
Delft3D

3D/2D modelling suite for integral water solutions

User Manual

MATLAB

Delft3D-MATLAB

Interface to MATLAB for flexibility in visualisation and
data analysis

User Manual

Hydro-Morphodynamics & Water Quality

Version: 2.15.30932

26 May 2014

Delft3D-MATLAB, User Manual

Published and printed by:
Deltares
Boussinesqweg 1
2629 HV Delft
P.O. Box 177
2600 MH Delft
The Netherlands

telephone: +31 88 335 82 73
fax: +31 88 335 85 82
e-mail: info@deltares.nl
www: http://www.deltares.nl

For sales contact:
telephone: +31 88 335 81 88
fax: +31 88 335 81 11
e-mail: sales@deltaressystems.nl
www: http://www.deltaressystems.nl

For support contact:
telephone: +31 88 335 81 00
fax: +31 88 335 81 11
e-mail: support@deltaressystems.nl
www: http://www.deltaressystems.nl

Copyright © 2014 Deltares
All rights reserved. No part of this document may be reproduced in any form by print, photo
print, photo copy, microfilm or any other means, without written permission from the publisher:
Deltares.

Contents

Contents

1 Introduction 1
1.1 Version information . 1
1.2 Compatibility . 1
1.3 List of major changes . 1

2 Low level routines 3
2.1 Open NEFIS file: vs_use . 3
2.2 Display information of groups and elements: vs_disp 4
2.3 Get data from a NEFIS file: vs_let/vs_get 7
2.4 Determine the type of a NEFIS file: vs_type 10
2.5 Find group to which element belongs: vs_find 11
2.6 Find differences between two NEFIS files: vs_diff 11

3 High level routines 13
3.1 Plot a grid: drawgrid . 13
3.2 Plot thin dams: thindam . 14
3.3 Read/write restart file: trirst . 17
3.4 Read/write depth file: wldep . 18
3.5 Read/write grid file: wlgrid . 19
3.6 Read/plot velocity field: xyveloc . 19
3.7 Generic read data: qpread . 20
3.8 Generic open file: qpfopen . 24
3.9 Get file opened by QUICKPLOT: qpfile 24

4 Delft3D-QUICKPLOT functionality 25

References 29

Deltares iii

Delft3D-MATLAB, User Manual

iv Deltares

List of Figures

List of Figures

3.1 Grid layout from the Friesian Tidal Inlet model. 14
3.2 Example of grid and thin dams. 17
3.3 Example of 3D depth plot. 19
3.4 Example of vector velocity plot. 21
3.5 Example of contour plot. 23

4.1 Selection window of Delft3D-QUICKPLOT. 26
4.2 Display/export options for QUICKPLOT commands. 26
4.3 Example of Delft3D-QUICKPLOT figure. 27

Deltares v

Delft3D-MATLAB, User Manual

vi Deltares

1 Introduction

The MATLAB interface for Delft3D has been developed to expand the flexibility in the process-
ing of Delft3D data in general and of NEFIS data files in particular. The interface consists of
three parts:

� First, low level routines to access data stored in NEFIS files. The routines are described
in the second chapter of this manual. A thorough knowledge of the Delft3D system is
required.

� Second, high level routines to access the data. These functions support a pre-defined (but
extensive) set of spatial data stored in the NEFIS files. Routines for reading and writing
flow restart files, grid and depth files are also provided. These routines are described in
Chapter 3.

� Third, a graphical user interface for basic plotting. The QUICKPLOT interface is described
in Chapter 4.

All functions are provided in source code. The routines described in chapters three and four
can be used as examples for development of other routines.

1.1 Version information

This manual describes the functionality of Delft3D-MATLAB interface version 2.14 and later
versions with minor revisions.

1.2 Compatibility

The routines have been tested for compatibility with MATLAB versions ranging from 6.5 (R13)
until 2009b. Recent MATLAB versions give some warnings because ‘v6’ compatibility argu-
ments are used in quiver and contourf calls; these warnings do not influence the results.

1.3 List of major changes

Version Description

2.15 Function to process Delft3D-FLOW mdf file
Suport for more Delft3D-FLOW attribute files
New function to convert cell centred data to cell corners

2.14 New functions for tidal analysis, horizontal slices and vertical averaging
MATLAB version before 6.5 no longer supported.

2.07 Update of QUICKPLOT interface to match standalone version 2.07 of
Delft3D-QUICKPLOT

2.05 Update of QUICKPLOT interface to match standalone version 2.05 of
Delft3D-QUICKPLOT

Deltares 1

Delft3D-MATLAB, User Manual

2 Deltares

2 Low level routines

A set of MATLAB files has been created to access NEFIS files from within MATLAB. The
following functions have been implemented:

vs_use open NEFIS file
vs_disp display information of groups and elements contained in a NEFIS file
vs_let/vs_get get data from a NEFIS file
vs_type determine type of a NEFIS file
vs_find find group to which an element belongs
vs_diff find differences between two NEFIS files

If no NEFIS file is specified when using the commands vs_disp, vs_let, vs_get, vs_type and
vs_find the last opened NEFIS is used. The commands are discussed below in more detail.

Remark:
� Spatial data sets are stored in the NEFIS file with the M and N dimensions reversed.

2.1 Open NEFIS file: vs_use

Purpose
Open/scan NEFIS file

Syntax

Nfs = vs_use(FileName)

Description
Nfs = vs_use(FileName) opens a NEFIS file where the filename is the name of either the
definition or the data file, and returns a handle Nfs to the file, which must be used when calling
the other commands. When no filename is specified, the command will ask for one.

The vs_usecommand scans the structure of the definition and data files; this will take some
time. MATLAB can store the structure information in a file with the same name base (as
indicated by filename) and extension <∗.mat>, and read that information when the file is re-
opened a next time. This used to be the default behaviour but is now optional: use option
usemat. The old option nomat is still accepted and overrules usemat. If changes were made
to the <∗.def> and/or <∗.dat> files, you should add refresh as additional argument to prevent
reading the existing mat-file. The addition of the argument quiet as last argument reads the file
structure without showing the wait bar. When the option debug is used a file <vs_use.dbg>
is created in the default temporary directory, containing information on the reading of the data
structure from the NEFIS file.

The returned Nfs can be interpreted as a file handle as used in all programming environments
for file access. However, it is not an integer but a structure containing the internal structure of
the NEFIS file.

Example

Deltares 3

Delft3D-MATLAB , User Manual

>> Nfs=vs_use

Nfs =

FileName: `I:\OCTOPUS\sbod_gf3.66_tot\output\TS11520000\com-d16'

DatExt: `.dat'

DefExt: `.def'

Format: `b'

gNames: [21x368 char]

gData: [21x27 double]

eNames: [89x112 char]

eData: [89x11 double]

2.2 Display information of groups and elements: vs_disp

Purpose
Display NEFIS file contents.

Syntax

vs_disp(Nfs)

Output = vs_disp(Nfs)

vs_disp(Nfs, [])

Output = vs_disp(Nfs, [])

vs_disp(Nfs, GroupName)

Output = vs_disp(Nfs, GroupName)

Output = vs_disp(Nfs, GroupName, [])

Output = vs_disp(Nfs, GroupName, ElementName)

Description
vs_disp(Nfs) lists all group names, group elements, and all group and element properties
like the disp stat command of the Viewer Selector. vs_disp(Nfs, []) lists group names,
group dimensions, and number of elements per group only. This can be used as a short
summary of the file contents. Output = vs_disp(Nfs) and Output = vs_disp(Nfs, [])

return a char matrix containing the names of the groups.

vs_disp(Nfs, GroupName) lists all group elements, and all element properties like the disp

GroupName command of Viewer Selector. Output = vs_disp(Nfs, GroupName) returns a
char matrix containing the names of the elements of the group.

Output = vs_disp(Nfs, GroupName, []) gives detailed data about the specified group
contained in the Nfs structure. The information includes group data name, cell name, definition
name, number of elements, dimensions, and the offsets within the NEFIS file at which loca-
tions data of the group are stored. Output = vs_disp(Nfs, GroupName, ElementName)

gives detailed data about the specified element contained in the Nfs structure. The information
includes element description, unit and size.

Examples

4 Deltares

Low level routines

>> vs_disp(Nfs)

Groupname:BOTNT Dimensions:(1)

No attributes

NTBOT INTEGER * 4 [-] (1)

Number of bottom fields in group BOTTIM

Groupname:BOTTIM Dimensions:(24)

No attributes

TIMBOT INTEGER * 4 [TSCALE] (1)

Communication times bottom fields rel. to reference date/time

DP REAL * 4 [M] (98 62)

Bottom depth in bottom points, positive downwards

and so on ...

>> vs_disp(Nfs,[])

BOTNT (1) - No attributes, 1 element(s).

BOTTIM (24) No attributes, 2 element(s).

PARAMS (1) - No attributes, 8 element(s).

GRID (1) - No attributes, 16 element(s).

SPECPOINTS (1) - No attributes, 4 element(s).

BOUNDCNST (1) - No attributes, 8 element(s).

KENMCNST (1) - No attributes, 3 element(s).

INITBOT (1) - No attributes, 4 element(s).

ROUGHNESS (1) - No attributes, 3 element(s).

TEMPOUT (1) - No attributes, 4 element(s).

com-version (1) - No attributes, 3 element(s).

KENMNT (1) - No attributes, 1 element(s).

KENMTIM (1) - No attributes, 3 element(s).

CURNT (1) - No attributes, 1 element(s).

CURTIM (1) - No attributes, 7 element(s).

DWQTIM (1) - No attributes, 5 element(s).

TAUTIM (1) - No attributes, 1 element(s).

INITI (1) - No attributes, 1 element(s).

TRANNT (1) - No attributes, 2 element(s).

BOUNDMOR (1) - No attributes, 1 element(s).

TRANSTIM (1) - No attributes, 11 element(s).

>> Output=vs_disp(Nfs) %or Output=vs_disp(Nfs,[])

Output =

BOTNT

BOTTIM

PARAMS

GRID

SPECPOINTS

Deltares 5

Delft3D-MATLAB , User Manual

BOUNDCNST

KENMCNST

INITBOT

ROUGHNESS

TEMPOUT

com-version

KENMNT

KENMTIM

CURNT

CURTIM

DWQTIM

TAUTIM

INITI

TRANNT

BOUNDMOR

TRANSTIM

>> vs_disp(Nfs,`BOTTIM')

Groupname:BOTTIM Dimensions:(24)

No attributes

TIMBOT INTEGER * 4 [TSCALE] (1)

Communication times bottom fields rel. to reference date/time

DP REAL * 4 [M] (98 62)

Bottom depth in bottom points, positive downwards

>> Output=vs_disp(Nfs,`BOTTIM')

Output =

TIMBOT

DP

>> Output=vs_disp(Nfs,`BOTTIM',[]) % get group information

Output =

Name: `BOTTIM'

GroupDatOffset: 8560

DefName: `BOTTIM'

GroupDefOffset: 12728

CellName: `BOTTIM'

CellDefOffset: 12660

CellNByte: 24308

CellNElm: 2

NDim: 1

VarDim: 1

SizeDim: 24

6 Deltares

Low level routines

OrderDim: 1

Attrib: [1x1 struct]

>> Output=vs_disp(Nfs,`BOTTIM',`DP') % get element information

Output =

GrpNname: `BOTTIM'

ElmName: `DP'

ElmQuantity: `'

ElmUnits: `[M]'

ElmDescription: `Bottom depth in bottom points, positive downwards'

ElmDefOffset: 12496

NDim: 2

SizeDim: [98 62]

TypeVal: 5

NByteVal: 4

NByte: 24304

2.3 Get data from a NEFIS file: vs_let/vs_get

Purpose
Read data from file (groups as columns or cells).

Syntax

[Data, Succes] = vs_let(Nfs, GroupName, GroupIndex, ElementName, ElementIndex)

[Data, Succes] = vs_get(Nfs, GroupName, GroupIndex, ElementName, ElementIndex)

Description

Data = vs_let(Nfs, GroupName, GroupIndex, ElementName, ElementIndex)

Data = vs_get(Nfs, GroupName, GroupIndex, ElementName, ElementIndex)

These commands read the requested element from the specified group from the specified
file. The GroupIndex should be a 1xN cell array, where N equals the number of dimensions
of the group. Each element of the cell array should contain either 0 (zero) or the indices of
the cells that should be read. The 0 means that all cells should be read. The ElementIndex

should be a 1xM cell array, where M equals the number of dimensions of the element. Again,
each element of the cell array should contain either 0 (zero) or the indices of the elements
that should be read, where 0 means that the complete dimension should be read. When
the option debug is used a file <vs_let.dbg> is created in the default temporary directory,
containing information on the reading of the data from the NEFIS file.

The command vs_let reads all data in one big matrix, using the first dimensions for the
groups and the last dimensions for the elements. The command vs_get returns a matrix

Deltares 7

Delft3D-MATLAB, User Manual

containing the data if data from only one group is read, and a cell array of matrices when
data from more than one group is read. An additional output option succes [Data,Succes]

= ... indicates whether the data has been read successfully.

When the GroupIndex and/or ElementIndex are skipped all fields of the group/element are
selected. When no GroupName or ElementName is specified or when an error is encountered
while interpreting the input a graphical user interface is presented to enter the selection. To
help new users to get acquainted to the command line syntax of the vs_get and vs_let rou-
tines, the command option line -cmdhelp is provided. When used, the routine does not
actually load the data, but it displays the command line equivalent of the selection that you
have made in the user interface.

Examples
For example: To read from the depth data the first 10 rows (and of those rows all columns) of
the 1st, 3rd, 5th, 7th, and 9th time steps, you should type:

>> Data=vs_let(Nfs,`BOTTIM',{1:2:10},`DP',{1:10 0});

which returns a 5x10x62 matrix; or

>> Data=vs_get(Nfs,`BOTTIM',{1:2:10},`DP',{1:10 0})

Data =

[10x62 double]

[10x62 double]

[10x62 double]

[10x62 double]

[10x62 double]

Indicating that a 5 x 1 cell array is returned, each cell containing one bottom field (10 x 62 data
points). Character strings are contained in cell arrays. The most common cases of reading
from are:

Data=vs_get(Nfs,`BOTTIM',{0},`DP',{0 0})

Read all bottom data completely. Group/Element indices containing only zeros donŠt have to
be specified. So, the following is also accepted:

Data=vs_get(Nfs,`BOTTIM',`DP')

Data=vs_get(Nfs,`BOTTIM',{0},`DP',{n 0}), or

Data=vs_get(Nfs,`BOTTIM',`DP',{n 0})

Read cross-section n at all time steps

8 Deltares

Low level routines

Data=vs_get(Nfs,`BOTTIM',{t},`DP',{0 0}), or

Data=vs_get(Nfs,`BOTTIM',{t},`DP')

Read the bottom at time step t. This will return a 10 x 62 matrix if vs_get is used, and a
1x10x62 matrix if vs_let is used.

Data=vs_get(Nfs,`BOTTIM',{0},`DP',{n m}), or

Data=vs_get(Nfs,`BOTTIM',`DP',{n m})

Read the variation of the bottom at indicated (n,m)-point. If this is followed by a Data =

[Data:]; command to convert the cell array containing single values into a vector; it can be
replaced by

Data=vs_let(Nfs,`BOTTIM',`DP',{m n})

which gives that result immediately and is faster.

When besides the Nfs no further arguments are used (or when no element name is specified),
an interface will appear asking for the other arguments. Adding the string quiet as last input
argument will suppress the wait bar during loading. When `*' is specified as element name
all elements of the group are returned; if an element index is specified it is ignored.

Example

Data=vs_let(Nfs,`BOTTIM',{1:2:10},`*')

returns

Data =

TIMBOT: [5x1 double]

DP: [5x10x62 double]

and

Data=vs_get(Nfs,`BOTTIM',{1:2:10},`*')

returns the data of five time steps

Data =

5x1 struct array with fields:

TIMBOT

DP

Deltares 9

Delft3D-MATLAB, User Manual

To assist the novice user with the syntax of the vs_let and vs_get commands a help func-
tionality has been added to these functions which allows the interactive generation of com-
mand lines. This functionality is activated by supplying -cmdhelp as one of the input argu-
ments. For instance:

>> vs_let -cmdhelp

results after the following data has been entered in the user interface

in the following output string

Data=vs_let(NFStruct,`BOTTIM',{[1:2:9]},`DP',{[1:10],0});

You can copy this string into a text editor for use in a script. As indicated above, variations on
the syntax are allowed. The following line is also valid

Data=vs_let(`BOTTIM',{1:2:9},`DP',{1:10,1:73});

The result will be exactly the same provided that the variable NFStruct in the first command
line contains the information of the last opened NEFIS file.

2.4 Determine the type of a NEFIS file: vs_type

Purpose
Show type of NEFIS file.

Syntax

Type=vs_type(Nfs)

Description
The function returns the type of the loaded NEFIS file. Currently the following NEFIS files are
detected: ‘Delft3D-com’, ‘Delft3D-trim’, ‘Delft3D-trih’, ‘Delft3D-trid’, ‘Delft3D-tram’, ‘Delft3D-
trah’, ‘Delft3D-botm’. Other NEFIS files will return ‘unknown’. For example:

Example

>> Type=vs_type(Nfs)

Type =

Delft3D-com

10 Deltares

Low level routines

2.5 Find group to which element belongs: vs_find

Purpose
Find elements in a NEFIS file.

Syntax

Groups=vs_find(Nfs, ElementName)

Description
The function returns a list of group names containing the specified element. For example the
element ‘TIMCUR’ occurs in several groups of the com-file:

Example

>> Groups=vs_find(Nfs,`TIMCUR')

Groups =

KENMTIM

CURTIM

DWQTIM

2.6 Find differences between two NEFIS files: vs_diff

Purpose
Compare NEFIS file contents and find differences in groups, elements and data.

Syntax

vs_diff(Nfs1,Nfs2)

Description
The function analyses the specified NEFIS files for differences. The analyses searches first
for differences in the contained groups. If it finds differences it stops, if not it continues to
search for differences in the elements, element properties, and element data.

Example
The following comparison between two com-files, of which the first was obtained by a restart
run from the second one, indicates

� differences in the water and sediment transport data fields;
� a difference in the group properties of the BOTTIM group (which is caused by one addi-

tional depth field); and
� differences in the ‘RUNTXT’ and ‘SIMDAT’ texts.

Deltares 11

Delft3D-MATLAB, User Manual

>> vs_diff(Nfs,Nfs2)

Comparing NEFIS files ...

File 1: I:\OCTOPUS\sbod_gf3.66_tot\output\TS11520000\com-d16

File 2: I:\OCTOPUS\sbod_gf3.66_tot\output\TS11160000\com-d16

Data of element NTBOT of group BOTNT differ.

Group properties differ for: BOTTIM

Data of element QU of group CURTIM differ.

Data of element QV of group CURTIM differ.

Data of element S1 of group CURTIM differ.

Data of element TIMCUR of group CURTIM differ.

Data of element U1 of group CURTIM differ.

Data of element V1 of group CURTIM differ.

Data of element TIMCUR of group DWQTIM differ.

Data of element KFU of group KENMTIM differ.

Data of element KFV of group KENMTIM differ.

Data of element TIMCUR of group KENMTIM differ.

Data of element TAUMAX of group TAUTIM differ.

Data of element TSEDB of group TRANSTIM differ.

Data of element TSEDE of group TRANSTIM differ.

Data of element TTXA of group TRANSTIM differ.

Data of element TTYA of group TRANSTIM differ.

Data of element RUNTXT of group com-version differ.

Data of element SIMDAT of group com-version differ.

... comparison finished.

12 Deltares

3 High level routines

Although the low level routines provide access to all data in the NEFIS files, obtaining a useful,
consistent data set can be difficult. For instance, to plot a 2D vector field you have to combine
the information stored at about seven locations in the Delft3D communication file. Therefore,
a number of high level routines has been provided to simplify the plotting and data retrieval
operations. Routines are provided for plotting a grid (with grid number labels), plotting thin
dams and inactive velocity points, and retrieving data to plot velocity vectors. Functions are
also provided for reading and writing RGFGRID grid files (RGFGRID manual (RGFGRID,
2013)), QUICKIN depth files (QUICKIN manual (QUICKIN, 2013), and Delft3D-FLOW restart
files (Delft3D-FLOW manual (Delft3D-FLOW, 2013)).

3.1 Plot a grid: drawgrid

Purpose
Plot the morphological grid.

Syntax

drawgrid(NFStruct)

[X, Y] = drawgrid(NFStruct);

drawgrid(X, Y)

Description
drawgrid(NFStruct) where NFStruct is the structure obtained from the vs_usecommand.
The function adds the morphological grid (that is, the user-defined grid) to the current axes.
<trim-∗>, <tram-∗>, <botm-∗>, and <com-∗> files are supported. The morphological grid
equals the grid specified in the input file; the bed level points are specified on the grid line
crossings.

[X, Y] = drawgrid(NFStruct) returns the X and Y co-ordinates, but it does not actually
draw the morphological grid.

drawgrid(X, Y) draws the user specified grid in the current axes.

This function accepts a number of optional arguments, which consist of property - value
pairs similar to those use by the MATLAB set command: drawgrid(..., `optionname1',

optionval1, `optionname2', optionval2, ...). The supported options are

‘color’ The value can be an RGB-triplet, a colour character (‘r’, ‘g’, ‘b’, ‘c’,
‘m’, ‘y’, ‘k’, ‘w’), or the string ‘ortho’ for colouring based on the or-
thogonality of grid, ‘msmo’ for the M-smoothness of grid, ‘nsmo’ for
the N-smoothness of grid

‘m1n1’ [NM] number of grid point(1,1). Useful when plotting only part of
the grid.

‘fontsize’ The size of the font used for grid numbering (default 4)
‘gridstep’ Label step used for grid numbering (default 10). For instance, 5 will

number every fifth grid line. If grid step is [], grid lines are not labelled.
‘thicklength’ Length of ticks in axes co-ordinates or ‘auto’ (default)
‘parent’ The axes handle in which to plot grid (default the current axes, gca)

Deltares 13

Delft3D-MATLAB , User Manual

Figure 3.1: Grid layout from the Friesian Tidal Inlet model.

‘clipzero’ By default co-ordinate pairs of (0,0) are clipped. Set to ‘off’ to plot
co-ordinates at (0,0))

Example, Figure 3.1

>> G=wlgrid('read','d:\f-disk\users\mooiman\delft3d\models\f34\f34\f34.grd')

G =

X: [14x21 double]

Y: [14x21 double]

Enclosure: [19x2 double]

FileName: 'D:\delft3d\tutorial\flow\f34_demo\fti_02.grd'

CoordinateSystem: 'Cartesian'

MissingValue: 0

Type: 'RGF'

>> drawgrid(G.X,G.Y,`fontsize',8,`gridstep',4)

>> set(gca,`dataaspectratio',[1 1 1])

3.2 Plot thin dams: thindam

Purpose
Plot dams, weirs and vanes.

Syntax

thindam(NFStruct, T)

14 Deltares

High level routines

thindam(NFStruct, T, `3D')

thindam(XCOR, YCOR, UDAM, VDAM)

thindam(`xyw', XDAM, YDAM, WDAM)

thindam(..., `PropertyName', PropertyValue)

H = thindam(...)

[X, Y] = thindam(...)

[X, Y, M, N] = thindam(...)

[X, Y, Z] = thindam(...)

[X, Y, BOTTOM, TOP] = thindam(...)

[X, Y, BOTTOM, TOP, M, N] = thindam(...)

Description
thindam(NFStruct,T) plots the KFU/V (drying/flooding) dams for time step T if T>0. It plots
the KCU/V thin dams if T==0 (default if T is not specified). The function supports <trim-*>
and <com-*> files.

thindam(NFStruct, T, `3D') same as above but now the dams will be plotted as 3D
surfaces based on the bottom and water level information in the specified NEFIS file, <trim-
> or <com-> file.

thindam(XCOR, YCOR, UDAM, VDAM) plots the specified U and V dams on the specified
grid. The XCOR and YCOR represent the bottom points. Valid entries for UDAM and VDAM
are:

� matrix of same size as XCOR/YCOR with a 1 representing a dam and a 0 indicating no
dam.

� D x 2 matrix specifying the N, M co-ordinates of the dams
� D x 4 matrix specifying the begin/end N, M co-ordinates of the dams like in the Delft3D

input files.

thindam(`xyw', XDAM, YDAM, WDAM, ...) plots dams with their centre at specified (XDAM,
YDAM) locations with specified width/length WDAM. This function is useful for non-grid ori-
ented dams.

A 3D effect can be added to these user-specified dams by specifying bottom and top lev-
els using thindam(..., `bottom', <bottom_args>, `top', <top_args>). It plots the
dams as 3D surfaces with specified top and bottom elevations. The elevation data should be
specified with positive direction up. Additional supported options are:

� `angle', <angle_args> The dams/vanes are rotated to match the specified angle in
degrees with respect to the positive X-axis (positive angle in anti-clockwise direction).

� `color', <color_args> The dams are coloured using the specified data.
� `thickness', <thickness_args> The thickness of the dams is specified (default 0).

Valid entries for all options are:

� a constant, uniform value for all dams
� a matrix of same size as XCOR/YCOR containing data in the depth points.
� a matrix of same size as XCOR/YCOR containing data in the water level points. To distin-

guish this entry from the former you need to add the string ‘H’ or ‘S’ as an extra argument
after the matrix. For example thindam(..., `top', ELEVMATRIX, `H', ...) indi-

Deltares 15

Delft3D-MATLAB, User Manual

cates that the top level of the dams are derived from the specified data in water level
points (the value will be used uniformly along each elementary dam).

� two matrices of same size as XCOR/YCOR containing data in the U and V points.
� two D x s arrays specifying the property of the individual dams. If the array is D x 1 the

value is constant along each elementary dam. If the array is D x 2 the first value is taken
for the dam end with lowest (N,M) while the second elevation for the dam end with highest
(N,M). The first array specifies the elevation for dams in U direction the second array for
dams in the V direction. For example thindam(..., `top', ELEVU, ELEVV, ...).
This option cannot be used in combination with option 1 for the UDAM and VDAM entries.
The number of values should match the number of dam records/elementary dams.

If a colour data field has been specified, there are a few more options available:

� `shape',<type>

The dam shape: ‘dam’ (default) or ‘rhombus’.
� `drawdams',<onoff>

Flag to draw dams. Can be set to ‘on’ (default) or ‘off’.
� `drawlabels',<onoff>

Flag to draw the colour values as text labels. Can be set to ‘on’ or ‘off’ (default).
� `labelformat',<format>

Defines the format for displaying the values (default ‘%g’)
� `fontsize',<size>

Defines the size of the labels.

If the ‘xyw’ syntax is used, then valid entries for the options are

� a constant (uniform value for all dams), and
� a matrix of same size as XDAM/YDAM/WDAM.

H = thindam(...) returns the handle of the line/surface object used for plotting the dams.

[X, Y] = thindam(...) returns the x,y-arrays normally used for plotting. The dams are
not plotted. This syntax is only valid if the input arguments indicate a 2D dam plot.

[X, Y, M, N] = thindam(...) returns four nx2 matrices containing per row a pair of end
points for an elementary dam (X and Y co-ordinates, M and N index). This syntax is only valid
if the input arguments indicate a 2D dam plot.

[X, Y, Z] = thindam(...) returns the x,y,z-arrays normally used for plotting. The dams
are not plotted. This syntax is only valid if the input arguments indicate a 3D dam plot.

[X, Y, BOTTOM, TOP] = thindam(...) returns four nx2 matrices containing per row a
pair of end points for an elementary dam: X co-ordinates, Y co-ordinates, bottom elevation
and top elevation. This syntax is only valid if the input arguments indicate a 3D dam plot.

[X, Y, BOTTOM, TOP, M, N] = thindam(...) returns six nx2 matrices containing per
row a pair of end points for an elementary dam: X co-ordinates, Y co-ordinates, bottom eleva-
tion, top elevation, M index, N index. This syntax is only valid if the input arguments indicate
a 3D dam plot.

16 Deltares

High level routines

Figure 3.2: Example of grid and thin dams.

Example, Figure 3.2

>> vs_use D:\wl\delft3d\tutorial\wave\Siu-Lam\Com-siu

>> drawgrid(`color',`g')

>> set(gca,`DataAspectRatio',[1 1 1])

>> thindam(1)

>> l=thindam; set(l,`color',`r')

3.3 Read/write restart file: trirst

Purpose
Read/write Delft3D-FLOW restart file.

Syntax

[H, U, V, ...] = trirst(`read', FILENAME, SIZE)

[H, U, V, ...] = trirst(`read', FILENAME, GRID)

[H, U, V, ...] = trirst(`read', FILENAME, GRID, NLAYERS)

trirst(`write', FILENAME, H, U, V, ...)

trirst(`write', FILENAME, PLATFORM, H, U, V, ...)

Description
[H, U, V, ...] = trirst(`read', FILENAME, SIZE) and [H, U, V, ...] = trirst(`read',

FILENAME, GRID) where GRID was read in from the <∗.grd> file by WLGRID read data from
a Delft3D-FLOW restart file of a 2D simulation. The dimensions of the underlying grid must
be specified. This can be done either by manually specifying the grid size as [M N], or by
automatic derivation from a grid.

Deltares 17

Delft3D-MATLAB , User Manual

[H, U, V, ...] = trirst(`read', FILENAME, GRID, NLAYERS) reads data from a
Delft3D-FLOW restart file of a 3D simulation. The NLAYERS arrays indicate the number of lay-
ers used for the various variables. In the example syntax: NLAYERS = [NLAYERH, NLAYERU,

NLAYERV, ...].

trirst(`write', FILENAME, H, U, V, ...) writes the specified matrices to the indi-
cated restart file. Because the restart file is stored in a platform dependent manner, care
should be taken to write the appropriate type of restart file. By default the routine writes
the data in the format compatible with the computer on which MATLAB is running. A differ-
ent platform can be chosen by using the following syntax: trirst(`write', FILENAME,

PLATFORM, H, U, V, ...) where PLATFORM can be ‘pc’ or ‘unix’. Both Windows and
Linux versions of Delft3D use the byte order indicated by ‘pc’.

3.4 Read/write depth file: wldep

Purpose
Read/write Delft3D field files (e.g. depth files).

Syntax

DEPTH = wldep(`read', FILENAME, SIZE)

DEPTH = wldep(`read', FILENAME, GRID)

STRUCT = wldep(..., `multiple')

[FLD1, FLD2, ...] = wldep(..., `multiple')

wldep(`write', FILENAME, MATRIX)

Description
wldep can be used to read and write Delft3D field files used for specifying depth and rough-
ness data.

DEPTH = wldep(`read', FILENAME, SIZE) or DEPTH = wldep(`read', FILENAME, GRID)

where the dimensions [M N] of the data is either user-specified or derived from the GRID data
set that was obtained from wlgrid. STRUCT = wldep(..., `multiple') to read multiple
fields from the file (e.g. in case of a roughness file). The function returns a structure vec-
tor with one field: Data. Use [FLD1, FLD2, ...] = wldep(..., `multiple') to read
multiple fields from the file and store the result in separate output arguments.

Use wldep(`write', FILENAME, MATRIX) or wldep(`write', FILENAME, STRUCT) to
write data to a <∗.dep> file. Multiple data sets can be written by specifying a structure vector
STRUCT with one field data.

Example, Figure 3.3

>> G=wlgrid(`read',`D:\wl\delft3d\tutorial\mor\ymu\r1-nri.grd');

Warning: Grid enclosure not found.

>> D=wldep(`read',`D:\wl\delft3d\tutorial\mor\ymu\r1-nri.dep',G);

>> surf(G.X,G.Y,-D(1:end-1,1:end-1));

18 Deltares

High level routines

Figure 3.3: Example of 3D depth plot.

>> shading flat

>> view(-60,30)

>> set(gca,`da',[1 1 1/300])

>> camlight

3.5 Read/write grid file: wlgrid

Purpose
Read/write a Delft3D-FLOW grid file.

Syntax

[X,Y,ENC] = wlgrid(`read', FILENAME)

GRID = wlgrid(`read', FILENAME)

OK = wlgrid(`write', FILENAME, X, Y, ENC)

Description
[X, Y, ENC] = wlgrid(`read', FILENAME) reads the grid and enclosure from the Delft3D
<∗.grd> and <∗.enc> files. X, Y, and enclosure are returned as separate output arguments.
GRID = wlgrid(`read', FILENAME) returns a structure with X, Y, and Enclosure fields.

OK = wlgrid(`write', FILENAME, X, Y, ENC) writes the GRID to <∗.grd> and <∗.enc>
files that can be used by Delft3D. If the last argument (ENC) is not specified, the enclosure
file is not written.

3.6 Read/plot velocity field: xyveloc

Purpose
Read velocity data from a <trim-*> or <com-*> file.

Deltares 19

Delft3D-MATLAB , User Manual

Syntax

[U, V] = xyveloc(NFStruct, TimeStep)

[U, V, W] = xyveloc(NFStruct, Index)

[X, Y, U, V] = xyveloc(NFStruct, TimeStep)

[X, Y, Z, U, V, W] = xyveloc(NFStruct, Index)

[...] = xyveloc(..., `option')

Description
[U, V] = xyveloc(NFStruct, TimeStep) reads the velocity field at the specified time
step from the specified NEFIS file. By default TimeStep is the last field of the CURTIM or
map-series group. The default NEFIS file is the last opened NEFIS file.

[X, Y, U, V] = xyveloc(NFStruct, TimeStep) returns not only the velocities, but also
the co-ordinates of the grid points at which the velocities are given (water level points).

[U, V, W] = xyveloc(NFStruct, Index) reads a 3D velocity field (x,y,z components).
[X, Y, Z, U, V, W] = xyveloc(NFStruct, Index) reads the 3D velocity field (x,y,z com-
ponents) and returns the 3D co-ordinates of the velocity values.

[...] = XYVELOC(..., `option') where the string ‘option’ equals

� ‘vort’: computes the z-component of the vorticity. Only one output argument is required in
this case.

� ‘total’, ‘fluc’, ‘mean’: reads the total velocity, fluctuation component, or mean velocity field
in case of an HLES simulation (trim-file, 2D only). The default setting is ‘total’.

Example, Figure 3.4

>> vs_use D:\wl\delft3d\tutorial\wave\Siu-Lam\Com-siu

>> [x,y,u,v]=xyveloc;

>> quiver(x,y,u,v)

>> drawgrid(`color',`g')

>> set(gca,`da',[1 1 1])

>> hold on

>> quiver(x,y,u,v)

3.7 Generic read data: qpread

Purpose
Get information/data from a data file. Provides access to the functionality of the QUICKPLOT
interface.

Syntax

[DataFields, Dims, NVal] = qpread(FileInfo)

20 Deltares

High level routines

Figure 3.4: Example of vector velocity plot.

DataProps = qpread(FileInfo)

Size = qpread(FileInfo, DataProp, `size')

Size = qpread(FileInfo, DataFld, `size')

Times = qpread(FileInfo, DataProp, `times')

Times = qpread(FileInfo, DataFld, `times')

StNames = qpread(FileInfo, DataProp, `stations')

StNames = qpread(FileInfo, DataFld, `stations')

Data = qpread(FileInfo, DataProp, `data', t, station, m, n, k)

Data = qpread(FileInfo, DataFld, `data', t, station, m, n, k)

Data = qpread(FileInfo, DataProp, `griddata', t, station, m, n, k)

Data = qpread(FileInfo, DataFld, `griddata', t, station, m, n, k)

Description
The qpread function supports reading data from various data files. Which data sets can be
read from a specific data file can be obtained from the function by one of the following two
commands:

[DataFields, Dims, NVal] = qpread(FileInfo) returns the data fields available from
the data file specified using the FileInfo structure. An acceptable FileInfo can be obtained from
any of the following three commands: qpfopen, qpfile, vs_use. If FileInfo is not specified
the last opened NEFIS file is used (same condition applies to the other calls to qpread). The
variable DataFields is a cell array of strings containing the names of the data sets in the file.
The variable Dims indicates relevant dimensions for the data fields:

First column of Dims: Time step
Second column of Dims: Station name
Third column of Dims: M
Fourth column of Dims: N
Fifth column of Dims: K

NVal equals one for scalar data sets, 2 (or 3) for vector data sets.

DataProps = qpread(FileInfo) returns a structure containing fields with the above men-

Deltares 21

Delft3D-MATLAB , User Manual

tioned data and some extra information for internal use by the qpread and d3d_qp functions.

Based on the information returned by either one of these two qpread statements you may
select a data field. This data field can be identified using its name provided in the DataFields
cell array (DataFieldsi) or its record in the DataProps structure (DataProps(i)). For each data
field you can obtain more information by subsequent calls to qpread.

Remark:
� You should not request data for the separator fields with name ‘—–’.

Size = qpread(FileInfo, DataProp/DataFldName, `size') returns a 1 x 5 array con-
taining the maximum size of the five dimensions mentioned above. The second parameter
can be either a string (data field name) or a record from the DataProps structure. The latter is
necessary if the data field name is not unique.

Times = qpread(FileInfo, DataProp/DataFldName, `times') returns an array of the
times for the specified data field if relevant.

StNames = qpread(FileInfo, DataProp/DataFldName, `stations') returns an array
of the station names for the specified data field if relevant.

Data = qpread(FileInfo, DataProp/DataFld, `data', t, station, m, n, k) re-
turns the data for the specified data field at the indicated time steps, specified station, and M,
N, K co-ordinates. Only those parameters should be specified that have non-zero dimension
in Dims and Size. For a data field at a station often only time and station. For spatial data
sets not the station but a selection of M, N and K. Following restrictions apply to the retrieval
of the data

� station: index of the station in the StNames array (scalar).
� 0 (all points) or scalar value (m index).
� 0 (all points) or scalar value (n index).
� 0 (all points) or scalar value (k index).

Data = qpread(FileInfo, DataProp, `griddata', t, station, m, n, k) returns the
data and grid for the specified data field at the indicated time steps, specified station, and M,
N, K co-ordinates. In both cases the output argument Data is a structure containing a Time
field. If the data is scalar, the data is returned in the Val field. If the data is vector data, it is
returned as Xcomp and Ycomp fields.

Example, Figure 3.5

>> F=qpfopen(`D:\wl\delft3d\tutorial\gpp\trim-edw.dat');

>> I=qpread(F);

>> I(9)

ans =

Name: `water level'

DimFlag: [1 0 1 1 0]

DataInCell: 1

22 Deltares

High level routines

Figure 3.5: Example of contour plot.

NVal: 1

VecType: `'

Loc: `z'

ReqLoc: `z'

Loc3D: `'

Group: `map-series'

Val1: `S1'

Val2: `'

SubFld: []

MNK: 0

>> S=qpread(F,I(9),`griddata')

S =

X: [87x227 double]

Y: [87x227 double]

Val: [87x227 double]

Time: 7.2942e+005

>> contour(S.X,S.Y,S.Val,50)

>> view(90,90)

>> set(gca,`da',[1 1 100])

Deltares 23

Delft3D-MATLAB, User Manual

3.8 Generic open file: qpfopen

Purpose
Opening a data file. Provides access to the functionality of the QUICKPLOT interface.

Syntax

FileInfo=qpfopen(`Filename')

FileInfo=qpfopen(`DataFile',`GridFile')

FileInfo=qpfopen

Description
The qpfopen functions can be used to open all data files that QUICKPLOT can open (see the
appendix of the QUICKPLOT manual for an overview of all file formats).

FileInfo=qpfopen(`Filename') opens the specified output file and returns a structure
containing data used by the qpread function.

For WAQ or PART <∗.map> files you should also specify an <∗.lga> grid file: FileInfo =

qpfopen(`DataFile', `GridFile') If no grid file is specified then the map file is treated
as a history file with an observation point at each location.

FileInfo=qpfopen When no arguments are passed to the function, you are asked to specify
the file using a standard file selection dialog window. If you try to open a WAQ or PART
<∗.map> file, the function asks for the additional grid file.

3.9 Get file opened by QUICKPLOT: qpfile

Purpose
Get information about the currently selected file in QUICKPLOT. Provides access to the func-
tionality of the QUICKPLOT interface.

Syntax

FileInfo=qpfile

Description
To make switching between the user interface of QUICKPLOT and MATLAB’s command line
easier, the qpfile function provides easy access to the currently selected file in the QUICK-
PLOT interface.

FileInfo=qpfile returns the structure of the data file selected in the QUICKPLOT interface.

24 Deltares

4 Delft3D-QUICKPLOT functionality

The Delft3D-QUICKPLOT interface can be started by typing d3d_qp at the MATLAB com-
mand prompt. This interface is intended to simplify the creation of plots with MATLAB. Tooltips
provide online help for the interface. The same interface is also available as a standalone pro-
gram. This chapter gives only a short introduction; for a detailed description of the interface,
you are referred to the Delft3D-QUICKPLOT manual (QUICKPLOT, 2013).

The interface allows to open NEFIS files and select data fields. After making a selection of
time steps, stations and m, n, k indices, you can either load the data (Load Data button) or
plot the data (by clicking the Quick View or Quick Animate button).

The Load Data button in the lower left corner of the interface is not available in the standalone
version, so it is described here. When the data is loaded using the Load Data button, a
workspace variable called ‘data’ is created. If the variable ‘data’ was already defined any data
contained in it will be overwritten without confirmation. The variable ‘data’ contains:

� a field X with the x co-ordinates
� a field Y with the y co-ordinates
� a field Z with the z co-ordinates (for 3D data sets only)
� a field Val with the data is the data is scalar
� fields XComp, YComp and ZComp when the data is a vector quantity.

The same functionality can be accessed from the command line using the command

X=d3d_qp(`loaddata')

In this case the data is assigned to the user-specified variable X. Many of the other function-
alities of Delft3D-QUICKPLOT can also be accessed from the command line. The general
syntax of these commands is:

d3d_qp(command_string,...command_parameters...)

The command_string identifies the functionality that should be activated, e.g. ‘loaddata’,
‘openfile’ or ‘colourbar’. The command_parameters depend on the command chosen, e.g.
‘loaddata’ does not need any parameter, ‘openfile’ does not need any parameter either but if
a parameter is specified then it should be the name of the file to be opened, and ‘colourbar’
requires one parameter namely a 1 or 0 to indicate whether a colourbar should be drawn or
not. The details of all these commands is not described here. The best way to learn these
commands is by doing. Therefore, Delft3D-QUICKPLOT has several options to display or
export the equivalent commands that it is executing when you click on its buttons. These
display options can be accessed from the Macro menu of Delft3D-QUICKPLOT as shown in
Figure 4.2.

For exporting/displaying the MATLAB commands associated with the various functionalities of
Delft3D-QUICKPLOT, the following three options are available:

� Record MATLAB Script. Records the commands directly to a MATLAB .m file.

Deltares 25

Delft3D-MATLAB, User Manual

Figure 4.1: Selection window of Delft3D-QUICKPLOT.

Figure 4.2: Display/export options for QUICKPLOT commands.

26 Deltares

Delft3D-QUICKPLOT functionality

Figure 4.3: Example of Delft3D-QUICKPLOT figure.

� Record to Message Window, MATLAB Script Commands. Records the commands in a
separate window of Delft3D-QUICKPLOT. The commands cannot be copied from this
window, but the recorded commands can be saved to a text file.

� Record to MATLAB Command Window (not available in the standalone version of Delft3D-
QUICKPLOT). Echoes the commands to the MATLAB Command Window from which they
can be easily copied. When using MATLAB’s diary option, the echoed commands will also
end up in the diary file.

Both Delft3D-QUICKPLOT log files and MATLAB script files containing Delft3D-QUICKPLOT
calls can be run using the Run Log File menu item of Delft3D-QUICKPLOT. The MATLAB
script files may also contain other single line MATLAB function calls (not supported in stan-
dalone mode). Scripts containing multi-line MATLAB constructs cannot be run from within the
Delft3D-QUICKPLOT interface.

When the data is plotted or animated a new figure is opened. Scaling of axes, vector length
and colours is automatic. This implies that during an animation colour scaling, vector length
scaling and plot extent may vary. The plot extent and colour scaling can be set using the
MATLAB commands axis, set, gca and colorbar. For example:

axis([xmin xmax ymin ymax]) % set the axes extent

and

set(gca,`clim',[cmin cmax]) % set the colour limits

colorbar % update the colourbar

Deltares 27

Delft3D-MATLAB, User Manual

In case of an animation, plotting can be stopped by either closing the figure or selecting the
Stop option from the Animation menu in the figure of the plot. When the data set contains
multiple time steps, a scroll bar will be plotted in the lower left corner of the plot figure. You
can use this to change the time step of the plot.

Remarks:
� The figure files saved by the standalone version of Delft3D-QUICKPLOT are compatible

with MATLAB 6.5. It does not support files created with newer MATLAB versions.
� Access to netCDF files and data on OPeNDAP enabled websites requires separate

installation of the ‘mexnc’ and ‘snctools’ toolboxes available from
http://mexcdf.sourceforge.net/

28 Deltares

References

Delft3D-FLOW, 2013. Delft3D-FLOW User Manual. Deltares, 3.14 ed. 13

QUICKIN, 2013. Delft3D-QUICKIN User Manual. Deltares, 4.00 ed. 13

QUICKPLOT, 2013. Delft3D-QUICKPLOT User Manual. Deltares, 2.14 ed. 25

RGFGRID, 2013. Delft3D-RGFGRID User Manual. Deltares, 4.00 ed. 13

Deltares 29

Delft3D-MATLAB, User Manual

30 Deltares

PO Box 177
2600 MH Delft
Rotterdamseweg 185
2629 HD Delft
The Netherlands

+31 (0)88 335 81 88
sales@deltaressystems.nl
www.deltaressystems.nl

	1 Introduction
	1.1 Version information
	1.2 Compatibility
	1.3 List of major changes

	2 Low level routines
	2.1 Open NEFIS file: vs_use
	2.2 Display information of groups and elements: vs_disp
	2.3 Get data from a NEFIS file: vs_let/vs_get
	2.4 Determine the type of a NEFIS file: vs_type
	2.5 Find group to which element belongs: vs_find
	2.6 Find differences between two NEFIS files: vs_diff

	3 High level routines
	3.1 Plot a grid: drawgrid
	3.2 Plot thin dams: thindam
	3.3 Read/write restart file: trirst
	3.4 Read/write depth file: wldep
	3.5 Read/write grid file: wlgrid
	3.6 Read/plot velocity field: xyveloc
	3.7 Generic read data: qpread
	3.8 Generic open file: qpfopen
	3.9 Get file opened by QUICKPLOT: qpfile

	4 Delft3D-QUICKPLOT functionality
	References

