: On all platforms, the installation location for Wing IDE is referred to as
WINGHOME.

Windows 2000 and XP

Install Wing IDE by running the downloaded executable. Wing’s files are installed
by default in C:\Program Files\Wing IDE Personal 3.2, but this location may be
modified during installation. Wing will also create a User Settings Directory in the
location appropriate for your version of Windows. This is used to store preferences and
other settings.

The Windows installer supports a /silent command line option that uses the default
options, including removing any prior install of version 3.2 of Wing IDE. If a prior install
is removed, a dialog with a progress bar will appear. You can also use a /dir=<dir

name> option to specify an alternate installation directory.

Linux (glibc 2.2+)

Use the RPM, Debian package, or tar file installer as appropriate for your system type.
Installation from packages is at /usr/lib/wingide-personal3.2 or at the selected loca-
tion when installing from the tar file. Wing will also create a User Settings Directory
in ~/.wingpersonal3, which is used to store preferences and other settings.

For more information, see the Linux installation details.

Mac OS X 10.3+

Wing IDE on Mac OS X requires that you first install an X11 Server. For details on
installing and running on OS X, see the OS X Quickstart.

http://www.xdarwin.org/
http://www.windowmaker.info/
http://www.windowmaker.info/
http://oroborosx.sourceforge.net/

14

1.8. Running the IDE

For a quick introduction to Wing’s features, refer to the Wing IDE Quickstart Guide.
For a more gentle in-depth start, see the Wing IDE Tutorial.

On Windows, start Wing IDE from the Program group of the Start menu. You can also
start Wing from the command line with wing-personal.exe (located inside WINGHOME).

On Linux/Unix, just execute wing-personal3.2 (or wing-personal located inside
WINGHOME)

On Mac OS X, start Wing IDE by double clicking on the app folder. If you launch
Wing from the command line using Contents/MacOS/wing inside the Wing IDE app
folder, then you will need to start your X11 Server manually first and may need to set
your DISPLAY environment variable.

1.9. Installing your License

Wing IDE requires a time-limited trial or permanent license and the license needs to be
activated on each machine (see the Licenses section for general information). When
Wing IDE is first started, you can obtain a trial licence, purchase a permanent license,
install & activate a permanent license, or use Wing for up to 10 minutes without any
license:

Trial Licenses

Trial licenses allow evaluation of Wing IDE for 10 days, with an option to extend the
evaluation twice for up to 30 days total (or more on request). The most convenient way
to obtain a trial license is to ask Wing IDE to connect directly to wingware.com (via
http, TCP/IP port 80). After the trial license is obtained, Wing will not attempt to

15

connect to wingware.com (or any other site) unless you submit feedback or a bug report
through the Help menu.

If you’re unable or unwilling to connect Wing IDE directly to wingware.com, you can go
to http://wingware.com/activate and enter the license id and activation request number
obtained from Wing. After entering this information, you will be given an activation
key which you can enter into Wing’s dialog box to complete the activation. This is
exactly the same exchange of information that occurs when Wing IDE connects directly
to wingware.com to obtain a trial license.

If activation fails, Wing will provide a way to configure an http proxy. Wing tries
to detect and use proxies by default but in some cases they will need to be manually
configured. Please ask your network administrator if you do not know what proxy
settings to use.

If you run into problems or need additional evaluation time, please email us at sales at
wingware.com.

Permanent Licenses

Permanent licenses and upgrades may be purchased in the online store at
http://wingware.com/store. Permanent licenses include free upgrades through the 3.*
version series. Wing IDE Professional licenses also allow access to the product source
code via http://wingware.com/downloads (requires signed non-disclosure agreement).

Activating on Shared Drives

When Wing is installed on a shared drive (for example a USB keydrive, or on a file
server), the User Settings Directory where the license activation is stored may be
accessed from several different computers.

In this case, Wing must be activated once on each computer. The resulting extra ac-
tivations will be stored as license.act1, license.act2, and so forth, and Wing will
automatically select the appropriate activation depending on where it is running.

http://wingware.com/activate
mailto:sales@wingware.com
mailto:sales@wingware.com
http://wingware.com/store
http://wingware.com/downloads
http://wingware.com/pub/wingide/support/source-non-discl.pdf

16

Obtaining Additional Activations

If you run out of activations, you can use the self-serve license manager or email us at
sales at wingware.com to obtain additional activations on any legitimately purchased
license.

1.10. User Settings Directory

The first time you run Wing, it will create your User Settings Directory automat-
ically. This directory is used to store your license, preferences, auto-save files, recent
lists, and other files used internally by Wing. If the directory cannot be created, Wing
will exit.

The settings directory is created in a location appropriate to your operating system.
The location is listed as your Settings Directory in the About Box accessible from
the Help menu.

These are the locations used by Wing:

Linux/Unix -- ~/.wingpersonal3 (a sub-directory of your home directory)

Windows -- In Wing Personal 3 within the per-user application data directory. The
location varies by version of Windows. For Windows 2000 and XP running on c: with
an English localization the location is:

c:\Documents and Settings\${username}\Application Data\Wing Per-

sonal 3

For Vista running on c: with an English localization the location is:

c:\Users\${username}\AppData\Roaming\Wing Personal 3

Wing also creates a Cache Directory that contains the source analysis cache. This is
often but not always in the same location as the above. On Windows, this directory
is usually in the per-user directory under Local Settings on 2000 and XP and under
Local on Vista. This directory is also listed in the About Box.

1.11. Upgrading

If you are upgrading within the same minor version number of Wing (for example from
3.0 to 3.0.x) this will replace your previous installation. Once you have upgraded, your

http://wingware.com/license
mailto:sales@wingware.com

17

previous preferences and settings should remain and you should immediately be able to
start using Wing.

If you are upgrading across major releases (for example from 2.1 to 3.0), this will install
the new version along side your old version of Wing.

To install an upgrade, follow the steps described in Installing

1.11.1. Fixing a Failed Upgrade

In rare cases upgrading may fail to overwrite old files, resulting in random or bizarre
behaviors and crashing. The fix for this problem is to completely uninstall and manually
remove remaining files before installing the upgrade again.

Windows

To uninstall on Windows, run the Add/Remove Programs control panel to uninstall
Wing IDE. Then go into the directory where Wing was located and manually remove
any remaining folders and files.

Linux RPM

If you installed Wing IDE for Linux from RPM, issue the command rpm -e wingide3.2.
Then go into /usr/lib/wingide3.2 and remove any remaining files and directories.

Linux Debian

If you installed Wing IDE for Linux from Debian package, issue the command dpkg -r

wingide3.2. Then go into /usr/lib/wingide3.2 and remove any remaining files and
directories.

Linux Tar

If you installed Wing IDE for Linux from the tar distribution, find your Wing installation
directory and run the wing-uninstall script located there. Once done, manually remove
any remaining files and directories.

Mac OS X

On Mac OS X, just drag the entire Wing IDE application folder to the trash.

If this procedure does not solve the problem, try moving aside the User Settings
Directory and then starting Wing. If this works, try restoring files from the old user
settings directory one by one to find the problem. Key files to try are license.act*,
preferences and recent*. Then submit a bug report to support@wingware.com with
the offending file.

18

1.12. Installation Details and Options

This section provides some additional detail for installing Wing and describes installation
options for advanced users.

1.12.1. Linux Installation Notes

On Linux, Wing can be installed from RPM, Debian package, or from tar archive.
Use the latter if you do not have root access on your machine or wish to install Wing
somewhere other than /usr/lib/wingide-personal3.2. Be sure too use the 64-bit
packages if you are on a 64-bit system.

Installing from RPM:

Wing can be installed from an RPM package on RPM-based systems, such as RedHat
and Mandriva. To install, run rpm -i wingide-personal3.2-3.2.13-1.i386.rpm as
root or use your favorite RPM administration tool to install the RPM. Most files for
Wing are placed under the /usr/lib/wingide-personal3.2 directory and the wing-

personal3.2 command is placed in the /usr/bin directory.

Installing from Debian package:

Wing can be installed from a Debian package on Debian, Ubuntu, and other Debian-
based systems.

You will need to install enscript before installing Wing, if it’s not already on your
system.

To install, run dpkg -i wingide-personal3.2_3.2.13-1_i386.deb

as root or use your favorite package administration tool to install. Most files for
Wing are placed under the /usr/lib/wingide-personal3.2 directory and the wing-

personal3.2 command is placed in the /usr/bin directory.

Installing from Tar Archive:

Wing may also be installed from a tar archive. This can be used on systems that
do not use RPM or Debian packages, or if you wish to install Wing into a di-
rectory other than /usr/lib/wingide-personal3.2. Unpacking this archive with
tar -zxvf wingide-personal-3.2.13-1-i386-linux.tar.gz will create a wingide-

personal-3.2.13-1-i386-linux directory that contains the wing-install.py script
and a binary-package.tar file.

Running the wing-install.py script will prompt for the location to install Wing, and
the location in which to place the executable wing-personal3.2. These locations default

19

to /usr/local/lib/wingide-personal and /usr/local/bin, respectively. The install
program must have read/write access to both of these directories, and all users running
Wing must have read access to both.

Using System-wide GTK:

By default, Wing IDE runs with its own copy of GTK2 and does not pick up on the
system-configured theme. This is done to avoid problems and bugs sometimes brought
out by binary incompatibilities in GTK versions.

On Linux versions that include GTK version 2.6 or later, you can tell Wing IDE to use
the system-defined GTK2 by setting the System GTK preference or running with the
--system-gtk command line argument.

Using the system-wide GTK2 in this way generally works quite well but may result in
crashing or display bugs due to binary incompatibilities in GTK and related libraries.
If you set the preference and Wing fails to start, specify the --private-gtk command
line option to override the preference.

Non-ascii File Paths on Older Linux Systems:

Some older Linux versions require setting the environment variable
G BROKEN FILENAMES before Wing IDE’s file open/save dialog will work properly
with file paths that contain non-ascii characters. The environment variable is already
set on some systems where it is needed but this is not always the case.

Debugging 32-bit Python on 64-bit Systems

On a 64-bit system where you need to debug 32-bit Python, you will need to install the
32-bit version of Wing. This version can also debug 64-bit Python.

Installing the 32-bit version of Wing may require installing some compatibility packages
as follows:

On 64-bit Ubuntu and Debian systems, you need to first install the 32 bit compatibility
libraries. This is the“ia32-libs“ package on Ubuntu. On Debian and Ubuntu 9+, the
ia32-libs-gtk package is needed as well. Then install the 32-bit Wing with the com-
mand dpkg -i --force-architecture wingide-personal3.2_3.2.13-1_.i386.deb

The package contains what you need to run your debug process with 64-bit Python
but Wing itself runs as a 32-bit application.

On CentOS 64-bit systems, installing the libXtst.i386 and gtk2*386 packages with
yum provides the necessary 32 bit support.

20

1.12.2. Installing Extra Documentation

If you are using Linux/Unix, the Python manual is not included in most installations,
so you may also wish to download and install local copies of these pages.

Place the top-level of the HTML formatted Python manual (where index.html is found)
into python-manual/#.# within your Wing IDE installation. Substitute for #.# the
major and minor version of the corresponding Python interpreter (for example, for the
Python 2.3.x manual, use python-manual/2.3).

Once this is done, Wing will use the local disk copy rather than going to the web when
the Python Manual item is selected from the Help menu.

1.13. Removing Wing IDE

Windows

On Windows, use the Add/Remove Programs control panel, select Wing IDE Personal

3 and remove it.

Linux/Unix

To remove an RPM installation on Linux, type rpm -e wingide-personal3.2.

To remove an Debian package installation on Linux, type dpkg -r wingide-

personal3.2.

To remove a tar archive installation on Linux/Unix, invoke the wing-uninstall script
in WINGHOME. This will automatically remove all files that appear not to have been
changed since installation, It will ask whether it should remove any files that appear to
be changed.

Mac OS X

To remove Wing from Mac OS X, just drag its application folder to the trash.

1.14. Command Line Usage

Whenever you run wing-personal3.2 from the command line, you may specify a list of
files to open. These can be arbitrary text files and a project file. For example, the fol-
lowing will open project file myproject.wpr and also the three source files mysource.py,
README, and Makefile:

http://docs.python.org/download.html

21

wing-personal3.2 mysource.py README Makefile myproject.wpr

(on Windows, the executable is called wing-personal.exe)

Wing determines file type by extension, so position of the project file name (if any)
on the command line is not important. A line number may be specified for the first
file on the command line by appending :<line-number> to the file name (for example,
README:100 will position the cursor at the start of the README file).

The following valid options may be specified anywhere on the command line:

--prefs-file -- Add the file name following this argument to the list of preferences files
that are opened by the IDE. These files are opened after the system-wide and default
user preferences files, so values in them override those given in other preferences files.
Note that preferences files added this way must have all the preferences in a section
delimited by [extra-preferences] (unlike the main user preferences file, which uses
[user-preferences]).

--new -- By default Wing will reuse an existing running instance of Wing IDE to open
files specified on the command line. This option turns off this behavior and forces
creation of a new instance of Wing IDE. Note that a new instance is always created if
no files are given on the command line.

--reuse -- Force Wing to reuse an existing running instance of Wing IDE even if there
are no file names given on the command line. This just brings Wing to the front.

--system-gtk -- (Posix only) This option causes Wing to try to use the system-wide
install of GTK2 rather than its own version of GTK, regardless of any preference setting.
Running in this mode will cause Wing to pick up on system-wide theme defaults, but
may result in crashing or display problems due to incompatibilities in GTK and related
libraries.

--private-gtk -- (Posix only) This option causes Wing to use its private copy of GTK2
and related libraries, regardless of any preference settings. Use of private GTK may result
in Wing not matching the system-wide theme, but also will avoid incompatibilities with
the system-wide GTK library.

--verbose -- (Posix only) This option causes Wing to print verbose error reporting
output to stderr. On Windows, run console_wing.exe instead for the same result.

--display -- (Posix only) Sets the X Windows display for Wing to run with. The display
specification should follow this argument, in standard format, e.g. myhost:0.0.

--use-winghome -- (For developers only) This option sets WINGHOME to be used
during this run. It is used internally and by developers contributing to Wing IDE. The
directory to use follows this argument.

22

--use-src -- (For developers only) This option is used to force Wing to run from Python
source files even if compiled files are present in the bin directory, as is the case after a
distribution has been built.

--orig-python-path -- (For developers only) This option is used internally to indicate
the original Python path in use by the user before Wing was launched. The path follows
this argument.

--squelch-output -- (For developers only) This option prevents any output of any kind
to stdout and stderr. Used on Windows to avoid console creation.

Customization

There are many ways to customize Wing IDE in order to adapt it to your needs or
preferences. This chapter describes the options that are available to you.

These are some of the areas of customization that are available:

• The editor can run with different personalities such as Vim, Emacs, Visual
Studio, and Brief emulation

• The action of the tab key can be configured

• The auto-completer’s completion key(s) can be altered

• The layout, look, and content of the IDE windows can be configured

• Keyboard shortcuts can be added, removed, or altered for any Wing command

• File sets can be defined to control some of the IDE features

• Many other options are available through preferences

2.1. Editor Personalities

The default editor personality for Wing implements most common keyboard equivalents
found in a simple graphical text editor. This uses primarily the graphical user interface
for interacting with the editor and limits use of complex keyboard-driven command
interaction.

Emulation of Other Editors
The first thing any Vim, Emacs, Visual Studio, or Brief user will want to do is
to set the editor personality to emulate their editor of choice. This is done with
the Keyboard Personality item in the Edit menu or with the Keyboard /
Personality user interface preference.

23

24

Under the Vim and Emacs personalities, key strokes can be used to control most of the
editor’s functionality, using a textual interaction ’mini-buffer’ at the bottom of the editor
window where the current line number and other informational messages are normally
displayed.

Related preferences that alter keyboard behaviors include Tab Key Action and Com-
pletion Keys for the auto-completer.

It is also possible to add, alter, or remove individual keyboard command mappings within
each of these personalities. See Key Equivalents for details.

2.2. User Interface Options

Wing provides many options for customizing the user interface to your needs. Preferences
can be set to control the number and style of windows used when working with the IDE,
the layout of tools within windows, display text font, size, and color, the style and
content of the toolbar, and the overall look or “theme” (including white on black and
many others).

2.2.1. Windowing Policies

Wing IDE can run in a variety of windowing modes. This is controlled by the Win-
dowing Policy preference, which provides the following options:

• Combined Tool Box and Editor Windows -- This is the default, in which
Wing opens a single window that combines the editor area with two tool box
panels.

• Separate Tool Box Windows -- In this mode, Wing IDE moves all the tools
out to a separate shared window.

• One Window Per Editor -- In this mode, Wing IDE creates one top-level win-
dow for each editor that is opened. Additionally, all tools are moved out to a
separate shared tool box window and the toolbar and menu are moved out to a
shared toolbar/menu window.

The windowing policy is used to describe the initial configuration and basic action of
windows in the IDE. When it is changed, Wing will reconfigure your projects to match
the windowing policy the first time they are used with the new setting.

25

However, it is possible to create additional IDE windows and to move editors and tools
out to another window or among existing windows without changing from the default
windowing policy. This is described below.

2.2.2. User Interface Layout

When working in the default windowing policy, Wing’s main user interface area consists
of two tool boxes (by default at bottom and right, but this can be altered in Prefer-
ences) and an area for source editors and integrated help.

Clicking on an already-active notebook tab will cause Wing to minimize the entire panel
so that only the notebook tabs are visible. Clicking again will return the tool box to its
former size. The F1 and F2 keys toggle between these modes. The command Maximize

Editor Area in the Tools menu (Shift-F2) can also be used to quickly hide both tool
areas and toolbar.

In other windowing modes, the tool boxes and editor area are presented in separate
windows but share many of the configuration options described below.

Configuring the Toolbar

Wing’s toolbar can be configured by altering the size and style of the toolbar icons in
the toolbar, and whether or not text is shown in addition to or instead of icons. This is
controlled with the Toolbar Icon Size and Toolbar Icon Style preferences.

Alternatively, the toolbar can be hidden completely with the Show Toolbar preference.

Configuring the Editor Area

The options drop down menu in the top right of the editor area allows for splitting and
joining the editor into multiple independent panels. These can be arranged horizontally,
vertically, or any combination thereof. When multiple splits are shown, all the open files
within the window are available within each split, allowing work on any combination of
files and/or different parts of the same file.

The options drop down menu can also be used to change between tabbed editors and
editors that show a popup menu for selecting among files (the latter can be easier to
manage with large number of files) and to move editors out to a separate window or
among existing windows when multiple windows are open.

Configuring Tool Boxes

Each of the tool boxes can be also be split or joined into any number of sub-panels along
the long axis of the notebook by clicking on the options drop down icon in the tab area

26

of the notebooks (right-clicking also works). The number of tool box splits Wing shows
by default depends on your monitor size.

The options drop down menu can also be used to duplicate tools, or move them around
among the splits or out to separate windows.

The size of each panel and the panel splits can also be altered by dragging on the dividers
between them.

All available tools are enumerated in the Tools menu, which will display the most recently
used tool of that type or will add one to your window at its default location, if none is
already present.

Creating Additional Windows

In addition to moving existing editors or tools to new windows, it is also possible to
create new tool windows (initially with a single tool) and new document windows (with
editor and toolbars if applicable to the selected windowing policy) from the Windows
menu.

Wing IDE will remember the state of all windows as part of your project file, so the
same window layout and contents will be restored in subsequent work sessions.

2.2.3. Altering Text Display

Wing tries to find display fonts appropriate for each system on which it runs, but many
users will want to customize the font style and size used in the editor and other user
interface areas. This can be done with the Source Code Font/Size and Display
Font/Size preferences.

The color of text for some file types in the editor can be controlled with the Syntax
Formatting preference.

Note that when the Source Code Background preference is set to a color other than
white, Wing will compute appropriately visible colors for text according to the chosen
background color.

The color used for text selection can also be controlled with the Text Selection Color
preference.

Changes in color preferences will often depend on the overall display theme that is
chosen, as described in the next section.

27

2.2.4. Setting Overall Display Theme

Wing is based on GTK2, a cross-platform user interface toolkit that provides customiz-
able themes, which control the overall look and feel of the user interface. Wing’s default
theme varies by platform (a Windows emulation theme is used on Windows, and an OS
X like theme on OS X) and can be changed with the Display Theme preference.

In most cases, the new theme will instantly be applied to Wing’s user interface. When
switching back to default settings, a restart may be needed in some cases, as indicated
by message dialog.

Some systems with slower graphics cards may not run as well using the more colorful
3D rendered themes. In this case, using the Gtk Default theme is the best option, as
it involves no extra graphics-level processing.

System GTK on Linux

On Linux systems with GTK 2.6 or later installed, it is possible to run Wing with
the system-wide GTK installation and system-defined themes. This is controlled with
the Use System GTK preference or the --system-gtk or --private-gtk command
line arguments. Wing works reasonably well with most 2.6.x GTK2 releases, but there
still may be problems resulting from version differences. If you have any problems with
Wing’s stability or are seeing display glitches, you should use the private gtk option.

2.3. Preferences

Wing has many preferences that control features of the editor, debugger, and other tools.

To alter these, use the Preferences item in the Edit menu. This organizes all available
preferences by category and provides access to documentation in tooltips that are dis-
played when mousing over the label area to the left of each preference. Any non-default
values that are selected through the Preferences Dialog are stored in the user’s pref-
erences file, which is located in the User Settings Directory.

2.4. Key Equivalents

The command a key will invoke may be modified by selecting a different key map or by
specifying a custom key binding. A custom key binding will override any binding for a
particular key found in the keymap. Custom key bindings are set via the Custom Key
Bindings preference.

28

To add a binding, click the insert button, then press the key to be bound in the Key

field, and enter the name of the command to invoke in the Command field.

Key bindings defined by default or overriden by this preference will be shown in any
menu items that implement the same command. In cases where a command is given
more than one key equivalent, only the last equivalent found will be displayed (although
both bindings will work from the keyboard).

Key maps

Wing ships with several key equivalency maps found in WINGHOME, including
keymap.normal, keymap.emacs, keymap.vi, among others. These are used as default
key maps for the corresponding editor personalities.

For developing entirely new key bindings or debugging key bindings, it is possible to
create a custom key equivalency map and use it as your default map through Key Map
File preference. This is not recommended for most users, since completely replacing
the default key maps will require manual tracking of changes in commands across Wing
versions.

In a key map file, each key equivalent is built from names listed in the Key Names
section. These names can be combined as follows:

1) A single unmodified key is specified by its name alone, for example
’Down’ for the down arrow key.

2) Modified keys are specified by hyphenating the key names, for ex-
ample ’shift-Down’ for the down arrow key pushed while shift is
held down. Multiple modifiers may also be specified, as in ’ctrl-

shift-Down’.

3) Multi-key combinations can be specified by listing multiple key
names separated by a space. For example, to define a key equiv-
alent that consists of first pushing ctrl-x and then pushing the a
key by itself, use ’ctrl-x a’ as the key sequence.

The command portion of the key equivalency definition may be any of the commands
listed in section Command Reference. Use None to remove the given key equivalent
entirely.

Specifying a key binding that already exists in the default key binding simply replaces
that binding with your override.

Examples

Here is an example of adding a key binding for a command. If the command already
has a default key binding, both bindings will work:

29

’Ctrl-X P’: ’debug-attach’

This example removes a key equivalent entirely:

’Ctrl-C Ctrl-C’: None

These can be combined to changes the key binding for a command without retaining its
default key binding:

’Ctrl-C Ctrl-C’: None

’Ctrl-G’: ’debug-continue’

Wing always retains only the last key binding for a given key combination. This example
binds Ctrl-X to ’quit’ and no other command:

’Ctrl-X’: ’debug-stop’

’Ctrl-X’: ’quit’

2.4.1. Key Names

(1) Key modifiers supported by Wing IDE for key bindings are:

• Ctrl -- Either control key.

• Shift -- Either shift key. This modifier is ignored with some key names, as indicated
below.

• Alt -- Not recommended for general use since these bindings tend to conflict with
menu accelerators and operating system or window manager operations.

• Command -- Macintosh command / apple key. This may be mapped to other
keys on other systems, but is intended for use on the Macintosh.

On Linux and OS X it is possible to remap the function of the Control, Alt, command,
and windows keys. In those cases, the Ctrl and Alt modifiers will refer to the keys
specified in that mapping.

(2) The digit keys and core western alphabet keys are specified as follows:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
V, W, X, Y, Z,

30

(3) Most punctuation can be specified but any Shift modifier will be ignored since these
keys can vary in location on different international keyboards. Allowed punctuation
includes:

‘ ~ ! @ # $ % ^ & * () - _ + = [] { } \ | ; : ’ " / ? . > , <

(4) These special keys can also be used:

Escape, Space, BackSpace, Tab, Linefeed, Clear, Return, Pause, Scroll Lock, Sys Req,
Delete, Home, Left, Up, Right, Down, Prior, Page Up, Next, Page Down, End, Be-
gin, Select, Print, Execute, Insert, Undo, Redo, Menu, Find, Cancel, Help, Break,
Mode switch, script switch, Num Lock,

F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, L1, F12, L2, F13, L3, F14, L4, F15, L5,
F16, L6, F17, L7, F18, L8, F19, L9, F20, L10, F21, R1, F22, R2, F23, R3, F24, R4, F25,
R5, F26, R6, F27, R7, F28, R8, F29, R9, F30, R10, F31, R11, F32, R12, F33, R13, F34,
R14, F35, R15,

(5) For equivalents that work with the mouse buttons, use these:

Pointer Left, Pointer Right, Pointer Up, Pointer Down, Pointer UpLeft,
Pointer UpRight, Pointer DownLeft, Pointer DownRight, Pointer Button Dflt,
Pointer Button1, Pointer Button2, Pointer Button3, Pointer Button4,
Pointer Button5, Pointer DblClick Dflt, Pointer DblClick1, Pointer DblClick2,
Pointer DblClick3, Pointer DblClick4, Pointer DblClick5, Pointer Drag Dflt,
Pointer Drag1, Pointer Drag2, Pointer Drag3, Pointer Drag4, Pointer EnableKeys,
Pointer Accelerate, Pointer DfltBtnNext, Pointer DfltBtnPrev,

(6) Keypad keys are specified like this:

KP Left, KP Right, KP Up, KP Down, KP Home, KP Page Up, KP Page Down,
KP End, KP Insert, KP Delete, KP 0, KP 1, KP 2, KP 3, KP 4, KP 5, KP 6, KP 7,
KP 8, KP 9,

(7) These will also work but ignore the Shift modifier since they tend to appear in
different locations on international keyboards:

KP Space, KP Tab, KP Enter, KP F1, KP F2, KP F3, KP F4, KP Prior, KP Next,
KP Begin, KP Insert, KP Delete, KP Equal, KP Multiply, KP Add, KP Separator,
KP Subtract, KP Decimal, KP Divide,

exclam, quotedbl, numbersign, dollar, percent, ampersand, apostrophe, quoteright,
parenleft, parenright, asterisk, plus, comma, minus, period, slash, colon, semicolon, less,
equal, greater, question, at, bracketleft, backslash, bracketright, asciicircum, underscore,
grave, quoteleft, braceleft, bar, braceright,

31

EuroSign, EcuSign, ColonSign, CruzeiroSign, FFrancSign, LiraSign, MillSign, NairaSign,
PesetaSign, RupeeSign, WonSign, NewSheqelSign, DongSign,

(8) Many other key names are available for use on international or special purpose
keyboards:

asciitilde, nobreakspace, exclamdown, cent, sterling, currency, yen, brokenbar, section,
diaeresis, copyright, ordfeminine, guillemotleft, notsign, hyphen, registered, macron,
degree, plusminus, twosuperior, threesuperior, acute, mu, paragraph, periodcentered,
cedilla, onesuperior, masculine, guillemotright, onequarter, onehalf, threequarters, ques-
tiondown,

leftradical, topleftradical, horizconnector, topintegral, botintegral, vertconnector,
topleftsqbracket, botleftsqbracket, toprightsqbracket, botrightsqbracket, topleftparens,
botleftparens, toprightparens, botrightparens, leftmiddlecurlybrace, rightmiddlecurly-
brace, topleftsummation, botleftsummation, topvertsummationconnector, botvert-
summationconnector, toprightsummation, botrightsummation, rightmiddlesummation,
lessthanequal, notequal, greaterthanequal, integral, therefore, variation, infinity, nabla,
approximate, similarequal, ifonlyif, implies, identical, radical, includedin, includes,
intersection, union, logicaland, logicalor, partialderivative, function, leftarrow, upar-
row, rightarrow, downarrow, blank, soliddiamond, checkerboard, ht, ff, cr, lf, nl, vt,
lowrightcorner, uprightcorner, upleftcorner, lowleftcorner, crossinglines, horizlinescan1,
horizlinescan3, horizlinescan5, horizlinescan7, horizlinescan9, leftt, rightt, bott, topt,
vertbar, emspace, enspace, em3space, em4space, digitspace, punctspace, thinspace,
hairspace, emdash, endash, signifblank, ellipsis, doubbaselinedot, onethird, twothirds,
onefifth, twofifths, threefifths, fourfifths, onesixth, fivesixths, careof, figdash, leftangle-
bracket, decimalpoint, rightanglebracket, marker, oneeighth, threeeighths, fiveeighths,
seveneighths, trademark, signaturemark, trademarkincircle, leftopentriangle, rightopen-
triangle, emopencircle, emopenrectangle, leftsinglequotemark, rightsinglequotemark,
leftdoublequotemark, rightdoublequotemark, prescription, minutes, seconds, latincross,
hexagram, filledrectbullet, filledlefttribullet, filledrighttribullet, emfilledcircle, emfille-
drect, enopencircbullet, enopensquarebullet, openrectbullet, opentribulletup, opentribul-
letdown, openstar, enfilledcircbullet, enfilledsqbullet, filledtribulletup, filledtribullet-
down, leftpointer, rightpointer, club, diamond, heart, maltesecross, dagger, doubledag-
ger, checkmark, ballotcross, musicalsharp, musicalflat, malesymbol, femalesymbol,
telephone, telephonerecorder, phonographcopyright, caret, singlelowquotemark, dou-
blelowquotemark, cursor, leftcaret, rightcaret, downcaret, upcaret, overbar, downtack,
upshoe, downstile, underbar, jot, quad, uptack, circle, upstile, downshoe, rightshoe,
leftshoe, lefttack, righttack,

Multi key, Codeinput, SingleCandidate, MultipleCandidate, PreviousCandidate, Kanji,
Muhenkan, Henkan Mode, Henkan, Romaji, Hiragana, Katakana, Hiragana Katakana,
Zenkaku, Hankaku, Zenkaku Hankaku, Touroku, Massyo, Kana Lock, Kana Shift,
Eisu Shift, Eisu toggle, Kanji Bangou, Zen Koho, Mae Koho,

32

ISO Lock, ISO Level2 Latch, ISO Level3 Shift, ISO Level3 Latch, ISO Level3 Lock,
ISO Group Shift, ISO Group Latch, ISO Group Lock, ISO Next Group,
ISO Next Group Lock, ISO Prev Group, ISO Prev Group Lock, ISO First Group,
ISO First Group Lock, ISO Last Group, ISO Last Group Lock, ISO Left Tab,
ISO Move Line Up, ISO Move Line Down, ISO Partial Line Up, ISO Partial Line Down,
ISO Partial Space Left, ISO Partial Space Right, ISO Set Margin Left,
ISO Set Margin Right, ISO Release Margin Left, ISO Release Margin Right,
ISO Release Both Margins, ISO Fast Cursor Left, ISO Fast Cursor Right,
ISO Fast Cursor Up, ISO Fast Cursor Down, ISO Continuous Underline,
ISO Discontinuous Underline, ISO Emphasize, ISO Center Object, ISO Enter

dead grave, dead acute, dead circumflex, dead tilde, dead macron, dead breve,
dead abovedot, dead diaeresis, dead abovering, dead doubleacute, dead caron,
dead cedilla, dead ogonek, dead iota, dead voiced sound, dead semivoiced sound,
dead belowdot,

First Virtual Screen, Prev Virtual Screen, Next Virtual Screen, Last Virtual Screen,
Terminate Server, AccessX Enable, AccessX Feedback Enable, RepeatKeys Enable,
SlowKeys Enable, BounceKeys Enable, StickyKeys Enable, MouseKeys Enable,
MouseKeys Accel Enable, Overlay1 Enable, Overlay2 Enable, AudibleBell Enable,
Pointer Left, Pointer Right, Pointer Up,

3270 Duplicate, 3270 FieldMark, 3270 Right2, 3270 Left2, 3270 Back-
Tab, 3270 EraseEOF, 3270 EraseInput, 3270 Reset, 3270 Quit, 3270 PA1,

3270 PA2, 3270 PA3, 3270 Test, 3270 Attn, 3270 CursorBlink, 3270 AltCur-
sor, 3270 KeyClick, 3270 Jump, 3270 Ident, 3270 Rule, 3270 Copy, 3270 Play,
3270 Setup, 3270 Record, 3270 ChangeScreen, 3270 DeleteWord, 3270 ExSelect,

3270 CursorSelect, 3270 PrintScreen, 3270 Enter,

Agrave, Aacute, Acircumflex, Atilde, Adiaeresis, Aring, AE, Ccedilla, Egrave, Ea-
cute, Ecircumflex, Ediaeresis, Igrave, Iacute, Icircumflex, Idiaeresis, ETH, Eth, Ntilde,
Ograve, Oacute, Ocircumflex, Otilde, Odiaeresis, multiply, Ooblique, Ugrave, Uacute,
Ucircumflex, Udiaeresis, Yacute, THORN, Thorn, ssharp, agrave, aacute, acircumflex,
atilde, adiaeresis, aring, ae, ccedilla, egrave, eacute, ecircumflex, ediaeresis, igrave, ia-
cute, icircumflex, idiaeresis, eth, ntilde, ograve, oacute, ocircumflex, otilde, odiaeresis,
division, oslash, ugrave, uacute, ucircumflex, udiaeresis, yacute, thorn, ydiaeresis, Ao-
gonek, breve, Lstroke, Lcaron, Sacute, Scaron, Scedilla, Tcaron, Zacute, Zcaron, Zabove-
dot, aogonek, ogonek, lstroke, lcaron, sacute, caron, scaron, scedilla, tcaron, zacute,
doubleacute, zcaron, zabovedot, Racute, Abreve, Lacute, Cacute, Ccaron, Eogonek,
Ecaron, Dcaron, Dstroke, Nacute, Ncaron, Odoubleacute, Rcaron, Uring, Udoubleacute,
Tcedilla, racute, abreve, lacute, cacute, ccaron, eogonek, ecaron, dcaron, dstroke, nacute,
ncaron, odoubleacute, udoubleacute, rcaron, uring, tcedilla, abovedot, Hstroke, Hcir-
cumflex, Iabovedot, Gbreve, Jcircumflex, hstroke, hcircumflex, idotless, gbreve, jcircum-
flex, Cabovedot, Ccircumflex, Gabovedot, Gcircumflex, Ubreve, Scircumflex, cabovedot,
ccircumflex, gabovedot, gcircumflex, ubreve, scircumflex, kra, kappa, Rcedilla, Itilde,

33

Lcedilla, Emacron, Gcedilla, Tslash, rcedilla, itilde, lcedilla, emacron, gcedilla, tslash,
ENG, eng, Amacron, Iogonek, Eabovedot, Imacron, Ncedilla, Omacron, Kcedilla, Uo-
gonek, Utilde, Umacron, amacron, iogonek, eabovedot, imacron, ncedilla, omacron,
kcedilla, uogonek, utilde, umacron, OE, oe, Ydiaeresis, overline,

kana fullstop, kana openingbracket, kana closingbracket, kana comma,
kana conjunctive, kana middledot, kana WO, kana a, kana i, kana u, kana e, kana o,
kana ya, kana yu, kana yo, kana tsu, kana tu, prolongedsound, kana A, kana I, kana U,
kana E, kana O, kana KA, kana KI, kana KU, kana KE, kana KO, kana SA, kana SHI,
kana SU, kana SE, kana SO, kana TA, kana CHI, kana TI, kana TSU, kana TU,
kana TE, kana TO, kana NA, kana NI, kana NU, kana NE, kana NO, kana HA,
kana HI, kana FU, kana HU, kana HE, kana HO, kana MA, kana MI, kana MU,
kana ME, kana MO, kana YA, kana YU, kana YO, kana RA, kana RI, kana RU,
kana RE, kana RO, kana WA, kana N, voicedsound, semivoicedsound, kana switch,

Arabic comma, Arabic semicolon, Arabic question mark, Arabic hamza, Ara-
bic maddaonalef, Arabic hamzaonalef, Arabic hamzaonwaw, Arabic hamzaunderalef,
Arabic hamzaonyeh, Arabic alef, Arabic beh, Arabic tehmarbuta, Arabic teh, Ara-
bic theh, Arabic jeem, Arabic hah, Arabic khah, Arabic dal, Arabic thal, Arabic ra,
Arabic zain, Arabic seen, Arabic sheen, Arabic sad, Arabic dad, Arabic tah, Ara-
bic zah, Arabic ain, Arabic ghain, Arabic tatweel, Arabic feh, Arabic qaf, Arabic kaf,
Arabic lam, Arabic meem, Arabic noon, Arabic ha, Arabic heh, Arabic waw, Ara-
bic alefmaksura, Arabic yeh, Arabic fathatan, Arabic dammatan, Arabic kasratan,
Arabic fatha, Arabic damma, Arabic kasra, Arabic shadda, Arabic sukun, Ara-
bic switch,

Serbian dje, Macedonia gje, Cyrillic io, Ukrainian ie, Ukranian je, Macedo-
nia dse, Ukrainian i, Ukranian i, Ukrainian yi, Ukranian yi, Cyrillic je, Serbian je,
Cyrillic lje, Serbian lje, Cyrillic nje, Serbian nje, Serbian tshe, Macedonia kje,
Ukrainian ghe with upturn, Byelorussian shortu, Cyrillic dzhe, Serbian dze, nu-
merosign, Serbian DJE, Macedonia GJE, Cyrillic IO, Ukrainian IE, Ukranian JE,
Macedonia DSE, Ukrainian I, Ukranian I, Ukrainian YI, Ukranian YI, Cyrillic JE,
Serbian JE, Cyrillic LJE, Serbian LJE, Cyrillic NJE, Serbian NJE, Serbian TSHE,
Macedonia KJE, Ukrainian GHE WITH UPTURN, Byelorussian SHORTU, Cyril-
lic DZHE, Serbian DZE, Cyrillic yu, Cyrillic a, Cyrillic be, Cyrillic tse, Cyrillic de,
Cyrillic ie, Cyrillic ef, Cyrillic ghe, Cyrillic ha, Cyrillic i, Cyrillic shorti, Cyrillic ka,
Cyrillic el, Cyrillic em, Cyrillic en, Cyrillic o, Cyrillic pe, Cyrillic ya, Cyrillic er, Cyril-
lic es, Cyrillic te, Cyrillic u, Cyrillic zhe, Cyrillic ve, Cyrillic softsign, Cyrillic yeru,
Cyrillic ze, Cyrillic sha, Cyrillic e, Cyrillic shcha, Cyrillic che, Cyrillic hardsign,
Cyrillic YU, Cyrillic A, Cyrillic BE, Cyrillic TSE, Cyrillic DE, Cyrillic IE, Cyril-
lic EF, Cyrillic GHE, Cyrillic HA, Cyrillic I, Cyrillic SHORTI, Cyrillic KA, Cyril-
lic EL, Cyrillic EM, Cyrillic EN, Cyrillic O, Cyrillic PE, Cyrillic YA, Cyrillic ER,
Cyrillic ES, Cyrillic TE, Cyrillic U, Cyrillic ZHE, Cyrillic VE, Cyrillic SOFTSIGN,

34

Cyrillic YERU, Cyrillic ZE, Cyrillic SHA, Cyrillic E, Cyrillic SHCHA, Cyrillic CHE,
Cyrillic HARDSIGN,

Greek ALPHAaccent, Greek EPSILONaccent, Greek ETAaccent, Greek IOTAaccent,
Greek IOTAdiaeresis, Greek OMICRONaccent, Greek UPSILONaccent,
Greek UPSILONdieresis, Greek OMEGAaccent, Greek accentdieresis,
Greek horizbar, Greek alphaaccent, Greek epsilonaccent, Greek etaaccent,
Greek iotaaccent, Greek iotadieresis, Greek iotaaccentdieresis, Greek omicronaccent,
Greek upsilonaccent, Greek upsilondieresis, Greek upsilonaccentdieresis,
Greek omegaaccent, Greek ALPHA, Greek BETA, Greek GAMMA, Greek DELTA,
Greek EPSILON, Greek ZETA, Greek ETA, Greek THETA, Greek IOTA,
Greek KAPPA, Greek LAMDA, Greek LAMBDA, Greek MU, Greek NU,
Greek XI, Greek OMICRON, Greek PI, Greek RHO, Greek SIGMA, Greek TAU,
Greek UPSILON, Greek PHI, Greek CHI, Greek PSI, Greek OMEGA, Greek alpha,
Greek beta, Greek gamma, Greek delta, Greek epsilon, Greek zeta, Greek eta,
Greek theta, Greek iota, Greek kappa, Greek lamda, Greek lambda, Greek mu,
Greek nu, Greek xi, Greek omicron, Greek pi, Greek rho, Greek sigma,
Greek finalsmallsigma, Greek tau, Greek upsilon, Greek phi, Greek chi, Greek psi,
Greek omega, Greek switch,

hebrew doublelowline, hebrew aleph, hebrew bet, hebrew beth, hebrew gimel, he-
brew gimmel, hebrew dalet, hebrew daleth, hebrew he, hebrew waw, hebrew zain,
hebrew zayin, hebrew chet, hebrew het, hebrew tet, hebrew teth, hebrew yod, he-
brew finalkaph, hebrew kaph, hebrew lamed, hebrew finalmem, hebrew mem, he-
brew finalnun, hebrew nun, hebrew samech, hebrew samekh, hebrew ayin, he-
brew finalpe, hebrew pe, hebrew finalzade, hebrew finalzadi, hebrew zade, hebrew zadi,
hebrew qoph, hebrew kuf, hebrew resh, hebrew shin, hebrew taw, hebrew taf, He-
brew switch,

Thai kokai, Thai khokhai, Thai khokhuat, Thai khokhwai, Thai khokhon,
Thai khorakhang, Thai ngongu, Thai chochan, Thai choching, Thai chochang,
Thai soso, Thai chochoe, Thai yoying, Thai dochada, Thai topatak, Thai thothan,
Thai thonangmontho, Thai thophuthao, Thai nonen, Thai dodek, Thai totao,
Thai thothung, Thai thothahan, Thai thothong, Thai nonu, Thai bobaimai,
Thai popla, Thai phophung, Thai fofa, Thai phophan, Thai fofan, Thai phosamphao,
Thai moma, Thai yoyak, Thai rorua, Thai ru, Thai loling, Thai lu,
Thai wowaen, Thai sosala, Thai sorusi, Thai sosua, Thai hohip, Thai lochula,
Thai oang, Thai honokhuk, Thai paiyannoi, Thai saraa, Thai maihanakat,
Thai saraaa, Thai saraam, Thai sarai, Thai saraii, Thai saraue, Thai sarauee,
Thai sarau, Thai sarauu, Thai phinthu, Thai maihanakat maitho, Thai baht,
Thai sarae, Thai saraae, Thai sarao, Thai saraaimaimuan, Thai saraaimaimalai,
Thai lakkhangyao, Thai maiyamok, Thai maitaikhu, Thai maiek, Thai maitho,
Thai maitri, Thai maichattawa, Thai thanthakhat, Thai nikhahit, Thai leksun,

35

Thai leknung, Thai leksong, Thai leksam, Thai leksi, Thai lekha, Thai lekhok,
Thai lekchet, Thai lekpaet, Thai lekkao,

Hangul, Hangul Start, Hangul End, Hangul Hanja, Hangul Jamo, Hangul Romaja,
Hangul Codeinput, Hangul Jeonja, Hangul Banja, Hangul PreHanja,
Hangul PostHanja, Hangul SingleCandidate, Hangul MultipleCandidate,
Hangul PreviousCandidate, Hangul Special, Hangul switch, Hangul Kiyeog,
Hangul SsangKiyeog, Hangul KiyeogSios, Hangul Nieun, Hangul NieunJieuj,
Hangul NieunHieuh, Hangul Dikeud, Hangul SsangDikeud, Hangul Rieul,
Hangul RieulKiyeog, Hangul RieulMieum, Hangul RieulPieub, Hangul RieulSios,
Hangul RieulTieut, Hangul RieulPhieuf, Hangul RieulHieuh, Hangul Mieum,
Hangul Pieub, Hangul SsangPieub, Hangul PieubSios, Hangul Sios, Hangul SsangSios,
Hangul Ieung, Hangul Jieuj, Hangul SsangJieuj, Hangul Cieuc, Hangul Khieuq,
Hangul Tieut, Hangul Phieuf, Hangul Hieuh, Hangul A, Hangul AE,
Hangul YA, Hangul YAE, Hangul EO, Hangul E, Hangul YEO, Hangul YE,
Hangul O, Hangul WA, Hangul WAE, Hangul OE, Hangul YO, Hangul U,
Hangul WEO, Hangul WE, Hangul WI, Hangul YU, Hangul EU, Hangul YI,
Hangul I, Hangul J Kiyeog, Hangul J SsangKiyeog, Hangul J KiyeogSios,
Hangul J Nieun, Hangul J NieunJieuj, Hangul J NieunHieuh, Hangul J Dikeud,
Hangul J Rieul, Hangul J RieulKiyeog, Hangul J RieulMieum, Hangul J RieulPieub,
Hangul J RieulSios, Hangul J RieulTieut, Hangul J RieulPhieuf, Hangul J RieulHieuh,
Hangul J Mieum, Hangul J Pieub, Hangul J PieubSios, Hangul J Sios,
Hangul J SsangSios, Hangul J Ieung, Hangul J Jieuj, Hangul J Cieuc,
Hangul J Khieuq, Hangul J Tieut, Hangul J Phieuf, Hangul J Hieuh,
Hangul RieulYeorinHieuh, Hangul SunkyeongeumMieum, Hangul SunkyeongeumPieub,
Hangul PanSios, Hangul KkogjiDalrinIeung, Hangul SunkyeongeumPhieuf,
Hangul YeorinHieuh, Hangul AraeA, Hangul AraeAE, Hangul J PanSios,
Hangul J KkogjiDalrinIeung, Hangul J YeorinHieuh, Korean Won,

Armenian eternity, Armenian section sign, Armenian full stop, Armenian verjaket,
Armenian parenright, Armenian parenleft, Armenian guillemotright, Arme-
nian guillemotleft, Armenian em dash, Armenian dot, Armenian mijaket, Arme-
nian separation mark, Armenian but, Armenian comma, Armenian en dash, Ar-
menian hyphen, Armenian yentamna, Armenian ellipsis, Armenian exclam, Ar-
menian amanak, Armenian accent, Armenian shesht, Armenian question, Arme-
nian paruyk, Armenian AYB, Armenian ayb, Armenian BEN, Armenian ben, Ar-
menian GIM, Armenian gim, Armenian DA, Armenian da, Armenian YECH, Ar-
menian yech, Armenian ZA, Armenian za, Armenian E, Armenian e, Armenian AT,
Armenian at, Armenian TO, Armenian to, Armenian ZHE, Armenian zhe, Arme-
nian INI, Armenian ini, Armenian LYUN, Armenian lyun, Armenian KHE, Arme-
nian khe, Armenian TSA, Armenian tsa, Armenian KEN, Armenian ken, Arme-
nian HO, Armenian ho, Armenian DZA, Armenian dza, Armenian GHAT, Arme-
nian ghat, Armenian TCHE, Armenian tche, Armenian MEN, Armenian men, Arme-
nian HI, Armenian hi, Armenian NU, Armenian nu, Armenian SHA, Armenian sha,

36

Armenian VO, Armenian vo, Armenian CHA, Armenian cha, Armenian PE, Arme-
nian pe, Armenian JE, Armenian je, Armenian RA, Armenian ra, Armenian SE,
Armenian se, Armenian VEV, Armenian vev, Armenian TYUN, Armenian tyun,
Armenian RE, Armenian re, Armenian TSO, Armenian tso, Armenian VYUN, Ar-
menian vyun, Armenian PYUR, Armenian pyur, Armenian KE, Armenian ke, Ar-
menian O, Armenian o, Armenian FE, Armenian fe, Armenian apostrophe, Arme-
nian ligature ew,

Georgian an, Georgian ban, Georgian gan, Georgian don, Georgian en, Georgian vin,
Georgian zen, Georgian tan, Georgian in, Georgian kan, Georgian las, Georgian man,
Georgian nar, Georgian on, Georgian par, Georgian zhar, Georgian rae, Georgian san,
Georgian tar, Georgian un, Georgian phar, Georgian khar, Georgian ghan, Geor-
gian qar, Georgian shin, Georgian chin, Georgian can, Georgian jil, Georgian cil, Geor-
gian char, Georgian xan, Georgian jhan, Georgian hae, Georgian he, Georgian hie,
Georgian we, Georgian har, Georgian hoe, Georgian fi,

2.5. File Sets

Wing provides a way to define sets of files that can be used in various ways within the
IDE, such as for searching particular batches of files and adding only certain kinds of
files to a project.

To view or alter the defined file sets, use the File Sets... item in the File menu. This
will display a file set editor within the Preferences manager.

When adding or editing a file set, the following information may be entered:

• Name -- The name of the file set

• Includes -- A list of inclusion criteria, each of which contains a type and a spec-
ification. A file will be included in the file set if any one of these include criteria
matches it.

• Excludes -- A list of exclusion criteria, any of which can match to cause a file to
be excluded from the file set even if one or more include matches were also found.

The following types of include and exclude criteria are supported:

• Wildcard on Filename -- The specification in this case is a wildcard that must
match the file name. The wildcards supported are those provided by Python’s
fnmatch module.

http://wingware.com/psupport/python-manual/2.5/lib/module-fnmatch.html

37

• Wildcard on Directory Name -- The specification in this case is a wildcard
that must match the directory name.

• Mime Type -- The specification in this case names a MIME type supported by
Wing IDE. If additional file extensions need to be mapped to a MIME type, use
the Extra File Types preference to define them.

Once defined, file sets are presented by name in the Search in Files tool’s batch search
facility and in the Project tool’s batch file addition features.

Any problems encountered in using the file sets are reported in the Messages area.

38

Project Manager

The Project manager provides a convenient index of the files in your software project
and collects information needed by Wing’s debugger, source code analysis tools, and
other facilities.

To get the most out of Wing’s debugger and source analysis engine, you may in some
cases need to set up Python Executable, Python Path, and other values in Project-
Wide Properties and/or Per-File Properties.

NOTE: Wing IDE Personal omits some of the project manager features.

3.1. Creating a Project

To create a new project, use the New Project item in the Project menu. This will
prompt you to save any changes to your currently open project and will create a new
untitled project. If Wing is started without any command line arguments, the most
recent project is opened, or if no project exists then the Default Project is opened.

When you create a new project, you will often want to alter some of the Project
Properties to point Wing at the version of Python you want to use, set PYTHONPATH

so Wing’s source analyzer and debugger can find your files, and set any other necessary
runtime environment for your code.

To add files to your project, use the following items in the Project menu:

• Add Directory allows you to specify a directory to include in the project. In
many cases, this is the only operation needed to set up a new project. You will
be able to specify a filter of which files to include, whether to include hidden &
temporary files, and whether to include subdirectories. The list of files in the
project will be updated as files matching the criteria are added and removed from
the disk.

39

40

• Add Current File will add the frontmost current editor file to the project if it
is not already there.

• Add New File is used to create a new file and simultaneously add it to your
project.

• Add File will prompt you to select a single file to add to the project view. Note
that this also may result in adding a new directory to the project manager window,
if that file is the first to be added for a directory.

A subset of these options can be accessed from the context menu that appears when
right-clicking your mouse on the surface of the project manager window.

3.2. Removing Files and Packages

To remove a specific file, select it and use the Remove From Project menu item in the
right-click context menu from the surface of the Project Manager window, or by selecting
an item on the project and using Remove Selected Entry in the Project menu. You can
also remove a whole directory and all the files that it contains in this way.

3.3. Saving the Project

To save a new project, use Save Project As in the Project menu. Once a project file
has been saved the first time, it will be auto-saved whenever you close the project, start
a debug session, or exit Wing.

You can also save a copy of your project to another location or name with Save Project

As... in the Project menu.

Moving Project Files
When moving a project file on disk, doing so in a file browser or from the command
line may partially break the project if it is moved relative to the position of files that
it includes. Using Save Project As... in Wing instead will properly update the
relative paths that the project manager uses to locate files in the project.

41

3.4. Sorting the View

The project can be set to show your files in one of several modes, using the Options

menu in the top right of the project view:

• View As Tree -- This displays the project files in true tree form. The tree
structure is based on the partial relative path from the project file.

• View As Flattened Tree -- This view (the default) shows files organized accord-
ing to their location on disk. Each directory is shown at the top level with path
names shown as partial relative paths based on the location of the project file. If
you alter the location of the project file with Save Project As..., these paths
will be updated accordingly.

• View By Mime Type -- This view organizes your files by MIME type.

3.5. Navigating to Files

Files can be opened from the project manager window by double clicking or middle
clicking on the file name, or right-clicking and using the Open in Wing IDE menu item.

Files may also be opened using an external viewer or editor by right-clicking on the file
and using the Open in External Viewer item. On Windows and Mac OS X, this opens
the file as if you had double clicked on it. On Linux, the preferences File Display
Commands and Extra Mime Types can be used to configure how files are opened.

You can also execute Makefiles, Python source code, and any executable files by selecting
the Execute Selected File item from the popup menu. This executes outside of the
debugger with any input/output occurring in the OS Commands tool. Doing so also
adds the command to the OS Commands tool, where its runtime environment can be
configured.

3.5.1. Keyboard Navigation

Once it has the focus, the project manager tree view is navigable with the keyboard,
using the up/down arrow keys, page up and page down, and home/end.

Use the right arrow key on a parent to display its children, or the left arrow key to hide
them.

Whenever a file is selected, pressing enter will open that item into an editor in Wing
IDE.

42

3.6. Project-wide Properties

Each project has a set of top-level properties that can be accessed and edited via the
Properties item in the Project menu. These can be used to configure the Python
environment used by the debugger and the source code analysis engine, which drives
Wing’s auto completion, source index, and other capabilities. Project properties are also
provided to set options for the project and to enable and configure extensions for revision
control, Zope, and other tools.

Any string value for a property may contain environment and special variable references,
as described in Variable Expansion.

Environment

To get the most out of Wing, it is important to set these values in the Environment tab
correctly for your project:

Python Executable -- When the Custom radio button is checked and the entered field
is non-blank, this can be used to set the full path to the Python executable that should
be used when debugging source code in this project. When Use default is selected, Wing
tries to use the default Python obtained by typing python on the command line. If this
fails, Wing will search for Python in /usr/local and /usr (on Linux/Unix) or in the
registry (on Windows).

Python Path -- The PYTHONPATH is used by Python to locate modules that are imported
at runtime with the import statement. When the Use default checkbox in this area
is checked, the inherited PYTHONPATH environment variable is used for debug sessions.
Otherwise, when Custom is selected, the specified PYTHONPATH is used.

Environment -- This is used to specify values that should be added, modified, or
removed from the environment that is inherited by debug processes started from Wing
IDE and is used to expand environment variable references used in other properties.
Each entry is in var=value form and must be specified one per line in the provided
entry area. An entry in the form var= (without a value) will remove the given variable
so it is undefined. Note that you are operating on the environment inherited by the
IDE when it started and not modifying an empty environment. When the Use system
environment choice is set, any entered values are ignored and the inherited environment
is used without changes.

Debug

The following properties are defined in the Debug tab:

43

Main Debug File -- This defines where execution starts when the debugger is launched
from the IDE. The default is to start debugging in the current editor file. Alternatively,
use this property to define a project-wide main debug file so that debug always started
in that file regardless of which file is current in the editor.

Initial Directory -- When the Use default radio button is checked, the initial working
directory set for each debug session will be the location where the main entry point file
(if any) or project file is located. Otherwise, when Custom is selected, the specified
directory is used or, when blank, the project file’s directory is used.

Python Options -- This is used to select the command line options sent to the Python
interpreter while debugging. The default of -u sets Python into unbuffered I/O mode,
which ensures that the debug process output, including prompts shown for keyboard
input, will appear in a timely fashion.

Options

These project options are provided:

Default Encoding sets the default text encoding to use for files when the encoding
cannot be determined from the contents of the file. This applies to all files opened when
the project is open, whether or not they are part of the project. By default, this falls
back to the value set by the Default Encoding preference.

Project Home Directory sets the base directory for the project. This overrides the
project file location as the directory on which to base relative paths shown in the Project
view and elsewhere. It is also used as the directory in which the Python Shell subpro-
cess is launched and for the starting directory when the Default Directory Policy
preference is set to Current Project.

Preferred Line Ending and Line Ending Policy control whether or not the project
prefers a particular line ending style (line feed, carriage return, or carriage return + line
feed), and how to enforce that style, if at all. By default, projects do not enforce a line
ending style but rather insert new lines to match any existing line endings in the file.

Preferred Indent Style and Indent Style Policy control whether or not the project
prefers a particular type of indentation style for files (spaces only, tabs only, or mixed
tabs and spaces), and how to enforce that style, if at all. By default, projects do not
enforce an indent style but rather insert new lines to match any existing indentation in
the file.

44

Extensions

The Extensions tab of Project Properties is used to control add-ons on a per-project
basis:

Enable Zope2/Plone Support and Zope2 Instance Home are used for Zope 2.x
and Plone projects to provide the Instance Home directory used by Zope. This is needed
because Zope 2.x implements import magic that works differently from Python’s default
import and thus adding the instance home directory to PYTHONPATH is not sufficient.
Wing’s source analyzer needs this extra clue to properly find and process the Zope
instance-specific sources.

When this option is activated, Wing will also offer to add the relevant Zope2/Plone files
to the project, and to install the control panel for configuring and initiating debug in
Zope2/Plone. See the Zope How-To for details.

3.6.1. Variable Expansion

Any string value for a property may contain environment variable references using the
$(name) or $ {name} notation. These will be replaced with the value of the environment
variable when it used by the IDE. If the environment variable is not set, the reference will
be replaced by an empty string. The system environment, as modified by the project-
wide or per-file environment property (if defined), is used to expand variable references.

The following special variable names are also available for use in the $(name) or ${name}
form:

• WING:FILENAME -- full path of current file

• WING:FILENAME_DIR -- full path of the directory containing the current file

• WING:LINENO -- current line number in the current file

• WING:SCOPE -- x.y.z-formatted name of the current scope in the current file (if
Python)

• WING:PROJECT full path of current project

• WING:PROJECT_DIR -- full path of the directory containing the current project

These may evaluate to an empty string when there is no current file name.

45

3.7. Per-file Properties

Per-file properties can be set by right-clicking on a source file and selecting the Prop-

erties menu item in the popup, by right-clicking on a file in the project view and
selecting File Properties, or by opening a file and using the Current File Proper-

ties... item in the Source menu. For Debug and Python Settings, values entered here
will override any corresponding project-wide values when the selected file is the current
file or the main entry point for debugging.

Any string value for a property may contain environment and special variable references,
as described in Variable Expansion.

File Attributes

File Type -- This property specifies the file type for a given file, overriding the type
determined automatically from its file extension and/or content. This property is recom-
mended only when the Extra File Types preference cannot be used to specify encoding
based on filename extension.

Encoding -- This can be used to specify the encoding with which a file will be saved.
When it is altered for an already-open file, Wing will offer to reload the file using the new
encoding, to only save subsequently using the new encoding, or to cancel the change.
Choose to reload if the file was opened with the wrong encoding. For already-open files,
the encoding attribute change is only saved if the file is saved. If it is closed without
saving, the encoding attribute will revert to its previous setting. The encoding cannot
be altered with this property if it is being defined by an encoding comment in a Python,
HTML, XML, or gettext PO file. In this case, the file should be opened and the encoding
comment changed. Wing will save the file under the newly specified encoding.

Important: Files saved under a different encoding without an encoding comment may
not be readable by other editors because there is no way for them to determine the
file’s encoding if it differs from the system or disk default. Wing stores the selected
encoding in the project file, but no mark is written in the file except for those encodings
that naturally use a Byte Order Mark (BOM), such as utf 16 le, utf 16 be, utf 32 le,
or utf 32 be. Note that standard builds of CPython cannot read source files encoded in
utf16 or utf32.

Line Ending Style -- Specifies which type of line ending (line feed, carriage return, or
carriage return and line feed) is used in the file. When altered, the file will be opened
and changed in an editor. The change does not take effect until the file is saved to disk.

Indent Style -- This property can be used in non-Python files to change the type of

46

indent entered into the file for newly added lines. For Python files, the only way to alter
indentation in a file is with the Indentation manager.

Read-only on Disk -- This property reflects whether or not the file is marked read-only
on disk. Altering it will change the file’s disk protections for the owner of the file (on
Posix, group/world permissions are never altered).

Editor

These properties define how the file is displayed in the editor:

Show Whitespace -- This allows overriding the Show White Space preference on a
per-file basis.

Show EOL -- This allows overriding the Show EOL preference on a per-file basis.

Show Indent Guides -- This allows overriding the Show Indent Guides preference
on a per-file basis.

Ignore Indent Errors -- Wing normally reports potentially serious indentation incon-
sistency in Python files. This property can be used to disable this check on a per-file
basis (it is also available in the warning dialog).

Ignore EOL Errors -- When the project’s Line Ending Policy is set to warn about
line ending mismatches, this property can be used to disable warnings for a particular
file.

Environment

These properties are the same as for the Python Settings defined in Project-Wide
Properties. Values defined per-file override the corresponding project-wide property.

For the Environment attribute, note that the option menu area contains some additional
choices. Use Add to Project Values to apply the values specified here to the runtime
environment specified by the project, or Add to System Environment to bypass the
project-wide values and apply the per-file values directly to the environment set by the
operating system.

Debug

The per-file debug properties dialog contains all the same fields described in Project-
Wide Properties, with the following additions:

47

Run Arguments -- Enter any run arguments here. Wing does not interpret backslashes
(”) on the command line and passes them unchanged to the debug process. The only
exceptions to this rule are \’ and \" (backslash followed by single or double quote),
which allow inclusion of quotes inside quoted multi-word arguments.

Show this dialog before each run -- Check this checkbox if you want the debug
options dialog to appear each time you start a debug session.

Values defined per-file override or modify the corresponding project-wide property.

When debugging, only per-file debug properties set on the initially invoked file are used.
Even if other files with set properties are used in the debug session, any values set for
them will be ignored.

48

Source Code Editor

Wing IDE’s source code editor is designed to make it easier to adopt the IDE even if
you are used to other editors.

Key things to know about the editor

• The editor has personalities that emulate other commonly used editors such
as Visual Studio, VI/Vim, Emacs, and Brief.

• Context-appropriate auto-completion, goto-definition, and code index menus
are available when working in Python code

• The editor supports a wide variety of file types for syntax colorization.

• Key mappings and many other behaviors are configurable.

• The editor supports structural folding for some file types

4.1. Syntax Colorization

The editor will attempt to colorize documents according to their MIME type, which is
determined by the file extension, or content. For example, any file ending in .py will
be colorized as a Python source code document. Any file whose MIME type cannot be
determined will display all text in black normal font by default.

All the available colorization document types are listed in the File Properties dialog’s
File Attributes tab. If you have a file that is not being recognized automatically, you can
use the File Type menu found there to alter the way the file is being displayed. Your
selections from this menu are stored in your project file, so changes made are permanent
in the context of that project.

If you have many files with an unrecognized extension, use the Extra File Types
preference to add your extension.

49

50

4.2. Right-click Editor Menu

Right-clicking on the surface of the editor will display a context menu with commonly
used commands such as Copy, Paste, Goto Definition, and commenting and indentation
operations.

4.3. Navigating Source

The set of menus at the top of the editor can be used to navigate through your source
code. Each menu indicates the scope of the current cursor selection in the file and may
be used to navigate within the top-level scope, or within sub-scopes when they exist.

When editor tabs are hidden by clicking on the options drop down in the top right of
the editor area, the left-most of these menus lists the currently open files by name.

You can also use the Goto Definition menu item in the editor context menu to click
on a construct in your source and zoom to its point of definition. Alternatively, place
the cursor or selection on a symbol and use the Goto Selected Symbol Defn item in
the Source menu, or its keyboard equivalent.

When moving around source, the history buttons in the top left of the editor area can
be used to move forward and backward through visited files and locations within a file
in a manner similar to the forward and back buttons in a web browser.

Other commonly used ways to select among files that are open include the Window menu,
which lists all open files, and the Recent sub-menu in the File menu.

Additionally, the Open From Keyboard command in the File menu can be a convenient
way to find files quickly. This operates in a temporary input area at the bottom of the
IDE window and offers auto-completion of file names as you type.

4.4. File status and read-only files

The editor tabs, or editor selection menu when the tabs are hidden, indicate the status of
the file by appending * when the file has been edited or (r/o) when the file is read-only.
This information is mirrored for the current file in the status area at the bottom left of
each editor window. Edited status is also shown in the Window menu by appending * to
the file names found there.

Files that are read-only on disk are initially opened within a read-only editor. Use the
file’s context menu (right-click) to toggle between read-only and writable state. This

51

alters both the editability of the editor and the writability of the disk file so may fail if
you do not have the necessary access permissions to make this change.

4.5. Transient vs. non-Transient Editors

Wing can open files in two modes:

Transient Mode -- Files opened when searching, debugging, navigating to point of
definition, and using the Project and (in Wing Pro only) the Source Browser tools
with the Follow Selection checkbox enabled are opened in transient mode and will be
automatically closed when hidden. The maximum number of non-visible transient files
to keep open at any given time can be set with the Editor / Advanced / Transient
Threshold preference.

Non-Transient Mode -- Files opened normally from the File menu, from the keyboard
file selector, or by double clicking on items in the Project tool will be opened in non-
transient mode, and kept open until they are explicitly closed.

A file can be switched between transient and non-transient mode by clicking on the
stick pin icon in the upper right of the editor area. Right-click on the stick pin icon to
navigate to recently visited files (blue items were transient, black items non-transient).

Transient files that are edited are also automatically converted to non-transient mode.

4.6. Auto-completion

While typing in Python source code, Wing Personal and higher will display a context-
appropriate auto-completion list. To use it, type until the correct symbol is hilighted in
the list (or use the up/down arrow keys) and then press the Tab key or double click on
an item. Wing will fill in the remaining characters for the source symbol, correcting any
spelling errors you might have made in the name.

To alter which keys cause auto-completion to occur, use the Auto-completion Keys
preference. Ctrl-click on the list to select multiple keys.

To cancel out of the auto-completion popup, press the Esc key or ctrl-g. The auto-
completer will also disappear when you exit the source symbol (for example, by pushing
space or any other character that can’t be contained in a source symbol), if you click
elsewhere on the surface of the source code, or if you issue other keyboard-bound com-
mands that are not accepted by the auto-completer (for example, save through keyboard
equivalent).

52

Auto-completion Limitations
Auto-completion covers most but not all possible scenarios at this time. See section
Source Code Analysis for more information on current capabilities and how to
help Wing determine the types of values.

4.7. Indentation

Since indentation is syntactically significant in Python, Wing provides a range of features
for inspecting and managing indentation in source code.

4.7.1. How Indent Style is Determined

When an existing file is opened, it is scanned to determine what type of indentation is
used in that file. If the file contains some indentation, this may override the tab size,
indent size, and indent style values given in preferences and the file will be indented in
a way that matches its existing content rather than with your configured defaults. If
mixed forms of indentation are found, the most common form is used.

For non-Python files, you can change indentation style on the fly using the Indent Style

property in the File Properties dialog. This allows creating files that intentionally
mix indentation forms in different parts of the file. To ask Wing to return to the form of
indentation it determines as most prominent in the file, select Match Existing Indents.

For Python files, the Indent Style cannot be altered without converting the whole file’s
indent style using the Indentation Manager, which can be accessed from the button
next to the Indent Style property and from the Tools menu.

Tab Size
Tab size is automatically forced to 8 characters for all Python source files that
contain some spaces in indentation. This is done because the Python interpreter
defines tabs as 8 characters in size when used together with spaces. This version
of Wing does not recognize vi style tab size comments, but it does apply the Tab
Size preference when a file contains only tabs in indentation, or if it is a non-Python
file.

4.7.2. Indentation Preferences

The following preferences affect how the indentation features behave:

53

1) The Use Indent Analysis preference is used to control whether analysis
of current file content is used to determine the type of indentation placed
during edits. It can be enabled for all files, only for Python files, or disabled.
Note that disabling this preference for Python files can result in a potentially
broken mix of indentation in the files. In general, indent styles should not
be mixed within a single Python file.

2) The Default Tab Size preference defines the position of tab stops and is
used to determine the rendering of files with tabs only, or non-Python files
with mixed tab and space indentation. In Python files with mixed indents,
this value is ignored and the file is always shown in the way that the Python
interpreter would see it.

3) The Default Indent Size preference defines the default size of each level
of indent, in spaces. This is used in new empty files or when indent analysis
has been disabled. Wing may override this value in files that contain only
tabs in indentation, in order to make it a multiple of the configured tab size.

4) The Default Indent Style preference defines the default indentation style,
one of spaces-only, tabs-only, or mixed. This is used in new empty files
or when indent analysis has been disabled. Mixed indentation replaces each
tab-size spaces with one tab character.

These preferences define how indentation is handled by the editor:

5) The Auto-Indent preference controls whether or not each new line is auto-
matically indented.

6) The Show Indent Guides preference controls whether or not to show in-
dentation guides as light vertical lines. This value can be overridden on a
file-by-file basis from Editor tab in File Properties.

7) The Show Python Indent Warnings preference can be used to enable
or disable warnings for Python files that may contain confusing or damaged
indentation.

8) The Show Override Warnings preference controls whether or not Wing
shows a warnings when the user enters indentation that does not match the
form already within a file. This is currently only possible in non-Python files,
by altering the Indent Style attribute in File Properties.

54

4.7.3. Indentation Policy

The project manager also provides the ability to define the preferred indentation style
(overriding the preference-defined style) and to specify a policy for enforcing line endings,
on a per-project basis. This is accomplished with Preferred Line Ending and Line
Ending Policy under the Options tab in Project Properties.

4.7.4. Auto-Indent

The IDE ships with auto-indent turned on. This causes leading white space to be added
to each newly created line, as return or enter are pressed. Enough white space is inserted
to match the indentation level of the previous line, possibly adding or removing a level of
indentation if this is indicated by context in the source (such as if, while, or return).

Note that if preference Auto-indent is turned off, auto-indent does not occur until the
tab key is pressed.

4.7.5. The Tab Key

By default, the tab key either indents according to context or increases the indent depth
at the current cursor position by one level (this depends on the selected editor Person-
ality). If one or more lines are selected, this instead operates on the indentation of all
selected lines by one level.

To insert a real tab character regardless of the indentation mode or the position of the
cursor on a line, type Ctrl-Tab or Ctrl-T.

The behavior of the tab key can be altered using the Tab Key Action preference.

4.7.6. Checking Indentation

Wing IDE analyzes existing indentation whenever it opens a Python source file, and will
indicate a potentially problematic mix of indentation styles, allowing you to attempt to
repair the file. Files can be inspected more closely or repaired at any time using the
Indentation Manager.

To turn off indentation warnings in Python files, use the Show Python Indent Warn-
ings preference.

Wing also indicates suspiciously mismatched indentation in source code by underlining

55

the indent area of the relevant lines in red or yellow. In this case, an error or warning
message is displayed when the mouse hovers over the flagged area of code.

4.7.7. Changing Block Indentation

Wing provides Indent and Outdent commands in the Indentation portion of the Source
menu, which increase or decrease the level of indentation for selected blocks of text. All
lines that are included in the current text selection are moved, even if the entire line
isn’t selected.

Indentation placed by these commands will contain either only spaces, only tabs, or a
mixture of tabs and spaces, as determined by the method described in Indentation.

Indenting to Match
The command Indent Lines to Match (also in the Indentation sub-menu) will
indent or outdent the current line or selected lines to the level as a unit so that the
first line is positioned as it would have been positioned by Wing’s auto-indentation
facility. This is very useful when moving around blocks of code.

4.7.8. Indentation Manager

The Indentation manager, accessible from the Tools menu, can be used to inspect and
change indentation style in source files. It has two parts: (1) The indentation report,
and (2) the indentation converter.

A report on the nature of existing indentation found in your source file is given above
the horizontal divider. This includes the number of spaces-only, tabs-only, and mixed
tabs-and-space indents found, information about whether indentation in the file may be
problematic to the Python interpreter, and the tab and indent size computed for that
file. The manager also provides information about where the computed tab and indent
size value come from (for example, an empty file results in use of the defaults configured
in preferences).

Conversion options for your file are given below the horizontal divider. The three tabs
are used to select the type of conversion desired, and each tab contains information about
the availability and action of that conversion, and a button to start the conversion. In
some of the conversion options, the indent size field shown in the indentation report is
made editable, to allow specification of the desired resulting indent size.

Once conversion is complete, the indentation manager updates to display the new status
of the file, and action of any subsequent conversions.

56

Conversions can be undone be moving to the converted source file and selecting Undo

from the Edit menu.

4.8. Brace Matching

Wing will highlight matching braces in green when the cursor is adjacent to a brace.
Mismatched braces are highlighted in red.

You can cause Wing to select the entire contents of the innermost brace pair from the
current cursor position with the Match Braces item in the Source menu.

Parenthesis, square brackets, and curly braces are matched in all files. Angle brackets
(< and >) are matched also in HTML and XML files.

4.9. Support for files in .zip or .egg files

Source and other text files stored in .zip or .egg files may be loaded into the editor as
readonly files. Wing is unable to write changes to a file within a .zip or .egg file or
otherwise write to or create a .zip or .egg file.

When stepping through code, using goto definition, or using other methods to goto a
line in a file, a file within a .zip or .egg file will be opened automatically. To open a file
through the open file dialog, specify the name of the .zip or .egg file and add a / followed
by the name of the file to open.

4.10. Notes on Copy/Paste

There are a number of ways to copy and paste text in the editor:

• Use the Edit menu items. This stores the copy/cut text in the system-wide clip-
board and can be pasted into or copied from other applications.

• Use key equivalents as defined in the Edit menu.

• Right-click on the editor surface and use the items in the popup menu that appears.

• Select a range of text and drag it using the drag and drop feature. The default
drag operation is to copy on Linux and OS X and move on Windows. Pressing the
Control key after starting the drag toggles between moving or copying the text.

57

• On Linux, select text anywhere on the display and then click with the middle
mouse button to insert it at the point of click.

• In emacs mode, ctrl-k (kill-line) will cut one line at a time into the private
emacs clipboard. This is kept separate from the system-wide clipboard and is
pasted using ctrl-y (yank-line). On Windows and Mac OS X, ctrl-y will paste
the contents of the system-wide clipboard only if the emacs clipboard is empty.

• In VI mode, named text registers are supported.

• On Windows and Mac OS X, click with the middle mouse button to insert the
current emacs private clipboard (if in emacs mode and the buffer is non-empty)
or the contents of the system-wide clipboard (in all other cases). On Mac OS X,
the middle mouse button is emulated by command or other key configured in the
X11 Server’s preferences. This behavior may be disabled via the Middle Mouse
Paste preference

It is important to note which actions use the system-wide clipboard, which use the emacs
private clipboard or VI registers, and which use the X windows selection (X Windows
only). Otherwise, these commands are interchangeable in their effects.

4.11. Auto-reloading Changed Files

Wing’s editor detects when files have been changed outside of the IDE and can reload
files automatically, or after prompting for permission. This is useful when working with
an external editor, or when using code generation tools that rewrite files.

Wing’s default behavior is to automatically reload externally changed files that have not
yet been changed within Wing’s source editor, and to prompt to reload files that have
also been changed in the IDE.

You can change these behaviors by setting the value of the Reload when Unchanged
and Reload when Changed preferences

On Windows, Wing uses a signal from the OS to detect changes so notification or reload
is usually instant. On Linux and Unix, Wing polls the disk by default every 3 seconds;
this frequency can be changed with the External Check Freq preference.

4.12. Auto-save

The source code editor auto-saves files to disk every few seconds. The auto-save files are
placed in a subdirectory of your User Settings Directory.

58

If Wing ever crashes or is killed from the outside, you can use these files to manually
recover any unsaved changes. Copy the auto-save files to overwrite the older unsaved
files, doing a comparison first to verify that the auto-save file is what you want.

Search/Replace

Wing provides a number of tools for search and replace in your source code. Which you
use depends on the complexity of your search or replace task and what style of searching
you are most familiar with.

5.1. Toolbar Quick Search

One way to do simple searches is to enter text in the search area of the toolbar. This
scrolls as you type to the next match found after the current cursor position. Pressing
Enter will search for each subsequent match, wrapping the search when the end of the
file is reached.

Text matching during toolbar quick search is case-insensitive unless you enter a capital
letter as part of your search string.

If focus is off the toolbar search area and it already contains a search string, clicking on
it will immediately start searching in the current source editor for the next match. If
you wish to search for another string instead, delete the text and type the desired search
string. As you delete, the match position in the editor will proceed backward until it
reaches your original search start position, so that after typing your new search string
you will be presented with the first match after the original source editor cursor position.

5.2. Keyboard-driven Mini-Search/Replace

The Edit menu contains a Mini-Search sub-menu that enumerates the available
keyboard-driven search options. These are normally initiated with the keyboard com-
mand sequences shown in the menu and can be controlled entirely by using the keyboard.
All interaction with the mini-search manager occurs using data entry areas displayed on
demand at the bottom of the IDE window.

The implementation of the mini-search manager is very close to the most commonly

59

60

used search and replace features found in Emacs, but it is available whether or not the
Emacs editor personality is being used.

The following search and replace features are available in this facility:

• Forward and Backward -- These display a search string entry area at the bottom
of the IDE window and interactively search forward or backward in the current
source editor, starting from the current cursor position. The search takes place as
you type and can be aborted with Esc or Ctrl-G, which returns the editor to its
original cursor location and scroll position.

Searching is case-insensitive unless you enter a capital letter as part of your search
string. To search repeatedly, press Ctrl-U (or Ctrl-S in emacs keyboard mode)

to search forward and ‘‘Ctrl-Shift-U (or Ctrl-R in emacs mode) to search
in reverse. The search direction can be changed any number of times and searching
will wrap whenever the top or bottom of the file is reached. You can also enter
Ctrl-U (or Ctrl-S in emacs mode) or Ctrl-Shift-U (or Ctrl-R in emacs mode)
again initially while the search string is still blank in order to call up the most
recently used search string and begin searching forward or backward with it.

Once the mini-search entry area is visible, Ctrl-W will add the current word in the
editor to the search string. Pressing Ctrl-W more than once while the mini-search
entry is visible adds additional words from the editor to the search string.

• Selection Forward and Selection Backward -- These work like the above but
start with the selection in the current source editor.

• Regex Forward and Regex Backward -- These work like the above but treat
the search string as a regular expression.

• Query/Replace and Regex Query/Replace -- This prompts for search and
replace strings in an entry area at the bottom of the IDE window and prompts
for replace on each individual match found after the cursor location in the current
source editor. Press y to replace or n to skip a match and move on to the next
one. The interaction can be canceled at any time with Esc or -G. Matching is case
insensitive unless a capital letter is entered as part of the search string. Searching
is always forward and stops when the end of the file is reached, without wrapping
to any un-searched parts between the top of the file and the position from which
the search was started.

• Replace String and Replace Regex -- This works like the above command but
immediately replaces all matches without prompting.

61

5.3. Search Tool

The dockable Search tool can be used for more advanced search and replace tasks within
the current editor. It provides the ability to customize case sensitivity and whole/part
word matching, search in selection, and perform wildcard or regex search and replace.

The Replace field may be hidden and can be shown from the Options menu in the
bottom right of the tool.

To the right of the Search and Replace fields, Wing makes available a popup that
contains a history of previously used strings, options for inserting special characters,
and an option for expanding the size of the entry area.

The following search options can be selected from the tool:

• Case Sensitive -- Check this option to show only exact matches of upper and
lower case letters in the search string.

• Whole Words -- Check this option to require that matches are surrounded by
white space (spaces, tabs, or line ends) or punctuation other than _ (underscores).

• In Selection -- Search for matches only within the current selection on the editor.

The following additional options are available from the Options popup menu:

• Show Replace -- Whether or not the Replace field is visible in the tool.

• Text Search -- Select this to do a regular text search without wildcard or regex.

• Wildcard Search -- Select this to allow use of special characters for wildcarding
in the search string (see Wildcard Search Syntax for details).

• Regex Search -- Select this to use regular expression style searching. This is a
more powerful variant than wildcard search that allows for more complex specifi-
cation of search matches and replacement values. For information on the syntax
allowed for the search and replace strings, see Python’s Regular Expression Syntax
documentation.

• Wrap Search -- Uncheck this to avoid wrapping around when the search reaches
the top or bottom of a file.

• Incremental -- Check this to immediately start or restarted searching as you
type or alter search options. When unchecked, use the forward/backward search
buttons to initiate searching.

• Find After Replace -- Select this to automatically find the next search match
after each Replace operation.

http://wingware.com/psupport/python-manual/2.5/lib/re-syntax.html

62

5.4. Search in Files Tool

The dockable Search in Files tool is used to search and replace within sets of files, or
for searching Wing’s documentation. It performs searches in batch and displays a result
list for all found matches. This list can then be traversed to view the matches in the
source editor, and is automatically updated as edits alter the search results.

Searching may span the current editor, a single selected file, all open files, all project
files, or all of Wing’s documentation.

Files in a set may be filtered by file type, for example searching only through Python
files in the project.

In addition the options also available in the search tool, the following choices are
available in the Options popup menu:

• Replace Operates On Disk -- Check this to replace text in un-opened files
directly on disk. Caution: see Replace in Multiple Files for details on this
option.

• Omit Binary Files -- Check this to omit any file that appears to contain binary
data.

• Auto-restart Searches -- Check this to restart searching immediately if it is
interupted because a search parameter or the set of files being searched is changed.

• Open First Match -- Check this to automatically open the first batch search
match, even before the result list is clicked upon.

• Show Line Numbers -- Check this to include line numbers in the batch result
area.

• Result File Name -- This is used to select the format of the result file name
shown in the batch result area.

5.4.1. Replace in Multiple Files

For searches that operate on open files, replace always occurs in the open file editor and
can be undone or saved to disk subsequently, as with any other edit operation.

When replacing text in batch mode, some of the files being searched may not currently
be open in an editor. In this case, Wing will by default open all altered files and make
changes in newly created editors that remain open until the user saves and closes them

63

explicitly. This is the safest way to undertake multi-file global replace operations because
it clearly shows which files have been altered and makes it possible to undo changes.

An alternative approach is available by selecting the Replace Operates on Disk option
from the Options popup. This will cause Wing to change files directly on disk in cases
when there is no currently open editor.

Because global replace operations can be tricky to do correctly, we strongly recommend
using a revision control system or frequent backups and manually comparing file revisions
before accepting files that have been altered.

5.5. Wildcard Search Syntax

For wild card searches in the Search tools, the following syntax is used:

* can be used to match any sequence of characters except for line endings. For example,
the search string my*value would match anything within a single line of text starting
with my and ending with value. Note that * is “greedy” in that myinstancevalue =

myothervalue would match as a whole rather than as two matches. To avoid this, use
Regex Search instead with .*? instead of *.

? can be used to match any single character except for line endings. For example,
my???value would match any string starting with my followed by three characters, and
ending with value.

[and] can be used to indicate sets of match characters. For example [abcd] matches
any one of a, b, c, or d. Also, [a-zA-Z] matches any letter in the range from a to z

(inclusive), either lower case or uppercase. Note that case specifications in character
ranges will be ignored unless the Case Sensitive option is turned on.

64

Interactive Python Shell

Wing provides an integrated Python Shell for execution of commands and experimental
evaluation of expressions. The version of Python used in the Python Shell, and the
environment it runs with, is configured in your project using Project Properties.

This shell runs a separate Python process that is independent of the IDE and functions
without regard to the state of any running debug process.

Convenient ways to run parts of your source code in the shell include:

Copy/Paste part of a file -- Wing will automatically adjust leading indentation so the
code can be executed in the shell.

Drag and Drop part of a file -- This works like Copy/Paste.

Evaluate File in Python Shell -- This command in the Source menu will evaluate
the top level of the current file in the shell.

Evaluate Selection in Python Shell -- The command in the Source menu and editor’s
context menu (right-click) will evaluate the current selection in the shell.

Options menu This menu in the Python Shell tool contains items for evaluating the
current file or selection

To restart the Python Shell, select Restart Shell from the Options menu in the top
right of the tool. This will terminate the external Python process and restart it, clearing
and resetting the state of the shell.

To save the contents of the shell, use Save a Copy in the Options menu or right-click
context menu. The right-click context menu also provides items for copying and pasting
text in the shell.

65

66

6.1. Python Shell Auto-completion

Wing’s Python Shell includes auto-completion, which can be a powerful tool for quickly
finding and investigating functionality at runtime, for the purposes of code learning, or
in the process of crafting new code.

Unlike the auto-completer shown in the editor, the Python Shell’s completer is fueled
with actual data extracted from the runtime environment on the fly as you type.

6.2. Python Shell Options

The Options menu in the Python Shell contains some settings that control how the
Python Shell works:

• Wrap Lines causes the shell to wrap long output lines in the display

• Evaluate Whole Lines causes Wing to round up the selection to the nearest line
when evaluating selections, making it easier to select the desired range

• Auto-restart when Evaluate File causes Wing to automatically restart the
shell before evaluating a file, so that each evaluation is made within a clean new
environment.

Debugger

Wing’s debugger provides a powerful toolset for rapidly locating and fixing bugs in
single-threaded or multi-threaded Python code.

The debugger is built around a TCP/IP client/server design that supports launching
your application not just from Wing itself but also externally, as with CGI scripts or
code running in an embedded scripting facility within a larger application. Remote (host
to host) debugging is also provided.

Because the debugger core is written in optimized C, debug overhead is relatively low;
however, you should expect your programs to run about 50% slower within the debugger.

7.1. Quick Start

Wing IDE can be used to debug all sorts of Python code, including scripts and stand-
alone applications written with wxPython, Tkinter, PyQt, PyGTK, and pygame.
Wing can also debug web CGIs including those running under mod python, code
running under Zope, Plone, Turbogears, Django, Paste/Pylons, Twisted, and
code running in an embedded Python interpreter.

This section describes how to debug stand-alone scripts and applications that can be
launched from within Wing IDE. If you wish to debug web CGIs within the web server,
web servlets, or embedded Python scripts, please refer to Debugging Externally
Launched Code and, for remote host-to-host debugging, see Remote Debugging.

Before debugging, you will need to install Python on your system if you have not already
done so. Python is available from www.python.org.

To debug Python code with Wing, open up the Python file and select Start / Continue

from the Debug menu. This will run to the first breakpoint, unhandled exception, or
until the debug program completes. Select Step Into instead to run to the first line of
code.

Use the Debug I/O tool to view your program’s output, or to enter values for input to

67

http://www.python.org/

68

the program. If your program depends on characteristics of the Windows Console or a
particular Linux/Unix shell, see External I/O Consoles for more information.

In some cases, you may also need to enter a PYTHONPATH and other environment values
using the Project Properties dialog available from the Project menu. This can also be
used to specify which Python executable should be used to run with your debug process.
Use this if Wing IDE cannot find Python on your system or if you have more than one
version of Python installed.

To set breakpoints, just click on the leftmost part of the margin next to the source code.

7.2. Specifying Main Entry Point

Normally, Wing will start debugging in whatever file you have active in the frontmost
editor. Depending on the nature of your project, you may wish to specify a file as the
default debug entry point. This is done with Set Main Debug File in the Debug menu.

This file is subsequently run whenever you start the debugger, except when using Debug

Current File in the Debug menu, or when right-clicking on an entry in the project
manager and choosing the Debug Selected context menu item.

Note that the path to the main debug file is highlighted in red in the project window.

The main entry point defined for a project is also used by the source code analysis
engine to determine the python interpreter version and Python path to use for analysis.
Thus, changing this value will cause all source files in your project to be reanalyzed from
scratch. See section Source Code Analysis for details.

7.3. Debug Properties

In some cases, you may need to set project and per-file properties from the Project
manager before you can debug your code. This is done to specify Python interpreter,
PYTHONPATH, environment variables, command line arguments, start directory, and other
values associated with the debug process. For details, see Project-Wide Properties
and Per-file Properties.

69

7.4. Setting Breakpoints

Breakpoints can be set on source code by opening the source file and clicking on the
breakpoint margin to the left of a line of source code. Right-clicking on the breakpoint
margin will display a context menu with additional breakpoint operations and options.
Alternatively, the Debug menu or the toolbar’s breakpoint icons can be used to set or
clear breakpoints at the current line of source (where the insertion cursor or selection is
located).

7.5. Starting Debug

There are several ways in which to start a debug session from within Wing:

• Choose Start / Continue from the Debug menu or push the Debug icon in the
toolbar. This will run the main debug file if one has been defined (described in
Setting a Main Debug File), or otherwise the file open in the frontmost editor
window. Execution stops at the first breakpoint or exception, or upon program
completion.

• Choose Step Into from the Debug menu or push the Step Into icon in the toolbar.
This will run the main debug file if one has been defined, or otherwise the file open
in the frontmost editor window. Execution stops at the first line of code.

• Choose Debug Current File from the Debug menu or Debug Selected from the
right-click popup menu on the Project tool to run a specific file regardless of
whether a main debug file has been specified for your project. This will stop on
the first breakpoint or exception, or upon program completion.

• Choose Run to Cursor from the Debug menu or toolbar. This will run the main
debug file if one has been defined or otherwise the file open in the frontmost editor
window. Execution continues until it reaches the line selected in the current source
text window, until a breakpoint or exception is encountered, or until program
completion.

• Use Debug Recent in the Debug menu to select a recently debugged file. This will
stop on the first breakpoint or exception, or upon program completion.

• Use one of the key bindings given in the Debug menu.

Additional options exist for initiating a debug session from outside of Wing and for
attaching to an already-running process. These are described in sections Debugging
Externally Launched Code and Attaching, respectively.

70

Once a debug process has been started, the status indicator in the lower left of the
window should change from white or grey to another color, as described in Debugger
Status.

7.6. Debugger Status

The debugger status indicator in the lower left of editor Windows is used to display
the state of the debugger. Mousing over the bug icon shows expanded debugger status
information in a tool tip. The color of the bug icon summarizes the status of the debug
process, as follows:

• White -- There is no debug process, but Wing is listening for a connection from
an externally launched process.

• Gray -- There is no debug process and Wing is not allowing any external process
to attach.

• Green -- The debug process is running.

• Yellow -- The debug process is paused or stopped at a breakpoint.

• Red -- The debug process is stopped at an exception.

The current debugger status is also appended to the Debugger status group in the IDE’s
Messages tool.

7.7. Flow Control

Once the debugger is running, the following commands are available for controlling
further execution of the debug program from Wing. These are accessible from the tool
bar and the Debug menu:

• At any time, a freely running debug program can be paused with the Pause item
in the Debug menu or with the pause tool bar button. This will stop at the current
point of execution of the debug program.

• At any time during a debug session, the Stop Debugging menu item or toolbar
item can be used to force termination of the debug program. This option is disabled
by default if the current process was launched outside of Wing. It may be enabled
for all local processes by using the Kill Externally Launched preference.

71

When stopped on a given line of code, execution can be controlled as follows from the
Debug menu or tool bar:

Step Over will step over a single byte code operation in Python. This may not leave
the current line if it contains something like a list comprehension or single-line for loop.

Step Into will attempt to step into the next executed function on the current line of
code. If there is no function or method to step into, this command acts like Step Over.

Step Out will complete execution of the current function or method and stop on the
first instruction encountered after returning from the current function or method.

Continue will continue execution until the next breakpoint, exception, or program
termination

Run To Cursor will run to the location of the cursor in the frontmost editor, or to the
next breakpoint, exception, or program termination.

7.8. Viewing the Stack

Whenever the debug program is paused at a breakpoint or during manual stepping, the
current stack is displayed in the Call Stack tool. This shows all program stack frames
encountered between invocation of the program and the current run position. Outermost
stack frames are higher up on the list.

When the debugger steps or stops at a breakpoint or exception, it selects the innermost
stack frame by default. In order to visit other stack frames further up or down the stack,
select them in the Call Stack tool. You may also change stack frames using the Up

Stack and Down Stack items in the Debug menu, the up/down tool bar icons, the stack
selector popup menus the other debugging tools.

When you change stack frames, all the tools in Wing that reference the current stack
frame will be updated, and the current line of code at that stack frame is presented in
an editor window.

To change the type of stack display, right-click on the Call Stack tool and select from
the options for the display and positioning of the code line excerpted from the debug
process.

When an exception has occurred, a backtrace is also captured by the Exceptions noti-
fication tool, where it can be accessed even after the debug process has exited.

72

7.9. Viewing Debug Data

Wing IDE allows you to inspect locals and globals using the Stack Data tool. This
area displays values for the currently selected stack frame.

Values Fetched on Demand
The variable data displayed by Wing is fetched from the debug server on the fly as
you navigate. Because of this, you may experience a brief delay when a change in
an expansion or stack frame results in a large data transfer.
For the same reason, leaving large amounts of debug data visible on screen may
slow down stepping through code.

7.9.1. Stack Data View

The Stack Data debugger tool contains a popup menu for selecting thread (in multi-
threaded processes) and accessing the current debug stack, a tree view area for browsing
variable data in locals and globals, and a textual view area for inspecting large data
values that are truncated on the tree display.

Simple values, such as strings and numbers, and values with a short string representation,
will be displayed in the value column of the tree view area.

Strings are always contained in "" (double quotes). Any value outside of quotes is a
number or internally defined constant such as None or Ellipsis.

Integers can be displayed as decimal, hexadecimal, or octal, as controlled by the Integer
Display Mode preference.

Complex values, such as instances, lists, and dictionaries, will be presented with an
angle-bracketed type and memory address (for example, <dict 0x80ce388>) and can be
expanded by clicking on the expansion indicator in the Variable column. The memory
address uniquely identifies the construct. If you see the same address in two places, you
are looking at two object references to the same instance.

If a complex value is short enough to be displayed in its entirety, the angle-bracketed
form is replaced with its value, for example {’a’: ’b’} for a small dictionary. These
short complex values can still be expanded in the normal way.

Upon expansion of complex data, the position or name of each sub-entry will be displayed
in the Variable column, and the value of each entry (possibly also complex values) will
be displayed in the Value column. Nested complex values can be expanded indefinitely,
even if this results in the traversal of cycles of object references.

73

Once you expand an entry, the debugger will continue to present that entry expanded,
even after you step further or restart the debug session. Expansion state is saved for the
duration of your Wing IDE session.

When the debugger encounters a long string, it will be truncated in the Value column.
In this case, the full value of the string can be viewed in the textual display area at
the bottom of the Stack Data tool, which is accessed by right-clicking on a value and
selecting Show Detail. The contents of the detail area is updated when other items in
the Stack Data tool are selected.

Opaque Data
Some data types, such as those defined only within C/C++ code, or those con-
taining certain Python language internals, cannot be transferred over the network.
These are denoted with Value entries in the form <opaque 0x80ce784> and can-
not be expanded further.

7.9.1.1. Popup Menu Options

Right-clicking on the surface of the Stack Data view displays a popup menu with options
for navigating data structures:

• Show/Hide Detail -- Used to quickly show and hide the split where Wing shows
expanded copies of values that are truncated on the main debug data view (click
on items to show their expanded form).

• Expand More -- When a complex data value is selected, this menu item will
expand one additional level in the complex value. Since this expands a potentially
large number of values, you may experience a delay before the operation completes.

• Collapse More -- When a complex data value is selected, this menu item will
collapse its display by one additional level.

• Force Reload -- This forces Wing IDE to reload the displayed value from the
debug process. This is useful in cases where Wing is showing an evaluation error
or when the debug program contains instances that implement __repr__ or sim-
ilar special methods in a way that causes the value to change when subjected to
repeated evaluation.

7.9.1.2. Filtering Value Display

There are a number of ways in which the variable displays can be configured:

74

• Wing lets you prune the variable display area by omitting all values by type, and
variables or dictionary keys by name. This is done by setting the two preferences,
Omit Types and Omit Names.

• You can also tell Wing to avoid probing certain values by data type. This is useful
to avoid attempting expansion of data values defined in buggy extension modules,
which can lead to crashing of the debug process as the debugger invokes code that
isn’t normally executed. To add values to avoid, set preference Do Not Expand.

• Wing provides control over size thresholds above which values are considered too
large to move from the debug process into the variable display area. Values found
to be too large are annotated as huge in the variable display area and cannot be
expanded further. The data size thresholds are controlled with preferences Huge
List Threshold and Huge String Threshold.

• By default Wing will display small items on a single line in the variable display
areas, even if they are complex types like lists and maps. The size threshold used
for this is controlled with preference Line Threshold. If you want all values to
be shown uniformly, this preference should be set to 0.

7.9.2. Problems Handling Values

The Wing debugger tries to handle debug data as gently as possible to avoid entering
into lengthy computations or triggering errors in the debug process while it is packaging
debug data for transfer. Even so, not all debug data can be shown on the display. This
section describes each of the reasons why this may happen:

Wing may time out handling a value -- Large data values may hang up the debug
server process during packaging. Wing tries to avoid this by carefully probing an object’s
size before packing it up. In some cases, this does not work and Wing will wait for the
data for the duration set by the Network Timeout preference and then will display
the variable value as <network timeout during evaluate>.

Wing may encounter values too large to handle -- Wing will not package and
transfer large sequences, arrays or strings that exceed the size limits set by Huge List
Threshold and Huge String Threshold preferences. On the debugger display, over-
sized sequences and arrays are annotated as huge and <truncated> is prepended to
large truncated strings.

To avoid this, increase the value of the threshold preferences, but be prepared for longer
data transfer times. Note that setting these values too high will cause the debugger to
time out if the Network Timeout value isn’t also increased.

75

Wing may encounter errors during data handling -- Because Wing makes assign-
ments and comparisons during packaging of debug data, and because it converts debug
data into string form, it may execute special methods such as __cmp__ and __str__ in
your code. If this code has bugs in it, the debugger may reveal those bugs at times when
you would otherwise not see them.

The rare worst case scenario is crashing of the debug process if flawed C or C++ exten-
sion module code is invoked. In this case, the debug session is ended.

More common, but still rare, are cases where Wing encounters an unexpected Python
exception while handling a debug data value. When this happens, Wing displays the
value as <error handling value>.

These errors are not reported as normal program errors in the Exceptions tool. However,
extra output that may contain the exception being raised can be obtained by setting the
Debug Internals Log File preference.

Stored Value Errors

Wing remembers errors it encounters on debug values and stores these in the project
file. These values will not be refetched during subsequent debugging, even if Wing is
quit and restarted.

To override this behavior for an individual value, use the Force Reload item in the
right-click context menu on a data value.

To clear the list of all errors previously encountered so that all values are reloaded, use
the Clear Stored Value Errors item in the Debug menu. This operates only on the
list of errors known for the current debug file, if a debug session is active, or for the main
debug file, if any, when no debug process is running.

7.10. Debug Process I/O

While running under the Wing debugger, any output from print or any writes to stdout

or stderr will be seen in the Debug I/O tool. This is also where you enter keyboard
input, if your debug program requests any with input() or raw_input() or by reading
from stdin.

The code that services debug process I/O does two things: (1) any waits on sys.stdin

are multiplexed with servicing of the debug network socket, so that the debug process
remains responsive to Wing IDE while waiting for keyboard input, and (2) in some cases,
I/O is redirected to another window.

For a debug process launched from within Wing, keyboard I/O always occurs either in

76

the Debug I/O tool or in a new external console that is created before the debug process
is started. This can be controlled as described in External I/O Consoles. Using an
external console is recommended when printing very large amounts of output from a
debug process.

Debug processes launched outside of Wing, using wingdbstub, always do their keyboard
I/O through the environment from which they were launched (whether that’s a console
window, web server, or any other I/O environment).

7.10.1. External I/O Consoles

In cases where the debug process requires specific characteristics provided by the Win-
dows Console or specific Linux/Unix shell, or to better handle very large amounts of
debug process output, you can redirect debug I/O to a new external window using the
Use External Console preference.

The most effective way to keep the external console visible after the debug process
exits is to place a breakpoint on the last line of your program. Alternatively, enable
the External Console Waits on Exit preference. However, this can result in many
external consoles being displayed at once if you do not press enter inside the consoles
after each debug run.

On Linux/Unix it is possible to select which console applications will be tried for the
external console by altering the External Consoles preference.

Windows always uses the standard DOS Console that comes with your version of Win-
dows.

7.10.2. Disabling Debug Process I/O Multiplexing

Wing alters the I/O environment in order to make it possible to keep the debug process
responsive while waiting for I/O. This code mimics the environment found outside of
the debugger, so any code that uses only Python-level I/O does not need to worry about
this change of environment.

There are however several cases that can affect users that bypass Python-level I/O by
doing C/C++ level I/O from within an extension module:

• Any C/C++ extension module code that does standard I/O calls using the C-level
stdin or stdout will bypass Wing’s I/O environment (which affects only Python-
level stdin and stdout). This means that waiting on stdin in C or C++ code will
make the debug process unresponsive to Wing, causing time out and termination

77

of the debug session if you attempt to Pause or alter breakpoints at that time. In
this case, redirection of I/O to the debugger I/O tool and Debug Probe (in Wing
Pro only) will also not work.

• On all platforms, calling C-level stdin from multiple threads in a multi-threaded
program may result in altered character read order when running under the Wing
debugger.

• When debugging on win32, calling C-level stdin, even in a single-threaded pro-
gram, can result in a race condition with Wing’s I/O multiplexer that leads to
out-of-order character reads. This is an unavoidable result of limitations on mul-
tiplexing keyboard and socket I/O on this platform.

If you run into a problem with keyboard I/O in Wing’s debugger, you should:

1) Turn off Wing’s I/O multiplexer by setting the Use sys.stdin Wrapper
preference to False.

2) Turn on the Use External Console preference (for details see External
I/O Consoles)

Once that is done, I/O should work properly in the external console, but the debug
process will remain unresponsive to Pause or breakpoint commands from Wing IDE
whenever it is waiting for input, either at the C/C++ or Python level.

7.11. Debugging Multi-threaded Code

Wing’s debugger can debug multi-threaded code, as well as single-threaded code. By
default, Wing will debug all threads and will stop all threads if a single thread stops.
If multiple threads are present in the debug process, the Stack Data tool (and in Wing
Pro the Debug Probe and Watch tools) will add a thread selector popup to the stack
selector.

Even though Wing tries to stop all threads, some may continue running if they do not
enter any Python code. In that case, the thread selector will list the thread as running.
It also indicates which thread was the first one to stop.

When moving among threads in a multi-threaded program, the Show Position icon shown
in the toolbar during debugging (between the up/down frame icons) is a convenient way
to return to the original thread and stopping position.

Whenever debugging threaded code, please note that the debugger’s actions may alter
the order and duration that threads are run. This is a result of the small added overhead,

78

which may influence timing, and the fact that the debugger communicates with the IDE
through a TCP/IP connection.

Selecting Threads to Debug

Currently, the only way to avoid stopping all threads in the debugger is to launch your
debug process from outside Wing, import wingdbstub, and use the debugger API’s
SetDebugThreads() call to specify which threads to debug. All other threads will be
entirely ignored. This is documented in Debugging Externally Launched Code and
the API is described in Debugger API

An example of this can be seen in the file DebugHttpServer.py that ships with Wing’s
support for Zope and Plone. To see this, unpack the WingDBG archive found inside the
zope directory in your Wing installation.

Note, however, that specifying a subset of threads to debug may cause problems in some
cases. For example, if a non-debugged thread starts running and does not return control
to any other threads, then Wing’s debugger will cease to respond to the IDE and the
connection to the debug process will eventually be closed. This is unavoidable as there
is no way to preemptively force the debug-enabled threads to run again.

7.12. Managing Exceptions

By default, Wing’s debugger stops at exceptions when they would be printed by the
Python interpreter. This means that any code in finally clauses, except clauses that
reraise the exception, and with statement cleanup routines will be executed before the
debugger stops.

The Exception Reporting preference can be used to choose different ways of reporting
exceptions. The following choices are available:

When Printed (default) -- The debugger will stop on exceptions at the time that they
would have been printed out by the Python interpreter.

For code with catch-all exceptions written in Python, Wing may fail to report unexpected
exceptions if the handlers do not print the exception. In this case, it is best to rewrite the
catch-all handlers as described in Trouble-shooting Failure to Stop on Exceptions.

Always Immediately -- The debugger will stop at every single exception immediately
when it is raised. In most code this will be very often, since exceptions may be used inter-
nally to handle normal, acceptible runtime conditions. As a result, this option is usually
only useful after already running close to a code that requires further examination.

At Process Termination -- In this case, the debugger will make a best effort to stop

79

and report exceptions that actually lead to process termination. This occurs just before
or sometimes just after the process is terminated. The exception is also printed to
stderr, as it would be when running outside of the debugger.

When working with an Externally Launched Debug Process , the At Process

Termination mode may not be able to stop the debug process before it exits, and in
some cases may even fail to show any post-mortem traceback at all (except as printed
to stderr in the debug process).

Similarly, when working with wxPython, PyGTK, and similar environments that include
a catch-all exception handler in C/C++ code, the At Process Termination mode will
fail to report any unexpected exceptions occurring during the main loop because those
exceptions do not actually lead to process termination.

Immediately if Appear Unhandled -- The debugger will attempt to detect unhan-
dled exceptions as they are raised in your debug process, making it possible to view
the program state that led to the exception and to step through subsequently reached
finally clauses. This is done by looking up the stack for exception handlers written in
Python, and reporting only exceptions for which there is no matching handler.

The Immediately if Appear Unhandled mode works well with wxPython, PyGTK,
and in most other code where unexpected exceptions either lead to program termination
or are handled by catch-all exception handlers written in C/C++ extension module code.

In some cases, Wing’s unhandled exception detector can report normal handled ex-
ceptions that are not seen outside of the debugger. This occurs when the exceptions
are handled in C/C++ extension module code. Wing can be trained to ignore these by
checking the Ignore this exception location check box in the debugger’s Exception
tool. Ignored exceptions are still reported if they actually lead to program termination,
and your selection is remembered in your project file so only needs to be made once.
Use Clear Ignored Exceptions from the Debug menu at any time to reset the ignore
list to blank.

In general, we recommend using either the When Printed or the Immediately if Ap-

pear Unhandled exception reporting mode.

80

Advanced Debugging Topics

This chapter collects documentation of advanced debugging techniques, including de-
bugging externally launched code, and using Wing’s debugger together with a debugger
for C/C++ code.

See also the collection of How-Tos for tips of working with specific third party libraries
and frameworks for Python.

8.1. Debugging Externally Launched Code

This section describes how to start debugging from a process that is not launched by
Wing. Examples of debug code that is launched externally include CGI scripts or web
servlets running under a web server and embedded Python scripts running inside a larger
application.

8.1.1. Importing the Debugger

The following step-by-step instructions can be used to start debugging in externally
launched code that is running on the same machine as Wing IDE:

1) Copy wingdbstub.py from the Wing IDE installation directory into the same
directory as your debug program.

2) In some cases, you will also need to copy the file wingdebugpw from your
User Settings Directory into the same directory as wingdbstub.py. This
is needed when running the debug process as a different user or in a way that
prevents the debug process from reading the wingdebugpw file from within
your User Settings Directory.

3) At the point where you want debugging to begin, insert the following source
code: import wingdbstub Depending on your code base, you may need to

81

82

be cautious about whether this statement is reached by multiple processes.
If this happens, the first process will connect to Wing and the second one
will fail to connect and continue running without debug. If you are debug-
ging code in an embedded Python instance, see the notes in Debugging
Embedded Python Code.

4) Make sure the Wing IDE preference Enable Passive Listen is turned on,
to allow connection from external processes.

5) Set any required breakpoints in your Python source code.

6) Initiate the debug program from outside Wing IDE, for example with a page
load in your web browser, if the program is a web app. You should see the
status indicator in the lower left of the main Wing IDE window to yellow,
red, or green, as described in Debugger Status. Make sure that you are
running the Python interpreter without the -O option. The debugger will
not work when optimization is turned on.

7) The debugger should stop at the first breakpoint or exception found. If no
breakpoint or exception is reached, the program will run to completion, or
you can use the Pause command in the Debug menu.

Enabling Process Termination
In some cases, you may wish to enable termination of debug processes that were
launched from outside of Wing IDE. By default, Wing recognizes externally launched
processes and disables process termination in these cases unless the Kill Externally
Launched preference is enabled.

If you have problems making this work, try setting kLogFile variable in wingdbstub.py

for log additional diagnostic information.

Behavior on Failure to Attach to IDE
Whenever the debugger cannot contact Wing IDE (for example, if the IDE is not
running or is listening on a different port), the debug program will be run without
debugging. This is useful since debug-enabled CGIs and other programs should work
normally when Wing is not present. However, you can force the debug process to
exit in this case by setting the kExitOnFailure flag in wingdbstub.py.

8.1.2. Debug Server Configuration

In some cases you may also need to alter other preset configuration values at the start
of wingdbstub.py. These values completely replace any values set in Wing’s Project

83

or File Properties, which are relevant only when the debug program is launched from
within Wing. The following options are available:

• The debugger can be disabled entirely with kWingDebugDisabled=1. This is equiv-
alent to setting the WINGDB_DISABLED environment variable before launching the
debug program.

• Set kWingHostPort to specify the network location of Wing IDE, so the debugger
can connect to it when it starts. This is equivalent to setting the WINGDB_HOSTPORT
environment variable before launching the debug program. The default value is
localhost:50005. See section Remote Debugging for details if you need to
change this value.

• You can control whether or not the debugger’s internal error messages are written
to a log file by setting kLogFile. Use <stdout>, <stderr>, or a file name. If the
given file doesn’t exist, it is created if possible. Note that using <stderr> may
cause problems on Windows if the debug process is not running in a console. This
is equivalent to setting the WINGDB_LOGFILE environment variable before launching
the debug program (use a value of - to turn off logging to file).

• Set kEmbedded to 1 when debugging embedded scripts. In this case, the debug
connection will be maintained across script invocations instead of closing the debug
connection when the script finishes. When this is set to 1, you may need to call
wingdbstub.debugger.ProgramQuit() before your program exits, or before it
discards an instance of Python, in order to cleanly close the debug connection to
the IDE. This is equivalent to setting the environment variable WINGDB_EMBEDDED.

• Set kAttachPort to define the default port at which the debug process will listen for
requests to attach (available in Wing IDE Professional only). This is equivalent to
setting the WINGDB_ATTACHPORT environment variable before launching the debug
program. If this value is less than 0, the debug process will never listen for attach
requests. If it is greater than or equal to 0, this value is used when the debug
process is running without being in contact with Wing IDE, as might happen if it
initially fails to connect to the above-defined host and port, or if the IDE detaches
from the process for a period of time.

• Set kPWFilePath and kPWFileName to define the search path and file name
used to find a wingdebugpw file for the debugger. The environment variables
WINGDB_PWFILEPATH and WINGDB_PWFILENAME will override these settings. The
file path should be a Python list of strings if set in wingdbstub.py or a list of
directories separated by the path separator (os.pathsep) when sent by environ-
ment variable. The string $<winguserprofile> may be used to specify Wing’s
User Settings Directory for the user that the debug process is running as. The
password file name is usually wingdebugpw but may be changed in cases where
this naming is inconvenient.

84

• Optionally, set WINGHOME, which is the location of the Wing IDE distribution’s
home directory. This is set up during installation, but may need to be altered
if you are running Wing from source or copied the debugger binaries over from
another machine.

Setting any of the above-described environment variable equivalents will override the
value given in the wingdbstub.py file.

8.1.3. Debugger API

A simple API can be used to control debugging more closely, once you have imported
wingdbstub.py the first time, as was described in section Importing the Debugger.

This is useful in cases where you want to be able to start and stop debugging on the fly
several times during a debug run, for example to avoid debug overhead except within a
small sub-section of your code. It can also be useful in embedded scripting environments,
particularly in those that alter the thread state or discard and recreate the Python
instance across invocations.

To use the API, take the following steps: (1) Configure and import wingdbstub.py as
described in section Importing the Debugger. (2) Subsequently, use the instance
variable wingdbstub.debugger to make any of the following calls:

• StartDebug(stophere=0, autoquit=1, connect=1) -- Start debugging, op-
tionally connecting back to the IDE and/or stopping immediately afterwards. Set
autoquit=0 to avoid automatically terminating debug when program exit is de-
tected (this is the same as setting kEmbedded in wingdbstub.py).

• StopDebug() - Stop debugging completely and disconnect from Wing IDE. The
debug program continues executing in non-debug mode and must be restarted to
resume debugging.

• SuspendDebug() - This will leave the connection to the debug client intact but
disables the debugger so that connection overhead is avoided during subsequent
execution.

• ResumeDebug() - This will resume debugging using an existing connection to
Wing.

• Break() -- This pauses the free-running debug program on the current line, as if
at a breakpoint.

• ProgramQuit() - This must be called before the debug program is exited if
kEmbedded was set to 1 in wingdbstub.py or if autoquit=0 in the preceding

85

StartDebug() API call (if any). This makes sure the debug connection to the
IDE is closed cleanly.

• SetDebugThreads(threads={}, default policy=1) - This can be used in
multi-threaded code to tell Wing’s debugger which threads to debug. Pass in
a dictionary that maps from thread id (as obtained from thread.get ident()) to
one of the following values: 0 to ignore the thread (do not debug it), or 1 to debug
the thread and immediately stop it if any thread stops. The default policy sets
the action to take when a thread is not found in the thread map.

Here is a simple usage example:

import wingdbstub

a = 1 # This line is debugged

wingdbstub.debugger.SuspendDebug()

x = 1 # This is executed without debugging

wingdbstub.debugger.ResumeDebug()

y = 2 # This line is debugged again

SuspendDebug() and ResumeDebug() can be called as many times as desired, and nested
calls will be handled so that debugging is only resumed when the number of ResumeDe-
bug() calls matches the number of SuspendDebug() calls.

Notes for Debugging Embedded Python Code

When Python code is run by an interpreter embedded in a larger application, you may
need to craft special code to make debugging work properly.

If the host application is simply creating a single Python instance, in most cases setting
kEmbedded=1 in wingdbstub should suffice.

In certain cases where the host application is manually creating or altering the thread
state for each invocation of a script, you may need to use code as follows to reset the
debugger and connection for each script invocation:

import wingdbstub

if wingdbstub.debugger != None:

wingdbstub.debugger.StopDebug()

wingdbstub.debugger.StartDebug()

In other cases where the host application uses an entirely different Python instance for
each invocation, you may need to arrange that ProgramQuit is called before each instance
is destroyed and often will want to leave kEmbedded=0 in wingdbstub. In this case
you may also need to unset the environment variable WINGDB_ACTIVE before importing

86

wingdbstub, as this may be left in the environment by the host application and will
prevent the second or later import of wingdbstub from initiating debug.

8.1.4. Debugging Embedded Python Code

When Python code is run by an interpreter embedded in a larger application, you may
need to craft special code to make debugging work properly.

If the host application is simply creating a single Python instance and reusing it for all
script invocations, in most cases setting kEmbedded=1 in wingdbstub.py will suffice.

In certain cases where the host application is manually creating or altering the thread
state for each invocation of a script, you may need to use code as follows to reset the
debugger and connection for each script invocation:

import wingdbstub

if wingdbstub.debugger != None:

wingdbstub.debugger.StopDebug()

wingdbstub.debugger.StartDebug()

In other cases where the host application uses an entirely different Python instance
for each invocation, you may need to arrange that the Debugger API function Pro-

gramQuit is called before each instance is destroyed and may also want to leave kEm-

bedded=0 in wingdbstub.py. In this case you may also need to unset the environment
variable WINGDB_ACTIVE before importing wingdbstub, as this may be left in the envi-
ronment by the host application and will prevent wingdbstub from initiating debug in
the second or later Python instance.

8.2. Remote Debugging

Since remote debugging is fairly complicated to configure, we currently recommend using
remote display of the IDE via X Windows (Linux/Unix) or Remote Desktop (Windows)
when possible, instead of setting up the IDE on a separate host from the debug process.

When this is not an option, you can also ask the debugger to connect remotely over the
network. In order to do this, take the following steps (see also Remote Debugging
Example):

(1) First set up Wing IDE to successfully accept connections from another process within
the same machine, as described in section Importing the Debugger. You can use any
Python script for testing this until you have values that work.

87

(2) Optionally, alter the Server Host preference to the name or IP address of the
network interface on which the IDE listens for debug connections. The default server is
None, which indicates that the IDE should listen on all the valid network interfaces on
the host.

(3) Optionally, alter the preference Server Port to the TCP/IP port on which the IDE
should listen for debug connections. This value may need to be changed if multiple
copies of Wing IDE are running on the same host.

(4) Set the Allowed Hosts preference to include the host on which the debug process
will be run. For security purposes, Wing will reject connections if the host isn’t included
here.

(5) Configure any firewall on the system that Wing IDE is running on to accept a
connection on the server port from the system that the debug process will run on.

(6) Next install Wing IDE on the machine on which you plan to run your debug program.
Creating an entire Wing IDE installation is the easiest approach. Alternatives are to
copy only the debug server code out of a Wing installation on the same type of OS or to
compile the debugger core from source code. For details, see Installing the Debugger
Core.

(7) Next, transfer copies of all your debug code so that the source files are available on
the host where Wing IDE will be running and at least the *.pyc files are available on
the debug host.

During debugging, the client and server copies of your source files must match or the
debugger will either fail to stop at breakpoints or stop at the wrong place, and stepping
through code may not work properly.

Since there is no mechanism in Wing IDE for transferring your code, you need to use
NFS, Samba, FTP or some other file sharing or file transfer mechanism to keep the
remote files up to date as you edit them in Wing.

If files appear in different disk locations on the two machines, you will also need to set
up a file location map, as described in File Location Maps.

(8) On your debug host, copy wingdbstub.py into the same directory as your source files
and import it in your Python source as described in Debugging Externally Launched
Code.

(9) If you didn’t copy wingdbstub.py out of a complete installation of Wing IDE on
the debug host, you will need to set kWingHome to match the location where you have
copied the debug server code on your debug host.

(10) In wingdbstub.py on your debug host, set kWingHostPort. The host in this value
must be the IP address of the machine where Wing IDE is running. The port must

88

match the port configured with the Server Port preference on the host where Wing
IDE is running.

(11) Then restart Wing and try running your program on the debug host. You should
see the Wing IDE debugger status icon change to indicate that a debug process has
attached.

If you have problems making this work, try setting kLogFile variable in wingdbstub.py

for log additional diagnostic information.

8.2.1. File Location Maps

In cases where the full path to your source is not the same on both machines, you also
need to set up a mapping that tells Wing where it can find your source files on each
machine.

This is done with the Location Map preference, which lists corresponding local and
remote directory locations for each remote host’s dotted quad IP address.

Each host IP address in the location map is paired with one or more (remote_prefix,

local_prefix) tuples. The remote file prefix will be a full path on the debug server’s
file system. The local file prefix is usually the full path of a local directory, though it
may also be a file: url.

The best way to understand this is to look at the Location Map Examples.

When running Wing IDE on Windows XP, UNC formatted file names such as \\ma-

chine\path\to\file may be used. On other Windows systems, you must map remote
drives to a drive letter such as F:. In cases where setting up a persistent drive mapping is
a problem, use a cmd.exe script with a net use command to map the drive on demand.

Note that making symbolic links on the client or server will not work as an alternative
to using this mapping. This is a side-effect of functionality in the debugger that ensures
that debugging works right when symbolic links are present: Internally, source file names
are always resolved to their actual full path location.

8.2.1.1. File Location Map Examples

The best way to understand location mapping is to inspect a few examples.

Defaults Explained

The default value for the Location Map preference contains one entry for
127.0.0.1 where the mapping is set to None (in Python this is represented as

89

{’127.0.0.1’:None}). This is equivalent to the more verbose Python representation of
{’127.0.0.1’:[(’/’,’’)]}. It converts full paths on the debug server to the client-side
URLs without altering any part of the full path.

Two Linux/Unix Hosts

Here is an example setting for debug.location-map that would be used if running Wing
on desktop1 and debugging some code on server1 with IP address 192.168.1.1:

debug.location-map={

’127.0.0.1’:None,

’192.168.1.1’:[(’/home/apache/cgi’, ’/svr1/home/apache/cgi’)]

}

In this example, the files located in /home/apache/cgi on server1 are the same files seen
in /server1/home/apache/cgi on desktop1 because the entire file system on server1

is being shared via NFS and mounted on desktop1 under /svr1.

To enter this value in Preferences, you would add 192.168.1.1 as a new Remote IP
Address and a single local/remote mapping pair containing /home/apache/cgi and
/svr1/home/apache/cgi.

IDE on Linux/Unix with Debug Process on Windows

If you are debugging between Windows and Linux or Unix, some care is needed in
specifying the conversion paths because of the different path name conventions on each
platform. The following entry would be used when running Wing IDE on a Linux/Unix
host and the debug process on a Windows host with ip address 192.168.1.1:

debug.location-map={

’127.0.0.1’:None,

’192.168.1.1’:[(r’e:\src’, ’/home/myuser/src’)],

}

In this example the Linux/Unix directory /home/myuser is being shared via Samba to
the Windows machine and mapped to the e: drive.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address and
a single local/remote mapping pair containing e:\src and /home/myuser/src.

IDE on Windows with Debug Process on Linux/Unix

If running Wing IDE on a Windows host and the debug process on a Linux/Unix host
with IP address 192.168.1.1, the following would be used instead for the same file
locations:

90

debug.location-map={

’127.0.0.1’:None,

’192.168.1.1’:[(’/home/myuser/src’, ’e:/src’)],

}

Again, note the use of forward slashes in the URL even though the file is on a Windows
machine.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address and
a single local/remote mapping pair containing /home/myuser/src and e:/src.

Two Windows Hosts

If running Wing IDE on Windows and the debug process on another Windows machine
with IP address 192.168.1.1, the following would be used:

debug.location-map={

’127.0.0.1’:None,

’192.168.1.1’:[(r’c:\src’, ’e:/src’)],

}

In this case, the host where Wing is running has mapped the entire remote (debug
process) host’s c: drive to e:.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address and
a single local/remote mapping pair containing c:\src and e:/src.

Two Windows Hosts using UNC Share

A UNC style path name can be used on Windows XP as follows:

debug.location-map={

’127.0.0.1’:None,

’192.168.1.1’:[(r’c:\src’, ’\\server\share\dir’)],

}

In this case, c:src on the remote host, where the debug process is running, can be accessed
as \serversharedir on the machine where Wing IDE is running.

In the Preferences GUI, you would add 192.168.1.1 as a new Remote IP Address and
a single local/remote mapping pair containing c:\src and \\server\share\dir.

91

8.2.2. Remote Debugging Example

Here is a simple example that enables debugging a process running on a Linux/Unix host
(192.168.1.200) using Wing IDE running on a Windows machine (192.168.1.210).
This example is for wingdbstub users only. If you are using the WingDBG product to
debug Zope code, please refer to the Zope Debugging How-To (also included in the
WingDBG control panel’s Help tab).

On the Windows machine, the following preferences must be specified:

• Enable Passive Listen should be checked

• Server Host should be set to All Interfaces (this is the default)

• Server Port should be set to 50005 (this is the default)

• Allowed Hosts should be altered by adding 192.168.1.200

On the Linux/Unix machine, the following value is needed in wingdbstub.py:

kWingHostPort=’192.168.1.210:50005’

Once this is done and Wing has been restarted, you should be able to run code that
imports wingdbstub on the Linux/Unix machine and see the debug connection establish
on the Windows machine.

Then you will need to set up file sharing between the two machines (for example, using
Samba) and will need to establish a location map in your Wing IDE preferences on the
Windows machine.

If your source code on the Linux/Unix machine is in /home/myuser/mysource and you
map /home/myuser to e: on the Windows machine, then you would enter this location
map via the Preferences GUI by adding 192.168.1.200 as a new Remote Host IP and
entering a single mapping pair with /home/myuser/mysource and e:/mysource.

See Location Map Examples for additional examples.

8.2.3. Installing the Debugger Core

When Wing is used to debug a Python program remotely, the Wing debugger core must
be installed on the remote machine. The easiest way to do that is just to install Wing
IDE there. If that is not possible, there are two options: (1) Copy just the debugger files

92

from a Wing IDE installation on the same type of machine, or (2) compile the debugger
core from sources (available for Wing IDE Professional only).

Copying from Wing IDE Installation

When copying from an existing Wing IDE installation on another machine, you will need
to copy all of the following files and directories under WINGHOME:

˜˜

wingdbstub.py bin/wingdb.py bin/#.#/src/debug/tserver bin/#.#/src.zip/debug/tserver
(only Python 2.5) bin/#.#/opensource/schannel (Python versions other
than 2.5) bin/#.#/opensource.zip/schannel (only Python 2.5)

Replace #.# with each version Python you wish to debug under (for example, 2.5). You
can omit the directories for the versions that you are not using.

The directories within zip files (used only in Python 2.5 and later) can either be copied
by moving the entire zip file or by creating a subset that contains only the necessary
directories.

Be sure to copy these directories from a Wing installation on the same type of host, so
that on Linux/Unix you include *.so extension modules, on Windows *.pyd extension
modules, and so forth.

Compiling from Source

On machines for which there is no Wing IDE installer, the debugger core can be installed
from source code. This is only available to Wing IDE Professional customers, and
requires signing a non-disclosure agreement. The compilation instructions are located in
build-files/README.DBG-SRC/txt in the source distribution that you will be provided
with.

8.3. Debugger Limitations

There are certain situations that the debugger cannot handle, because of the way the
Python programming language works. If you are having problems getting the debugger
to stop at breakpoints or to display source as you step through your code, one or more
of these may apply.

Always read the Trouble-shooting Failure to Debug section first. If that fails to un-
cover your problem, refer to the following detailed documention of debugger limitations
(many of which are extremely rare and esoteric):

http://wingware.com/pub/wingide/support/source-non-discl.pdf

93

(1) Your source files must be stored on disk and accessible to the IDE. If you are trying
to debug code fragments, try writing them to disk temporarily and setting the __file__
variable in the module name space before invoking Python’s exec or eval. This will
allow Wing’s debugger to map code objects to the source you’ve temporarily written to
disk.

(2) Running without saving will lead to incorrect display of breakpoints and run position
because the debug process runs against the on-disk version of the source file. Wing will
indicate in the Messages tool and Stack Data status indicator that some files are out of
sync so this case should only occur if you ignore its warnings.

(3) You cannot run the debug program using the -O or -OO optimization options for the
Python interpreter. This removes information about line numbers and source file names,
making it impossible to stop at breakpoints or step through code.

(4) There are several cases where Wing may fail to stop at breakpoints or exceptions, or
may fail to find source files corresponding with breakpoints or exception points. All of
these are caused by storage of incorrect file names in *.pyc files:

• Moving *.pyc files on disk after they are generated invalidates the file
name stored in the file if it is a partial relative path. This happens if
your PYTHONPATH or sys.path contains partial relative path names.

• A similar problem may result from use of compileall.py and some
other utilities that don’t record a correct filename in the *.pyc file.

• If you run the same code twice using different paths to the same working
directory, as is possible on Linux/Unix with symbolic links, the file
names left in *.pyc may contain a mix of each of these paths. If the
symbolic link that was used is subsequently removed, some of the file
names become invalid.

The fix for all of these problems is to remove the *.pyc files and let Python regenerate
them from the corresponding *.py files with the correct file name information.

Hint: You can open *.pyc files in most text editors to inspect the stored file names.

(5) For code that spends much of its time in C/C++ without calling Python at all, for
example as in a GUI main loop, the debugger may not reliably stop at breakpoints added
during a run session, and may not respond to Pause requests. See section Debugging
Non-Python Mainloops for more information.

(6) You cannot use pdb or other debuggers in code that you are running within the Wing
debugger. The two debuggers conflict because they attempt to use the same debugger
hooks in the Python interpreter.

(7) If you override __import__ in your code, you will break the debugger’s ability

94

to stop at breakpoints unless you call the original __import__ as part of your code
whenever a module is actually imported. If you cannot call the original __import__
for some reason, it may be possible to instead use wingdbstub and then call wingdb-
stub.debugger.NotifyImport(mod) from your import handler (where mod is the mod-
ule that was just imported).

(8) If you set __file__ in a module’s name space to a value other than its original, Wing
will be unable to stop at breakpoints in the module and may fail to report exceptions
to the IDE’s user interface.

(9) If you use an extension module to call C/C++ level stdio calls instead of using the
Python-level facilities, the debug process will remain unresponsive to Wing IDE while
waiting for keyboard input, I/O redirection to the Debug Probe in Wing Pro will fail,
and you may run into out-of-order character reads in some cases. Details can be found
in Debug Process I/O.

(10) Using partial path names in module __file__ attribute can in rare cases cause
Wing to fail to stop on breakpoints and exceptions, to fail to display source files, or to
confuse source files of the same name.

A partial path name may end up in __file__ only when (a) invoking Python code
with a partial path name, for example with python myfile.py instead of python

/path/to/myfile.py, (b) sending partial path names into exec, (c) using partial path
names in your PYTHONPATH or sys.path, or (d) using compileall.py or similar tool to
compile modules with a partial path name.

Because Wing does everything possible to avoid this problem in practice, it actually only
occurs in the following rare cases:

• When modules are loaded with partial path names and os.chdir() is
called before debugging is started. This is only possible when using
wingdbstub or otherwise starting debug after your debug process is
started.

• When modules are loaded with partial path names and os.chdir()

is called after wingdbstub.debugger.SuspendDebug() and before
wingdbstub.debugger.ResumeDebug().

• When modules are loaded with partial path names and removed from
sys.modules before the debugger is started or while debugging is sus-
pended.

• When code objects are created on the fly using compile(), the C API,
or the new module, a relative filename or an incorrect filename are used
for the filename argument, and os.chdir() is called before the code is
executed.

95

(11) Wing tries to identify when source code in the IDE matches or does not match the
code that is running in the debug process. There are certain very rare cases where this
will fail, which may lead to failure to stop on breakpoints and other problems even when
files are identified by the IDE as being synchronized:

Using execfile(), eval(), or exec with a globals dict that contains __file__ will
cause Wing to incorrectly assert that the specified file has been reloaded. In practice,
this scenario usually occurs when execfile() is called from the top level of a module,
in which case the module is in fact being loaded or reloaded (so no mis-identification of
module load status occurs). However, in cases where a module load takes a long time
or involves a long-running loop at the top level, the execfile(), eval(), or exec may
occur after edits to the module have been made and saved. In this case, Wing will
mis-identify the module as having been reloaded with the new edits.

This problem can also be triggered if a globals with __file__ is explicitly passed to
execfile(), eval(), or exec. However, it will only occur in this case when the code
object file name is ?, and locals and globals dictionaries are the same, as they are by
default for these calls.

(12) In very rare cases, when using the wingdbstub.py, if you set sys.exitfunc after
debugging has been started, the IDE will time out on a broken network connection
after the debug program exits on an exception. This only happens in some exception
handling modes with exceptions that look like they will be handled because a try/except
block is present that might handle the exception, but where the exception is not in the
end handled and the debug program exits without calling StopDebug(). Work-arounds
include setting sys.exitfunc before importing wingdbstub.py or adding a top-level
try/except clause that always calls StopDebug() before exiting the debug program.

(13) Naming a file <string> will prevent the debugger from debugging that file because
it is confused with the default file name used in Python for code that is not located in
a file.

(14) The debugger may fail to step or start after stopping at a breakpoint if the floating
point mode is set to single precision (24 bit) on Intel x86 and potentially other processors.
This is sometimes done by graphics libraries such as DirectX or by other code that
optimizes floating point calculations.

(15) When using Stackless Python, overriding stackless.tasklet.__call__ without
calling the Wing debugger’s __call__ will break the debugger.

96

Source Code Analysis

Wing’s auto-completer, source index menu, goto-definition capability, some of the source
reformatting features, and in Wing IDE Professional the source code browser and source
assistant all rely on a central engine that reads and analyzes your source code in the
background as you add files to your project or alter your code in the source code editor.

9.1. How Analysis Works

In analysing your source, Wing will use the Python interpreter and PYTHONPATH that you
have specified in your Project Properties. If you have indicated a main debug file for
your project, the values from that file’s properties are used; otherwise the project-wide
values are used. Whenever any of these values changes, Wing will completely re-analyze
your source code from scratch.

You can view the Python interpreter and PYTHONPATH that are being used by the source
code analysis engine, by selecting the Show Analysis Stats item in the Source menu.
The values shown in the resulting dialog window are read-only but may be changed by
pushing the Settings button. See Project-wide Properties for details on changing
these values.

Be aware that if you use multiple versions of the Python interpreter or different PYTHON-
PATH values for different source files in your project, Wing will analyse all files in the
project using the one interpreter version and PYTHONPATH it finds through the main
debug file or project-wide debug properties settings. This may lead to incorrect or in-
complete analysis of some source, so it is best to use only one version of Python with
each Wing IDE project file.

When Wing tries to find analysis information for a particular module or file, it takes the
following steps:

• The path and same directory as the referencing module are searched for an im-
portable module

97

98

• If the module is Python code, Wing statically analyses the code to extract infor-
mation from it

• If the module is an extension module, Wing looks for a *.pi interface description
file as described later in this section

• If the module cannot be found, Wing tries to import it in a separate process space
in order to analyze its contents

9.2. Static Analysis Limitations

The following are known limitations affecting features based on source analysis:

• Argument number, name, and type is not determined for functions and methods
in extension modules

• Analysis sometimes fails to identify the type of a construct because Python code
doesn’t always provide clues to determine the data type. In these cases, you may
use isinstance and/or interface files to inform the analyzer, as described below.

• Types of elements in lists, tuples, and dictionaries are not identified.

• Analysis information may be out of date if you edit a file externally with another
editor and don’t reload it in Wing. See section Auto-reloading Changed Files
for reload options.

• Some newer Python language constructs and possible type inferencing cases are
not explicitly supported.

9.3. Helping Wing Analyze Code

There are a number of ways of assistant Wing’s static source analyzer in determining
the type of values in Python code.

Using isinstance() to Assist Analysis

One way to inform the code analysis facility of the type of a variable is to add an
isinstance call in your code. An example is assert isinstance(obj, CMyClass).
The code analyzer will pick up on these and present more complete information for the
asserted values.

99

In cases where doing this introduces a circular import, you can use a conditional to allow
Wing’s static analyser to process the code without causing problems when it is executed:

if 0:

import othermodule

assert isinstance(myvariable, othermodule.COtherClass)

In most code, a few such assertions go a long way. The more Wing knows about your
code, the faster you will be able to edit and navigate it.

Using *.pi files to Assist Analysis

Wing’s source analyser can only read Python code and does not contain support for
understanding C/C++ extension module code other than by attempting to import the
extension module and introspecting its contents (which yields only a limited amount of
information and cannot determine argument number, name, or types).

To inform the code analysis facility of the contents of an extension module, it is pos-
sible to create a *.pi (Python interface) file. For example, for a module imported as
mymodule, the interface file is called mymodule.pi. This file is simply a Python skeleton
with the appropriate structure and call signature to match the functions, attributes,
classes, and methods defined in an extension module. In many cases, these files can be
auto-generated from interface files.

Wing will search for *.pi files first in the same directory as it finds the extension
module (or its source code if it has not yet been compiled and the source code’s di-
rectory is on your configured Python Path), If not found, Wing will look in the di-
rectory path set with the Interfaces Path preference. Next, Wing will look in the
resources/builtin-pi-files directory within your Wing IDE installation. Finally,
Wing will look in resources/packages-pi-files, which is used to ship some *.pi files
for commonly used third party packages.

When searching on the interfaces path or in the resources directories, the top level
of the directory is checked first for a matching *.pi file. Then, Wing tries looking in
a sub-directory #.# named according to the major and minor version of Python being
used with your source base, and subsequently in each lower major/minor version back
to 2.0.

For example, if c:\share\pi\pi-files is on the interfaces path and Python 2.3 is
being used, Wing will check first in c:\share\pi\pi-files, then in c:\share\pi\pi-

files\2.3. then in c:\share\pi\pi-files\2.2, and so forth.

Example *.pi files used by Wing internally to produce autocompletion information for
builtins can be seen in the directory resources/builtin-pi-files inside your Wing
IDE installation. This also illustrates the above-described version number fallback mech-
anism.

100

In cases where Wing cannot find a *.pi at all, it will attempt to load the module by
name (in a separate process space) so that it can introspect its contents. The results of
this operation are stored in pi-cache within the User Settings Directory and used
subsequently. This file is regenerated only if the *.pyd or *.so for the loaded module
changes.

9.4. Analysis Disk Cache

The source code analyzer writes information about files it has recently examined into
the Cache Directory that is specified in the About box accessible from the Help menu.

Cache size may be controlled with the Max Cache Size preference However, Wing does
not perform well if the space available for the cache is smaller than the space needed for
a single project’s source analysis information. If you see excessive sluggishness, either
increase the size of the cache or disable it entirely by setting its size to 0.

If the cache will be used by more than one computer, make sure the clocks of the two
computers are synchronized. The caching mechanism uses time stamps, and may become
confused if this is not done.

The analysis cache may be removed in its entirety with no ill effects.

Trouble-shooting Guide

This chapter describes what to do if you are having trouble installing or using Wing
IDE.

We welcome feedback and bug reports, both of which can be submitted directly
from Wing IDE using the Submit Feedback and Submit Bug Report items in
the Help menu, or by emailing us at support at wingware.com.

10.1. Trouble-shooting Failure to Start

If you are having trouble getting Wing to start at all, read through this section for
information on diagnosing the problem.

On OS X, Wing requires that you install and launch an X11 Server before starting Wing
IDE. If the launcher fails to start X11 or Wing, try starting X11 Server manually and
then running wing-personal3.2 from within the Wing IDE application folder (which
can be entered using a terminal window in X11). See the OS X How-To for details.

On Windows, the user’s temporary directory sometimes becomes full, which prevents
Wing from starting. Check whether the directory contains more than 65,534 files. Some
versions of Acrobat Reader will leave large numbers of lock files in this directory. These
files are named Acrxxxx.tmp. Other applications may do this as well.

On Fedora Core 5 and other Linuxes with SELinux, Wing won’t start because
permissions are denied on one of the shared libraries needed by it. The solution is to go
into bin/2.4/external/pyscintilla2 and issue the following command:

chcon -t texrel_shlib_t _scintilla.so

On Linux, in some cases, Wing will not run with its own private GTK installation
because of incompatibilities with the system. To test this, run Wing with the --system-

101

mailto:support@wingware.com

102

gtk command line option after making sure your Linux system has the GTK packages
installed. If this works, you can set the Use System Gtk preference.

Note, however, that there are known problems running system-provided Qt emulation
when using the system GTK option. Some of these themes contain bugs that can cause
crashing. If you need to use the system GTK and experience crashes, we recommend
using a theme other than a Qt theme.

On Linux, if Wing fails to start after the Use System Gtk preference has been set,
use the --private-gtk command line option to get Wing running again so that the
preference can be turned off.

To rule out problems with a project file or preferences, try renaming your User
Settings Directory and restart Wing. If this works, you can copy over files from the
renamed directory one at a time to isolate the problem -- or email support at wingware
dot com for help.

Under a Windows terminal server, Wing may not be able to set up the environment
variables it uses internally and will not start up. In this case, you can get Wing to start
with the following commands:

set PYTHONOPTIMIZE=1

set PYTHONHOME=D:\Program Files\WingIDE\bin\PyCore

wing.exe

Alter PYTHONHOME according to the location at which you’ve installed Wing IDE.

In other cases, refer to Obtaining Diagnostic Output.

10.2. Issues on Microsoft Windows

Wing has a few problems and limitations on Microsoft Windows systems

1) The TortoiseHg shell extension and a few of the demo shell extension COM objects
from win32all can cause Wing to crash if they are registered. The crash occurs when
the file open, save, and add files to project dialog boxes are used. TortoiseHg may by
removed via the Windows control panel. The demo extensions may be disabled by using
ShellExView (http://www.snapfiles.com/get/shellexview.html) or a similiar program to
find and disable them. They can also be uninstalled by running the .py file with an
--unregister argument.

2) The nVidia Desktop Manager may cause the system to freeze on some versions of
Windows (apparently the card becomes very sluggish while the system CPU utilization

http://www.snapfiles.com/get/shellexview.html

103

remains near 0%). The problem appears more frequently when using Wing in multi-
window modes but may occur in all cases. Disabling the manager prevents the freeze
from occuring.

There may be other display issues (such as failure to draw window contents when un-
minimizing from Windows task bar) specifically with some nVidia cards, even if the
desktop manager is disabled.

3) Pasting will sometimes fail when remote desktop or another application that tracks
the contents of the clipboard is used.

4) Windows drag-n-drop currently doesn’t work for transferring text between Wing and
other applications.

5) Wing won’t be able to launch python on Vista if the python executable is configured
to run as administrator and wing.exe is not. It is recommended that neither Wing nor
python is set to run as administrator by default.

10.3. Trouble-shooting Failure to Debug

If you have trouble debugging with Wing IDE, select which of the following most closely
describes the problem you are seeing:

• Debugging fails to start

• Debugger doesn’t stop on breakpoints

• Debugger doesn’t stop on exceptions

• Debugger reports exceptions not seen outside Wing

10.3.1. Failure to Start Debug

Wing may fail to start the debug process in certain cases. If this happens, it often helps
to try debugging a small test such as the following:

print "test1"

print "test2"

Use the Start / Continue command from the Debug menu to cause Wing IDE to
attempt to run only as far as the first line of your code. This rules out possible problems
caused by specific code.

104

Then check through the following common problems. For information on obtaining
additional information from the debug sub-system, refer to the Diagnostic Output
section:

1) Wing’s debugger uses a TCP/IP protocol to communicate with the IDE. Make sure
that TCP/IP is installed and configured on your machine. If you are running a custom-
built copy of Python, verify that the socket module is available.

2) If Wing says it can’t find Python or if you’ve got multiple versions of Python on your
system, make sure you’ve got your Project Properties set up to contain a valid inter-
preter (see Source / Show Analysis Stats menu item to verify that the right interpreter
is being found).

3) Enter any necessary PYTHONPATH for your debug process in Project Properties if not
already defined in the environment.

4) If you set PYTHONHOME or PYTHONPATH environment variables, these may cause the
debug process to fail if they do not match the particular Python interpreter that Wing
is launching. You can either change the interpreter used so it matches, or unset or alter
these environment values from the outside or via Project Properties from the Project
menu.

PYTHONHOME is a problem in all cases when it doesn’t match the Python interpreter
reported in the Source menu’s Show Analysis Stats dialog.

PYTHONPATH is only a problem if it contains directories that are part of a Python in-
stallation. When this doesn’t match the interpreter version, this leads to import errors
because Python tries to import incompatible modules.

5) On Windows, check that you don’t have Hummingbird Socks Client installed on your
machine. Some versions and configurations of this product are known to incorrectly
route network packets in such a way that slows down the Wing IDE debugger enough
to make it time out during initialization.

6) All forms of the Python binary distribution (TAR, RPM, and Windows installer) are
known to have problems when a newer version of Python is installed directly over an
older one on disk.

In this case, most Python programs will appear to work fine outside of Wing IDE but
will not work within the Wing IDE debugger. This occurs because the debug support
code uses sockets and other functionality that is not necessarily exercised by your debug
program outside of the Wing debugger.

If you try to run a debug session in Wing IDE and it fails, you may be having this
problem. The following test script can be used to confirm that the problem exists in
your Python installation:

105

import sys

print ’sys.version =’, sys.version

print ’sys.executable =’, sys.executable

print ’sys.version_info =’, sys.version_info

import socket

print ’socket =’, socket

print ’socket._socket =’, socket._socket

import select

print ’select =’, select

import cPickle

print ’cPickle =’, cPickle

To solve this problem, try uninstalling Python, manually removing any remaining files,
and installing again. Or install Python into a new location on disk.

Once this is done, be sure to confirm that Wing is configured to use the new Python
installation from the Project Properties dialog in the Project menu and that the Show
Analysis Stats item in the Source menu displays the correct intepreter.

7) Wing’s debugger is unable to debug games written with pygame when they are
running in full screen mode. Use window mode instead. This is a problem also for other
IDEs; we have not yet investigated the cause.

10.3.2. Failure to Stop on Breakpoints or Show Source Code

The most common cause of failure to stop on breakpoints or to bring up source windows
while stopping or stepping through code is a mismatch between the file name that is
stored in the *.pyc file and the actual location of the *.py source file.

This can be caused by (1) not saving before you run in the debugger, (2) using partial
path names on PYTHONPATH or when invoking a script from the command line (the
partial path stored in the *.pyc file may become invalid if current directory changes),
(3) moving around the *.pyc file after they are created, or (4) using compileall.py to
create *.pyc files from source. The easiest way to solve this is to use only full paths on
PYTHONPATH and remove any suspect *.pyc files.

Wing may fail to stop when debugging an application that gets invoked repeatedly in
separate processes, for example a CGI script invoked multiple times from a browser as
part of a page load. This is because the debugger can currently only debug one process
at a time. If the debugger is already connected to one process, the second and later
processes will not be debugged and thus may miss breakpoints.

Less common causes of this problem are (1) running Python with the -O optimization
option, (2) running Python with psyco or other optimizer, (3) overriding the Python

106

__import__ routine, (4) adding breakpoints after you’ve started debugging an applica-
tion that spends much of its time in C/C++ or other non-Python code, and (5) on win32,
using symbolic links to directories that contain your source code files (Posix platforms
handle symbolic links just fine).

For more information, see the Debugger Limitations section.

10.3.3. Failure to Stop on Exceptions

Failure to stop on exceptions is most commonly caused by the same factors that can
cause failure to stop on breakpoints. The rest of this section covers additional
possible causes of failure to stop on exceptions.

By default, Wing only stops on exceptions for which a traceback is printed when the
code is run outside of the debugger. If your code runs within a catch-all try/except
clause written in Python (as in some GUI main loops or in an environment like Zope),
Wing may not report all exceptions encountered in your debug process.

In some cases, altering the Exception Reporting preference will work. In others, it
may suffice to set a breakpoint in the top-level exception handler.

An alternative is to recode your app to make your catch-all exception handler optional
as in the following example:

import os

No handler when running in Wing’s debugger

if os.environ.has_key[’WINGDB_ACTIVE’]:

dosomething()

Handle unexpected exceptions gracefully at other times

else:

try:

dosomething()

except:

handler here

Note that environments such as wxPython, PyGTK, and others include catch-all han-
dlers for unexpected exceptions raised in the main loop, but those handlers cause the
exception traceback to be printed and thus will be reported correctly by Wing without
any modification to the handler.

107

10.3.4. Extra Debugger Exceptions

This section is only relevant if you have set the Exception Reporting preference to
Immediately if Appears Unhandled.

When Wing’s debugger is running in this exception handling mode, it sometimes appears
to reveal bugs that are not seen when running outside of the debugger. This is a result
of how this mode decides which exceptions should be shown to the user -- it is inspecting
exceptions as they are raised and making decisions about whether or not the exception
is unexpected or part of normal operation.

You can train Wing to ignore unwanted exception reports with the checkbox in the
Exceptions tool.

You can also change the way Wing reports debug process exceptions with the Exception
Reporting preference.

For more information, see Managing Exceptions.

10.4. Obtaining Diagnostic Output

Wing IDE and your debug code run in separate processes, each of which can indepen-
dently be configured to collect additional diagnostic log information.

Diagnosing General IDE Problems

A quick way to diagnose problems seen while working with Wing IDE is to submit a
bug report from the Help menu. Please include a description of the problem and check
the Include error log checkbox so we can diagnose and fix the problem.

To diagnose other problems, such as failure to start, try looking at the file error-log

in your User Settings Directory.

Alternatively, run console_wing.exe (on Windows) or wing-personal3.2 --verbose

(on Linux/Unix and OS X) from the command line to display diagnostic output.

Email this output to support at wingware.com along with your system type and version,
version of Wing IDE, version of Python, and any other potentially relevant details.

Diagnosing Debugger Problems

To diagnose debugger problems, set preference Debug Internals Log File to a value
other than No logging and turn on preferences Use External Console and External

mailto:support@wingware.com

108

Console Waits on Exit. When you try again, Wing will display a debug console with
diagnostics.

Alternatively, copy wingdbstub.py out of your Wing IDE installation, set
WINGDB_LOGFILE environment variable to <stderr> or the name of a log file on disk
(or alter kLogFile inside wingdbstub.py), turn on the Enable Passive Listen pref-
erence, and try launching the following script from the command line:

import wingdbstub

print "test1"

print "test2"

This prints diagnostic output that may be easier to capture in some cases.

Email this output to support at wingware.com. Please include also the contents of the
file error-log in your User Settings Directory , and also your system version, version
of Wing IDE, version of Python, and any other potentially relevant details.

10.5. Speeding up Wing

Wing should present a responsive, snappy user interface even on relatively slow hardware.
In some cases, Wing may appear sluggish:

1) Try using a different Display Theme from preferences -- the pixmap manipulations
in Wing’s default themes sometimes fail to be accelerated on certain display hardware.
Oddly, this seems worse on faster hardware than on slower hardware.

2) If you have nVidia desktop manager, disable it for Wing.

3) The first time you set up a project file, Wing analyzes all source files for the source
code browser and auto-completion facilities. During this time, the browser’s class-
oriented views will display only the source constructs from files of which analysis in-
formation has already been obtained. The user interface may also appear to be sluggish
and Wing will consume substantial amounts of CPU time.

To limit this effect in subsequent sessions, Wing stores its source analysis information
to disk in a cache within your User Settings Directory.

However, with large projects even reading this cache and checking files for updates may
take a while when Wing is first started. This process happens in the background after
launch and takes 7-15 seconds per 100,000 lines of code on a Celeron 400 processor and
should be almost unnoticable on any modern hardware.

mailto:support@wingware.com

109

In all cases, Wing will eventually complete this process and should at that time consume
almost no CPU during normal editing and debugging.

4) In wxPython and other code that uses from xxx import * style imports, the auto-
completer may initially be slow to appear if it needs to process many hundreds of symbols.
This should only happen the first time it appears, however.

5) On Windows, if Wing is started while operating via Remote Desktop Connection,
performance is terrible, even after quitting the RDC session and working directly on the
machine that is running Wing. However, if Wing is started on the machine on which it
runs, performance is very lively on that machine and acceptable if switched to operating
via RDC without quitting Wing.

6) Some users have reported Hummingbird Socks Client for Windows to cause the de-
bugger to slow down substantially, apparently as a result of improperly routed TCP/IP
packets.

7) If you are displaying Wing remotely via X11, try turning off anti-aliased fonts by
placing this file in ~/.fonts.conf on the display machine and then restarting the X
server.

10.6. Trouble-shooting Failure to Open Filenames

Containing Spaces

On Windows: When using Windows File Types or Open With to cause Python files
to be opened with Wing, some versions of Windows set up the wrong command line for
opening the file. You can fix this using regedt32.exe, regedit.exe, or similar tool to edit
the following registry location:

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Applications\wing.exe\shell\open\command

The problem is that the association stored there is missing quotes around the %1 argu-
ment. It should instead read as follows:

"C:\Program Files\Wing IDE\bin\wing.exe" "%1" %*

On Linux: KDE’s Konqueror has the same problem that file names passed on the
command line to applications bound to a file type are not enclosed with quotes, so the
command line is not parsed correctly. We do not currently have a work-around for this
problem.

http://wingware.com/pub/wingide/support/no-aliasing-fonts-conf.txt

110

10.7. Trouble-shooting Failure to Print

This section provides some hints to get printing working if it doesn’t work “out of the
box”.

On Windows

Wing has trouble printing with some printer drivers. One known issue is failure to
transfer the correct font to the printer. The symptom is correctly printed header and
footer but gibberish in the body of the source code. The problem can be solved in the
Advanced menu under Print Properties in Windows by changing TrueTypeFont from
“substitute with device font” to “download as soft font”.

On Linux

For Python files, Wing prints PDF formatted output directly to the printer. This does
not work on at least some Linux distributions and can be worked around by setting the
Print Spool Command preference to pdf2ps %s - | kprinter --stdin.

Wing uses kprinter by default on Linux when it is present. Another problem on Linux
occurs when using a buggy version of kprinter. To rule that out, try pdf2ps %s - |

lpr or simply lpr %s instead for the Print Spool Command preference

Turning on the Print Python as Text preference may also solve some printing prob-
lems, although on some systems with plainer output for Python files. When this is
enabled, Python files are also passed through the the command given in the Text Print
Cmd preference instead of generating syntax highlighted PDF. In all cases, all non-
Python files are passed through this command.

Preferences Reference

This chapter documents the entire set of available preferences for Wing IDE Professional.
Note that this includes preferences that are ignored and unused in Wing IDE Personal
and Wing IDE 101.

Most preferences can be set from the Preferences GUI but some users may wish to
build preference files manually to control different instances of Wing IDE (see details in
Preferences Customization).

User Interface

Display Theme

Configures the overall display style, or theme, used by Wing IDE. Additional
GTK2 themes may be downloaded from http://art.gnome.org/themes and placed into
WINGHOME/bin/gtk-bin/share/themes or USER SETTINGS DIR/themes. These
will be added to the choices below. However, only the pixbuf, metal, and redmond95
theme engines are supported.

Internal Name:

gui.display-theme

Data Specification:

[H2O-gtk2-Saphire, H2O-gtk2-Emerald, H2O-gtk2-Amber, AluminumAlloy-

Toxic, Redmond95, Smooth-2000, H2O-gtk2-Amythist, High-

ContrastLargePrint, AluminumAlloy-Cryogenic, HighCon-

trast, AluminumAlloy-Volcanic, LowContrast, LargePrint, High-

ContrastLargePrintInverse, AluminumAlloy-Smog, HighContrastIn-

verse, Smokey-Blue, Glider, None, Default, Glossy P, Red-

mond, Smooth-Retro, Smooth-Desert, H2O-gtk2-Ruby, LowContrast-

LargePrint, Smooth-Sea-Ice, Black-Background, GnuBubble]

111

http://art.gnome.org/themes

112

Default Value:

None

Display Language

The language to use for the user interface. Either the default for this system, or set to
a specific supported language.

Internal Name:

main.display-language

Data Specification:

[None, de, en, fr]

Default Value:

None

Display Font/Size

The base font and size to use for the user interface’s menus and labels

Internal Name:

gui.default-font

Data Specification:

[None or <type str>]

Default Value:

None

Source Code Font/Size

The base font and size to use for the source code editor, Python Shell, Debug Probe,
Source Assistant, and other tools that display source code.

Internal Name:

113

edit.default-font

Data Specification:

[None or <type str>]

Default Value:

None

Use System Gtk

Use the system wide gtk library (requires gtk 2.2 or later). Wing comes with its own
private copy of the gtk libraries for which it is built and tested. Use the system gtk
option to better integrate with the gnome or other desktop environment, however on
some systems this may result in random crashing or other bugs resulting from binary
incompatibilities in library versions. This preference may be overridden on the command
line with the --system-gtk and --private-gtk command line options.

Internal Name:

gui.use-system-gtk

Data Specification:

<boolean: 0 or 1>

Default Value:

False

• Layout

Windowing Policy

Policy to use for window creation: combined-window mode places toolboxes into editor
windows, separate-toolbox-window mode creates separate tool box windows, and one-
window-per-editor mode also creates a new window for each editor.

Internal Name:

114

gui.windowing-policy

Data Specification:

[combined-window, one-window-per-editor, separate-toolbox-

window]

Default Value:

combined-window

Show Editor Notebook Tabs

Controls whether or not Wing shows notebook tabs for switching between editors. When
false, a popup menu is used instead.

Internal Name:

gui.use-notebook-editors

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Enable Tooltips

Controls whether or not tooltips containing help are shown when the mouse hovers over
areas of the user interface.

Internal Name:

gui.enable-tooltips

Data Specification:

<boolean: 0 or 1>

115

Default Value:

1

• Toolbars

Show Toolbar

Whether toolbar is shown in any window.

Internal Name:

gui.show-toolbar

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Toolbar Size

Sets size of the toolbar icons. One of“small”, “medium”, “large”, “xlarge”, or use“default”
to select the system-wide settings.

Internal Name:

gui.toolbar-icon-size

Data Specification:

[medium, default, xlarge, text-height, large, small]

Default Value:

small

116

Toolbar Style

Select style of toolbar icons to use. One of “icon-only”, “text-only”, “text-below”, “text-
right”, or use “default” to select the system-wide settings.

Internal Name:

gui.toolbar-icon-style

Data Specification:

[medium, default, xlarge, text-height, large, small]

Default Value:

text-right

• Colors

Text Selection Color

The color used to indicate the current text selection on editable text.

Internal Name:

gui.text-selection-color

Data Specification:

[tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]

Default Value:

(253, 253, 104)

Source Code Background

Background color to use on the source editor, Python Shell, Debug Probe, Source Assis-
tant, and other tools that display source code. Foreground colors for text may be altered
automatically to make them stand out on the selected background color.

Internal Name:

117

edit.background-color

Data Specification:

[None or [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value:

None

Debugger Run Marker Color

The color of the text hilight used for the run position during debugging

Internal Name:

debug.run-marker-color

Data Specification:

[tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]

Default Value:

(255, 163, 163)

Syntax Formatting

Formatting options for syntax coloring in editors. Colors are relative to a white back-
ground and will be transformed if the background color is set to a color other than
white.

Internal Name:

.edit.syntax-formatting

Data Specification:

[dict; keys: <type str>, values: [dict; keys: [italic, back, fore, bold], val-

ues: [one of: None, <type str>, <boolean: 0 or 1>]]]

118

Default Value:

{}

Highlight Builtins

Highlight Python builtins

Internal Name:

edit.highlight-builtins

Data Specification:

<boolean: 0 or 1>

Default Value:

True

• Keyboard

Personality

Selects editor personality

Internal Name:

edit.personality

Data Specification:

[vi, visualstudio, emacs, brief, normal]

Default Value:

normal

119

Tab Key Action

Defines the action that the tab key has in files by type when it is bound to the tab
key command. Possible actions are “Indent To Match” to indent the current line or
selected lines to match the computed indent level for this context, “Indent Region” to
increase the indentation of the selected line(s) one level, “Move to Next Tab Stop” to
enter indentation so the caret reaches the next tab stop, or “Insert Tab Character” to
insert a Tab character (chr(9)).

Internal Name:

edit.tab-key-action

Data Specification:

[dict; keys: <type str>, values: <type str>]

Default Value:

{’*’: ’--default--’, ’text/x-python’: ’--default--’}

Custom Key Bindings

Override key bindings in the keymap. To enter the key, place focus on the entry area
and type the key combination desired. The command is one of those documented in
the user manual’s Command Reference, or the name of any user scripts that have been
loaded into the IDE. Leave the command name blank to remove the default binding for
a key (this is useful when adding multi-key bindings that conflict with a default).

Internal Name:

gui.keymap-override

Data Specification:

[dict; keys: <type str>, values: <type str>]

Default Value:

{}

120

Typing Group Timeout

Sets the timeout in seconds to use for typing, after which keys pressed are considered
a separate group of characters. This is used for typing-to-select on lists and in other
GUI areas. Before the timeout subsequent keys are added to previous ones to refine the
selection during keyboard navigation.

Internal Name:

gui.typing-group-timeout

Data Specification:

<type float>, <type int>

Default Value:

1

VI Mode Ctrl-C/X/V

Controls the behavior of the Ctrl-X/C/V key bindings in vi mode. Either always use
these for cut/copy/paste, use them for vi native actions such as initiate-numeric-repeat
and start-select-block, or use the default by system (clipboard on win32 and other com-
mands elsewhere).

Internal Name:

vi-mode.clipboard-bindings

Data Specification:

[other, clipboard, system-default]

Default Value:

system-default

• Other

121

Show Splash Screen

Controls whether or not the splash screen is shown at startup.

Internal Name:

main.show-splash-screen

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Case Sensitive Sorting

Controls whether names are sorted case sensitively (with all caps preceding small letters)
or case insensitively

Internal Name:

gui.sort-case-sensitive

Data Specification:

<boolean: 0 or 1>

Default Value:

0

More Visible Options in Search in Files

Controls whether “Search in Files” dialog has an extra row of visible options as buttons.
Wing may need to be restarted before change takes affect

Internal Name:

gui.more-controls-for-search-in-files

122

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Auto-Show Bug Report Dialog

Whether the error bug reporting dialog (also avaiable from the Help menu) is shown
automatically when an unexpected exception is encountered inside Wing IDE.

Internal Name:

gui.show-report-error-dialog

Data Specification:

<boolean: 0 or 1>

Default Value:

False

Auto-check for Product Updates

Automatically attempt to connect to wingware.com to check for updates once every day
after Wing is started.

Internal Name:

main.auto-check-updates

Data Specification:

<boolean: 0 or 1>

Default Value:

123

1

• Advanced

Display Area

Rectangle to use for the IDE work area on screen. All windows open within this area.
Format is (x, y, width, height), or use None for full screen.

Internal Name:

gui.work-area-rect

Data Specification:

[None or [tuple length 4 of: <type int>, <type int>, <type int>, <type int>]]

Default Value:

None

Max Error Log Size

The number of bytes at which the error log file (USER SETTINGS DIR/error-log) is
truncated. This file can be sent to technical support to help diagnose problems with the
IDE.

Internal Name:

main.max-error-log-size

Data Specification:

[from 10000 to 10000000]

Default Value:

500000

124

Key Map File

Defines location of the keymap override file. Use None for default according to configured
editor personality. See the Wing IDE Manual for details on building your keymap
override file -- in general this is used only in development or debugging keymaps; use
the keymap-override preference instead for better tracking across Wing versions.

Internal Name:

gui.keymap

Data Specification:

[None or <type str>]

Default Value:

None

Messages

Controls the format and verbosity of messages shown to the user for each message domain
in the message area. Each domain specifies the format (in Python 2.3 logging.Formatter
format), and the minimum logging level that should be shown in the display. If a message
domain is left unspecified, then the parent domain settings are used instead (“” is the
parent of all domains).

Internal Name:

gui.message-config

Data Specification:

[dict; keys: [search, debugger, analysis, general, project, ed-

itor, scripts, browser], values: [tuple length 3 of: <type str>, [0, 40, 30], <type int>]]

Default Value:

{’’: (’%(message)s’, 0, 100000)}

125

Document Text Styles

Defines text styles used in data and document display. Each style is specified as a list of
(name, value) tuples. The names and values must be valid Pango text attribute names
and values. To set default values that apply to all styles, use the “default” style name
(for example adding (“size”, 14) changes default display size to 14 points. Note that
size of menus, buttons, labels, and other basic GUI elements are set using system-wide
theme configuration and not from this preference. The source editor is also configured
separately.

Internal Name:

main.text-styles

Data Specification:

[dict; keys: [one of: <type str>, [admonition-title, dan-

ger, footnote, citation, admonition, calltip-doc, title-

4, calltip-strong, caution, title-3, title-0, title-

1, image-link, calltip-type, calltip-poc, hint, calltip-arg-

current, tip, literal, note, field, emphasis, title-2, calltip-

class-symbol, attention, calltip-def-symbol, link, strong, marked-

list-items, calltip-def, list-items, default, docinfo-

header, transition, calltip-arg, caption, warning, er-

ror, navigation-link, navigation]], values: [tuple of: [one of: [tu-

ple length 2 of: [foreground], [None or <type str>]], [tu-

ple length 2 of: [style], [None or [oblique, italic, nor-

mal]]], [tuple length 2 of: [justification], [None or [right, fill, cen-

ter, left]]], [tuple length 2 of: [font_desc], [None or <type str>]], [tu-

ple length 2 of: [weight], [None or [one of: <type int>, [heavy, bold, ul-

trabold, normal, light, ultralight]]]], [tuple length 2 of: [right_margin], [None or [1]]], [tu-

ple length 2 of: [stretch], [None or [condensed, ex-

panded, normal, semicondensed, extracondensed, extraex-

panded, semiexpanded, ultracondensed, ultraexpanded]]], [tu-

ple length 2 of: [strikethrough], [None or <boolean: 0 or 1>]], [tu-

ple length 2 of: [rise], [None or [from -100000 to 100000]]], [tu-

ple length 2 of: [variant], [None or [smallcaps, nor-

mal]]], [tuple length 2 of: [underline], [None or [double, sin-

gle, low, none]]], [tuple length 2 of: [ypad], [None or [1]]], [tu-

ple length 2 of: [background], [None or <type str>]], [tu-

ple length 2 of: [indent], [None or [1]]], [tuple length 2 of: [left_margin], [None or [1]]], [tu-

ple length 2 of: [font_family], [None or <type str>]], [tu-

ple length 2 of: [xpad], [None or [1]]], [tuple length 2 of: [size], [None or [one of: [from 0 to 1000000], [medium, x-

large, xx-large, large, small, xx-small, x-small]]]]]]]

126

Default Value:

{’calltip-strong’: ((’font_family’, ’sans’), (’weight’, ’bold’), (’fore-

ground’, ’#000066’)), ’danger’: ((’background’, ’#ffffdd’),), ’foot-

note’: ((’weight’, ’bold’),), ’navigation-link’: ((’fore-

ground’, ’#909090’), (’style’, ’italic’), (’weight’, ’bold’)), ’ci-

tation’: ((’weight’, ’bold’),), ’admonition’: (), ’list-

items’: ((’xpad’, ’1’), (’ypad’, ’1’)), ’title-4’: ((’size’, ’small’), (’un-

derline’, ’single’), (’foreground’, ’#000066’)), ’warn-

ing’: ((’background’, ’#ffffdd’),), ’caution’: ((’back-

ground’, ’#ffffdd’),), ’title-3’: ((’size’, ’small’), (’weight’, ’bold’), (’fore-

ground’, ’#000066’)), ’title-0’: ((’size’, ’xx-large’), (’weight’, ’bold’), (’fore-

ground’, ’#000066’)), ’title-1’: ((’size’, ’large’), (’weight’, ’bold’), (’fore-

ground’, ’#000066’)), ’image-link’: (), ’calltip-type’: ((’font_family’, ’sans’),), ’calltip-

poc’: ((’font_family’, ’sans’),), ’hint’: ((’background’, ’#ffffdd’),), ’admonition-

title’: ((’weight’, ’bold’),), ’tip’: ((’background’, ’#ffffdd’),), ’lit-

eral’: ((’foreground’, ’#227722’), (’weight’, ’bold’)), ’note’: (), ’field’: ((’weight’, ’bold’),), ’em-

phasis’: ((’style’, ’italic’),), ’calltip-class-symbol’: ((’font_family’, ’sans’), (’weight’, ’bold’), (’fore-

ground’, ’#0000ff’)), ’attention’: ((’background’, ’#ddddff’),), ’calltip-

def-symbol’: ((’font_family’, ’sans’), (’weight’, ’bold’), (’fore-

ground’, ’#007f7f’)), ’link’: ((’underline’, ’single’), (’fore-

ground’, ’#3333ff’)), ’strong’: ((’weight’, ’bold’), (’fore-

ground’, ’#000066’)), ’marked-list-items’: ((’weight’, ’bold’), (’fore-

ground’, ’#ff3333’)), ’calltip-def’: ((’font_family’, ’sans’), (’weight’, ’bold’), (’fore-

ground’, ’#00007f’)), ’calltip-doc’: ((’font_family’, ’sans’),), ’de-

fault’: (), ’docinfo-header’: ((’weight’, ’bold’),), ’transi-

tion’: ((’justification’, ’left’),), ’calltip-arg’: ((’font_family’, ’sans’),), ’calltip-

arg-current’: ((’font_family’, ’sans’), (’background’, ’#ff-

bbbb’)), ’caption’: ((’style’, ’italic’),), ’error’: ((’back-

ground’, ’#ffdddd’),), ’title-2’: ((’size’, ’medium’), (’weight’, ’bold’), (’fore-

ground’, ’#000066’)), ’navigation’: ((’foreground’, ’#909090’), (’style’, ’italic’))}

Files

Default Directory Policy

Defines how Wing determines the starting directory to use when prompting for a file
name: Either based on location of the resource at current focus, location of the current
project home directory, the last directory visited for file selection, the current directory
at startup (or selected since), or always the specific fixed directory entered here.

Internal Name:

127

main.start-dir-policy

Data Specification:

[tuple length 2 of: [current-project, current-directory, recent-

directory, current-focus, selected-directory], <type str>]

Default Value:

(’current-focus’, ’’)

Title Style

Format used for titles of source files: Use “basename” to display just the file name,
“prepend-relative” to use partial relative path from the project file location, “append-
relative” to append partial relative path from project file location after the base file
name, “prepend-fullpath” to use full path, or “append-fullpath” to append fullpath after
the based file name.

Internal Name:

gui.source-title-style

Data Specification:

[append-relative, basename, prepend-fullpath, append-

fullpath, prepend-relative]

Default Value:

append-relative

Default Encoding

The default encoding to use for text files opened in the source editor and other tools,
when an encoding for that file cannot be determined by reading the file. Other encodings
may also be tried. This also sets the encoding to use for newly created files.

Internal Name:

edit.default-encoding

128

Data Specification:

[None or [Central and Eastern European iso8859-2, Japanese iso-

2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Greek cp1253, Baltic Lan-

guages cp1257, Korean johab, Western European cp1252, Baltic Lan-

guages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-

kr, Icelandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turk-

ish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, West-

ern European cp500, Chinese (PRC) gb18030, Greek cp875, Ara-

bic cp864, Icelandic mac-iceland, Chinese (PRC) gbk, Turk-

ish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-

13, Cyrillic Languages mac-cyrillic, Greek cp869, Japanese iso-

2022-jp-1, Central and Eastern European cp852, Japanese iso-

2022-jp-2, Chinese (ROC) big5, Urdu cp1006, Hebrew iso8859-

8, Celtic Languages iso8859-14, Thai cp874, Cyrillic Lan-

guages cp855, Western European iso8859-15, Greek mac-

greek, Ukrainian koi8-u, Hebrew cp1255, Danish, Norwe-

gian cp865, Cyrillic Languages iso8859-5, None, Turk-

ish cp1026, Western European mac-roman, Western Euro-

pean cp1140, Chinese (PRC) hz, Portuguese cp860, Chi-

nese (ROC) cp950, US, Canada, and Others cp037, Japanese shift-

jis-2004, Turkish cp1254, Japanese iso-2022-jp-3, He-

brew cp862, Western European latin-1, Japanese euc-jisx0213, Uni-

code (UTF-16, big endian) utf-16-be, Japanese euc-jis-

2004, Japanese shift-jisx0213, Central and Eastern Euro-

pean cp1250, Baltic Languages iso8859-4, English ascii, Japanese shift-

jis, Arabic iso8859-6, Canadian English/French cp863, Sys-

tem default (ISO-8859-1), Russian koi8-r, Japanese iso-

2022-jp, Unicode (UTF-8) utf-8, Greek cp737, Nordic Lan-

guages iso8859-10, Central and Eastern European mac-

latin2, Chinese (PRC) gb2312, Unicode (UTF-7) utf-7, Ara-

bic cp1256, Chinese (PRC) big5hkscs, Western European cp850, Es-

peranto and Maltese iso8859-3, Turkish cp857, Korean cp949, US, Aus-

tralia, New Zealand, S. Africa cp437, Unicode (UTF-16) utf-

16, Japanese cp932]]

Default Value:

None

New File EOL

Default end-of-line to use: One of “lf”, “cr”, or “crlf” for each entry. Note that Wing

129

matches existing line endings in non-blank files and uses this preference only when a file
contains no end-of-line characters.

Internal Name:

edit.new-file-eol-style

Data Specification:

[lf, cr, crlf]

Default Value:

lf

New File Extension

Default file extension for newly created files

Internal Name:

edit.new-file-extension

Data Specification:

<type str>

Default Value:

.py

Auto-save Files

Controls whether or not all edited files are autosaved before a debug run, before starting
unit tests, or before a file or build process is executed.

Internal Name:

gui.auto-save-before-action

Data Specification:

130

<boolean: 0 or 1>

Default Value:

0

Max Recent Items

Maximum number of items to display in the Recent menus.

Internal Name:

gui.max-recent-files

Data Specification:

[from 3 to 200]

Default Value:

20

Always Use Full Path in Tooltips

Set to True to always show the full path of a file name in the tooltips shown from the
editor tabs and file selection menus. When False, the configured Source Title Style is
used instead.

Internal Name:

gui.full-path-in-tooltips

Data Specification:

<boolean: 0 or 1>

Default Value:

True

131

• File Types

Extra File Types

This is a map from file extension or wildcard to mime type. It adds additional file type
mappings to those built into Wing IDE. File extensions can be specified alone without
dot or wildcard, for example “xcf” or using wildcards containing “*” and/or “?”, for
example “Makefile*”. The mime type to use for Python files is “text/x-python”.

Internal Name:

main.extra-mime-types

Data Specification:

[dict; keys: <type str>, values: [text/x-smalltalk, text/x-

sql, text/x-pov, text/x-ave, text/x-pl-sql, text/x-bash, text/x-

lua-source, text/x-eiffel, text/x-vxml, text/xml, text/x-

errorlist, text/x-caml, text/x-octave, text/x-erlang, text/x-

php-source, text/x-cython, application/x-tex, text/x-dos-

batch, text/x-bullant, text/x-baan, text/x-python, text/x-

mako, text/x-mmixal, text/x-nncrontab, text/postscript, text/x-

asn1, text/x-javascript, text/x-fortran, text/x-vhdl, text/x-

escript, text/x-lisp, text/x-makefile, text/x-diff, text/x-

ms-idl, text/x-cpp-source, text/x-asm, text/x-ruby, text/x-

abaqus, text/x-ada, text/x-d, text/x-idl, text/x-nsis, text/x-

scriptol, text/x-perl, text/x-java-source, text/x-docbook, text/x-

rc, text/x-verilog, text/x-c-source, text/plain, text/x-

spice, text/x-zope-pt, text/x-lout, text/x-matlab, text/x-

inno-setup, text/html, text/x-forth, text/x-tcl, text/x-vb-

source, text/x-pascal, text/x-yaml, text/x-conf, text/x-ms-

makefile, text/x-properties, text/css]]

Default Value:

{}

File Sets

Defines file sets by specifying filters to apply to file names for inclusion and exclusion
from a larger set (such as scanned disk files or all project files).

132

Each file set is named and contains one list of inclusion patterns and one list of exclusion
patterns. The patterns can be a wildcard on the file name, wildcard on a directory name,
or a mime type name.

Only a single pattern needs to be matched for inclusion or exclusion. Ex-
clusion patterns take precedence over inclusion patterns, so any match on
an exclusion pattern will always exclude a file from the set. File sets are
used in constraining search, adding project files, and for other operations on
collections of files.

Internal Name:

main.file-sets

Data Specification:

[dict; keys: <type str>, values: [tuple length 2 of: [tu-

ple of: [tuple length 2 of: [wildcard-filename, wildcard-

directory, mime-type], <type str>]], [tuple of: [tu-

ple length 2 of: [wildcard-filename, wildcard-directory, mime-

type], <type str>]]]]

Default Value:

{u’All Source Files’: ((), ((’wildcard-filename’, ’*.o’), (’wildcard-

filename’, ’*.obj’), (’wildcard-filename’, ’*.a’), (’wildcard-

filename’, ’*.lib’), (’wildcard-filename’, ’*.so’), (’wildcard-

filename’, ’*.dll’), (’wildcard-filename’, ’*.exe’), (’wildcard-

filename’, ’*.ilk’), (’wildcard-filename’, ’*.pdb’), (’wildcard-

filename’, ’*.pyc’), (’wildcard-filename’, ’*.pyo’), (’wildcard-

filename’, ’*.pyd’), (’wildcard-filename’, ’*$py.class’), (’wildcard-

filename’, ’core’), (’wildcard-filename’, ’*.bak’), (’wildcard-

filename’, ’*.tmp’), (’wildcard-filename’, ’*.temp’), (’wildcard-

filename’, ’*-old’), (’wildcard-filename’, ’*.old’), (’wildcard-

filename’, ’*.wpr’), (’wildcard-filename’, ’*.wpu’), (’wildcard-

filename’, ’*.zip’), (’wildcard-filename’, ’*.tgz’), (’wildcard-

filename’, ’*.tar.gz’), (’wildcard-filename’, ’*.dsp’), (’wildcard-

filename’, ’*.dsw’), (’wildcard-filename’, ’*.sln’), (’wildcard-

filename’, ’*.suo’), (’wildcard-filename’, ’*.vcproj’), (’wildcard-

filename’, ’*.user’), (’wildcard-filename’, ’*.mani-

fest’), (’wildcard-filename’, ’*.ncb’), (’wildcard-filename’, ’*.bsc’), (’wildcard-

133

filename’, ’*.sbr’), (’wildcard-filename’, ’*~’), (’wildcard-

filename’, ’#*#’), (’wildcard-filename’, ’.#*’), (’wildcard-

filename’, ’*.svn-base’), (’wildcard-directory’, ’__py-

cache__’), (’wildcard-directory’, ’.bzr’), (’wildcard-

directory’, ’CVS’), (’wildcard-directory’, ’.hg’), (’wildcard-

directory’, ’.git’), (’wildcard-directory’, ’.svn’), (’wildcard-

directory’, ’_svn’), (’wildcard-directory’, ’.xvpics’))), u’HTML and XML Files’: (((’mime-

type’, ’text/html’), (’mime-type’, ’text/xml’), (’mime-

type’, ’text/x-zope-pt’)), ((’wildcard-filename’, ’*~’), (’wildcard-

filename’, ’#*#’), (’wildcard-filename’, ’.#*’), (’wildcard-

filename’, ’*.svn-base’), (’wildcard-directory’, ’__py-

cache__’), (’wildcard-directory’, ’.bzr’), (’wildcard-

directory’, ’CVS’), (’wildcard-directory’, ’.hg’), (’wildcard-

directory’, ’.git’), (’wildcard-directory’, ’.svn’), (’wildcard-

directory’, ’_svn’), (’wildcard-directory’, ’.xvpics’))), u’C/C++ Files’: (((’mime-

type’, ’text/x-c-source’), (’mime-type’, ’text/x-cpp-

source’)), ((’wildcard-filename’, ’*~’), (’wildcard-

filename’, ’#*#’), (’wildcard-filename’, ’.#*’), (’wildcard-

filename’, ’*.svn-base’), (’wildcard-directory’, ’__py-

cache__’), (’wildcard-directory’, ’.bzr’), (’wildcard-

directory’, ’CVS’), (’wildcard-directory’, ’.hg’), (’wildcard-

directory’, ’.git’), (’wildcard-directory’, ’.svn’), (’wildcard-

directory’, ’_svn’), (’wildcard-directory’, ’.xvpics’))), u’Hidden & Tem-

porary Files’: (((’wildcard-filename’, ’*.o’), (’wildcard-

filename’, ’*.obj’), (’wildcard-filename’, ’*.a’), (’wildcard-

filename’, ’*.lib’), (’wildcard-filename’, ’*.so’), (’wildcard-

filename’, ’*.dll’), (’wildcard-filename’, ’*.exe’), (’wildcard-

filename’, ’*.ilk’), (’wildcard-filename’, ’*.pdb’), (’wildcard-

filename’, ’*.pyc’), (’wildcard-filename’, ’*.pyo’), (’wildcard-

filename’, ’*.pyd’), (’wildcard-filename’, ’*$py.class’), (’wildcard-

filename’, ’core’), (’wildcard-filename’, ’*.bak’), (’wildcard-

filename’, ’*.tmp’), (’wildcard-filename’, ’*.temp’), (’wildcard-

filename’, ’*-old’), (’wildcard-filename’, ’*.old’), (’wildcard-

filename’, ’*.wpr’), (’wildcard-filename’, ’*.wpu’), (’wildcard-

filename’, ’*.zip’), (’wildcard-filename’, ’*.tgz’), (’wildcard-

filename’, ’*.tar.gz’), (’wildcard-filename’, ’*.ncb’), (’wildcard-

filename’, ’*.bsc’), (’wildcard-filename’, ’*.sbr’), (’wildcard-

filename’, ’*~’), (’wildcard-filename’, ’#*#’), (’wildcard-

filename’, ’.#*’), (’wildcard-filename’, ’*.svn-base’), (’wildcard-

directory’, ’__pycache__’), (’wildcard-directory’, ’.bzr’), (’wildcard-

directory’, ’CVS’), (’wildcard-directory’, ’.hg’), (’wildcard-

directory’, ’.git’), (’wildcard-directory’, ’.svn’), (’wildcard-

directory’, ’_svn’), (’wildcard-directory’, ’.xvpics’)), ()), u’Python Files’: (((’mime-

type’, ’text/x-python’), (’mime-type’, ’text/x-cython’)), ((’wildcard-

134

filename’, ’*~’), (’wildcard-filename’, ’#*#’), (’wildcard-

filename’, ’.#*’), (’wildcard-filename’, ’*.svn-base’), (’wildcard-

directory’, ’__pycache__’), (’wildcard-directory’, ’.bzr’), (’wildcard-

directory’, ’CVS’), (’wildcard-directory’, ’.hg’), (’wildcard-

directory’, ’.git’), (’wildcard-directory’, ’.svn’), (’wildcard-

directory’, ’_svn’), (’wildcard-directory’, ’.xvpics’)))}

• Reloading

External Check Freq

Time in seconds indicating the frequency with which the IDE should check the disk for
files that have changed externally. Set to 0 to disable entirely.

Internal Name:

cache.external-check-freq

Data Specification:

<type float>, <type int>

Default Value:

5

Reload when Unchanged

Selects action to perform on files found to be externally changed but unaltered within
the IDE. One of “auto-reload” to automatically reload these files, “request-reload” to ask
via a dialog box upon detection, “edit-reload” to ask only if the unchanged file is edited
within the IDE subsequently, or “never-reload” to ignore external changes (although you
will still be warned if you try to save over an externally changed file)

Internal Name:

cache.unchanged-reload-policy

Data Specification:

[never-reload, auto-reload, request-reload, edit-reload]

135

Default Value:

auto-reload

Reload when Changed

Selects action to perform on files found to be externally changed and that also have been
altered in the IDE. One of “request-reload” to ask via a dialog box upon detection, “edit-
reload” to ask if the file is edited further, or “never-reload” to ignore external changes
(although you will always be warned if you try to save over an externally changed file)

Internal Name:

cache.changed-reload-policy

Data Specification:

[never-reload, request-reload, edit-reload]

Default Value:

request-reload

• Projects

Auto-reopen Last Project

Controls whether most recent project is reopened at startup, in the absence of any other
project on the command line.

Internal Name:

main.auto-reopen-last-project

Data Specification:

<boolean: 0 or 1>

Default Value:

136

1

Close Files with Project

Controls whether any files open in an editor are also closed when a project file is closed

Internal Name:

proj.close-also-windows

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Default Project Type

Controls the type of project file that is written by default for new projects: “normal”
for regular single-file format with extension .wpr, and “shared” for split format where
the .wpr file contains shared project info that can be checked into a shared revision
control repository and the .wpu file contains user-specific information such as location
of breakpoints. This is useful to avoid revision control wars on a project with multiple
developers.

Internal Name:

proj.file-type

Data Specification:

[shared, normal]

Default Value:

normal

137

Open Projects as Text

Controls whether project files are opened as project or as text when opened from the
File menu. This does not affect opening from the Project menu.

Internal Name:

gui.open-projects-as-text

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Confirm Drag Copy/Move

Controls whether or not the IDE will confirm file copy/move operations initiated by
dragging items around on the Project view.

Internal Name:

proj.confirm-file-drags

Data Specification:

<boolean: 0 or 1>

Default Value:

1

• External Display

File Display Commands

Linux only: The commands used to display or edit local disk files selected from the Help
menu or project files selected for external display. This is a map from mime type to a

138

list of display commands; each display command is tried in order of the list until one
works. The mime type “*” can be used to set a generic viewer, such as a web browser.
Use %s to place the file name on the command lines. If unspecified then Wing will use
the configured URL viewer in the environment (specified by BROWSER environment
variable or by searching the path for common browsers). On Windows and OS X, the
system-wide configured default viewer for the file type is used instead so this preference
is ignored.

Internal Name:

gui.file-display-cmds

Data Specification:

[dict; keys: <type str>, values: [list of: <type str>]]

Default Value:

{}

Url Display Commands

Linux only: The commands used to display URLs. This is a map from protocol type to
a list of display commands; each display command is tried in order of the list until one
works. The protocol “*” can be used to set a generic viewer, such as a multi-protocol
web browser. Use %s to place the URL on the command lines. If unspecified then
Wing will use the configured URL viewer in the environment (specified by BROWSER
environment variable or by searching the path for common browsers). On Windows and
OS X, the system-wide configured default web browser is used instead so this preference
is ignored.

Internal Name:

gui.url-display-cmds

Data Specification:

[dict; keys: <type str>, values: [list of: <type str>]]

Default Value:

{}

139

Editor

Error Indicators

Controls whether Wing will show error and/or warning indicators on the editor as red
and yellow underlines. When shown, hovering the mouse over the indicator shows the
error or warning detail in a tooltip.

Internal Name:

edit.error-display

Data Specification:

[show-errors, show-none, show-all]

Default Value:

show-all

Show Line Numbers

Shows or hides line numbers on the editor.

Internal Name:

edit.show-line-numbers

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Show Whitespace

Set to true to show whitespace with visible characters by default

Internal Name:

140

edit.show-whitespace

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Show EOL

Set to true to show end-of-line with visible characters by default

Internal Name:

edit.show-eol

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Split Reuse Policy

Policy for reusing splits in editors when new files are opened: Either open in current
split or open in an adjacent split. This only has an effect when more than one editor
split is visible.

Internal Name:

gui.split-reuse-policy

Data Specification:

[current, adjacent]

141

Default Value:

current

Strip Trailing White Space

Controls whether to automatically strip trailing white space in the editor.

Internal Name:

main.auto-rstrip-on-save

Data Specification:

[tuple length 2 of: [disabled, on-save], <type str>]

Default Value:

disabled

Input Method

Input method used for typing characters. This is important primarily for non-Western
European languages.

Internal Name:

edit.gtk-input-method

Data Specification:

[]

Default Value:

default

Block Comment Style

Style of commenting to use when commenting out blocks of Python code.

Internal Name:

142

gui.block-comment-style

Data Specification:

[indented, block]

Default Value:

indented

• Caret

Caret Width

Width of the blinking insertion caret on the editor, in pixels. Currently limited to a
value between 1 and 3.

Internal Name:

edit.caret-width

Data Specification:

[from 1 to 3]

Default Value:

1

Caret Line Highlight

Selects whether to highlight the line the caret is currently on. When enabled, a highlight
color and alpha (transparency) can be set.

Internal Name:

edit.caret-line-highlight

Data Specification:

143

[None or [tuple length 2 of: [tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]], <type int>]]

Default Value:

None

Caret Flash Rate (ms)

Sets the time in milliseconds between showing and hiding the caret when it is flashing;
use 0 to disable flashing entirely

Internal Name:

edit.caret-flash-rate

Data Specification:

[from 0 to 2000]

Default Value:

500

• Indentation

Use Indent Analysis

Select when to use indent analysis (examination of current file contents) in order to
determine tab size and indent size. Either always in all files, only in Python files, or
never.

Internal Name:

edit.use-indent-analysis

Data Specification:

[always, never, python-only]

Default Value:

144

always

Default Tab Size

Set size of tabs, in spaces, used in new files. Note that in Python files that contain mixed
space and tab indentation, tab size is always forced to 8 spaces. Use the Indentation
Manager to alter indentation in existing files.

Internal Name:

edit.tab-size

Data Specification:

[from 0 to 80]

Default Value:

8

Default Indent Size

Sets size of an indent, in spaces, used in new files. This is overridden in non-empty
files, according to the actual contents of the file. In files with tab-only indentation, this
value may be modified so it is a multiple of the configured tab size. Use the Indentation
Manager to alter indentation in existing files.

Internal Name:

edit.indent-size

Data Specification:

[from 0 to 80]

Default Value:

4

145

Default Indent Style

Set the style of indentation used in new files. This is overridden in non-empty files, ac-
cording to the actual contents of the file. Use the Indentation Manager to alter indenta-
tion in existing files. Indentation style choices are“tabs-only” for tabs only, “spaces-only”
for spaces only, or “mixed” to use a tab whenever tab-size spaces have been seen

Internal Name:

edit.indent-style

Data Specification:

[mixed, spaces-only, tabs-only]

Default Value:

spaces-only

Auto Indent

Controls when Wing automatically indents when return or enter is typed.

Internal Name:

edit.auto-indent

Data Specification:

[0, 1, blank-only]

Default Value:

1

Show Indent Guides

Set to true to show indent guides by default

Internal Name:

edit.show-indent-guides

146

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Show Python Indent Warning Dialog

Set to show a warning dialog when opening a Python file that contains potentially prob-
lematic indentation: Either inconsistent and possibly confusing indentation, a mix of
indent styles in a single file, or mixed tab and space indentation (which is not recom-
mended for Python).

Internal Name:

edit.show-python-indent-warnings

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Show Override Warning Dialog

Show indent mismatch warning dialog when user selects an indent style that is incompat-
ible with existing file content. This only applies to non-Python files since Wing disallows
overriding the indent style in all Python files.

Internal Name:

edit.show-non-py-indent-warning

Data Specification:

<boolean: 0 or 1>

147

Default Value:

True

• Line Wrapping

Wrap Long Lines

Set to true to wrap long source lines on the editor display.

Internal Name:

edit.wrap-lines

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Edge Markers

Tuple that defines how edge markers are shown: (mode, column, color) where mode is 0
to turn off markers, 1 to show a line, or 2 to highlight text that extends past the edge;
column is the column at which to draw the marker, if on; and color is the color for the
marker (r,g,b) tuple with values from 0x00 to 0xff: (0xff,0xff,0xff) is white.

Internal Name:

edit.show-edge-markers

Data Specification:

[tuple length 3 of: [0, 1, 2], [from 0 to 10000], [tu-

ple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]]

Default Value:

148

(0, 80, (251, 8, 8))

Reformatting Wrap Column

Column at which text should be wrapped by commands that automatically rearrange
text

Internal Name:

edit.text-wrap-column

Data Specification:

<type int>

Default Value:

77

• Auto-completion

Auto-show Completer

Controls whether or not the completer is always shown automatically during typing,
never auto-shown, or shown only after a certain number of characters are in the comple-
tion fragment. When auto-show is disabled, the auto-completer can still be shown on
demand with the Show Completer item in the Source menu.

Internal Name:

edit.autocomplete-autoshow-option

Data Specification:

[always, never]

Default Value:

always

149

Auto-completer Height

The maximum number of lines to show in the auto-completer at once.

Internal Name:

edit.autocompleter-height

Data Specification:

<type int>

Default Value:

7

Auto-complete Delay

Delay in seconds from last key press to wait before the auto-completer is shown. If 0.0,
the auto-completer is shown immediately.

Internal Name:

edit.autocomplete-delay

Data Specification:

<type int>, <type float>

Default Value:

0.0

Auto-complete Timeout

Timeout in seconds from last key press after which the auto-completer is automatically
hidden. If 0.0, the auto-completer does not time out.

Internal Name:

edit.autocomplete-timeout

150

Data Specification:

<type int>, <type float>

Default Value:

0

Completion Keys

Controls which keys will enter selected completion value into the editor. Shift or Ctrl
click to select multiple items.

Internal Name:

edit.autocomplete-keys

Data Specification:

[tuple of: [f1, f3, return, space, period, bracketleft, tab, f12, f10, paren-

left]]

Default Value:

(’tab’,)

Completion Mode

Selects how completion is done in the editor: Either insert the completion at the cursor,
replace any symbols that match the leading part of the completion (and insert in other
cases), or replace any existing symbol with the new symbol.

Internal Name:

edit.autocomplete-mode

Data Specification:

[replace-matching, insert, replace]

Default Value:

151

insert

Case Insensitive Matching

Controls whether matching in the completer is case sensitive or not. The correct case is
always used when a completion is chosen.

Internal Name:

edit.autocomplete-case-insensitive

Data Specification:

<boolean: 0 or 1>

Default Value:

True

Include Templates in Completer

Whether or not to include templates in the auto-completer.

Internal Name:

edit.templates-in-autocompleter

Data Specification:

<boolean: 0 or 1>

Default Value:

True

Non-Python Completion

Controls whether or not use the completer in non-Python files, where it uses a simple
word list generated from the existing contents of the file. If enabled, the number of char-
acters required before the completer is shown may be specified here.This value overrides
any character threshold set above.

Internal Name:

152

edit.autocomplete-non-python-option

Data Specification:

[always, never]

Default Value:

3

Non-Python Word Size

Sets the minimum size of words to add to the completion list for non-Python files. This
affects only words found in the file, and not words included because they are keywords
for that file type.

Internal Name:

edit.autocomplete-non-python-word-size

Data Specification:

<type int>

Default Value:

4

• Printing

Print Font

(Posix only) Set the font name used to print Python files. One of Courier, Helvetica, or
Times-Roman.

Internal Name:

edit.print-font

Data Specification:

153

[Times-Roman, Helvetica, Courier]

Default Value:

Courier

Print Size

(Posix only) Set the font size used to print Python files.

Internal Name:

edit.print-size

Data Specification:

[from 0 to 120]

Default Value:

10

Paper

(Posix only) Set the paper size for printing. One of Letter, Legal, A3, A4, A5, B4, or
B5

Internal Name:

edit.print-paper

Data Specification:

[A3, A5, Legal, Letter, A4]

Default Value:

Letter

154

Print Spool Cmd

(Posix only) Sets the command used to spool output produced by Wing’s printing facility.
Format is text with embedded %s to indicate where the printed output file’s name should
be inserted. Set to None to use internal defaults. If the default is not working for you
and your system does not accept PDF files for printing, try “pdf2ps %s - | kprinter
--stdin”. To rule out problems with buggy versions of kprinter, try “pdf2ps %s - | lpr” or
simply “lpr %s” instead.

Internal Name:

edit.print-spool-cmd

Data Specification:

[one of: None, <type str>]

Default Value:

None

Print Python as Text

(Posix only) Set to true to print Python files faster but without syntax highlighting.
Otherwise, the internal Python pretty printing facility is used.

Internal Name:

edit.print-python-as-text

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Text Print Cmd

(Posix only) Sets the command that is issued to print non-Python text files. Format is
text with embedded %s to indicate where the printed file’s name should be inserted

Internal Name:

155

edit.text-print-cmd

Data Specification:

<type str>

Default Value:

enscript -E %s

• Advanced

Auto Brace Match

Set to true to automatically match braces next to the cursor or as they are typed.

Internal Name:

edit.auto-brace-match

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Transient Threshold

Maximum number of transient (non-sticky) editors to keep open at one time, in addition
to any that are visible on screen

Internal Name:

gui.max-non-sticky-editors

Data Specification:

<type int>

156

Default Value:

1

Selection Policy

This is a map from actions to policy for leaving a range selected after the action
takes place. Possible actions are “indent-region”, “outdent-region”, “indent-to-match”,
“comment-out-region”, and “uncomment-out-region”. Possible policies for each are
“always-select”, which always leaves a selection, “retain-select” which leaves a selection
only if there was one to begin with, and “never-select” which never leaves a selection.

Internal Name:

edit.select-policy

Data Specification:

[dict; keys: [(u’Indent Region’, ’indent-region’), (u’Indent To Match’, ’indent-

to-match’), (u’Uncomment out Region’, ’uncomment-out-

region’), (u’Outdent Region’, ’outdent-region’), (u’Comment out Re-

gion’, ’comment-out-region’)], values: [(u’Never Se-

lect’, ’never-select’), (u’Retain Select’, ’retain-select’), (u’Always Se-

lect’, ’always-select’)]]

Default Value:

{’uncomment-out-region’: ’retain-select’, ’outdent-region’: ’retain-

select’, ’comment-out-region’: ’retain-select’, ’indent-

region’: ’retain-select’, ’indent-to-match’: ’retain-select’}

Middle Mouse Paste

Paste text into the editor from the clipboard when the middle mouse button is pressed.
Disabling this is mainly useful for wheel mice with a soft wheel that causes pasting of
text before wheel scrolling starts.

Internal Name:

edit.middle-mouse-paste

Data Specification:

157

<boolean: 0 or 1>

Default Value:

True

Default Drag-n-Drop Action

Default drag-n-drop action. This is the default and can always be overridden by pressing
shift or ctrl while dragging

Internal Name:

edit.default-drop-action

Data Specification:

[os-default, copy, move]

Default Value:

os-default

Mini-search Case Sensitivity

Whether or not mini-search is case sensitive. Can be ’match-mode’ to use the default for
the current keyboard mode (’never’ in vi mode or ’if-upper’ for emacs and other modes),
’if-upper’ to be case sensitive only if an upper case character is typed, ’always’ to always
match case sensitively, and ’never’ to always match case insensitively.

Internal Name:

edit.minisearch-case-sensitive

Data Specification:

[always, never, if-upper, match-mode]

Default Value:

match-mode

158

Debugger

Auto-save Files

Controls whether or not all edited files are autosaved before a debug run, before starting
unit tests, or before a file or build process is executed.

Internal Name:

gui.auto-save-before-action

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Ignore Unsynchronized Files

Controls whether or not Wing ignores unsaved files before a debug run, or before a file
or build process is executed.

Internal Name:

gui.ignore-unsaved-before-action

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Raise Source From Tools

Controls whether the debugger raises source files to indicate exception locations encoun-
tered when working in the Debug Probe, and other debugger tools.

Internal Name:

159

debug.raise-from-tools

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Default Watch Style

Sets the tracking style used when a value is double clicked in order to watch it: Use
“symbolic” to track by symbolic name, “parent-ref” to track parent by object reference
and attribute by name, and “ref” to track using an object reference directly to the value

Internal Name:

debug.default-watch-style

Data Specification:

[ref, parent-ref, symbolic]

Default Value:

symbolic

Integer Display Mode

This sets the display style for integer values to one of “dec”, “hex”, or “oct”.

Internal Name:

debug.default-integer-mode

Data Specification:

[dec, hex, oct]

160

Default Value:

dec

Hover Over Symbols

Set to display debug data value of any symbol on the editor when the mouse cursor
hovers over it.

Internal Name:

debug.hover-over-symbols

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Hover Over Selection

Controls whether debug values are shown when the mouse hovers over a selection in the
editor. This may be disabled, enabled for symbols (like x.y.z) only, or enabled for all
selections including function or methods calls. WARNING: Enabling evaluation of any
selection may result in function or methods calls that have side effects such as altering
the program state or even making unintended database or disk accesses!

Internal Name:

debug.hover-over-selections

Data Specification:

[0, 1, all]

Default Value:

1

161

Line Threshold

Defines the character length threshold under which a value will always be shown on a
single line, even if the value is a complex type like a list or map

Internal Name:

debug.line-threshold

Data Specification:

<type int>

Default Value:

65

• Exceptions

Report Exceptions

Controls how Wing reports exceptions that are raised by your debug process. By default,
Wing shows exceptions at the time that the exception traceback would normally be
printed. Alternatively, Wing can try to predict which exceptions are unhandled, and
stop immediately when unhandled exceptions are raised so that any finally clauses can
be stepped through in the debugger. Wing can also stop on all exceptions (even if
handled) immediately when they are raised, or it can wait to report fatal exceptions
as the debug process terminates. In the latter case Wing makes a best effort to stop
before the debug process exits or at least to report the exception post-mortem, but one
or both may fail if working with externally launched debug processes. In that case, we
recommend using When Printed exception reporting mode.

Internal Name:

debug.exception-mode

Data Specification:

[unhandled, always, never, printed]

Default Value:

162

printed

Report Logged Exceptions In When Printed Mode

Controls whether to stop on exceptions logged with logging.exception if the exception
mode is set to ’When Printed’

Internal Name:

debug.stop-on-logged-exception

Data Specification:

<boolean: 0 or 1>

Default Value:

True

Never Report

Names of builtin exceptions to never report, even if the exception is not handled. This
list takes precedence over the always report list and the default reporting mode, but is
not used if the exception reporting mode is set to always.

Internal Name:

debug.never-stop-exceptions

Data Specification:

[tuple of: <type str>]

Default Value:

[’SystemExit’, ’GeneratorExit’]

Always Report

Names of builtin exceptions to (nearly) always report. These exceptions are not reported
only if they explicitly caught by the specific subclass in the frame they are raised in.

Internal Name:

163

debug.always-stop-exceptions

Data Specification:

[tuple of: <type str>]

Default Value:

[’AssertionError’]

• I/O

Use External Console

Selects whether to use the integrated I/O panel for debug process input/output or an
external terminal window. Use an external window if your debug process depends on
details of the command prompt environment for cursor movement, color text, etc.

Internal Name:

debug.external-console

Data Specification:

<boolean: 0 or 1>

Default Value:

0

External Console Waits on Exit

Set to true to leave up the console after normal program exit, or false to close the
console right away in all cases. This is only relevant when running with an external
native console instead of using the integrated debug I/O panel.

Internal Name:

debug.persist-console

164

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Debug I/O Encoding

Encoding of input/output in the Debug I/O panel

Internal Name:

debug.debug-io-encoding

Data Specification:

[None or [Central and Eastern European iso8859-2, Japanese iso-

2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Greek cp1253, Baltic Lan-

guages cp1257, Korean johab, Western European cp1252, Baltic Lan-

guages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-

kr, Icelandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turk-

ish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, West-

ern European cp500, Chinese (PRC) gb18030, Greek cp875, Ara-

bic cp864, Icelandic mac-iceland, Chinese (PRC) gbk, Turk-

ish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-

13, Cyrillic Languages mac-cyrillic, Greek cp869, Japanese iso-

2022-jp-1, Central and Eastern European cp852, Japanese iso-

2022-jp-2, Chinese (ROC) big5, Urdu cp1006, Hebrew iso8859-

8, Celtic Languages iso8859-14, Thai cp874, Cyrillic Lan-

guages cp855, Western European iso8859-15, Greek mac-

greek, Ukrainian koi8-u, Hebrew cp1255, Danish, Norwe-

gian cp865, Cyrillic Languages iso8859-5, None, Turk-

ish cp1026, Western European mac-roman, Western Euro-

pean cp1140, Chinese (PRC) hz, Portuguese cp860, Chi-

nese (ROC) cp950, US, Canada, and Others cp037, Japanese shift-

jis-2004, Turkish cp1254, Japanese iso-2022-jp-3, He-

brew cp862, Western European latin-1, Japanese euc-jisx0213, Uni-

code (UTF-16, big endian) utf-16-be, Japanese euc-jis-

2004, Japanese shift-jisx0213, Central and Eastern Euro-

pean cp1250, Baltic Languages iso8859-4, English ascii, Con-

165

sole default (ISO-8859-1), Japanese shift-jis, Arabic iso8859-

6, Canadian English/French cp863, Russian koi8-r, Japanese iso-

2022-jp, Unicode (UTF-8) utf-8, Greek cp737, Nordic Lan-

guages iso8859-10, Central and Eastern European mac-

latin2, Chinese (PRC) gb2312, Unicode (UTF-7) utf-7, Ara-

bic cp1256, Chinese (PRC) big5hkscs, Western European cp850, Es-

peranto and Maltese iso8859-3, Turkish cp857, Korean cp949, US, Aus-

tralia, New Zealand, S. Africa cp437, Unicode (UTF-16) utf-

16, Japanese cp932]]

Default Value:

None

Shell Encoding

Encoding of input/output in the integrated Python Shell

Internal Name:

debug.debug-probe-encoding

Data Specification:

[None or [Central and Eastern European iso8859-2, Japanese iso-

2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Greek cp1253, Baltic Lan-

guages cp1257, Korean johab, Western European cp1252, Baltic Lan-

guages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-

kr, Icelandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turk-

ish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, West-

ern European cp500, Chinese (PRC) gb18030, Greek cp875, Ara-

bic cp864, Icelandic mac-iceland, Chinese (PRC) gbk, Turk-

ish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-

13, Cyrillic Languages mac-cyrillic, Greek cp869, Cen-

tral and Eastern European mac-latin2, Japanese iso-2022-

jp-1, Central and Eastern European cp852, Japanese iso-

2022-jp-2, Chinese (ROC) big5, Urdu cp1006, Hebrew iso8859-

8, Celtic Languages iso8859-14, Thai cp874, Cyrillic Lan-

guages cp855, Western European iso8859-15, Greek mac-

greek, Ukrainian koi8-u, Hebrew cp1255, Danish, Norwe-

gian cp865, Cyrillic Languages iso8859-5, None, Turk-

ish cp1026, Western European mac-roman, Western Euro-

166

pean cp1140, Chinese (PRC) hz, Portuguese cp860, Chi-

nese (ROC) cp950, US, Canada, and Others cp037, Japanese shift-

jis-2004, Turkish cp1254, Japanese iso-2022-jp-3, He-

brew cp862, Western European latin-1, Japanese euc-jisx0213, Uni-

code (UTF-16, big endian) utf-16-be, Japanese euc-jis-

2004, Japanese shift-jisx0213, Central and Eastern Euro-

pean cp1250, Baltic Languages iso8859-4, English ascii, Japanese shift-

jis, Use default stdin / stdout encoding, Canadian En-

glish/French cp863, Russian koi8-r, Japanese iso-2022-jp, Uni-

code (UTF-8) utf-8, Greek cp737, Nordic Languages iso8859-

10, Arabic iso8859-6, Chinese (PRC) gb2312, Unicode (UTF-

7) utf-7, Arabic cp1256, Chinese (PRC) big5hkscs, Western Euro-

pean cp850, Esperanto and Maltese iso8859-3, Turkish cp857, Ko-

rean cp949, US, Australia, New Zealand, S. Africa cp437, Uni-

code (UTF-16) utf-16, Japanese cp932]]

Default Value:

None

External Consoles

A list of the xterm-compatible X windows terminal programs that are used with debug
processes when running with an external console. Each is tried in turn until one is found
to exist. If just the name is given, Wing will look for each first on the PATH and then
in likely places. Specify the full path (starting with “/”) to use a specific executable. If
program arguments are specified, they must end with the argument that indicates that
the rest of arguments are the program to run in the terminal

Internal Name:

debug.x-terminal

Data Specification:

[tuple of: <type str>]

Default Value:

(’gnome-terminal "--title=Wing Debug Console" -x’, ’xterm -

T "Wing Debug Console" -e’, ’konsole -T "Wing Debug Console" -

e’, ’rxvt -T "Wing Debug Console" -e’)

167

• Data Filters

Huge List Threshold

Defines the length threshold over which a list, map, or other complex type will be
considered too large to show in the normal debugger. If this is set too large, the debugger
will time out (see network-timeout preference)

Internal Name:

debug.huge-list-threshold

Data Specification:

<type int>

Default Value:

2000

Huge String Threshold

Defines the length over which a string is considered too large to fetch for display in
the debugger. If this is set too large, the debugger will time out (see network-timeout
preference).

Internal Name:

debug.huge-string-threshold

Data Specification:

<type int>

Default Value:

64000

Omit Types

Defines types for which values are never shown by the debugger.

Internal Name:

168

debug.omit-types

Data Specification:

[tuple of: <type str>]

Default Value:

(’function’, ’builtin_function_or_method’, ’class’, ’clas-

sobj’, ’instance method’, ’type’, ’module’, ’ufunc’, ’wrap-

per_descriptor’, ’method_descriptor’, ’member_descriptor’)

Omit Names

Defines variable/key names for which values are never shown by the debugger.

Internal Name:

debug.omit-names

Data Specification:

[tuple of: <type str>]

Default Value:

()

Do Not Expand

Defines types for which values should never be probed for contents. These are types
that are known to crash when the debugger probes them because they contain buggy
data value extraction code. These values are instead shown as an opaque value with hex
object instance id.

Internal Name:

debug.no-probe-types

Data Specification:

169

[tuple of: <type str>]

Default Value:

(’GdkColormap’, ’IOBTree’)

• External/Remote

Enable Passive Listen

Controls whether or not the debugger listens passively for connections from an externally
launched program (false to disable; true to enable). This should be on when the debug
program is not launched by the IDE (e.g., as with a CGI script).

Internal Name:

debug.passive-listen

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Allowed Hosts

Sets which hosts are allowed to connect to the debugger when it is listening passively
for externally launched programs.

Internal Name:

debug.passive-hosts

Data Specification:

[tuple of: <type str>]

Default Value:

170

(’127.0.0.1’,)

Server Host

Determines the network interface on which the debugger listens for connections. This
can be a symbolic name, an ip address, or left unspecified (use None) to indicate that
the debugger should listen on all valid network interfaces on the machine. Note that
when a debug session is launched from within the IDE (with the Run button), it always
connects from the loopback interface (127.0.0.1)

Internal Name:

debug.network-server

Data Specification:

[None or <type str>]

Default Value:

None

Server Port

Determines the TCP/IP port on which the IDE will listen for the connection from the
debug process. This needs to be unique for each developer working on a given host.
The debug process, if launched from outside of the IDE, needs to be told the value
specified here using kWingHostPort inside wingdbstub.py or by WINGDB HOSTPORT
environment variable before importing wingdbstub in the debug process.

Internal Name:

debug.network-port

Data Specification:

[from 0 to 65535]

Default Value:

50005

171

Location Map

Defines a mapping between the remote and local locations of files for host-to-host de-
bugging. Each mapping key is the ip address of the remote location and the mapping
values are arrays of tuples where each tuple is a (remote prefix, local prefix) pair. This
should be used when files on the remote host are updated via ftp, NFS, Samba, or other
method from master copies on the local host, but the full path file system locations on
the local and remote hosts do not match.

Internal Name:

debug.location-map

Data Specification:

[dict; keys: <ip4 address #.#.#.#>, values: [None or [list of: [tu-

ple length 2 of: <type str>, <type str>]]]]

Default Value:

{’127.0.0.1’: None}

Kill Externally Launched

Enable or disable the Kill command for debug processes that were launched from outside
of the IDE

Internal Name:

debug.enable-kill-external

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Common Attach Hosts

172

List of host/port combinations that should be included by default in the attach re-
quest list shown with Attach to Process in the Debug menu, in addition to those that
are registered at runtime. These are used primarily with externally launched debug
processes, since Wing automatically shows IDE-launched processes for attach when ap-
propriate. This value corresponds with kAttachPort configured in wingdbstub.py or by
WINGDB ATTACHPORT environment variable before importing wingdbstub in the
debug process.

Internal Name:

debug.attach-defaults

Data Specification:

[tuple of: [tuple length 2 of: <type str>, [from 0 to 65535]]]

Default Value:

((’127.0.0.1’, 50015),)

• Advanced

Network Timeout

Controls the amount of time that the debug client will wait for the debug server to
respond before it gives up. This protects the IDE from freezing up if your program
running within the debug server crashes (or if the server itself becomes unavailable). It
must also be taken into account when network connections are slow or if sending large
data values (see the huge-list-threshold and huge-string-threshold preferences).

Internal Name:

debug.network-timeout

Data Specification:

<type float>, <type int>

Default Value:

10

173

Allow dynamic introspection

Set to allow python code and other dynamic calls to be invoked while introspecting
values in the debugger.

Internal Name:

debug.allow-dynamic-introspection

Data Specification:

<boolean: 0 or 1>

Default Value:

False

Show Data Warnings

Controls whether or not time out, huge value, and error handling value errors are dis-
played by the debugger the first time they are encountered in each run of Wing.

Internal Name:

debug.show-debug-data-warnings

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Use sys.stdin Wrapper

Whether sys.stdin should be set a wrapper object for user input in the program being
debugged. The wrapper allows debug commands, such as pause, to be executed while
the program is waiting for user input. The wrapper may cause problems with multi-
threaded programs that use C stdio functions to read directly from stdin and will be
slower than the normal file object.However, turning this preference off means that your

174

debug process will not pause or accept breakpoint changes while waiting for keyboard
input, and any keyboard input that occurs as a side effect of commands typed in the
Debug Probe will happen in unmodified stdin instead (even though output will still
appear in the Debug Probe as always).

Internal Name:

debug.use-stdin-wrapper

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Debug Internals Log File

This is used to obtain verbose information about debugger internals in cases where you
are having problems getting debugging working. When set to non-None value, debugger
activity is logged to the given file name. Alternatively, “<stdout>” or “<stderr>” can
be used.

Internal Name:

debug.logfile

Data Specification:

[one of: None, [<stdout>, <stderr>], <type str>]

Default Value:

None

Extremely Verbose Internal Log

This is used to turn on very verbose and detailed logging from the debugger. Only
recommended when debugging the debugger.

Internal Name:

175

debug.very-verbose-log

Data Specification:

<boolean: 0 or 1>

Default Value:

None

Python Shell Debug Log

This is used to obtain verbose information about the Python Shell internals in cases
where you are having problems getting it working. When set to non-None value, debug-
ger activity is logged to the given file name. Alternatively, “<stdout>” or “<stderr>”
can be used to send output to the Python Shell tool.

Internal Name:

debug.shell-logfile

Data Specification:

[one of: None, [<stdout>, <stderr>], <type str>]

Default Value:

None

Extremely Verbose Python Shell Debug Log

This is used to turn on very verbose and detailed logging from the Python Shell internals.
Only recommended when debugging the Python Shell.

Internal Name:

debug.very-verbose-shell-log

Data Specification:

<boolean: 0 or 1>

176

Default Value:

False

Shells Ignore Editor Modes

Set to False so that shells will act modal in the same way as editors when working with a
modal key bindings such as that for VI. When True, the shells always act as if in Insert
mode.

Internal Name:

debug.shells-ignore-editor-modes

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Source Analysis

Analyze in Background

Whether Wing should try to analyze python source in the background.

Internal Name:

pysource.analyze-in-background

Data Specification:

<boolean: 0 or 1>

Default Value:

1

177

Introspect in Shells

Set to turn on value introspection in the Python Shell and Debug Probe, so that auto-
completion and Source Assistant information can be shown.

Internal Name:

debug.introspect-in-shells

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Max Cache Size (MB)

The maximum size of the disk cache in megabytes

Internal Name:

pysource.max-disk-cache-size

Data Specification:

[from 1 to 1000]

Default Value:

50

Max Memory Buffers

The maximum # of analysis info buffers that can be in-memory at once for files that
are not open.

Internal Name:

pysource.max-background-buffers

178

Data Specification:

[from 1 to 100]

Default Value:

80

Typing Suspend Timeout

Number of seconds between last key press and when analysis is re-enabled if analyis is
to be suspended while typing occurs. If <= 0, analysis is not suspended.

Internal Name:

edit.suspend-analysis-timeout

Data Specification:

<type float>, <type int>

Default Value:

3

• Advanced

Interface File Path

Path to search for interface files for extension modules. If directory name is relative, it
will be interpreted as relative to the user settings directory (USER SETTINGS DIR)

Internal Name:

pysource.interfaces-path

Data Specification:

[tuple of: <type str>]

179

Default Value:

(’pi-files’,)

Scrape Extension Modules

Set this to False to disable automatic loading of extension modules and other modules
that cannot be statically analysed. These modules are loaded in another process space
and ’scraped’ to obtain at least some analysis of the module’s contents.

Internal Name:

pysource.scrape-modules

Data Specification:

<boolean: 0 or 1>

Default Value:

True

Scraping Helper Snippets

This is a dictionary from module name to Python code that should be executed before
attempting to load extension modules for scraping. This is needed in some cases such
as PyGTK and wxPython because the extension modules are designed to be loaded
only after some configuration magic is performed. For most extension modules, no extra
configuration should be needed.

Internal Name:

pysource.scrape-config

Data Specification:

[dict; keys: <type str>, values: <type str>]

Default Value:

180

{’QtSvg’: ’from PyQt4 import QtSvg’, ’wxpython’: ’pass’, ’QtHelp’: ’from PyQt4 im-

port QtHelp’, ’gdk’: ’import pygtk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n ex-

cept:\n pass\n’, ’QtGui’: ’from PyQt4 import QtGui’, ’_gst’: ’from gst im-

port _gst’, ’gtk’: ’import pygtk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n ex-

cept:\n pass\n’, ’QtXml’: ’from PyQt4 import QtXml’, ’QtWe-

bKit’: ’from PyQt4 import QtWebKit’, ’QtScriptTools’: ’from PyQt4 im-

port QtScriptTools’, ’QtSql’: ’from PyQt4 import Qt-

Sql’, ’Qt’: ’from PyQt4 import Qt’, ’QtAssistant’: ’from PyQt4 im-

port QtAssistant’, ’QtXmlPatterns’: ’from PyQt4 import QtXml-

Patterns’, ’QtDesigner’: ’from PyQt4 import QtDesigner’, ’pango’: ’im-

port pygtk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n ex-

cept:\n pass\n’, ’QtOpenGL’: ’from PyQt4 import QtOpenGL’, ’QSci’: ’from PyQt4 im-

port QSci’, ’atk’: ’import pygtk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n ex-

cept:\n pass\n’, ’QtTest’: ’from PyQt4 import QtTest’, ’QtScript’: ’from PyQt4 im-

port QtScript’, ’gobject’: ’import pygtk\nvers = pygtk._get_available_versions().keys()\nvers.sort()\nvers.reverse()\nfor v in vers:\n try:\n pygtk.require(v)\n break\n ex-

cept:\n pass\n’, ’QtCore’: ’from PyQt4 import QtCore’, ’Qt-

Network’: ’from PyQt4 import QtNetwork’}

Network

HTTP Proxy Server

Allows manual configuration of an http proxy to be used for feedback, bug reports, and
license activation, all of which result in Wing connecting to wingware.com via http.
Leave user name and password blank if not required.

Internal Name:

main.http-proxy

Data Specification:

[None or [tuple length 4 of: <type str>, <type int>, <type str>, <type str>]]

Default Value:

None

181

Internal Preferences

Core Preferences

main.auto-reload-scripts

When enabled, Wing will automatically reload scripts that extend the IDE when they
are edited and saved from the IDE. This makes developing extension scripts for the
IDE very fast, and should work in most cases. Disable this when working on extension
scripts that do not reload properly, such as those that reach through the scripting API
extensively.

Internal Name:

main.auto-reload-scripts

Data Specification:

<boolean: 0 or 1>

Default Value:

True

main.debug-break-on-critical

If True and a gtk, gdk, or glib critical message is logged, Wing tries to start a C debugger
and break at the current execution point

Internal Name:

main.debug-break-on-critical

Data Specification:

<boolean: 0 or 1>

Default Value:

False

182

main.documentation-language

The language to use for the documentation, when available (not all documentation is
translated into all supported languages).

Internal Name:

main.documentation-language

Data Specification:

[None, de, en, fr]

Default Value:

en

main.extra-mime-type-comments

This is a map from mime type to tuple of start/end comment characters for each mime
type. One entry should be added for each new mime type added with the main.extra-
mime-types preference.

Internal Name:

main.extra-mime-type-comments

Data Specification:

[dict; keys: <type str>, values: [tuple length 2 of: <type str>, <type str>]]

Default Value:

{}

main.extra-mime-type-names

This is a map from mime type to displayable name for that mime type; one entry should
be added for each new mime type added with the main.extra-mime-types preference.

Internal Name:

183

main.extra-mime-type-names

Data Specification:

[dict; keys: <type str>, values: <type str>]

Default Value:

{}

main.ignored-updates

Used internally to keep track of updates the user is not interested in

Internal Name:

main.ignored-updates

Data Specification:

[list of: <type str>]

Default Value:

[]

main.perspective-shared-file

Selects the file to use for storing and retrieving shared perspectives. By default(when
value is None) the file ’perspectives’ in the user settings directory is used.

Internal Name:

main.perspective-shared-file

Data Specification:

[one of: <type NoneType>, <type str>]

Default Value:

184

None

main.perspective-style

Controls what parts of the GUI are altered when switching perspectives. Tools and
Layout only captures the set of visible tools and overall layout, Tool, Layout, and Editors
stores also the set of open editors, and All Visual State captures all details of the visual
state, including the state of the tools, the size and position of windows, and the caret
position.

Internal Name:

main.perspective-style

Data Specification:

[tuple length 2 of: [tools-and-editors, all, tools-only], <type str>]

Default Value:

tools

main.script-path

Specifies the directories in which Wing will look for user-defined scripts that extend the
functionality of the IDE itself. The directory names may contain environment variables
in the $(envname) form. Use $(WING:PROJECT DIR) for the project directory.For
each directory, Wing will load all found Python modules and packages, treating any
function whose name starts with a letter (not or) as a script-provided command.
Extension scripts found in files within directories later in the list will override scripts
of the same name found earlier, except that scripts can never override commands that
are defined internally in Wing itself (these are documented in the Command Reference
in the users manual). See the Scripting and Extending chapter of the manual for more
information on writing and using extension scripts. Note that WINGHOME/scripts is
always appended to the given path since it contains scripts that ship with Wing.

Internal Name:

main.script-path

Data Specification:

185

[list of: <type str>]

Default Value:

[u’USER_SETTINGS_DIR/scripts’]

User Interface Preferences

gui.apple-keyboard

Whether an Apple keyboard is in use. Use query x11 option to attempt to determine
setting from X11 server each time Wing is run. This is an OS X only preference.

Internal Name:

gui.apple-keyboard

Data Specification:

[query-x11, yes, no]

Default Value:

query-x11

gui.feedback-email

Email address to use by default in the Feedback and Bug Report dialogs

Internal Name:

gui.feedback-email

Data Specification:

<type str>

Default Value:

186

""

gui.fix-osx-tiger-keyboard-conflict

Whether to fix the inability to use Mode switch on Tiger (OS X 10.4). If true, Wing
will run xmodmap when it starts to remap the Mode switch keys (option, Alt Gr, and
other composition keys on non-US keyboards) from mod1 to mod5. The xmodmap
modifications will affect all X11 applications.

Internal Name:

gui.fix-osx-tiger-keyboard-conflict

Data Specification:

<boolean: 0 or 1>

Default Value:

True

gui.osx-key-for-alt

Use key for alt key in all X11 applications on OS X -- typically used when using a non
OS X keyboard layout on the Apple X11 server. The option key should be used only if
it’s not needed to enter individual characters. This will use xmodmap to set the global
X11 key map to use the specified key as the alt key modifier. Turning this option off if
it was on previously will reset the option key back to mode switch, which is the Apple
default setting. Non-default options will override any externally set xmodmap setting
so use with care if you’ve customized your xmodmap.

Internal Name:

gui.osx-key-for-alt

Data Specification:

[default, command, option2, option]

Default Value:

187

default

gui.include-file-types

Controls which file types to include for multi-file operations such as searching and im-
porting files into a project

Internal Name:

gui.include-file-types

Data Specification:

[tuple of: <type str>]

Default Value:

(’*.*’,)

gui.last-feedback-shown

Used internally to avoid showing the feedback dialog on exit over and over again.

Internal Name:

gui.last-feedback-shown

Data Specification:

<type float>

Default Value:

0.0

gui.omit-file-types

Lists file types that should be omitted from multi-file operations such as searching and
importing files into a project. These are omitted even if the gui.include-file-types pref-
erence includes a matching wild card.

Internal Name:

188

gui.omit-file-types

Data Specification:

[tuple of: <type str>]

Default Value:

(’*.o’, ’*.a’, ’*.so’, ’*.pyc’, ’*.pyo’, ’core’, ’*~’, ’#*#’, ’CVS’, ’.#*’)

gui.prefered-symbol-order

Control preferred order in source index displays such as the editor browse menus. Either
sort in “file-order” or “alpha-order”.

Internal Name:

gui.prefered-symbol-order

Data Specification:

[file-order, alpha-order]

Default Value:

alpha-order

gui.reported-exceptions

Used internally to remember which unexpected exceptions have already been reported
so we only show error reporting dialog once for each. This is a dict from product version
to dict of exception info.

Internal Name:

gui.reported-exceptions

Data Specification:

[dict; keys: <type str>, values: [dict; keys: <type str>, val-

ues: <boolean: 0 or 1>]]

189

Default Value:

{}

gui.scan-for-pythoncom-shell-extensions

Scan for pythoncom shell extensions on Windows

Internal Name:

gui.scan-for-pythoncom-shell-extensions

Data Specification:

<boolean: 0 or 1>

Default Value:

True

gui.set-win32-foreground-lock-timeout

Controls whether or not to set the foreground lock timeout on Windows 98/ME and
2K/XP. On these systems, normally Wing will be unable to bring source windows to
front whenever the debug process has windows in the foreground. When this preference is
true, the system-wide value that prevents background applications from raising windows
is cleared whenever Wing is running. This means that other apps will also be able to
raise windows without these restrictions while Wing is running. Set the preference to
false to avoid this, but be prepared for windows to fail to raise in some instances. Note:
If Wing is terminated abnormally or from the task manager, the changed value will
persist until the user logs out (or reboot on 98/ME).

Internal Name:

gui.set-win32-foreground-lock-timeout

Data Specification:

<boolean: 0 or 1>

Default Value:

190

1

gui.show-feedback-dialog

Whether feedback dialog is shown to user on quit.

Internal Name:

gui.show-feedback-dialog

Data Specification:

<boolean: 0 or 1>

Default Value:

1

gui.show-osx-keyboard-warning

Used internally to show information about osx keyboard issues to new users. Once
turned off, it is never turned on again

Internal Name:

gui.show-osx-keyboard-warning

Data Specification:

<boolean: 0 or 1>

Default Value:

1

gui.startup-show-wingtips

Controls whether or not the Wing Tips tool is shown automatically at startup of the
IDE.

Internal Name:

191

gui.startup-show-wingtips

Data Specification:

<boolean: 0 or 1>

Default Value:

1

Editor Preferences

consoles.auto-clear

Automatically clear the OS Commands consoles each time the command is re-executed

Internal Name:

consoles.auto-clear

Data Specification:

<boolean: 0 or 1>

Default Value:

False

edit.autocomplete-autoshow

Controls whether or not the completer is shown automatically during typing. When
disabled, it can still be shown on demand with the Show Completer item in the Source
menu.

Internal Name:

edit.autocomplete-autoshow

Data Specification:

192

<boolean: 0 or 1>

Default Value:

1

edit.bookmark-color

Color to use on the source editor to indicate the location of user-defined bookmarks.

Internal Name:

edit.bookmark-color

Data Specification:

[tuple length 3 of: [from 0 to 255], [from 0 to 255], [from 0 to 255]]

Default Value:

(16, 192, 16)

edit.bookmark-style

Visual display style to use for user-defined bookmarks: Either an underline, a background
color change, or no visible marker.

Internal Name:

edit.bookmark-style

Data Specification:

[None, underline, background]

Default Value:

background

193

edit.enable-folding

Set to true to enable structural folding on source, false to disable

Internal Name:

edit.enable-folding

Data Specification:

<boolean: 0 or 1>

Default Value:

1

edit.fold-indicator-style

Set to 0 to use arrow indicators, 1 to use plus/minus indicators, 2 to rounded tree
indicators, and 3 to use square tree indicators.

Internal Name:

edit.fold-indicator-style

Data Specification:

[from 0 to 3]

Default Value:

1

edit.fold-line-mode

Set to “above-expanded”, “below-expanded”, “above-collapsed”, “below-collapsed”, or
“none” to indicate where fold lines are shown and whether they are above or below
the line where the fold point is located.

Internal Name:

edit.fold-line-mode

194

Data Specification:

[above-collapsed, above-expanded, none, below-collapsed, below-

expanded]

Default Value:

below-collapsed

edit.fold-mime-types

Set to a list of mime types for which folding should be allowed when folding in general
is enabled.

Internal Name:

edit.fold-mime-types

Data Specification:

[list of: <type str>]

Default Value:

[’text/x-python’, ’text/x-c-source’, ’text/x-cpp-source’, ’text/x-

java-source’, ’text/x-javascript’, ’text/html’, ’text/x-

mako’, ’text/xml’, ’text/x-zope-pt’, ’text/x-eiffel’, ’text/x-

lisp’, ’text/x-ruby’, ’text/x-cython’]

edit.fold-trailing-whitespace

Controls whether or not trailing white space after a block of code is folded up along with
the block, for a more compact folded display.

Internal Name:

edit.fold-trailing-whitespace

Data Specification:

<boolean: 0 or 1>

195

Default Value:

1

consoles.wrap-long-lines

Wrap long output lines in OS Commands tool to fit within available display area.

Internal Name:

consoles.wrap-long-lines

Data Specification:

<boolean: 0 or 1>

Default Value:

False

consoles.encoding

Default encoding of sub-process input/output when run in the OS Commands panel.
This can be overridden on a per-command basis, in each command’s properties.

Internal Name:

consoles.encoding

Data Specification:

[None or [Central and Eastern European iso8859-2, Japanese iso-

2022-jp-2004, Hebrew cp856, Japanese euc-jp, Vietnamese cp1258, Greek cp1253, Baltic Lan-

guages cp1257, Korean johab, Western European cp1252, Baltic Lan-

guages cp775, Japanese iso-2022-jp-ext, Korean iso-2022-

kr, Icelandic cp861, Hebrew cp424, Cyrillic Languages cp1251, Turk-

ish iso8859-9, Unicode (UTF-16, little endian) utf-16-le, West-

ern European cp500, Chinese (PRC) gb18030, Greek cp875, Ara-

bic cp864, Icelandic mac-iceland, Chinese (PRC) gbk, Turk-

ish mac-turkish, Greek iso8859-7, Baltic Languages iso8859-

13, Cyrillic Languages mac-cyrillic, Greek cp869, Japanese iso-

196

2022-jp-1, Central and Eastern European cp852, Japanese iso-

2022-jp-2, Chinese (ROC) big5, Urdu cp1006, Hebrew iso8859-

8, Celtic Languages iso8859-14, Thai cp874, Cyrillic Lan-

guages cp855, Western European iso8859-15, Greek mac-

greek, Ukrainian koi8-u, Hebrew cp1255, Danish, Norwe-

gian cp865, Cyrillic Languages iso8859-5, None, Turk-

ish cp1026, Western European mac-roman, Western Euro-

pean cp1140, Chinese (PRC) hz, Portuguese cp860, Chi-

nese (ROC) cp950, US, Canada, and Others cp037, Japanese shift-

jis-2004, Turkish cp1254, Japanese iso-2022-jp-3, He-

brew cp862, Western European latin-1, Japanese euc-jisx0213, Uni-

code (UTF-16, big endian) utf-16-be, Japanese euc-jis-

2004, Japanese shift-jisx0213, Central and Eastern Euro-

pean cp1250, Baltic Languages iso8859-4, English ascii, Con-

sole default (ISO-8859-1), Japanese shift-jis, Arabic iso8859-

6, Canadian English/French cp863, Russian koi8-r, Japanese iso-

2022-jp, Unicode (UTF-8) utf-8, Greek cp737, Nordic Lan-

guages iso8859-10, Central and Eastern European mac-

latin2, Chinese (PRC) gb2312, Unicode (UTF-7) utf-7, Ara-

bic cp1256, Chinese (PRC) big5hkscs, Western European cp850, Es-

peranto and Maltese iso8859-3, Turkish cp857, Korean cp949, US, Aus-

tralia, New Zealand, S. Africa cp437, Unicode (UTF-16) utf-

16, Japanese cp932]]

Default Value:

None

consoles.python-prompt-after-execution

Drop into Python shell after executing any Python file in the OS Commands tool

Internal Name:

consoles.python-prompt-after-execution

Data Specification:

<boolean: 0 or 1>

Default Value:

197

False

edit.symbol-find-alpha-sort

Controls whether to sort Find Symbol dialog alphabetically or in natural file order

Internal Name:

edit.symbol-find-alpha-sort

Data Specification:

<boolean: 0 or 1>

Default Value:

True

edit.symbol-find-include-args

Controls whether to include argument specs in the searchable text used in the Find
Symbol dialog

Internal Name:

edit.symbol-find-include-args

Data Specification:

<boolean: 0 or 1>

Default Value:

False

edit.use-default-foreground-when-printing

Use default foreground color for all text when printing. It’s to set this if foreground color
are customized for display on a dark background. The background color when printing
is assumed to be white.

Internal Name:

198

edit.use-default-foreground-when-printing

Data Specification:

<boolean: 0 or 1>

Default Value:

False

Project Manager Preferences

proj.follow-editor

Controls whether or not the IDE will follow the current editor by expanding the project
tree to show the file open in the editor.

Internal Name:

proj.follow-editor

Data Specification:

<boolean: 0 or 1>

Default Value:

0

proj.follow-selection

Controls whether or not the IDE will follow the current project manager selection by
opening the corresponding source file in a non-sticky (auto-closing) editor. In either
case, the project manager will always open a file in sticky mode when an item is double
clicked or the Goto Source context menu item is used.

Internal Name:

proj.follow-selection

199

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Debugger Preferences

debug.auto-clear-debug-io

Set to automatically clear the debug I/O text each time a new debug session is started

Internal Name:

debug.auto-clear-debug-io

Data Specification:

<boolean: 0 or 1>

Default Value:

1

debug.default-python-exec

Sets the default Python Executable to use for debugging and source code analysis. This
can be overridden on a project by project basis in Project Properties.

Internal Name:

debug.default-python-exec

Data Specification:

[None or <type str>]

200

Default Value:

None

debug.python-exec

Set this to override the default Python executable used with the debug server. A None
(default) value uses /usr/bin/env python on Linux and the configured default on NT.
Otherwise, give the full path of the python executable, e.g. /usr/local/bin/python or
C:devpython. This preference only affects programs that are launched from the IDE.

Internal Name:

debug.python-exec

Data Specification:

[None or <type str>]

Default Value:

None

debug.safe-size-checks-only

This is a temporary preference that will go away in future version of Wing IDE. It can
be used to turn off server-side size checking done on values typed in the interactive
shell. When set to true, Wing may terminate the debug process on large values that are
evaluated in the interactive shell. When set to false, Wing will do size checking to avoid
such termination but will also cause duplicate execution of any functionality reached as
the result of a getattr method.

Internal Name:

debug.safe-size-checks-only

Data Specification:

<boolean: 0 or 1>

Default Value:

201

1

debug.shell-auto-restart-before-eval

Auto-restart the Python Shell before a file is evaluated within it. When this is disabled,
be aware that previously defined symbols will linger in the Python Shell environment.

Internal Name:

debug.shell-auto-restart-before-eval

Data Specification:

<boolean: 0 or 1>

Default Value:

1

debug.shell-eval-whole-lines

Evaluate whole lines from editor rather than the exact selection, when a selection from
the editor is sent to the Python Shell tool.

Internal Name:

debug.shell-eval-whole-lines

Data Specification:

<boolean: 0 or 1>

Default Value:

1

debug.shell-pasted-line-threshold

The number of lines after which the Python Shell will just print a summary rather than
the actual lines of code pasted, dragged, or other transferred to the shell.

Internal Name:

202

debug.shell-pasted-line-threshold

Data Specification:

<type int>

Default Value:

10

debug.show-exceptions-tip

Used internally to show information about exception handling to new users. Once turned
off, it is never turned on again

Internal Name:

debug.show-exceptions-tip

Data Specification:

<boolean: 0 or 1>

Default Value:

1

debug.stop-timeout

Number of seconds to wait before the debugger will stop in its own code after a pause
request is received and no other Python code is reached.

Internal Name:

debug.stop-timeout

Data Specification:

<type int>, <type float>

203

Default Value:

3.0

debug.use-members-attrib

Set this to true to have the debug server use the members attribute to try to interpret
otherwise opaque data values. This is a preference because some extension modules
contain bugs that result in crashing if this attribute is accessed. Note that members
has been deprecated since Python version 2.2.

Internal Name:

debug.use-members-attrib

Data Specification:

<boolean: 0 or 1>

Default Value:

1

debug.wrap-debug-io

Set to true to turn on line wrapping in the integrated debug I/O panel.

Internal Name:

debug.wrap-debug-io

Data Specification:

<boolean: 0 or 1>

Default Value:

0

204

debug.wrap-debug-probe

Set to true to turn on line wrapping in the integrated debug probe panel.

Internal Name:

debug.wrap-debug-probe

Data Specification:

<boolean: 0 or 1>

Default Value:

0

debug.wrap-python-shell

Set to true to turn on line wrapping in the Python shell panel.

Internal Name:

debug.wrap-python-shell

Data Specification:

<boolean: 0 or 1>

Default Value:

0

Source Analysis Preferences

pysource.instance-attrib-scan-mode

How to scan for instance attributes.

Internal Name:

205

pysource.instance-attrib-scan-mode

Data Specification:

[init-only, all-methods]

Default Value:

all-methods

206

Command Reference

This chapter describes the entire top-level command set of Wing IDE. Use this reference
to look up command names for use in modified keyboard bindings.

Commands that list arguments of type <numeric modifier> accept either a number
or previously entered numeric modifier. This is used with key bindings that provide a
way to enter a numeric modifier (such as Esc 1 2 3 in the emacs personality or typing
numerals in browse mode in the vi personality).

12.1. Top-level Commands

Application Control Commands

These are the high level application control commands.

abandon-changes (confirm=True)

Abandon any changes in the current document and reload it from disk. Prompts for
user to confirm the operation unless either there are no local changes being abandoned
or confirm is set to False.

about-application ()

Show the application-wide about box

begin-visited-document-cycle (move back=True)

Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released. Key Binding:
Ctrl-Tab invokes begin-visited-document-cycle(move back=True)

check-for-updates ()

Check for updates to Wing IDE and offer to install any that are available

207

208

close (ignore changes=False, close window=False)

Close active document. Abandon any changes when ignore changes is True. Close
empty windows and quit if all document windows closed when close window is True.
Key Bindings: Normal: Ctrl-F4; VI/VIM: Ctrl-F4; Emacs: Ctrl-F4; Brief: Ctrl-F4;
Visual Studio: Ctrl-F4; OS X: Command-F4

close-all (omit current=False, ignore changes=False, close window=False)

Close all documents in the current window, or in all windows if in one-window-per-editor
windowing policy. Leave currently visible documents (or active window in one-window-
per-editor-mode) if omit current is True. Abandons changes rather than saving them
when ignore changes is True. Close empty window and quit if all document windows
closed when close window is True.

close-window ()

Close the current window and all documents and panels in it Key Bindings: Normal:
Alt-F4; VI/VIM: Alt-F4; Emacs: Alt-F4; Brief: Alt-F4; Visual Studio: Alt-F4; OS X:
Option-F4

command-by-name (command name)

Execute given command by name, collecting any args as needed Key Bindings: Normal:
Ctrl-F12; VI/VIM: Ctrl-F12; Emacs: Ctrl-F12; Brief: Ctrl-F12; Visual Studio: Ctrl-
F12; OS X: Command-F12

copy-tutorial ()

Prompt user and copy the tutorial directory from the Wing IDE installation to the
directory selected by the user

edit-file-sets ()

Show the File Sets preference editor

edit-preferences-file ()

Edit the preferences as a text file

execute-file (loc=None)

Execute the file at the given location or use the active view if loc is None.

execute-os-command (title)

Execute one of the stored commands in the OS Commands tool, selecting it by its title

execute-os-command-by-id (id, raise panel=True)

209

Execute one of the stored commands in the OS Commands tool, selecting it by its
internal ID

execute-process (cmd line)

Execute the given command line in the OS Commands tool using default run directory
and environment as defined in project properties, or the values set in an existing com-
mand with the same command line in the OS Commands tool. Key Bindings: Emacs:
Alt-!

goto-bookmark (mark)

Goto named bookmark Key Bindings: Normal: Ctrl-Alt-G; Emacs: Ctrl-X R B; Visual
Studio: Ctrl-Alt-G; OS X: Command-Shift-D

goto-next-bookmark (current file only=False)

Go to the next bookmark, or the first one if no bookmark is selected. Stays within
the file in the current editor when current file only is True. Key Bindings: Normal:
Ctrl-Alt-Right; VI/VIM: Ctrl-Alt-Right; Emacs: Ctrl-Alt-Right; Brief: Ctrl-Alt-Right;
Visual Studio: Ctrl-Alt-Right

goto-previous-bookmark (current file only=False)

Go to the previous bookmark in the bookmark list, or the last one if no bookmark is
selected. Stays within the file in the current editor when current file only is True. Key
Bindings: Normal: Ctrl-Alt-Left; VI/VIM: Ctrl-Alt-Left; Emacs: Ctrl-Alt-Left; Brief:
Ctrl-Alt-Left; Visual Studio: Ctrl-Alt-Left

hide-line-numbers ()

Hide line numbers in editors

initiate-numeric-modifier (digit)

VI style repeat/numeric modifier for following command Key Bindings: VI/VIM: 1
invokes initiate-numeric-modifier(digit=1)

initiate-repeat ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Ctrl-U

initiate-repeat-0 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-0

210

initiate-repeat-1 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-1

initiate-repeat-2 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-2

initiate-repeat-3 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-3

initiate-repeat-4 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-4; Brief: Ctrl-R

initiate-repeat-5 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-5

initiate-repeat-6 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-6

initiate-repeat-7 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-7

initiate-repeat-8 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-8

initiate-repeat-9 ()

Enter a sequence of digits indicating number of times to repeat the subsequent command
or keystroke. Key Bindings: Emacs: Alt-9

internal-profile-start ()

Start internal profiling.

211

internal-profile-stop ()

Stop internal profiling.

new-blank-file (filename)

Create a new blank file on disk, open it in an editor, and add it to the current project.

new-directory (filename)

Create a new directory on disk and add it to the current project.

new-document-window ()

Create a new document window with same documents and panels as in the current
document window (if any; otherwise empty with default panels) Key Binding: Shift-F4

new-file (ext=’.py’)

Create a new file Key Bindings: Normal: Ctrl-N; Visual Studio: Ctrl-N; OS X:
Command-N

new-panel-window (panel type=None)

Create a new panel window of given type

next-document ()

Move to the next document alphabetically in the list of documents open in the cur-
rent window Key Bindings: Normal: Ctrl-Page Down; VI/VIM: Ctrl-Page Down;
Emacs: Ctrl-Page Down; Brief: Ctrl-Page Down; Visual Studio: Ctrl-Page Down; OS
X: Command-0

next-window ()

Switch to the next window alphabetically by title Key Bindings: Normal: Ctrl-Comma;
Emacs: Ctrl-O; Visual Studio: Ctrl-Comma

nth-document (n=<numeric modifier; default=0>)

Move to the nth document alphabetically in the list of documents open in the current
window Key Bindings: VI/VIM: Ctrl-ˆ

open (filename)

Open a file from disk using keyboard-driven selection of the file

open-from-keyboard (filename)

212

Open a file from disk using keyboard-driven selection of the file Key Bindings: Normal:
Ctrl-K; Emacs: Ctrl-X Ctrl-F; Visual Studio: Ctrl-K Ctrl-O

open-from-project ()

Open a document from the project by typing a fragment to match file names Key Bind-
ings: Normal: Ctrl-Shift-O; VI/VIM: Ctrl-Shift-O; Emacs: Ctrl-X Ctrl-O; Visual Stu-
dio: Ctrl-Shift-O; OS X: Command-Shift-O

open-gui (filename=None)

Open a file from disk, prompting with file selection dialog if necessary Key Bindings:
Normal: Ctrl-O; Brief: Alt-E; Visual Studio: Ctrl-O; OS X: Command-O

perspective-disable-auto ()

Disable auto-perspectives

perspective-enable-auto ()

Enable auto-perspectives

perspective-manage ()

Display the perspectives manager dialog

perspective-restore (name)

Restore the given named perspective.

previous-document ()

Move to the previous document alphabetically in the list of documents open in the
current window Key Bindings: Normal: Ctrl-Page Up; VI/VIM: Ctrl-Page Up; Emacs:
Ctrl-Page Up; Brief: Ctrl-Page Up; Visual Studio: Ctrl-Page Up; OS X: Command-9

previous-window ()

Switch to the previous window alphabetically by title

query-end-session ()

Process query-end-session message on win32

quit ()

Quit the application. Key Bindings: Normal: Ctrl-Q; Emacs: Ctrl-X Ctrl-C; Brief:
Alt-X; Visual Studio: Ctrl-Q; OS X: Command-Q

recent-document ()

213

Switches to previous document most recently visited in the current window or window set
if in one-window-per-editor windowing mode. Key Bindings: Normal: Ctrl-8; Emacs:
Ctrl-X D; Visual Studio: Ctrl-8; OS X: Command-8

reload-scripts ()

Force reload of all scripts, from all configured script directories. This is usually only
needed when adding a new script file. Existing scripts are automatically reloaded when
they change on disk.

remove-bookmark (mark)

Remove the given named bookmark

rename-current-file (filename)

Rename current file, moving the file on disk if it exists.

restart-wing ()

Restart the application

restore-default-tools ()

Hide/remove all tools and restore to original default state

save (close=False, force=False)

Save active document. Also close it if close is True. Key Bindings: Normal: Ctrl-S;
VI/VIM: Ctrl-S; Emacs: Ctrl-X Ctrl-S; Brief: Alt-W; Visual Studio: Ctrl-S; OS X:
Command-S

save-all (close window=False)

Save all unsaved items. Will prompt the user only for choosing names for new items
that don’t have a set filename Key Bindings: Visual Studio: Ctrl-Shift-S

save-as ()

Save active document to a new file Key Bindings: Normal: Ctrl-Shift-S; OS X:
Command-Shift-S

scratch-document (title=’Scratch’, mime type=’text/plain’)

Create a new scratch buffer with given title and mime type. The buffer is never marked
as changed but can be saved w/ save-as.

set-bookmark (mark)

214

Set a bookmark at current location on the editor. Mark is the project-wide textual name
of the bookmark. Key Bindings: Normal: Ctrl-Alt-M; Emacs: Ctrl-X R M; Brief: Alt-0
invokes set-bookmark(mark=“0”); Visual Studio: Ctrl-Alt-M; OS X: Command-D

show-bookmarks ()

Show a list of all currently defined bookmarks Key Bindings: Normal: Ctrl-Alt-K;
Emacs: Ctrl-X R Return; Brief: Alt-J; Visual Studio: Ctrl-Alt-K; OS X: Command-
Shift-K

show-bug-report-dialog ()

Show the bug reporting dialog

show-document (section=’manual’)

Show the given documentation section Key Bindings: OS X: Command-?

show-feedback-dialog ()

Show the feedback submission dialog

show-howtos ()

Show the How-Tos index

show-html-document (section=’manual’)

Show the given document section in HTML format.

show-line-numbers (show=1)

Show the line numbers in editors

show-manual-html ()

Show the HTML version of the Wing IDE users manual

show-manual-pdf ()

Show the PDF version of the Wing IDE users manual for either US Letter or A4,
depending on user’s print locale

show-panel (panel type, flash=True)

Show most recently visited panel instance of given type If no such panel exists, add one
to the primary window and show it. Returns the panel view object or None if not shown.
The valid panel types are:

project (*) browser (**) batch-search (*) interactive-search source-assistant (**) debug-

215

data debug-stack debug-io debug-exceptions debug-breakpoints (**) debug-probe (**)
debug-watch (**) debug-modules (**) python-shell messages (*) help indent (**) book-
marks (**) testing (**) source-editor os-command (**) templates (**) versioncontrol.svn
(**) versioncontrol.hg (**) versioncontrol.bzr (**) versioncontrol.cvs (**) versioncon-
trol.perforce (**)

(*) Wing Personal and Pro only (**) Wing Pro only

show-pdf-document (doc=’manual’)

Show the given document in PDF format. One of ’manual’, ’intro’, or ’howtos’.

show-preferences-gui (prefname=None)

Edit the preferences file using the preferences GUI, optionally opening to the section
that contains the given preference by name Key Bindings: OS X: Command-Comma

show-python-donate-html ()

Show the Python donations web page

show-python-for-beginners-html ()

Show the Python for Beginners web page

show-python-manual-html ()

Show the HTML version of the Python users manual

show-python-org-html ()

Show the python.org site home page

show-python-org-search-html ()

Show the python.org site search page

show-quickstart ()

Show the quick start guide

show-success-stories-html ()

Show the Python Success Stories page

show-support-html ()

Show the Wing IDE support site home page

show-text-registers ()

216

Show the contents of all non-empty text registers in a temporary editor

show-tutorial ()

Show the tutorial

show-wingtip (section=’/’)

Show the Wing Tips window

show-wingware-website ()

Show the Wingware home page

switch-document (document name)

Switches to named document. Name may either be the complete name or the last path
component of a path name. Key Bindings: Emacs: Ctrl-X B; Visual Studio: Ctrl-K
Ctrl-S

toggle-bookmark ()

Set or remove a bookmark at current location on the editor. When set, the name of
the bookmark is set to an auto-generated default. Key Bindings: Normal: Ctrl-Alt-T;
Emacs: Ctrl-X R T; Visual Studio: Ctrl-Alt-T; OS X: Command-H

toggle-bookmark-at-click ()

Set or remove a bookmark at current location on the editor. When set, the name of the
bookmark is set to an auto-generated default.

toolbar-search (text, next=False, set anchor=True, forward=True)

Search using given text and the toolbar search area. The search is always forward from
the current cursor or selection position

toolbar-search-focus ()

Move focus to toolbar search entry. Key Bindings: Normal: Ctrl-D; Visual Studio:
Ctrl-D

toolbar-search-next (set anchor=True)

Move to next match of text already entered in the toolbar search area

toolbar-search-prev (set anchor=True)

Move to previous match of text already entered in the toolbar search area

vi-goto-bookmark ()

217

Goto bookmark using single character name defined by the next pressed key Key Bind-
ings: VI/VIM: Grave

vi-set-bookmark ()

Set a bookmark at current location on the editor using the next key press as the name
of the bookmark. Key Bindings: VI/VIM: m

wing-tips ()

Display interactive tip manager

write-changed-file-and-close (filename)

Write current document to given location only if it contains any changes and close it.
Writes to current file name if given filename is None.

write-file (filename, start line=None, end line=None)

Write current file to a new location, optionally omitting all but the lines in the given
range. Key Bindings: Emacs: Ctrl-X Ctrl-W

write-file-and-close (filename)

Write current document to given location and close it. Saves to current file name if the
given filename is None. Key Bindings: VI/VIM: Shift-Z Shift-Z invokes write-file-and-
close(filename=None)

Dock Window Commands

Commands for windows that contain dockable tool areas. These are available for the
currently active window, if any.

enter-fullscreen ()

Hide both the vertical and horizontal tool areas and toolbar, saving previous state so it
can be restored later with exit fullscreen Key Binding: Shift-F2

exit-fullscreen ()

Restore previous non-fullscreen state of all tools and tool bar Key Binding: Shift-F2

hide-horizontal-tools ()

Hide the horizontal tool area

hide-vertical-tools ()

218

Hide the vertical tool area

minimize-horizontal-tools ()

Minimize the horizontal tool area Key Binding: F1

minimize-vertical-tools ()

Minimize the vertical tool area Key Binding: F2

show-horizontal-tools ()

Show the horizontal tool area Key Binding: F1

show-vertical-tools ()

Show the vertical tool area Key Binding: F2

toggle-horizontal-tools ()

Show or minimize the horizontal tool area

toggle-vertical-tools ()

Show or minimize the vertical tool area

Document Viewer Commands

Commands for the documentation viewer. These are available when the documentation
viewer has the keyboard focus.

copy ()

Copy any selected text. Key Bindings: Normal: Ctrl-Insert; VI/VIM: Ctrl-Insert;
Emacs: Ctrl-Insert; Brief: Ctrl-Insert; Visual Studio: Ctrl-Insert; OS X: Command-
C

document-back ()

Go back to prior document page in history of pages that have been viewed

document-contents ()

Go to the document contents page

document-forward ()

Go forward to next document page in history of pages that have been viewed

219

document-next ()

Go to the next page in the current document

document-previous ()

Go to the previous page in the current document

isearch-backward (search string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, optionally entering
the given search string. Key Bindings: Normal: Ctrl-Shift-U; Emacs: Ctrl-R; Visual
Studio: Ctrl-Shift-U; OS X: Command-Shift-U

isearch-backward-regex (search string=None, repeat=<numeric modifier; de-
fault=1>)

Initiate incremental regular expression mini-search backward from the cursor position,
optionally entering the given search string. Key Bindings: VI/VIM: ?; Emacs: Ctrl-
Alt-R

isearch-forward (search string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, optionally entering
the given search string. Key Bindings: Normal: Ctrl-U; Emacs: Ctrl-S; Visual Studio:
Ctrl-I; OS X: Command-U

isearch-forward-regex (search string=None, repeat=<numeric modifier; default=1>)

Initiate incremental regular expression mini-search forward from the cursor position,
optionally entering the given search string. Key Bindings: VI/VIM: /; Emacs: Ctrl-
Alt-S

isearch-repeat (reverse=False, repeat=<numeric modifier; default=1>)

Repeat the most recent isearch, using same string and regex/text. Reverse direction
when reverse is True. Key Bindings: VI/VIM: n

isearch-sel-backward (persist=True, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, using current se-
lection as the search string. Set persist=False to do the search but end the interactive
search session immediately. Key Bindings: Normal: Ctrl-Shift-B; VI/VIM: # invokes
isearch-sel-backward(persist=0, whole word=1); Emacs: Ctrl-C R; Visual Studio: Ctrl-
Shift-B

isearch-sel-forward (persist=True, repeat=<numeric modifier; default=1>)

220

Initiate incremental mini-search forward from the cursor position, using current selection
as the search string. Set persist=False to do the search but end the interactive search
session immediately. Key Bindings: Normal: Ctrl-B; VI/VIM: * invokes isearch-sel-
forward(persist=0, whole word=1); Emacs: Ctrl-C S; Visual Studio: Ctrl-B

repeat-search-char (opposite=0, repeat=<numeric modifier; default=1>)

Repeat the last search char operation, optionally in the opposite direction. Key Bind-
ings: VI/VIM: ;

search-char (dir=1, pos=0, repeat=<numeric modifier; default=1>, single line=0)

Search for the given character. Searches to right if dir > 0 and to left if dir < 0.
Optionally place cursor pos characters to left or right of the target (e.g., use -1 to place
one to left). If repeat> 1, the Nth match is found. Set single line=1 to search only within
the current line. Key Bindings: VI/VIM: F invokes search-char(dir=1, single line=1)

Global Documentation Commands

Commands for the documentation viewer. These are available when the documentation
viewer has the keyboard focus.

document-search (txt=None)

Search all documentation.

Window Commands

Commands for windows in general. These are available for the currently active window,
if any.

focus-current-editor ()

Move focus back to the current editor, out of any tool, if there is an active editor.

move-editor-focus (dir=1, wrap=True)

Move focus to next or previous editor split, optionally wrapping when the end is reached.
Key Bindings: VI/VIM: Ctrl-W j invokes move-editor-focus(wrap=False); Emacs: Ctrl-
X O

move-editor-focus-first ()

Move focus to first editor split Key Bindings: VI/VIM: Ctrl-W t

221

move-editor-focus-last ()

Move focus to last editor split Key Bindings: VI/VIM: Ctrl-W b

move-editor-focus-previous ()

Move focus to last editor split Key Bindings: VI/VIM: Ctrl-W p

move-focus ()

Move the keyboard focus forward within the Window to the next editable area Key
Binding: Shift-F1

Wing Tips Commands

Commands for the Wing Tips tool. These are only available when the tool is visible and
has focus

wingtips-close ()

Close the Wing Tips window

wingtips-contents ()

Go to the Wing Tips contents page

wingtips-next ()

Go to the next page in Wing Tips

wingtips-next-unseen ()

Go to a next unseen Wing Tips page

wingtips-previous ()

Go to the previous page in Wing Tips

12.2. Project Manager Commands

Project Manager Commands

These commands act on the project manager or on the current project, regardless of
whether the project list has the keyboard focus.

222

add-current-file-to-project ()

Add the frontmost currently open file to project Key Bindings: Normal: Ctrl-Shift-I;
VI/VIM: Ctrl-Shift-I; Emacs: Ctrl-Shift-I; Brief: Ctrl-Shift-I; Visual Studio: Ctrl-Shift-
I; OS X: Command-Shift-I

add-directory-to-project (loc=None, recursive=True, filter=’*’, in-
clude hidden=False, gui=True)

Add directory to project.

add-file-to-project ()

Add an existing file to the project.

browse-selected-from-project ()

Browse file currently selected in the project manager

clear-project-main-debug-file ()

Clear main debug file to nothing, so that debugging runs the frontmost window by
default

close-project ()

Close currently open project file

compact-project ()

Compact currently open project file by pruning information about non-existent files and
non-critical attribs for things like visual state.

debug-selected-from-project ()

Start debugging the file currently selected in the project manager

execute-selected-from-project ()

Execute the file currently selected in the project manager

new-project ()

Create a new project.

open-ext-selected-from-project ()

Open file currently selected in the project manager

open-project (filename=None)

223

Open the given project file, or prompt the user to select a file if the filename is not given.

open-selected-from-project ()

Open files currently selected in the project manager

remove-directory-from-project (loc=None, gui=True)

Remove directory from project.

remove-selection-from-project ()

Remove currently selected file or package from the project

rescan-project-directories (dirs=None, recursive=True)

Scan project directories for changes. If list of directories is not specified, currently
selected directories are used.

save-project ()

Save project file.

save-project-as (filename=None)

Save project file under the given name, or prompt user for a name if the filename is not
given.

set-current-as-main-debug-file ()

Set current frontmost file as the main debug file for this project

set-selected-as-main-debug-file ()

Set selected file as the main debug file for this project

show-analysis-stats ()

Show source code analysis statistics

show-current-file-in-project-tool ()

Show the currently selected file in the project view, if present. The selection may be the
current editor, if it has focus, or files selected in other views.

show-project-window ()

Raise the project manager window

use-normal-project ()

224

Store project in normal format

use-shared-project ()

Store project in sharable format

view-directory-properties (loc=None)

Show the project manager’s directory properties dialog

view-file-properties (loc=None, page=None, highlighted attribs=None)

View project properties for a particular file (current file if none is given) Key Bindings:
OS X: Command-I

view-project-as-flat-tree ()

View project as flattened directory tree from project file

view-project-as-tree ()

View project as directory tree from project file

view-project-properties (highlighted attrib=None)

View or change project-wide properties Key Bindings: Visual Studio: Alt-F7

Project View Commands

Commands that are available only when the project view has the keyboard focus.

browse-selected-from-project ()

Browse file currently selected in the project manager

debug-selected-from-project ()

Start debugging the file currently selected in the project manager

execute-selected-from-project ()

Execute the file currently selected in the project manager

move-files-selected-in-project-to-trash ()

Move the files and/or directories currently selected in the project view to the trash or
recycling bin

225

open-ext-selected-from-project ()

Open file currently selected in the project manager

open-selected-from-project ()

Open files currently selected in the project manager

remove-selection-from-project ()

Remove currently selected file or package from the project

rename-selected-in-project (new name)

Rename the currently selected file or directory in the project view

search-in-selected-from-project ()

Search in file or directory currently selected in the project manager

set-selected-as-main-debug-file ()

Set selected file as the main debug file for this project

view-project-as-flat-tree ()

View project as flattened directory tree from project file

view-project-as-tree ()

View project as directory tree from project file

12.3. Editor Commands

Editor Browse Mode Commands

Commands available only when the editor is in browse mode (used for VI bindings and
possibly others)

enter-insert-mode (pos=’before’)

Enter editor insert mode Key Bindings: VI/VIM: A invokes enter-insert-
mode(pos=“after”)

enter-replace-mode ()

Enter editor replace mode Key Bindings: VI/VIM: Shift-R

226

enter-visual-mode (unit=’char’)

Enter editor visual mode. Unit should be one of ’char’, ’line’, or ’block’.

previous-select ()

Turn on auto-select using previous mode and selection Key Bindings: VI/VIM: g v

start-select-block ()

Turn on auto-select block mode Key Bindings: Normal: Shift-Ctrl-F8; VI/VIM: Shift-
Ctrl-F8; Emacs: Shift-Ctrl-F8; Brief: Shift-Ctrl-F8; Visual Studio: Shift-Ctrl-F8; OS
X: Shift-Command-F8

start-select-char ()

Turn on auto-select mode character by character Key Binding: Shift-F8

start-select-line ()

Turn on auto-select mode line by line Key Bindings: Normal: Ctrl-F8; VI/VIM: Ctrl-F8;
Emacs: Ctrl-F8; Brief: Ctrl-F8; Visual Studio: Ctrl-F8; OS X: Command-F8

vi-command-by-name ()

Execute a VI command (implements “:” commands from VI) Key Bindings: VI/VIM: :

vi-set (command)

Perform vi’s :set action. The command is the portion after :set. Currently supports
ic, noic, ai, noai, number or nu, nonumber or nonu, ro, noro, sm, and nosm. Multiple
options can be specied in one call as for :set ic sm ai

Editor Insert Mode Commands

Commands available only when editor is in insert mode (used for VI bindings and pos-
sibly others)

enter-browse-mode (provisional=False)

Enter editor browse mode Key Bindings: VI/VIM: Esc

Editor Non Modal Commands

Commands available only when the editor is in non-modal editing mode

227

exit-visual-mode ()

Exit visual mode and return back to default mode Key Binding: Esc

start-select-block ()

Turn on auto-select block mode Key Bindings: Normal: Shift-Ctrl-F8; VI/VIM: Shift-
Ctrl-F8; Emacs: Shift-Ctrl-F8; Brief: Shift-Ctrl-F8; Visual Studio: Shift-Ctrl-F8; OS
X: Shift-Command-F8

start-select-char ()

Turn on auto-select mode character by character Key Binding: Shift-F8

start-select-line ()

Turn on auto-select mode line by line Key Bindings: Normal: Ctrl-F8; VI/VIM: Ctrl-F8;
Emacs: Ctrl-F8; Brief: Ctrl-F8; Visual Studio: Ctrl-F8; OS X: Command-F8

Editor Panel Commands

Commands that control splitting up an editor panel. These are available when one split
in the editor panel has the keyboard focus.

split-horizontally (new=0)

Split current view horizontally. Key Bindings: VI/VIM: Ctrl-W v; Emacs: Ctrl-X 3

split-horizontally-open-file (filename)

Split current view horizontally and open selected file

split-vertically (new=0)

Split current view vertically. Create new editor in new view when new==1. Key Bind-
ings: VI/VIM: Ctrl-W s; Emacs: Ctrl-X 2; Brief: F3

split-vertically-open-file (filename)

Split current view vertically and open selected file

unsplit (action=’current’)

Unsplit all editors so there’s only one. Action specifies how to choose the remaining
displayed editor. One of:

current -- Show current editor

228

close -- Close current editor before unsplitting

recent -- Change to recent buffer before unsplitting

recent-or-close -- Change to recent buffer before closing

split, or close the current buffer if there is only

one split left.

NOTE: The parameters for this command are subject to change in the future. Key
Bindings: VI/VIM: Ctrl-W q invokes unsplit(action=“close”); Emacs: Ctrl-X 1; Brief:
F4

Editor Replace Mode Commands

Commands available only when editor is in replace mode (used for VI bindings and
possibly others)

enter-browse-mode (provisional=False)

Enter editor browse mode Key Bindings: VI/VIM: Esc

Editor Split Commands

Commands for a particular editor split, available when the editor in that split has the
keyboard focus. Additional commands affecting the editor’s content are defined sepa-
rately.

activate-file-option-menu ()

Activate the file menu for the editor. Key Bindings: Normal: Ctrl-1; VI/VIM: Ctrl-1;
Emacs: Ctrl-1; Brief: Ctrl-1; Visual Studio: Ctrl-1; OS X: Command-1

grow-split-horizontally ()

Increase width of this split

grow-split-vertically ()

Increase height of this split Key Bindings: VI/VIM: Ctrl-W +

next-bookmark ()

Deprecated: Use command visit history next instead.

previous-bookmark ()

229

Deprecated: Use command visit history previous instead.

shrink-split-horizontally ()

Decrease width of this split

shrink-split-vertically ()

Decrease height of this split Key Bindings: VI/VIM: Ctrl-W -

visit-history-next ()

Move forward in history to next visited editor position Key Bindings: Normal: Alt-Right;
VI/VIM: Alt-Right; Emacs: Alt-Right; Brief: Alt-Right; Visual Studio: Alt-Right; OS
X: Ctrl-.

visit-history-previous ()

Move back in history to previous visited editor position Key Bindings: Normal: Alt-
Left; VI/VIM: Alt-Left; Emacs: Alt-Left; Brief: Alt-Left; Visual Studio: Alt-Left; OS
X: Ctrl-Comma

Editor Visual Mode Commands

Commands available only when the editor is in visual mode (used for VI bindings and
some others)

enter-browse-mode ()

Enter editor browse mode Key Bindings: VI/VIM: Esc

enter-insert-mode (pos=’delete-sel’)

Enter editor insert mode Key Bindings: VI/VIM: A invokes enter-insert-
mode(pos=“after”)

enter-visual-mode (unit=’char’)

Alter type of editor visual mode or exit back to browse mode. Unit should be one of
’char’, ’line’, or ’block’.

exit-visual-mode ()

Exit visual mode and return back to default mode Key Binding: Esc

vi-command-by-name ()

230

Execute a VI command (implements “:” commands from VI) Key Bindings: VI/VIM: :

Active Editor Commands

Commands that only apply to editors when they have the keyboard focus. These com-
mands are also available for the Python Shell, Debug Probe, and Debug I/O tools, which
subclass the source editor, although some of the commands are modified or disabled as
appropriate in those contexts.

activate-symbol-option-menu-1 ()

Activate the 1st symbol menu for the editor. Key Bindings: Normal: Ctrl-2; VI/VIM:
Ctrl-2; Emacs: Ctrl-2; Brief: Ctrl-2; Visual Studio: Ctrl-2; OS X: Command-2

activate-symbol-option-menu-2 ()

Activate the 2nd symbol menu for the editor. Key Bindings: Normal: Ctrl-3; VI/VIM:
Ctrl-3; Emacs: Ctrl-3; Brief: Ctrl-3; Visual Studio: Ctrl-3; OS X: Command-3

activate-symbol-option-menu-3 ()

Activate the 3rd symbol menu for the editor. Key Bindings: Normal: Ctrl-4; VI/VIM:
Ctrl-4; Emacs: Ctrl-4; Brief: Ctrl-4; Visual Studio: Ctrl-4; OS X: Command-4

activate-symbol-option-menu-4 ()

Activate the 4th symbol menu for the editor. Key Bindings: Normal: Ctrl-5; VI/VIM:
Ctrl-5; Emacs: Ctrl-5; Brief: Ctrl-5; Visual Studio: Ctrl-5; OS X: Command-5

backward-char (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character Key Bindings: Normal: Left; VI/VIM: Left;
Emacs: Left; Brief: Left; Visual Studio: Left; OS X: Option-Up

backward-char-extend (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character, adjusting the selection range to new position Key
Binding: Shift-Left

backward-char-extend-rect (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor backward one character, adjusting the rectangular selection range to new
position Key Bindings: Normal: Shift-Alt-Left; VI/VIM: Shift-Alt-Left; Emacs: Shift-
Alt-Left; Brief: Shift-Alt-Left; Visual Studio: Shift-Alt-Left; OS X: Ctrl-Option-Left

backward-delete-char (repeat=<numeric modifier; default=1>)

231

Delete one character behind the cursor, or the current selection if not empty. Key Bind-
ings: Normal: BackSpace; VI/VIM: BackSpace; Emacs: BackSpace; Brief: BackSpace;
Visual Studio: BackSpace; OS X: Backspace

backward-delete-word (repeat=<numeric modifier; default=1>)

Delete one word behind of the cursor Key Bindings: Normal: Ctrl-BackSpace; VI/VIM:
Ctrl-BackSpace; Emacs: Ctrl-BackSpace; Brief: Ctrl-BackSpace; Visual Studio: Ctrl-
BackSpace; OS X: Ctrl-Option-Delete

backward-page (repeat=<numeric modifier; default=1>)

Move cursor backward one page Key Bindings: Normal: Prior; VI/VIM: Prior; Emacs:
Prior; Brief: Prior; Visual Studio: Prior; OS X: Ctrl-Up

backward-page-extend (repeat=<numeric modifier; default=1>)

Move cursor backward one page, adjusting the selection range to new position Key
Bindings: Normal: Shift-Prior; VI/VIM: Shift-Prior; Emacs: Shift-Prior; Brief: Shift-
Prior; Visual Studio: Shift-Prior; OS X: Shift-Page Up

backward-paragraph (repeat=<numeric modifier; default=1>)

Move cursor backward one paragraph (to next all-whitespace line). Key Bindings:
VI/VIM: {

backward-paragraph-extend (repeat=<numeric modifier; default=1>)

Move cursor backward one paragraph (to next all-whitespace line), adjusting the selec-
tion range to new position.

backward-tab ()

Outdent line at current position Key Binding: Shift-Tab

backward-word (delimiters=None, gravity=’start’, repeat=<numeric modifier; de-
fault=1>)

Move cursor backward one word. Optionally, provide a string that contains the delimiters
to define which characters are part of a word. Gravity may be“start”or“end”to indicate
whether cursor is placed at start or end of the word. Key Bindings: Normal: Ctrl-Left;
VI/VIM: Ctrl-Left; Emacs: Ctrl-Left; Brief: Ctrl-Left; Visual Studio: Ctrl-Left; OS X:
Option-Left

backward-word-extend (delimiters=None, gravity=’start’, repeat=<numeric modi-
fier; default=1>)

Move cursor backward one word, adjusting the selection range to new position. Op-

232

tionally, provide a string that contains the delimiters to define which characters are
part of a word. Gravity may be “start” or “end” to indicate whether cursor is placed at
start or end of the word. Key Bindings: Normal: Ctrl-Shift-Left; VI/VIM: Ctrl-Shift-
Left; Emacs: Ctrl-Shift-Left; Brief: Ctrl-Shift-Left; Visual Studio: Ctrl-Shift-Left; OS
X: Option-Shift-Left

beginning-of-line (toggle=True)

Move to beginning of current line. When toggle is True, moves to the end of the leading
white space if already at the beginning of the line (and vice versa). Key Bindings:
VI/VIM: 0 invokes beginning-of-line(toggle=0); Emacs: Home; Brief: Shift-Home; OS
X: Command-Left

beginning-of-line-extend (toggle=True)

Move to beginning of current line, adjusting the selection range to the new position.
When toggle is True, moves to the end of the leading white space if already at the
beginning of the line (and vice versa). Key Bindings: Emacs: Shift-Home; OS X: Ctrl-
Shift-Left

beginning-of-line-text (toggle=True)

Move to end of the leading white space, if any, on the current line. If toggle is True,
moves to the beginning of the line if already at the end of the leading white space (and
vice versa). Key Bindings: Normal: Home; VI/VIM: Home; Emacs: Home; Brief:
Home; Visual Studio: Home

beginning-of-line-text-extend (toggle=True)

Move to end of the leading white space, if any, on the current line, adjusting the selection
range to the new position. If toggle is True, moves to the beginning of the line if already
at the end of the leading white space (and vice versa). Key Bindings: Normal: Shift-
Home; VI/VIM: Shift-Home; Emacs: Shift-Home; Brief: Shift-Home; Visual Studio:
Shift-Home

beginning-of-screen-line ()

Move to beginning of current wrapped line Key Bindings: VI/VIM: g 0

beginning-of-screen-line-extend ()

Move to beginning of current wrapped line, extending selection

beginning-of-screen-line-text ()

Move to first non-blank character at beginning of current wrapped line Key Bindings:
VI/VIM: g ˆ

233

beginning-of-screen-line-text-extend ()

Move to first non-blank character at beginning of current wrapped line, extending selec-
tion

brace-match ()

Match brace at current cursor position, selecting all text between the two and hilighting
the braces Key Bindings: Normal: Ctrl-E; Emacs: Ctrl-M; Visual Studio: Ctrl-E; OS
X: Command-B

cancel ()

Cancel current editor command

cancel-autocompletion ()

Cancel any active autocompletion.

case-lower (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no
selection, to lower case Key Bindings: Visual Studio: Ctrl-U

case-lower-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to lower case Key Bindings:
VI/VIM: g u

case-swap (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no
selection, so each letter is the opposite of its current case Key Bindings: VI/VIM: ˜

case-swap-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement so each letter is the opposite of
its current case Key Bindings: VI/VIM: g ˜

case-title (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no
selection, to title case (first letter of each word capitalized)

case-title-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to title case (first letter of each
word capitalized)

234

case-upper (repeat=<numeric modifier; default=1>)

Change case of the current selection, or character ahead of the cursor if there is no
selection, to upper case Key Bindings: Visual Studio: Ctrl-Shift-U

case-upper-next-move (repeat=<numeric modifier; default=1>)

Change case of text spanned by next cursor movement to upper case Key Bindings:
VI/VIM: g Shift-U

center-cursor ()

Scroll so cursor is centered on display Key Bindings: VI/VIM: z .; Emacs: Ctrl-L; Brief:
Ctrl-C

clear ()

Clear selected text

clear-move-command ()

Clear any pending move command action, as for VI mode Key Bindings: VI/VIM: Esc

complete-autocompletion (append=”)

Complete the current active autocompletion.

copy ()

Copy selected text Key Bindings: Normal: Ctrl-Insert; VI/VIM: Ctrl-Insert; Emacs:
Ctrl-Insert; Brief: Ctrl-Insert; Visual Studio: Ctrl-Insert; OS X: Command-C

copy-line ()

Copy the current lines(s) to clipboard Key Bindings: Brief: KP Add

copy-range (start line, end line, target line)

Copy the given range of lines to the given target line. Copies to current line if target line
is ’.’.

cursor-move-to-bottom (offset=<numeric modifier; default=0>)

Move cursor to bottom of display (without scrolling), optionally at an offset of given
number of lines before bottom Key Bindings: VI/VIM: Shift-L

cursor-move-to-center ()

Move cursor to center of display (without scrolling) Key Bindings: VI/VIM: Shift-M

235

cursor-move-to-top (offset=<numeric modifier; default=0>)

Move cursor to top of display (without scrolling), optionally at an offset of given number
of lines below top Key Bindings: VI/VIM: Shift-H

cursor-to-bottom ()

Scroll so cursor is centered at bottom of display Key Bindings: VI/VIM: z -

cursor-to-top ()

Scroll so cursor is centered at top of display Key Bindings: VI/VIM: z Return

cut ()

Cut selected text Key Bindings: Normal: Shift-Delete; VI/VIM: Shift-Delete; Emacs:
Shift-Delete; Brief: Shift-Delete; Visual Studio: Shift-Delete; OS X: Command-X

cut-line ()

Cut the current line(s) to clipboard. Key Bindings: Brief: KP Subtract; Visual Studio:
Ctrl-L

cut-selection-or-line ()

Cut the current selection or current line if there is no selection. The text is placed on
the clipboard. Key Bindings: Visual Studio: Shift-Delete

delete-line (repeat=<numeric modifier; default=1>)

Delete the current line or lines when the selection spans multiple lines or given repeat is
> 1 Key Bindings: Normal: Ctrl-Shift-C

delete-line-insert (repeat=<numeric modifier; default=1>)

Delete the current line or lines when the selection spans multiple lines or given repeat
is > 1. Enters insert mode (when working with modal key bindings). Key Bindings:
VI/VIM: Shift-S

delete-next-move (repeat=<numeric modifier; default=1>)

Delete the text covered by the next cursor move command. Key Bindings: VI/VIM: d

delete-next-move-insert (repeat=<numeric modifier; default=1>)

Delete the text covered by the next cursor move command and then enter insert mode
(when working in a modal editor key binding) Key Bindings: VI/VIM: c

delete-range (start line, end line, register=None)

236

Delete given range of lines, copying them into given register (or currently selected default
register if register is None

delete-to-end-of-line (repeat=<numeric modifier; default=1>, post offset=0)

Delete everything between the cursor and end of line Key Bindings: VI/VIM: Shift-D
invokes delete-to-end-of-line(post offset=-1)

delete-to-end-of-line-insert (repeat=<numeric modifier; default=1>)

Delete everything between the cursor and end of line and enter insert move (when work-
ing in a modal editor key binding) Key Bindings: VI/VIM: Shift-C

delete-to-start-of-line ()

Delete everything between the cursor and start of line Key Bindings: VI/VIM: Ctrl-U

duplicate-line (pos=’below’)

Duplicate the current line or lines. Places the duplicate on the line following the selection
if pos is ’below’ or before the selection if it is ’above’. Key Bindings: Normal: Ctrl-Shift-
V

end-of-document ()

Move cursor to end of document Key Bindings: Normal: Ctrl-End; VI/VIM: Ctrl-End;
Emacs: Ctrl-End; Brief: Ctrl-End; Visual Studio: Ctrl-End; OS X: Command-Down

end-of-document-extend ()

Move cursor to end of document, adjusting the selection range to new position Key
Bindings: Normal: Ctrl-Shift-End; VI/VIM: Ctrl-Shift-End; Emacs: Ctrl-Shift-End;
Brief: Ctrl-Shift-End; Visual Studio: Ctrl-Shift-End; OS X: Command-Shift-Down

end-of-line (count=<numeric modifier; default=1>)

Move to end of current line Key Bindings: Normal: End; VI/VIM: End; Emacs: End;
Brief: End; Visual Studio: End; OS X: Ctrl-Right

end-of-line-extend (count=<numeric modifier; default=1>)

Move to end of current line, adjusting the selection range to new position Key Bindings:
Normal: Shift-End; VI/VIM: Shift-End; Emacs: Shift-End; Brief: Shift-End; Visual
Studio: Shift-End; OS X: Ctrl-Shift-Right

end-of-screen-line (count=<numeric modifier; default=1>)

Move to end of current wrapped line Key Bindings: VI/VIM: g $

237

end-of-screen-line-extend (count=<numeric modifier; default=1>)

Move to end of current wrapped line, extending selection

exchange-point-and-mark ()

When currently marking text, this exchanges the current position and mark ends of the
current selection Key Bindings: VI/VIM: o; Emacs: Ctrl-X Ctrl-X

filter-next-move (repeat=<numeric modifier; default=1>)

Filter the lines covered by the next cursor move command through an external command
and replace the lines with the result Key Bindings: VI/VIM: !

filter-range (cmd, start line=0, end line=-1)

Filter a range of lines in the editor through an external command and replace the lines
with the result. Filters the whole file by default. Filters nothing and opens up a scratch
buffer with the output of the command if start line and end line are both -1.

filter-selection (cmd)

Filter the current selection through an external command and replace the lines with the
result Key Bindings: VI/VIM: !

form-feed ()

Place a form feed character at the current cursor position

forward-char (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character Key Binding: Right

forward-char-extend (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character, adjusting the selection range to new position Key
Binding: Shift-Right

forward-char-extend-rect (wrap=1, repeat=<numeric modifier; default=1>)

Move cursor forward one character, adjusting the rectangular selection range to new po-
sition Key Bindings: Normal: Shift-Alt-Right; VI/VIM: Shift-Alt-Right; Emacs: Shift-
Alt-Right; Brief: Shift-Alt-Right; Visual Studio: Shift-Alt-Right; OS X: Ctrl-Option-
Right

forward-delete-char (repeat=<numeric modifier; default=1>)

Delete one character in front of the cursor Key Binding: Delete

238

forward-delete-char-insert (repeat=<numeric modifier; default=1>)

Delete one char in front of the cursor and enter insert mode (when working in modal
key bindings) Key Bindings: VI/VIM: s

forward-delete-char-within-line (repeat=<numeric modifier; default=1>)

Delete one character in front of the cursor unless at end of line, in which case delete
backward. Do nothing if the line is empty. This is VI style ’x’ in browser mode. Key
Bindings: VI/VIM: x

forward-delete-word (repeat=<numeric modifier; default=1>)

Delete one word in front of the cursor Key Bindings: Normal: Ctrl-Delete; VI/VIM:
Ctrl-Delete; Emacs: Ctrl-Delete; Brief: Ctrl-Delete; Visual Studio: Ctrl-Delete; OS X:
Option-Delete

forward-delete-word-insert (repeat=<numeric modifier; default=1>)

Delete one word in front of the cursor and enter insert mode (when working in modal
key bindings)

forward-page (repeat=<numeric modifier; default=1>)

Move cursor forward one page Key Bindings: Normal: Next; VI/VIM: Next; Emacs:
Next; Brief: Next; Visual Studio: Next; OS X: Ctrl-Down

forward-page-extend (repeat=<numeric modifier; default=1>)

Move cursor forward one page, adjusting the selection range to new position Key Bind-
ings: Normal: Shift-Next; VI/VIM: Shift-Next; Emacs: Shift-Next; Brief: Shift-Next;
Visual Studio: Shift-Next; OS X: Shift-Page Down

forward-paragraph (repeat=<numeric modifier; default=1>)

Move cursor forward one paragraph (to next all-whitespace line). Key Bindings:
VI/VIM: }

forward-paragraph-extend (repeat=<numeric modifier; default=1>)

Move cursor forward one paragraph (to next all-whitespace line), adjusting the selection
range to new position.

forward-tab ()

Place a tab character at the current cursor position Key Binding: Ctrl-T

forward-word (delimiters=None, gravity=’start’, repeat=<numeric modifier; de-
fault=1>)

239

Move cursor forward one word. Optionally, provide a string that contains the delimiters
to define which characters are part of a word. Gravity may be“start”or“end”to indicate
whether cursor is placed at start or end of the word. Key Bindings: Normal: Ctrl-Right;
VI/VIM: Ctrl-Right; Emacs: Ctrl-Right; Brief: Ctrl-Right; Visual Studio: Ctrl-Right;
OS X: Option-Right

forward-word-extend (delimiters=None, gravity=’start’, repeat=<numeric modifier;
default=1>)

Move cursor forward one word, adjusting the selection range to new position. Optionally,
rovide a string that contains the delimiters to define which characters are part of a word.
Gravity may be “start” or “end” to indicate whether cursor is placed at start or end of
the word. Key Bindings: Normal: Ctrl-Shift-Right; VI/VIM: Ctrl-Shift-Right; Emacs:
Ctrl-Shift-Right; Brief: Ctrl-Shift-Right; Visual Studio: Ctrl-Shift-Right; OS X: Option-
Shift-Right

hide-selection ()

Turn off display of the current text selection

indent-to-match ()

Indent the current line or selected region to match indentation of preceding non-blank
line Key Binding: Ctrl-=

indent-to-next-indent-stop ()

Indent to next indent stop from the current position. Acts like indent command if
selection covers multiple lines.

isearch-backward (search string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search backward from the cursor position, optionally entering
the given search string Key Bindings: Normal: Ctrl-Shift-U; Emacs: Ctrl-R; Visual
Studio: Ctrl-Shift-U; OS X: Command-Shift-U

isearch-backward-regex (search string=None, repeat=<numeric modifier; de-
fault=1>)

Initiate incremental regular expression mini-search backward from the cursor position,
optionally entering the given search string Key Bindings: VI/VIM: ?; Emacs: Ctrl-Alt-R

isearch-forward (search string=None, repeat=<numeric modifier; default=1>)

Initiate incremental mini-search forward from the cursor position, optionally entering
the given search string Key Bindings: Normal: Ctrl-U; Emacs: Ctrl-S; Visual Studio:
Ctrl-I; OS X: Command-U

240

isearch-forward-regex (search string=None, repeat=<numeric modifier; default=1>)

Initiate incremental regular expression mini-search forward from the cursor position,
optionally entering the given search string Key Bindings: VI/VIM: /; Emacs: Ctrl-Alt-
S

isearch-repeat (reverse=False, repeat=<numeric modifier; default=1>)

Repeat the most recent isearch, using same string and regex/text. Reverse direction
when reverse is True. Key Bindings: VI/VIM: n

isearch-sel-backward (persist=True, whole word=False, repeat=<numeric modifier;
default=1>)

Initiate incremental mini-search backward from the cursor position, using current se-
lection as the search string. Set persist=False to do the search but end the interactive
search session immediately. Key Bindings: Normal: Ctrl-Shift-B; VI/VIM: # invokes
isearch-sel-backward(persist=0, whole word=1); Emacs: Ctrl-C R; Visual Studio: Ctrl-
Shift-B

isearch-sel-forward (persist=True, whole word=False, repeat=<numeric modifier; de-
fault=1>)

Initiate incremental mini-search forward from the cursor position, using current selection
as the search string. Set persist=False to do the search but end the interactive search
session immediately. Key Bindings: Normal: Ctrl-B; VI/VIM: * invokes isearch-sel-
forward(persist=0, whole word=1); Emacs: Ctrl-C S; Visual Studio: Ctrl-B

kill-line ()

Kill rest of line from cursor to end of line, and place it into the clipboard with any other
contiguously removed lines. End-of-line is removed only if there is nothing between the
cursor and the end of the line. Key Bindings: Emacs: Ctrl-K; Brief: Alt-D; OS X:
Ctrl-k

middle-of-screen-line ()

Move to middle of current wrapped line Key Bindings: VI/VIM: g m

middle-of-screen-line-extend ()

Move to middle of current wrapped line, extending selection

move-range (start line, end line, target line)

Move the given range of lines to the given target line. Moves to current line if target line
is ’.’.

241

move-to-register (unit=’char’, cut=0, num=<numeric modifier; default=1>)

Cut or copy a specified number of characters or lines, or the current selection. Set cut=1
to remove the range of text from the editor after moving to register (otherwise it is just
copied). Unit should be one of ’char’ or ’line’ or ’sel’ for current selection. Key Bindings:
VI/VIM: Shift-Y invokes move-to-register(unit=“line”)

move-to-register-next-move (cut=0, repeat=<numeric modifier; default=1>)

Move the text spanned by the next cursor motion to a register Key Bindings: VI/VIM:
y

new-line ()

Place a new line at the current cursor position Key Binding: Return

next-line (cursor=’same’, repeat=<numeric modifier; default=1>)

Move to screen next line, optionally repositioning character within line: ’same’ to leave
in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.
Key Binding: Down

next-line-extend (cursor=’same’, repeat=<numeric modifier; default=1>)

Move to next screen line, adjusting the selection range to new position, optionally reposi-
tioning character within line: same’ to leave in same horizontal position, ’start’ at start,
’end’ at end, or ’fnb’ for first non-blank char. Key Binding: Shift-Down

next-line-extend-rect (cursor=’same’, repeat=<numeric modifier; default=1>)

Move to next screen line, adjusting the rectangular selection range to new position, op-
tionally repositioning character within line: same’ to leave in same horizontal position,
’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char. Key Bindings: Nor-
mal: Shift-Alt-Down; VI/VIM: Shift-Alt-Down; Emacs: Shift-Alt-Down; Brief: Shift-
Alt-Down; Visual Studio: Shift-Alt-Down; OS X: Ctrl-Option-Down

next-line-in-file (cursor=’start’, repeat=<numeric modifier; default=1>)

Move to next line in file, repositioning character within line: ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char. Key Bindings: VI/VIM: + invokes next-line-in-
file(cursor=“fnb”)

open-line ()

Open the current line by inserting a newline after the caret Key Bindings: Emacs:
Ctrl-O

paste ()

242

Paste text from clipboard Key Bindings: Normal: Shift-Insert; VI/VIM: Shift-Insert;
Emacs: Shift-Insert; Brief: Shift-Insert; Visual Studio: Shift-Insert; OS X: Ctrl-y

paste-register (pos=1, indent=0, cursor=-1)

Paste text from register as before or after the current position. If the register contains
only lines, then the lines are pasted before or after current line (rather than at cursor).
If the register contains fragments of lines, the text is pasted over the current selection
or either before or after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set
indent=1 to indent the pasted text to match current line. Set cursor=-1 to place cursor
before lines or cursor=1 to place it after lines after paste completes. Key Bindings:
VI/VIM: p

previous-line (cursor=’same’, repeat=<numeric modifier; default=1>)

Move to previous screen line, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-
blank char. Key Binding: Up

previous-line-extend (cursor=’same’, repeat=<numeric modifier; default=1>)

Move to previous screen line, adjusting the selection range to new position, optionally
repositioning character within line: same’ to leave in same horizontal position, ’start’ at
start, ’end’ at end, or ’fnb’ for first non-blank char. Key Binding: Shift-Up

previous-line-extend-rect (cursor=’same’, repeat=<numeric modifier; default=1>)

Move to previous screen line, adjusting the rectangular selection range to new position,
optionally repositioning character within line: same’ to leave in same horizontal position,
’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char. Key Bindings: Normal:
Shift-Alt-Up; VI/VIM: Shift-Alt-Up; Emacs: Shift-Alt-Up; Brief: Shift-Alt-Up; Visual
Studio: Shift-Alt-Up; OS X: Ctrl-Option-Up

previous-line-in-file (cursor=’start’, repeat=<numeric modifier; default=1>)

Move to previous line in file, repositioning character within line: ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char. Key Bindings: VI/VIM: - invokes previous-line-
in-file(cursor=“fnb”)

profile-editor-start ()

Turn on profiling for the current source editor

profile-editor-stop ()

Stop profiling and print stats to stdout

reanalyze-file ()

243

Rescan file for code analysis.

redo ()

Redo last action Key Bindings: Normal: Ctrl-Y; VI/VIM: Ctrl-R; Emacs: Ctrl-.; Brief:
Ctrl-U; Visual Studio: Ctrl-Y; OS X: Command-Shift-Z

repeat-command (repeat=<numeric modifier; default=1>)

Repeat the last editor command Key Bindings: VI/VIM: .

repeat-search-char (opposite=0, repeat=<numeric modifier; default=1>)

Repeat the last search char operation, optionally in the opposite direction. Key Bind-
ings: VI/VIM: ;

rstrip-each-line ()

Strip trailing whitespace from each line.

scroll-text-down (repeat=<numeric modifier; default=1>, move cursor=True)

Scroll text down a line w/o moving cursor’s relative position on screen. Repeat is
number of lines or if >0 and <1.0 then percent of screen. Set move cursor to False to
leave cursor in current position within the source, otherwise it is moved so the cursor
remains on same screen line. Key Bindings: Normal: Ctrl-Down; VI/VIM: Ctrl-Down;
Emacs: Ctrl-Down; Brief: Ctrl-Down; Visual Studio: Ctrl-Down

scroll-text-left (repeat=<numeric modifier; default=1>)

Scroll text left a column w/o moving cursor’s relative position on screen. Repeat is
number of columns or if >0 and <1.0 then percent of screen. Key Bindings: VI/VIM:
z l

scroll-text-page-down (repeat=<numeric modifier; default=1>, move cursor=True)

Scroll text down a page w/o moving cursor’s relative position on screen. Repeat is
number of pages or if >0 and <1.0 then percent of screen. Set move cursor to False to
leave cursor in current position within the source, otherwise it is moved so the cursor
remains on same screen line.

scroll-text-page-up (repeat=<numeric modifier; default=1>, move cursor=True)

Scroll text up a page w/o moving cursor’s relative position on screen. Repeat is number
of pages or if >0 and <1.0 then percent of screen. Set move cursor to False to leave
cursor in current position within the source, otherwise it is moved so the cursor remains
on same screen line.

244

scroll-text-right (repeat=<numeric modifier; default=1>)

Scroll text right a column w/o moving cursor’s relative position on screen. Repeat is
number of columns or if >0 and <1.0 then percent of screen. Key Bindings: VI/VIM:
z h

scroll-text-up (repeat=<numeric modifier; default=1>, move cursor=True)

Scroll text up a line w/o moving cursor’s relative position on screen. Repeat is number of
lines or if >0 and <1.0 then percent of screen. Set move cursor to False to leave cursor
in current position within the source, otherwise it is moved so the cursor remains on
same screen line. Key Bindings: Normal: Ctrl-Up; VI/VIM: Ctrl-Up; Emacs: Ctrl-Up;
Brief: Ctrl-Up; Visual Studio: Ctrl-Up

scroll-to-cursor ()

Scroll to current cursor position, if not already visible

search-char (dir=1, pos=0, repeat=<numeric modifier; default=1>, single line=0)

Search for the given character. Searches to right if dir > 0 and to left if dir < 0.
Optionally place cursor pos characters to left or right of the target (e.g., use -1 to place
one to left). If repeat> 1, the Nth match is found. Set single line=1 to search only within
the current line. Key Bindings: VI/VIM: F invokes search-char(dir=1, single line=1)

select-all ()

Select all text in the editor Key Bindings: Normal: Ctrl-A; Visual Studio: Ctrl-A; OS
X: Command-A

select-lines ()

Select the current line or lines

set-mark-command (unit=’char’)

Set start of text marking for selection at current cursor position. Subsequently, all cursor
move operations will automatically extend the text selection until stop-mark-command
is issued. Unit defines what is selected: can be one of char, line, or block (rectangle).
Key Bindings: Emacs: Ctrl-Space

set-register ()

Set the register to use for subsequent cut/copy/paste operations Key Bindings: VI/VIM:
“

show-autocompleter ()

245

Show the auto-completer for current cursor position Key Bindings: Normal: Ctrl-space;
Emacs: Alt-Tab; Visual Studio: Ctrl-J; OS X: Ctrl-space

show-selection ()

Turn on display of the current text selection

start-of-document ()

Move cursor to start of document Key Bindings: Normal: Ctrl-Home; VI/VIM: Ctrl-
Home; Emacs: Ctrl-Home; Brief: Ctrl-Home; Visual Studio: Ctrl-Home; OS X:
Command-Up

start-of-document-extend ()

Move cursor to start of document, adjusting the selection range to new position Key
Bindings: Normal: Ctrl-Shift-Home; VI/VIM: Ctrl-Shift-Home; Emacs: Ctrl-Shift-
Home; Brief: Ctrl-Shift-Home; Visual Studio: Ctrl-Shift-Home; OS X: Command-Shift-
Up

stop-mark-command (deselect=True)

Stop text marking for selection at current cursor position, leaving the selection set as
is. Subsequent cursor move operations will deselect the range and set selection to cursor
position. Deselect immediately when deselect is True. Key Bindings: Emacs: Ctrl-G

swap-lines ()

Swap the line at start of current selection with the line that follows it Key Bindings:
Normal: Ctrl-Shift-L; Emacs: Ctrl-X Ctrl-T

tab-key ()

Implement the tab key, the action of which is configurable by preference Key Bindings:
Normal: KP Tab; VI/VIM: KP Tab; Emacs: KP Tab; Brief: KP Tab; Visual Studio:
KP Tab; OS X: Tab

undo ()

Undo last action Key Bindings: Normal: Ctrl-Z; VI/VIM: u; Emacs: Ctrl-/; Brief:
Alt-U; Visual Studio: Ctrl-Z; OS X: Command-Z

yank-line ()

Yank contents of kill buffer created with kill-line into the edit buffer Key Bindings:
Emacs: Ctrl-Y

246

General Editor Commands

Editor commands that act on the current (most recently active) source editor, whether
or not it currently has the keyboard focus.

check-indent-consistency ()

Check whether indents consistently use spaces or tabs throughout the file.

comment-out-region (style=None)

Comment out the selected region. The style of commenting can be controlled with the
style argument: ’indented’ uses the default comment style indented at end of leading
white space and ’block’ uses a block comment in column zero. If not given, the style
configured with the Editor / Block Comment Style preference is used. Each call adds a
level of commenting. Key Bindings: Normal: Ctrl-/; Emacs: Ctrl-C C; Visual Studio:
Ctrl-K Ctrl-C; OS X: Command-’

comment-out-toggle (style=None)

Comment out the selected lines. This command is not available if they lines are already
commented out. The style of commenting can be controlled with the style argument:
’indented’ uses the default comment style indented at end of leading white space and
’block’ uses a block comment in column zero. If not given, the style configured with the
Editor / Block Comment Style preference is used.

comment-toggle (style=None)

Toggle commenting out of the selected lines. The style of commenting can be controlled
with the style argument: ’indented’ uses the default comment style indented at end of
leading white space and ’block’ uses a block comment in column zero. If not given,
the style configured with the Editor / Block Comment Style preference is used. Key
Bindings: Normal: Ctrl-.; Emacs: Ctrl-C #; Visual Studio: Ctrl-K Ctrl-T; OS X:
Command-;

convert-indents-to-mixed (indent size)

Convert all lines with leading spaces to mixed tabs and spaces.

convert-indents-to-spaces-only (indent size)

Convert all lines containing leading tabs to spaces only.

convert-indents-to-tabs-only ()

Convert all indentation to use tab characters only and no spaces

evaluate-file-in-shell (restart shell=None)

247

Run the contents of the editor within the Python Shell

evaluate-sel-in-debug-probe (whole lines=None)

Evaluate the current selection from the editor within the Debug Probe tool. When
whole lines is set, the selection is rounded to whole lines before evaluation. When
unspecified (set to None), the setting from the Shell’s Option menu is used instead.

evaluate-sel-in-shell (restart shell=False, whole lines=None)

Evaluate the current selection from the editor within the Python Shell tool, optionally
restarting the shell first. When whole lines is set, the selection is rounded to whole lines
before evaluation. When unspecified (set to None), the setting from the Shell’s Option
menu is used instead. Key Bindings: Emacs: Ctrl-C |

execute-kbd-macro (register=’a’, repeat=<numeric modifier; default=1>)

Execute most recently recorded keyboard macro. If register is None then the user is
asked to enter a letter a-z for the register where the macro is filed. Otherwise, register
’a’ is used by default. Key Bindings: Normal: Ctrl-M; VI/VIM: @ invokes execute-
kbd-macro(register=None); Emacs: Ctrl-X E; Brief: F8; Visual Studio: Ctrl-M; OS X:
Command-M

fill-paragraph ()

Attempt to auto-justify the paragraph around the current start of selection Key Bind-
ings: Normal: Ctrl-J; VI/VIM: g q q; Emacs: Ctrl-J; Visual Studio: Ctrl-K Ctrl-F; OS
X: Command-J

find-symbol ()

Allow user to visit point of definition of a source symbol in the current editor context
by typing a fragment of the name Key Bindings: Normal: Ctrl-Shift-T; VI/VIM: Ctrl-
Shift-T; Emacs: Ctrl-X Ctrl-G; Visual Studio: Ctrl-Shift-T; OS X: Command-Shift-T

fold-collapse-all ()

Collapse all fold points in the current file Key Bindings: Normal: Alt-Home; VI/VIM:
Alt-Home; Emacs: Alt-Home; Brief: Alt-Home; Visual Studio: Alt-Home; OS X:
Command-Ctrl-KP Subtract

fold-collapse-all-clicked ()

Collapse the clicked fold point completely

fold-collapse-all-current ()

Collapse the current fold point completely Key Bindings: Normal: Alt-Page Up;

248

VI/VIM: Alt-Page Up; Emacs: Alt-Page Up; Brief: Alt-Page Up; Visual Studio: Alt-
Page Up; OS X: Command-KP Subtract

fold-collapse-current ()

Collapse the current fold point Key Bindings: VI/VIM: z c

fold-collapse-more-clicked ()

Collapse the clicked fold point one more level

fold-collapse-more-current ()

Collapse the current fold point one more level Key Bindings: Normal: Alt-Up; VI/VIM:
Alt-Up; Emacs: Alt-Up; Brief: Alt-Up; Visual Studio: Alt-Up; OS X: Command-Shift-
KP Subtract

fold-expand-all ()

Expand all fold points in the current file Key Bindings: Normal: Alt-End; VI/VIM:
Alt-End; Emacs: Alt-End; Brief: Alt-End; Visual Studio: Alt-End; OS X: Command-
Ctrl-KP Multiply

fold-expand-all-clicked ()

Expand the clicked fold point completely

fold-expand-all-current ()

Expand the current fold point completely Key Bindings: Normal: Alt-Page Down;
VI/VIM: Alt-Page Down; Emacs: Alt-Page Down; Brief: Alt-Page Down; Visual Stu-
dio: Alt-Page Down; OS X: Command-KP Multiply

fold-expand-current ()

Expand the current fold point Key Bindings: VI/VIM: z o

fold-expand-more-clicked ()

Expand the clicked fold point one more level

fold-expand-more-current ()

Expand the current fold point one more level Key Bindings: Normal: Alt-Down;
VI/VIM: Alt-Down; Emacs: Alt-Down; Brief: Alt-Down; Visual Studio: Alt-Down;
OS X: Command-KP Add

fold-toggle ()

249

Toggle the current fold point Key Bindings: Normal: Alt-/; VI/VIM: Alt-/; Emacs:
Alt-/; Brief: Alt-/; Visual Studio: Alt-/; OS X: Command-KP Divide

fold-toggle-clicked ()

Toggle the clicked fold point

force-indent-style-to-match-file ()

Force the indent style of the editor to match the indent style found in the majority of
the file

force-indent-style-to-mixed ()

Force the indent style of the editor to mixed use of tabs and spaces, regardless of the
file contents

force-indent-style-to-spaces-only ()

Force the indent style of the editor to use spaces only, regardless of file contents

force-indent-style-to-tabs-only ()

Force the indent style of the editor to use tabs only, regardless of file contents

goto-clicked-symbol-defn ()

Goto the definition of the source symbol that was last clicked on Key Bindings: Nor-
mal: Ctrl-Left Click; VI/VIM: Ctrl-Left Click; Emacs: Ctrl-Left Click; Brief: Ctrl-
Left Click; Visual Studio: Ctrl-Left Click; OS X: Command-Left Click

goto-column (column=<numeric modifier; default=0>)

Move cursor to given column Key Bindings: VI/VIM: |

goto-line (lineno=<numeric modifier>)

Position cursor at start of given line number Key Bindings: Normal: Ctrl-L; Emacs:
Alt-G; Brief: Alt-G; Visual Studio: Ctrl-G; OS X: Command-L

goto-line-select (lineno=<numeric modifier>)

Scroll to and select the given line number

goto-nth-line (lineno=<numeric modifier; default=1>, cursor=’start’)

Position cursor at start of given line number (1=first, -1 = last). This differs from goto-
line in that it never prompts for a line number but instead uses the previously entered
numeric modifier or defaults to going to line one. The cursor can be positioned at

250

’start’, ’end’, or ’fnb’ for first non-blank character. Key Bindings: VI/VIM: g g invokes
goto-nth-line(cursor=”fnb“)

goto-nth-line-default-end (lineno=<numeric modifier; default=0>, cursor=’start’)

Same as goto nth line but defaults to end of file if no lineno is given Key Bindings:
VI/VIM: Shift-G invokes goto-nth-line-default-end(cursor=”fnb“)

goto-percent-line (percent=<numeric modifier; default=0>, cursor=’start’)

Position cursor at start of line at given percent in file. This uses the previously entered
numeric modifier or defaults to going to line one. The cursor can be positioned at ’start’,
’end’, or ’fnb’ for first non-blank character, or in VI mode it will do brace matching
operation to reflect how VI overrides this command. Key Bindings: VI/VIM: % invokes
goto-percent-line(cursor=”fnb“)

goto-selected-symbol-defn ()

Goto the definition of the selected source symbol Key Binding: F4

hide-all-whitespace ()

Turn off all special marks for displaying white space and end-of-line

hide-eol ()

Turn off special marks for displaying end-of-line chars

hide-indent-guides ()

Turn off special marks for displaying indent level

hide-whitespace ()

Turn off special marks for displaying white space

indent-lines (num=<numeric modifier; default=1>)

Indent selected number of lines from cursor position. Set num to None to indent all the
lines in current selection. Key Bindings: VI/VIM: > invokes indent-lines(num=None)

indent-next-move (num=<numeric modifier; default=1>)

Indent lines spanned by next cursor move Key Bindings: VI/VIM: >

indent-region (sel=None)

Indent the selected region one level of indentation. Set sel to None to use preference to
determine selection behavior, or ”never-select“ to unselect after indent, ”always-select“ to

251

always select after indent, or ”retain-select“ to retain current selection after indent. Key
Bindings: Normal: Ctrl->; VI/VIM: Ctrl-T; Emacs: Ctrl-C >; Visual Studio: Ctrl->;
OS X: Command-]

indent-to-match-next-move (num=<numeric modifier; default=1>)

Indent lines spanned by next cursor move to match, based on the preceding line Key
Bindings: VI/VIM: =

insert-command (cmd)

Insert the output for the given command at current cursor position. Some special char-
acters in the command line (if not escaped with) will be replaced as follows:

% -- Current file’s full path name

-- Previous file’s full path name

insert-file (filename)

Insert a file at current cursor position, prompting user for file selection Key Bindings:
Emacs: Ctrl-X I; Brief: Alt-R

join-lines (delim=’ ’, num=<numeric modifier; default=2>)

Join together specified number of lines after current line (replace newlines with the given
delimiter (single space by default) Key Bindings: VI/VIM: Shift-J

join-selection (delim=’ ’)

Join together all lines in given selection (replace newlines with the given delimiter (single
space by default) Key Bindings: VI/VIM: Shift-J

kill-buffer ()

Close the current text file Key Bindings: Emacs: Ctrl-X K; Brief: Ctrl--

outdent-lines (num=<numeric modifier; default=1>)

Outdent selected number of lines from cursor position. Set num to None to indent all the
lines in current selection. Key Bindings: VI/VIM: < invokes outdent-lines(num=None)

outdent-next-move (num=<numeric modifier; default=1>)

Outdent lines spanned by next cursor move Key Bindings: VI/VIM: <

outdent-region (sel=None)

Outdent the selected region one level of indentation. Set sel to None to use preference to

252

determine selection behavior, or ”never-select“ to unselect after indent, ”always-select“ to
always select after indent, or ”retain-select“ to retain current selection after indent. Key
Bindings: Normal: Ctrl-<; VI/VIM: Ctrl-D; Emacs: Ctrl-C <; Visual Studio: Ctrl-<;
OS X: Command-[

page-setup ()

Show printing page setup dialog

print-view ()

Print active editor document Key Bindings: Normal: Ctrl-P; Visual Studio: Ctrl-P; OS
X: Command-P

query-replace (search string, replace string)

Initiate incremental mini-search query/replace from the cursor position. Key Bindings:
Normal: Alt-comma; Emacs: Alt-%; Visual Studio: Alt-comma; OS X: Ctrl-R

query-replace-regex (search string, replace string)

Initiate incremental mini-search query/replace from the cursor position. The search
string is treated as a regular expression. Key Bindings: Normal: Ctrl-Alt-Comma;
Emacs: Ctrl-Alt-%; Visual Studio: Ctrl-Alt-Comma

range-replace (search string, replace string, confirm, range limit, match limit, regex)

Initiate incremental mini-search query/replace within the given selection. This is similar
to query replace but allows some additional options:

confirm -- True to confirm each replace

range_limit -- None to replace between current selec-

tion start and end of document,

1 to limit operation to current selection or to cur-

rent line if selection is empty,

(start, end) to limit operation to within given selec-

tion range, or "first|last"

to limit operating withing given range of lines.

match_limit -- None to replace any num-

ber of matches, or limit of number of replaces.

When set to "l" plus a number, limits to that num-

ber of matches per line,

rather than as a whole.

regex -- Treat search string as a regular expression

repeat-replace (repeat=<numeric modifier; default=1>)

253

Repeat the last query replace or range replace operation on the current line. The first
match is replaced without confirmation. Key Bindings: VI/VIM: &

replace-char (line mode=’multiline’, num=<numeric modifier; default=1>)

Replace num characters with given character. Set line mode to multiline to allow replac-
ing across lines, extend to replace on current line and then extend the line length, and
restrict to replace only if enough characters exist on current line after cursor position.
Key Bindings: VI/VIM: r invokes replace-char(line mode=”restrict“)

replace-string (search string, replace string)

Replace all occurrences of a string from the cursor position to end of file. Key Bindings:
Normal: Alt-.; Emacs: Alt-@; Visual Studio: Alt-.

replace-string-regex (search string, replace string)

Replace all occurrences of a string from the cursor position to end of file. The search
string is treated as a regular expression. Key Bindings: Normal: Ctrl-Alt-.; Emacs:
Ctrl-Alt-@; Visual Studio: Ctrl-Alt-.

save-buffer ()

Save the current text file to disk

set-readonly ()

Set editor to be readonly. This cannot be done if the editor contains any unsaved edits.

set-writable ()

Set editor to be writable. This can be used to override the read-only state used initially
for editors displaying files that are read-only on disk.

show-all-whitespace ()

Turn on all special marks for displaying white space and end-of-line

show-eol ()

Turn on special marks for displaying end-of-line chars

show-indent-guides ()

Turn on special marks for displaying indent level

show-indent-manager ()

Display the indentation manager for this editor file

254

show-whitespace ()

Turn on special marks for displaying white space

start-kbd-macro (register=’a’)

Start definition of a keyboard macro. If register=None then the user is prompted to enter
a letter a-z under which to file the macro. Otherwise, register ’a’ is used by default. Key
Bindings: Normal: Ctrl-(; VI/VIM: q invokes start-kbd-macro(register=None); Emacs:
Ctrl-X (; Brief: F7; Visual Studio: Ctrl-(; OS X: Command-(

stop-kbd-macro ()

Stop definition of a keyboard macro Key Bindings: Normal: Ctrl-); VI/VIM: q; Emacs:
Ctrl-X); Brief: Shift-F7; Visual Studio: Ctrl-); OS X: Command-)

toggle-line-wrapping ()

Toggles line wrapping preference for all editors

toggle-overtype ()

Toggle status of overtyping mode Key Bindings: Normal: Insert; VI/VIM: Insert;
Emacs: Insert; Brief: Insert; Visual Studio: Insert

uncomment-out-region (one level=True)

Uncomment out the selected region if commented out. If one level is True then each call
removes only one level of commenting. Key Bindings: Normal: Ctrl-?; Emacs: Ctrl-C
U; Visual Studio: Ctrl-K Ctrl-U; OS X: Command-”

uncomment-out-toggle (style=None)

Remove commenting from the selected lines, if any. This command is not available if
the lines are not commented out.

use-lexer-ada ()

Force syntax highlighting Ada source

use-lexer-apache-conf ()

Force syntax highlighting for Apache configuration file format

use-lexer-asm ()

Force syntax highlighting for Masm assembly language

use-lexer-ave ()

255

Force syntax highlighting for Avenue GIS language

use-lexer-baan ()

Force syntax highlighting for Baan

use-lexer-bash ()

Force syntax highlighting for bash scripts

use-lexer-bullant ()

Force syntax highlighting for Bullant

use-lexer-by-doctype ()

Use syntax highlighting appropriate to the file type

use-lexer-cpp ()

Force syntax highlighting for C/C++ source Key Bindings: Normal: Ctrl-7 C; Emacs:
Ctrl-X L C; Visual Studio: Ctrl-7 C; OS X: Command-7 C

use-lexer-css2 ()

Force syntax highlighting for CSS2

use-lexer-cython ()

Force syntax highlighting for Cython source

use-lexer-diff ()

Force syntax highlighting for diff/cdiff files

use-lexer-dos-batch ()

Force syntax highlighting for DOS batch files

use-lexer-eiffel ()

Force syntax highlighting for Eiffel source

use-lexer-errlist ()

Force syntax highlighting for error list format

use-lexer-escript ()

Force syntax highlighting for EScript

256

use-lexer-fortran ()

Force syntax highlighting for Fortran

use-lexer-html ()

Force syntax highlighting for HTML Key Bindings: Normal: Ctrl-7 H; Emacs: Ctrl-X
L H; Visual Studio: Ctrl-7 H; OS X: Command-7 H

use-lexer-idl ()

Force syntax highlighting for XP IDL

use-lexer-java ()

Force syntax highlighting for Java source

use-lexer-javascript ()

Force syntax highlighting for Javascript

use-lexer-latex ()

Force syntax highlighting for LaTeX

use-lexer-lisp ()

Force syntax highlighting for Lisp source

use-lexer-lout ()

Force syntax highlighting for LOUT typesetting language

use-lexer-lua ()

Force syntax highlighting for Lua

use-lexer-makefile ()

Force syntax highlighting for make files Key Bindings: Normal: Ctrl-7 M; Emacs: Ctrl-X
L M; Visual Studio: Ctrl-7 M; OS X: Command-7 M

use-lexer-mako ()

Force syntax highlighting for Mako template file

use-lexer-matlab ()

Force syntax highlighting for Matlab

257

use-lexer-mmixal ()

Force syntax highlighting for MMIX assembly language

use-lexer-msidl ()

Force syntax highlighting for MS IDL

use-lexer-nncrontab ()

Force syntax highlighting for NNCrontab files

use-lexer-none ()

Use no syntax highlighting Key Bindings: Normal: Ctrl-7 N; Emacs: Ctrl-X L N; Visual
Studio: Ctrl-7 N; OS X: Command-7 N

use-lexer-nsis ()

Force syntax highlighting for NSIS

use-lexer-pascal ()

Force syntax highlighting for Pascal source

use-lexer-perl ()

Force syntax highlighting for Perl source

use-lexer-php ()

Force syntax highlighting for PHP source

use-lexer-plsql ()

Force syntax highlighting for PL/SQL files

use-lexer-pov ()

Force syntax highlighting for POV ray tracer scene description language

use-lexer-properties ()

Force syntax highlighting for properties files

use-lexer-ps ()

Force syntax highlighting for Postscript

use-lexer-python ()

258

Force syntax highlighting for Python source Key Bindings: Normal: Ctrl-7 P; Emacs:
Ctrl-X L P; Visual Studio: Ctrl-7 P; OS X: Command-7 P

use-lexer-rc ()

Force syntax highlighting for RC file format

use-lexer-ruby ()

Force syntax highlighting for Ruby source

use-lexer-scriptol ()

Force syntax highlighting for Scriptol

use-lexer-sql ()

Force syntax highlighting for SQL Key Bindings: Normal: Ctrl-7 S; Emacs: Ctrl-X L
S; Visual Studio: Ctrl-7 S; OS X: Command-7 S

use-lexer-tcl ()

Force syntax highlighting for TCL

use-lexer-vb ()

Force syntax highlighting for Visual Basic

use-lexer-vxml ()

Force syntax highlighting for VXML

use-lexer-xcode ()

Force syntax highlighting for XCode files

use-lexer-xml ()

Force syntax highlighting for XML files Key Bindings: Normal: Ctrl-7 X; Visual Studio:
Ctrl-7 X; OS X: Command-7 X

use-lexer-yaml ()

Force syntax highlighting for YAML

zoom-in ()

Zoom in, increasing the text display size temporarily by one font size Key Binding:
Ctrl-KP Add

259

zoom-out ()

Zoom out, increasing the text display size temporarily by one font size Key Binding:
Ctrl-KP Subtract

12.4. Search Manager Commands

Toolbar Search Commands

Commands available when the tool bar search entry area has the keyboard focus.

backward-char ()

Move backward one character Key Bindings: Normal: Left; VI/VIM: Left; Emacs: Left;
Brief: Left; Visual Studio: Left; OS X: Option-Up

backward-char-extend ()

Move backward one character, extending the selection Key Binding: Shift-Left

backward-delete-char ()

Delete character behind the cursor Key Bindings: Normal: BackSpace; VI/VIM:
BackSpace; Emacs: BackSpace; Brief: BackSpace; Visual Studio: BackSpace; OS X:
Backspace

backward-delete-word ()

Delete word behind the cursor Key Bindings: Normal: Ctrl-BackSpace; VI/VIM:
Ctrl-BackSpace; Emacs: Ctrl-BackSpace; Brief: Ctrl-BackSpace; Visual Studio: Ctrl-
BackSpace; OS X: Ctrl-Option-Delete

backward-word ()

Move backward one word Key Bindings: Normal: Ctrl-Left; VI/VIM: Ctrl-Left; Emacs:
Ctrl-Left; Brief: Ctrl-Left; Visual Studio: Ctrl-Left; OS X: Option-Left

backward-word-extend ()

Move backward one word, extending the selection Key Bindings: Normal: Ctrl-Shift-
Left; VI/VIM: Ctrl-Shift-Left; Emacs: Ctrl-Shift-Left; Brief: Ctrl-Shift-Left; Visual Stu-
dio: Ctrl-Shift-Left; OS X: Option-Shift-Left

beginning-of-line ()

260

Move to the beginning of the toolbar search entry Key Bindings: VI/VIM: 0 invokes
beginning-of-line(toggle=0); Emacs: Home; Brief: Shift-Home; OS X: Command-Left

beginning-of-line-extend ()

Move to the beginning of the toolbar search entry, extending the selection Key Bindings:
Emacs: Shift-Home; OS X: Ctrl-Shift-Left

copy ()

Cut selection Key Bindings: Normal: Ctrl-Insert; VI/VIM: Ctrl-Insert; Emacs: Ctrl-
Insert; Brief: Ctrl-Insert; Visual Studio: Ctrl-Insert; OS X: Command-C

cut ()

Cut selection Key Bindings: Normal: Shift-Delete; VI/VIM: Shift-Delete; Emacs: Shift-
Delete; Brief: Shift-Delete; Visual Studio: Shift-Delete; OS X: Command-X

end-of-line ()

Move to the end of the toolbar search entry Key Bindings: Normal: End; VI/VIM: End;
Emacs: End; Brief: End; Visual Studio: End; OS X: Ctrl-Right

end-of-line-extend ()

Move to the end of the toolbar search entry, extendning the selection Key Bindings:
Normal: Shift-End; VI/VIM: Shift-End; Emacs: Shift-End; Brief: Shift-End; Visual
Studio: Shift-End; OS X: Ctrl-Shift-Right

forward-char ()

Move forward one character Key Binding: Right

forward-char-extend ()

Move forward one character, extending the selection Key Binding: Shift-Right

forward-delete-char ()

Delete character in front of the cursor Key Binding: Delete

forward-delete-word ()

Delete word in front of the cursor Key Bindings: Normal: Ctrl-Delete; VI/VIM: Ctrl-
Delete; Emacs: Ctrl-Delete; Brief: Ctrl-Delete; Visual Studio: Ctrl-Delete; OS X:
Option-Delete

forward-word ()

261

Move forward one word Key Bindings: Normal: Ctrl-Right; VI/VIM: Ctrl-Right; Emacs:
Ctrl-Right; Brief: Ctrl-Right; Visual Studio: Ctrl-Right; OS X: Option-Right

forward-word-extend ()

Move forward one word, extending the selection Key Bindings: Normal: Ctrl-Shift-Right;
VI/VIM: Ctrl-Shift-Right; Emacs: Ctrl-Shift-Right; Brief: Ctrl-Shift-Right; Visual Stu-
dio: Ctrl-Shift-Right; OS X: Option-Shift-Right

paste ()

Paste from clipboard Key Bindings: Normal: Shift-Insert; VI/VIM: Shift-Insert; Emacs:
Shift-Insert; Brief: Shift-Insert; Visual Studio: Shift-Insert; OS X: Ctrl-y

Search Manager Commands

Globally available commands defined for the search manager. These commands are
available regardless of whether a search manager is visible or has keyboard focus.

batch-replace (look in=None, use selection=False)

Display search and replace in files tool. Key Bindings: Normal: Ctrl-Shift-R; VI/VIM:
Ctrl-Shift-G; Emacs: Ctrl-); Visual Studio: Ctrl-Shift-R; OS X: Command-Shift-R

batch-search (look in=None, use selection=True, search text=None)

Display Search in Files tool. The look in argument gets entered in the look in field if not
None or ”. The current selection is put into the search field if it doesn’t span multiple
lines and either use selection is true or there’s nothing in the search field. The given
search text is used instead, if provided Key Bindings: Normal: Ctrl-Shift-F; VI/VIM:
Ctrl-Shift-F; Emacs: Ctrl-(; Visual Studio: Ctrl-Shift-F; OS X: Command-Shift-F

batch-search-backward ()

Move to the previous found match in the search in files tool.

batch-search-forward ()

Move to the next found match in the search in files tool.

replace ()

Bring up the search manager in replace mode. Key Bindings: Normal: Ctrl-R; Emacs:
Ctrl-0; Brief: F6; Visual Studio: Ctrl-R; OS X: Command-R

replace-again ()

262

Replace current selection with the search manager.

replace-and-search ()

Replace current selection and search again. Key Bindings: Normal: Ctrl-I; Emacs:
Alt-.; Brief: Shift-F6; Visual Studio: Ctrl-I; OS X: Command-Ctrl-R

search ()

Bring up the search manager in search mode. Key Bindings: Normal: Alt-F3; VI/VIM:
Alt-F3; Emacs: Alt-F3; Brief: Alt-F3; Visual Studio: Alt-F3; OS X: Option-F3

search-again (search string=”, direction=1)

Search again using the search manager’s current settings.

search-backward (search string=None)

Search again using the search manager’s current settings in backward direction Key
Binding: Shift-F3

search-forward (search string=”)

Search again using the search manager’s current settings in forward direction Key Bind-
ing: F3

search-manager (search string=None, replace string=None, action=None,
direction=None, auto search=0, auto replace=0, auto replace all=0,
auto show=0, scope=None, scope location=None, style=None, match case=None,
whole words=None, wrap=None, omit binary=None, flash=False)

Deprecated search command; should not be used in new code. Key Bindings: OS X:
Command-T invokes search-manager(auto replace=1)

search-sel ()

Search forward using current selection

search-sel-backward ()

Search backward using current selection Key Bindings: Normal: Ctrl-Shift-F3; VI/VIM:
Ctrl-Shift-F3; Emacs: Ctrl-Shift-F3; Brief: Ctrl-Shift-F3; Visual Studio: Ctrl-Shift-F3;
OS X: Command-Shift-F3

search-sel-forward ()

Search forward using current selection Key Bindings: Normal: Ctrl-F3; VI/VIM: Ctrl-
F3; Emacs: Ctrl-F3; Brief: Ctrl-F3; Visual Studio: Ctrl-F3; OS X: Command-F3

263

Search Manager Instance Commands

Commands for a particular search manager instance. These are only available when the
search manager has they keyboard focus.

clear ()

Clear selected text

copy ()

Copy selected text Key Bindings: Normal: Ctrl-Insert; VI/VIM: Ctrl-Insert; Emacs:
Ctrl-Insert; Brief: Ctrl-Insert; Visual Studio: Ctrl-Insert; OS X: Command-C

cut ()

Cut selected text Key Bindings: Normal: Shift-Delete; VI/VIM: Shift-Delete; Emacs:
Shift-Delete; Brief: Shift-Delete; Visual Studio: Shift-Delete; OS X: Command-X

forward-tab ()

Place a forward tab at the current cursor position in search or replace string Key Binding:
Ctrl-T

paste ()

Paste text from clipboard Key Bindings: Normal: Shift-Insert; VI/VIM: Shift-Insert;
Emacs: Shift-Insert; Brief: Shift-Insert; Visual Studio: Shift-Insert; OS X: Ctrl-y

12.5. Debugger Commands

Debugger Commands

Commands that control the debugger and current debug process, if any.

break-clear ()

Clear the breakpoint on the current line Key Binding: F9

break-clear-all ()

Clear all breakpoints Key Bindings: Normal: Ctrl-F9; VI/VIM: Ctrl-F9; Emacs: Ctrl-
F9; Brief: Ctrl-F9; Visual Studio: Ctrl-F9; OS X: Command-F9

break-clear-clicked ()

264

Clear the breakpoint at current click location

break-disable ()

Disable the breakpoint on current line Key Binding: Shift-F9

break-disable-all ()

Disable all breakpoints Key Bindings: Normal: Ctrl-Shift-F9; VI/VIM: Ctrl-Shift-F9;
Emacs: Ctrl-Shift-F9; Brief: Ctrl-Shift-F9; Visual Studio: Ctrl-Shift-F9

break-disable-clicked ()

Disable the breakpoint at current click location

break-edit-cond ()

Edit condition for the breakpoint on current line

break-edit-cond-clicked ()

Edit condition for the breakpoint at the current mouse click location

break-enable ()

Enable the breakpoint on the current line Key Binding: Shift-F9

break-enable-all ()

Enable all breakpoints Key Bindings: Normal: Ctrl-Shift-F9; VI/VIM: Ctrl-Shift-F9;
Emacs: Ctrl-Shift-F9; Brief: Ctrl-Shift-F9; Visual Studio: Ctrl-Shift-F9

break-enable-clicked ()

Enable the breakpoint at current click location

break-enable-toggle ()

Toggle whether breakpoint on current line is enabled or disabled

break-ignore ()

Ignore the breakpoint on current line for N iterations

break-ignore-clicked ()

Ignore the breakpoint at the current mouse click location for N iterations

break-set ()

265

Set a new regular breakpoint on current line Key Binding: F9

break-set-clicked ()

Set a new regular breakpoint at the current mouse click location

break-set-cond ()

Set a new conditional breakpoint on current line

break-set-cond-clicked ()

Set a new conditionalbreakpoint at the current mouse click location

break-set-temp ()

Set a new temporary breakpoint on current line

break-set-temp-clicked ()

Set a new temporary breakpoint at the current mouse click location

break-toggle ()

Toggle breakpoint at current line (creates new regular bp when one is created)

clear-exception-ignores-list ()

Clear list of exceptions being ignored during debugging

clear-var-errors ()

Clear stored variable errors so they get refetched

collapse-tree-more ()

Collapse whole selected variables display subtree one more level

debug-attach ()

Attach to an already-running debug process

debug-continue ()

Continue (or start) running, to next breakpoint Key Binding: F5

debug-detach ()

Detach from the debug process and let it run

debug-file ()

266

Start debugging the current file (rather than the main entry point) Key Binding: Shift-
F5

debug-kill ()

Stop debugging Key Bindings: Normal: Ctrl-F5; VI/VIM: Ctrl-F5; Emacs: Ctrl-F5;
Brief: Ctrl-F5; Visual Studio: Ctrl-F5; OS X: Command-F5

debug-restart ()

Stop and restart the current debug process

debug-stop ()

Pause free-running execution at current program counter Key Bindings: Normal: Ctrl-
Shift-F5; VI/VIM: Ctrl-Shift-F5; Emacs: Ctrl-Shift-F5; Brief: Ctrl-Shift-F5; Visual
Studio: Ctrl-Shift-F5; OS X: Command-Shift-F5

debug-to-clicked ()

Debug to the line at the current mouse click location

exception-always-stop ()

Always stop on exceptions, even if they are handled by the code

exception-never-stop ()

Never stop on exceptions, even if they are unhandled in the code

exception-stop-when-printed ()

Stop only on exceptions when they are about to be printed

exception-unhandled-stop ()

Stop only on exceptions that are not handled by the code

expand-tree-more ()

Expand whole selected variables display subtree deeper

force-var-reload ()

Force refetch of a value from server

frame-down ()

Move down the current debug stack Key Binding: F12

267

frame-show ()

Show the position (thread and stack frame) where the debugger originally stopped Key
Bindings: Normal: Shift-F11; VI/VIM: Shift-F11; Emacs: Shift-F11; Brief: Shift-F11;
Visual Studio: Shift-F11

frame-up ()

Move up the current debug stack Key Binding: F11

hide-detail ()

Show the textual value detail area

python-shell-clear ()

Clear python shell.

python-shell-kill ()

Kill python shell process.

python-shell-restart ()

Restart python shell.

run-build-command ()

Execute the build command defined in the project, if any

run-to-cursor ()

Run to current cursor position Key Bindings: Normal: Alt-F5; VI/VIM: Alt-F5; Emacs:
Alt-F5; Brief: Alt-F5; Visual Studio: Alt-F5

show-detail ()

Show the textual value detail area

step-into ()

Step into current execution point, or start debugging at first line Key Binding: F7

step-out ()

Return from current function Key Binding: F8

step-over ()

Step over current execution point Key Binding: F6

268

watch (style=’ref’)

Watch selected variable using a direct object reference to track it

watch-expression (expr=None)

Add a new expression to the watch list

watch-module-ref ()

Watch selected value relative to a module looked up by name in sys.modules

watch-parent-ref ()

Watch selected variable using a reference to the value’s parent and the key slot for the
value

watch-ref ()

Watch selected variable using a direct object reference to track it

watch-symbolic ()

Watch selected value using the symbolic path to it

Debugger Watch Commands

Commands for the debugger’s Watch tool (Wing IDE Professional only). These are
available only when the watch tool has key board focus.

watch-clear-all ()

Clear all entries from the watch list

watch-clear-selected ()

Clear selected entry from the watch list

Call Stack View Commands

Commands available on a specific instance of the call stack tool

callstack-copy-to-clipboard ()

Copy the call stack to the clipboard, as text

269

callstack-set-codeline-mode (mode)

Set the code line display mode for this call stack

callstack-show-docs ()

Show documentation for the call stack manager

Exceptions Commands

Commands available when the debugger’s Exceptions tool has the keyboard focus.

clear ()

Clear the exception currently shown on the display

copy ()

Copy the exception traceback to the clipboard Key Bindings: Normal: Ctrl-Insert;
VI/VIM: Ctrl-Insert; Emacs: Ctrl-Insert; Brief: Ctrl-Insert; Visual Studio: Ctrl-Insert;
OS X: Command-C

270

Key Binding Reference

This chapter documents all the default key bindings found in the keyboard personal-
ities provided by Wing, set by the Personality preference. Key bindings are listed
alphabetically. In some cases commands of the same name are provided by different
implementations that are selected according to keyboard focus.

When multiple commands are defined for a single key binding, the first available com-
mand in the list is invoked. In this way a single binding can, for example, show or hide
a tool panel.

Additional key bindings can be added as described in keyboard bindings. All available
commands are documented in the Command Reference.

13.1. Normal Personality

This section documents all the default key bindings for the Normal keyboard personality,
set by the Personality preference.

Alt-1: fold-python-methods

Alt-2: fold-python-classes

Alt-3: fold-python-classes-and-defs

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word behind of the cursor ; Toolbar Search Commands : Delete
word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

271

272

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests

Alt-F7: run-last-tests

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page Down: fold-expand-all-current - Expand the current fold point com-
pletely

Alt-Page Up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Alt-comma: query-replace - Initiate incremental mini-search query/replace from the
cursor position.

Alt-period: replace-string - Replace all occurrences of a string from the cursor posi-
tion to end of file.

BackSpace: backward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character behind the cursor, or the current selection if not empty.
; Toolbar Search Commands : Delete character behind the cursor

Ctrl-0: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

273

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in
the current window or window set if in one-window-per-editor windowing mode.

Ctrl-9: previous-document - Move to the previous document alphabetically in the
list of documents open in the current window

Ctrl-=: indent-to-match - Indent the current line or selected region to match inden-
tation of preceding non-blank line

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search
query/replace from the cursor position. The search string is treated as a regular
expression.

Ctrl-Alt-Down: goto-next-bookmark(current file only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F6: debug-failed-tests

274

Ctrl-Alt-F7: debug-last-tests

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the book-
mark list, or the last one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark
is the project-wide textual name of the bookmark.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when current file only
is True.

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on the
editor. When set, the name of the bookmark is set to an auto-generated default.

Ctrl-Alt-Up: goto-previous-bookmark(current file only=True) - Go to the pre-
vious bookmark in the bookmark list, or the last one if no bookmark is selected. Stays
within the file in the current editor when current file only is True.

Ctrl-Alt-period: replace-string-regex - Replace all occurrences of a string from the
cursor position to end of file. The search string is treated as a regular expression.

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor Com-
mands : Initiate incremental mini-search forward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the interactive
search session immediately.; Document Viewer Commands : Initiate incremental mini-
search forward from the cursor position, using current selection as the search string. Set
persist=False to do the search but end the interactive search session immediately.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Ctrl-C: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Ctrl-D: toolbar-search-focus - Move focus to toolbar search entry.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor

275

Commands : Delete one word in front of the cursor ; Toolbar Search Commands : Delete
word in front of the cursor

Ctrl-Down: scroll-text-down - Scroll text down a line w/o moving cursor’s relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen.
Set move cursor to False to leave cursor in current position within the source, otherwise
it is moved so the cursor remains on same screen line.

Ctrl-E: brace-match - Match brace at current cursor position, selecting all text be-
tween the two and hilighting the braces

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-F: search - Bring up the search manager in search mode.

Ctrl-F12: command-by-name - Execute given command by name, collecting any args
as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore changes is
True. Close empty windows and quit if all document windows closed when close window
is True.

Ctrl-F5: debug-kill - Stop debugging

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: search-forward - Search again using the search manager’s current settings in
forward direction

Ctrl-H: replace - Bring up the search manager in replace mode.

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: replace-and-search - Replace current selection and search again.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-J: fill-paragraph - Attempt to auto-justify the paragraph around the current
start of selection

276

Ctrl-K: open-from-keyboard - Open a file from disk using keyboard-driven selection
of the file

Ctrl-KP Add: zoom-in - Zoom in, increasing the text display size temporarily by one
font size

Ctrl-KP Delete: forward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-KP Down: next-line - Move to screen next line, optionally repositioning char-
acter within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char.

Ctrl-KP End: end-of-document - Move cursor to end of document

Ctrl-KP Home: start-of-document - Move cursor to start of document

Ctrl-KP Insert: copy - Action varies according to focus: Active Editor Commands :
Copy selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-KP Left: backward-word - Action varies according to focus: Active Editor
Commands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-KP Next: forward-page - Move cursor forward one page

Ctrl-KP Page Down: forward-page - Move cursor forward one page

Ctrl-KP Page Up: backward-page - Move cursor backward one page

Ctrl-KP Prior: backward-page - Move cursor backward one page

Ctrl-KP Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-KP Subtract: zoom-out - Zoom out, increasing the text display size temporarily
by one font size

Ctrl-KP Up: previous-line - Move to previous screen line, optionally repositioning

277

character within line: same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Ctrl-L: goto-line - Position cursor at start of given line number

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If
register is None then the user is asked to enter a letter a-z for the register where the
macro is filed. Otherwise, register ’a’ is used by default.

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-O: open-gui - Open a file from disk, prompting with file selection dialog if neces-
sary

Ctrl-P: print-view - Print active editor document

Ctrl-Page Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page Up: previous-document - Move to the previous document alphabetically
in the list of documents open in the current window

Ctrl-Period: comment-toggle - Toggle commenting out of the selected lines. The
style of commenting can be controlled with the style argument: ’indented’ uses the
default comment style indented at end of leading white space and ’block’ uses a block
comment in column zero. If not given, the style configured with the Editor / Block
Comment Style preference is used.

Ctrl-Pointer Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Q: quit - Quit the application.

Ctrl-R: replace - Bring up the search manager in replace mode.

Ctrl-Return: new-line - Place a new line at the current cursor position

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Com-

278

mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-B: isearch-sel-backward - Initiate incremental mini-search backward from
the cursor position, using current selection as the search string. Set persist=False to do
the search but end the interactive search session immediately.

Ctrl-Shift-C: delete-line - Delete the current line or lines when the selection spans
multiple lines or given repeat is > 1

Ctrl-Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, ad-
justing the selection range to new position

Ctrl-Shift-F: batch-search - Display Search in Files tool. The look in argument gets
entered in the look in field if not None or ”. The current selection is put into the search
field if it doesn’t span multiple lines and either use selection is true or there’s nothing
in the search field. The given search text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause free-running execution at current program counter

Ctrl-Shift-F6: debug-all-tests

Ctrl-Shift-F7: debug-current-tests

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: search-backward - Search again using the search manager’s current
settings in backward direction

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

279

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO Left Tab: begin-visited-document-cycle(move back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-KP Down: next-line-extend - Move to next screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-Shift-KP End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-KP Home: start-of-document-extend - Move cursor to start of docu-
ment, adjusting the selection range to new position

Ctrl-Shift-KP Left: backward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-KP Next: forward-page-extend - Move cursor forward one page, adjust-
ing the selection range to new position

Ctrl-Shift-KP Page Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Page Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Right: forward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting
the selection range to new position, optionally repositioning character within line: same’

280

to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-
blank char.

Ctrl-Shift-L: swap-lines - Swap the line at start of current selection with the line that
follows it

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-O: open-from-project - Open a document from the project by typing a
fragment to match file names

Ctrl-Shift-Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Ctrl-Shift-Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Ctrl-Shift-R: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-S: save-as - Save active document to a new file

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol
in the current editor context by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move back=False) - Start mov-
ing between documents in the order they were visited. Starts modal key interaction that
ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-U: isearch-backward - Action varies according to focus: Active Editor

281

Commands : Initiate incremental mini-search backward from the cursor position, op-
tionally entering the given search string ; Document Viewer Commands : Initiate in-
cremental mini-search backward from the cursor position, optionally entering the given
search string.

Ctrl-Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-Shift-V: duplicate-line - Duplicate the current line or lines. Places the duplicate
on the line following the selection if pos is ’below’ or before the selection if it is ’above’.

Ctrl-Slash: comment-out-region - Comment out the selected region. The style of
commenting can be controlled with the style argument: ’indented’ uses the default com-
ment style indented at end of leading white space and ’block’ uses a block comment in
column zero. If not given, the style configured with the Editor / Block Comment Style
preference is used. Each call adds a level of commenting.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands :
Place a tab character at the current cursor position ; Search Manager Instance Com-
mands : Place a forward tab at the current cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move back=True) - Start moving be-
tween documents in the order they were visited. Starts modal key interaction that ends
when a key other than tab is seen or ctrl is released.

Ctrl-U: isearch-forward - Action varies according to focus: Active Editor Commands :
Initiate incremental mini-search forward from the cursor position, optionally entering
the given search string ; Document Viewer Commands : Initiate incremental mini-search
forward from the cursor position, optionally entering the given search string.

Ctrl-Up: scroll-text-up - Scroll text up a line w/o moving cursor’s relative position
on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move cursor to False to leave cursor in current position within the source, otherwise it
is moved so the cursor remains on same screen line.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Ctrl-W: close - Close active document. Abandon any changes when ignore changes is
True. Close empty windows and quit if all document windows closed when close window
is True.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands : Cut se-

282

lected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Ctrl-Y: redo - Redo last action

Ctrl-Z: undo - Undo last action

Ctrl-]: brace-match - Match brace at current cursor position, selecting all text between
the two and hilighting the braces

Ctrl-greater: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or “never-select” to
unselect after indent, “always-select” to always select after indent, or “retain-select” to
retain current selection after indent.

Ctrl-less: outdent-region - Outdent the selected region one level of indentation. Set
sel to None to use preference to determine selection behavior, or“never-select”to unselect
after indent, “always-select” to always select after indent, or “retain-select” to retain
current selection after indent.

Ctrl-parenleft: start-kbd-macro - Start definition of a keyboard macro. If regis-
ter=None then the user is prompted to enter a letter a-z under which to file the macro.
Otherwise, register ’a’ is used by default.

Ctrl-parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-question: uncomment-out-region - Uncomment out the selected region if com-
mented out. If one level is True then each call removes only one level of commenting.

Ctrl-space: show-autocompleter - Show the auto-completer for current cursor posi-
tion

Delete: forward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands : Move
to end of current line; Toolbar Search Commands : Move to the end of the toolbar search
entry

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area

283

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager’s current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol

F5: debug-continue - Continue (or start) running, to next breakpoint

F6: step-over - Step over current execution point

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Return from current function

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO Left Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

KP Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character in front of the cursor ; Toolbar Search Commands :
Delete character in front of the cursor

KP Down: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

284

KP End: end-of-line - Action varies according to focus: Active Editor Commands :
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

KP Enter: new-line - Place a new line at the current cursor position

KP Home: beginning-of-line-text - Move to end of the leading white space, if any,
on the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

KP Insert: toggle-overtype - Toggle status of overtyping mode

KP Left: backward-char - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one character ; Toolbar Search Commands : Move back-
ward one character

KP Next: forward-page - Move cursor forward one page

KP Page Down: forward-page - Move cursor forward one page

KP Page Up: backward-page - Move cursor backward one page

KP Prior: backward-page - Move cursor backward one page

KP Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

KP Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

KP Up: previous-line - Move to previous screen line, optionally repositioning charac-
ter within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end,
or ’fnb’ for first non-blank char.

Left: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Next: forward-page - Move cursor forward one page

Page Down: forward-page - Move cursor forward one page

Page Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

285

Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands : Delete one character behind the cursor, or the current selection if
not empty. ; Toolbar Search Commands : Delete character behind the cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands : Cut
selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Com-
mands : Move to end of current line, adjusting the selection range to new position ;
Toolbar Search Commands : Move to the end of the toolbar search entry, extendning the
selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the de-
bugger originally stopped

Shift-F2: Multiple commands (first available is executed):

286

• enter-fullscreen - Hide both the vertical and horizontal tool areas
and toolbar, saving previous state so it can be restored later with
exit fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and
tool bar

Shift-F3: search-backward - Search again using the search manager’s current settings
in backward direction

Shift-F4: new-document-window - Create a new document window with same doc-
uments and panels as in the current document window (if any; otherwise empty with
default panels)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests

Shift-F7: run-current-tests

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Shift-KP Delete: cut - Action varies according to focus: Active Editor Commands :
Cut selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar
Search Commands : Cut selection

Shift-KP Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-KP End: end-of-line-extend - Action varies according to focus: Active Editor
Commands : Move to end of current line, adjusting the selection range to new position

287

; Toolbar Search Commands : Move to the end of the toolbar search entry, extendning
the selection

Shift-KP Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position. If
toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-KP Insert: paste - Action varies according to focus: Active Editor Commands :
Paste text from clipboard ; Search Manager Instance Commands : Paste text from clip-
board ; Toolbar Search Commands : Paste from clipboard

Shift-KP Left: backward-char-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one character, adjusting the selection range
to new position ; Toolbar Search Commands : Move backward one character, extending
the selection

Shift-KP Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-KP Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Shift-KP Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Shift-KP Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Shift-KP Right: forward-char-extend - Action varies according to focus: Active
Editor Commands : Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands : Move cursor backward one character, adjusting the selection range to new
position ; Toolbar Search Commands : Move backward one character, extending the
selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

288

Shift-Page Down: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-Page Up: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting the
selection range to new position

Shift-Return: new-line - Place a new line at the current cursor position

Shift-Right: forward-char-extend - Action varies according to focus: Active Edi-
tor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

13.2. Emacs Personality

This section documents all the default key bindings for the Emacs keyboard personality,
set by the Personality preference.

Alt-!: execute-process - Execute the given command line in the OS Commands tool
using default run directory and environment as defined in project properties, or the
values set in an existing command with the same command line in the OS Commands
tool.

Alt-0: initiate-repeat-0 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-1: fold-python-methods

289

Alt-1: initiate-repeat-1 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-2: fold-python-classes

Alt-2: initiate-repeat-2 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-3: fold-python-classes-and-defs

Alt-3: initiate-repeat-3 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-4: initiate-repeat-4 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-5: initiate-repeat-5 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-6: initiate-repeat-6 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-7: initiate-repeat-7 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-8: initiate-repeat-8 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-9: initiate-repeat-9 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Alt-@: replace-string - Replace all occurrences of a string from the cursor position to
end of file.

Alt-B: backward-word - Action varies according to focus: Active Editor Commands :
Move cursor backward one word. Optionally, provide a string that contains the delimiters
to define which characters are part of a word. Gravity may be“start”or“end”to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands : Move
backward one word

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Alt-Backslash: fold-toggle - Toggle the current fold point

Alt-D: forward-delete-word - Action varies according to focus: Active Editor Com-

290

mands : Delete one word in front of the cursor ; Toolbar Search Commands : Delete word
in front of the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word behind of the cursor ; Toolbar Search Commands : Delete
word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F: forward-word - Action varies according to focus: Active Editor Commands :
Move cursor forward one word. Optionally, provide a string that contains the delimiters
to define which characters are part of a word. Gravity may be“start”or“end”to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands : Move
forward one word

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests

Alt-F7: run-last-tests

Alt-G: goto-line - Position cursor at start of given line number

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-KP Enter: new-line - Place a new line at the current cursor position

Alt-L: goto-line - Position cursor at start of given line number

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page Down: fold-expand-all-current - Expand the current fold point com-
pletely

Alt-Page Up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Period: replace-and-search - Replace current selection and search again.

Alt-Q: fill-paragraph - Attempt to auto-justify the paragraph around the current start
of selection

291

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Slash: show-autocompleter - Show the auto-completer for current cursor posi-
tion

Alt-Tab: show-autocompleter - Show the auto-completer for current cursor position

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Alt-V: backward-page - Move cursor backward one page

Alt-W: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Alt-X: command-by-name - Execute given command by name, collecting any args as
needed

Alt-g: goto-line - Position cursor at start of given line number

Alt-greater: end-of-document - Move cursor to end of document

Alt-less: start-of-document - Move cursor to start of document

Alt-percent: query-replace - Initiate incremental mini-search query/replace from the
cursor position.

Alt-percent: query-replace - Initiate incremental mini-search query/replace from the
cursor position.

BackSpace: backward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character behind the cursor, or the current selection if not empty.
; Toolbar Search Commands : Delete character behind the cursor

Ctrl-0: replace - Bring up the search manager in replace mode.

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

292

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5

Ctrl-9: search - Bring up the search manager in search mode.

Ctrl-=: indent-to-match - Indent the current line or selected region to match inden-
tation of preceding non-blank line

Ctrl-@: set-mark-command - Set start of text marking for selection at current cursor
position. Subsequently, all cursor move operations will automatically extend the text
selection until stop-mark-command is issued. Unit defines what is selected: can be one
of char, line, or block (rectangle).

Ctrl-A: beginning-of-line - Action varies according to focus: Active Editor Com-
mands : Move to beginning of current line. When toggle is True, moves to the end of
the leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands : Move to the beginning of the toolbar search entry

Ctrl-Alt-@: replace-string-regex - Replace all occurrences of a string from the cursor
position to end of file. The search string is treated as a regular expression.

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Down: goto-next-bookmark(current file only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F6: debug-failed-tests

Ctrl-Alt-F7: debug-last-tests

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the book-
mark list, or the last one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-R: isearch-backward-regex - Action varies according to focus: Active Edi-
tor Commands : Initiate incremental regular expression mini-search backward from the
cursor position, optionally entering the given search string ; Document Viewer Com-
mands : Initiate incremental regular expression mini-search backward from the cursor
position, optionally entering the given search string.

293

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when current file only
is True.

Ctrl-Alt-S: isearch-forward-regex - Action varies according to focus: Active Editor
Commands : Initiate incremental regular expression mini-search forward from the cursor
position, optionally entering the given search string ; Document Viewer Commands :
Initiate incremental regular expression mini-search forward from the cursor position,
optionally entering the given search string.

Ctrl-Alt-Up: goto-previous-bookmark(current file only=True) - Go to the pre-
vious bookmark in the bookmark list, or the last one if no bookmark is selected. Stays
within the file in the current editor when current file only is True.

Ctrl-Alt-percent: query-replace-regex - Initiate incremental mini-search
query/replace from the cursor position. The search string is treated as a regular
expression.

Ctrl-B: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Ctrl-C Bar: evaluate-sel-in-shell - Evaluate the current selection from the editor
within the Python Shell tool, optionally restarting the shell first. When whole lines is
set, the selection is rounded to whole lines before evaluation. When unspecified (set to
None), the setting from the Shell’s Option menu is used instead.

Ctrl-C C: comment-out-region - Comment out the selected region. The style of
commenting can be controlled with the style argument: ’indented’ uses the default com-
ment style indented at end of leading white space and ’block’ uses a block comment in
column zero. If not given, the style configured with the Editor / Block Comment Style
preference is used. Each call adds a level of commenting.

Ctrl-C Ctrl-C: debug-continue - Continue (or start) running, to next breakpoint

Ctrl-C Ctrl-K: debug-kill - Stop debugging

Ctrl-C Ctrl-S: debug-stop - Pause free-running execution at current program counter

Ctrl-C M: isearch-sel

Ctrl-C R: isearch-sel-backward - Initiate incremental mini-search backward from the

294

cursor position, using current selection as the search string. Set persist=False to do the
search but end the interactive search session immediately.

Ctrl-C S: isearch-sel-forward - Action varies according to focus: Active Editor Com-
mands : Initiate incremental mini-search forward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the interactive
search session immediately.; Document Viewer Commands : Initiate incremental mini-
search forward from the cursor position, using current selection as the search string. Set
persist=False to do the search but end the interactive search session immediately.

Ctrl-C U: uncomment-out-region - Uncomment out the selected region if commented
out. If one level is True then each call removes only one level of commenting.

Ctrl-C greater: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or “never-select” to
unselect after indent, “always-select” to always select after indent, or “retain-select” to
retain current selection after indent.

Ctrl-C less: outdent-region - Outdent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or “never-select” to
unselect after indent, “always-select” to always select after indent, or “retain-select” to
retain current selection after indent.

Ctrl-C numbersign: comment-toggle - Toggle commenting out of the selected lines.
The style of commenting can be controlled with the style argument: ’indented’ uses the
default comment style indented at end of leading white space and ’block’ uses a block
comment in column zero. If not given, the style configured with the Editor / Block
Comment Style preference is used.

Ctrl-D: forward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word in front of the cursor ; Toolbar Search Commands : Delete
word in front of the cursor

Ctrl-Down: scroll-text-down - Scroll text down a line w/o moving cursor’s relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen.
Set move cursor to False to leave cursor in current position within the source, otherwise
it is moved so the cursor remains on same screen line.

Ctrl-E: end-of-line - Action varies according to focus: Active Editor Commands : Move
to end of current line; Toolbar Search Commands : Move to the end of the toolbar search
entry

295

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-F: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Ctrl-F12: command-by-name - Execute given command by name, collecting any args
as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore changes is
True. Close empty windows and quit if all document windows closed when close window
is True.

Ctrl-F5: debug-kill - Stop debugging

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: stop-mark-command - Stop text marking for selection at current cursor
position, leaving the selection set as is. Subsequent cursor move operations will deselect
the range and set selection to cursor position. Deselect immediately when deselect is
True.

Ctrl-H: backward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character behind the cursor, or the current selection if not empty. ;
Toolbar Search Commands : Delete character behind the cursor

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-J: fill-paragraph - Attempt to auto-justify the paragraph around the current
start of selection

Ctrl-K: kill-line - Kill rest of line from cursor to end of line, and place it into the
clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Ctrl-KP Add: zoom-in - Zoom in, increasing the text display size temporarily by one
font size

Ctrl-KP Delete: forward-delete-word - Action varies according to focus: Active

296

Editor Commands : Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-KP Down: next-line - Move to screen next line, optionally repositioning char-
acter within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char.

Ctrl-KP End: end-of-document - Move cursor to end of document

Ctrl-KP Enter: new-line - Place a new line at the current cursor position

Ctrl-KP Home: start-of-document - Move cursor to start of document

Ctrl-KP Insert: copy - Action varies according to focus: Active Editor Commands :
Copy selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-KP Left: backward-word - Action varies according to focus: Active Editor
Commands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-KP Next: forward-page - Move cursor forward one page

Ctrl-KP Page Down: forward-page - Move cursor forward one page

Ctrl-KP Page Up: backward-page - Move cursor backward one page

Ctrl-KP Prior: backward-page - Move cursor backward one page

Ctrl-KP Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-KP Subtract: zoom-out - Zoom out, increasing the text display size temporarily
by one font size

Ctrl-KP Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Ctrl-L: center-cursor - Scroll so cursor is centered on display

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Com-

297

mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-M: brace-match - Match brace at current cursor position, selecting all text be-
tween the two and hilighting the braces

Ctrl-N: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-O: next-window - Switch to the next window alphabetically by title

Ctrl-O: open-line - Open the current line by inserting a newline after the caret

Ctrl-P: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Ctrl-Page Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page Up: previous-document - Move to the previous document alphabetically
in the list of documents open in the current window

Ctrl-Period: redo - Redo last action

Ctrl-Pointer Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-R: isearch-backward - Action varies according to focus: Active Editor Com-
mands : Initiate incremental mini-search backward from the cursor position, optionally
entering the given search string ; Document Viewer Commands : Initiate incremental
mini-search backward from the cursor position, optionally entering the given search
string.

Ctrl-Return: new-line - Place a new line at the current cursor position

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be “start” or
“end” to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

298

Ctrl-Right: forward-word(gravity=“end”) - Action varies according to focus: Ac-
tive Editor Commands : Move cursor forward one word. Optionally, provide a string that
contains the delimiters to define which characters are part of a word. Gravity may be
“start” or “end” to indicate whether cursor is placed at start or end of the word.; Toolbar
Search Commands : Move forward one word

Ctrl-S: isearch-forward - Action varies according to focus: Active Editor Commands :
Initiate incremental mini-search forward from the cursor position, optionally entering
the given search string ; Document Viewer Commands : Initiate incremental mini-search
forward from the cursor position, optionally entering the given search string.

Ctrl-Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, ad-
justing the selection range to new position

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause free-running execution at current program counter

Ctrl-Shift-F6: debug-all-tests

Ctrl-Shift-F7: debug-current-tests

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO Left Tab: begin-visited-document-cycle(move back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-KP Down: next-line-extend - Move to next screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

299

Ctrl-Shift-KP End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-KP Home: start-of-document-extend - Move cursor to start of docu-
ment, adjusting the selection range to new position

Ctrl-Shift-KP Left: backward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-KP Next: forward-page-extend - Move cursor forward one page, adjust-
ing the selection range to new position

Ctrl-Shift-KP Page Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Page Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Right: forward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting
the selection range to new position, optionally repositioning character within line: same’
to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-
blank char.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

300

Ctrl-Shift-Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Ctrl-Shift-Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be “start”or“end” to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-Tab: begin-visited-document-cycle(move back=False) - Start mov-
ing between documents in the order they were visited. Starts modal key interaction that
ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-Slash: undo - Undo last action

Ctrl-Space: set-mark-command - Set start of text marking for selection at current
cursor position. Subsequently, all cursor move operations will automatically extend the
text selection until stop-mark-command is issued. Unit defines what is selected: can be
one of char, line, or block (rectangle).

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands :
Place a tab character at the current cursor position ; Search Manager Instance Com-
mands : Place a forward tab at the current cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move back=True) - Start moving be-
tween documents in the order they were visited. Starts modal key interaction that ends
when a key other than tab is seen or ctrl is released.

Ctrl-U: initiate-repeat - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Ctrl-Up: scroll-text-up - Scroll text up a line w/o moving cursor’s relative position
on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move cursor to False to leave cursor in current position within the source, otherwise it
is moved so the cursor remains on same screen line.

301

Ctrl-V: forward-page - Move cursor forward one page

Ctrl-W: cut - Action varies according to focus: Active Editor Commands : Cut se-
lected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Ctrl-X 1: unsplit - Unsplit all editors so there’s only one. Action specifies how to
choose the remaining displayed editor. One of:

current -- Show current editor

close -- Close current editor before unsplitting

recent -- Change to recent buffer before unsplitting

recent-or-close -- Change to recent buffer before closing

split, or close the current buffer if there is only

one split left.

NOTE: The parameters for this command are subject to change in the future.

Ctrl-X 2: split-vertically - Split current view vertically. Create new editor in new
view when new==1.

Ctrl-X 3: split-horizontally - Split current view horizontally.

Ctrl-X 4 A: add-change-log-entry

Ctrl-X 5 0: close-window - Close the current window and all documents and panels
in it

Ctrl-X 5 2: new-document-window - Create a new document window with same
documents and panels as in the current document window (if any; otherwise empty with
default panels)

Ctrl-X 5 3: new-document-window - Create a new document window with same
documents and panels as in the current document window (if any; otherwise empty with
default panels)

Ctrl-X 5 O: next-window - Switch to the next window alphabetically by title

Ctrl-X B: switch-document - Switches to named document. Name may either be the
complete name or the last path component of a path name.

Ctrl-X Bracketleft: start-of-document - Move cursor to start of document

Ctrl-X Bracketright: end-of-document - Move cursor to end of document

Ctrl-X Ctrl-C: quit - Quit the application.

302

Ctrl-X Ctrl-F: open-from-keyboard - Open a file from disk using keyboard-driven
selection of the file

Ctrl-X Ctrl-G: find-symbol - Allow user to visit point of definition of a source symbol
in the current editor context by typing a fragment of the name

Ctrl-X Ctrl-O: open-from-project - Open a document from the project by typing a
fragment to match file names

Ctrl-X Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-X Ctrl-T: swap-lines - Swap the line at start of current selection with the line
that follows it

Ctrl-X Ctrl-W: write-file - Write current file to a new location, optionally omitting
all but the lines in the given range.

Ctrl-X Ctrl-X: exchange-point-and-mark - When currently marking text, this ex-
changes the current position and mark ends of the current selection

Ctrl-X D: recent-document - Switches to previous document most recently visited
in the current window or window set if in one-window-per-editor windowing mode.

Ctrl-X E: execute-kbd-macro - Execute most recently recorded keyboard macro. If
register is None then the user is asked to enter a letter a-z for the register where the
macro is filed. Otherwise, register ’a’ is used by default.

Ctrl-X I: insert-file - Insert a file at current cursor position, prompting user for file
selection

Ctrl-X K: kill-buffer - Close the current text file

Ctrl-X L C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-X L H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-X L M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-X L N: use-lexer-none - Use no syntax highlighting

Ctrl-X L P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-X L S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-X L X: use-lexer-Xml

Ctrl-X N: next-document - Move to the next document alphabetically in the list of
documents open in the current window

303

Ctrl-X O: move-editor-focus - Move focus to next or previous editor split, optionally
wrapping when the end is reached.

Ctrl-X P: previous-document - Move to the previous document alphabetically in the
list of documents open in the current window

Ctrl-X R B: goto-bookmark - Goto named bookmark

Ctrl-X R M: set-bookmark - Set a bookmark at current location on the editor. Mark
is the project-wide textual name of the bookmark.

Ctrl-X R Return: show-bookmarks - Show a list of all currently defined bookmarks

Ctrl-X R T: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated default.

Ctrl-X Space: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Ctrl-X U: undo - Undo last action

Ctrl-X parenleft: start-kbd-macro - Start definition of a keyboard macro. If regis-
ter=None then the user is prompted to enter a letter a-z under which to file the macro.
Otherwise, register ’a’ is used by default.

Ctrl-X parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-Y: Multiple commands (first available is executed):

• yank-line - Yank contents of kill buffer created with kill-line into the
edit buffer

• paste - Action varies according to focus: Active Editor Commands :
Paste text from clipboard ; Search Manager Instance Commands : Paste
text from clipboard ; Toolbar Search Commands : Paste from clipboard

Ctrl-parenleft: batch-search - Display Search in Files tool. The look in argument
gets entered in the look in field if not None or ”. The current selection is put into the
search field if it doesn’t span multiple lines and either use selection is true or there’s
nothing in the search field. The given search text is used instead, if provided

Ctrl-parenright: batch-replace - Display search and replace in files tool.

Ctrl-underscore: undo - Undo last action

304

Delete: forward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands : Move
to end of current line; Toolbar Search Commands : Move to the end of the toolbar search
entry

Esc X: command-by-name - Execute given command by name, collecting any args
as needed

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager’s current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol

F5: debug-continue - Continue (or start) running, to next breakpoint

F6: step-over - Step over current execution point

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Return from current function

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line

305

• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line - Action varies according to focus: Active Editor Com-
mands : Move to beginning of current line. When toggle is True, moves to the end of
the leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands : Move to the beginning of the toolbar search entry

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO Left Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

KP Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character in front of the cursor ; Toolbar Search Commands :
Delete character in front of the cursor

KP Down: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

KP End: end-of-line - Action varies according to focus: Active Editor Commands :
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

KP Enter: new-line - Place a new line at the current cursor position

KP Home: beginning-of-line - Action varies according to focus: Active Editor Com-
mands : Move to beginning of current line. When toggle is True, moves to the end of
the leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands : Move to the beginning of the toolbar search entry

KP Home: beginning-of-line-text - Move to end of the leading white space, if any,
on the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

KP Insert: toggle-overtype - Toggle status of overtyping mode

KP Left: backward-char - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one character ; Toolbar Search Commands : Move back-
ward one character

KP Next: forward-page - Move cursor forward one page

KP Page Down: forward-page - Move cursor forward one page

306

KP Page Up: backward-page - Move cursor backward one page

KP Prior: backward-page - Move cursor backward one page

KP Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

KP Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

KP Up: previous-line - Move to previous screen line, optionally repositioning charac-
ter within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end,
or ’fnb’ for first non-blank char.

Left: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Next: forward-page - Move cursor forward one page

Page Down: forward-page - Move cursor forward one page

Page Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

307

Shift-BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands : Delete one character behind the cursor, or the current selection if
not empty. ; Toolbar Search Commands : Delete character behind the cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands : Cut
selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Com-
mands : Move to end of current line, adjusting the selection range to new position ;
Toolbar Search Commands : Move to the end of the toolbar search entry, extendning the
selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the de-
bugger originally stopped

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas
and toolbar, saving previous state so it can be restored later with
exit fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and
tool bar

Shift-F3: search-backward - Search again using the search manager’s current settings
in backward direction

Shift-F4: new-document-window - Create a new document window with same doc-
uments and panels as in the current document window (if any; otherwise empty with
default panels)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests

Shift-F7: run-current-tests

308

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-extend - Action varies according to focus: Active
Editor Commands : Move to beginning of current line, adjusting the selection range to
the new position. When toggle is True, moves to the end of the leading white space if
already at the beginning of the line (and vice versa).; Toolbar Search Commands: Move
to the beginning of the toolbar search entry, extending the selection

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Shift-KP Delete: cut - Action varies according to focus: Active Editor Commands :
Cut selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar
Search Commands : Cut selection

Shift-KP Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-KP End: end-of-line-extend - Action varies according to focus: Active Editor
Commands : Move to end of current line, adjusting the selection range to new position
; Toolbar Search Commands : Move to the end of the toolbar search entry, extendning
the selection

Shift-KP Enter: new-line - Place a new line at the current cursor position

Shift-KP Home: beginning-of-line-extend - Action varies according to focus: Ac-
tive Editor Commands : Move to beginning of current line, adjusting the selection range
to the new position. When toggle is True, moves to the end of the leading white space if
already at the beginning of the line (and vice versa).; Toolbar Search Commands: Move
to the beginning of the toolbar search entry, extending the selection

Shift-KP Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position. If

309

toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-KP Insert: paste - Action varies according to focus: Active Editor Commands :
Paste text from clipboard ; Search Manager Instance Commands : Paste text from clip-
board ; Toolbar Search Commands : Paste from clipboard

Shift-KP Left: backward-char-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one character, adjusting the selection range
to new position ; Toolbar Search Commands : Move backward one character, extending
the selection

Shift-KP Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-KP Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Shift-KP Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Shift-KP Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Shift-KP Right: forward-char-extend - Action varies according to focus: Active
Editor Commands : Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands : Move cursor backward one character, adjusting the selection range to new
position ; Toolbar Search Commands : Move backward one character, extending the
selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page Down: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-Page Up: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

310

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting the
selection range to new position

Shift-Return: new-line - Place a new line at the current cursor position

Shift-Right: forward-char-extend - Action varies according to focus: Active Edi-
tor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

13.3. VI/VIM Personality

This section documents all the default key bindings for the VI/VIM keyboard personality,
set by the Personality preference.

Alt-1: fold-python-methods

Alt-2: fold-python-classes

Alt-3: fold-python-classes-and-defs

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word behind of the cursor ; Toolbar Search Commands : Delete
word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

311

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F6: run-failed-tests

Alt-F7: run-last-tests

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page Down: fold-expand-all-current - Expand the current fold point com-
pletely

Alt-Page Up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

BackSpace: backward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character behind the cursor, or the current selection if not empty.
; Toolbar Search Commands : Delete character behind the cursor

Browse-!: filter-next-move - Filter the lines covered by the next cursor move com-
mand through an external command and replace the lines with the result

Browse-“: set-register - Set the register to use for subsequent cut/copy/paste opera-
tions

Browse-#: isearch-sel-backward(persist=0, whole word=1) - Initiate incremen-
tal mini-search backward from the cursor position, using current selection as the search
string. Set persist=False to do the search but end the interactive search session imme-
diately.

Browse-$: end-of-line - Action varies according to focus: Active Editor Commands :
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

312

Browse-%: goto-percent-line(cursor=”fnb“) - Position cursor at start of line at
given percent in file. This uses the previously entered numeric modifier or defaults to
going to line one. The cursor can be positioned at ’start’, ’end’, or ’fnb’ for first non-
blank character, or in VI mode it will do brace matching operation to reflect how VI
overrides this command.

Browse-&: repeat-replace - Repeat the last query replace or range replace operation
on the current line. The first match is replaced without confirmation.

Browse-+: next-line-in-file(cursor=”fnb“) - Move to next line in file, repositioning
character within line: ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Browse-,: repeat-search-char(opposite=1) - Repeat the last search char operation,
optionally in the opposite direction.

Browse-.: repeat-command - Repeat the last editor command

Browse-/: isearch-forward-regex - Action varies according to focus: Active Editor
Commands : Initiate incremental regular expression mini-search forward from the cursor
position, optionally entering the given search string ; Document Viewer Commands :
Initiate incremental regular expression mini-search forward from the cursor position,
optionally entering the given search string.

Browse-0: beginning-of-line(toggle=0) - Action varies according to focus: Active
Editor Commands : Move to beginning of current line. When toggle is True, moves to
the end of the leading white space if already at the beginning of the line (and vice versa).;
Toolbar Search Commands : Move to the beginning of the toolbar search entry

Browse-1: initiate-numeric-modifier(digit=1) - VI style repeat/numeric modifier
for following command

Browse-2: initiate-numeric-modifier(digit=2) - VI style repeat/numeric modifier
for following command

Browse-3: initiate-numeric-modifier(digit=3) - VI style repeat/numeric modifier
for following command

Browse-4: initiate-numeric-modifier(digit=4) - VI style repeat/numeric modifier
for following command

Browse-5: initiate-numeric-modifier(digit=5) - VI style repeat/numeric modifier
for following command

Browse-6: initiate-numeric-modifier(digit=6) - VI style repeat/numeric modifier
for following command

313

Browse-7: initiate-numeric-modifier(digit=7) - VI style repeat/numeric modifier
for following command

Browse-8: initiate-numeric-modifier(digit=8) - VI style repeat/numeric modifier
for following command

Browse-9: initiate-numeric-modifier(digit=9) - VI style repeat/numeric modifier
for following command

Browse-;: repeat-search-char - Repeat the last search char operation, optionally in
the opposite direction.

Browse-<: outdent-next-move - Outdent lines spanned by next cursor move

Browse-=: indent-to-match-next-move - Indent lines spanned by next cursor move
to match, based on the preceding line

Browse->: indent-next-move - Indent lines spanned by next cursor move

Browse-?: isearch-backward-regex - Action varies according to focus: Active Editor
Commands : Initiate incremental regular expression mini-search backward from the cur-
sor position, optionally entering the given search string ; Document Viewer Commands :
Initiate incremental regular expression mini-search backward from the cursor position,
optionally entering the given search string.

Browse-@: execute-kbd-macro(register=None) - Execute most recently recorded
keyboard macro. If register is None then the user is asked to enter a letter a-z for the
register where the macro is filed. Otherwise, register ’a’ is used by default.

Browse-A: enter-insert-mode(pos=”after“) - Enter editor insert mode

Browse-Apostrophe: vi-goto-bookmark - Goto bookmark using single character
name defined by the next pressed key

Browse-BackSpace: backward-char - Action varies according to focus: Active Editor
Commands : Move cursor backward one character ; Toolbar Search Commands : Move
backward one character

Browse-Ctrl-B: backward-page - Move cursor backward one page

Browse-Ctrl-C: vi-ctrl-c

Browse-Ctrl-D: scroll-text-down(repeat=0.5) - Scroll text down a line w/o moving
cursor’s relative position on screen. Repeat is number of lines or if >0 and <1.0 then
percent of screen. Set move cursor to False to leave cursor in current position within
the source, otherwise it is moved so the cursor remains on same screen line.

Browse-Ctrl-E: scroll-text-down(move cursor=False) - Scroll text down a line

314

w/o moving cursor’s relative position on screen. Repeat is number of lines or if >0 and
<1.0 then percent of screen. Set move cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Browse-Ctrl-F: forward-page - Move cursor forward one page

Browse-Ctrl-J: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Browse-Ctrl-M: next-line-in-file(cursor=”fnb“) - Move to next line in file, reposi-
tioning character within line: ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Browse-Ctrl-N: next-line - Move to screen next line, optionally repositioning charac-
ter within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end,
or ’fnb’ for first non-blank char.

Browse-Ctrl-P: previous-line - Move to previous screen line, optionally repositioning
character within line: same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Browse-Ctrl-Q: start-select-block - Turn on auto-select block mode

Browse-Ctrl-R: redo - Redo last action

Browse-Ctrl-Shift-O: open-from-project - Open a document from the project by
typing a fragment to match file names

Browse-Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source
symbol in the current editor context by typing a fragment of the name

Browse-Ctrl-U: scroll-text-up(repeat=0.5) - Scroll text up a line w/o moving cur-
sor’s relative position on screen. Repeat is number of lines or if >0 and <1.0 then percent
of screen. Set move cursor to False to leave cursor in current position within the source,
otherwise it is moved so the cursor remains on same screen line.

Browse-Ctrl-V: vi-ctrl-v

Browse-Ctrl-W Browse-+: grow-split-vertically - Increase height of this split

Browse-Ctrl-W Browse-Ctrl-W: move-editor-focus - Move focus to next or pre-
vious editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-Ctrl-ˆ: vi-split-edit-alternate

Browse-Ctrl-W Browse-Down: move-editor-focus(wrap=False) - Move focus to
next or previous editor split, optionally wrapping when the end is reached.

315

Browse-Ctrl-W Browse-Minus: shrink-split-vertically - Decrease height of this
split

Browse-Ctrl-W Browse-Up: move-editor-focus(dir=-1, wrap=False) - Move
focus to next or previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-W: move-editor-focus(dir=-1) - Move focus to next or
previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-b: move-editor-focus-last - Move focus to last editor split

Browse-Ctrl-W Browse-c: unsplit(action=”recent-or-close“) - Unsplit all editors
so there’s only one. Action specifies how to choose the remaining displayed editor. One
of:

current -- Show current editor

close -- Close current editor before unsplitting

recent -- Change to recent buffer before unsplitting

recent-or-close -- Change to recent buffer before closing

split, or close the current buffer if there is only

one split left.

NOTE: The parameters for this command are subject to change in the future.

Browse-Ctrl-W Browse-j: move-editor-focus(wrap=False) - Move focus to next
or previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-k: move-editor-focus(dir=-1, wrap=False) - Move fo-
cus to next or previous editor split, optionally wrapping when the end is reached.

Browse-Ctrl-W Browse-n: split-vertically(new=1) - Split current view vertically.
Create new editor in new view when new==1.

Browse-Ctrl-W Browse-o: unsplit - Unsplit all editors so there’s only one. Action
specifies how to choose the remaining displayed editor. One of:

current -- Show current editor

close -- Close current editor before unsplitting

recent -- Change to recent buffer before unsplitting

recent-or-close -- Change to recent buffer before closing

split, or close the current buffer if there is only

one split left.

NOTE: The parameters for this command are subject to change in the future.

316

Browse-Ctrl-W Browse-p: move-editor-focus-previous - Move focus to last editor
split

Browse-Ctrl-W Browse-q: Multiple commands (first available is executed):

• unsplit(action=”close“) - Unsplit all editors so there’s only one. Ac-
tion specifies how to choose the remaining displayed editor. One of:

current -- Show current editor

close -- Close current editor before unsplitting

recent --

Change to recent buffer before unsplitting

recent-or-close --

Change to recent buffer before closing

split, or close the current buffer if there is only

one split left.

NOTE: The parameters for this command are subject to change in the
future.

• close(close window=1) - Close active document. Abandon any
changes when ignore changes is True. Close empty windows and quit if
all document windows closed when close window is True.

Browse-Ctrl-W Browse-s: split-vertically - Split current view vertically. Create
new editor in new view when new==1.

Browse-Ctrl-W Browse-t: move-editor-focus-first - Move focus to first editor split

Browse-Ctrl-W Browse-v: split-horizontally - Split current view horizontally.

Browse-Ctrl-X: vi-ctrl-x

Browse-Ctrl-Y: scroll-text-up(move cursor=False) - Scroll text up a line w/o
moving cursor’s relative position on screen. Repeat is number of lines or if >0 and
<1.0 then percent of screen. Set move cursor to False to leave cursor in current position
within the source, otherwise it is moved so the cursor remains on same screen line.

Browse-Ctrl-ˆ: nth-document - Move to the nth document alphabetically in the list
of documents open in the current window

Browse-Ctrl-h: backward-char - Action varies according to focus: Active Editor
Commands : Move cursor backward one character ; Toolbar Search Commands : Move
backward one character

Browse-Esc: clear-move-command - Clear any pending move command action, as
for VI mode

317

Browse-F: search-char(dir=1, single line=1) - Search for the given character.
Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor pos char-
acters to left or right of the target (e.g., use -1 to place one to left). If repeat > 1, the
Nth match is found. Set single line=1 to search only within the current line.

Browse-G Browse-Shift-I: enter-insert-mode(pos=”sol“) - Enter editor insert
mode

Browse-Grave: vi-goto-bookmark - Goto bookmark using single character name
defined by the next pressed key

Browse-I: enter-insert-mode(pos=”before“) - Enter editor insert mode

Browse-Insert: enter-insert-mode(pos=”before“) - Enter editor insert mode

Browse-Minus: previous-line-in-file(cursor=”fnb“) - Move to previous line in file,
repositioning character within line: ’start’ at start, ’end’ at end, or ’fnb’ for first non-
blank char.

Browse-O: enter-insert-mode(pos=”new-below“) - Enter editor insert mode

Browse-Return: next-line(cursor=”start“) - Move to screen next line, optionally
repositioning character within line: ’same’ to leave in same horizontal position, ’start’
at start, ’end’ at end, or ’fnb’ for first non-blank char.

Browse-Shift-A: enter-insert-mode(pos=”eol“) - Enter editor insert mode

Browse-Shift-B: backward-word(delimiters=” tnr“) - Action varies according to
focus: Active Editor Commands : Move cursor backward one word. Optionally, provide a
string that contains the delimiters to define which characters are part of a word. Gravity
may be ”start“ or ”end“ to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands : Move backward one word

Browse-Shift-C: delete-to-end-of-line-insert - Delete everything between the cursor
and end of line and enter insert move (when working in a modal editor key binding)

Browse-Shift-D: delete-to-end-of-line(post offset=-1) - Delete everything be-
tween the cursor and end of line

Browse-Shift-E: forward-word(delimiters=” tnr“, gravity=”endm1“) - Action
varies according to focus: Active Editor Commands: Move cursor forward one word.
Optionally, provide a string that contains the delimiters to define which characters are
part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor is placed at
start or end of the word.; Toolbar Search Commands : Move forward one word

Browse-Shift-F: search-char(dir=-1, single line=1) - Search for the given char-
acter. Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor pos

318

characters to left or right of the target (e.g., use -1 to place one to left). If repeat > 1,
the Nth match is found. Set single line=1 to search only within the current line.

Browse-Shift-G: goto-nth-line-default-end(cursor=”fnb“) - Same as
goto nth line but defaults to end of file if no lineno is given

Browse-Shift-H: cursor-move-to-top - Move cursor to top of display (without
scrolling), optionally at an offset of given number of lines below top

Browse-Shift-I: enter-insert-mode(pos=”fnb“) - Enter editor insert mode

Browse-Shift-J: join-lines - Join together specified number of lines after current line
(replace newlines with the given delimiter (single space by default)

Browse-Shift-L: cursor-move-to-bottom - Move cursor to bottom of display (with-
out scrolling), optionally at an offset of given number of lines before bottom

Browse-Shift-M: cursor-move-to-center - Move cursor to center of display (without
scrolling)

Browse-Shift-N: isearch-repeat(reverse=1) - Repeat the most recent isearch, using
same string and regex/text. Reverse direction when reverse is True.

Browse-Shift-O: enter-insert-mode(pos=”new-above“) - Enter editor insert mode

Browse-Shift-P: paste-register(pos=-1) - Paste text from register as before or after
the current position. If the register contains only lines, then the lines are pasted before
or after current line (rather than at cursor). If the register contains fragments of lines,
the text is pasted over the current selection or either before or after the cursor. Set
pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent the pasted text to
match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it
after lines after paste completes.

Browse-Shift-R: enter-replace-mode - Enter editor replace mode

Browse-Shift-S: delete-line-insert - Delete the current line or lines when the selection
spans multiple lines or given repeat is > 1. Enters insert mode (when working with modal
key bindings).

Browse-Shift-T: search-char(dir=-1, pos=1, single line=1) - Search for the given
character. Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor pos
characters to left or right of the target (e.g., use -1 to place one to left). If repeat > 1,
the Nth match is found. Set single line=1 to search only within the current line.

Browse-Shift-V: start-select-line - Turn on auto-select mode line by line

Browse-Shift-W: forward-word(delimiters=” tnr“) - Action varies according to
focus: Active Editor Commands : Move cursor forward one word. Optionally, provide a

319

string that contains the delimiters to define which characters are part of a word. Gravity
may be ”start“ or ”end“ to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands : Move forward one word

Browse-Shift-Y: move-to-register(unit=”line“) - Cut or copy a specified number
of characters or lines, or the current selection. Set cut=1 to remove the range of text
from the editor after moving to register (otherwise it is just copied). Unit should be one
of ’char’ or ’line’ or ’sel’ for current selection.

Browse-Shift-Z Browse-Shift-Q: close(ignore changes=1, close window=1) -
Close active document. Abandon any changes when ignore changes is True. Close
empty windows and quit if all document windows closed when close window is True.

Browse-Shift-Z Browse-Shift-Z: write-file-and-close(filename=None) - Write
current document to given location and close it. Saves to current file name if the given
filename is None.

Browse-Shift-x: backward-delete-char - Action varies according to focus: Active
Editor Commands : Delete one character behind the cursor, or the current selection if
not empty. ; Toolbar Search Commands : Delete character behind the cursor

Browse-Space: forward-char - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one character ; Toolbar Search Commands : Move forward
one character

Browse-T: search-char(dir=1, pos=1, single line=1) - Search for the given char-
acter. Searches to right if dir > 0 and to left if dir < 0. Optionally place cursor pos
characters to left or right of the target (e.g., use -1 to place one to left). If repeat > 1,
the Nth match is found. Set single line=1 to search only within the current line.

Browse-Underscore: beginning-of-line-text - Move to end of the leading white
space, if any, on the current line. If toggle is True, moves to the beginning of the line if
already at the end of the leading white space (and vice versa).

Browse-[Browse-p: paste-register(pos=-1, indent=1) - Paste text from register
as before or after the current position. If the register contains only lines, then the lines
are pasted before or after current line (rather than at cursor). If the register contains
fragments of lines, the text is pasted over the current selection or either before or after
the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent the
pasted text to match current line. Set cursor=-1 to place cursor before lines or cursor=1
to place it after lines after paste completes.

Browse-*: isearch-sel-forward(persist=0, whole word=1) - Action varies accord-
ing to focus: Active Editor Commands : Initiate incremental mini-search forward from
the cursor position, using current selection as the search string. Set persist=False to do
the search but end the interactive search session immediately.; Document Viewer Com-

320

mands : Initiate incremental mini-search forward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the interactive
search session immediately.

Browse-] Browse-p: paste-register(indent=1) - Paste text from register as before
or after the current position. If the register contains only lines, then the lines are pasted
before or after current line (rather than at cursor). If the register contains fragments of
lines, the text is pasted over the current selection or either before or after the cursor.
Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent the pasted text
to match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it
after lines after paste completes.

Browse-ˆ: beginning-of-line-text(toggle=0) - Move to end of the leading white
space, if any, on the current line. If toggle is True, moves to the beginning of the line if
already at the end of the leading white space (and vice versa).

Browse-b: backward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Browse-c: delete-next-move-insert - Delete the text covered by the next cursor move
command and then enter insert mode (when working in a modal editor key binding)

Browse-colon: vi-command-by-name - Execute a VI command (implements ”:“ com-
mands from VI)

Browse-d: delete-next-move - Delete the text covered by the next cursor move com-
mand.

Browse-e: forward-word(gravity=”endm1“) - Action varies according to focus:
Active Editor Commands : Move cursor forward one word. Optionally, provide a string
that contains the delimiters to define which characters are part of a word. Gravity may
be ”start“ or ”end“ to indicate whether cursor is placed at start or end of the word.;
Toolbar Search Commands : Move forward one word

Browse-g Browse-$: end-of-screen-line - Move to end of current wrapped line

Browse-g Browse-0: beginning-of-screen-line - Move to beginning of current
wrapped line

Browse-g Browse-Shift-D: goto-selected-symbol-defn - Goto the definition of the
selected source symbol

Browse-g Browse-Shift-E: backward-word(delimiters=” tnr“, grav-
ity=”endm1“) - Action varies according to focus: Active Editor Commands : Move

321

cursor backward one word. Optionally, provide a string that contains the delimiters to
define which characters are part of a word. Gravity may be ”start“ or ”end“ to indicate
whether cursor is placed at start or end of the word.; Toolbar Search Commands : Move
backward one word

Browse-g Browse-Shift-J: join-lines(delim=”“) - Join together specified number of
lines after current line (replace newlines with the given delimiter (single space by default)

Browse-g Browse-Shift-P: paste-register(pos=-1, cursor=1) - Paste text from
register as before or after the current position. If the register contains only lines, then
the lines are pasted before or after current line (rather than at cursor). If the register
contains fragments of lines, the text is pasted over the current selection or either before
or after the cursor. Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to
indent the pasted text to match current line. Set cursor=-1 to place cursor before lines
or cursor=1 to place it after lines after paste completes.

Browse-g Browse-Shift-U: case-upper-next-move - Change case of text spanned
by next cursor movement to upper case

Browse-g Browse-ˆ: beginning-of-screen-line-text - Move to first non-blank char-
acter at beginning of current wrapped line

Browse-g Browse-d: goto-selected-symbol-defn - Goto the definition of the se-
lected source symbol

Browse-g Browse-e: backward-word(gravity=”endm1“) - Action varies accord-
ing to focus: Active Editor Commands : Move cursor backward one word. Optionally,
provide a string that contains the delimiters to define which characters are part of a
word. Gravity may be ”start“ or ”end“ to indicate whether cursor is placed at start or
end of the word.; Toolbar Search Commands : Move backward one word

Browse-g Browse-g: goto-nth-line(cursor=”fnb“) - Position cursor at start of given
line number (1=first, -1 = last). This differs from goto-line in that it never prompts for a
line number but instead uses the previously entered numeric modifier or defaults to going
to line one. The cursor can be positioned at ’start’, ’end’, or ’fnb’ for first non-blank
character.

Browse-g Browse-j: next-line - Move to screen next line, optionally repositioning
character within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Browse-g Browse-k: previous-line - Move to previous screen line, optionally reposi-
tioning character within line: same’ to leave in same horizontal position, ’start’ at start,
’end’ at end, or ’fnb’ for first non-blank char.

322

Browse-g Browse-m: middle-of-screen-line - Move to middle of current wrapped
line

Browse-g Browse-p: paste-register(cursor=1) - Paste text from register as before
or after the current position. If the register contains only lines, then the lines are pasted
before or after current line (rather than at cursor). If the register contains fragments of
lines, the text is pasted over the current selection or either before or after the cursor.
Set pos = 1 to paste after, or -1 to paste before. Set indent=1 to indent the pasted text
to match current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it
after lines after paste completes.

Browse-g Browse-q Browse-q: fill-paragraph - Attempt to auto-justify the para-
graph around the current start of selection

Browse-g Browse-r: replace-char(line mode=”extend“) - Replace num characters
with given character. Set line mode to multiline to allow replacing across lines, extend
to replace on current line and then extend the line length, and restrict to replace only if
enough characters exist on current line after cursor position.

Browse-g Browse-u: case-lower-next-move - Change case of text spanned by next
cursor movement to lower case

Browse-g Browse-v: previous-select - Turn on auto-select using previous mode and
selection

Browse-g Browse-˜: case-swap-next-move - Change case of text spanned by next
cursor movement so each letter is the opposite of its current case

Browse-h: backward-char(wrap=0) - Action varies according to focus: Active Edi-
tor Commands : Move cursor backward one character ; Toolbar Search Commands : Move
backward one character

Browse-j: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Browse-k: previous-line - Move to previous screen line, optionally repositioning char-
acter within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char.

Browse-l: forward-char(wrap=0) - Action varies according to focus: Active Editor
Commands : Move cursor forward one character ; Toolbar Search Commands : Move
forward one character

Browse-m: vi-set-bookmark - Set a bookmark at current location on the editor using
the next key press as the name of the bookmark.

323

Browse-n: isearch-repeat - Repeat the most recent isearch, using same string and
regex/text. Reverse direction when reverse is True.

Browse-p: paste-register - Paste text from register as before or after the current
position. If the register contains only lines, then the lines are pasted before or after
current line (rather than at cursor). If the register contains fragments of lines, the text
is pasted over the current selection or either before or after the cursor. Set pos = 1
to paste after, or -1 to paste before. Set indent=1 to indent the pasted text to match
current line. Set cursor=-1 to place cursor before lines or cursor=1 to place it after lines
after paste completes.

Browse-q: Multiple commands (first available is executed):

• start-kbd-macro(register=None) - Start definition of a keyboard
macro. If register=None then the user is prompted to enter a letter a-z
under which to file the macro. Otherwise, register ’a’ is used by default.

• stop-kbd-macro - Stop definition of a keyboard macro

Browse-r: replace-char(line mode=”restrict“) - Replace num characters with given
character. Set line mode to multiline to allow replacing across lines, extend to replace
on current line and then extend the line length, and restrict to replace only if enough
characters exist on current line after cursor position.

Browse-s: forward-delete-char-insert - Delete one char in front of the cursor and
enter insert mode (when working in modal key bindings)

Browse-u: undo - Undo last action

Browse-v: start-select-char - Turn on auto-select mode character by character

Browse-w: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Browse-x: forward-delete-char-within-line - Delete one character in front of the
cursor unless at end of line, in which case delete backward. Do nothing if the line is
empty. This is VI style ’x’ in browser mode.

Browse-y: move-to-register-next-move - Move the text spanned by the next cursor
motion to a register

Browse-z Browse-.: center-cursor - Scroll so cursor is centered on display

324

Browse-z Browse-Minus: cursor-to-bottom - Scroll so cursor is centered at bottom
of display

Browse-z Browse-Plus: cursor-to-top - Scroll so cursor is centered at top of display

Browse-z Browse-Return: cursor-to-top - Scroll so cursor is centered at top of
display

Browse-z Browse-Shift-H: scroll-text-right(repeat=0.5) - Scroll text right a col-
umn w/o moving cursor’s relative position on screen. Repeat is number of columns or
if >0 and <1.0 then percent of screen.

Browse-z Browse-Shift-L: scroll-text-left(repeat=0.5) - Scroll text left a column
w/o moving cursor’s relative position on screen. Repeat is number of columns or if >0
and <1.0 then percent of screen.

Browse-z Browse-Shift-M: fold-collapse-all - Collapse all fold points in the current
file

Browse-z Browse-Shift-O: fold-expand-all-current - Expand the current fold point
completely

Browse-z Browse-Shift-R: fold-expand-all - Expand all fold points in the current
file

Browse-z Browse-b: cursor-to-bottom - Scroll so cursor is centered at bottom of
display

Browse-z Browse-c: fold-collapse-current - Collapse the current fold point

Browse-z Browse-h: scroll-text-right - Scroll text right a column w/o moving cur-
sor’s relative position on screen. Repeat is number of columns or if >0 and <1.0 then
percent of screen.

Browse-z Browse-l: scroll-text-left - Scroll text left a column w/o moving cursor’s
relative position on screen. Repeat is number of columns or if >0 and <1.0 then percent
of screen.

Browse-z Browse-m: vi-fold-less

Browse-z Browse-o: fold-expand-current - Expand the current fold point

Browse-z Browse-r: vi-fold-more

Browse-z Browse-t: cursor-to-top - Scroll so cursor is centered at top of display

Browse-z Browse-z: center-cursor - Scroll so cursor is centered on display

325

Browse-{: backward-paragraph - Move cursor backward one paragraph (to next
all-whitespace line).

Browse-|: goto-column - Move cursor to given column

Browse-}: forward-paragraph - Move cursor forward one paragraph (to next all-
whitespace line).

Browse-˜: case-swap - Change case of the current selection, or character ahead of the
cursor if there is no selection, so each letter is the opposite of its current case

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5

Ctrl-=: indent-to-match - Indent the current line or selected region to match inden-
tation of preceding non-blank line

Ctrl-Alt-Down: goto-next-bookmark(current file only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-F6: debug-failed-tests

Ctrl-Alt-F7: debug-last-tests

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the book-
mark list, or the last one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when current file only
is True.

Ctrl-Alt-Up: goto-previous-bookmark(current file only=True) - Go to the pre-

326

vious bookmark in the bookmark list, or the last one if no bookmark is selected. Stays
within the file in the current editor when current file only is True.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word in front of the cursor ; Toolbar Search Commands : Delete
word in front of the cursor

Ctrl-Down: scroll-text-down - Scroll text down a line w/o moving cursor’s relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen.
Set move cursor to False to leave cursor in current position within the source, otherwise
it is moved so the cursor remains on same screen line.

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-F12: command-by-name - Execute given command by name, collecting any args
as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore changes is
True. Close empty windows and quit if all document windows closed when close window
is True.

Ctrl-F5: debug-kill - Stop debugging

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-KP Add: zoom-in - Zoom in, increasing the text display size temporarily by one
font size

Ctrl-KP Delete: forward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-KP Down: next-line - Move to screen next line, optionally repositioning char-

327

acter within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char.

Ctrl-KP End: end-of-document - Move cursor to end of document

Ctrl-KP Home: start-of-document - Move cursor to start of document

Ctrl-KP Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-KP Left: backward-word - Action varies according to focus: Active Editor
Commands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-KP Next: forward-page - Move cursor forward one page

Ctrl-KP Page Down: forward-page - Move cursor forward one page

Ctrl-KP Page Up: backward-page - Move cursor backward one page

Ctrl-KP Prior: backward-page - Move cursor backward one page

Ctrl-KP Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-KP Subtract: zoom-out - Zoom out, increasing the text display size temporarily
by one font size

Ctrl-KP Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-Next: forward-page - Move cursor forward one page

328

Ctrl-Page Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page Up: previous-document - Move to the previous document alphabetically
in the list of documents open in the current window

Ctrl-Pointer Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Return: new-line - Place a new line at the current cursor position

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, ad-
justing the selection range to new position

Ctrl-Shift-F: batch-search - Display Search in Files tool. The look in argument gets
entered in the look in field if not None or ”. The current selection is put into the search
field if it doesn’t span multiple lines and either use selection is true or there’s nothing
in the search field. The given search text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause free-running execution at current program counter

Ctrl-Shift-F6: debug-all-tests

Ctrl-Shift-F7: debug-current-tests

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: batch-replace - Display search and replace in files tool.

329

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO Left Tab: begin-visited-document-cycle(move back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-KP Down: next-line-extend - Move to next screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-Shift-KP End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-KP Home: start-of-document-extend - Move cursor to start of docu-
ment, adjusting the selection range to new position

Ctrl-Shift-KP Left: backward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-KP Next: forward-page-extend - Move cursor forward one page, adjust-
ing the selection range to new position

Ctrl-Shift-KP Page Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Page Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Right: forward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

330

Ctrl-Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting
the selection range to new position, optionally repositioning character within line: same’
to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-
blank char.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Ctrl-Shift-Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-Tab: begin-visited-document-cycle(move back=False) - Start mov-
ing between documents in the order they were visited. Starts modal key interaction that
ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands :
Place a tab character at the current cursor position ; Search Manager Instance Com-
mands : Place a forward tab at the current cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move back=True) - Start moving be-

331

tween documents in the order they were visited. Starts modal key interaction that ends
when a key other than tab is seen or ctrl is released.

Ctrl-Up: scroll-text-up - Scroll text up a line w/o moving cursor’s relative position
on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move cursor to False to leave cursor in current position within the source, otherwise it
is moved so the cursor remains on same screen line.

Delete: forward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands : Move
to end of current line; Toolbar Search Commands : Move to the end of the toolbar search
entry

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager’s current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol

F5: debug-continue - Continue (or start) running, to next breakpoint

F6: step-over - Step over current execution point

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Return from current function

332

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO Left Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

Insert-Ctrl-C: vi-ctrl-c

Insert-Ctrl-D: outdent-region - Outdent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or ”never-select“ to
unselect after indent, ”always-select“ to always select after indent, or ”retain-select“ to
retain current selection after indent.

Insert-Ctrl-H: backward-delete-char - Action varies according to focus: Active Ed-
itor Commands : Delete one character behind the cursor, or the current selection if not
empty. ; Toolbar Search Commands : Delete character behind the cursor

Insert-Ctrl-J: new-line - Place a new line at the current cursor position

Insert-Ctrl-M: new-line - Place a new line at the current cursor position

Insert-Ctrl-N: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Insert-Ctrl-O: enter-browse-mode(provisional=True) - Enter editor browse mode

Insert-Ctrl-P: previous-line - Move to previous screen line, optionally repositioning
character within line: same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Insert-Ctrl-Q: start-select-block - Turn on auto-select block mode

Insert-Ctrl-T: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or ”never-select“ to
unselect after indent, ”always-select“ to always select after indent, or ”retain-select“ to
retain current selection after indent.

Insert-Ctrl-U: delete-to-start-of-line - Delete everything between the cursor and
start of line

333

Insert-Ctrl-V: vi-ctrl-v

Insert-Ctrl-W: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Insert-Ctrl-X: vi-ctrl-x

Insert-Ctrl-[: enter-browse-mode - Enter editor browse mode

Insert-Esc: enter-browse-mode - Enter editor browse mode

KP Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character in front of the cursor ; Toolbar Search Commands :
Delete character in front of the cursor

KP Down: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

KP End: end-of-line - Action varies according to focus: Active Editor Commands :
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

KP Enter: new-line - Place a new line at the current cursor position

KP Home: beginning-of-line-text - Move to end of the leading white space, if any,
on the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

KP Insert: toggle-overtype - Toggle status of overtyping mode

KP Left: backward-char - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one character ; Toolbar Search Commands : Move back-
ward one character

KP Next: forward-page - Move cursor forward one page

KP Page Down: forward-page - Move cursor forward one page

KP Page Up: backward-page - Move cursor backward one page

KP Prior: backward-page - Move cursor backward one page

KP Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

334

KP Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

KP Up: previous-line - Move to previous screen line, optionally repositioning charac-
ter within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end,
or ’fnb’ for first non-blank char.

Left: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Left: backward-char(wrap=0) - Action varies according to focus: Active Editor
Commands : Move cursor backward one character ; Toolbar Search Commands : Move
backward one character

Next: forward-page - Move cursor forward one page

Page Down: forward-page - Move cursor forward one page

Page Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Replace-Ctrl-C: enter-browse-mode - Enter editor browse mode

Replace-Ctrl-D: outdent-region - Outdent the selected region one level of indenta-
tion. Set sel to None to use preference to determine selection behavior, or ”never-select“
to unselect after indent, ”always-select“ to always select after indent, or ”retain-select“
to retain current selection after indent.

Replace-Ctrl-H: backward-char - Action varies according to focus: Active Editor
Commands : Move cursor backward one character ; Toolbar Search Commands : Move
backward one character

Replace-Ctrl-J: new-line - Place a new line at the current cursor position

Replace-Ctrl-M: new-line - Place a new line at the current cursor position

Replace-Ctrl-T: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or ”never-select“ to
unselect after indent, ”always-select“ to always select after indent, or ”retain-select“ to
retain current selection after indent.

Replace-Ctrl-U: delete-to-start-of-line - Delete everything between the cursor and
start of line

Replace-Ctrl-W: backward-word - Action varies according to focus: Active Editor
Commands : Move cursor backward one word. Optionally, provide a string that contains

335

the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Replace-Ctrl-[: enter-browse-mode - Enter editor browse mode

Replace-Esc: enter-browse-mode - Enter editor browse mode

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Right: forward-char(wrap=0) - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one character ; Toolbar Search Commands : Move forward
one character

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands : Delete one character behind the cursor, or the current selection if
not empty. ; Toolbar Search Commands : Delete character behind the cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands : Cut
selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Shift-Down: forward-page - Move cursor forward one page

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection

336

range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Com-
mands : Move to end of current line, adjusting the selection range to new position ;
Toolbar Search Commands : Move to the end of the toolbar search entry, extendning the
selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the de-
bugger originally stopped

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas
and toolbar, saving previous state so it can be restored later with
exit fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and
tool bar

Shift-F3: search-backward - Search again using the search manager’s current settings
in backward direction

Shift-F4: new-document-window - Create a new document window with same doc-
uments and panels as in the current document window (if any; otherwise empty with
default panels)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests

Shift-F7: run-current-tests

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.

337

If toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Shift-KP Delete: cut - Action varies according to focus: Active Editor Commands :
Cut selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar
Search Commands : Cut selection

Shift-KP Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-KP End: end-of-line-extend - Action varies according to focus: Active Editor
Commands : Move to end of current line, adjusting the selection range to new position
; Toolbar Search Commands : Move to the end of the toolbar search entry, extendning
the selection

Shift-KP Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position. If
toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-KP Insert: paste - Action varies according to focus: Active Editor Commands :
Paste text from clipboard ; Search Manager Instance Commands : Paste text from clip-
board ; Toolbar Search Commands : Paste from clipboard

Shift-KP Left: backward-char-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one character, adjusting the selection range
to new position ; Toolbar Search Commands : Move backward one character, extending
the selection

Shift-KP Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-KP Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Shift-KP Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Shift-KP Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Shift-KP Right: forward-char-extend - Action varies according to focus: Active

338

Editor Commands : Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands : Move cursor backward one character, adjusting the selection range to new
position ; Toolbar Search Commands : Move backward one character, extending the
selection

Shift-Left: backward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page Down: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-Page Up: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting the
selection range to new position

Shift-Return: new-line - Place a new line at the current cursor position

Shift-Right: forward-char-extend - Action varies according to focus: Active Edi-
tor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Shift-Tab: backward-tab - Outdent line at current position

339

Shift-Up: backward-page - Move cursor backward one page

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Visual-!: filter-selection - Filter the current selection through an external command
and replace the lines with the result

Visual-1: initiate-numeric-modifier(digit=1) - VI style repeat/numeric modifier
for following command

Visual-2: initiate-numeric-modifier(digit=2) - VI style repeat/numeric modifier
for following command

Visual-3: initiate-numeric-modifier(digit=3) - VI style repeat/numeric modifier
for following command

Visual-4: initiate-numeric-modifier(digit=4) - VI style repeat/numeric modifier
for following command

Visual-5: initiate-numeric-modifier(digit=5) - VI style repeat/numeric modifier
for following command

Visual-6: initiate-numeric-modifier(digit=6) - VI style repeat/numeric modifier
for following command

Visual-7: initiate-numeric-modifier(digit=7) - VI style repeat/numeric modifier
for following command

Visual-8: initiate-numeric-modifier(digit=8) - VI style repeat/numeric modifier
for following command

Visual-9: initiate-numeric-modifier(digit=9) - VI style repeat/numeric modifier
for following command

Visual-<: outdent-lines(num=None) - Outdent selected number of lines from cursor
position. Set num to None to indent all the lines in current selection.

Visual->: indent-lines(num=None) - Indent selected number of lines from cursor
position. Set num to None to indent all the lines in current selection.

340

Visual-Ctrl-V: enter-browse-mode - Enter editor browse mode

Visual-Ctrl-[: exit-visual-mode - Exit visual mode and return back to default mode

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

Visual-Shift-A: enter-insert-mode(pos=”after“) - Enter editor insert mode

Visual-Shift-I: enter-insert-mode(pos=”before“) - Enter editor insert mode

Visual-Shift-J: join-selection - Join together all lines in given selection (replace new-
lines with the given delimiter (single space by default)

Visual-Shift-O: exchange-point-and-mark - When currently marking text, this ex-
changes the current position and mark ends of the current selection

Visual-Shift-R: enter-insert-mode(pos=”delete-lines“) - Enter editor insert mode

Visual-Shift-V: enter-browse-mode - Enter editor browse mode

Visual-Shift-Y: move-to-register(unit=”line“) - Cut or copy a specified number of
characters or lines, or the current selection. Set cut=1 to remove the range of text from
the editor after moving to register (otherwise it is just copied). Unit should be one of
’char’ or ’line’ or ’sel’ for current selection.

Visual-c: enter-insert-mode(pos=”delete-sel“) - Enter editor insert mode

Visual-colon: vi-command-by-name - Execute a VI command (implements ”:“ com-
mands from VI)

Visual-d: move-to-register(unit=”sel“, cut=1) - Cut or copy a specified number
of characters or lines, or the current selection. Set cut=1 to remove the range of text
from the editor after moving to register (otherwise it is just copied). Unit should be one
of ’char’ or ’line’ or ’sel’ for current selection.

Visual-g Visual-Shift-J: join-selection(delim=”“) - Join together all lines in given
selection (replace newlines with the given delimiter (single space by default)

Visual-g Visual-q: fill-paragraph - Attempt to auto-justify the paragraph around
the current start of selection

Visual-o: exchange-point-and-mark - When currently marking text, this exchanges
the current position and mark ends of the current selection

Visual-r: replace-char - Replace num characters with given character. Set line mode
to multiline to allow replacing across lines, extend to replace on current line and then

341

extend the line length, and restrict to replace only if enough characters exist on current
line after cursor position.

Visual-s: enter-insert-mode(pos=”delete-sel“) - Enter editor insert mode

Visual-v: enter-browse-mode - Enter editor browse mode

Visual-x: move-to-register(unit=”sel“, cut=1) - Cut or copy a specified number
of characters or lines, or the current selection. Set cut=1 to remove the range of text
from the editor after moving to register (otherwise it is just copied). Unit should be one
of ’char’ or ’line’ or ’sel’ for current selection.

Visual-y: move-to-register(unit=”sel“) - Cut or copy a specified number of charac-
ters or lines, or the current selection. Set cut=1 to remove the range of text from the
editor after moving to register (otherwise it is just copied). Unit should be one of ’char’
or ’line’ or ’sel’ for current selection.

13.4. Visual Studio Personality

This section documents all the default key bindings for the Visual Studio keyboard
personality, set by the Personality preference.

Alt-1: fold-python-methods

Alt-2: fold-python-classes

Alt-3: fold-python-classes-and-defs

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word behind of the cursor ; Toolbar Search Commands : Delete
word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

342

Alt-F6: run-failed-tests

Alt-F7: run-last-tests

Alt-F7: view-project-properties - View or change project-wide properties

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-Page Down: fold-expand-all-current - Expand the current fold point com-
pletely

Alt-Page Up: fold-collapse-all-current - Collapse the current fold point completely

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Alt-comma: query-replace - Initiate incremental mini-search query/replace from the
cursor position.

Alt-period: replace-string - Replace all occurrences of a string from the cursor posi-
tion to end of file.

BackSpace: backward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character behind the cursor, or the current selection if not empty.
; Toolbar Search Commands : Delete character behind the cursor

Ctrl-0: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

343

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5

Ctrl-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Ctrl-7 H: use-lexer-html - Force syntax highlighting for HTML

Ctrl-7 M: use-lexer-makefile - Force syntax highlighting for make files

Ctrl-7 N: use-lexer-none - Use no syntax highlighting

Ctrl-7 P: use-lexer-python - Force syntax highlighting for Python source

Ctrl-7 S: use-lexer-sql - Force syntax highlighting for SQL

Ctrl-7 X: use-lexer-xml - Force syntax highlighting for XML files

Ctrl-8: recent-document - Switches to previous document most recently visited in
the current window or window set if in one-window-per-editor windowing mode.

Ctrl-9: previous-document - Move to the previous document alphabetically in the
list of documents open in the current window

Ctrl-=: indent-to-match - Indent the current line or selected region to match inden-
tation of preceding non-blank line

Ctrl-A: select-all - Select all text in the editor

Ctrl-Alt-B: search-sel-backward - Search backward using current selection

Ctrl-Alt-Comma: query-replace-regex - Initiate incremental mini-search
query/replace from the cursor position. The search string is treated as a regular
expression.

Ctrl-Alt-Down: goto-next-bookmark(current file only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-F: search-sel-forward - Search forward using current selection

Ctrl-Alt-F6: debug-failed-tests

Ctrl-Alt-F7: debug-last-tests

Ctrl-Alt-G: goto-bookmark - Goto named bookmark

Ctrl-Alt-K: show-bookmarks - Show a list of all currently defined bookmarks

344

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the book-
mark list, or the last one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-M: set-bookmark - Set a bookmark at current location on the editor. Mark
is the project-wide textual name of the bookmark.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when current file only
is True.

Ctrl-Alt-T: toggle-bookmark - Set or remove a bookmark at current location on the
editor. When set, the name of the bookmark is set to an auto-generated default.

Ctrl-Alt-Up: goto-previous-bookmark(current file only=True) - Go to the pre-
vious bookmark in the bookmark list, or the last one if no bookmark is selected. Stays
within the file in the current editor when current file only is True.

Ctrl-Alt-period: replace-string-regex - Replace all occurrences of a string from the
cursor position to end of file. The search string is treated as a regular expression.

Ctrl-B: isearch-sel-forward - Action varies according to focus: Active Editor Com-
mands : Initiate incremental mini-search forward from the cursor position, using current
selection as the search string. Set persist=False to do the search but end the interactive
search session immediately.; Document Viewer Commands : Initiate incremental mini-
search forward from the cursor position, using current selection as the search string. Set
persist=False to do the search but end the interactive search session immediately.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Ctrl-C: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-Comma: next-window - Switch to the next window alphabetically by title

Ctrl-D: toolbar-search-focus - Move focus to toolbar search entry.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word in front of the cursor ; Toolbar Search Commands : Delete
word in front of the cursor

Ctrl-Down: scroll-text-down - Scroll text down a line w/o moving cursor’s relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen.

345

Set move cursor to False to leave cursor in current position within the source, otherwise
it is moved so the cursor remains on same screen line.

Ctrl-E: brace-match - Match brace at current cursor position, selecting all text be-
tween the two and hilighting the braces

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-F: search - Bring up the search manager in search mode.

Ctrl-F10: debug-to-cursor

Ctrl-F12: command-by-name - Execute given command by name, collecting any args
as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore changes is
True. Close empty windows and quit if all document windows closed when close window
is True.

Ctrl-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Ctrl-F5: debug-kill - Stop debugging

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-G: goto-line - Position cursor at start of given line number

Ctrl-H: replace - Bring up the search manager in replace mode.

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-I: isearch-forward - Action varies according to focus: Active Editor Commands :
Initiate incremental mini-search forward from the cursor position, optionally entering
the given search string ; Document Viewer Commands : Initiate incremental mini-search
forward from the cursor position, optionally entering the given search string.

Ctrl-I: replace-and-search - Replace current selection and search again.

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-J: show-autocompleter - Show the auto-completer for current cursor position

346

Ctrl-K Ctrl-C: comment-out-region - Comment out the selected region. The style
of commenting can be controlled with the style argument: ’indented’ uses the default
comment style indented at end of leading white space and ’block’ uses a block comment
in column zero. If not given, the style configured with the Editor / Block Comment
Style preference is used. Each call adds a level of commenting.

Ctrl-K Ctrl-F: fill-paragraph - Attempt to auto-justify the paragraph around the
current start of selection

Ctrl-K Ctrl-K: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated default.

Ctrl-K Ctrl-N: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when current file only
is True.

Ctrl-K Ctrl-O: open-from-keyboard - Open a file from disk using keyboard-driven
selection of the file

Ctrl-K Ctrl-P: goto-previous-bookmark - Go to the previous bookmark in the
bookmark list, or the last one if no bookmark is selected. Stays within the file in the
current editor when current file only is True.

Ctrl-K Ctrl-S: switch-document - Switches to named document. Name may either
be the complete name or the last path component of a path name.

Ctrl-K Ctrl-T: comment-toggle - Toggle commenting out of the selected lines. The
style of commenting can be controlled with the style argument: ’indented’ uses the
default comment style indented at end of leading white space and ’block’ uses a block
comment in column zero. If not given, the style configured with the Editor / Block
Comment Style preference is used.

Ctrl-K Ctrl-U: uncomment-out-region - Uncomment out the selected region if com-
mented out. If one level is True then each call removes only one level of commenting.

Ctrl-KP Add: zoom-in - Zoom in, increasing the text display size temporarily by one
font size

Ctrl-KP Delete: forward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-KP Down: next-line - Move to screen next line, optionally repositioning char-
acter within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char.

Ctrl-KP End: end-of-document - Move cursor to end of document

347

Ctrl-KP Home: start-of-document - Move cursor to start of document

Ctrl-KP Insert: copy - Action varies according to focus: Active Editor Commands:
Copy selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-KP Left: backward-word - Action varies according to focus: Active Editor
Commands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-KP Multiply: visit-history-previous - Move back in history to previous visited
editor position

Ctrl-KP Next: forward-page - Move cursor forward one page

Ctrl-KP Page Down: forward-page - Move cursor forward one page

Ctrl-KP Page Up: backward-page - Move cursor backward one page

Ctrl-KP Prior: backward-page - Move cursor backward one page

Ctrl-KP Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-KP Subtract: zoom-out - Zoom out, increasing the text display size temporarily
by one font size

Ctrl-KP Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Ctrl-L: cut-line - Cut the current line(s) to clipboard.

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-M: execute-kbd-macro - Execute most recently recorded keyboard macro. If

348

register is None then the user is asked to enter a letter a-z for the register where the
macro is filed. Otherwise, register ’a’ is used by default.

Ctrl-Minus: visit-history-previous - Move back in history to previous visited editor
position

Ctrl-N: new-file - Create a new file

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-O: open-gui - Open a file from disk, prompting with file selection dialog if neces-
sary

Ctrl-P: print-view - Print active editor document

Ctrl-Page Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

Ctrl-Page Up: previous-document - Move to the previous document alphabetically
in the list of documents open in the current window

Ctrl-Pointer Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-Q: quit - Quit the application.

Ctrl-R: replace - Bring up the search manager in replace mode.

Ctrl-Return: new-line - Place a new line at the current cursor position

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-S: save - Save active document. Also close it if close is True.

Ctrl-Shift-B: isearch-sel-backward - Initiate incremental mini-search backward from
the cursor position, using current selection as the search string. Set persist=False to do
the search but end the interactive search session immediately.

Ctrl-Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

349

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, ad-
justing the selection range to new position

Ctrl-Shift-F: batch-search - Display Search in Files tool. The look in argument gets
entered in the look in field if not None or ”. The current selection is put into the search
field if it doesn’t span multiple lines and either use selection is true or there’s nothing
in the search field. The given search text is used instead, if provided

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause free-running execution at current program counter

Ctrl-Shift-F6: debug-all-tests

Ctrl-Shift-F7: debug-current-tests

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-G: search-backward - Search again using the search manager’s current
settings in backward direction

Ctrl-Shift-H: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO Left Tab: begin-visited-document-cycle(move back=False) -
Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-KP Down: next-line-extend - Move to next screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-Shift-KP End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-KP Home: start-of-document-extend - Move cursor to start of docu-
ment, adjusting the selection range to new position

350

Ctrl-Shift-KP Left: backward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-KP Next: forward-page-extend - Move cursor forward one page, adjust-
ing the selection range to new position

Ctrl-Shift-KP Page Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Page Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Right: forward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting
the selection range to new position, optionally repositioning character within line: same’
to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-
blank char.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one word, adjusting the selection range to
new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-O: open-from-project - Open a document from the project by typing a
fragment to match file names

Ctrl-Shift-Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

351

Ctrl-Shift-Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Ctrl-Shift-R: batch-replace - Display search and replace in files tool.

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-S: save-all - Save all unsaved items. Will prompt the user only for choosing
names for new items that don’t have a set filename

Ctrl-Shift-T: find-symbol - Allow user to visit point of definition of a source symbol
in the current editor context by typing a fragment of the name

Ctrl-Shift-Tab: begin-visited-document-cycle(move back=False) - Start mov-
ing between documents in the order they were visited. Starts modal key interaction that
ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-U: case-upper - Change case of the current selection, or character ahead
of the cursor if there is no selection, to upper case

Ctrl-Shift-U: isearch-backward - Action varies according to focus: Active Editor
Commands : Initiate incremental mini-search backward from the cursor position, op-
tionally entering the given search string ; Document Viewer Commands : Initiate in-
cremental mini-search backward from the cursor position, optionally entering the given
search string.

Ctrl-Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-Slash: command-by-name - Execute given command by name, collecting any
args as needed

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands :
Place a tab character at the current cursor position ; Search Manager Instance Com-
mands : Place a forward tab at the current cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move back=True) - Start moving be-

352

tween documents in the order they were visited. Starts modal key interaction that ends
when a key other than tab is seen or ctrl is released.

Ctrl-U: case-lower - Change case of the current selection, or character ahead of the
cursor if there is no selection, to lower case

Ctrl-Underscore: visit-history-next - Move forward in history to next visited editor
position

Ctrl-Up: scroll-text-up - Scroll text up a line w/o moving cursor’s relative position
on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move cursor to False to leave cursor in current position within the source, otherwise it
is moved so the cursor remains on same screen line.

Ctrl-V: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Ctrl-W: close - Close active document. Abandon any changes when ignore changes is
True. Close empty windows and quit if all document windows closed when close window
is True.

Ctrl-X: cut - Action varies according to focus: Active Editor Commands : Cut se-
lected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Ctrl-Y: redo - Redo last action

Ctrl-Z: undo - Undo last action

Ctrl-]: brace-match - Match brace at current cursor position, selecting all text between
the two and hilighting the braces

Ctrl-greater: indent-region - Indent the selected region one level of indentation.
Set sel to None to use preference to determine selection behavior, or ”never-select“ to
unselect after indent, ”always-select“ to always select after indent, or ”retain-select“ to
retain current selection after indent.

Ctrl-less: outdent-region - Outdent the selected region one level of indentation. Set
sel to None to use preference to determine selection behavior, or ”never-select“ to unselect
after indent, ”always-select“ to always select after indent, or ”retain-select“ to retain
current selection after indent.

Ctrl-parenleft: start-kbd-macro - Start definition of a keyboard macro. If regis-
ter=None then the user is prompted to enter a letter a-z under which to file the macro.
Otherwise, register ’a’ is used by default.

353

Ctrl-parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-space: show-autocompleter - Show the auto-completer for current cursor posi-
tion

Delete: forward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

End: end-of-line - Action varies according to focus: Active Editor Commands : Move
to end of current line; Toolbar Search Commands : Move to the end of the toolbar search
entry

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F10: step-over - Step over current execution point

F11: frame-up - Move up the current debug stack

F11: step-into - Step into current execution point, or start debugging at first line

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager’s current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol

F5: debug-continue - Continue (or start) running, to next breakpoint

F6: step-over - Step over current execution point

F7: step-into - Step into current execution point, or start debugging at first line

354

F8: step-out - Return from current function

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

ISO Left Tab: backward-tab - Outdent line at current position

Insert: toggle-overtype - Toggle status of overtyping mode

KP Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character in front of the cursor ; Toolbar Search Commands :
Delete character in front of the cursor

KP Down: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

KP End: end-of-line - Action varies according to focus: Active Editor Commands :
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

KP Enter: new-line - Place a new line at the current cursor position

KP Home: beginning-of-line-text - Move to end of the leading white space, if any,
on the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

KP Insert: toggle-overtype - Toggle status of overtyping mode

KP Left: backward-char - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one character ; Toolbar Search Commands : Move back-
ward one character

KP Next: forward-page - Move cursor forward one page

KP Page Down: forward-page - Move cursor forward one page

KP Page Up: backward-page - Move cursor backward one page

KP Prior: backward-page - Move cursor backward one page

355

KP Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

KP Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

KP Up: previous-line - Move to previous screen line, optionally repositioning charac-
ter within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end,
or ’fnb’ for first non-blank char.

Left: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Next: forward-page - Move cursor forward one page

Page Down: forward-page - Move cursor forward one page

Page Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus: Active
Editor Commands : Delete one character behind the cursor, or the current selection if
not empty. ; Toolbar Search Commands : Delete character behind the cursor

356

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands : Cut
selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Shift-Delete: cut-selection-or-line - Cut the current selection or current line if there
is no selection. The text is placed on the clipboard.

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Com-
mands : Move to end of current line, adjusting the selection range to new position ;
Toolbar Search Commands : Move to the end of the toolbar search entry, extendning the
selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the de-
bugger originally stopped

Shift-F11: step-out - Return from current function

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas
and toolbar, saving previous state so it can be restored later with
exit fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and
tool bar

Shift-F3: search-backward - Search again using the search manager’s current settings
in backward direction

Shift-F4: new-document-window - Create a new document window with same doc-
uments and panels as in the current document window (if any; otherwise empty with
default panels)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F5: debug-kill - Stop debugging

Shift-F6: run-all-tests

357

Shift-F7: run-current-tests

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Shift-KP Delete: cut - Action varies according to focus: Active Editor Commands :
Cut selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar
Search Commands : Cut selection

Shift-KP Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-KP End: end-of-line-extend - Action varies according to focus: Active Editor
Commands : Move to end of current line, adjusting the selection range to new position
; Toolbar Search Commands : Move to the end of the toolbar search entry, extendning
the selection

Shift-KP Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position. If
toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-KP Insert: paste - Action varies according to focus: Active Editor Commands :
Paste text from clipboard ; Search Manager Instance Commands : Paste text from clip-
board ; Toolbar Search Commands : Paste from clipboard

Shift-KP Left: backward-char-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one character, adjusting the selection range
to new position ; Toolbar Search Commands : Move backward one character, extending
the selection

358

Shift-KP Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-KP Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Shift-KP Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Shift-KP Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Shift-KP Right: forward-char-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands : Move cursor backward one character, adjusting the selection range to new
position ; Toolbar Search Commands : Move backward one character, extending the
selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page Down: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-Page Up: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting the
selection range to new position

Shift-Return: new-line - Place a new line at the current cursor position

Shift-Right: forward-char-extend - Action varies according to focus: Active Edi-
tor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-Tab: backward-tab - Outdent line at current position

359

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

13.5. OS X Personality

This section documents all the default key bindings for the OS X keyboard personality,
set by the Personality preference.

Backspace: backward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character behind the cursor, or the current selection if not empty.
; Toolbar Search Commands : Delete character behind the cursor

Command-0: next-document - Move to the next document alphabetically in the list
of documents open in the current window

Command-1: activate-file-option-menu - Activate the file menu for the editor.

Command-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for
the editor.

Command-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for
the editor.

Command-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for
the editor.

Command-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for
the editor.

Command-6: activate-symbol-option-menu-5

Command-7 C: use-lexer-cpp - Force syntax highlighting for C/C++ source

Command-7 H: use-lexer-html - Force syntax highlighting for HTML

Command-7 M: use-lexer-makefile - Force syntax highlighting for make files

360

Command-7 N: use-lexer-none - Use no syntax highlighting

Command-7 P: use-lexer-python - Force syntax highlighting for Python source

Command-7 S: use-lexer-sql - Force syntax highlighting for SQL

Command-7 X: use-lexer-xml - Force syntax highlighting for XML files

Command-8: recent-document - Switches to previous document most recently vis-
ited in the current window or window set if in one-window-per-editor windowing mode.

Command-9: previous-document - Move to the previous document alphabetically
in the list of documents open in the current window

Command-A: select-all - Select all text in the editor

Command-Apostrophe: comment-out-region - Comment out the selected region.
The style of commenting can be controlled with the style argument: ’indented’ uses the
default comment style indented at end of leading white space and ’block’ uses a block
comment in column zero. If not given, the style configured with the Editor / Block
Comment Style preference is used. Each call adds a level of commenting.

Command-B: brace-match - Match brace at current cursor position, selecting all text
between the two and hilighting the braces

Command-Backslash: indent-to-match - Indent the current line or selected region
to match indentation of preceding non-blank line

Command-Bracketleft: outdent-region - Outdent the selected region one level of
indentation. Set sel to None to use preference to determine selection behavior, or ”never-
select“ to unselect after indent, ”always-select“ to always select after indent, or ”retain-
select“ to retain current selection after indent.

Command-Bracketright: indent-region - Indent the selected region one level of
indentation. Set sel to None to use preference to determine selection behavior, or ”never-
select“ to unselect after indent, ”always-select“ to always select after indent, or ”retain-
select“ to retain current selection after indent.

Command-C: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Command-Comma: show-preferences-gui - Edit the preferences file using the pref-
erences GUI, optionally opening to the section that contains the given preference by
name

Command-Ctrl-KP Divide: fold-python-classes

361

Command-Ctrl-KP Multiply: fold-expand-all - Expand all fold points in the cur-
rent file

Command-Ctrl-KP Subtract: fold-collapse-all - Collapse all fold points in the
current file

Command-Ctrl-KP Subtract: fold-python-methods

Command-Ctrl-R: replace-and-search - Replace current selection and search again.

Command-D: set-bookmark - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Command-Down: end-of-document - Move cursor to end of document

Command-E: search-sel-forward - Search forward using current selection

Command-F: search - Bring up the search manager in search mode.

Command-F12: command-by-name - Execute given command by name, collecting
any args as needed

Command-F3: search-sel-forward - Search forward using current selection

Command-F4: close - Close active document. Abandon any changes when ig-
nore changes is True. Close empty windows and quit if all document windows closed
when close window is True.

Command-F5: debug-kill - Stop debugging

Command-F8: start-select-line - Turn on auto-select mode line by line

Command-F9: break-clear-all - Clear all breakpoints

Command-G: search-forward - Search again using the search manager’s current set-
tings in forward direction

Command-H: toggle-bookmark - Set or remove a bookmark at current location on
the editor. When set, the name of the bookmark is set to an auto-generated default.

Command-I: view-file-properties - View project properties for a particular file (cur-
rent file if none is given)

Command-J: fill-paragraph - Attempt to auto-justify the paragraph around the cur-
rent start of selection

Command-KP Add: fold-expand-more-current - Expand the current fold point
one more level

362

Command-KP Divide: fold-toggle - Toggle the current fold point

Command-KP Enter: new-line - Place a new line at the current cursor position

Command-KP Equal: fold-python-classes-and-defs

Command-KP Multiply: fold-expand-all-current - Expand the current fold point
completely

Command-KP Subtract: fold-collapse-all-current - Collapse the current fold
point completely

Command-L: goto-line - Position cursor at start of given line number

Command-Left: beginning-of-line - Action varies according to focus: Active Editor
Commands : Move to beginning of current line. When toggle is True, moves to the end of
the leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands : Move to the beginning of the toolbar search entry

Command-M: execute-kbd-macro - Execute most recently recorded keyboard
macro. If register is None then the user is asked to enter a letter a-z for the regis-
ter where the macro is filed. Otherwise, register ’a’ is used by default.

Command-N: new-file - Create a new file

Command-O: open-gui - Open a file from disk, prompting with file selection dialog if
necessary

Command-Option-F6: debug-failed-tests

Command-Option-F7: debug-last-tests

Command-P: print-view - Print active editor document

Command-Pointer Button1: goto-clicked-symbol-defn - Goto the definition of
the source symbol that was last clicked on

Command-Q: quit - Quit the application.

Command-Question: show-document - Show the given documentation section

Command-Quotedbl: uncomment-out-region - Uncomment out the selected re-
gion if commented out. If one level is True then each call removes only one level of
commenting.

Command-R: replace - Bring up the search manager in replace mode.

Command-Return: new-line - Place a new line at the current cursor position

363

Command-Right: end-of-line - Action varies according to focus: Active Editor Com-
mands : Move to end of current line; Toolbar Search Commands : Move to the end of the
toolbar search entry

Command-S: save - Save active document. Also close it if close is True.

Command-Semicolon: comment-toggle - Toggle commenting out of the selected
lines. The style of commenting can be controlled with the style argument: ’indented’
uses the default comment style indented at end of leading white space and ’block’ uses
a block comment in column zero. If not given, the style configured with the Editor /
Block Comment Style preference is used.

Command-Shift-D: goto-bookmark - Goto named bookmark

Command-Shift-Down: end-of-document-extend - Move cursor to end of docu-
ment, adjusting the selection range to new position

Command-Shift-F: batch-search - Display Search in Files tool. The look in argu-
ment gets entered in the look in field if not None or ”. The current selection is put into
the search field if it doesn’t span multiple lines and either use selection is true or there’s
nothing in the search field. The given search text is used instead, if provided

Command-Shift-F3: search-sel-backward - Search backward using current selection

Command-Shift-F5: debug-stop - Pause free-running execution at current program
counter

Command-Shift-F6: debug-all-tests

Command-Shift-F7: debug-current-tests

Command-Shift-G: search-backward - Search again using the search manager’s cur-
rent settings in backward direction

Command-Shift-I: add-current-file-to-project - Add the frontmost currently open
file to project

Command-Shift-K: show-bookmarks - Show a list of all currently defined book-
marks

Command-Shift-KP Subtract: fold-collapse-more-current - Collapse the current
fold point one more level

Command-Shift-Left: beginning-of-line-extend - Action varies according to focus:
Active Editor Commands : Move to beginning of current line, adjusting the selection
range to the new position. When toggle is True, moves to the end of the leading white
space if already at the beginning of the line (and vice versa).; Toolbar Search Commands:
Move to the beginning of the toolbar search entry, extending the selection

364

Command-Shift-O: open-from-project - Open a document from the project by typ-
ing a fragment to match file names

Command-Shift-R: batch-replace - Display search and replace in files tool.

Command-Shift-Right: end-of-line-extend - Action varies according to focus: Ac-
tive Editor Commands : Move to end of current line, adjusting the selection range to
new position ; Toolbar Search Commands : Move to the end of the toolbar search entry,
extendning the selection

Command-Shift-S: save-as - Save active document to a new file

Command-Shift-T: find-symbol - Allow user to visit point of definition of a source
symbol in the current editor context by typing a fragment of the name

Command-Shift-U: isearch-backward - Action varies according to focus: Active
Editor Commands : Initiate incremental mini-search backward from the cursor position,
optionally entering the given search string ; Document Viewer Commands : Initiate
incremental mini-search backward from the cursor position, optionally entering the given
search string.

Command-Shift-Up: start-of-document-extend - Move cursor to start of docu-
ment, adjusting the selection range to new position

Command-Shift-W: close - Close active document. Abandon any changes when ig-
nore changes is True. Close empty windows and quit if all document windows closed
when close window is True.

Command-Shift-Z: redo - Redo last action

Command-T: search-manager(auto replace=1) - Deprecated search command;
should not be used in new code.

Command-U: isearch-forward - Action varies according to focus: Active Editor Com-
mands : Initiate incremental mini-search forward from the cursor position, optionally
entering the given search string ; Document Viewer Commands : Initiate incremental
mini-search forward from the cursor position, optionally entering the given search string.

Command-Up: start-of-document - Move cursor to start of document

Command-V: paste - Action varies according to focus: Active Editor Commands :
Paste text from clipboard ; Search Manager Instance Commands : Paste text from clip-
board ; Toolbar Search Commands : Paste from clipboard

Command-W: close - Close active document. Abandon any changes when ig-
nore changes is True. Close empty windows and quit if all document windows closed
when close window is True.

365

Command-X: cut - Action varies according to focus: Active Editor Commands : Cut
selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Command-Z: undo - Undo last action

Command-parenleft: start-kbd-macro - Start definition of a keyboard macro. If
register=None then the user is prompted to enter a letter a-z under which to file the
macro. Otherwise, register ’a’ is used by default.

Command-parenright: stop-kbd-macro - Stop definition of a keyboard macro

Ctrl-=: indent-to-match - Indent the current line or selected region to match inden-
tation of preceding non-blank line

Ctrl-Comma: visit-history-previous - Move back in history to previous visited editor
position

Ctrl-Down: forward-page - Move cursor forward one page

Ctrl-F12: command-by-name - Execute given command by name, collecting any args
as needed

Ctrl-ISO Left Tab: begin-visited-document-cycle(move back=False) - Start
moving between documents in the order they were visited. Starts modal key interaction
that ends when a key other than tab is seen or ctrl is released.

Ctrl-KP Add: zoom-in - Zoom in, increasing the text display size temporarily by one
font size

Ctrl-KP Enter: new-line - Place a new line at the current cursor position

Ctrl-KP Subtract: zoom-out - Zoom out, increasing the text display size temporarily
by one font size

Ctrl-Left: beginning-of-line - Action varies according to focus: Active Editor Com-
mands : Move to beginning of current line. When toggle is True, moves to the end of
the leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands : Move to the beginning of the toolbar search entry

Ctrl-Option-Delete: backward-delete-word - Action varies according to focus: Ac-
tive Editor Commands : Delete one word behind of the cursor ; Toolbar Search Com-
mands : Delete word behind the cursor

Ctrl-Option-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

366

Ctrl-Option-KP Delete: backward-delete-word - Action varies according to fo-
cus: Active Editor Commands : Delete one word behind of the cursor ; Toolbar Search
Commands : Delete word behind the cursor

Ctrl-Option-Left: backward-char-extend-rect - Move cursor backward one char-
acter, adjusting the rectangular selection range to new position

Ctrl-Option-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Ctrl-Option-Up: previous-line-extend-rect - Move to previous screen line, adjust-
ing the rectangular selection range to new position, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Ctrl-Period: visit-history-next - Move forward in history to next visited editor po-
sition

Ctrl-R: query-replace - Initiate incremental mini-search query/replace from the cursor
position.

Ctrl-Return: new-line - Place a new line at the current cursor position

Ctrl-Right: end-of-line - Action varies according to focus: Active Editor Commands :
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

Ctrl-Shift-Left: beginning-of-line-extend - Action varies according to focus: Active
Editor Commands : Move to beginning of current line, adjusting the selection range to
the new position. When toggle is True, moves to the end of the leading white space if
already at the beginning of the line (and vice versa).; Toolbar Search Commands: Move
to the beginning of the toolbar search entry, extending the selection

Ctrl-Shift-Right: end-of-line-extend - Action varies according to focus: Active Edi-
tor Commands : Move to end of current line, adjusting the selection range to new position
; Toolbar Search Commands : Move to the end of the toolbar search entry, extendning
the selection

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands :
Place a tab character at the current cursor position ; Search Manager Instance Com-
mands : Place a forward tab at the current cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move back=True) - Start moving be-
tween documents in the order they were visited. Starts modal key interaction that ends
when a key other than tab is seen or ctrl is released.

Ctrl-Up: backward-page - Move cursor backward one page

367

Ctrl-a: beginning-of-line - Action varies according to focus: Active Editor Com-
mands : Move to beginning of current line. When toggle is True, moves to the end of
the leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands : Move to the beginning of the toolbar search entry

Ctrl-b: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Ctrl-d: forward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Ctrl-e: end-of-line - Action varies according to focus: Active Editor Commands : Move
to end of current line; Toolbar Search Commands : Move to the end of the toolbar search
entry

Ctrl-f : forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Ctrl-h: backward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character behind the cursor, or the current selection if not empty. ;
Toolbar Search Commands : Delete character behind the cursor

Ctrl-k: kill-line - Kill rest of line from cursor to end of line, and place it into the
clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Ctrl-n: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

Ctrl-p: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Ctrl-space: show-autocompleter - Show the auto-completer for current cursor posi-
tion

Ctrl-v: forward-page - Move cursor forward one page

Ctrl-y: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Delete: forward-delete-char - Action varies according to focus: Active Editor Com-

368

mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

End: end-of-document - Move cursor to end of document

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager’s current settings in
forward direction

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol

F5: debug-continue - Continue (or start) running, to next breakpoint

F6: step-over - Step over current execution point

F7: step-into - Step into current execution point, or start debugging at first line

F8: step-out - Return from current function

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Home: start-of-document - Move cursor to start of document

ISO Left Tab: backward-tab - Outdent line at current position

369

KP Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character in front of the cursor ; Toolbar Search Commands :
Delete character in front of the cursor

KP End: end-of-document - Move cursor to end of document

KP Enter: new-line - Place a new line at the current cursor position

KP Home: start-of-document - Move cursor to start of document

KP Page Down: forward-page - Move cursor forward one page

KP Page Up: backward-page - Move cursor backward one page

Left: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Option-Backspace: backward-delete-word - Action varies according to focus: Ac-
tive Editor Commands : Delete one word behind of the cursor ; Toolbar Search Com-
mands : Delete word behind the cursor

Option-Delete: forward-delete-word - Action varies according to focus: Active Ed-
itor Commands : Delete one word in front of the cursor ; Toolbar Search Commands :
Delete word in front of the cursor

Option-F3: search - Bring up the search manager in search mode.

Option-F4: close-window - Close the current window and all documents and panels
in it

Option-F6: run-failed-tests

Option-F7: run-last-tests

Option-KP Delete: forward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Option-KP Enter: new-line - Place a new line at the current cursor position

Option-KP Page Down: forward-page - Move cursor forward one page

Option-KP Page Up: backward-page - Move cursor backward one page

Option-Left: backward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or

370

”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Option-Page Down: forward-page - Move cursor forward one page

Option-Page Up: backward-page - Move cursor backward one page

Option-Return: new-line - Place a new line at the current cursor position

Option-Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Option-Shift-Left: backward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Option-Shift-Right: forward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Option-Up: backward-char - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one character ; Toolbar Search Commands : Move back-
ward one character

Page Down: forward-page - Move cursor forward one page

Page Up: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Shift-Command-F8: start-select-block - Turn on auto-select block mode

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection

371

range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-End: end-of-document-extend - Move cursor to end of document, adjusting
the selection range to new position

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas
and toolbar, saving previous state so it can be restored later with
exit fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and
tool bar

Shift-F3: search-backward - Search again using the search manager’s current settings
in backward direction

Shift-F4: new-document-window - Create a new document window with same doc-
uments and panels as in the current document window (if any; otherwise empty with
default panels)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

Shift-F6: run-all-tests

Shift-F7: run-current-tests

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: start-of-document-extend - Move cursor to start of document, adjust-
ing the selection range to new position

Shift-KP End: end-of-document-extend - Move cursor to end of document, adjust-
ing the selection range to new position

Shift-KP Enter: new-line - Place a new line at the current cursor position

372

Shift-KP Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Shift-KP Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Shift-KP Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands : Move cursor backward one character, adjusting the selection range to new
position ; Toolbar Search Commands : Move backward one character, extending the
selection

Shift-Page Down: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-Page Up: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

Shift-Return: new-line - Place a new line at the current cursor position

Shift-Right: forward-char-extend - Action varies according to focus: Active Edi-
tor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

13.6. Brief Personality

This section documents all the default key bindings for the Brief keyboard personality,
set by the Personality preference.

373

Alt-0: set-bookmark(mark=”0“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-1: fold-python-methods

Alt-1: set-bookmark(mark=”1“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-2: fold-python-classes

Alt-2: set-bookmark(mark=”2“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-3: fold-python-classes-and-defs

Alt-3: set-bookmark(mark=”3“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-4: set-bookmark(mark=”4“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-5: set-bookmark(mark=”5“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-6: set-bookmark(mark=”6“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-7: set-bookmark(mark=”7“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-8: set-bookmark(mark=”8“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-9: set-bookmark(mark=”9“) - Set a bookmark at current location on the editor.
Mark is the project-wide textual name of the bookmark.

Alt-A: toggle-mark-command(select right=2)

Alt-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Alt-C: toggle-mark-command(style=”block“)

Alt-D: delete-selected-lines

Alt-D: kill-line - Kill rest of line from cursor to end of line, and place it into the

374

clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Alt-Delete: backward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word behind of the cursor ; Toolbar Search Commands : Delete
word behind the cursor

Alt-Down: fold-expand-more-current - Expand the current fold point one more
level

Alt-E: open-gui - Open a file from disk, prompting with file selection dialog if necessary

Alt-End: fold-expand-all - Expand all fold points in the current file

Alt-F3: search - Bring up the search manager in search mode.

Alt-F4: close-window - Close the current window and all documents and panels in it

Alt-F5: run-to-cursor - Run to current cursor position

Alt-F5: search-sel-backward - Search backward using current selection

Alt-F6: run-failed-tests

Alt-F7: run-last-tests

Alt-G: goto-line - Position cursor at start of given line number

Alt-H: goto-selected-symbol-defn - Goto the definition of the selected source symbol

Alt-Home: fold-collapse-all - Collapse all fold points in the current file

Alt-I: toggle-overtype - Toggle status of overtyping mode

Alt-J: show-bookmarks - Show a list of all currently defined bookmarks

Alt-K: kill-line - Kill rest of line from cursor to end of line, and place it into the
clipboard with any other contiguously removed lines. End-of-line is removed only if
there is nothing between the cursor and the end of the line.

Alt-L: toggle-mark-command(style=”line“)

Alt-Left: visit-history-previous - Move back in history to previous visited editor
position

Alt-M: toggle-mark-command(select right=1)

Alt-Minus: previous-document - Move to the previous document alphabetically in
the list of documents open in the current window

375

Alt-N: next-document - Move to the next document alphabetically in the list of
documents open in the current window

Alt-Page Down: fold-expand-all-current - Expand the current fold point com-
pletely

Alt-Page Up: fold-collapse-all-current - Collapse the current fold point completely

Alt-R: insert-file - Insert a file at current cursor position, prompting user for file
selection

Alt-Return: new-line - Place a new line at the current cursor position

Alt-Right: visit-history-next - Move forward in history to next visited editor position

Alt-S: search - Bring up the search manager in search mode.

Alt-Slash: fold-toggle - Toggle the current fold point

Alt-T: replace - Bring up the search manager in replace mode.

Alt-U: undo - Undo last action

Alt-Up: fold-collapse-more-current - Collapse the current fold point one more level

Alt-W: save - Save active document. Also close it if close is True.

Alt-X: quit - Quit the application.

BackSpace: backward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character behind the cursor, or the current selection if not empty.
; Toolbar Search Commands : Delete character behind the cursor

Ctrl-1: activate-file-option-menu - Activate the file menu for the editor.

Ctrl-2: activate-symbol-option-menu-1 - Activate the 1st symbol menu for the
editor.

Ctrl-3: activate-symbol-option-menu-2 - Activate the 2nd symbol menu for the
editor.

Ctrl-4: activate-symbol-option-menu-3 - Activate the 3rd symbol menu for the
editor.

Ctrl-5: activate-symbol-option-menu-4 - Activate the 4th symbol menu for the
editor.

Ctrl-6: activate-symbol-option-menu-5

376

Ctrl-=: indent-to-match - Indent the current line or selected region to match inden-
tation of preceding non-blank line

Ctrl-Alt-Down: goto-next-bookmark(current file only=True) - Go to the next
bookmark, or the first one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-F6: debug-failed-tests

Ctrl-Alt-F7: debug-last-tests

Ctrl-Alt-Left: goto-previous-bookmark - Go to the previous bookmark in the book-
mark list, or the last one if no bookmark is selected. Stays within the file in the current
editor when current file only is True.

Ctrl-Alt-Right: goto-next-bookmark - Go to the next bookmark, or the first one if
no bookmark is selected. Stays within the file in the current editor when current file only
is True.

Ctrl-Alt-Up: goto-previous-bookmark(current file only=True) - Go to the pre-
vious bookmark in the bookmark list, or the last one if no bookmark is selected. Stays
within the file in the current editor when current file only is True.

Ctrl-BackSpace: backward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word behind of the cursor ; Toolbar Search Commands :
Delete word behind the cursor

Ctrl-C: center-cursor - Scroll so cursor is centered on display

Ctrl-C: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-D: scroll-text-down - Scroll text down a line w/o moving cursor’s relative posi-
tion on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move cursor to False to leave cursor in current position within the source, otherwise it
is moved so the cursor remains on same screen line.

Ctrl-Delete: forward-delete-word - Action varies according to focus: Active Editor
Commands : Delete one word in front of the cursor ; Toolbar Search Commands : Delete
word in front of the cursor

Ctrl-Down: scroll-text-down - Scroll text down a line w/o moving cursor’s relative
position on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen.
Set move cursor to False to leave cursor in current position within the source, otherwise
it is moved so the cursor remains on same screen line.

377

Ctrl-E: scroll-text-up - Scroll text up a line w/o moving cursor’s relative position
on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move cursor to False to leave cursor in current position within the source, otherwise it
is moved so the cursor remains on same screen line.

Ctrl-End: end-of-document - Move cursor to end of document

Ctrl-F12: command-by-name - Execute given command by name, collecting any args
as needed

Ctrl-F3: search-sel-forward - Search forward using current selection

Ctrl-F4: close - Close active document. Abandon any changes when ignore changes is
True. Close empty windows and quit if all document windows closed when close window
is True.

Ctrl-F5: debug-kill - Stop debugging

Ctrl-F8: start-select-line - Turn on auto-select mode line by line

Ctrl-F9: break-clear-all - Clear all breakpoints

Ctrl-Home: start-of-document - Move cursor to start of document

Ctrl-Insert: copy - Action varies according to focus: Active Editor Commands : Copy
selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-K: forward-delete-word - Action varies according to focus: Active Editor Com-
mands : Delete one word in front of the cursor ; Toolbar Search Commands : Delete word
in front of the cursor

Ctrl-KP Add: zoom-in - Zoom in, increasing the text display size temporarily by one
font size

Ctrl-KP Delete: forward-delete-word - Action varies according to focus: Active
Editor Commands : Delete one word in front of the cursor ; Toolbar Search Commands:
Delete word in front of the cursor

Ctrl-KP Down: next-line - Move to screen next line, optionally repositioning char-
acter within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at
end, or ’fnb’ for first non-blank char.

Ctrl-KP End: end-of-document - Move cursor to end of document

Ctrl-KP Home: start-of-document - Move cursor to start of document

378

Ctrl-KP Insert: copy - Action varies according to focus: Active Editor Commands :
Copy selected text ; Document Viewer Commands : Copy any selected text. ; Exceptions
Commands : Copy the exception traceback to the clipboard ; Search Manager Instance
Commands : Copy selected text ; Toolbar Search Commands : Cut selection

Ctrl-KP Left: backward-word - Action varies according to focus: Active Editor
Commands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-KP Next: forward-page - Move cursor forward one page

Ctrl-KP Page Down: forward-page - Move cursor forward one page

Ctrl-KP Page Up: backward-page - Move cursor backward one page

Ctrl-KP Prior: backward-page - Move cursor backward one page

Ctrl-KP Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-KP Subtract: zoom-out - Zoom out, increasing the text display size temporarily
by one font size

Ctrl-KP Up: previous-line - Move to previous screen line, optionally repositioning
character within line: same’ to leave in same horizontal position, ’start’ at start, ’end’
at end, or ’fnb’ for first non-blank char.

Ctrl-Left: backward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one word. Optionally, provide a string that contains
the delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move backward one word

Ctrl-Minus: kill-buffer - Close the current text file

Ctrl-Next: forward-page - Move cursor forward one page

Ctrl-PageDown: end-of-document - Move cursor to end of document

Ctrl-PageUp: beginning-of-document

Ctrl-Page Down: next-document - Move to the next document alphabetically in
the list of documents open in the current window

379

Ctrl-Page Up: previous-document - Move to the previous document alphabetically
in the list of documents open in the current window

Ctrl-Pointer Button1: goto-clicked-symbol-defn - Goto the definition of the
source symbol that was last clicked on

Ctrl-Prior: backward-page - Move cursor backward one page

Ctrl-R: initiate-repeat-4 - Enter a sequence of digits indicating number of times to
repeat the subsequent command or keystroke.

Ctrl-Return: new-line - Place a new line at the current cursor position

Ctrl-Right: forward-word - Action varies according to focus: Active Editor Com-
mands : Move cursor forward one word. Optionally, provide a string that contains the
delimiters to define which characters are part of a word. Gravity may be ”start“ or
”end“ to indicate whether cursor is placed at start or end of the word.; Toolbar Search
Commands : Move forward one word

Ctrl-Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Ctrl-Shift-End: end-of-document-extend - Move cursor to end of document, ad-
justing the selection range to new position

Ctrl-Shift-F3: search-sel-backward - Search backward using current selection

Ctrl-Shift-F5: debug-stop - Pause free-running execution at current program counter

Ctrl-Shift-F6: debug-all-tests

Ctrl-Shift-F7: debug-current-tests

Ctrl-Shift-F9: Multiple commands (first available is executed):

• break-disable-all - Disable all breakpoints

• break-enable-all - Enable all breakpoints

Ctrl-Shift-Home: start-of-document-extend - Move cursor to start of document,
adjusting the selection range to new position

Ctrl-Shift-I: add-current-file-to-project - Add the frontmost currently open file to
project

Ctrl-Shift-ISO Left Tab: begin-visited-document-cycle(move back=False) -

380

Start moving between documents in the order they were visited. Starts modal key
interaction that ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-KP Down: next-line-extend - Move to next screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-Shift-KP End: end-of-document-extend - Move cursor to end of document,
adjusting the selection range to new position

Ctrl-Shift-KP Home: start-of-document-extend - Move cursor to start of docu-
ment, adjusting the selection range to new position

Ctrl-Shift-KP Left: backward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor backward one word, adjusting the selection range
to new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-KP Next: forward-page-extend - Move cursor forward one page, adjust-
ing the selection range to new position

Ctrl-Shift-KP Page Down: forward-page-extend - Move cursor forward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Page Up: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Prior: backward-page-extend - Move cursor backward one page,
adjusting the selection range to new position

Ctrl-Shift-KP Right: forward-word-extend - Action varies according to focus: Ac-
tive Editor Commands : Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting
the selection range to new position, optionally repositioning character within line: same’
to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-
blank char.

Ctrl-Shift-Left: backward-word-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one word, adjusting the selection range to

381

new position. Optionally, provide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move backward one
word, extending the selection

Ctrl-Shift-Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Ctrl-Shift-Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Ctrl-Shift-Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Ctrl-Shift-Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Ctrl-Shift-Right: forward-word-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one word, adjusting the selection range to
new position. Optionally, rovide a string that contains the delimiters to define which
characters are part of a word. Gravity may be ”start“ or ”end“ to indicate whether cursor
is placed at start or end of the word.; Toolbar Search Commands : Move forward one
word, extending the selection

Ctrl-Shift-Tab: begin-visited-document-cycle(move back=False) - Start mov-
ing between documents in the order they were visited. Starts modal key interaction that
ends when a key other than tab is seen or ctrl is released.

Ctrl-Shift-Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Ctrl-T: forward-tab - Action varies according to focus: Active Editor Commands :
Place a tab character at the current cursor position ; Search Manager Instance Com-
mands : Place a forward tab at the current cursor position in search or replace string

Ctrl-Tab: begin-visited-document-cycle(move back=True) - Start moving be-
tween documents in the order they were visited. Starts modal key interaction that ends
when a key other than tab is seen or ctrl is released.

Ctrl-U: redo - Redo last action

Ctrl-Up: scroll-text-up - Scroll text up a line w/o moving cursor’s relative position
on screen. Repeat is number of lines or if >0 and <1.0 then percent of screen. Set
move cursor to False to leave cursor in current position within the source, otherwise it
is moved so the cursor remains on same screen line.

382

Ctrl-V: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Ctrl-X: cut - Action varies according to focus: Active Editor Commands : Cut se-
lected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Ctrl-Z: undo - Undo last action

Delete: forward-delete-char - Action varies according to focus: Active Editor Com-
mands : Delete one character in front of the cursor ; Toolbar Search Commands : Delete
character in front of the cursor

Down: next-line - Move to screen next line, optionally repositioning character within
line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’
for first non-blank char.

End: cursor-end

End: end-of-document - Move cursor to end of document

End: end-of-line - Action varies according to focus: Active Editor Commands : Move
to end of current line; Toolbar Search Commands : Move to the end of the toolbar search
entry

End End End: end-of-document - Move cursor to end of document

F1: Multiple commands (first available is executed):

• show-horizontal-tools - Show the horizontal tool area

• minimize-horizontal-tools - Minimize the horizontal tool area

F10: command-by-name - Execute given command by name, collecting any args as
needed

F11: frame-up - Move up the current debug stack

F12: frame-down - Move down the current debug stack

F2: Multiple commands (first available is executed):

• show-vertical-tools - Show the vertical tool area

• minimize-vertical-tools - Minimize the vertical tool area

F3: search-forward - Search again using the search manager’s current settings in
forward direction

383

F3: split-vertically - Split current view vertically. Create new editor in new view when
new==1.

F4: goto-selected-symbol-defn - Goto the definition of the selected source symbol

F4: unsplit - Unsplit all editors so there’s only one. Action specifies how to choose the
remaining displayed editor. One of:

current -- Show current editor

close -- Close current editor before unsplitting

recent -- Change to recent buffer before unsplitting

recent-or-close -- Change to recent buffer before closing

split, or close the current buffer if there is only

one split left.

NOTE: The parameters for this command are subject to change in the future.

F5: debug-continue - Continue (or start) running, to next breakpoint

F5: search - Bring up the search manager in search mode.

F6: replace - Bring up the search manager in replace mode.

F6: step-over - Step over current execution point

F7: start-kbd-macro - Start definition of a keyboard macro. If register=None then
the user is prompted to enter a letter a-z under which to file the macro. Otherwise,
register ’a’ is used by default.

F7: step-into - Step into current execution point, or start debugging at first line

F8: execute-kbd-macro - Execute most recently recorded keyboard macro. If register
is None then the user is asked to enter a letter a-z for the register where the macro is
filed. Otherwise, register ’a’ is used by default.

F8: step-out - Return from current function

F9: Multiple commands (first available is executed):

• break-set - Set a new regular breakpoint on current line

• break-clear - Clear the breakpoint on the current line

Home: beginning-of-line-text - Move to end of the leading white space, if any, on
the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

384

Home: cursor-home

Home: start-of-document - Move cursor to start of document

Home Home Home: start-of-document - Move cursor to start of document

ISO Left Tab: backward-tab - Outdent line at current position

Insert: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Insert: toggle-overtype - Toggle status of overtyping mode

KP Add: copy-line - Copy the current lines(s) to clipboard

KP Delete: forward-delete-char - Action varies according to focus: Active Editor
Commands : Delete one character in front of the cursor ; Toolbar Search Commands :
Delete character in front of the cursor

KP Down: next-line - Move to screen next line, optionally repositioning character
within line: ’same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

KP End: end-of-line - Action varies according to focus: Active Editor Commands :
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

KP Enter: new-line - Place a new line at the current cursor position

KP Home: beginning-of-line-text - Move to end of the leading white space, if any,
on the current line. If toggle is True, moves to the beginning of the line if already at the
end of the leading white space (and vice versa).

KP Insert: toggle-overtype - Toggle status of overtyping mode

KP Left: backward-char - Action varies according to focus: Active Editor Com-
mands : Move cursor backward one character ; Toolbar Search Commands : Move back-
ward one character

KP Multiply: undo - Undo last action

KP Next: forward-page - Move cursor forward one page

KP Page Down: forward-page - Move cursor forward one page

KP Page Up: backward-page - Move cursor backward one page

KP Prior: backward-page - Move cursor backward one page

385

KP Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

KP Subtract: cut-line - Cut the current line(s) to clipboard.

KP Tab: tab-key - Implement the tab key, the action of which is configurable by
preference

KP Up: previous-line - Move to previous screen line, optionally repositioning charac-
ter within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end,
or ’fnb’ for first non-blank char.

Left: backward-char - Action varies according to focus: Active Editor Commands :
Move cursor backward one character ; Toolbar Search Commands : Move backward one
character

Next: forward-page - Move cursor forward one page

Page Down: forward-page - Move cursor forward one page

Page Up: backward-page - Move cursor backward one page

Prior: backward-page - Move cursor backward one page

Return: new-line - Place a new line at the current cursor position

Right: forward-char - Action varies according to focus: Active Editor Commands :
Move cursor forward one character ; Toolbar Search Commands : Move forward one
character

Shift-Alt-Down: next-line-extend-rect - Move to next screen line, adjusting the
rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-Alt-Left: backward-char-extend-rect - Move cursor backward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Right: forward-char-extend-rect - Move cursor forward one character,
adjusting the rectangular selection range to new position

Shift-Alt-Up: previous-line-extend-rect - Move to previous screen line, adjusting
the rectangular selection range to new position, optionally repositioning character within
line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for
first non-blank char.

Shift-BackSpace: backward-delete-char - Action varies according to focus: Active

386

Editor Commands : Delete one character behind the cursor, or the current selection if
not empty. ; Toolbar Search Commands : Delete character behind the cursor

Shift-Ctrl-F8: start-select-block - Turn on auto-select block mode

Shift-Delete: cut - Action varies according to focus: Active Editor Commands : Cut
selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar Search
Commands : Cut selection

Shift-Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-End: end-of-line - Action varies according to focus: Active Editor Commands:
Move to end of current line; Toolbar Search Commands : Move to the end of the toolbar
search entry

Shift-End: end-of-line-extend - Action varies according to focus: Active Editor Com-
mands : Move to end of current line, adjusting the selection range to new position ;
Toolbar Search Commands : Move to the end of the toolbar search entry, extendning the
selection

Shift-F1: move-focus - Move the keyboard focus forward within the Window to the
next editable area

Shift-F11: frame-show - Show the position (thread and stack frame) where the de-
bugger originally stopped

Shift-F2: Multiple commands (first available is executed):

• enter-fullscreen - Hide both the vertical and horizontal tool areas
and toolbar, saving previous state so it can be restored later with
exit fullscreen

• exit-fullscreen - Restore previous non-fullscreen state of all tools and
tool bar

Shift-F3: search-backward - Search again using the search manager’s current settings
in backward direction

Shift-F4: new-document-window - Create a new document window with same doc-
uments and panels as in the current document window (if any; otherwise empty with
default panels)

Shift-F5: debug-file - Start debugging the current file (rather than the main entry
point)

387

Shift-F5: search-forward - Search again using the search manager’s current settings
in forward direction

Shift-F6: replace-and-search - Replace current selection and search again.

Shift-F6: run-all-tests

Shift-F7: run-current-tests

Shift-F7: stop-kbd-macro - Stop definition of a keyboard macro

Shift-F8: start-select-char - Turn on auto-select mode character by character

Shift-F9: Multiple commands (first available is executed):

• break-enable - Enable the breakpoint on the current line

• break-disable - Disable the breakpoint on current line

Shift-Home: beginning-of-line - Action varies according to focus: Active Editor
Commands : Move to beginning of current line. When toggle is True, moves to the end
of the leading white space if already at the beginning of the line (and vice versa).; Toolbar
Search Commands : Move to the beginning of the toolbar search entry

Shift-Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position.
If toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-Insert: paste - Action varies according to focus: Active Editor Commands : Paste
text from clipboard ; Search Manager Instance Commands : Paste text from clipboard ;
Toolbar Search Commands : Paste from clipboard

Shift-KP Delete: cut - Action varies according to focus: Active Editor Commands :
Cut selected text ; Search Manager Instance Commands : Cut selected text ; Toolbar
Search Commands : Cut selection

Shift-KP Down: next-line-extend - Move to next screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Shift-KP End: end-of-line-extend - Action varies according to focus: Active Editor
Commands : Move to end of current line, adjusting the selection range to new position
; Toolbar Search Commands : Move to the end of the toolbar search entry, extendning
the selection

Shift-KP Home: beginning-of-line-text-extend - Move to end of the leading white
space, if any, on the current line, adjusting the selection range to the new position. If

388

toggle is True, moves to the beginning of the line if already at the end of the leading
white space (and vice versa).

Shift-KP Insert: paste - Action varies according to focus: Active Editor Commands :
Paste text from clipboard ; Search Manager Instance Commands : Paste text from clip-
board ; Toolbar Search Commands : Paste from clipboard

Shift-KP Left: backward-char-extend - Action varies according to focus: Active
Editor Commands : Move cursor backward one character, adjusting the selection range
to new position ; Toolbar Search Commands : Move backward one character, extending
the selection

Shift-KP Next: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-KP Page Down: forward-page-extend - Move cursor forward one page, ad-
justing the selection range to new position

Shift-KP Page Up: backward-page-extend - Move cursor backward one page, ad-
justing the selection range to new position

Shift-KP Prior: backward-page-extend - Move cursor backward one page, adjust-
ing the selection range to new position

Shift-KP Right: forward-char-extend - Action varies according to focus: Active
Editor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-KP Up: previous-line-extend - Move to previous screen line, adjusting the
selection range to new position, optionally repositioning character within line: same’ to
leave in same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank
char.

Shift-Left: backward-char-extend - Action varies according to focus: Active Editor
Commands : Move cursor backward one character, adjusting the selection range to new
position ; Toolbar Search Commands : Move backward one character, extending the
selection

Shift-Next: forward-page-extend - Move cursor forward one page, adjusting the
selection range to new position

Shift-Page Down: forward-page-extend - Move cursor forward one page, adjusting
the selection range to new position

Shift-Page Up: backward-page-extend - Move cursor backward one page, adjusting
the selection range to new position

389

Shift-Prior: backward-page-extend - Move cursor backward one page, adjusting the
selection range to new position

Shift-Return: new-line - Place a new line at the current cursor position

Shift-Right: forward-char-extend - Action varies according to focus: Active Edi-
tor Commands: Move cursor forward one character, adjusting the selection range to
new position ; Toolbar Search Commands : Move forward one character, extending the
selection

Shift-Tab: backward-tab - Outdent line at current position

Shift-Up: previous-line-extend - Move to previous screen line, adjusting the selection
range to new position, optionally repositioning character within line: same’ to leave in
same horizontal position, ’start’ at start, ’end’ at end, or ’fnb’ for first non-blank char.

Tab: tab-key - Implement the tab key, the action of which is configurable by preference

Up: previous-line - Move to previous screen line, optionally repositioning character
within line: same’ to leave in same horizontal position, ’start’ at start, ’end’ at end, or
’fnb’ for first non-blank char.

Visual-Esc: exit-visual-mode - Exit visual mode and return back to default mode

390

License Information

Wing IDE is a commercial product that is based on a number of open source technologies.
Although the product source code is available for Wing IDE Professional users (with
signed non-disclosure agreement) the product is not itself open source.

The following sections describe the licensing of the product as a whole (the End User
License Agreement) and provide required legal statements for the incorporated open
source components.

14.1. Wing IDE Software License

This End User License Agreement (EULA) is a CONTRACT between you (either an in-
dividual or a single entity) and Wingware, which covers your use of ”Wing IDE Personal“
and related software components. All such software is referred to herein as the ”Soft-
ware Product.“ A software license and a license key or serial number (”Software Product
License“), issued to a designated user only by Wingware or its authorized agents, is re-
quired for each concurrent user of the Software Product. If you do not agree to the terms
of this EULA, then do not install or use the Software Product or the Software Product
License. By explicitly accepting this EULA you are acknowledging and agreeing to be
bound by the following terms:

1a. EVALUATION LICENSE WARNING

This Software Product can be used in conjunction with a free evaluation Software Prod-
uct License. If you are using such an evaluation Software Product License, you may
use the Software Product only to evaluate its suitability for purchase. Evaluation Soft-
ware Product Licenses have an expiration date and most of the features of the software
will be disabled after that date. WINGWARE BEARS NO LIABILITY FOR ANY
DAMAGES RESULTING FROM USE (OR ATTEMPTED USE AFTER THE EX-
PIRATION DATE) OF THE SOFTWARE PRODUCT, AND HAS NO DUTY TO
PROVIDE ANY SUPPORT BEFORE OR AFTER THE EXPIRATION DATE OF
AN EVALUATION LICENSE.

391

392

1b. NON-COMMERCIAL USE OF SOFTWARE PRODUCT

”Non-Commercial Use“ means the use of the Software Product for non-commercial pur-
poses only, and is limitated to the following users: (a) non-profit organizations (charities
and other organizations created for the promotion of social welfare), (b) universities,
colleges, and other educational institutions (including, but not limited to elementary
schools, middle schools, high schools, and community colleges), (c) independent contrac-
tors who are under contract by the above-stated organizations and using the Software
Product exclusively for such non-profit or educational clients, and (d) other individual
users who use the Software Product for personal, non-commercial use only (for example,
hobby, learning, or entertainment).

Under no circumstances can the Software Product be used by or for a for-profit organi-
zation, or be used to generate income for personal benefit.

Wingware, a Delaware corporation, reserves the right to further clarify the terms of
Non-Commercial Use at its sole determination.

2. GRANT OF NON-EXCLUSIVE LICENSE

Wingware grants the non-exclusive, non-transferable right for a single user to use this
Software Product for Non-Commercial Use on a single operating system per software
license purchased. Each additional concurrent user of the Software Product, and each
additional operating system where the product is used, requires an additional Software
Product License.

You may make copies of the Software Product as reasonably necessary for its use. Each
copy must reproduce all copyright and other proprietary rights notices on or in the
Software Product.

You may install each Software Product License on a single computer system. A second
installation of the same Software Product License may be made on one other computer
system, so long as both copies of the same Software Product License never come into
concurrent use. You may also make copies of the Software Product License as necessary
for backup and/or archival purposes. Backup and archival copies may not come into
active use, together with the Software Product, for any purpose. No other copies may
be made. Each copy must reproduce all copyright and other proprietary rights notices
on or in the Software Product License. You may not modify or create derivative copies
of the Software Product License.

All rights not expressly granted to you are retained by Wingware.

3. INTELLECTUAL PROPERTY RIGHTS RESERVED BY WINGWARE

The Software Product is owned by Wingware and is protected by United States and

393

international copyright laws and treaties, as well as other intellectual property laws
and treaties. You must not remove or alter any copyright notices on any copies of the
Software Product. This Software Product copy is licensed, not sold. You may not use,
copy, or distribute the Software Product, except as granted by this EULA, without
written authorization from Wingware or its designated agents. Furthermore, this EULA
does not grant you any rights in connection with any trademarks or service marks of
Wingware. Wingware reserves all intellectual property rights, including copyrights, and
trademark rights.

4. NO RIGHT TO TRANSFER

You may not rent, lease, lend, or in any way distribute or transfer any rights in this
EULA or the Software Product to third parties without Wingware’s written approval,
and subject to written agreement by the recipient of the terms of this EULA.

5. INDEMNIFICATION

You hereby agree to indemnify Wingware against and hold harmless Wingware from
any claims, lawsuits or other losses that arise out of your breach of any provision of this
EULA.

6. THIRD PARTY RIGHTS

Any software provided along with the Software Product that is associated with a separate
license agreement is licensed to you under the terms of that license agreement. This
license does not apply to those portions of the Software Product. Copies of these third
party licenses are included in all copies of the Software Product.

7. SUPPORT SERVICES

Wingware may provide you with support services related to the Software Product. Use
of any such support services is governed by Wingware policies and programs described
in online documentation and/or other Wingware-provided materials.

As part of these support services, Wingware may make available bug lists, planned
feature lists, and other supplemental informational materials. WINGWARE MAKES
NO WARRANTY OF ANY KIND FOR THESE MATERIALS AND ASSUMES NO
LIABILITY WHATSOEVER FOR DAMAGES RESULTING FROM ANY USE OF
THESE MATERIALS. FURTHERMORE, YOU MAY NOT USE ANY MATERIALS
PROVIDED IN THIS WAY TO SUPPORT ANY CLAIM MADE AGAINST WING-
WARE.

394

Any supplemental software code or related materials that Wingware provides to you as
part of the support services, in periodic updates to the Software Product or otherwise, is
to be considered part of the Software Product and is subject to the terms and conditions
of this EULA.

With respect to any technical information you provide to Wingware as part of the
support services, Wingware may use such information for its business purposes without
restriction, including for product support and development. Wingware will not use such
technical information in a form that personally identifies you without first obtaining
your permission.

9. TERMINATION WITHOUT PREJUDICE TO ANY OTHER RIGHTS

Wingware may terminate this EULA if you fail to comply with any term or condition
of this EULA. In such event, you must destroy all copies of the Software Product and
Software Product Licenses.

10. U.S. GOVERNMENT USE

If the Software Product is licensed under a U.S. Government contract, you acknowledge
that the software and related documentation are ”commercial items,“ as defined in 48
C.F.R 2.01, consisting of ”commercial computer software“ and ”commercial computer
software documentation,“ as such terms are used in 48 C.F.R. 12.212 and 48 C.F.R.
227.7202-1. You also acknowledge that the software is ”commercial computer software“
as defined in 48 C.F.R. 252.227-7014(a)(1). U.S. Government agencies and entities and
others acquiring under a U.S. Government contract shall have only those rights, and
shall be subject to all restrictions, set forth in this EULA. Contractor/manufacturer is
Wingware, P.O. Box 400527, Cambridge, MA 02140-0006, USA.

11. EXPORT RESTRICTIONS

You will not download, export, or re-export the Software Product, any part thereof, or
any software, tool, process, or service that is the direct product of the Software Product,
to any country, person, or entity -- even to foreign units of your own company -- if such
a transfer is in violation of U.S. export restrictions.

12. NO WARRANTIES

YOU ACCEPT THE SOFTWARE PRODUCT AND SOFTWARE PRODUCT LI-
CENSE ”AS IS,“ AND WINGWARE AND ITS THIRD PARTY SUPPLIERS
AND LICENSORS MAKE NO WARRANTY AS TO ITS USE, PERFORMANCE,

395

OR OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED BY APPLICA-
BLE LAW, WINGWARE AND ITS THIRD PARTY SUPPLIERS AND LICEN-
SORS DISCLAIM ALL OTHER REPRESENTATIONS, WARRANTIES, AND CON-
DITIONS,EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING,
BUT NOT LIMITED TO, IMPLIED WARRANTIES OR CONDITIONS OF MER-
CHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE, AND NON-INFRINGEMENT. THE ENTIRE RISK ARISING
OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT REMAINS
WITH YOU.

13. LIMITATION OF LIABILITY

THIS LIMITATION OF LIABILITY IS TO THE MAXIMUM EXTENT PERMIT-
TED BY APPLICABLE LAW. IN NO EVENT SHALL WINGWARE OR ITS THIRD
PARTY SUPPLIERS AND LICENSORS BE LIABLE FOR ANY COSTS OF SUBSTI-
TUTE PRODUCTS OR SERVICES, OR FOR ANY SPECIAL, INCIDENTAL, INDI-
RECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITH-
OUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF BUSINESS INFORMATION) ARISING OUT OF
THIS EULA OR THE USE OF OR INABILITY TO USE THE SOFTWARE PROD-
UCT OR THE FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF WING-
WARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY
CASE, WINGWARE’S, AND ITS THIRD PARTY SUPPLIERS’ AND LICENSORS’,
ENTIRE LIABILITY ARISING OUT OF THIS EULA SHALL BE LIMITED TO THE
LESSER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE
PRODUCT OR THE PRODUCT LIST PRICE; PROVIDED, HOWEVER, THAT IF
YOU HAVE ENTERED INTO A WINGWARE SUPPORT SERVICES AGREEMENT,
WINGWARE’S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL
BE GOVERNED BY THE TERMS OF THAT AGREEMENT.

14. HIGH RISK ACTIVITIES

The Software Product is not fault-tolerant and is not designed, manufactured or intended
for use or resale as on-line control equipment in hazardous environments requiring fail-
safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of the Software Product, or any software, tool, process,
or service that was developed using the Software Product, could lead directly to death,
personal injury, or severe physical or environmental damage (”High Risk Activities“).
Accordingly, Wingware and its suppliers and licensors specifically disclaim any express
or implied warranty of fitness for High Risk Activities. You agree that Wingware and its
suppliers and licensors will not be liable for any claims or damages arising from the use

396

of the Software Product, or any software, tool, process, or service that was developed
using the Software Product, in such applications.

15. GOVERNING LAW; ENTIRE AGREEMENT ; DISPUTE RESOLUTION

This EULA is governed by the laws of the Commonwealth of Massachusetts, U.S.A.,
excluding the application of any conflict of law rules. The United Nations Convention
on Contracts for the International Sale of Goods shall not apply.

This EULA is the entire agreement between Wingware and you, and supersedes any
other communications or advertising with respect to the Software Product; this EULA
may be modified only by written agreement signed by authorized representatives of you
and Wingware.

Unless otherwise agreed in writing, all disputes relating to this EULA (excepting any
dispute relating to intellectual property rights) shall be subject to final and binding
arbitration in the State of Massachusetts, in accordance with the Licensing Agreement
Arbitration Rules of the American Arbitration Association, with the losing party paying
all costs of arbitration. Arbitration must be by a member of the American Arbitra-
tion Association. If any dispute arises under this EULA, the prevailing party shall be
reimbursed by the other party for any and all legal fees and costs associated therewith.

16. GENERAL

If any provision of this EULA is held invalid, the remainder of this EULA shall continue
in full force and effect.

A waiver by either party of any term or condition of this EULA or any breach thereof,
in any one instance, shall not waive such term or condition or any subsequent breach
thereof.

17. OUTSIDE THE U.S.

If you are located outside the U.S., then the provisions of this Section shall apply. Les
parties aux présentes confirment leur volonté que cette convention de même que tous
les documents y compris tout avis qui s’y rattache, soient redigés en langue anglaise.
(translation: ”The parties confirm that this EULA and all related documentation is and
will be in the English language.“) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software
Product, and you represent that you have complied with any regulations or registration
procedures required by applicable law to make this license enforceable.

18. TRADEMARKS

397

The following are trademarks or registered trademarks of Wingware: Wingware, the
dancing bird logo, the feather logo, Wing IDE, Wing IDE 101, Wing IDE Personal, Wing
IDE Professional, Wing IDE Enterprise, Wing Debugger, and ”Intelligent Development
Environment for Python Programmers“

19. CONTACT INFORMATION

If you have any questions about this EULA, or if you want to contact Wingware for any
reason, please direct all correspondence to: Wingware, P.O. Box 400527, Cambridge,
MA 02140-0006, United States of America or send email to info at wingware.com.

14.2. Open Source License Information

Wing IDE incorporates the following open source technologies, most of which are under
OSI Certified Open Source licenses except as indicated in the footnotes:

• atk -- GUI accessibility toolkit by Bill.Haneman, Marc.Mulcahy, and
Padraig.Obriain -- LGPL [1]

• Crystal Clear -- An icon set by Everaldo -- LGPL [1]

• docutils -- reStructuredText markup processing by David Goodger and
contributors-- Public Domain [2]

• expat -- XML parsing library by the Thai Open Source Software Center Ltd, Clark
Cooper, and contributors -- MIT License

• fontconfig -- Font configuration detection and support by Keith Packard -- MIT
License

• freetype -- High quality text rendering library by Werner Lemberg, David Turner,
and contributors -- FreeType License

• glib -- Object development support library by Hans Breuer, Matthias Clasen, Tor
Lillqvist, Tim Janik, Havoc Pennington, Ron Steinke, Owen Taylor, Sebastian
Wilhelmi, and contributors -- LGPL [1]

• gtk+ -- Cross-platform GUI library by Jonathan Blandford, Hans Breuer, Matthias
Clasen, Tim Janik, Tor Lillqvist, Federico Mena Quintero, Kristian Rietveld, Søren
Sandmann, Manish Singh, Owen Taylor, and contributors.-- LGPL [1]

• gtk-engines -- GTK theme engines by The Rasterman, Owen Taylor, Randy Gor-
don -- LGPL [1]

http://www.opensource.org/
http://library.gnome.org/devel/atk/
http://www.kde-look.org/content/show.php/Crystal+Clear?content=25668
http://www.everaldo.com/
http://docutils.sourceforge.net/
http://expat.sourceforge.net/
http://www.fontconfig.org/
http://www.freetype.org/
http://www.gtk.org/
http://www.gtk.org/
http://www.gtk.org/

398

• gtkscintilla2 -- GTK wrapper for Scintilla by Dennis J Houy, Sven Herzberg, and
contributors-- LGPL [1]

• GTK Themes -- Aluminum Alloy by Robert Iszaki (roberTO), AluminumAlloy Li-
cense [4]; Black-Background based on work by Eric R. Reitz, unspecified [5]; Glider
by Link Dupont, LGPL [1]; Glossy P by m5brane, unspecified [5]; gnububble by
Kyle Davis, unspecified [5]; H2O by Eric R. Reitz, unspecified [5]; High Contrast,
Low Contrast, and Large Print themes by Bill Haneman and T. Liebeck, LGPL [1];
Smokey-Blue by Jakub ’jimmac’ Steiner and Paul Hendrick, LGPL [1]; Redmond
and Redmond95 by Anonymous, unspecified [5]; Smooth2000 by ajgenius, unspec-
ified [5]; SmoothDesert by Ken Joseph, other [6]; SmoothRetro by Ken Joseph,
other [6]; SmoothSeaIce by ajgenius, unspecified [5]

• gtk-wimp -- GTK theme with Windows native look by Raymond Penners, Evan
Martin, Owen Taylor, Arnaud Charlet, and Dom Lachowicz.-- LGPL [1]

• IPython -- An enhanced interactive Python shell by Fernando Perez and contrib-
utors. -- BSD

• libiconv -- Unicode conversion library by Bruno Haible -- LGPL [1]

• libpng -- PNG image support library by Glenn Randers-Pehrson, Andreas Eric
Dilger, Guy Eric Schalnat, and contributors -- zlib/libpng License

• libXft -- X windows font rendering by Keith Packard and contributors -- MIT
License

• libXrender -- X windows rendering extension by Keith Packard and contributors
-- MIT License

• pango -- Text layout and rendering library by Owen Taylor and contributors --
LGPL [1]

• parsetools -- Python parse tree conversion tools by John Ehresman -- MIT License

• pexpect -- Sub-process control library by Noah Spurrier, Richard Holden, Marco
Molteni, Kimberley Burchett, Robert Stone, Hartmut Goebel, Chad Schroeder,
Erick Tryzelaar, Dave Kirby, Ids vander Molen, George Todd, Noel Taylor, Nicolas
D. Cesar, Alexander Gattin, Geoffrey Marshall, Francisco Lourenco, Glen Mabey,
Karthik Gurusamy, and Fernando Perez -- MIT License

• py2pdf -- Python source to PDF output converter by Dinu Gherman -- MIT License

• pygtk -- Python bindings for GTK by James Henstridge and contributors -- LGPL
[1]

• pyscintilla2 -- Python bindings for gtkscintilla2 by Roberto Cavada and contribu-
tors -- LGPL [1]

http://sourceforge.net/projects/moleskine
http://art.gnome.org/themes/gtk2/
http://gtk-wimp.sf.net/
http://ipython.scipy.org/
http://www.gnu.org/software/libiconv/
http://www.libpng.org/pub/png/libpng.html
http://www.fontconfig.org/
http://keithp.com/~keithp/render/protocol.html
http://www.gtk.org/
http://wingware.com/
http://pexpect.sourceforge.net/pexpect.html
http://python.net/~gherman/py2pdf.html
http://www.daa.com.au/~james/pygtk/
http://sra.itc.it/people/cavada/PyScintilla2.html

399

• pysqlite -- Python bindings for sqlite by Gerhard Haering -- BSD-like custom license
[7]

• Python -- The Python programming language by Guido van Rossum, PythonLabs,
and contributors -- Python Software Foundation License version 2 [3]

• render -- Header files for X render extension by Keith Packard -- MIT License

• scintilla -- Source code editor component by Neil Hodgson and contributors -- MIT
License

• sqlite -- A self-contained, serverless, zero-configuration, transactional SQL
database engine -- Public domain [8]

• Tulliana-1.0 -- An icon set by M. Umut Pulat, based on Nuvola created by David
Vignoni -- LGPL [1]

• zlib -- Data compression library by Jean-loup Gailly and Mark Adler -- zlib/libpng
License

Notes

[1] The LGPL requires us to redistribute the source code for all libraries linked into
Wing IDE. All of these modules are readily available on the internet. In some cases we
may have modifications that have not yet been incorporated into the official versions; if
you wish to obtain a copy of our version of the sources of any of these modules, please
email us at info at wingware.com.

[2] Docutils contains a few parts under other licenses (BSD, Python 2.1, Python 2.2,
Python 2.3, and GPL). See the COPYING.txt file in the source distribution for details.

[3] The Python Software Foundation License version 2 is an OSI Approved Open Source
license. It consists of a stack of licenses that also include other licenses that apply to
older parts of the Python code base. All of these are included in the OSI Approved
license: PSF License, BeOpen Python License, CNRI Python License, and CWI Python
License. The intellectual property rights for Python are managed by the Python Software
Foundation.

[4] Not OSI Approved. Wingware has obtained explicit permission from the author to
redistribute these themes.

[5] Not OSI Approved. These GTK themes are widely distributed works that are im-
plicitely in the public domain, but without stated license or copyright. They may be
removed from Wing IDE without altering the product’s base functionality by removing
the correspondingly named directories from bin/gtk-bin/share/themes within the Wing
IDE installation.

http://pysqlite.org/
http://python.org/
http://keithp.com/~keithp/render/protocol.html
http://scintilla.org/
http://sqlite.org
http://www.kde-look.org/content/show.php/Tulliana?content=29610
http://www.zlib.org/
mailto:info@wingware.com
http://python.org/psf
http://python.org/psf

400

[6] Not OSI Approved. However, license grants permission to modify and use without
limitation.

[7] Not OSI Approved, but similar to other OSI approved licenses. The license grants
anyone to use the software for any purpose, including commercial applications.

[8] The source code states the author has disclaimed copyright of the source code. The
sqllite.org website states: ”All of the deliverable code in SQLite has been dedicated
to the public domain by the authors. All code authors, and representatives of the
companies they work for, have signed affidavits dedicating their contributions to the
public domain and originals of those signed affidavits are stored in a firesafe at the main
offices of Hwaci. Anyone is free to copy, modify, publish, use, compile, sell, or distribute
the original SQLite code, either in source code form or as a compiled binary, for any
purpose, commercial or non-commercial, and by any means.“

Scintilla Copyright

We are required by the license terms for Scintilla to include the following copyright notice
in this documentation:

Copyright 1998-2003 by Neil Hodgson <neilh@scintilla.org>

All Rights Reserved

Permission to use, copy, modify, and distribute this soft-

ware and its

documentation for any purpose and with-

out fee is hereby granted,

provided that the above copyright notice ap-

pear in all copies and that

both that copyright notice and this permission notice ap-

pear in

supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR ANY

SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER

TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE

OR PERFORMANCE OF THIS SOFTWARE.

Fontconfig Copyright

401

We are required by the license terms for Fontconfig to include the following copyright
notice in this documentation:

Copyright c© 2001,2003 Keith Packard

Permission to use, copy, modify, dis-

tribute, and sell this software and its

documentation for any purpose is hereby granted with-

out fee, provided that

the above copyright notice ap-

pear in all copies and that both that

copyright notice and this permission notice appear in support-

ing

documentation, and that the name of Keith Packard not be used in

advertising or publicity pertaining to distribu-

tion of the software without

specific, written prior permission. Keith Packard makes no

representations about the suitability of this soft-

ware for any purpose. It

is provided "as is" without express or implied warranty.

KEITH PACKARD DISCLAIMS ALL WARRANTIES WITH RE-

GARD TO THIS SOFTWARE,

INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-

NESS, IN NO

EVENT SHALL KEITH PACKARD BE LIABLE FOR ANY SPECIAL, INDI-

RECT OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULT-

ING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-

GENCE OR OTHER

TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-

TION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

