
ECED 3204. Microprocessors

ECED 3204. Microprocessors

Instructor: Jose Gonzalez-Cueto

TRANSPARENCIES

Transparencies

Dalhousie University Jose A. Gonzalez-Cueto1

Dalhousie University, Halifax

Department of Electrical & Computer Engineering

Fall 2013

ECED 3204. Microprocessors

Course website:

http://myweb.dal.ca/~gonzalej/Teaching/Eced3204/ECED3204.html

(or) Dept webpage →→→→ Faculty →→→→ Jose →→→→ Teaching →→→→ Microprocessors

Hardware:

1. Motorola M68HC11EVB board (The evaluation board or EVB)

– Based on the M68HC11 MCU (MicroController Unit)

Introduction to the Course

Dalhousie University Jose A. Gonzalez-Cueto2

Software:

1. Mini IDE (Integrated Development Environment, Runs on PC)

– M68HC11 Cross Assembler

– Building executable files

– Downloading of 6811 executables to the EVB

– PC ↔↔↔↔ EVB serial communication

ECED 3204. Microprocessors

Software (Cont’d):

2. Stan Simmons’ QEVB11 Simulator (Runs on PC)

– Simulates the EVB board in detail

– CPU operation, bus timing, serial communication and more...

– Downloadable through link in course website

– Comes with tutorials. Do tutorials 1-3 over weeks 1-4

Introduction to the Course

Dalhousie University Jose A. Gonzalez-Cueto3

– Helpful for the Labs, program debugging and testing

ECED 3204. Microprocessors

Bibliography

[1] Hughes, L., Hardware and Software Design for the MC68HC11,
5th edition, Whale Lake Press, 2004 (textbook) - REQUIRED.

[2] M68HC11 Reference Manual, a.k.a. The Pink Book , Motorola.

[3] MC68HC11A8 Programming Reference Guide, Motorola - REQUIRED.

[4] M68HC11EVB Evaluation Board User's Manual, Motorola.

[5] Huang, H., MC68HC11: An Introduction; Software and Hardware
Interfacing , 2nd edition, Delmar Thomson Learning, 2000

Introduction to the Course

Dalhousie University Jose A. Gonzalez-Cueto4

Interfacing , 2nd edition, Delmar Thomson Learning, 2000
(textbook) (in Library & Bookstore) - REQUIRED.

[6] Gonzalez-Cueto, J.A., ECED3204 Transparencies, April 2006 - REQUIRED.

[7] Martin, F., Introduction to 6811 Programming , Media Lab, MIT.

[8] Spasov, P., Microcontroller Technology: The 68HC11, 4th edition, Prentice

Hall, 2002.

[9] Driscoll, Coughlin & Villanucci, Data Acquisition and Process Control with

the M68HC11 Microcontroller, Merril / Macmillan, 1994 (in Library).

ECED 3204. Microprocessors

Course Contents
1. Introduction to the course. (Starts on Page 2)

2. Introductory topics, (Starts on Page 9)
– Basic computer architecture (CPU, memory, I/O components and buses).
– Numeric systems; decimal, binary, hexadecimal.
– Representation of information in memory, the byte.
– Different formats: unsigned, signed, ASCII characters and BCD representation.
– Memory architectures, memory segments from a programming point of view.
– Memory modules and its interaction with the address, data and control buses.
– The central processing unit (CPU), instruction cycle and CPU registers.
– I/O components, device polling and interrupts.

3. The Motorola 68HC11 MicroController Unit (MCU), (Starts on Page 27)
– Microprocessors vs microcontrollers.

Introduction to the Course

Dalhousie University Jose A. Gonzalez-Cueto5

– Microprocessors vs microcontrollers.
– The 68HC11A8 architecture, pin description, operation modes.
– Address space and memory map of the 68HC11A8 MCU.
– Introduction to the 68HC11 I/O components (Ports A-E).
– CPU: Registers, addressing mode, instruction set.
– Assembly language programming for the 68HC11 MCU, assembler directives.
– The development process (assembler, linker, librarian and loader), Motorola S-record files.
– The 68HC11EVB evaluation board, memory map, monitor program, BUFFALO commands.
– Allocation of external memory modules. Using decoders - the 74HC138.
– Demultiplexing address and data buses - the 74HC373 latch.
– The bus cycle. RAM/EPROM read cycles. RAM write cycle. Timing diagrams.
– Cycle-by-cycle CPU execution. Register transfer notation.
– Laboratories

(1) Introduction to the M68HC11EVB,
(2) Assembly language programming, and
(3) Instruction execution, bus cycle & timing diagrams.

ECED 3204. Microprocessors

Course Contents (cont’d)
4. Asynchronous serial communication, (Starts on Page 126)

– Introduction,
• UART rx & tx units.
• Registers and character formation/handling in both directions.
• Serial-to-parallel, parallel-to-serial conversion processes.
• Errors and error handling.
• The RS-232 standard.

– The HC11 and asynchronous serial communication .- the SCI unit,
• SCI tx unit.
• SCI rx unit. Error handling.
• Control/status registers, rx/tx data registers.
• CPU «--» SCI unit interaction, I/O methods: polling & interrupts.

– Asynchronous serial communication and the EVB,

Introduction to the Course

Dalhousie University Jose A. Gonzalez-Cueto6

– Asynchronous serial communication and the EVB,
• EVB connectors, EVB serial port connectors.
• The SCI and ACIA as the EVB UARTs.
• Use of the D-type flipflop and digital switches.
• ACIA decode & programming.
• BUFFALO communication, the RS232 window (SCI terminal) and EVB ports.
• RS232 drivers & receivers.

– Interrupts,
• The HC11 interrupt vector table.
• Interrupt driven I/O, programming with interrupts.
• Interrupts and the M68HC11EVB evaluation board.

– Laboratories,
(4) Device polling & terminal I/O,

(5) Asynchronous serial communication and interrupts.

ECED 3204. Microprocessors

Course Contents (cont’d)
5. HC11 timer system, (Starts at Page 152)

– Main timer functions
• Output compare; software timing, waveform generation.
• Input capture; measuring period & pulse width.
• Long periods and counter overflows.
• Algorithms for generating and measuring slow-changing signals.

– Solving missed output compares and missed overflows. Interrupt priority.
– Real-time interrupt.
– Laboratory:

(6) Timer functions.

6. Parallel I/O communication, (Starts at Page 170)
– General purpose I/O.

Introduction to the Course

Dalhousie University Jose A. Gonzalez-Cueto7

– General purpose I/O.
– HC11 output PortB and bidirectional PortC.
– Seven segment displays.

• Hardware issues
– Using HC11 ports to light 7-segment LED displays.
– Controlling multiple 7-segment displays.

• Software issues
– Light patterns for digits to be displayed. Table lookup.
– Conversion of 16-bit hex format --» BCD format «--» ASCII-coded decimal format.

– Strobe and handshake I/O subsystem.
– Design and service of parallel I/O ports external to the HC11.
– Laboratory:

(7) Seven-segment LED displays.

7. Course Review.

8. Final Exam.

ECED 3204. Microprocessors

Course Assessment

Biweekly Quizzes: 25%

Laboratories: 25%

Introduction to the Course

Dalhousie University Jose A. Gonzalez-Cueto8

MidTerm Exam 25%

EndofTerm Exam 25%

Total: 100%

ECED 3204. Microprocessors

What is a computer?

An Electronic Device operating under Control of Instructions

(Software) stored in its own Memory Unit (part of its Hardware)

1. Accepts Data (Input)

2. Processes Data Arithmetically / Logically

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto9

3. Displays Information from the processing (Output)

4. Stores results for future use

ECED 3204. Microprocessors Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto10

ECED 3204. Microprocessors

Computer Hardware Organization

Common BUS

Control
Unit

Arithmetic

P
R

O
C

E
S

S
O

R

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto11

MEMORY

Program
Storage

Data
Storage

Output

Unit(s)

Input

Unit(s)

Arithmetic
Logic
Unit

Registers

P
R

O
C

E
S

S
O

R

ECED 3204. Microprocessors

Semiconductor memory types (Physical viewpoint)

- Random-access memory (RAM): can be read & written.

Volatile -> information is lost when power is turned off

- Read-only memory (ROM): can be read but not written by

the processor. Keeps information in absence of power supply

Random-access memory (RAM)

- Dynamic random-access memory (DRAM): periodic

refresh is required to maintain the contents of a DRAM chip

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto12

refresh is required to maintain the contents of a DRAM chip

- Static random-access memory (SRAM): no periodic

refresh is required

Read-only memory (ROM)

- Mask-programmed read-only memory (MROM):
programmed when being manufactured

- Programmable read-only memory (PROM):
the memory chip can be programmed by the end user

ECED 3204. Microprocessors

- Erasable programmable ROM (EPROM)

1. electrically programmable many times

2. erased by ultraviolet light (through a window)

3. erasable in bulk (whole chip in one erasure operation)

- Electrically erasable programmable ROM (EEPROM)

1. electrically programmable many times

2. electrically erasable many times

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto13

- Flash memory

1. electrically programmable many times

2. electrically erasable many times

3. can only be erased in bulk

2. electrically erasable many times

3. can be erased one location, one row, or whole chip in
one operation

ECED 3204. Microprocessors

Memory Organization (Logical point of view)

Introductory Topics

0000

0001

nnnn

Address

Contents of Mem Location 0000

Contents of Mem Location 0001

Contents of Mem Location nnnn

Dalhousie University Jose A. Gonzalez-Cueto14

nnnn Contents of Mem Location nnnn

• Each memory location is associated with an address, and

• Serves as storage for data or program code (instructions)

ECED 3204. Microprocessors

Basic Unit of Memory – The Byte

Introductory Topics

A Memory Location

B0B1B2B3B4B5B6B7

11 0 00 0 01

Most
Significant

Least
Significant

LSB (B0)MSB (B7)

Dalhousie University Jose A. Gonzalez-Cueto15

• Memory Content = 4CH = $ 4C = 0100 1100B = % 0100 1100

• If the content of this memory location is interpreted by the CPU as

an instruction:

Significant
Nibble

Significant
Nibble

Machine Code Assembler Code

$4C = INCA

(4) (C)

ECED 3204. Microprocessors

Data Formats

Formats 1-Byte Range
Example 1

0100 1000b

Example 2

1100 1010b

Unsigned number 0..255d 64 + 8 = 72d

128+ 64+ 8+ 2 =

202d

Signed number -128..127 72
− 0011 0110b =

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto16

Signed number -128..127d 72d
b

− 36h = − 54d

ASCII character
<NUL>..

00 .. 127d

48h = ‘H’

(Table lookup)

out-of-range (∗), or

If B7, 4Ah = ‘J’

Binary-coded
decimal (BCD)

00..99d 48d <invalid>

(∗) 202d = ‘╩’, See http://www.lookuptables.com/ for Extended ASCII codes

ECED 3204. Microprocessors

ASCII Chart

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto17

ECED 3204. Microprocessors

Numeric Systems

Introductory Topics

System Example HC11 Notation

Binary 1101 1000b %1101 1000

Dalhousie University Jose A. Gonzalez-Cueto18

Hexadecimal D8h $D8

Decimal 216d !216

Octal 330o @330

ECED 3204. Microprocessors

Memory Segments

• Program : Contains program instructions,

– e.g. operation codes (OpCodes), instruction operands

– Register associated : PC (program counter)

– Typical access order: Top-to-bottom

• Data : Holds constants & variables used by the program

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto19

– Registers associated : IX, IY (index registers)

– Access order dependent on data structures & program logic

• Stack : Stores temporary variables,

– e.g. subroutine parameters, return addresses

– Register associated : SP (stack pointer)

– Typical access order: Last-In First-Out (LIFO)

ECED 3204. Microprocessors

Storage of 2-Byte Data in 1-Byte Memory Locations

Big-Endian Order (Motorola HC11) Little-Endian Order

Address Address

Example: Storage of 16-bit number $2E0A

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto20

n + 1

n + 2

Address

$2E

$0A

MSByte

LSByte

MSByte − Most Significant Byte

LSByte − Least Significant Byte

n + 1

n + 2

Address

$0A

$2E

LSByte

MSByte

Valid for all memory segments:

Program, Data & Stack

ECED 3204. Microprocessors

Memory Addressing

Memory consists of addressable locations

A memory location has 2 components: address and contents

Data transfer between CPU and memory

address contents

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto21

CPU memory

address bus lines

data bus lines

Data transfer between CPU and memory

ECED 3204. Microprocessors

CPU

Data
Bus

A0
A1

A12
A13

A15

D0
D1

D7

Memory

Module

8K x 8
RAM

A0
A1

A12

D0
D1

D7

Clock

R/W

(D0 - D7)

W

OE (G)

CS (E)

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto22

Address Bus (A0 - A12)

To Another
Memory
Module

CS

D
e
c
o
d
e
r

Y0

Y7

Y1

A0

A2

A1

E
CS (E)

ECED 3204. Microprocessors

Busses

• Address Bus
– Set of parallel lines used to specify a memory location

– Unidirectional (CPU → Memory)

– # lines = # bits required to address all memory locations.
• e.g. For an 8K memory module, 8K = 23 x 210 = 213 locations

• Hence, 13 lines are required

• Data Bus
– Set of parallel lines carrying data / instructions

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto23

– Set of parallel lines carrying data / instructions
• e.g. An 8-bit CPU can transfer 8 bits (1byte) of data at a time

– Bidirectional (CPU ↔ Memory)

• Control Bus
– Set of lines controlling data transfer

– Example of lines

• CS: chip selection logic

• Clock : synch signal,

• R/W : Read or Write

Unidirectional (CPU → Memory)

ECED 3204. Microprocessors Introductory Topics

Exercise: Provide this 8-bit CPU with a 64Kbyte Memory Space

D__- D__

32K x 4

A__- A__

D__- D__

CS

D__- D__

8-bit
CPU

32K x 4

A__- A__

CS

32K x 4

A__- A__

CS

16 Address Bus (A15 – A0)

__ __ __

__ __ __

Dalhousie University Jose A. Gonzalez-Cueto24

D__- D__

CPU

32K x 4

A__- A__

CS

32K x 4

A__- A__

D__- D__

CS

32K x 4

A__- A__

D__- D__

CS

__ __ __

__ __ __

8

Data Bus (D7 – D0)

Note : The Clock (Ck) & R/W signals have been omitted for simplicity

ECED 3204. Microprocessors

I/O Schemes

1.Isolated I/O scheme

- The microprocessor has dedicated instructions for I/O operations

- The microprocessor has a separate address space for I/O devices

2.Memory-mapped I/O scheme

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto25

- The microprocessor uses the same instruction set for I/O operations

- The I/O devices and memory components are resident in the same
memory space

ECED 3204. Microprocessors

Synchronizing the Microprocessor and the Interface Chip

The polling method

1.for input -- the microprocessor checks a status bit of the
interface chip to find out if the interface chip has received new data
from the input device.

2.for output -- the microprocessor checks a status bit of the
interface chip to find out if it can send new data to the interface chip.

Introductory Topics

Dalhousie University Jose A. Gonzalez-Cueto26

interface chip to find out if it can send new data to the interface chip.

The interrupt-driven method

1.for input -- the interface chip interrupts the microprocessor
whenever it has received new data from the input device.

2.for output -- the interface chip interrupts the microprocessor
whenever it can accept new data from the microprocessor.

ECED 3204. Microprocessors

Motorola S-Records

• Files containing Machine Code (“∗.s19”)

• ASCII files - portable (edited on any PC)

• Readable

– Hex machine code

– Memory addresses where code will be loaded

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto27

– Memory addresses where code will be loaded

ECED 3204. Microprocessors

S-Record Format

S <Type> <Length> <Address> <Code/Data> <Checksum>

ONE
printable

char
(0..9)

TWO
printable

chars.

Specify the
record

2-byte
address

(FOUR
printable

chars)

Executable
code and/or

data.

(Up to 64
bytes)

TWO printable
chars.

Least
significant byte

of the 1’s

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto28

record
length in

bytes,
counting
address +

code/data +
checksum

fields

chars) bytes) of the 1’s
complement of
the sum of the
values in the

record length +
address +

code/data fields

ECED 3204. Microprocessors

S-Record Example

S0 0E 0000 53 52 45 43 4F 52 44 2E 42 41 4B E3 ⇐ Starting Record

Address Instruction / Data

S1 04 C000 FE 3D $C000 LDX $C008

S1 05 C001 C0 08 71

S1 04 C003 BD 7B $C003 JSR $C00B

S1 05 C004 C0 0B 6B

S1 09 C006 20 FE 00 0A 05 FF 04 $C006 BRA $FE

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto29

S1 09 C006 20 FE 00 0A 05 FF 04 $C006 BRA $FE

Type Address Checksum $C008 $000A

Length Code / Data $C00A $05

S1 05 C00C C0 0F 5F $C00B STX $C00F

S1 04 C00E 39 F4 $C00E RTS

S1 04 C010 00 2B $C010 $00

S9 03 0000 FC ⇐ Termination Record

Data

Data

ECED 3204. Microprocessors

Loading Executable S-Records (“∗.s19”) into the EVB

• 1st - Establish communication with the EVB from the PC

- Establish the serial connection between the COM1 Port
on the PC side and the Terminal I/O Port on the EVB

•2nd - On the BUFFALO window in MiniIDE type the command

> load –t {hit Enter}

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto30

> load –t {hit Enter}

EVB ready for S-record stream through (t)erminal port

• 3rd - Open a 2nd MiniIDE window and connect it as a
Terminal window

- Go to Menu Terminal -> Download File -> Browse for the
.s19 file to download to the EVB board

ECED 3204. Microprocessors

Loading Executable S-Records into the QEVB11 Simulator

• (a) Use the Load command from the File pull-down menu, OR

• (b) Click on the button with the blue arrow on top of a stack of
papers

• Locate the .s19 s-Record in the PC

• Machine code will be loaded into RAM memory of EVB model

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto31

• Machine code will be loaded into RAM memory of EVB model

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto32

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto33

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto34

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto35

ECED 3204. Microprocessors

BUFFALO Commands

asm – assemble / disassemble memory locations

br(eak) – set / clear breakpoints

g(o) – execute instructions

load – load S-records via serial ports

md – display memory contents

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto36

md – display memory contents

mm – view / modify memory contents

p – proceed / continue execution

rm – view / modify contents of CPU registers

t(race) – trace execution of instructions

h(elp) – offers commands’ syntax & brief description

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto37

ECED 3204. Microprocessors

H
C

1
1

 M
e

m
o

ry
 M

a
p

M68HC11 Microcontroller

∗
E

x
te

rn
a

l M
e

m
o

ry h
a

s
 a

 m
e

a
n

in
g

 o
n

ly fo
r E

x
p

a
n

d
e

d
 M

o
d

e

R
A

M

I/O
 R

E
G

IS
T

E
R

S

E
E

P
R

O
M

R
O

M

IN
T

E
R

R
U

P
T

 V
E

C
T

O
R

$
0

0
0

0

$
0

0
F

F

$
1

0
0

0

$
1

0
3

F

$
B

6
0

0

$
B

7
F

F

$
E

0
0

0

$
F

F
F

F

$
F

F
C

0

E
x
te

rn
a

l (A
v
a

ila
b

le
)

E
x
te

rn
a

l (A
v
a

ila
b

le
)

E
x
te

rn
a

l (A
v
a

ila
b

le
)

E
ith

e
r o

r b
o

th
 in

te
rn

a
l R

O
M

 &
 E

E
P

R
O

M
 c

a
n

 b
e

 d
is

a
b

le
d

¥

Dalhousie University Jose A. Gonzalez-Cueto38

H
C

1
1

 M
e

m
o

ry
 M

a
p

E
x
te

rn
a

l M
e

m
o

ry h
a

s
 a

 m
e

a
n

in
g

 o
n

ly fo
r E

x
p

a
n

d
e

d
 M

o
d

e

5
1

2
 B

yte
s

R
A

M

I/O
 R

E
G

IS
T

E
R

S

E
E

P
R

O
M

R
O

M

IN
T

E
R

R
U

P
T

 V
E

C
T

O
R

8
 K

B
yte

s

6
4

 B
yte

s

2
5

6
 B

yte
s

E
x
te

rn
a

l (A
v
a

ila
b

le
)

E
x
te

rn
a

l (A
v
a

ila
b

le
) ∗ ∗

E
x
te

rn
a

l (A
v
a

ila
b

le
) ∗

¥

¥

E
ith

e
r o

r b
o

th
 in

te
rn

a
l R

O
M

 &
 E

E
P

R
O

M
 c

a
n

 b
e

 d
is

a
b

le
d

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto39

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto40

ECED 3204. Microprocessors M68HC11 Microcontroller

B
ra

n
c

h
 In

s
tru

c
tio

n
s

Dalhousie University Jose A. Gonzalez-Cueto41

B
ra

n
c

h
 In

s
tru

c
tio

n
s

ECED 3204. Microprocessors

HC11 CPU Addressing Modes

• Describe the primary operand involved in an instruction

• Operands can be

– CPU registers, and/or

– Bytes from memory

1. Inherent (INH)

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto42

1. Inherent (INH)

2. Immediate (IMM)

3. Direct (DIR)

4. Extended (EXT)

5. Indexed (IND)

6. Relative (REL)

ECED 3204. Microprocessors

Inherent (INH)

Only CPU registers are involved in the instruction

Examples

Machine Code Instruction Description

1B ABA ACCA ← ACCA + ACCB

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto43

1B ABA ACCA ← ACCA + ACCB

5C INCB ACCB ← ACCB + 1

08 INX IX ← IX + 1

16 TAB ACCB ← ACCA

ECED 3204. Microprocessors

Immediate (IMM)

– The operand value is part of the instruction

– It follows the OpCode

Examples

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto44

Machine Code Instruction Description

86 25 LDAA #$25 ACCA ← $25

81 24 CMPA #%100100 ACCA – %00100100

CC 07 D2 LDD #!2002 ACCA:ACCB ← $07D2

Same as ACCD ← $07D2

ECED 3204. Microprocessors

Direct (DIR)

– The operand is stored in initial 256 bytes ($0000 – $00FF)

Examples

Machine Code Instruction Description

90 1F SUBA $1F ACCA ← ACCA – <$001F>

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto45

90 1F SUBA $1F ACCA ← ACCA – <$001F>

96 A8 LDAA $A8 ACCA ← <$00A8>

ECED 3204. Microprocessors

Extended (EXT)

– The operand’s absolute address appears explicitly in the
2 bytes following the OpCode (any in $0000 – $FFFF)

Examples

Machine Code Instruction Description

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto46

Machine Code Instruction Description

B7 C0 20 STAA $C020 <$C020> ← ACCA

F0 C0 1C SUBB $C01C ACCB ← ACCB – <$C01C>

ECED 3204. Microprocessors

Indexed (IND)

– Index registers IX & IY are used to calculate the effective
address (EA). It can be any in $0000 – $FFFF.

– EA = Base Address + Unsigned 8-bit Offset

Examples

IX or IY

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto47

Examples

Machine Code Instruction Description

E3 22 ADDD $22,X EA = IX + $22

ACCD ← ACCD + <EA:EA+1>

18 AB 0D ADDA $0D,Y EA = IY + $0D

ACCA ← ACCA + <EA>

ECED 3204. Microprocessors

Relative (REL)

– It is used only by the branch instructions

– EA = Next Instruction’s Address + Signed 8-bit Offset, OR

PCNEW = EA = PCOLD + Offset

– Offset range: [-128 D , 127 D]

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto48

– Offset range: [-128 D , 127 D]

ECED 3204. Microprocessors

Relative (REL)

– PCNEW = EA = PCOLD + Offset

Example: Fill in the spaces in the machine code below

Address Mach Code Label Operation Operand Description

C000 20 __ there BRA where branch always

C002 22 __ where BHI there branch if higher

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto49

C004 24 __ BCC lbcc branch if carry clear

C006 27 __ hang BEQ hang branch if Z = 1

C008 25 __ here BLO here branch if lower

C00A 8D __ lbcc BSR subr1 branch to subroutine

C016 4F subr1 CLRA

10 bytes of code

ECED 3204. Microprocessors

The 68HC11 Machine Code

A 68HC11 instruction consists of

(1 to 2 bytes) of opcode + (0 to 3 bytes) of operand information

Examples

Machine instruction

Assembly instruction (in hex format always)

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto50

INCB 5C

LDAA #!29 86 1D

ADDA $002F 9B 2F (assembler encodes using
direct addressing mode)

STAA $C01E B7 C0 1E

CPD #$00FF 1A 83 00 FF

loop BRCLR 0, Y, $80, loop 18 1F 00 80 FB

ECED 3204. Microprocessors

Decoding machine language instructions

Procedure

Step 1 Compare the first one or two bytes with the opcode table to identify
the corresponding assembly mnemonic and addressing mode.

Step 2 Identify the operand bytes after the opcode field.

Step 3 Write down the corresponding assembly instruction.

Step 4 Repeat step 1 to 3 until the machine code file is exhausted.

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto51

Step 4 Repeat step 1 to 3 until the machine code file is exhausted.

ECED 3204. Microprocessors

Sample lookup table to be used in decoding the program
segment of the next example into assembly instructions

machine code assembly instruction format

01 NOP

86 LDAA IMM

8B ADDA IMM

96 LDAA DIR

97 STAA DIR

9B ADDA DIR

C3 ADDD IMM

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto52

C3 ADDD IMM

C6 LDAB IMM

CB ADDB IMM

CC LDD IMM

D3 ADDD DIR

D6 LDAB DIR

D7 STAB DIR

DB ADDB DIR

DC LDD DIR

DD STD DIR

ECED 3204. Microprocessors

Example. Disassemble the following machine code to its corresponding
assembly instructions.

96 30 8B 17 97 30 CC 02 F0

Solution:

The disassembly process starts from the leftmost byte. We next look up
the machine code table to see which instruction it corresponds to.

Instruction 1.

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto53

Instruction 1.
Step 1. The first byte 96 corresponds to the instruction LDAA DIR.
Step 2. The second byte, 30h, is the direct address.
Step 3. Therefore, the first instruction is LDAA $30.

Instruction 2.
Step 1. The third byte (8B) corresponds to the instruction ADDA IMM.
Step 2. The immediate value is 17h.
Step 3. Therefore, the second instruction is ADDA #$17.

ECED 3204. Microprocessors

Instruction 3.
Step 1. The fifth byte (97) corresponds to the instruction STAA DIR.
Step 2. The DIR address is the next byte 30.
Step 3. Therefore, the third instruction is STAA $30.

Instruction 4.
Step 1. The seventh byte (CC) corresponds to the instruction LDD IMM.
Step 2. The IMM 16-bit value is given by the next 2 bytes 02 F0.
Step 3. Therefore, the fourth instruction is LDD #$02F0.

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto54

Step 3. Therefore, the fourth instruction is LDD #$02F0.

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto55

ECED 3204. Microprocessors

Assembler Line Statement Format

Label Operation Operand Comment

Field Field Field Field

ldab # 26 ; Initializing Delay Counter

DelayLoop decb ; Decrement Counter Value

bne DelayLoop ; If Counter not Zero stay in the Loop

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto56

bne DelayLoop ; If Counter not Zero stay in the Loop

ECED 3204. Microprocessors

Assembler Directives

The ORG directive

Example

org $C000 ; Code to follow starts at $C000

lds #StkTop ; Initializing Stack Pointer Register

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto57

org $DFFF ; Base of stack identified with label StkTop

StkTop ; Address $DFFF is assigned to this label

end

The END directive.-

Instruct the assembler to stop the assembly process for this
module. Any directive or code following it is ignored.

ECED 3204. Microprocessors

Assembler Directives

The AORG directive (absolute ORG) .-

Instruct the linker not to relocate the code segment following it.

Example

aorg $C300 ; Code to follow starts at $C300

ldaa Counter ; No matter what memory was

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto58

ldaa Counter ; No matter what memory was

inca ; assigned to the last instruction of the

; previous module

ECED 3204. Microprocessors

Assembler Directives

The PUBLIC directive .-

Allows a module to share a label (e.g. a subroutine) with other

modules by making its name public or known to others

Example

public ASCII2Dec

;

; Function ASCII2Dec

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto59

; Function ASCII2Dec

; < Description of what it does and

; parameters or variables involved >

;

org $C500 ; Code to follow starts at $C500

ASCII2Dec psha

rts

end

Body of the
subroutine

ECED 3204. Microprocessors

Assembler Directives

The EXTERN directive .-

Allows a module to have access to a public label external to

this module, i.e. not defined in this module

Example

extern ASCII2Dec

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto60

jsr ASCII2Dec ; Call to subroutine ASCII2Dec

end

ECED 3204. Microprocessors

Unnamed Constants

Examples:

lds # $DFFF ; Initializing stack pointer

cmpb # ’A’ ; Compare ACCB with ASCII ‘A’ = $41

staa $1004 ; Store <ACCA> to PORTB data register ($1004)

Named Constants

Examples:

The EQU directive .- Constants

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto61

Examples:

STK_TOP equ $DFFF ; Top of Stack at start of program

CAP_A equ ’A’ ; ASCII for uppercase A

PORTB equ $1004 ; PORTB data register address

lds #STK_TOP ; Initializing stack pointer

cmpb #CAP_A ; Checking contents of ACCB w.r.t. ‘A’

staa PORTB ; Writing contents of ACCA to PORTB

Constant
Definition

Part

Program
Instructions

ECED 3204. Microprocessors

1. Their value only needs to be changed once (in the Definition Part)

2. Improves readability of Assembly Code

Other Examples:

; Constants

DELAY equ 2000 ; Delay value to initialize counter with

BITMASK1 equ %00000001 ; Mask used for parity, bit 0 (B0)

BITMASK2 equ %00110000 ; Mask used to toggle bits 4 & 5 (B4 & B5)

Advantages of Named Constants

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto62

BITMASK2 equ %00110000 ; Mask used to toggle bits 4 & 5 (B4 & B5)

; Instructions (These are just isolated examples, NOT part of a program)

ldx #DELAY ; Initializing delay counter IX

bita #BITMASK1 ; Checking if B0 is 0 or 1, <ACCA> even or odd

anda #BITMASK1 ; Does the same as bita but also modify ACCA

; In this case ACCA B1-B7 are cleared

eora #BITMASK2 ; Toggles ACCA bits 4 & 5 (B4 & B5)

ECED 3204. Microprocessors

; Instructions (These are just isolated examples, NOT part of a program)

ldaa Counter ; ACCA ← Counter

inca ; ACCA ← ACCA + 1

staa Counter ; Counter ← ACCA, updating Counter

; (or)

inc Counter ; Counter ← Counter + 1, Equivalent to above

Using Variables in Assembly Programming.- Example

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto63

inc Counter ; Counter ← Counter + 1, Equivalent to above

adda Counter ; ACCA ← ACCA + Counter

Counter db 0

ECED 3204. Microprocessors

; Constants

CR equ $0D

LF equ $0A

NUL equ $00

; Variables

Defining a Known String.- Example

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto64

; Variables

str1 db “This is string 1”

str3 db “ABCDEFG”

NameStr db “JOSE”, CR, LF, NUL ; null-terminated string including

; the format control characters

; Carriage Return & Line Feed

ECED 3204. Microprocessors

; Program segment that stores string “ABC…Z” to variable alphabet

; Constants

CAP_A equ ‘A’ ; First letter, ‘A’ has the lowest ASCII value in the set

CAP_Z equ ‘Z’ ; Last letter, ‘Z’ has the highest ASCII value in the set

; Instructions

org $C000 ; Code below to be loaded starting at $C000

ldx #alphabet ; IX pointing to alphabet (loaded with its address)

Reserving arbitrary amounts of storage .- Example

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto65

ldx #alphabet ; IX pointing to alphabet (loaded with its address)

ldaa #CAP_A ; ACCA = ‘A’

AlphaLoop staa 0,X ; Store value in ACCA to address held by IX

inx ; Increment IX, IX points to next byte in alphabet

inca ; ACCA holds ASCII value for next character

cmpa #CAP_Z ; Is next char lower or same as ‘Z’ ?

bls AlphaLoop ; If YES go back to store it and repeat cycle

; Variables

alphabet ds 26 ; Allocates 26 bytes of memory for variable
; alphabet . Its values are undefined initially.

ECED 3204. Microprocessors

1: ; Program segment that stores string "ABC...Z" to variable alphabet
2:
3: ; Constants

4: =00000041 CAP_A equ 'A'

5: =0000005A CAP_Z equ 'Z'

6:
7: ; Instructions

8: =0000C000 org $C000

9: C000 CE C00D ldx #alphabet

Reserving arbitrary storage .- List File Example

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto66

9: C000 CE C00D ldx #alphabet

10: C003 86 41 ldaa #CAP_A

11: C005 A7 00AlphaLoop staa 0,X

12: C007 08 inx

13: C008 4C inca

14: C009 81 5A cmpa #CAP_Z

15: C00B 23 F8 bls AlphaLoop

16:
17: ; Variables

18: C00D +001A alphabet ds !26

ECED 3204. Microprocessors

;
; HtoD - Subroutine to convert a 16-bit hex number to a 5 digit decimal number
;
; Decimal ASCII result is stored in external 5 byte variable DBUFR
; On entry IX points to hex value to be converted
; All registers are unchanged upon return
;

public HtoD ; Subroutine label other module(s)
; can have access to

extern DBUFR ; Variable label defined in other module

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto67

extern DBUFR ; Variable label defined in other module

HtoD pshy
pshx ; Save registers
pshb
psha
ldy #DBUFR ; IY points to DBUFR variable
ldd 0,X ; ACCD = hex value to be converted
ldx #!10000
idiv ; IX = hex/10,000, ACCD = remainder (r)

Subroutine Example (Part 1)

ECED 3204. Microprocessors

ldx #!100
idiv ; IX = r1/100, ACCD = new r (r2)
xgdx ; IX = r2, ACCA:ACCB = 100s digit
addb #$30 ; Convert to ASCII
stab 2,Y ; Store to 100s digit in decimal buffer
xgdx ; ACCD = r2
ldx #!10
idiv ; IX = r2/10, ACCD = new r (ACCB = 1s digit)
addb #$30 ; Convert to ASCII
stab 4,Y ; Store to units digit in decimal buffer
xgdx ; ACCA:ACCB = 10s digit

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto68

xgdx ; ACCA:ACCB = 10s digit
addb #$30 ; Convert to ASCII
stab 3,Y ; Store to 10s digit in decimal buffer
pula
pulb ; Restore registers
pulx
puly
rts ; Return

end

Subroutine Example (Part 2)

ECED 3204. Microprocessors

; Labels shared with other module(s)

public DBUFR ; Variable label other module(s)
; can have access to

extern HtoD ; Subroutine label defined in other module

; Addresses

BAUD equ $102B ; Address for the SCI line speed register
SCCR1 equ $102C ; Address for the SCI control register 1
SCSR equ $102E ; Address for the SCI status register
SCDR equ $102F ; Address for the SCI data register

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto69

SCDR equ $102F ; Address for the SCI data register
FFLOP equ $4000 ; FlipFlop Address
STK_TOP equ $DFFF ; Address of top-of-stack

; Constants

JMPOpCode equ $7E ; OpCode for JMP instruction
TIE_TE equ $88 ; Control byte for SCCR2, flags TE = 1, TIE = 1
TDRE equ $80 ; TDRE bit mask for SCSR
DELAY equ !10667 ; Value used to create a 32ms delay,

Main Program Example (Part 1)

ECED 3204. Microprocessors M68HC11 Microcontroller

; Program Code
org $C000 ; To be loaded at $C000

lds #STK_TOP ; Initializing stack pointer
MainLoop ldx #DELAY ; Loading delay counter
DelayLoop dex ; Decrementing counter

bne DelayLoop ; If counter > 0 keep decrementing
jsr UpdatePeriod ; Goto Update Signal Period
bra MainLoop ; Repeat Loop

UpdatePeriod

ldx #Periodhex ; Load IX with address of hex period

Dalhousie University Jose A. Gonzalez-Cueto70

ldx #Periodhex ; Load IX with address of hex period
jsr HtoD ; Subroutine call
ldx #DBUFR ; Reading subroutine output

rts ; End of subroutine UpdatePeriod

NewLineString db LF, CR, ' ', NUL
DBUFR ds 5
Periodhexdw 0

end ; End of Program Code

Main Program Example (Part 2)

Variables (Part of them)

ECED 3204. Microprocessors

Bibliography:

• 68HC11 Reference Manual, Section 6.5 and Appendix A.

• 68HC11 Programming Reference Guide, Section 3.

• Textbook, Chapter 3.

• Huang’s book, Chapter 2.

M68HC11 Instruction Set & Assembly Programming

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto71

ECED 3204. Microprocessors

Load & Store Instructions .- Examples

ldaa #$2C ; ACCA ← $2C

ldab $C007 ; ACCB ← <$C007>

staa $C00A ; <$C00A> ← ACCA

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto72

Register Transfer & Exchange Instructions

tab ; ACCB ← ACCA

tba ; ACCA ← ACCB

xgdx ; ACCD ↔ IX

xgdy ; ACCD ↔ IY

ECED 3204. Microprocessors

Arithmetic Instructions .- Examples

inc Counter ; Counter ← Counter + 1

deca ; ACCA ← ACCA – 1

adda alpha ; ACCA ← ACCA + alpha

suba beta ; ACCA ← ACCA – beta

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto73

aba ; ACCA ← ACCA + ACCB

nega ; ACCA ← – ACCA (2’s complement)

mul ; ACCD ← ACCA ∗ ACCB

ECED 3204. Microprocessors

;
; Assembly Code for Laboratory 1, Part 5, May 2003
;

ORG $D000

LDD sum ; Load variable sum into ACCD
ABA ; Add lower byte to higher byte
STAA sum ; Store it back to sum
SWI ; Return control to BUFFALO

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto74

SWI ; Return control to BUFFALO

sum DW $0804

END

Simple Program Example

ECED 3204. Microprocessors

;
; Assembly Code for Laboratory 1, Part 5, May 2004
;

ORG $C500

LDD diff ; Load variable diff into ACCD
SBA ; ACCA ← ACCA – ACCB
STAA diff ; Store it back to diff
NOP ; Do nothing

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto75

NOP ; Do nothing

diff DB $1E, $04

END

Simple Program Example

ECED 3204. Microprocessors

Logical Operations .- Examples

andb #$F0 ; Clears Least Significant Nibble of ACCB

oraa #$03 ; Sets Bits 0 & 1 of ACCA

eora #$0C ; Toggles Bits 2 & 3 of ACCA

bitb $C01C ; Implicit AND, ACCB • <$C01C>

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto76

; Flags modified, ACCB not altered

bitb #%00000011 ; Is ACCB multiple of 4?
; If as a result of this instruction Z is set
; (Z = 1), ACCB is multiple of 4.

ldx #$1004

bset 0, X, $55 ; Sets bits 0,2,4 & 6 of PORTB

bclr 0, X, $AA ; Clears bits 1,3,5,7 of PORTB

ECED 3204. Microprocessors

M68HC11 Instruction Set

Shift and Rotate Instructions

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto77

ECED 3204. Microprocessors

Shift and Rotate Instructions .- Examples

ldaa #$01 ; ACCA = 1 = 00000001bin

asla ; ACCA = ACCA ∗ 2 = 2 = 00000010bin, Carry flag = 0

asla ; ACCA = ACCA ∗ 2 = 4 = 00000100bin, Carry flag = 0

asra ; ACCA = ACCA / 2 = 2 = 00000010bin, Carry flag = 0

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto78

bin

ldaa #$F6 ; ACCA = -10dec = $F6 = 11110110bin

asra ; ACCA = ACCA / 2 = -5dec = $FB = 11111011bin,

; Carry Flag = 0

asra ; ACCA = ACCA / 2 = -3dec = $FD = 11111101bin,

; Carry Flag = 1

ECED 3204. Microprocessors

Program Control Instructions

1. Conditional branches

• Modify value of PC within [-128,+127]dec (1 byte signed)

(a) Testing a single CCR bit

beq <label> ; Z = 1 ?

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto79

beq <label> ; Z = 1 ?

bne <label> ; Z = 0 ?

bcs <label> ; C = 1 ?

bcc <label> ; C = 0 ?

ECED 3204. Microprocessors

Program Control Instructions

1. Conditional branches

(b) Comparison of unsigned numbers

bhi <label> ; Unsigned > , C + Z = 0 ?

bhs <label> ; Unsigned ≥≥≥≥ , C = 0 ?

blo <label> ; Unsigned < , C = 1 ?

bls <label> ; Unsigned ≤≤≤≤ , C + Z = 1 ?

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto80

bls <label> ; Unsigned ≤≤≤≤ , C + Z = 1 ?

Example:

cmpa #$25

bhi Higher ; Program control will be transferred to the
; instruction at label ‘Higher’ IF ACCA > $25,
; otherwise the instruction following bhi is
; executed

; If ACCA = $F3 = 243dec > $25 execution
; continues at ‘Higher’

ECED 3204. Microprocessors

Program Control Instructions

1. Conditional branches

(c) Comparison of signed numbers

bgt <label> ; Signed > , Z + (N ⊕⊕⊕⊕ V) = 0 ?

bge <label> ; Signed ≥≥≥≥ , N ⊕⊕⊕⊕ V = 0 ?

blt <label> ; Signed < , N ⊕⊕⊕⊕ V = 1 ?

ble <label> ; Signed ≤≤≤≤ , Z + (N ⊕⊕⊕⊕ V) = 1 ?

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto81

ble <label> ; Signed ≤≤≤≤ , Z + (N ⊕⊕⊕⊕ V) = 1 ?

Example:

cmpa #$25

bgt Greater ; Program control is transferred to the instruction
; at label ‘Greater’ IF the 2’s complement value in
; ACCA > $25, otherwise the instruction following
; bgt is executed

; If ACCA = $F3 = -13dec < $25 = 37dec execution
; continues with the instruction following bgt

ECED 3204. Microprocessors

Program Control Instructions

2. Unconditional branches

jmp <label or address> ; Jump always to a label / address
; in the 64KB address space

bra <label> ; Branch always to an address in the range
; [PC - 128dec , PC + 127dec]

3. Subroutine calls

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto82

jsr <label or address> ; Jump to a subroutine starting with
; a label / address anywhere in the
; 64KB address space

bsr <label> ; Branch to a subroutine starting with a label
; associated with an address in the range

; [PC - 128dec , PC + 127dec],

; PC is the address of the instruction following bsr

rts ; Return from subroutine

ECED 3204. Microprocessors

Stack Instructions

1. Saving contents of CPU registers

psha

pshb ; Storing register values to stack

pshx

pshy

2. Retrieving contents of CPU registers

M68HC11 Instruction Set

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto83

2. Retrieving contents of CPU registers

puly

pulx ; Restoring register values from stack

pulb

pula

ECED 3204. Microprocessors

Internal

CPU Registers
Description

BAR Bus Address Register – 16 bits

BDR Bus Data Register – 8 bits

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto84

IR Instruction Register – 8 bits

ATMP Temporal Address Register – 16 bits

DTMP Temporal Data Register – 16 bits

ECED 3204. Microprocessors

Cycle Code Description

FOP Fetch instruction Opcode

FOFF Fetch 8-bit address Offset

FAHI Fetch High half of 16-bit Address

FALO Fetch Low half of 16-bit Address

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto85

ODHI transfer High half of 16-bit Operand Data

ODLO transfer Low half of 16-bit Operand Data

OD transfer 8-bit Operand Data

CA Compute operand Address (uses ALU)

EXEC execute ("do" the instruction)

ECED 3204. Microprocessors

;
A

s
s

e
m

b
ly

 c
o

d
e

 fo
r C

y
c

le
-b

y

; E
x

e
c

u
tio

n
 s

ta
rts

 a
t $

D
5

0
0

 (R
e

s
e

t v
e

c
to

r is
 s

e
t to

 $
D

5
0

0
)

; In
s
tru

c
tio

n
s

; ************
o
rg

$
C

0
0
0

; In
s
tru

c
tio

n
 e

xe
c
u
tio

n
 is

 a
n
a
lyz

e
d
 fo

r

C
o
d
e

ld
a
a

D
a
ta

;

c
lrb

;

js
r

T
a
rg

e
t

;

o
rg

$
C

0
8
0

T
a
rg

e
t

in
c

2
,X

;

; D
a
ta

; ****
o
rg

$
D

0
0
0

D
a
ta

d
b

$
1
9

o
rg

$
D

4
0
0

L
is

t
d
s

2
d
b

$
3
9

; In
itia

liz
a
tio

n
; **************

o
rg

$
D

5
0
0

ld
s

#
S

T
K

_
T

O
P

ld
x

#
L
is

t
ld

a
b

#
$
5
F

jm
p

C
o
d
e

; S
ta

c
k
 A

re
a

; ***** ****
o
rg

$
D

F
F

F
S

T
K

_
T

O
P

e
n
d

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto86

b
y

-C
y
c

le
 E

x
e

c
u

tio
n

 e
x

a
m

p
le

E
x

e
c

u
tio

n
 s

ta
rts

 a
t $

D
5

0
0

 (R
e

s
e

t v
e

c
to

r is
 s

e
t to

 $
D

5
0

0
)

; In
s
tru

c
tio

n
 e

xe
c
u
tio

n
 is

 a
n
a
lyz

e
d
 fo

r

T
H

IS
,

T
H

IS
,

T
H

IS
, a

n
d

T
H

IS
 in

s
tru

c
tio

n

ECED 3204. Microprocessors

The 68HC11 Instruction Execution Cycle

- Perform a sequence of read cycles to fetch instruction opcode byte(s)
and address byte(s) if required.

- Optionally perform read cycle(s) required to fetch memory operand(s).

- Perform the operation specified by the opcode.

- Optionally write results back to a register or memory location(s).

Example: Consider the following 4 instructions

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto87

Example: Consider the following 4 instructions

Assembly instruction Memory location Machine Code

LDAA $D000 $C000 B6 D0 00

CLRB $C003 5F

JSR $C080 $C004 BD C0 80

INC 2,X $C080 6C 02

ECED 3204. Microprocessors

$B6

$D0

$00

Memory contents

Address

$C000

$C001

$C002
CPU

$C000

Address bus

Instruction LDAA $D000

Step 1. Place the value in PC on the address bus with a request to read the
contents of that location.

Step 2. The opcode byte $B6 at $C000 is returned to the CPU and PC is
incremented by 1.

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto88

$00

$5F

$BD

$C0

$80

$??
$??

Instruction 1 -- Opcode read cycle

Before After

PC PC

$C000 $C001

$C002

$C003

$C004

$C005

$C006

$C007

$C008

CPU

$B6

Data bus

ECED 3204. Microprocessors

Step 3. CPU performs two read cycles to obtain the extended address
$D000 from locations $C001 and $C002. At the end the value of PC is

incremented to $C003

Memory contents

Address

$C000

$C001

$C002

$C003
CPU

Address bus

$C001

Memory contents

Address

$C000

$C001

$C002

$C003CPU

Address bus

$C002$B6

$D0

$00

$5F

$B6

$D0

$00

$5F

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto89

Instruction 1 -- Read cycles for address bytes

Before After first read

PC PC
$C001 $C002

$C004

$C005

$C006

$C007

$C008

CPU

Data bus

$C004

$C005

$C006

$C007

$C008

CPU

Data bus

After second read

PC

$C003

$5F

$BD

$C0

$80

$??
$??

$BD

$C0

$80

$??
$??

$D0 $00

ECED 3204. Microprocessors

Memory contents

$19

CPU .

$D000

Address bus

$D000

Address

Step 4. The CPU performs another read to get the contents of the memory
location at $D000, which is $19. The value $19 will be loaded into ACCA.

i.e. ACCA ←←←← $19

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto90

Instruction 1 -- Operand read cycle

$00

CPU .
.
.

Data bus

$19

$DFFF

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto91

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto92

ECED 3204. Microprocessors

$B6

$D0

$00

Memory contents

Address

$C000

$C001

$C002
CPU

$C003

Address bus

Instruction CLRB

Step 1. Place the value in PC on the address bus with a request to read the
contents of that location.

Step 2. The opcode byte $5F at $C003 is returned to the CPU and PC is
incremented by 1.

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto93

$00

$5F

$BD

$C0

$80

$??
$??

Instruction 2 -- Opcode read cycle

Before After

PC PC

$C003 $C004

$C002

$C003

$C004

$C005

$C006

$C007

$C008

CPU

$5F

Data bus

ECED 3204. Microprocessors

Instruction 2, CLRB -- Execution

Step 3. Once decoded the corresponding action is taken, i.e. ACCB ← 0.

No operands are read in this Instruction, just a single OpCode byte.

Neither any memory location is written as result of the operation.

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto94

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto95

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto96

ECED 3204. Microprocessors

$B6

$D0

$00

Memory contents

Address

$C000

$C001

$C002
CPU

$C004

Address bus

Instruction JSR $C080

Step 1. Place the value in PC on the address bus with a request to read the
contents of that location.

Step 2. The opcode byte $BD at $C004 is returned to the CPU and PC is
incremented by 1.

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto97

$00

$5F

$BD

$C0

$80

$??
$??

Instruction 3 -- Opcode read cycle

Before After

PC PC

$C004 $C005

$C002

$C003

$C004

$C005

$C006

$C007

$C008

CPU

$BD

Data bus

ECED 3204. Microprocessors

Step 3. CPU performs two read cycles to obtain the extended jump address
$C080 from locations $C005 and $C006. At the end the value of PC
is incremented to $C007

Memory contents

Address

$C000

$C001

$C002

$C003CPU

Address bus

$C005

Memory contents

Address

$C000

$C001

$C002

$C003CPU

Address bus

$C006$B6

$D0

$00

$5F

$B6

$D0

$00

$5F

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto98

Instruction 3 -- Address byte read cycles

Before After first read

PC PC
$C005 $C006

$C004

$C005

$C006

$C007

$C008

CPU

Data bus

$C004

$C005

$C006

$C007

$C008

CPU

Data bus

After second read

PC

$C007

$5F

$BD

$C0

$80

$??
$??

$BD

$C0

$80

$??
$??

$C0 $80

ECED 3204. Microprocessors

Step 4. The CPU stores (pushes) the current value of the PC, or return
address $C007, onto the Stack. (Assume SP = $DFFF at the time)

Memory contents

Address

$DFFB

$DFFC

$DFFD

$DFFE

$DFFF

$E000

CPU

Address bus

$DFFF

Memory contents

CPU

Address bus

$DFFE$??

$??

$??

$??

$07

$??

$??

$??

$??

$C0

$07

$??

Address

$DFFB

$DFFC

$DFFD

$DFFE

$DFFF

$E000

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto99

Instruction 3 -- Execution

Step 5. The CPU assigns the PC the jump address, i.e. PC ← $C080, where
program execution continues by fetching an OpCode at that address.

Before After first write

SP SP

$DFFF $DFFE

$E000

$E001

$E002

$E003
Data bus

$07

Data bus

$C0

After second write

SP

$DFFD

$??

$??

$??
$??

$??

$??

$??
$??

$E000

$E001

$E002

$E003

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto100

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto101

ECED 3204. Microprocessors

Instruction INC 2,X

Address

$C07D

$C07E

$C07F

$C080

Memory contents

CPU

Address bus

$C080

Memory contents

CPU

Address bus

$C081$??

$??

$??

$6C

$??

$??

$??

$6C

Address

$C07D

$C07E

$C07F

$C080

Step 1. CPU fetches OpCode byte Step 2. CPU fetches offset byte

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto102

Instruction 4 -- Read cycles for Opcode & Offset

$C081

$C082

$C083

$C084

$C085

Before After first read

PC PC
$C080 $C081

CPU

Data bus

CPU

Data bus

After second read

PC

$C082

$6C

$02

$??

$??

$??
$??

$02

$??

$??

$??
$??

$C081

$C082

$C083

$C084

$C085

$6C $02

ECED 3204. Microprocessors

Instruction INC 2,X

Step 3. Effective operand address is computed using the ALU. Assuming IX = $D400:

Operand Address = IX + 2 = $D402

$??

$??

$??

$??

Memory contents

CPU

$D402

Address bus Address

$D3FE

$D3FF

$D400

$D401

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto103

Instruction 4 -- Computing operand address & operand read cycle

Step 4. The CPU puts out the effective address ($D402) of the operand to be
read and incremented next. Its value is returned in the data bus($39)

$??

$39

$??

$??

$??
$??

$39

Data bus

$D401

$D402

$D403

$D404

$D405

$D406

ECED 3204. Microprocessors

Instruction INC 2,X

Step 5. Executing the increment operation:

Result = $39 + 1 = $3A

$??

$??

$??

$??

Memory contents

Address

$D3FE

$D3FF

$D400

$D401CPU

Address bus

$D402

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto104

Instruction 4 -- Increment & write cycles

Step 6. Storing the result back to the memory address

$??

$3A

$??

$??

$??
$??

$D401

$D402

$D403

$D404

$D405

$D406

CPU

Data bus

$3A

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto105

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto106

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto107

ECED 3204. Microprocessors

When the chip is enabled, i.e.

E1 = E2 = 0 and E3 = 1:

A2 A1 A0 Activates Output

0 0 0 Y0

0 0 1 Y1

The 74HC138 Decoder

D
e
c
o

Y0

Y1

E3

E1

E2

Input
Enable

Pins Active-Low
Output

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto108

0 1 0 Y2

0 1 1 Y3

1 0 0 Y4

1 0 1 Y5

1 1 0 Y6

1 1 1 Y7

c
o
d
e
r Y7

A0

A2

A1

Address
Select

Input Pins

Output
Pins

ECED 3204. Microprocessors

CPU

Data
Bus

A0
A1

A12
A13

A15

D0
D1

D7

Memory

Module

8K x 8
RAM

A0
A1

A12

D0
D1

D7

E-Clk

R/W

(D0 - D7)

W

OE (G)

Address Decoding Example (EVB case)

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto109

A15

Address Bus (A0 - A12)

To Another
Memory
Module

D
e
c
o
d
e
r

Y0

Y7

Y1

A0

A2

A1

E3

E1

E2

CS

OE (G)

CS (E1)

ECED 3204. Microprocessors

• Lines A12 - A0 are used to address the 8K = 213 locations in the module

• Lines A15-A13 specify location of memory module in the address space

A15-A12 Active

Min – Max A15 14 13 12 11 10 9 8 1 0 Address Range Pin

0000 – 0001 0 0 0 x x x x x x x $0000 – $1FFF Y0

0010 – 0011 0 0 1 x x x x x x x $2000 – $3FFF Y1

Memory Module Allocation using the Decoder

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto110

0010 – 0011 0 0 1 x x x x x x x $2000 – $3FFF Y1

0100 – 0101 0 1 0 x x x x x x x $4000 – $5FFF Y2

0110 – 0111 0 1 1 x x x x x x x $6000 – $7FFF Y3

1000 – 1001 1 0 0 x x x x x x x $8000 – $9FFF Y4

1010 – 1011 1 0 1 x x x x x x x $A000 – $BFFF Y5

1100 – 1101 1 1 0 x x x x x x x $C000 – $DFFF Y6

1110 – 1111 1 1 1 x x x x x x x $E000 – $FFFF Y7

Note: 8 memory modules 8K each could be allocated

in the 64K address space

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto111

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto112

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto113

ECED 3204. Microprocessors

Decoding and AD0-7 Demultiplexing in the EVB

A12
A13

AD0
AD1

AD7

Memory

Module

8K x 8
RAM

A0
A1

D0
D
1

D7

A8

MCU

A8 - A12

AS

74HC373

LE

OE

Latch A0 - A7

A0 - A12

Switch Closes
when E is High

+5V

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto114

A13

A15

AD7

RAM
A12

D7

E-Clk

To EPROM
Module

R/W

D
e
c
o
d
e
r

Y0

Y7

Y1

A0

A2

A1

E3

E1

E2

W

CS

68HC11

74HC138

$E000 -
$FFFF

$C000 - $DFFF

G (OE)

E1 (CS)

when E is High
+5V

ECED 3204. Microprocessors

EVB Schematic Diagram (Sheet 1)

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto115

ECED 3204. Microprocessors

EVB Schematic Diagram (Sheet 2, Part 1)

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto116

ECED 3204. Microprocessors

EVB Schematic Diagram (Sheet 2, Part 2)

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto117

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto118

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto119

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto120

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto121

ECED 3204. Microprocessors

1. Identify the Cycle Type

a) EPROM Read,

b) RAM Read, OR

c) RAM Write.

2. Find the Chip driving the AD7-0 lines

Drawing a Timing Diagram

M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto122

a) Address phase : HC11,

b) Data phase : HC11, EPROM OR RAM.

3. Include hex values for each bus

i.e. • A15 – A8 ,

• AD7 – AD0 , AND

• The 373 Latch Output (A7 – A0).

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto123

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto124

ECED 3204. Microprocessors M68HC11 Microcontroller

Dalhousie University Jose A. Gonzalez-Cueto125

ECED 3204. Microprocessors

Definitions

Asynchronous Serial Comm

CPU
UART
(Async
Serial
I/O)

Clock

Data
Bus

Address Lines

TxD line

RxD line
?

Dalhousie University Jose A. Gonzalez-Cueto126

• Asynchronous: There is no clock to establish a time reference

• Serial: Data is carried over the channel one bit at a time,

not in parallel as over the Data Bus with the CPU

Asynchronous
Serial

Communication

ECED 3204. Microprocessors

Parallel-to-Serial Conversion

UART .- Transmitter Unit

Data BusD7 D6 D5 D0D4 D3 D2 D1

<BYTE FROM CPU>

TRANSMIT HOLDING
REGISTER

SHIFT
ENABLE

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto127

REGISTER

TRANSMIT SHIFT REGISTER

TO CHANNEL

SHIFT CLOCK (∗)

(Line Speed, e.g.

9600 baud)

(START)

(∗) Also known as the BAUD RATE CLOCK

01

S
T
A

R
T

S
T

O
P

ECED 3204. Microprocessors

Serial-to-Parallel Conversion

UART .- Receiver Unit

Data Bus
D7 D6 D5 D0D4 D3 D2 D1

<BYTE TO CPU>

RECEIVE HOLDING
REGISTER

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto128

REGISTER

RECEIVE SHIFT REGISTER

FROM CHANNEL

SHIFT CLOCK (∗)

(Line Speed, e.g.

9600 baud)

(∗) Also known as the BAUD RATE CLOCK
S

T
A

R
T

S
T

O
P

ECED 3204. Microprocessors

A data communication system

DTE DTEDCE DCE

COMPUTER
or TERMINAL

MODEM MODEM

Comm Link

COMPUTER
or TERMINAL

LOCAL REMOTE

RS-232 RS-232

RS-232 Standard Establishes

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto129

RS-232 Standard Establishes

• Electrical,

• Mechanical,

• Functional, and

• Procedural Specifications

for the communication interface between

A Computer (or DTE (1)) and a Modem (or DCE (2)).

(1) Data Terminal Equipment, (2) Data Communication Equipment

ECED 3204. Microprocessors

Name Address Description

BAUD $102B Sets Line Speed (Baud Rate)

SCCR1 $102C Control Register 1

SCCR2 $102D Control Register 2

SCI Unit Registers

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto130

SCSR $102E Status Register

SCDR $102F Data Register (for both rx & tx)

ECED 3204. Microprocessors

BAUD Register

T∗$102B T∗

B5 B4 B2

0

B1 B0

∗ T - Used only in test mode

SCR0

SCR1

SCR2

Rate
Select
Bits

SCP0

SCP1

Prescaler
Select
Bits

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto131

∗ T - Used only in test mode

SCP1 SCP0
Division
Factor

Prescaler
Output

Highest Baud Rate
(Prescaler Output / 16)

0 0 1 2 MHz 125,000 Baud

0 1 3 2/3 MHz 41,667 Baud

1 0 4 0.5 MHz 31,250 Baud

1 1 13 2/13 MHz ≈≈≈≈ 9,600 Baud

For an E-clock frequency = 2MHz

ECED 3204. Microprocessors

BAUD Register (Continued)

SCR2 SCR1 SCR0
Division
Factor

 Selected Baud Rate

0 0 0 1 9,600 Baud

0 0 1 2 4,800 Baud

0 1 0 4 2,400 Baud

For a Highest Baud Rate of 9,600 Baud (SCP1 = SCP0 = 1)

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto132

0 1 0 4 2,400 Baud

0 1 1 8 1,200 Baud

1 0 0 16 600 Baud

1 0 1 32 300 Baud

1 1 0 64 150 Baud

1 1 1 128 75 Baud

ECED 3204. Microprocessors

BAUD Register (Continued)

Example: Write a program segment in assembler to set the SCI
unit baud rate equal to 2400 baud.

From previous tables we need

B5 B4 = 1 1, and

B2 B1 B0 = 0 1 0

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto133

B2 B1 B0 = 0 1 0

BAUD equ $102B ; Register address

BAUD2400 equ %00110010 ; Control byte

ldaa #BAUD2400
staa BAUD ; Setting line speed to 2400 baud

ECED 3204. Microprocessors

SCCR1 Register

• M = 0, SCI rx & tx 8-bit data frames (Only SCDR is needed)

Wk$102C

B7 B6 B4

0

Mode (Selects char format)

0 0 0

Transmit Data Bit 8

Receive Data Bit 8

R8 T8 M

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto134

• M = 1, SCI rx & tx 9-bit data frames

– In this case data bit B8 is transferred through

. T8 during tx, and

. R8 during rx.

Frame Length
The SCI unit always uses

• 1 Start Bit, 8 or 9 Data Bits, and 1 Stop Bit = 10 or 11 bits/frame total

ECED 3204. Microprocessors

SCDR Register

$102F

B7 B6 B5

R7
T7

R6
T6

R5
T5

R4
T4

R3
T3

R2
T2

R1
T1

R0
T0

B4 B3 B2 B1 B0

(Receive and transmit double buffered)

Examples:

A) When the SCI unit has received new data and it is available for the

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto135

A) When the SCI unit has received new data and it is available for the
CPU to read it (i.e., RDRF condition)

ldaa $102F ; Brings the new data byte held by the SCDR
; Rx buffer (RDR) into the CPU ACCA register

B) When the SCI unit is ready to accept a new byte from the CPU for
transmission (i.e., TDRE condition)

staa $102F ; Sends the data byte in ACCA to the SCI unit
; SCDR Tx buffer (TDR) for transmission

ECED 3204. Microprocessors

SCCR2 Register

$102D

B7 B6 B4B5 B3 B2

RE - Receive Enable

TE - Transmit Enable

ILIE - Idle Line Interrupt Enable

RIE - Receive Interrupt Enable

TCIE - Transmit Complete Interrupt Enable

TIE - Transmit Interrupt Enable
Example:

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto136

Example:

A) Enable the SCI unit for reception only (i.e., need to set the RE bit)

; Address

SCCR2 equ $102D

;Constant

RE equ $04

;Instructions

ldaa #RE ; Load ACCA with control byte

staa SCCR2 ; Enables SCI for reception

ECED 3204. Microprocessors

S
C

I T
ra

n
s

m
itte

r B
lo

c
k

 D
ia

g
ra

m

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto137

S
C

I T
ra

n
s

m
itte

r B
lo

c
k

 D
ia

g
ra

m

ECED 3204. Microprocessors

S
C

I R
e

c
e

iv
e

r B
lo

c
k

 D
ia

g
ra

m

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto138

S
C

I R
e

c
e

iv
e

r B
lo

c
k

 D
ia

g
ra

m

ECED 3204. Microprocessors

SCSR Register

$102E

B7 B6 B4B5 B3 B2

FE - Framing Error Flag

OR - Over-Run Error Flag

IDLE - Idle Line Detect Flag

NF - Noise Error Flag

B1

0

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto139

IDLE - Idle Line Detect Flag

RDRF - Receive Data Register Full Flag

TC - Transmit Complete Flag

TDRE - Transmit Data Register Empty Flag

ECED 3204. Microprocessors

TDRE Flag
SET ⇒ the SCI tx unit is ready to accept a new char from the CPU

CLEAR ⇒ the TDR is still full,
the SCI unit needs time to transmit and avoid Over-Run

Example: Check whether the CPU can send a new char to the SCI
without overwriting the last one sent

; Address Definitions

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto140

; Address Definitions

SCSR equ $102E ; Status register address

; Constant Definitions

TDRE equ $80 ; Mask for TDRE flag in SCSR

; Instructions

ldab SCSR ; ACCB ← SCSR

andb #TDRE ; Is the TDRE flag SET?

bne SendChar ; If YES goto send next char

ECED 3204. Microprocessors

RDRF Flag
SET ⇒ the SCI rx unit has a new char ready for the CPU to read

CLEAR ⇒ the RDR is empty, no char is available to be read from SCI

Example: Check whether a new char is ready at the SCI for the
CPU to pick up

; Address Definitions

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto141

; Address Definitions

SCSR equ $102E ; Status register address

; Constant Definitions

RDRF equ $20 ; Mask for RDRF flag in SCSR

; Instructions

ldab SCSR ; ACCB ← SCSR

andb #RDRF ; Is the RDRF flag SET?

bne ReadChar ; If YES goto read next char

ECED 3204. Microprocessors

1.- Enable the SCI tx: Making TE = 1 Example: ldaa SCCR2
oraa #$08
staa SCCR2

2.- Read SCSR (hardware requisite) ldab SCSR

3.- Write data to be tx to the SCDR Example: ldaa Data
staa SCDR

Polling Method .- Transmission

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto142

staa SCDR

Sending a stream of chars

4.- Check SCSR until the TDRE flag is Set

5.- When TDRE = ‘1’, next char is written to SCDR

6.- Back to Step 3, cycle repeats until last char is sent to SCI for tx.

ECED 3204. Microprocessors

1.- Enable the SCI rx: Making RE = 1 Example: ldaa SCCR2
oraa #$04
staa SCCR2

2.- Check SCSR periodically until the RDRF flag is Set

3.- When RDRF = ‘1’, next char is read from SCDR, e.g. ldaa SCDR

Polling Method .- Reception

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto143

4.- Some processing is done if required

5.- Back to Step 2, cycle repeats forever or until reception is finished.

ECED 3204. Microprocessors Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto144

ECED 3204. Microprocessors

Directing SCI RxD pin PD0 to the
MCU I/O port connector

; Address Definitions

FFLOP equ $5000 ; A decode address for the FlipFlop

; Constant Definitions

Byte2Write equ $00 ; Bit 0 must be clear, B0 = 0

; Instructions

ldaa #Byte2Write ; ACCA ← 0, clra is an alternative

staa FFLOP ; Switches PD0 to Target System

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto145

Directing SCI RxD pin PD0 to the RS-232 compatible
Host Computer I/O port

; Constant Definitions

Byte2Write equ $0F ; Bit 0 must be set, B0 = 1

; Instructions

ldaa #Byte2Write ; ACCA ← $0F

staa FFLOP ; Switches PD0 to Host Comp I/O port
; to communicate over an RS-232
; protocol (with the PC in our case)

ECED 3204. Microprocessors

MC6850 (ACIA) Register Selection

Register Select
Input (RS)

R/W
Register
Selected

1 0
Tx Data

Register (TDR)

Rx Data

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto146

1 1
Rx Data

Register (RDR)

0 0
Control Register

(CR)

0 1
Status Register

(SR)

ECED 3204. Microprocessors

Bibliography for Interrupts & the SCI unit

Textbook

- Section 2.1.3

- Section 2.2.2

- Section 2.3.1

- Section 3.9

- Sections 4.2.2, 4.2.3 & 4.3

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto147

- Sections 4.2.2, 4.2.3 & 4.3

HC11 Reference Manual (Pink Book)

- Section 5.5 Interrupt Process

- Section 9.5.2 Interrupts & Status Flags (SCI tx)

- Section 9.6.4 Receive Status Flags & Interrupts

ECED 3204. Microprocessors

Interrupt Acknowledgement Procedure

1. Main program execution is suspended

2. Program state is saved to the stack

3. PC ← Interrupt Vector of highest priority interrupt pending

• Execution continues at this address

4. ISR is concluded with an RTI instruction

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto148

4. ISR is concluded with an RTI instruction

• Program state, ie. all CPU registers are restored

• PC ← Return Address,

where execution of main program resumes

ECED 3204. Microprocessors

Example of SCI Interrupt Service Routine (ISR)

; Address Definitions

SCSR equ $102E ; Status register address

SCDR equ $102F ; Data register address

; Constant Definitions

RDRF equ $20 ; Mask for RDRF flag in SCSR

; Instructions

SCI_isr ldaa SCSR ; ACCA ← SCSR (SCI status)

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto149

SCI_isr ldaa SCSR ; ACCA ← SCSR (SCI status)

bita #RDRF ; Is there a new available char?

bne SCI_rx_isr ; If YES goto service rx

SCI_rx_isr ldaa SCDR ; Read available char from SCI

rti ; Return from ISR

Check / service causes other than
RDRF, or just branch to rti at the end

Service reception

ECED 3204. Microprocessors

In
te

rru
p

t V
e

c
to

r J
u

m
p

 T
a

b
le

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto150

In
te

rru
p

t V
e

c
to

r J
u

m
p

 T
a

b
le

ECED 3204. Microprocessors

Example of EVB Jump Table Update for SCI

; Address Definitions

SCI_JMPTBL1 equ $00C4 ; JMP OpCode Address in Table for SCI

SCI_JMPTBL2 equ $00C5 ; Start of Jump Address in Table for SCI

; Constant Definitions

JMPOpCode equ $7E ; OpCode for JMP instruction

; Instructions

ldaa #JMPOpCode ; ACCA ← JMP OpCode

Asynchronous Serial Comm

Dalhousie University Jose A. Gonzalez-Cueto151

ldaa #JMPOpCode ; ACCA ← JMP OpCode

staa SCI_JMPTBL1 ; Storing OpCode to table

ldx #$C400 ; IX ← SCI ISR address

stx SCI_JMPTBL2 ; Storing Jump Address to table

aorg $C400 ; Code to follow loaded at $C400

SCI_isr <1st Instruction of SCI ISR>

Other initialization instructions

ECED 3204. Microprocessors M68HC11 Timer System

Timer System Functions & Port A Pins

OC1

OC2

OC3

OC4

HC11

TIMER

P
O
R

PA7

PA6

PA5

PA4

Dalhousie University Jose A. Gonzalez-Cueto152

OC5

IC1

IC2

IC3

TIMER

SYSTEM

R
T

A

PA3

PA2

PA1

PA0

ECED 3204. Microprocessors

M
a

in
 T

im
e

r S
y
s

te
m

 B
lo

c
k

 D
ia

g
ra

m

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto153

M
a

in
 T

im
e

r S
y
s

te
m

 B
lo

c
k

 D
ia

g
ra

m

ECED 3204. Microprocessors M68HC11 Timer System

Selecting the Free-running Counter Frequency
(for an E-clock freq = 2 MHz)

PR1 PR0
Prescale
Factor

Counter
Updates Every

Counter
Clock Freq

0 0 1 500 ns 2 MHz

Dalhousie University Jose A. Gonzalez-Cueto154

0 1 4 2 µs 0.5 MHz

1 0 8 4 µs 250 KHz

1 1 16 8 µs 125 KHz

ECED 3204. Microprocessors

Example:

Clearing OC3F

OC3F equ %00100000

TFLG1 equ $1023

Flag Register TFLG1

$1023

B7 B6 B4B5 B3 B2

IC3F

IC1F

IC2F

B1 B0

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto155

TFLG1 equ $1023

ldaa #OC3F

staa TFLG1

IC1F

OC5F

OC4F

OC3F

OC2F

OC1F

ECED 3204. Microprocessors

Example .- Updating TOC2 for a 1.5ms interval
(Counter clock = 2MHz)

TCNT equ $100E ; Address of TCNT register
TOC2 equ $1018 ; Address of TOC2 register
Increment equ !3000 ; Increment in decimal

ldd TCNT
addd #Increment
std TOC2

Initialization
(1st time)

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto156

std TOC2

ldd TOC2
addd #Increment
std TOC2 ; Hardware detail:

; When TOC2HI is written
; compares are suspended
; for 1 E-clock cycle

(1st time)

Part of ISR
or

Successful
Polling

ECED 3204. Microprocessors

Controlling Port A Pin State

M68HC11 Timer System

OM OL Action Taken

$1020

B7 B6 B5 B4 B3 B2 B1 B0

RESET =

OM2 OL2

Timer Control Register 1 (TCTL1)

OM3 OL3 OM4 OL4 OM5 OL5

0 0 0 0 0 0 0 0

Example:

Dalhousie University Jose A. Gonzalez-Cueto157

OMX OLX Action Taken

0 0
None

(Disconnected)

0 1 Toggle OCX line

1 0
Clear OCX line

(logic ‘0’)

1 1
Set OCX line

(logic ‘1’)

Example:

Setting PA5 to toggle on each

successful compare with TOC3

CTLBYTE equ %00010000

TCTL1 equ $1020

ldaa #CTLBYTE

staa TCTL1

ECED 3204. Microprocessors

Local IC/OC Timer Interrupt Masks

M68HC11 Timer System

Interrupt Enable Register 1 (TMSK1)

Example:

$1022

B7 B6 B5 B4 B3 B2 B1 B0

RESET =

OC1I

0 0 0 0 0 0 0 0

OC2I OC3I OC4I OC5I IC1I IC2I IC3I

When ‘0’ = Interrupt Inhibited

Dalhousie University Jose A. Gonzalez-Cueto158

Example:

Enabling Interrupts from TOC4

OC4I equ %00010000

TMSK1 equ $1022

ldaa TMSK1

oraa #OC4I

staa TMSK1

When ‘0’ = Interrupt Inhibited

‘1’ = Interrupt Enabled

ECED 3204. Microprocessors

Selecting Port A Triggering Event

M68HC11 Timer System

EDGXB EDGXA Configuration

0 0 Capture Disabled

$1021

B7 B6 B5 B4 B3 B2 B1 B0

0 0

Timer Control Register 2 (TCTL2)

EDG3A

EDG2A

EDG3B

Dalhousie University Jose A. Gonzalez-Cueto159

0 0 Capture Disabled

0 1
Capture on Rising

Edges Only

1 0
Capture on Falling

Edges Only

1 1
Capture on Any
Edge (Rising or

Falling)

EDG2A

EDG2B

EDG1A

EDG1B

ECED 3204. Microprocessors

Example .- Period Measurement using TIC3 (PA0)

TIC3 equ $1014
TCTL2 equ $1021
CTLBYTE equ %00000001 ; Rising edge

ldaa # CTLBYTE
staa TCTL2

ldd TIC3

Initialization

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto160

ldd TIC3
subd PreviousReading ; Period = TICnew - TICold

std Period

ldd TIC3
std PreviousReading ; Update TICold

<clear IC3F>

PreviousReading ds 2 ; TICold

Period ds 2 ; Current period

Part of ISR
or

Successful
Polling

ECED 3204. Microprocessors

Example .- Pulse Width Measurement using TIC3 (PA0)

CTLBYTE1 equ %00000001; Rising edge
CTLBYTE2 equ %00000010; Falling edge

ldaa # CTLBYTE1
staa TCTL2

< EdgeFlag ←←←← Rising >
Initialization

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto161

- If EdgeFlag == Rising ?
ldd TIC3

std FirstEdge

< EdgeFlag ←←←← Falling >
ldaa #CTLBYTE2 ; Enable falling

staa TCTL2 ; edge detection

Part of ISR
or

Successful
Polling

ECED 3204. Microprocessors

Example .- Pulse Width Measurement (cont’d)

- If EdgeFlag == Falling ?
ldd TIC3

subd FirstEdge
std PWidth

< EdgeFlag ←←←← Rising >
ldaa #CTLBYTE1 ; Enable rising

staa

Part of ISR
or

Successful
Polling

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto162

staa TCTL2 ; edge detection

FirstEdge ds 2
PWidth ds 2
EdgeFlag ds 1

ECED 3204. Microprocessors

Using IC Timer Interrupts:

1) Set the EVB jump vector for the corresponding IC function

2) Enable TIC Function in TCTL2

3) Enable local interrupt mask ICxI

4) Enable global interrupt mask (I-flag in CCR)

Example:

Enabling interrupts from TIC3 (Step 3 above)

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto163

Enabling interrupts from TIC3 (Step 3 above)

TMSK1 equ $1022 ; Address of TMSK1 register
IC3I equ %00000001 ; IC3I Mask

ldaa TMSK1
oraa #IC3I
staa TMSK1

Part of
Initialization

ECED 3204. Microprocessors

Example .- Generating a 1 sec Delay with TOCx

M68HC11 Timer System

1. Delay interval is triggered (1st time):

ldaa #!30
staa Counter

ldd TOCx

addd #!33920
std TOCx

bra Return

Counter
Initialization

TOCx

Initialization
OCx successful compare
is triggering the interval

Dalhousie University Jose A. Gonzalez-Cueto164

2. With every SUCCESSFUL COMPARE (after 1st time above):

dec Counter ; Decrement Counter

bmi ExecTask ; Check if Counter < 0
bra Return ; If NOT keep decrementing it

ExecTask jsr ProcessX ; If YES take action
<Deactivate TOCx interrupt> ; for a One-time Task

Return <clear OCxF>
rti

ECED 3204. Microprocessors

Example .- Generating a 2 sec Square Wave in PA6 (TOC2)

TOC2_isr ldaa Counter
bne CountDown

ldaa #!30
staa Counter

ldd TOC2
addd #!33920
std TOC2

ldaa TCTL1
anda #%00111111

If Counter is 0,
Initialize TOC2
& Counter

Counter
Initialization

Update
TOC2

Disconnect TOC2
from output pin

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto165

anda #%00111111
staa TCTL1

bra Return

CountDown dec Counter
bne Return

ldaa TCTL1
oraa %01000000
staa TCTL1

Return < clear OC2F >
rti

from output pin
logic (PA6)

When Counter reaches 0,
set PA6 line to toggle its
value with next TOC2
successful compare

ECED 3204. Microprocessors

Example .- Generating a 2 sec Square Wave (cont’d)

TOC2_init (1) < Counter ←←←← 0 >

(2) Set PA6 logic to toggle its value with the next
TOC2 successful compare

(3) Set up TOC2 interrupt vector (e.g. EVB jump
table)

(4) Clear OC2F

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto166

(4) Clear OC2F

(5) Enable TOC2 interrupts
i.e. OC2I ←←←← 1

ECED 3204. Microprocessors

Measuring Long Periods

M68HC11 Timer System

TIC_isr « Find & Save: TIC∆∆∆∆ = TICnew − TICold »

« If TIC∆∆∆∆ < 0, Counter ← Counter − 1 »

« If TICnew < 5000d

« read TOF »

« If TOF is SET,

inc Counter

IncFlag ← 0 » »

« Save Counter » ; Preparing for measuring

Detecting & Solving
a Missed Overflow

- Assuming 5000 E-clk cycles
(PR0 = PR1 = 0) are sufficient
to have OF serviced before IC.
- Avoids wrong correction when
TICnew < $FFFF but close to it.

Dalhousie University Jose A. Gonzalez-Cueto167

« Save Counter » ; Preparing for measuring
clr Counter ; next period

« clear ICxF flag » ; Acknowledge interrupt service

rti

OF_isr « If IncFlag is SET,
inc Counter »

« IncFlag ← 1 »

« clear TOF flag » ; Acknowledge interrupt service

rti

ECED 3204. Microprocessors

Solving a Missed Overflow (Alternative −−−− No IncFlag)

TIC_isr « Find & Save: TIC∆∆∆∆ = TICnew − TICold »
« If TIC∆∆∆∆ < 0, Counter ← Counter − 1 »

« If TICnew < 5000d

« read TOF »
« If TOF is SET,

inc Counter

Save Counter ; Preparing for measuring
Counter ←←←← $FF ; next period if OF missed

else

Detecting & Solving
a Missed Overflow

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto168

else
Save Counter ; Preparing for measuring
Counter ←←←← $00 » ; next period if OF serviced

else Save Counter, Counter ← $00 »

« clear ICxF flag » ; Acknowledge interrupt service
rti

OF_isr incCounter
« clear TOF flag » ; Acknowledge interrupt service
rti

ECED 3204. Microprocessors

H
e

x
 to

 A
C

D
 (A

S
C

II
•

H
to

D
 S

u
b

ro
u

tin
e

M68HC11 Timer System

Dalhousie University Jose A. Gonzalez-Cueto169

H
e

x
 to

 A
C

D
 (A

S
C

II-c
o

d
e

d
 d

e
c

im
a

l)
H

to
D

 S
u

b
ro

u
tin

e
 -

E
x

a
m

p
le

ECED 3204. Microprocessors

Parallel PORTB Control of a
Two Digit Common-Anode 7-Segment LED Display

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto170

ECED 3204. Microprocessors

M
C

6
8

H
C

1
1

 B
lo

c
k

 D
ia

g
ra

m

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto171

M
C

6
8

H
C

1
1

 B
lo

c
k

 D
ia

g
ra

m

ECED 3204. Microprocessors

I/O Transfer Synchronization

The role of an I/O interface unit

1. Synchronizing data transfer between CPU and I/O interface unit.

2. Synchronizing data transfer between I/O interface and I/O device.

Control

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto172

Handshake

or Strobe

Signals

Microprocessor
CPU

Control
signals

(R/W or

interrupt)

I/O
Interface

I/O device

Data Bus

D
a
ta

B

u
s

ECED 3204. Microprocessors

Synchronizing the Microprocessor CPU and the I/O Interface Unit

The polling method

1. for input -- the CPU checks a status bit of the interface unit to find out if the

interface unit has received new data from the input device.

2. for output -- the CPU checks a status bit of the interface unit to find out if it

can send new data to the interface unit.

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto173

The interrupt-driven method

1. for input -- the interface unit interrupts the CPU whenever it has received

new data from the input device.

2. for output -- the interface unit interrupts the CPU whenever it can accept

new data from the CPU.

ECED 3204. Microprocessors

Synchronizing the I/O Interface Unit and I/O Devices

Brute-force method -- useful when the data timing is unimportant

1. for input -- nothing special is done. The CPU reads the interface unit and the

interface unit returns the voltage levels on the input port pins to the CPU.

2. for output -- nothing special is done. The interface unit places the data that it

received from the CPU directly on the output port pins.

The strobe method -- a strobe signal is used to indicate that data are stable on

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto174

The strobe method -- a strobe signal is used to indicate that data are stable on
I/O port pins

1. for input -- the interface unit latches the data into its data register using the

strobe signal.

2. for output -- a) the interface unit places the data received from the CPU on

the output port pins and asserts the strobe signal.

b) the output device latches the data using this strobe signal.

ECED 3204. Microprocessors

Synchronizing the Interface Unit and I/O Devices (cont’d)

The handshake method -- used when timing is crucial

• For input and output,

- Two handshake signals are used to synchronize the data transfer:

1. One signal, call it H1, is asserted by the interface unit.

2. The other signal, call it H2, is asserted by the I/O device.

• Two handshake modes are available -- pulse mode and interlocked mode.

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto175

• Two handshake modes are available -- pulse mode and interlocked mode.

ECED 3204. Microprocessors

Input Handshake Protocol

Step 1. The interface unit asserts (or pulses) H1 to indicate its intention to input data.

Step 2. The input device puts data on the data port pins and also asserts (or pulses) the

handshake signal H2.

Step 3. The interface unit latches the data and de-asserts H1.

After some delay, the input device also de-asserts H2.

Valid Data

H1

Data

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto176

Valid DataData

H2

(a) Interlocked

H1

H2

Data Valid Data

(b) Pulse mode

ECED 3204. Microprocessors

Output Handshake Protocol

Step 1. The interface unit places data on the port pins and asserts (or pulses) H1 to

indicate that it has valid data to be output.

Step 2. The output device latches the data and asserts (or pulses) H2 to acknowledge

the receipt of data.

Step 3. The interface unit de-asserts H1 following the assertion of H2. The output device

then de-asserts H2.

Valid Data

H1

Data

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto177

Valid Data

(a) Interlocked
H2

Data

Valid Data

(b) Pulse Mode

H1

H2

Data

ECED 3204. Microprocessors

Parallel I/O Control Register (PIOC)
- All strobed mode I/O and handshake I/O are controlled by this register

STAF: Strobe A flag

This bit is set when a selected edge occurs on the STRA signal.

STAI: Strobe A interrupt enable
When STAF = STAI = ‘1’, an interrupt is requested to the CPU.

CWOM: Port C wired-or mode.

7 6 5 4 3 2 1 0

STAF STAI CWOM HNDS OIN PLS EGA INVB

Upon RESET 0 0 0 0 0 U 1 1

$1002

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto178

CWOM: Port C wired-or mode.
0: All port C outputs are normal CMOS outputs.
1: All port C outputs act as open-drain outputs.

HNDS: Handshake/simple strobe mode select
0: simple strobe mode
1: handshake mode

OIN: Output/input handshake
0: input handshake
1: output handshake

PLS: Pulse/interlocked handshake operation
0: interlocked handshake selected
1: pulse handshake selected

EGA: Active edge for STRA
0: falling edge
1: rising edge

INVB: Invert STRB
0: STRB active low
1: STRB active high

ECED 3204. Microprocessors

Simple Strobe I/O Mode

- Selected when HNDS = ‘0’ (default upon RESET)

- Port C becomes the strobe input port.

- STRA active edge latches the values of port C pins into PORTCL reg.

tIH
tIS

STRA
(VALID DATA - Rising Edge)

from Device

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto179

tIS
PORTC

t IS: input setup time (60 ns at 2 MHz)

t IH : input hold time (100 ns at 2 MHz)

Port C strobed input timing

ECED 3204. Microprocessors

Simple Strobe Mode - Input (Port C)

- Bit 1 of the PIOC register (EGA) selects the active edge of the STRA pin.

- Reading PORTC register returns the current values on Port C pins.

- Reading PORTCL register returns Port C values latched with last STRA

active edge.

- When enabled (STAI = ‘1’), the active edge of the STRA signal will request

an interrupt to the CPU.

- The STRA interrupt vector is at $FFF2:FFF3 (same as for IRQ pin).

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto180

- The STRA interrupt vector is at $FFF2:FFF3 (same as for IRQ pin).

- STAF clearing sequence:

1. Read PIOC register.

2. Read PORTCL register.

ECED 3204. Microprocessors

Simple Strobe Mode - Output (Port B)

The strobe signal STRB is pulsed for two E clock cycles each time there is a

write to port B.

CPU write
to PORT B

E
t

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto181

tPWD: peripheral data write delay time

tDEB : E fall to STRB valid delay time

Port B strobed output timing

tDEB

Port B

STRB

previous port data new port data

for 2 E cycles

tPWD

(VALID DATA)
from
HC11
port

(Active High)

ECED 3204. Microprocessors

Port C Interlocked Input Handshake Protocol

Read
PORTCL

E

STRB "READY" "READY"(ACK* - Active High)

from HC11 Port to Device

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto182

STRA

PORTC

(VALID DATA - Rising Edge)
from Device to HC11 Port

* ACK - Acknowledge line / signal

ECED 3204. Microprocessors

Port C Input Handshake Protocol

- STRA is a valid data latch command asserted by the input device (active
edge is rising in previous figure).

- STRB is an acknowledge/ready output driven by the 68HC11 (active high in
figure).

- When ready for accepting new data, the HC11 asserts (or pulses) STRB pin.

- The input device places data on port C pins and asserts the STRA signal.

1) The active edge of STRA latches data into the PORTCL register,

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto183

1) The active edge of STRA latches data into the PORTCL register,

2) Sets the STAF flag in PIOC register, and

3) De-asserts the STRB signal.

• The de-assertion of STRB inhibits the external device from strobing new
data into port C.

• New data can be applied on port C pins once the CPU reads PORTCL.

- STAF clearing sequence:

1. Read PIOC register.

2. Read PORTCL register.

ECED 3204. Microprocessors

Port C Interlocked Output Handshake Protocol

tPWD

tDEB
tDEB

WRITE

PORTCL

E

PORT C new port dataprevious data

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto184

t PWD : Peripheral data write delay time, 150 ns max (at 2 MHz)
t DEB : E fall to STRB delay, 225 ns (at 2 MHz)
t AES : STRA asserted to E fall setup time, 0 ns (at 2 MHz)

tAES

DATA READYSTRB

STRA

(VALID DATA - Active High)

from HC11 Port to Device

(ACK - Active High)

from Device to HC11 Port

ECED 3204. Microprocessors

Port C Output Handshake Protocol

- STRA is an acknowledge input (driven by the external device)

- STRB is a valid data or data ready output (driven by the 68HC11)

- In the figure, STRA activates with rising edge and STRB is active high.

Protocol sequence:

(a) The 68HC11 writes data into PORTCL and then asserts STRB to indicate

that there are valid data on port C pins.

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto185

that there are valid data on port C pins.

(b) The external device then asserts STRA to acknowledge the receipt of

data which will then cause STRB to be de-asserted and the STAF flag to be

set.

(c) After the de-assertion of STRB, STRA is also de-asserted.

- STAF clearing sequence:

1. Read PIOC register.

2. Write PORTCL register.

ECED 3204. Microprocessors

Code Example using Simple Strobe I/O

; Addresses

PIOC equ $1002 ; Address for the Parallel I/O Control register
PORTB equ $1004 ; Address for Port B data register
PORTCL equ $1005 ; Address for Port C Latched data register

; Constants

BITMASK equ $80 ; Bit mask for STAF flag in PIOC register

; Program Code

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto186

; Program Code

org $C000 ; To be loaded at $C000

ldaa #BITMASK ; ACCA ← STAF bit mask
loop bita PIOC ; Is STAF Set?

beq loop ; If NOT loop back & wait until it is
ldab PORTCL ; If YES, ACCB ← data latched in PORTCL
stab PORTB ; Sending latched value just read to Port B
bra loop ; Branch back and keep polling STAF for

; next valid input data in Port C.
end

ECED 3204. Microprocessors Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto187

External Parallel Port Example

ECED 3204. Microprocessors

Code for Servicing the External Input Port

PSTATUS equ $8000 ; Port Status Address
PDATA equ $8001 ; Port Data Address
BUF_START equ $D000 ; Start of Buffer
BUF_END equ $D0FF ; Last element in Buffer

org $C000 ; Start of code

ldaa PDATA ; Dummy read to clear port status
ldx #BUF_START ; Initialize IX pointer

POLL ldaa PSTATUS ; Get current status

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto188

POLL ldaa PSTATUS ; Get current status
anda #%01000000 ; Check B6 by masking other bits
beq POLL ; If status is still zero keep polling
ldaa PDATA ; If NOT, get data from port
staa 0,X ; Store it in Buffer using IX pointer
inx ; Update Buffer pointer
cpx #BUF_END ; Check if Buffer end has been reached
bls POLL ; If NOT, go back wait for new data from port
swi ; If YES, exit to BUFFALO

end

ECED 3204. Microprocessors

Alternative to define Buffer space

org $D000 ; Start of Buffer

BUF_START ds !255 ; One element less than total space
BUF_END ds 1 ; Last element (to allow labeling it)

Alternative check for program end

Parallel I/O Comm

Dalhousie University Jose A. Gonzalez-Cueto189

staa 0,X ; Store it in Buffer using IX pointer
cpx #BUF_END ; Check if last element written
beq DONE ; If YES, finish program
inx ; If NOT, update Buffer pointer &
bra POLL ; Go back wait for new data from port

DONE swi ; Exit to BUFFALO

