
Rev. 1.0 1/8 August 2012

birusinka.com

Birusinka periphery units (used with osinka32 MCU)
User manual

Periphery user manual

Summary

This document describes available periphery units used together with osinka32 MCU.

2/8

Periphery user manual

Table of Contents

 1 General notes.. 4
 2 16-bit timer... 4
 3 32-bit timer... 5
 4 UART... 6

3/8

Periphery user manual

 1 General notes
Osinka32 MCU can access the same address in IO space as byte, word and dword. This effect is used to
minimize the addressable space taken by each periphery unit: performed function depends not only on
address but also on width of the operand. Both address and width will be given during description.

Reference design example will in certain cases contain several instances of the same periphery. For
example, it can contain several 16-bit timers, several 32-bit timers and so on. Each periphery unit occupies a
certain range in the common IO address space. Base addresses are indicated in a separate reference
design related document.

 2 16-bit timer
Module IoTimer16A is located in the file “IoTimers.v”.

When enabled, timer starts counting from zero up. There are 2 configurable compare values: CmpA and
CmpB. When timer counter reaches one of these values it indicates this event by a flag accessible to the
software. It can generate IRQ if IRQ source is enabled (see table below). It can optionally restart from zero,
stop or copy CmpB to CmpA. These functions can be enabled by the corresponding bit in the control register
(see table below).

4/8

Timer16

AAddr[1:0]

AMiso[15:0]

AMosi[15:0]

AIoWrEn[1:0]

AIoRdEn[1:0]
AIrq

AClkH

AResetB

AClkEn IO
interface

Clock
&

Reset

Interrupt
requests

Timer16 MCU interface

Periphery user manual

Timer16 software interface
A Width Name Bit index and function

0 byte Ctrl Write
7 – Stop counting when Counter = CmpB
6 – Reset Counter to Zero and continue from zero if Counter = CmpB
5 – Stop counting when Counter = CmpA
4 – Reset Counter to Zero and continue from zero if Counter = CmpA
3 – Generate IRQ if Counter = CmpB
2 – Generate IRQ if Counter = CmpA
1 – Copy CmpB to CmpA if Counter = CmpA
0 – Enable counter

Read
7:4 – Previously written value
3 – CmpFlagA. This bit is set once Counter = CmpB. Reset by software. Write 0x08 to address 4 to reset
2 – CmpFlagB. This bit is set once Counter = CmpA. Reset by software. Write 0x04 to address 4 to reset
1:0 – Previously written value

1 word CmpA Write/Read
15:0 – Counter compare value A

2 word CmpB Write/Read
15:0 – Counter compare value B

3 byte IrqR Write
7:4 – RFU
3 – Write this bit to “1” to reset CmpFlagA and corresponding IRQ (if enabled)
2 – Write this bit to “1” to reset CmpFlagB and corresponding IRQ (if enabled)
1:0 RFU

Read
Reading this address has no effect

 3 32-bit timer
Module IoTimer32A is located in the file “IoTimers.v”.

32-bit timer is very similar to a 16-bit one described before. The main difference is the counter width.

When enabled, timer starts counting from zero up. There are 2 configurable compare values: CmpA and
CmpB. When timer counter reaches one of these values it indicates this event by a flag accessible to the
software. It can generate IRQ if IRQ source is enabled (see table below). It can optionally restart from zero,
stop or copy CmpB to CmpA. These functions can be enabled by the corresponding bit in the control register
(see table below).

5/8

Timer32

AAddr[1:0]

AMiso[31:0]

AMosi[31:0]

AIoWrEn[2:0]

AIoRdEn[2:0]
AIrq

AClkH

AResetB

AClkEn IO
interface

Clock
&

Reset

Interrupt
requests

Timer32 MCU interface

Periphery user manual

Timer32 software interface
A Width Name Bit index and function

0 byte Ctrl Write
7 – Stop counting when Counter = CmpB
6 – Reset Counter to Zero and continue from zero if Counter = CmpB
5 – Stop counting when Counter = CmpA
4 – Reset Counter to Zero and continue from zero if Counter = CmpA
3 – Generate IRQ if Counter = CmpB
2 – Generate IRQ if Counter = CmpA
1 – Copy CmpB to CmpA if Counter = CmpA
0 – Enable counter

Read
7:4 – Previously written value
3 – CmpFlagA. This bit is set once Counter = CmpB. Reset by software. Write 0x08 to address 4 to reset
2 – CmpFlagB. This bit is set once Counter = CmpA. Reset by software. Write 0x04 to address 4 to reset
1:0 – Previously written value

1 dword CmpA Write/Read
15:0 – Counter compare value A

2 dword CmpB Write/Read
15:0 – Counter compare value B

3 byte IrqR Write
7:4 – RFU
3 – Write this bit to “1” to reset CmpFlagA and corresponding IRQ (if enabled)
2 – Write this bit to “1” to reset CmpFlagB and corresponding IRQ (if enabled)
1:0 RFU

Read
Reading this address has no effect

 4 UART
Module IoUart is located in the file “IoUart.v”.

UART transmits and receives data using RS232 interface. It has internal 4-byte buffer for transmission and 4-
byte buffer for reception. Signal ATxEn is used to enable or disable transmission output. Implementation on

6/8

UART

AAddr[1:0]

AMiso[15:0]

AMosi[15:0]

AIoWrEn[1:0]

AIoRdEn[1:0]
AIrq

AClkH

AResetB

AClkEn IO
interface

Clock
&

Reset

Interrupt
requests

UART MCU interface

ATxEn

ATx

ARx

External
interface

Periphery user manual

the top level can use this signal to switch ATx into high-impedance state. This allows using TX pin as a
general-purpose I/O pin. When ATxEn is 1, pin ATx outputs UART signal. When ATxEn is 0, top level digital
implementation can disconnect UART output and drive this I/O pin by something else.

Working with UART is quite simple and straightforward. Software must configure Baud Rate and optionally
IRQ. Then enable transmission, reception or both. All data bytes written to Data register will be transmitted to
the line. All data received from the line will be available to the software through Data register.

There is a 4-byte FIFO buffer for transmission. Before writing to the FIFO software must verify if there is a
space. Software must not write into the transmission FIFO if it is full.

There is a 4-byte FIFO buffer for reception. Before reading data from the FIFO software must verify if there is
any data. Software must not read from the reception FIFO if it is empty.

UART software interface
A Width Name Bit index and function

0 byte Ctrl Write
7 – TX enable. Enable transmission
6 – RX enable. Enable reception
5 – RFU
4 – RFU
3 – Generate IRQ if transmission buffer is empty
2 – Generate IRQ if reception buffer is empty
1 – Generate IRQ if there is a space in transmission buffer (i.e at least 1 byte can be written)
0 – Generate IRQ if reception buffer contains data (i.e. at least 1 byte can be read)

Read
7:6 – Previously written value
5 – RFU
4 – RFU
3 – Indicates that transmission buffer is empty
2 – Indicates that reception buffer is empty
1 – Indicates that data can be written to transmission buffer
0 – Indicates that data can be read from reception buffer

1 word Baud Write/Read
15:0 – Baud rate divider. Baud_rate = CLK / (Baud_Rate_Divider+1)

2 byte Data Write
7:0 – Data byte to be sent. Before writing verify bit 1 in control register if FIFO has space and data can be written

Read
7:0 – Data byte received from the line. Before reading verify bit 0 in control register if FIFO has any data. Do not read
from the empty FIFO buffer

7/8

Periphery user manual

8/8

Disclaimer
The information contained in this document is for general information purposes only. The information is provided by birusinka.com and
while we try to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied,

about the completeness, accuracy, reliability, suitability or availability with respect to the document or the information, products, services,
or related content for any purpose. Any reliance you place on such information is therefore strictly at your own risk.

In no event will we be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or
damage whatsoever arising from loss of data or profits arising out of, or in connection with, the use of this document.

	1 General notes
	2 16-bit timer
	3 32-bit timer
	4 UART

