

Oct-07 AS-5216-DLL Manual.doc 1

Avantes website: http://www.avantes.com email: Info@avantes.com

AS-5216-DLL

Interface Package for 32 bit Windows Applications

Version 1.4.0.0

USER’S MANUAL

October 2007

Avantes B.V.

Soerense Zand 4a
NL-6961 LL Eerbeek
The Netherlands
Tel: +31-313-670170
Fax: +31-313-670179

Web: www.avantes.com
Email: info@avantes.com

2 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

Microsoft, Visual C++, Visual Basic, Visual C# , Windows, Windows 95/98/Me, Windows
NT/2000/XP and Microsoft Office are registered trademarks of the Microsoft Corporation. Windows
Vista is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries

Borland and Borland C++ are registered trademarks and C++Builder and Delphi are
trademarks of Borland International, Inc.

LabVIEW is a trademark of the National Instruments Corporation

Copyright © 2007 Avantes bv

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from Avantes bv.
This manual is sold as part of an order and subject to the condition that it shall not, by
way of trade or otherwise, be lent, re-sold, hired out or otherwise circulated without the
prior consent of Avantes bv in any form of binding or cover other than that in
which it is published.
Every effort has been made to make this manual as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis. Avantes bv shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this manual.

Oct-07 AS-5216-DLL Manual.doc 3

Avantes website: http://www.avantes.com email: Info@avantes.com

Software License

THE INFORMATION AND CODE PROVIDED HEREUNDER (COLLECTIVELY REFERRED TO
AS “SOFTWARE”) IS PROVIDED AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
AVANTES BV OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS
PROFITS OR SPECIAL DAMAGES, EVEN IF AVANTES BV OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.

This Software gives you the ability to write applications to acquire and process data from Avantes
equipment. You have the right to redistribute the libraries contained in the Software,
subject to the following conditions:

1. You are developing applications to control Avantes equipment. If you use the
code contained herein to develop applications for other purposes, you MUST obtain a
separate software license .
2. You distribute only the drivers necessary to support your application.
3. You place all copyright notices and other protective disclaimers and notices contained on
the Software on all copies of the Software and your software product.
4. You or your company provides technical support to the users of your application. Avantes bv will not
provide software support to these customers.
5. You agree to indemnify, hold harmless, and defend Avantes bv and its suppliers
from and against any claims or lawsuits, including attorneys’ fees that arise or result from
the use or distribution of your software product and any modifications to the Software.

4 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

0 INSTALLATION...6

1 VERSION HISTORY..8

1.1 New in version 1.4.0.0 .. 8

1.2 New in version 1.3.0.0 .. 9

1.3 New in version 1.2.0.0 .. 9

1.4 New in version 1.1.0.0 .. 9

1.5 New in version 1.0.0.0: as5216.dll versus as161.dll... 10
1.5.1 Data acquisition ... 10
1.5.2 Synchronization in Multichannel systems ... 11
1.5.3 Laser control and integration time delay, e.g. for LIBS .. 11
1.5.4 USB2 platform specific functions.. 12

2 AS-5216-DLL DESCRIPTION ...13

2.1 Interface overview ... 13

2.2 Usage AS-5216-DLL.. 13

2.3 Exported functions .. 14
2.3.1 AVS_Init.. 14
2.3.2 AVS_Done... 14
2.3.3 AVS_GetNrOfDevices .. 14
2.3.4 AVS_GetList ... 15
2.3.5 AVS_Activate.. 15
2.3.6 AVS_Deactivate .. 15
2.3.7 AVS_Register .. 16
2.3.8 AVS_PrepareMeasure ... 16
2.3.9 AVS_Measure.. 16
2.3.10 AVS_GetLambda .. 17
2.3.11 AVS_GetNumPixels.. 17
2.3.12 AVS_GetParameter ... 18
2.3.13 AVS_PollScan ... 18
2.3.14 AVS_GetScopeData .. 18
2.3.15 AVS_GetSaturatedPixels... 19
2.3.16 AVS_GetAnalogIn .. 19
2.3.17 AVS_GetDigIn .. 20
2.3.18 AVS_GetVersionInfo .. 20
2.3.19 AVS_GetFileSize .. 21
2.3.20 AVS_GetFile ... 21
2.3.21 AVS_GetFirstFile .. 22
2.3.22 AVS_GetNextFile.. 22
2.3.23 AVS_DeleteFile... 23
2.3.24 AVS_GetFirstDirectory ... 23
2.3.25 AVS_GetNextDirectory .. 23
2.3.26 AVS_DeleteDirectory.. 24
2.3.27 AVS_SetDirectory... 24

Oct-07 AS-5216-DLL Manual.doc 5

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.28 AVS_SaveSpectraToSDCard .. 25
2.3.29 AVS_SetParameter.. 26
2.3.30 AVS_SetAnalogOut .. 26
2.3.31 AVS_SetDigOut .. 26
2.3.32 AVS_SetPwmOut.. 27
2.3.33 AVS_SetSyncMode... 28
2.3.34 AVS_StopMeasure .. 28
2.3.35 AVS_SetPrescanMode .. 29
2.3.36 AVS_UseHighResAdc .. 30

2.4 Data Elements .. 31
2.4.1 Return value constants... 38
2.4.2 Windows messages.. 40

3 EXAMPLE SOURCE CODE ... 41

3.1 Initialization and Activation of a spectrometer .. 41

3.2 Starting a measurement .. 42
3.2.1 Measurement structure: Start- and Stoppixel .. 42
3.2.2 Measurement structure: Integration Time ... 43
3.2.3 Measurement structure: Integration Delay .. 43
3.2.4 Measurement structure: Number of Averages... 43
3.2.5 Measurement structure: Dynamic Dark Correction... 43
3.2.6 Measurement structure: Smoothing... 44
3.2.7 Measurement structure: Saturation Detection ... 45
3.2.8 Measurement structure: Trigger Type ... 45
3.2.9 Measurement structure: Control Settings .. 47

3.3 Measurement result... 48

3.4 Digital IO.. 49

3.5 Analog IO ... 49

3.6 EEProm .. 50
3.6.1 EEProm structure: Detector Parameters .. 50
3.6.2 EEProm structure: Standalone Parameters .. 54
3.6.3 EEProm structure: Irradiance, Reflectance Calibration and Spectrum Correction.......................... 55
3.6.4 EEProm structure: Temperature Sensors... 56
3.6.5 EEProm structure: Tec Control ... 56
3.6.6 EEProm structure: ProcessControl .. 57

6 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

0 Installation

AS-5216-DLL is a 32-bit driver interface package and can be installed under the following operating
systems:

• Windows 95/98/Me

• Windows NT/2000/XP/Vista

The installation program can be started by running the file “setup.exe” from the CD-ROM.

Installation Dialogs
The setup program will check
the system configuration of
the computer. If no problems
are detected, the first dialog is
the “Welcome” dialog with
some general information.

In the next dialog, the
destination directory for the
AS5216-DLL software can be
changed. The default
destination directory is
C:\AS5216-DLL_1.4. If you
want to install the software to
a different directory, click the
Browse button, select a new
directory and click OK. If the
specified directory does not
exist, it will be created.

This installation is password protected. Enter the following
password to proceed with the installation:

Avantes6961LL4a

Oct-07 AS-5216-DLL Manual.doc 7

Avantes website: http://www.avantes.com email: Info@avantes.com

During this installation, the installation program will check if the most recent USB driver has been
installed already at the PC. If no driver is found, or if the driver needs to be upgraded, the Device
Driver Installation Wizard is launched automatically, click Next. If the Operating System is Windows
Vista, it will display a message that it can’t verify the publisher of the driver software, select “Install
this driver software anyway”.

After the drivers have been installed successfully, the dialog at the right is displayed, click Finish.
After all files have been installed, the “Installation Complete” dialog shows up. Click Finish.

Connecting the hardware

Connect the USB connector to a USB port on your computer with the supplied USB cable. Windows
XP will display the “Found New Hardware” dialog. Select the (default) option to install the software
automatically, and click next. After the Hardware Wizard has completed, the following dialog is
displayed under Windows XP:

Click Finish to complete the installation.

Please note that if the spectrometer is
Connected to another USB port to which it has
not been connected before, the “Found New
Hardware Wizard” will need to install the
software for this port as well. For this reason,
this Wizard will run “NrOfChannel” times for a
multichannel AvaSpec-USB2 spectrometer
system. This happens because inside the
housing, the USB ports for each spectrometer
channel are connected to a USB-Hub.

Windows Vista will install the driver automatically, without displaying the “Found New Hardware
Wizard” dialogs.

Launching the software
This AS-5216-DLL manual and several example programs can be started from the Windows Start
Menu. The source code of the example programs can be found in the Examples folder.

8 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

1 Version History

This section will be used to describe the new features in the as5216.dll, compared to the previous
versions.

1.1 New in version 1.4.0.0

- Implementation of the StoreToRam function, which allows the storing of scans at high speed

(as fast as 1.1 msecs per scan for the AvaSpec-2048-USB2, and 0.1 msecs per scan for the
AvaSpec-102-USB2) in the spectrometer, without the overhead of USB communication.
About 4MB of storage is available, which allows for 1013 full spectra with the AvaSpec-2048-
USB2 and 19784 for the AvaSpec-102-USB2, or a lot more if the pixelrange is reduced by
selecting the start- and stoppixel. StoreToRam requires firmware version 0.20 or later. A
firmware upgrade utility can be downloaded from our website.

- Implementation of directory support for the Secure Digital Card.
- In a few occasions there have been problems with detecting and/or activating AvaSpec-USB2

spectrometers under Windows Vista. The reason for this is that, according to MicroSoft, “a
USB device takes a long time to resume from selective suspend mode on a Windows Vista-
based computer that uses UHCI (Universal Host Controller Interface) USB controllers. In the
as5216.dll version 1.4, a workaround has been implemented to solve this problem.

- New sample programs for Visual C++ 2005, Delphi and LabView
o The Visual C++ 2005 sample program has been created in the Express version.
o A few sample programs in Delphi have been added: besides the comprehensive

sample program that was already available in earlier as5216.dll versions, 3 new
sample programs have been added:
� A multichannel sample program in which up to 16 spectrometer channels can

run simultaneously in SYNC mode or ASYNC mode.
� An sdcard sample program which demonstrates how to save spectra to an

onboard sdcard
� A simple program with only a few lines of code which demonstrates the basic

data acquisition for a single channel AvaSpec-USB2 spectrometer.
o The LabView sample programs have been updated to LabView version 8.2 (earlier

versions can be obtained on request). There are 4 sample programs:
� a comprehensive program for a single channel AvaSpec-USB2, which also

includes subvi’s for all functions in the as5216.dll
� a program that illustrates the use of Windows Messaging in LabView.
� a simple sample program that uses AVS_PollScan instead of Windows

Messaging
� a multichannel example program which illustrates how to run multiple

spectrometer channels (fixed to 2 channels in the example program) in SYNC
mode, as well as ASYNC mode.

- In this manual, examples have been added for using the function AVS_UseHighResAdc in
combination with nonlinearity correction and/or irradiance calibration, see section 3.6.1 under
“Using the nonlinearity correction polynomial in combination with the 16bit ADC Counts
range” and section 3.6.3 under “How to convert ScopeData (A/D Counts) to a power
distribution [µWatt/(cm2.nm)]”.

Oct-07 AS-5216-DLL Manual.doc 9

Avantes website: http://www.avantes.com email: Info@avantes.com

1.2 New in version 1.3.0.0

- Windows Vista support
- New Sample programs in Visual C# and Visual Basic.NET 2001. These sample programs can

also be used in more recent .NET versions (2005) in which case the Visual Studio Conversion
Wizard will convert the project to the new version. Note that for Visual Basic .NET, there was
already a VB .NET 2005 sample program available.

- ProcessControl Structure added for standalone functionality (see section 3.6.6)
- Stability issues solved. Some spectrometer types (mainly the AvaSpec-102-USB2) have

shown a lock up in continuous measurements over a long period at short integration time.
Another problem that showed up very rarely, concerns multichannel spectrometers running in
synchronization mode. Both problems have been solved in as5216.dll version 1.3.

- Support for the AvaSpec-2048x14 High UV-sensitivity back-thinned CCD Spectrometer. The
new detector type used in this spectrometer is the HAMS9840 and is supported in as5216.dll
version 1.3 and all the sample programs.

- The new function AVS_UseHighResAdc has been added to enable the full 16-bit ADC range
which is available with a 16-bit ADC on the as5216 board as of revision 1D. See also section
2.3.36.

- A minor bug in the smoothing routine has been solved.
- The sample program in Visual Basic 6.0 has been modified because it crashed after running

continuously for a number of hours. The cause was found to be in the VB6 “Timer” function
that was used to show some statistics about the measurement speed. By eliminating the Timer
function from the sample program, this problem was solved. Feedback from VB6
programmers who know how to use the Timer function (or an equivalent) without crashing the
application is appreciated.

1.3 New in version 1.2.0.0

Visual Basic 6.0 developers may have noticed that the programs developed with as5216.dll v.1.1 or
earlier and Visual Basic 6.0 are stable, but the Visual Basic 6.0 Integrated Development Environment
(IDE) was not. Running the program from the VB6 IDE, caused the IDE to close down without saving
any changes, as soon as the program was closed. To solve this problem, a special as5216.dll version
(1.2.0.1) has been created which can be used in the VB6 IDE to develop and debug your programs.
AS5216.dll version 1.2.0.1 will be installed in the VB6 example folder, as well as a readme.txt file
with recommendations for redistributing programs developed with Visual Basic 6.0.
Furthermore, a parameter structure has been added to the EEProm to control the TEC cooling for the
NIR spectrometer (AvaSpec-256-NIR2.2). More detailed information about this TEC Control
structure can be found in section 3.6.5.
The last change in version 1.2 is only in this manual. For spectrometers that have been calibrated for
irradiance measurements, the IrradianceType structure contains data that can be used to convert the
ScopeData (A/D Counts) to an irradiance spectrum. Section 3.6.3 in this manual decribes more in
detail how this can be done.

1.4 New in version 1.1.0.0

The as5216.dll version 1.1 includes one new function (AVS_SetPrescanMode) which can be used for
the AvaSpec-3648 spectrometer. Furthermore, a lower and upper limit has been added to the
nonlinearity polynomial to avoid incorrect correction for very low and/or high counts. Finally,
example programs with source in LabView (7.1), Visual C++ (6.0), Visual Basic (6.0) and Visual
Basic .NET 2005 (2.0) have been added to the already existing examples in Delphi (6.0) and Borland

10 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

C++ (5.0). The AVS_SetPrescanMode function for the AvaSpec-3648 is described in section 2.3.35,
and detailed information about how to apply the nonlinearity correction can be found in section 3.6.1

1.5 New in version 1.0.0.0: as5216.dll versus as161.dll

Although there is no previous version for as5216.dll v1.0, a comparison can be made for programmers
who have used the as161.dll to write application software for the USB1 platform AvaSpec
spectrometers.

A number of improvements have been implemented in the as5216.dll when comparing the functions to
the as161.dll. These improvements can be grouped into the following categories:

• Data acquisition
• Synchronization in multichannel systems
• Laser control and integration time delay, e.g. for Laser Induced Breakdown Spectroscopy
• USB2 platform spectrometer

These categories will be described in sections 1.5.1 to 1.5.4

1.5.1 Data acquisition

Just like with the as161.dll, a spectrum can be collected by calling the function AVS_Measure, and
when a scan has been sent to the PC, it can be retrieved with the function AVS_GetScopeData. The
following improvements have been realized in as5216.dll for the USB2 platform spectrometers:

1. Starting a measurement. In continuous mode, the USB1 platform spectrometers always run

continuously, also if no measurement requests are posted. A call to AVS_Measure in as161.dll
results in returning the first available scan (see section 2.2 of the as161.dll manual). The USB2
platform spectrometers are in idle mode if not scanning, and will start a scan if a measurement
request (AVS_Measure) from the as5216.dll is received.

2. Number of measurements. The AVS_Measure function in as161.dll always results in one single
scan. A spectrum is only sent to the PC if a measurement request is received. The AVS_Measure
function in as5216.dll includes a “nrms” argument which specifies the number of measurements
the spectrometer should perform after one measurement request.

3. Stopping a measurement. A measurement in as161.dll cannot be interrupted. After a
measurement request, the application must wait for the response before changing measurement
parameters or sending other commands to the spectrometer. The as5216.dll includes a function
AVS_StopMeasure that can be called to interrupt a measurement request.

4. Spectrometer not blocked while measurement is pending. With the USB1 platform
spectrometers, the spectrometer is blocked for receiving commands as long as a measurement is
pending. A measurement is pending between the call to AVS_Measure and the DATA_READY
message from the as161.dll to the application. The USB2 platform spectrometers are not blocked
from receiving commands while a measurement is pending. This means that you can e.g. control
the digital and analog IO ports while a measurement is pending.

5. Measurement parameters. There are a lot of parameters involved that determine the result of a
scan such as integration time, number of averages, smoothing, pixelselection, dark correction etc...
In the as161.dll, a lot of different functions are used to set these parameters: integration time and
averaging are set in AVS_Measure, smoothing in AVS_SetSmoothing, Pixelselection in
AVS_SetPixelSelection, etc… The as5216.dll uses a measurement structure which includes all
measurement parameters and uses only one function (AVS_PrepareMeasure) to send these
parameters to the spectrometer.

Oct-07 AS-5216-DLL Manual.doc 11

Avantes website: http://www.avantes.com email: Info@avantes.com

6. External Trigger. The only setting in the as161.dll for external trigger functionality is to switch
this mode on or off by calling the function AVS_SetExternalTrigger. In external trigger mode, the
USB1 platform spectrometer will start one single scan on the rising edge of the TTL pulse that is
sent to the external trigger input port of the spectrometer. In the as5216.dll, the USB2 platform
spectrometer can be set into external trigger mode by setting the trigger mode parameter into
hardware trigger mode. If the trigger type parameter is set to “EDGE”, the number of
measurements to perform after receiving one TTL pulse can be specified by setting the nrms
parameter in the AVS_Measure function. If the trigger type parameter is set to “LEVEL”, the
spectrometer will keep scanning as long as the TTL input signal is HIGH, and when the signal
becomes LOW, it will return the average scan over all scans that were performed during the HIGH
time period.

7. Integration time. The integration time in the as161.dll can be set with a 1 ms resolution. In the
as5216.dll, a 0.01 ms (10 µs) resolution is used for the integration time.

8. Timestamp. The AVS_GetScopeData function in as5216.dll includes a timestamp in 10 µs
resolution ticks generated by the microcontroller, which can be used to measure the time between
two consecutive (and processed) scans very accurately.

1.5.2 Synchronization in Multichannel systems

There is a major difference between the USB1 and USB2 platform multichannel systems. The USB1
platform multichannel systems always needs the same detectortype for each channel. Also, the
integration time and number of averages in a measurement request is equal for all channels.
With the multiple usb support in the as161.dll (v.1.5 and later), spectrometers with different detectors
and at different integration time or average can run simultaneously, but in that case there is no
synchronization between these spectrometers.
With the USB2 platform multichannel systems, the advantage of the multiple USB implementation (up
to 127 spectrometers, possibility of using different detectors, integration time and averaging per
channel) has been combined with the advantage of the as161 multichannel systems (synchronization).
All USB2 platform spectrometers can be connected by a SYNC cable. In syncmode, one spectrometer
is configured as “Master”, all other (“slave”) spectrometers are set into “Trigger by SYNC” mode.
After a measurement request for the slave spectrometer(s), these spectrometers will wait until they
receive the trigger signal on the SYNC cable. This SYNC signal will be started if a measurement
request is posted for the Master spectrometer.

1.5.3 Laser control and integration time delay, e.g. for LIBS

If the AvaSpec-2048FT (USB1 platform) is set in external hardware trigger mode, an external trigger
pulse results in an output signal (pulse width 15 µs) at pin2 of the DB15 connector (DO2), about 1.3
µs after the trigger pulse was received. The pulse at DO2 can be used to fire a laser in a LIBS
application. The function AVS_SetIntegrationDelay can be used to specify an integration time delay,
which is related to DO2.
With the AvaSpec-2048-USB2 and AvaSpec-3648-USB2, this feature has been improved at the
following points:
1. Not limited to external trigger mode. The output signal and integration delay can be generated in

external trigger mode, but also in “normal” (software trigger) mode.
2. Multiple measurements. The number of measurements can be set by the nrms parameter, in the

AVS_Measure function.
3. Pulse width. The “laserpulse” width at pin 23 of the DB26 connector can be set by the user,

between 0 and 1 ms (21 nanosec steps).

12 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

4. Laser Delay. The 1.3 µs period between receiving a trigger (measurement request in software
trigger mode or TTL pulse in hardware trigger mode) can be delayed from 1.3µs to 89 sec (21ns
steps).

1.5.4 USB2 platform specific functions

The functions that have been added to as5216.dll to support the new hardware features in the USB2
platform spectrometers, can be grouped into the following categories:

• Analog IO
• Digital IO and Pulse Width Modulation
• SDCard support
• Eeprom IO

1. Analog IO. The USB2 platform spectrometers have 2 programmable analog output pins and 2

programmable analog input pins available at the DB26 connector. The functions
AVS_SetAnalogOut and AVS_GetAnalogIn can be used to control these ports. Moreover, a
number of onboard analog signals can be retrieved with the AVS_GetAnalogIn function. One of
these onboard signals is an NTC thermistor which can be used for onboard temperature
measurements.

2. Digital IO and Pulse Width Modulation. The USB2 platform spectrometers have 10
programmable digital output pins and 3 programmable input pins available at the DB26 connector.
The function AVS_SetDigOut and AVS_GetDigIn can be used to control these ports. Moreover, 6
out of the 10 programmable ouput ports can be configured for pulse width modulation. With the
AVS_SetPwmOut function, a frequency and duty cycle can be programmed for these 6 digital
output ports

3. SDCard support. If the spectrometer was ordered with an SDxxx card, the function
AVS_SaveSpectraToSDCard can be used to save spectra at the SDCard. To access the files that
are saved at the SDCard, the functions AVS_GetFileSize, AVS_GetFile, AVS_GetFirstFile,
AVS_GetNextFile and AVS_DeleteFile can be used.

4. Eeprom IO. With the USB1 platform spectrometers, it is also possible to read/write a number of
parameters from/to Eeprom with the as161.dll, such as start- and stoppixel
(AVS_GetStartStopPixel and AVS_SetStartStopPixel), wavelength calibration coefficients
(AVS_GetWLCoef and AVS_SetWLCoef), gain (AVS_GetGain and AVS_SetGain) and offset
(AVS_GetOffset and AVS_SetOffset). The Eeprom for the USB2 spectrometers has a lot more
memory available to store all kind of parameters. These parameters have been defined in the
DeviceConfigType structure (see section 2.4). The functions AVS_GetParameter and
AVS_SetParameter in as5216.dll can be used to read/write the DeviceConfigType structure
from/to Eeprom.

Oct-07 AS-5216-DLL Manual.doc 13

Avantes website: http://www.avantes.com email: Info@avantes.com

2 AS-5216-DLL description

2.1 Interface overview

The interface from the PC to the DLL is based on a function interface. The interface allows the
application to configure a spectrometer and to receive and send data from and to the spectrometer.

2.2 Usage AS-5216-DLL

The DLL uses a single pair of open and close functions (AVS_Init() and AVS_Done()) that have to be
called by an application. As long as the open function is not yet called or not successfully called, all
other functions will return an error code.
The open function (AVS_Init()) tries to open a communication port for all connected devices.
The close function (AVS_Done()) closes the communication port(s) and releases all internal data
storage.

The interface between the application and the DLL can be divided in four functional groups:
• internal data read functions, which read device configuration data from the internal DLL storage.
• blocking control functions which send a request to the device and wait till an answer is received or

a time-out occurs before returning control to the application
• non-blocking data read functions, which send a request to the device and then return control to the

application. After the answer from the device is received, or a timeout occurs a notification is sent
to the application

• data send functions which send device configuration data to the device

After the application has initialised it should select the spectrometer(s) it wants to use. Therefore, the
following steps have to be taken:
1. Call AVS_GetNrOfDevices to determine the number of attached devices
2. Allocate buffer to store identity info (RequiredSize = NrDevices * sizeof(AvsIdentityType))
3. Call AVS_GetList with the RequiredSize and obtain the list of connected spectrometers
4. Select the spectrometers you want to use with AVS_Activate
5. Register a notification window handle with AVS_Register to detect device attachment/removal

14 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3 Exported functions

2.3.1 AVS_Init

Function: int AVS_Init
 (
 short a_Port
)
Group: Blocking control function
Description: Opens the communication with the spectrometer and initialises internal data structures
Parameters: a_Port: id. of port to be used:

-1: use auto-detect of USB or COM port
 0: use USB port
 1: use COM1 port
 2: use COM2 port
 3: use COM3 port
 4: use COM4 port
 etc….

Return: On success, number of connected device
On error, ERR_DEVICE_NOT_FOUND

2.3.2 AVS_Done

Function: int AVS_Done
 (
 Void
)
Group: Blocking control function
Description: Closes the communication and releases internal storage.
Parameters: None
Return: SUCCESS

2.3.3 AVS_GetNrOfDevices

Function: int AVS_GetNrOfDevices
 (
 void
)
Group: Blocking control function
Description: Internally checks the list of connected devices and returns the number of devices

currently attached.
Parameters: None
Return: > 0: number of devices in the list

0: no devices found

Oct-07 AS-5216-DLL Manual.doc 15

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.4 AVS_GetList

Function: int AVS_GetList
 (
 unsigned int

unsigned int*
AvsIdentityType*

a_ListSize,
a_pRequiredSize,
a_pList

)
Group: Blocking control function
Description: Returns device information for each spectrometer connected to the ports indicated at

AVS_Init.
Parameters: a_ListSize:

a_pRequiredSize:
a_pList:

number of bytes allocated by the caller to store the list data
number of bytes needed to store information
pointer to allocated buffer to store identity information

Return: > 0:
0:
ERROR_INVALID_SIZE

number of devices in the list
no devices found
if (a_pRequiredSize > a_ListSize) then allocate larger buffer
and retry operation

2.3.5 AVS_Activate

Function: AvsHandle AVS_Activate
 (
 AvsIdentityType* a_pDeviceId
)
Group: Blocking control function
Description: Activates selected spectrometer for communication and reads device configuration data

from Eeprom.
Parameters: On success: AvsHandle, handle to be used in subsequent function calls
Return: On error: INVALID_AVS_HANDLE_VALUE

2.3.6 AVS_Deactivate

Function: bool AVS_Deactivate
 (
 AvsHandle a_hDeviceId
)
Group: Blocking control function
Description: Closes communication with selected spectrometer.
Parameters: a_hDeviceId: device identifier returned by AVS_Activate
Return: true:

false:
device successfully closed
device identifier not found

16 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.7 AVS_Register

Function: bool AVS_Register
 (
 HWND a_hWnd
)
Group: Blocking control function
Description: Installs an application windows handle to which device attachment/removal messages

have to be sent
Parameters: a_hWnd: Application window handle
Return: true:

false:
Registration successful
registration failed or function not supported on OS

2.3.8 AVS_PrepareMeasure

Function: int AVS_PrepareMeasure
 (

AvsHandle a_hDevice,
MeasConfigType* a_pMeasConfig

)
Group: Blocking data write function
Description: Prepares measurement on the spectrometer using the specified measurement configuration.

a_hDevice: Device identifier returned by AVS_Activate Parameters:
a_pMeasConfig: pointer to structure containing measurement configuration
On success: ERR_SUCCESS Return:
On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_INVALID_PARAMETER
ERR_INVALID_PIXEL_RANGE
ERR_INVALID_CONFIGURATION (invalid fpga type)
ERR_TIMEOUT

2.3.9 AVS_Measure

Function: int AVS_Measure
 (

AvsHandle a_hDevice,
HWND a_hWnd,

 short a_Nmsr
)
Group: Non-Blocking data write function
Description: Starts measurement on the spectrometer
Parameters: a_hDevice: device identifier returned by AVS_Activate

Oct-07 AS-5216-DLL Manual.doc 17

Avantes website: http://www.avantes.com email: Info@avantes.com

a_hWnd window handle to notify application measurement result data is
available. The DLL sends a message to the window with command
WM_MEAS_READY, with SUCCESS or
INVALID_MEAS_DATA as WPARM value and a_hDevice as
LPARM value.

a_Nmsr number of measurements to do after one single call to AVS_Measure
(-1 is infinite)

On success: ERR_SUCCESS Return:
On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_INVALID_PARAMETER
ERR_INVALID_STATE (measurement already pending)

2.3.10 AVS_GetLambda

Function: int AVS_GetLambda
 (
 AvsHandle a_hDevice,
 double* a_pWavelength
)
Group: Internal data read function
Description: Returns the wavelength values corresponding to the pixels if available. This information is

stored in the DLL during the AVS_Activate() procedure.
The DLL does not test if a_pWaveLength is correctly allocated by the caller!

Parameters: a_hDevice:
a_pWaveLength:

device identifier returned by AVS_Activate
array of double, with array size equal to number of pixels

On success: ERR_SUCCESS Return:
On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

2.3.11 AVS_GetNumPixels

Function: int AVS_GetNumPixels
 (
 AvsHandle a_hDevice,
 unsigned short* a_pNumPixels
)
Group: Internal data read function
Description: Returns the number of pixels of a spectrometer. This information is stored in the DLL

during the AVS_Activate() procedure.
Parameters: a_hDevice:

a_pNumPixels:
device identifier returned by AVS_Activate
pointer to unsigned integer to store number of pixels

On success: ERR_SUCCESS Return:
On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

18 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.12 AVS_GetParameter

Function: int AVS_GetParameter
 (
 AvsHandle a_hDevice,
 unsigned int a_Size,
 unsigned int* a_pRequiredSize,
 DeviceConfigType* a_pData
)
Group: Internal data read function.
Description: Returns the device information of the spectrometer. This information is stored in the DLL

during the AVS_Activate() procedure.
Parameters: a_hDevice,

a_Size,
a_pRequiredSize,
a_pData

device identifier returned by AVS_Activate
number of bytes allocated by caller to store DeviceConfigType
number of bytes needed to store DeviceConfigType
pointer to buffer that will be filled with the spectrometer
configuration data

On success: ERR_SUCCESS Return:
On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_INVALID_SIZE (a_Size is smaller than required size)

2.3.13 AVS_PollScan

Function: int AVS_PollScan
 (
 AvsHandle a_hDevice
)
Group: Internal data read function
Description: Determines if new measurement results are available
Parameters: a_hDevice:: device identifier returned by AVS_Activate

On success: 0: no data available
1: data available
>1: When using the StoreToRam function, the return value signals
the number of scans available for retrieval.

Return:

On error: ERR_DEVICE_NOT_FOUND
ERR_INVALID_DEVICE_ID

2.3.14 AVS_GetScopeData

Function: int AVS_GetScopeData
 (
 AvsHandle a_hDevice,
 unsigned int* a_pTimeLabel,
 double* a_pSpectrum
)
Group: Internal data read function,
Description: Returns the pixel values of the last performed measurement. Should be called by the

application after the notification on AVS_Measure is triggered.
The DLL does not check the allocated buffer size!

Oct-07 AS-5216-DLL Manual.doc 19

Avantes website: http://www.avantes.com email: Info@avantes.com

Parameters: a_hDevice, device identifier returned by AVS_Activate
 a_pTimeLabel, ticks count last pixel of spectrum is received by microcontroller ticks

in 10 µS units since spectrometer started
 a_pSpectrum array of doubles, size equal to the selected pixelrange

On success: ERR_SUCCESS Return:
On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_INVALID_MEAS_DATA (no measurement data received)

2.3.15 AVS_GetSaturatedPixels

Function: int AVS_GetSaturatedPixels
 (
 AvsHandle a_hDevice,
 unsigned char* a_pSaturated
)
Group: Internal data read function,
Description: Returns for each pixel if that pixel was saturated (1) or not (0).
Parameters: a_hDevice device identifier returned by AVS_Activate
 a_pSaturated array of chars (each char indicates if saturation occurred for

corresponding pixel), size equal to the selected pixelrange
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_INVALID_MEAS_DATA (no measurement data received)
ERR_OPERATION_NOT_SUPPORTED
ERR_OPERATION_NOT_ENABLED

2.3.16 AVS_GetAnalogIn

Function: int AVS_GetAnalogIn
 (
 AvsHandle a_hDevice,
 unsigned char a_AnalogInId,
 float* a_pAnalogIn
)
Group: Blocking control function.
Description: Returns the status of the specified analog input
Parameters: a_hDevice: device identifier returned by AVS_Activate
 a_AnalogInId identifier of analog input

0 = thermistor on optical bench (NIR2.2)
1 = 1V2
2 = 5VIO
3 = 5VUSB
4 = AI2 = pin 18 at 26-pins connector
5 = AI1 = pin 9 at 26-pins connector
6 = NTC1 onboard thermistor
7 = Not used

20 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

 a_pAnalogIn: pointer to float for analog input value [Volts]
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_INVALID_PARAMETER (invalid analog input id.)
ERR_TIMEOUT (error in communication)

2.3.17 AVS_GetDigIn

Function: int AVS_GetDigIn
 (
 AvsHandle a_hDevice,
 unsigned char a_DigInId,
 unsigned char* a_pDigIn
)
Group: Blocking control function.
Description: Returns the status of the specified digital input
Parameters: a_hDevice: device identifier returned by AVS_Activate
 a_DigInId: identifier of digital input (1 – 3)

0 = DI1 = Pin 24 at 26-pins connector
1 = DI2 = Pin 7 at 26-pins connector
2 = DI3 = Pin 16 at 26-pins connector

 a_pDigIn: pointer to digital input status (0 – 1)
Return: On success: ERR_SUCCESS, a_pDigIn contains valid value
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_INVALID_PARAMETER (invalid digital input id.)
ERR_TIMEOUT (error in communication)

2.3.18 AVS_GetVersionInfo

Function: int AVS_GetVersionInfo
 (
 AvsHandle a_hDevice,
 unsigned char* a_pFPGAVersion,
 unsigned char* a_pFirmwareVersion,
 unsigned char* a_pDLLVersion
)
Group: Blocking read function
Description: Returns the status of the software version of the different parts. DLL does not check the

size of the buffers allocated by the caller.
Parameters: a_hDevice, device identifier returned by AVS_Activate
 a_pFPGAVersion, pointer to buffer to store FPGA software version (16 char.)
 a_pFirmwareVersion pointer to buffer to store Microcontroller software version (16

char.)
 a_pDLLVersion pointer to buffer to store DLL software version (16 char.)
Return: On success: ERR_SUCCESS, buffer contains valid value

Oct-07 AS-5216-DLL Manual.doc 21

Avantes website: http://www.avantes.com email: Info@avantes.com

 On error: ERR_DEVICE_NOT_FOUND
ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)

2.3.19 AVS_GetFileSize

Function: int AVS_GetFileSize

 (
 AvsHandle a_hDevice,
 unsigned char* a_pName,
 unsigned int* a_pSize
)
Group: Blocking read function
Description: Returns the file size in bytes if the file can be read from the SD card
Parameters: a_hDevice: device identifier returned by AVS_Activate
 a_pName: file name (14 characters including terminating zero)
 a_pSize: pointer to buffer to store length
Return: On success: ERR_SUCCESS, buffer contains valid value
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or file not found

2.3.20 AVS_GetFile

Function: int AVS_GetFile
 (
 AvsHandle a_hDevice,
 unsigned char* a_pName,
 unsigned char a_pDest,
 unsigned int a_pSize
)
Group: Blocking read function
Description: Returns the contents of a binary file from the SD card
Parameters: a_hDevice device identifier returned by AVS_Activate
 a_pName file name (14 characters including terminating zero)
 a_pDest pointer to buffer to store binary file data
 a_pSize length of buffer (expected file size, as determined with

AVS_GetFileSize, max. length is 64kB)
Return: On success: ERR_SUCCESS, buffer contains valid value
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or file not found

22 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.21 AVS_GetFirstFile

Function: int AVS_GetFirstFile
 (
 AvsHandle a_hDevice,
 unsigned char* a_pName
)
Group: Blocking read function
Description: Returns the name of the first file in the root directory of the SD card
Parameters: a_hDevice, device identifier returned by AVS_Activate
 a_pName file name (14 characters including terminating zero)
Return: On success: ERR_SUCCESS, buffer contains valid value
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or file not found

2.3.22 AVS_GetNextFile

Function: int AVS_GetNextFile
 (
 AvsHandle a_hDevice,
 unsigned char* a_pPrevName,
 unsigned char* a_pNextName
)
Group: Blocking read function
Description: Returns the name of the next file in root directory after a_pPrevName
Parameters: a_hDevice device identifier returned by AVS_Activate
 a_pPrevName file name (14 characters including terminating zero), this is the name

returned by AVS_GetFirstFile() or by the previous call to
AVS_GetNextFile()

 a_pNextName file name (14 characters including terminating zero)
Return: On success: ERR_SUCCESS, buffer contains valid value
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or no more files
on the SD card

Oct-07 AS-5216-DLL Manual.doc 23

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.23 AVS_DeleteFile

Function: int AVS_DeleteFile
 (
 AvsHandle a_hDevice,
 unsigned char* a_pName
)
Group: Blocking read function
Description: Deletes a file from the SD card
Parameters: a_hDevice device identifier returned by AVS_Activate
 a_pName file name (14 characters including terminating zero)
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or no more
files on the SD card

2.3.24 AVS_GetFirstDirectory

Function: int AVS_GetFirstDirectory
 (
 AvsHandle a_hDevice,
 unsigned char* a_pName
)
Group: Blocking read function
Description: Returns the name of the directory in the root directory of the SD card
Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active

device)
 a_pName: directory name (14 characters including terminating zero)
Return: On success: ERR_SUCCESS (a_pName buffer contains valid info)
 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in
DLL)
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or no
directory found on the SD card

2.3.25 AVS_GetNextDirectory

Function: int AVS_GetNextDirectory
 (
 AvsHandle a_hDevice,
 unsigned char* a_pPrevName,
 unsigned char* a_pNextName
)
Group: Blocking read function
Description: Returns the name of the next directory in the root directory after a_pPrevName
Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active device)

24 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

 a_pPrevName directory name (14 characters including terminating zero), this is the
name returned by AVS_GetFirstDirectory() or by the previous call to
AVS_GetNextDirectory()

 a_pNextName directory name (14 characters including terminating zero)
Return: On success: ERR_SUCCESS, a_pNextName contains valid value
 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in DLL)
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or no more
directories on the SD card

2.3.26 AVS_DeleteDirectory

Function: int AVS_DeleteDirectory
 (
 AvsHandle a_hDevice,
 unsigned char* a_pName
)
Group: Blocking read function
Description: Deletes a directory from the SD card
Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active

device)
 a_pName directory name (14 characters including terminating zero)
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in
DLL)
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present or no more
directories on the SD card

2.3.27 AVS_SetDirectory

Function: int AVS_SetDirectory
 (
 AvsHandle a_hDevice,
 char a_aFileRootName[6]
)
Group: Blocking data send function
Description: Sets current working directory. All file-functions will act on this directory.
Parameters: a_hDevice device identifier returned by AVS_Activate (-1 for first active

device)
 a_aFileRootName string that sets the current working directory for all file-based

functions
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND (communication not open yet)

ERR_INVALID_DEVICE_ID (device handle is not known in
DLL)
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER, no SD card present

Oct-07 AS-5216-DLL Manual.doc 25

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.28 AVS_SaveSpectraToSDCard

Function: int AVS_SaveSpectraToSDCard
 (
 AvsHandle a_hDevice,
 bool a_Enable,
 unsigned char a_SpectrumType,
 char a_aFileRootName[6],
 TimeStampType a_TimeStamp
)
Group: Blocking data send function.
Description: Enables/disables writing spectra to file (if disabled the other parameters are neglected)
Parameters: a_hDevice device identifier returned by AVS_Activate
 a_Enable enable/disable storage of spectra to SD card
 a_SpectrumType 0 = Dark Spectrum

1 = Reference Spectrum
2 = Normal Spectrum
The spectrumtype determines the file extension (drk, ref or roh)

 a_aFileRootName[6] string that is used as first part of the name of the stored spectra
 a_TimeStamp file time and date that will be used when the spectra are stored
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER
ERR_OPERATION_NOT_SUPPORTED (SD Card not present)

26 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.29 AVS_SetParameter

Function: int AVS_SetParameter
 (
 AvsHandle a_hDevice,
 DeviceConfigType* a_pData
)
Group: Blocking data send function.
Description: Overwrites the device configuration data internally and in the spectrometer. The data is

not checked.
Parameters: a_hDevice, device identifier returned by AVS_Activate
 a_pData pointer to a DeviceConfigType structure
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_OPERATION_PENDING
ERR_INVALID_STATE (measurement pending)

2.3.30 AVS_SetAnalogOut

Function: int AVS_SetAnalogOut
 (
 AvsHandle a_hDevice,
 unsigned char a_PortId,
 float a_Value
)
Group: Blocking data send function
Description: Sets the analog output value for the specified analog output
Parameters: a_hDevice device identifier returned by AVS_Activate
 a_PortId, identifier for one of the two output signals:

0 = AO1 = pin 17 at 26-pins connector
1 = AO2 = pin 26 at 26-pins connector

 a_Value DAC value to be set in Volts (internally an 8-bits DAC is used)
with range 0 – 5.0V

Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER

2.3.31 AVS_SetDigOut

Function: int AVS_SetDigOut
 (
 AvsHandle a_hDevice
 unsigned char a_PortId,
 unsigned char a_Value
)

Oct-07 AS-5216-DLL Manual.doc 27

Avantes website: http://www.avantes.com email: Info@avantes.com

Group: Blocking data send function.
Description: Sets the digital output value for the specified digital output
Parameters: a_hDevice device identifier returned by AVS_Activate
 a_PortId: identifier for one of the 10 output signals:

0 = DO1 = pin 11 at 26-pins connector
1 = DO2 = pin 2 at 26-pins connector
2 = DO3 = pin 20 at 26-pins connector
3 = DO4 = pin 12 at 26-pins connector
4 = DO5 = pin 3 at 26-pins connector
5 = DO6 = pin 21 at 26-pins connector
6 = DO7 = pin 13 at 26-pins connector
7 = DO8 = pin 4 at 26-pins connector
8 = DO9 = pin 22 at 26-pins connector
9 = DO10 = pin 25 at 26-pins connector

 a_Value: value to be set (0-1)
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER

2.3.32 AVS_SetPwmOut

Function: int AVS_SetPwmOut
 (
 AvsHandle a_hDevice,
 unsigned char a_PortId,
 unsigned long a_Frequency,
 unsigned char a_DutyCycle
)
Group: Blocking data send function.
Description: Selects the PWM functionality for the specified digital output
Parameters: a_hDevice, device identifier returned by AVS_Activate
 a_PortId identifier for one of the 6 PWM output signals:

0 = DO1 = pin 11 at 26-pins connector
1 = DO2 = pin 2 at 26-pins connector
2 = DO3 = pin 20 at 26-pins connector
4 = DO5 = pin 3 at 26-pins connector
5 = DO6 = pin 21 at 26-pins connector
6 = DO7 = pin 13 at 26-pins connector

 a_Frequency desired PWM frequency (500 – 300000) [Hz], the frequency of
outputs 0, 1 and 2 is the same (the last specified frequency is used),
also the frequency of outputs 4, 5 and 6 is the same

 a_DutyCycle percentage high time in one cycle (0 – 100), channels 0, 1 and 2 have a
synchronised rising edge, the same holds for channels 4, 5 and 6

Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER

28 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.33 AVS_SetSyncMode

Function: int AVS_SetSyncMode
 (
 AvsHandle a_hDevice,
 unsigned char a_Enable
)
Group: Internal DLL write function
Description Disables/enables support for synchronous measurement. DLL takes care of dividing Nmsr

request into Nmsr number of single measurement requests.
Note: this function should only be called for the master spectrometer!

Parameters a_hDevice master device identifier returned by AVS_Activate
 a_Enable 0 is disable sync mode, 1 is enables sync mode
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID

2.3.34 AVS_StopMeasure

Function: int AVS_StopMeasure
 (
 AvsHandle a_hDevice
)
Group: Blocking data send function
Description: Stops the measurements (needed if Nmsr = infinite), can also be used to stop a pending

measurement with long integrationtime and/or high number of averages

Parameters: a_hDevice: device identifier returned by AVS_Activate
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)
ERR_INVALID_PARAMETER

Oct-07 AS-5216-DLL Manual.doc 29

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.35 AVS_SetPrescanMode

Function: int AVS_SetPrescanMode
 (
 AvsHandle a_hDevice
 bool a_Prescan
)
Group: Blocking data send function
Description: If a_Prescan is set, the first measurement result will be skipped. This function is only

useful for the AvaSpec-3648 because this detector can be operated in prescan mode, or
clearbuffer mode (see below)

Parameters: a_hDevice: device identifier returned by AVS_Activate
 a_Prescan: If true, the first measurement result will be skipped (prescan mode), else

the detector will be cleared before each new scan (clearbuffer mode)
Return: On success: ERR_SUCCESS
 On error: ERR_DEVICE_NOT_FOUND

ERR_INVALID_DEVICE_ID
ERR_TIMEOUT (error in communication)

The Toshiba detector in the AvaSpec-3648, can be used in 2 different control modes:
The Prescan mode (default mode).
In this mode the Toshiba detector will automatically generate an additional prescan for every request
from the PC, the first scan contains non-linear data and will be rejected, the 2nd scan contains linear
data and will be sent to the PC. This prescan mode is default and should be used in most applications,
like with averaging (only one prescan is generated for a nr of averages), with the use of an AvaLight-
XE (one or more flashes per scan) and with multichannel spectrometers. The advantage of this mode is
a very stable and linear spectrum. The disadvantage of this mode is that a minor (<5%) image of the
previous scan (ghostspectrum) is included in the signal. This mode cannot be used for fast external
trigger and accurate timing, since the start of the scan is always delayed with the integration time (min.
3.7 ms).
The Clear-Buffer mode.
In this mode the Toshiba detector buffer will be cleared, before a scan is taken. This clear-buffer mode
should be used when timing is important, like with fast external triggering. The advantage of this
mode is that a scan will start at the time of an external trigger, the disadvantage of this mode is that
after clearing the buffer, the detector will have a minor threshold, in which small signals (<500 counts)
will not appear and with different integration times the detector is not linear.

30 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.3.36 AVS_UseHighResAdc

Function: int AVS_UseHighResAdc
 (
 AvsHandle a_hDevice
 bool a_Enable
)
Group: Internal DLL write function
Description: With the as5216 electronic board revision 1D and later, a 16bit resolution AD Converter

is used instead of a 14bit in earlier hardware versions. As a result, the ADC Counts scale
can be set to the full 16 bit (0..65535) Counts. For compatibility reasons with previous
hardware revisions, the default range is set to 14 bit (0..16383.75) ADC Counts.

Remark: When using the 16 bit ADC in full High Resolution mode (0..65535), please note that the
irradiance intensity calibration, as well as the nonlinearity calibration are based on the
14bit ADC range. Therefore, if using the nonlinearity correction or irradiance calibration
in your own

Parameters: a_hDevice: device identifier returned by AVS_Activate
 a_Enable: True: use 16bit resolution, ADC Counts range 0..65535

False: use 14bit resolution ADC Counts range 0..16383.75
Return: On success: ERR_SUCCESS
 On error: ERR_OPERATION_NOT_SUPPORTED: this function is not supported

by as5216 hardware version R1C or earlier

Oct-07 AS-5216-DLL Manual.doc 31

Avantes website: http://www.avantes.com email: Info@avantes.com

2.4 Data Elements

Several data-types used by the DLL and necessary for the application interface are given below.

Note: To match the structures that are used in the AS5216 firmware the structures mentioned here have to be compiled with byte alignment.

Table 1 API data elements
Type Format Value/Range Description
bool 8 bits value 0 – 1 false - true
char 8 bits value -128 <= x <= 127 signed character
unsigned char 8 bits value 0 <= x <= 255 unsigned character
short 16 bits value -32768 <= x <= 32767 signed integer
unsigned short 16 bits value 0 <= x <= 65535 unsigned integer
int 32 bits value 2,147,483,648 <= x <=

2,147,483,647
signed integer

unsigned int 32 bits value 0 <= x <= 4294967295 unsigned integer
float 32 bits value floating point number (7 digits precision)
double 64 bits value double sized floating point number (15 digits precision)
HWND 32 bits value Windows typedef for window identification, HWND is used for

Windows API calls that require a Window handle.
AvsIdentity
Type

struct
{
char m_aSerialId[10],
char m_aUserFriendlyId[64],
DeviceStatus m_Status
}

serial identification number
user friendly name to be defined by application
device status

32 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description
ControlSettings
Type

struct
{
unsigned short m_StrobeControl,

unsigned int m_LaserDelay,
unsigned int m_LaserWidth,

float m_LaserWaveLength
unsigned short m_StoreToRam,

}

0 – 0xFFFF

0 – 0xFFFFFFFF
0 – 0xFFFF

0 – 0xFFFF

number of strobe pulses during integration period (high time of
pulse is 1 ms), (0 = no strobe pulses)
laser delay since trigger, unit is internal FPGA clock cycle
laser pulse width , unit is internal FPGA clock cycle
 (0 = no laser pulse)
Peak wavelength of laser (nm), used for Raman Spectroscopy
0 = no storage to RAM
> 0 = number of spectra to be stored

(Size = 16 bytes)

DarkCorrection
Type

struct
{
unsigned char m_Enable,
unsigned char m_ForgetPercentage

}

0 – 1
0 - 100

disable – enable dynamic dark correction (sensor dependent)
percentage of the new dark value pixels that has to be used.
e.g., a percentage of 100 means only new dark values are
used. A percentage of 10 means that 10 percent of the new
dark values is used and 90 percent of the old values is used for
drift correction
(Size = 2 bytes)

Oct-07 AS-5216-DLL Manual.doc 33

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description
DeviceConfig
Type

struct
{
unsigned short m_Len,
unsigned short m_ConfigVersion,
char m_aUserFriendlyId[64]
DetectorType m_Detector,
IrradianceType m_Irradiance,
SpectrumCalibrationType m_Reflectance,
SpectrumCorrectionType m_SpectrumCorrect,
StandaloneType m_StandAlone,
TempSensorType m_Temperature[3],
TecControlType m_TecControl
ProcessControlType m_ProcessControl
unsigned char m_aReserved[13832]
}

0 – 0xFFFF

Configuration data structure:

size of this structure in bytes
version of this structure
user friendly identification string
sensor/detector related parameters
intensity calibration parameters
reflectance calibration parameters
correction parameters
stand-alone related parameters (e.g. measure mode, control)
calibration parameters of three temperature sensors
TecControl parameters
ProcessControl parameters
makes structure size equal to 63484 bytes
(Size = 63484)

DeviceStatus enum
{
UNKNOWN,
AVAILABLE,
IN_USE_BY_APPLICATION,
IN_USE_BY_OTHER
}

0
1
2
3

initial state
device is connected to PC and not in use
device is connected to PC and in use by caller
device is connected to PC and in use by other application

34 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description
DetectorType struct

{
SensorType m_SensorType,
unsigned short m_NrPixels,
float m_aFit[5],
bool m_NLEnable,
double m_aNLCorrect[8],
double m_aLowNLCounts,
double m_aHighNLCounts,
float m_Gain[2],

float m_Reserved,
float m_Offset[2],

float m_ExtOffset,
unsigned short m_DefectivePixels[30],
}

0 – 4096

1 – 5.7

-0.350 - +0.350

0.0 – 2.0

Sensor configuration structure:

sensor identification
number of pixels of sensor
polynomial coefficients needed to determine wavelength
enable/disable nonlinearity correction
polynomial coefficients needed for non linearity correction
lower counts limit for nonlinearity correction
higher counts limit for nonlinearity correction
gain correction for spectrometer ADC (range is divided in 64
steps)
not used
offset correction for spectrometer ADC in Volt (range is divided
in 512 steps)
offset to match the detector output range with the ADC range
defective pixel numbers

(Size = 188 bytes)

IrradianceType struct
{
SpectrumCalibrationType m_IntensityCalib,
unsigned char m_CalibrationType,
unsigned int m_FiberDiameter,
}

Setting during intensity calibration
Bare fiber, diffusor, integrating sphere, ….
Fiber diameter during intensity calibration
(Size = 16391+1+4 = 16396 bytes)

Oct-07 AS-5216-DLL Manual.doc 35

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description
MeasConfig
Type

struct
{
unsigned short m_StartPixel,
unsigned short m_StopPixel,
float m_IntegrationTime,
unsigned int m_IntegrationDelay,

unsigned int m_NrAverages,
DarkCorrectionType m_CorDynDark,
SmoothingType m_Smoothing,
unsigned char m_SaturationDetection,

TriggerType m_Trigger,
ControlSettingsType m_Control,
}

0-4095
0 – 4095
0.01 – 600000
0 – 0xFFFFFFFF

1 – 0xFFFFFFFF

0 – 2

first pixel to be sent to PC
last pixel to be sent to PC
integration time in ms
integration delay, unit is internal FPGA clock cycle
 (0 = one unit before laser start)
number of averages in a single measurement
 dynamic dark correction parameters
smoothing parameters
 0 = disabled,
 1 = enabled, determines during each measurement if pixels
are saturated (ADC value = 2^14 –1)
 2 = enabled, and also corrects inverted pixels (only Sony)
trigger parameters
control parameters
(Size = 41 bytes)

ProcessControl
Type

struct
{
float m_AnalogLow[2]
float m_AnalogHigh[2]
float m_DigitalLow[10]
float m_DigitalHigh[10]
}

Settings that can be used for the 2 analog and 10 digital output
signals at the DB26 connector. The analog settings can be used
to define a function output range that should correspond to the
0-5V range of the analog output signals.
The digital output settings can be used as lower- and upper
thresholds.
(Size 96 bytes)

SDCardType Struct
{
bool m_Enable,
unsigned char m_SpectrumType,
char m_aFileRootName[6],
TimeStampType m_TimeStamp
}

 Settings for SD Card, needed in stand-alone operation

(Size = 12 bytes)

36 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description
SensorType unsigned char

0 – 9 0x00 = Reserved

0x01 = Hams8378-256
0x02 = Hams8378-1024
0x03 = ILX554
0x04 = Hams9201
0x05 = Toshiba TCD1304
0x06 = TSL1301
0x07 = TSL1401
0x08 = Hams8378-512
0x09 = Hams9840

Smoothing
Type

struct
{
unsigned short m_SmoothPix,

unsigned char m_SmoothModel
}

0 – 2048

0

number of neighbour pixels used for smoothing, max. has to be
smaller than half the selected pixel range because both the
pixels on the left and on the right are used
Only one model defined so far
(Size = 3 bytes)

Spectrum
Calibration
Type

struct
{
SmoothingType m_Smoothing,
float m_CalInttime,
float m_aCalibConvers[4096]
}

0.01 – 600000

smoothing parameter during calibration
integration time during calibration (ms)
Conversion table from Scopedata to calibrated data
(Size = 16391 bytes)

Spectrum
Correction
Type

struct
{
float m_aSpectrumCorrect[4096]
}

 Correct pixel values, e.g. for PRNU

(Size = 16384 bytes)

Oct-07 AS-5216-DLL Manual.doc 37

Avantes website: http://www.avantes.com email: Info@avantes.com

Type Format Value/Range Description
Standalone
Type

struct
{
bool m_Enable,
MeasConfigType m_Meas,
signed short m_Nmsr,
SDCardType m_SDCard
}

(Size = 56 bytes)

TecControl
Type

struct
{
bool m_Enable,
float m_Setpoint,
float m_aFit[2]
}

 Tec Control parameters for AvaSpec-256-NIR2.2

Set to True if device supports TE Cooling
SetPoint for detector temperature in degr. Celsius
DAC polynomial
(Size = 13 bytes)

TempSensor
Type

struct
{
float m_aFit[5]
}

 Calibration coefficients temperature sensor

(Size = 20 bytes)

TimeStamp
Type

struct
{
unsigned short m_Date,

unsigned short m_Time

}

bit 0..4 (day, 0 – 31)
bit 5..8 (month, 1 – 12)
bit 9..15 (years since 1980, 0 – 119)
bit 0..4 (2-second unit, 0 - 30)
bit 5..10 (minutes, 0 - 59)
bit 11..15(hours, 0 – 23)

TriggerType struct
{
unsigned char m_Mode,
unsigned char m_Source,
unsigned char m_SourceType
}

0 – 1
0 – 1
0 – 1

Trigger parameters

mode, (0 = Software, 1 = Hardware)
trigger source, (0 = external trigger, 1 = sync input)
source type, (0 = edge trigger, 1 = level trigger)
(Size = 3 bytes)

38 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.4.1 Return value constants
The following table gives an overview of possible integer return codes:

Return code Value Description
SUCCESS 0 Operation succeeded
ERR_INVALID_PARAMETER -1 Function called with invalid parameter

value.
ERR_OPERATION_NOT_SUPPORTED -2 Fixed strobe not supported for ILX in fast

trigger mode
ERR_DEVICE_NOT_FOUND -3 Opening communication failed or time-out

during communication occurred.
ERR_INVALID_DEVICE_ID -4 AvsHandle is unknown in the DLL
ERR_OPERATION_PENDING -5 Function is called while result of previous

function is not received yet.
ERR_TIMEOUT -6 No answer received from device
Reserved -7
ERR_INVALID_MEAS_DATA -8 No measurement data is received at the point

AVS_GetScopeData is called
ERR_INVALID_SIZE -9 Allocated buffer size too small
ERR_INVALID_PIXEL_RANGE -10 Measurement preparation failed because

pixel range is invalid
ERR_INVALID_INT_TIME -11 Measurement preparation failed because

integration time is invalid (for selected
sensor)

ERR_INVALID_COMBINATION -12 Measurement preparation failed because of
an invalid combination of parameters,
e.g. integration time of (600000) and (Navg
> 5000)

Reserved -13
ERR_NO_MEAS_BUFFER_AVAIL -14 Measurement preparation failed because no

measurement buffers available
ERR_UNKNOWN -15 Unknown error reason received from

spectrometer
ERR_COMMUNICATION -16 Error in communication occured
ERR_NO_SPECTRA_IN_RAM -17 No more spectra available in RAM, all read

or measurement not started yet.
ERR_INVALID_DLL_VERSION -18 DLL version information can not be

retrieved
ERR_NO_MEMORY -19 Memory allocation error in the DLL
ERR_DLL_INITIALISATION -20 Function called before AVS_Init() is called
ERR_INVALID_STATE -21 Function failed because AS5216 is in wrong

state (e.g AVS_StartMeasurement while
measurement is pending)

ERR_INVALID_PARAMETER_NR_PIXEL -100 NrOfPixel in Device data incorrect
ERR_INVALID_PARAMETER_ADC_GAIN -101 Gain Setting Out of Range
ERR_INVALID_PARAMETER_ADC_OFFSET -102 OffSet Setting Out of Range
ERR_INVALID_MEASPARAM_AVG_SAT2 -110 Use of Saturation Detection Level 2 is not

Oct-07 AS-5216-DLL Manual.doc 39

Avantes website: http://www.avantes.com email: Info@avantes.com

Return code Value Description
compatible with the Averaging function

ERR_INVALID_MEASPARAM_AVG_RAM -111 Use of Averaging is not compatible with the
StoreToRam function

ERR_INVALID_MEASPARAM_SYNC_RAM -112 Use of the Synchronize setting is not
compatible with the StoreToRam function

ERR_INVALID_MEASPARAM_LEVEL_RAM -113 Use of Level Triggering is not compatible
with the StoreToRam function

ERR_INVALID_MEASPARAM_SAT2_RAM -114 Use of Saturation Detection Level 2
Parameter is not compatible with the
StoreToRam function

ERR_INVALID_MEASPARAM_FWVER_RAM -115 The StoreToRam function is only supported
with firmware version 0.20.0.0 or later.

40 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

2.4.2 Windows messages

The following table gives an overview of window messages.

Windows message
identifier

WPARM LPARM Description

WM_MEAS_READY 0 (on success)
< 0 (one of the above error reasons)
> 0 (in StoreToRAM mode)

device
handle

after measurement data
is available the DLL
sends this message to
the application. The
command value used is
WM_MEAS_READY
and is defined as
(WM_USER + 1)

WM_DEVICECHANGE DBT_DEVNODES_CHANGED(7) 0 After device
attachment/removal
Windows sends this
message to the
application.

Oct-07 AS-5216-DLL Manual.doc 41

Avantes website: http://www.avantes.com email: Info@avantes.com

3 Example source code

Example source code can be found in the directory tree of the driver.
Sample programs (including header files and link libraries, where appropriate) are provided for the
following programming environments:

- Borland Delphi (v. 6.0)
- Borland C++ Builder (v.5.0)
- Microsoft Visual C++ (Visual Studio v.6.0)
- Microsoft Visual C++ (2005)
- Microsoft Visual Basic (Visual Studio v.6.0)
- Microsoft Visual Basic .NET 2005 (v. 2.0)
- Microsoft C# .NET 2005 (v. 2.0)
- National Instruments LabView (v. 8.2, older versions on request)

3.1 Initialization and Activation of a spectrometer

After starting one of the Borland example programs (Borland C++ or Delphi), the main window will
be displayed. By clicking the “Open Communication” button, the AVS_Init function is called and if
successful, the serial number and status for the connected spectrometer(s) is collected
(AVS_GetNrOfDevices and AVS_GetList). The result is displayed in the list at the top left of the
window, as shown in the figure below.

42 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

After selecting a spectrometer from the list, clicking the “Activate” button results in a call to the
AVS_Activate function. This function returns a DeviceHandle which needs to be used in further
communication between the dll and this device. After a succcessful call to AVS_Activate, the status
for the selected device will change from “AVAILABLE” to “IN_USE_BY_APPLICATION”.
The sample program uses one DeviceHandle, so if you want to run multiple devices simultaneously,
you need to allocate storage space for multiple devicehandles.
For the activated device, the Device information is collected (AVS_GetVersionInfo,
AVS_GetNumPixels, AVS_GetParameter, AVS_GetLambda), and displayed in the main window.
Thanks to the Windows API OnDeviceChange function, attachment and removal of spectrometers can
be detected by the application (see the OnDeviceChange function in the source code).
Note: To match the structures that are used in the AS5216 firmware the structures
used in the as5216.dll should be compiled with byte alignment

3.2 Starting a measurement

Measurements can be started by clicking the “Start Measurement” button. The Nr of Scans field
displays how many scans will be performed after one measurement request. Before a call to
AVS_Measure is done, the AVS_PrepareMeasurement function is called with the parameters in the
MeasConfigType structure. The “Prepare Measurement Settings” group in the figure below shows all
the parameters in this MeasConfigType structure:

unsigned short m_StartPixel
unsigned short m_StopPixel
float m_IntegrationTime
unsigned int m_IntegrationDelay
unsigned int m_NrAverages
DarkCorrectionType m_CorDynDark
SmoothingType m_Smoothing
unsigned char m_SaturationDetection
TriggerType m_Trigger
ControlSettingsType m_Control

The parameters in the measurement structure have been briefly described in section 2.4. In this section
a more detailed description will be given.

3.2.1 Measurement structure: Start- and Stoppixel

The start- and stoppixel are the first and last pixel to be sent to the PC. The full range for a
spectrometer is between startpixel 0 and stoppixel “NrOfPixels-1”, where NrOfPixels specifies the
total pixels available for the detectortype used in the spectrometer (see also AVS_GetNumPixels). If
the wavelength range of a spectrometer exceeds 1100nm (1160nm for the AvaSpec-2048x14) and the
detectortype is different from “HAMS9201” (AvaSpec-NIR), the stoppixel can be set to the
pixelnumber that corresponds to a wavelength of 1100 (1160) nm, because the sensitivity is almost
zero at this wavelength range. Reducing the range increases the data transfer speed and allows you to
transfer only the data that is relevant to the application.
Note that if m_StartPixel is not equal to zero, then a_pSpectrum[n] (see AVS_GetScopeData),
represents the measured data at pixel number m_StartPixel +n. Also, pSaturated[n] (see
AVS_GetSaturatedPixels) represents pixel number m_StartPixel +n. For example, if m_StartPixel =
10, then a_pSpectrum[0] represents the measured data at pixel number 10.

Oct-07 AS-5216-DLL Manual.doc 43

Avantes website: http://www.avantes.com email: Info@avantes.com

3.2.2 Measurement structure: Integration Time

The integration time is the exposure time during one scan. The longer the integration time, the more
light is exposed to the detector during a single scan, and therefore the higher the signal. The unit is
milliseconds [ms], and the resolution 0.01 ms steps. The minimum integration time is detector
dependent. The table below shows the values for the different detector types:

Spectrometer Detector Type Min. Integration time [ms]
AvaSpec-256-USB2 SENS_HAMS8378_256 0.56
AvaSpec-1024-USB2 SENS_HAMS8378_1024 2.20
AvaSpec-2048-USB2 SENS_ILX554 1.10
AvaSpec-NIR256-USB2 SENS_HAMS9201 0.52
AvaSpec-3648-USB2 SENS_TCD1304 0.01
AvaSpec-102-USB2 SENS_TSL1301 0.06
AvaSpec-128-USB2 SENS_TSL1401 0.06
AvaSpec-2048x14-USB2 SENS_HAMS9840 2.24

The longest integration time is 10 minutes (600000 ms).

3.2.3 Measurement structure: Integration Delay

The integration delay parameter can be used to start the integration time not immediately after the
measurement request (or on an external hardware trigger), but after a specified delay. The unit for this
delay is FPGA clock cycles. The FPGA clock runs at 48 MHz, so the integration delay can be set with
20.83 nanoseconds steps. See also section 3.2.9 about using the integration delay in combination with
the control settings: laser delay and pulse width.

3.2.4 Measurement structure: Number of Averages

The signal to noise ratio of the scope data is improved by the square root of NrOfAverage. Averaging
is done by the microcontroller at the as5216 board, therefore, no time is lost by sending the individual
scans from the spectrometer to the PC.

3.2.5 Measurement structure: Dynamic Dark Correction

The pixels of the CCD detector (AvaSpec-2048/3648/2048x14) are thermally sensitive, which causes a
small dark current, even without light exposure. To get an approximation of this dark current, the
signal of the first 14 optical black pixels of the CCD-detector can be taken and subtracted from the raw
scope data. This will happen if the correct for dynamic dark option is enabled. As these 14 pixels have
the same thermal behaviour as the active pixels, the correction is dynamic.
The Dark Correction Type structure includes an m_enable and m_ForgetPercentage field (see also
section 2.4). Measurements have shown that taking into account the historical dark scans, does not
make much difference. The recommended value for m_ForgetPercentage is therefore 100.

44 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

3.2.6 Measurement structure: Smoothing

The smoothing type structure includes a smoothpix and a smoothmodel field. In the current version of
the as5216.dll there is just one smoothing model available (0), in which the spectral data is averaged
over a number of pixels on the detector array. For example, if the smoothpix parameter is set to 2, the
spectral data for all pixels xn on the detector array will be averaged with their neighbor pixels xn-2, xn-1,
xn+1 and xn+2.

The optimal smoothpix parameter depends on the distance between the pixels at the detector array and
the light beam that enters the spectrometer. For the AvaSpec-2048, the distance between the pixels on
the CCD-array is 14 micron.
With a 200 micron fiber (no slit installed) connected, the optical pixel resolution is about 14.3 CCD-
pixels. With a smoothing parameter set to 7, each pixel will be averaged with 7 left and 7 right
neighbor pixels. Averaging over 15 pixels with a pitch distance between the CCD pixels of 14 micron
will cover 15*14 = 210 micron at the CCD array. Using a fiber diameter of 200 micron means that we
will lose resolution when setting the smoothing parameter to 7. Theoretically the optimal smoothing
parameter is therefore 6. The formula is ((slit size/pixel size) – 1)/2
In the table below, the recommended smoothing values for the AvaSpec spectrometer are listed as
function of the light beam that enters the spectrometer. This light beam is the fiber core diameter, or if
a smaller slit has been installed in the spectrometer, the slit width. Note that this table shows the
optimal smoothing without losing resolution. If resolution is not an important issue, a higher
smoothing parameter can be set to decrease noise at the price of less resolution.

Slit or
Fiber

AvaSpec-102

Pixel 77 µm

AvaSpec-128

Pixel 63.5 µm

AvaSpec-256
AvaSpec-1024
Pixel 25 µm

AvaSpec-2048
AvaSpec-2048x14
Pixel 14 µm

AvaSpec-3648

Pixel 8 µm

AvaSpec-
NIR256
Pixel 50 µm

10µm n.a. n.a. n.a. 0 0 n.a.
25µm

n.a. n.a. 0 0-1 1 n.a.

50µm

0 0 0-1 1-2 2-3 0

100µm

0-1 0-1 1-2 3 5-6 0-1

200µm

1 1 3-4 6-7 12 1-2

400µm

2 2-3 7-8 13-14 24-25 3-4

500µm

3 3-4 9-10 17 31 4-5

600µm

3-4 4 11-12 21 37 5-6

Oct-07 AS-5216-DLL Manual.doc 45

Avantes website: http://www.avantes.com email: Info@avantes.com

3.2.7 Measurement structure: Saturation Detection

The 16-bit A/D converter in the AvaSpec results in raw Scope pixel values between 0 and 65535
counts. If the value of 65535 counts is measured at one or more pixels, then these pixels are called to
be saturated or overexposed. Saturation detection can be set off (m_SaturationDetection=0) or on
(m_SaturationDetection=1). Saturation detection is done by the as5216.dll, after a measurement result
has been sent to the PC. If a measurement is the result of a number of averages, the as5216.dll can
only detect saturation if all NrOfAverage scans in a measurement were saturated for one or more
pixels.

Only for AvaSpec-2048 spectrometers, the third level is available (m_SaturationDetection=2,
autocorrect inverted pixels). The reason for this is that if the detector type in the AvaSpec-2048 (Sony-
ILX554) is heavily saturated (at a light intensity of approximately 5 times the intensity at which
saturation starts), it will return values <65535 counts. The other detector types in the AvaSpec-102,
128, 256, 1024, 2048x14 and 3648 and AvaSpec-NIR do not show this effect, so no correction is
needed. Normally, you don’t need to use this third level for the AvaSpec-2048, but when measuring a
peaky spectrum with some heavily saturated peaks, the autocorrect can be used. A limitation to this
level is that it can be used only if no averaging is used (m_NrAverages=1).
The AvaSpec-USB2 spectrometers with an as5216 board Rev C and earlier were equipped with a 14-
bit AD converter (range 0..16383). In this case the detector is saturated at 16383 counts.

3.2.8 Measurement structure: Trigger Type

The trigger type structure includes settings for Trigger Mode (Hardware, Software), Trigger Source
(External, Synchronized) and Trigger type (Edge, Level).

Setting the Trigger Source to Synchronized is relevant if multiple spectrometers need to run
synchronised (all spectrometers start a measurement at the same time). This option will be described
below under “Running multiple spectrometers Synchronized”.
Single channel spectrometers, or multiple spectrometers in ASYNC mode can operate in one of the
three following Trigger settings (Trigger Source should be set to “External”):

Trigger Mode = Software
This Trigger setting is used when one or more (nrms) measurements should start after a measurement
request in the software (AVS_Measure call). The Edge/Level is irrelevant because this only applies to
an external hardware trigger.

Trigger Mode = Hardware, Edge triggered
This trigger setting is used when one or more (nrms) measurements should start after an external
hardware trigger pulse has been received at pin 6 of the DB26 connector. First a measurement request
is posted in the software (AVS_Measure call). Then the spectrometer waits until a rising edge of the
TTL-input pulse is detected at pin 6 of the DB26 connector before nrms scans are started.

46 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

Trigger Mode = Hardware, Level triggered
This trigger setting is used when scans should be performed as long as the external trigger at pin 6 of
the DB26 connector is HIGH. The spectrometer will start to accumulate data (take scans at the selected
integration time) at the rising edge of the TTL pulse and will continue to do so as long as the TTL
signal remains high. When the signal becomes low, the average of the accumulated data (except for the
last scan) will be sent. This mode is specially useful for conveying belt applications, when a product
needs to be scanned, independent of the transport speed.

Running multiple spectrometers Synchronized
All USB2 platform spectrometers can be connected by a SYNC cable. In syncmode, one spectrometer
is configured as “Master” by calling the AVS_SetSyncMode function for this channel. The trigger
source for the Master channel should not be set to Synchronized, but to External. The trigger mode for
the Master can be set to Software (if a measurement should start after a measurement request in the
software), or to Hardware (if a measurement should start after an external hardware trigger pulse at pin
6 of the Master DB26 connector. All other (“slave”) spectrometers are set into “Synchronized” mode
by setting the Trigger Source to “Synchronized” and the Trigger Mode to “Hardware”. Do not call the
AVS_SetSyncMode for the Slave spectrometers. A synchronized measurement is started by calling
AVS_Measure first for all slave channels. As a result, these channels start listening to their SYNC
input port. Secondly a measurement request (call to AVS_Measure) needs to be posted for the Master
channel. If the trigger mode for the Master is “software”, this result in nrms measurements for all
channels. If the trigger mode for the Master is “hardware”, the nrms measurements for all channels are
started after an external trigger has been received at at pin 6 of the Master DB26 connector. The nrms
parameter in the AVS_Measure function should be set to the same value for all activated channels.
Synchronization is done at a measurement level. A measurement can include a number of scans to
average. This “number of average” scans is only synchronized for the first scan. For example, if the
number of measurements, integration time and number of average for two channels are set to:
Channel A: nrms=2, integration time 100ms, average 3
Channel B: nrms=2, integration time 65ms, average 2,
then the data acquisition timing and response in synchronized mode will look like:

 ………………………. ……………………….

 Idle time channel B Idle time channel B

Measurement Measurement
Request Result channel A
Channel A Measurement + Measurement
+ Channel B Result channel B Synchronized Result channel B

 Measurement
 Start (n=2)

 Measurement
 Result channel A +
 All nrms (=2) ready

Note that in the example above, the number of averages for channel B can be set to 4 without losing
time because the extra two scans will be taken in the idle time for channel B.

n=1 scan1 n=1 scan2 n=1 scan3 n=2 scan1 n=2 scan2 n=2 scan3

n1 s1 n1 s2 n2 s1 n2 s2

Oct-07 AS-5216-DLL Manual.doc 47

Avantes website: http://www.avantes.com email: Info@avantes.com

3.2.9 Measurement structure: Control Settings

The Control Settings include parameters to control
• A pulsed lightsource (m_StrobeControl)
• A laser pulse (m_LaserDelay and m_LaserWidth)
• The Number of Spectra that will be stored to onboard RAM (m_StoreToRam)

Pulsed lightsource control
A pulsed lightsource like the AvaLight-XE needs to be synchronized with the integration time cycle.
The m_StrobeControl parameter determines the number of pulses the spectrometer sends out at pin 5
at the DB26 connector during one integration time cycle. The maximum frequency at which the
AvaLight-XE operates is 100 Hz. This means that the minimum integration time for 1 pulse per scan is
10 ms. When setting the number of pulses e.g. to 3, the minimum integration time should be 30 ms.
The as5216.dll does not check for this limitation because other light sources may operate at higher
frequencies, and should also be controllable by the AvaSpec and as5216.dll.

Laser pulse control
Pin 23 at the DB26 connector can be used to send out a TTL signal which is related to the start of the
integration time cyle. In the figure below, a measurement is started at the rising edge of the Trig
signal. This can be a hardware or software trigger, see also section 3.2.8. The TTL signal at pin 23
(Laser) is set after the laserdelay (T1) expires. The pulsewidth for the laser pulse (T3) is set by the
m_LaserWidth parameter. The integration time cycle starts after the integration delay parameter (see
section 3.2.3) expires.

Trig

Laser

Integration

The unit for T1, T2 and T3 is FPGA clock cycles. The FPGA clock runs at 48 MHz, so delays and
pulse width can be set with 20.83 nanoseconds steps. If the integration delay T2 is set to 0 FPGA
cycles, the rising edge of the integration signal will start one clock cycle (20.83ns) before the rising
edge of the laser pulse. This will ensure that with this setting, the flash of the source that is triggered
by the laser pulse entirely falls in the integration time cycle.

T1

 T2

T3

48 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

Laser Induced Breakdown Spectroscopy (LIBS) is an application where the integration delay is used
in combination with a TTL-out at the DB-26 connector to fire a laser. After a measurement request (or
on an external hardware trigger), the laser is fired by the TTL-out. The integration time period should
not include the laser light, so the start of the integration time needs to be delayed. A typical integration
delay in LIBS applications is about 1µs.

Laser wavelength
The Laser wavelength (m_LaserWaveLength) control setting is not used in the current version of
as5216. A value can be entered, but the as5216 firmware does not use this information.

StoreToRam
As of firmware version 0.20.0.0 the StoreToRam function has been implemented. To use this function,
you must set the requested number of scans in the m_StoreToRam control setting, and start measuring
with a call to AVS_Measure using 1 as the number of measurements (a_Nmsr).
There is an amount of 4MB available for scans, corresponding with 1013 scans of 2048 pixels.
Scanning less pixels will yield a larger capacity in scans. The AVS_Measure message signaling the
arrival of data will have a WParam value equal to the number of scans stored in RAM. In regular
measurements, this value only signals success (with value ERR_SUCCESS) or failure (with a negative
error message).
Alternatively, when using polling instead of a message driven interface, the AVS_PollScan function
will also return the number of available scans. In regular measurements, it will return 1 when data are
available, and 0 when they are not.
The scans can subsequently be read with a corresponding number of calls to AVS_GetScopeData.
If you request more scans than will fit in memory, scanning will continue until the memory is fully
used, therefore you should always request the number of scans that is returned in WParam or
AVS_PollScan.
The StoreToRam functionality has been implemented in most sample programs that come with the
as5216-dll interface package.

3.3 Measurement result

If a measurement is ready, the windows message WM_MEAS_READY is sent to the application. The
Wparam value of the message should be:

- 0 in regular measurements (where the StoreToRam parameter is zero) to indicate SUCCESS
- > 0 in StoreToRam mode, Wparam holds the number of spectra that were actually saved in

RAM
- < 0 in case an error occurred (see section section 2.4.1).

The Lparam value of the message contains the devicehandle for the spectrometer for which the data is
ready.
LabVIEW cannot easily respond to the incoming Windows message that signals the arrival of new
data. AVS_Pollscan allows the application program to poll the arrival of data, i.e. to actively get the
status of this data, instead of letting a message handler react to the Windows message from the dll.
By calling the function AVS_GetScopeData, the spectral data is stored in the application for further
processing.

Oct-07 AS-5216-DLL Manual.doc 49

Avantes website: http://www.avantes.com email: Info@avantes.com

3.4 Digital IO

The USB2 platform spectrometers have 10
programmable digital output pins and 3
programmable input pins available at the DB26
connector. The function AVS_SetDigOut and
AVS_GetDigIn can be used to control these
ports. Moreover, 6 out of the 10 programmable
ouput ports can be configured for pulse width
modulation. With the AVS_SetPwmOut function,
a frequency and duty cycle can be programmed
for these 6 digital output ports.
The PWM functionality can be used e.g. in
controlling the intensity (dutycycle) of an
AvaLight-LED lightsource, which receives input
from DO1 (pin 11 of the DB26 connector).

3.5 Analog IO

The USB2 platform spectrometers have 2
programmable analog output pins and 2 programmable
analog input pins available at the DB26 connector. The
functions AVS_SetAnalogOut and AVS_GetAnalogIn
can be used to control these ports. For the Analog Out
signals, an 8-bit DAC is used. The Analog In signals
are converted by the internal 10-bit ADC’s.
A number of onboard analog signals can be retrieved
as well with the AVS_GetAnalogIn function. One of
these onboard signals is the NTC1 X8 thermistor which
can be used for onboard temperature measurements.
The polynomial for converting the voltage (U) to
degrees Celsius for NTC1 is:

Temp [oC] = 118.69 - 70.361*U

+ 21.02*U2 - 3.6443*U3 + 0.1993* U4

The thermistor X11 is the signal received from the
cooled NIR detector and can be used to monitor the
detector temperature. NTC2 X9 is not mounted.
The 1V2, 5VIO and 5VUSB are used internally to test
the power supply

50 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6 EEProm

The EEProm parameters in the DeviceConfigType structure have been briefly described in section 2.4.
In this section a more detailed description will be given. The Borland C++ and Delphi sample
programs display most of the parameters in the structure. The Structure Length (m_Len), Structure
Version (m_ConfigVersion) and InfoString (m_aUserFriendlyId[64]) are shown on top of the tabs that
correspond to the structures that are used to group the parameters into the following categories:

DetectorType m_Detector,
IrradianceType m_Irradiance,
SpectrumCalibrationType m_Reflectance,
SpectrumCorrectionType m_SpectrumCorrect,
StandaloneType m_StandAlone,
TempSensorType m_Temperature[3]
TecControlType m_TecControl
ProcessControlType m_ProcessControl (not displayed in sample program)

The structure version is used internally to maintain compatible between different versions of the dll
and firmware. The Information character string can be used e.g. to write a user friendly name for the
spectrometer.

3.6.1 EEProm structure: Detector Parameters

The detector parameters are defined in the DetectorType
structure, which includes the following elements:

SensorType m_SensorType
unsigned short m_NrPixels
float m_aFit[5]
bool m_NLEnable
double m_aNLCorrect[8]
double m_aLowNLCounts
double m_aHighNLCounts
float m_Gain[2]
float m_Reserved
float m_Offset[2]
float m_ExtOffset
unsigned short m_DefectivePixels[30]

Oct-07 AS-5216-DLL Manual.doc 51

Avantes website: http://www.avantes.com email: Info@avantes.com

SensorType and Number of Pixels
The as5216 board supports many different detectors which are used in the AvaSpec spectrometers as
shown in the table below:

Spectrometer DetectorType Number of Pixels
AvaSpec-256-USB2 SENS_HAMS8378_256 256
AvaSpec-1024-USB2 SENS_HAMS8378_1024 1024
AvaSpec-2048-USB2 SENS_ILX554 2048
AvaSpec-NIR256-USB2 SENS_HAMS9201 256
AvaSpec-3648-USB2 SENS_TCD1304 3648
AvaSpec-102-USB2 SENS_TSL1301 102
AvaSpec-128-USB2 SENS_TSL1401 128
AvaSpec-2048x14-USB2 SENS_HAMS9840 2048

For each detector, different FPGA firmware is needed. The SensorType parameter should therefore not
be changed unless new FPGA firmware for another detectortype has been loaded.

The number of pixels is determined by the detectortype and should therefore not be changed, unless
another detectortype has been connected and the right FPGA code has been loaded.

Wavelength Calibration
The polynomial coefficients in m_aFit[5] describe the relation between the pixelnumber of the
detector array (0..m_NrPixels-1) and the corresponding wavelength in nanometer at this pixelnumber:

λ = m_aFit[0] + m_aFit[1] *pixnr + m_aFit[2] *pixnr2 + m_aFit[3] *pixnr3 + m_aFit[4] *pixnr4

In the function AVS_GetLambda, the m_aFit coefficients are used internally to store the wavelength
numbers into an array.

Nonlinearity Calibration and Correction
A polynomial can be used to correct for nonlinear behavior of the detector. The polynomial
coefficients can be stored in the EEProm and used by the application software to correct the raw AD
Counts.
The nonlinearity calibration service (determination of the polynomial coefficients) is included in the
IRRAD-CAL irradiance calibration service, but can also be ordered separately (NL-Calibration).
New in version 1.1 of the as5216.dll are the m_aLowNLCounts and m_aHighNLCounts parameters.
These have been added to be able to limit the range (in counts) for which the correction polynomial
should be applied. The correction that needs to be implemented in the application software can be
illustrated by using an example:

Suppose the following nonlinearity polynomial has been calculated:

m_aNLCorrect[0] = 9.93286529334744E-001
m_aNLCorrect[1] = -7.18891352982627E-006
m_aNLCorrect[2] = 4.65464905353804E-009
m_aNLCorrect[3] = -1.11258994803382E-012
m_aNLCorrect[4] = 1.42157972847117E-016
m_aNLCorrect[5] = -1.03925487491128E-020
m_aNLCorrect[6] = 4.02566735990250E-025
m_aNLCorrect[7] = -6.44850644473040E-030
m_aLowNLCounts = 200.0
m_aHighNLCounts = 15500.0

52 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

The polynomial is calculated by measuring the AD Counts for a number of pixels (10) over different
integration times to get the pixel data over a wide range from (in this example) 200 to 15500 counts.
The measured AD Counts are corrected for the offset value by subtracting the dark spectrum. For each
of the 10 pixels in the measurement the counts per second is calculated and normalized to its
maximum value, which is set to 100%. In the left figure below the normalized counts per second are
displayed against the measured AD Counts (corrected for dark). The polynomial is the best fit through
these measured points. The right figure below has been created by applying the polynomial to the
measured points, and recalculating the normalized counts per second. It is important to realize that the
polynomial should be applied to the AD Counts that have been corrected for the dark counts.

Counts
16.00014.00012.00010.0008.0006.0004.0002.0000

N
or

m
al

iz
ed

 C
ou

nt
s

pe
r S

ec
on

d
(in

 %
)

101,0

100,5

100,0

99,5

99,0

98,5

98,0

97,5

97,0

96,5

96,0

95,5

95,0

Before linearization After linearization

In the application software, a dark spectrum needs to be saved first and subtracted from the measured
AD Counts before the correction is applied. For example, suppose the measured AD Counts in the
dark for a pixel is a value of 300 Counts. At a certain light intensity, the measured AD Counts for this
pixel becomes a value of 14000 Counts. The AD Counts corrected for dark therefore becomes 13700.
The Normalized Counts Per Second can be calculated from the polynomial:

NCPS= m_aNLCorrect [0] +

m_aNLCorrect [1] *13700 +
m_aNLCorrect [2] *137002 +
m_aNLCorrect [3] *137003 +
m_aNLCorrect [4] *137004 +
m_aNLCorrect [5] *137005 +
m_aNLCorrect [6] *137006 +
m_aNLCorrect [7] *137007 = 0.97741

The AD Counts value corrected for linearity and dark becomes 13700/0.97741 = 14017 Counts. The
AD Counts value corrected for linearity only (not for dark) becomes 14017+300 = 14317 Counts.

Note that the AvaSpec-2048, -2048x14 and -3648 include a “Correct for Dynamic Dark” option (see
section 3.2.5). If this correction is applied, the measured dark AD Counts value (without subtracting
measured dark counts) is already fluctuating around zero. The polynomial can therefore be applied
directly to the measured counts.

The m_aLowNLCounts and m_aHighNLCounts parameters can be used to limit the range for the
correction (in counts) for which the polynomial should be applied. The use of polynomials beyond the
range of measured data points can give erratic corrections. In AvaSoft, Avantes uses the same

Counts
16.00014.00012.00010.0008.0006.0004.0002.0000

N
or

m
al

iz
ed

 C
ou

nt
s

pe
r S

ec
on

d
(in

 %
)

103,0

102,5

102,0

101,5

101,0

100,5

100,0

99,5

99,0

98,5

98,0

97,5

97,0

Oct-07 AS-5216-DLL Manual.doc 53

Avantes website: http://www.avantes.com email: Info@avantes.com

correction factor (NCPS) for measured counts (corrected for dark) that are lower than
m_aLowNLCounts as is used for m_aLowNLCounts, and for counts higher than m_aHighNLCounts
the same NCPS as is used for m_aHighNLCounts. In the example above, NCPS[200] = 0.99203 and
all counts <= 200 will be corrected in AvaSoft by dividing through 0.99203. Likewise NCPS[15500] =
0.96099 and all counts >= 15500 will be corrected in AvaSoft by dividing through 0.96099. All
counts: 200<counts<15500 will be corrected by the NCPS calculated by the polynomial.

Using the nonlinearity correction polynomial in combination with the 16bit ADC Counts range
(see also section 2.3.36, function AVS_UseHighResAdc) does require a small modification in your
application software, since the polynomial was recorded in 14bit mode, and therefore should be
applied to a 14bit range when calculating the NCPS. This will be illustrated by introducing the
variable “ADCFactor” to the equations that are used in the correction (same example as above, same
polynomial). The value of “ADCFactor” becomes 0.25 when running in 16bit ADC mode and 1.0
when running in 14bit ADC mode.

In 16bit ADC mode, the measured counts will be a factor 4 higher than in 14bit mode, or with a 14 bit
ADC. Therefore, the same pixel of the same spectrometer in this example returns 4*300 = 1200
Counts for darkdata and 4*14000 = 56000 Counts at a certain light intensity. The AD Counts
corrected for dark therefore becomes 54800. The Normalized Counts Per Second can be calculated
from the polynomial:

NCPS= m_aNLCorrect [0] +

m_aNLCorrect [1] * (ADCFactor * 54800) +
m_aNLCorrect [2] * (ADCFactor * 54800)2 +
m_aNLCorrect [3] * (ADCFactor * 54800)3 +
m_aNLCorrect [4] * (ADCFactor * 54800)4 +
m_aNLCorrect [5] * (ADCFactor * 54800)5 +
m_aNLCorrect [6] * (ADCFactor * 54800)6 +
m_aNLCorrect [7] * (ADCFactor * 54800)7 = 0.97741

The AD Counts value corrected for linearity and dark becomes 54800/0.97741 = 56067 Counts. The
AD Counts value corrected for linearity only (not for dark) becomes 56067+1200 = 57267 Counts.

Using the m_aLowNLCounts and m_aHighNLCounts parameters in 16bit mode also requires to
include the ADCFactor when comparing the measured Counts to these parameters:
m_aLowNLCounts = 200, therefore:
if ADCFactor*(measured counts (corrected for Dark))<200, use NCPS[200] = 0.99203
else if ADCFactor*(measured counts (corrected for Dark))>15500, use NCPS[15500] = 0.96099
else, calculate NCPS as shown above.

In the example above, all counts (corrected for dark) <= 800 will be corrected in AvaSoft by dividing
through 0.99203. Likewise, all counts (corrected for dark) >= 62000 will be corrected in AvaSoft by
dividing through 0.96099. All counts (corrected for dark): 800<counts<62000 will be corrected by the
NCPS calculated by the polynomial.

Gain and Offset
These parameters have been optimized by Avantes, and there should be no need to change these
values. The m_Gain and m_Offset parameters are used to optimize the Gain and Offset of the AD
Converter. Most spectrometers use only the m_Gain[0] and m_Offset[0]. Only the NIR2.2 with 2stage
TE Cooling uses the m_Gain[1] and m_Offset[1].
The m_ExtOffset parameter is used to be able to match the detector output range with the ADC range.

54 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

Defective Pixels
The m_DefectivePixels[30] array can be used to store the pixelnumbers that should be eliminated from
the data transfer. The as5216.dll will calculate the data for a defective pixel by interpolating the data of
the neigbor pixels. A defective pixel can be specified in the range from 0 to “NrOfPixels-1”, where
NrOfPixels specifies the total pixels available for the detectortype used in the spectrometer (see also
AVS_GetNumPixels).
The as5216.dll evaluates the array m_DefectivePixels[i] in an increasing order until a pixel is
specified which is equal or larger than the number of pixels in the detector.

3.6.2 EEProm structure: Standalone Parameters

The StandaloneType
structure includes a
boolean (m_Enable)
which is not used in the
standard version, but
which can be used for user
specific standalone
functionality. The
Measurement parameters
are also included in this
structure, as well as the
Number of Measurements
parameter (m_Nmsr).
Finally, the SDCardType
structure has been added,
to have storage space
available to store dark and
reference and scopemode
spectra.
The Measurement parameter structure (MeasConfigType) has been described in detail in section 3.2,
as well as the Number of Measurements parameter (m_Nmsr).
The SDCardType structure includes the following parameters:
bool m_Enable
unsigned char m_SpectrumType
char m_aFileRootName[6]
TimeStampType m_TimeStamp
These are the same parameters that have been defined in the function AVS_SaveSpectraToSDCard.
The boolean m_Enable is not used but has been added for possible future standalone functionality to
start saving spectra to the SDCard if m_Enable becomes true;
The m_SpectrumType can be set to 0, 1 or 2 to indicate that a dark (*.drk), reference (*.ref) or scope
(*.roh) spectrum should be saved. The m_aFileRootName[6] parameter is a character string that is
used as first part of the name of the stored spectra. A sequence number (00 to 99 if the rootname is six
characters long, 000 to 999 if the rootname is five characters long etc…) and the file extension (*.drk),
reference (*.ref) or scope (*.roh) completes the filename on SDCard.
The m_TimeStamp parameter has been added to be able to add a date/time to the files saved on
SDCard.

Oct-07 AS-5216-DLL Manual.doc 55

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6.3 EEProm structure: Irradiance, Reflectance Calibration and Spectrum Correction

The m_Irradiance, m_Reflectance and m_SpectrumCorrect parameters occupy together over 99% of
the defined memory in the EEProm structure (Sizeof(DeviceParamType) with the m_aReserved block
excluded). This is because each of these three parameters include an array of 4096
(MAX_NR_PIXELS) float numbers which can hold pixel specific calibration data.

The Irradiance Calibration structure (IrradianceType) has been defined to store the results of an
irradiance intensity calibration in EEProm, as well as the settings during this calibration (integration
time, smoothing, measurement setup, fiberdiameter). By reading these data from EEProm, it will be
possible to convert a spectrum with raw scopedata into an irradiance spectrum.

The Reflectance Calibration data can be used to convert the scopedata into a Reflectance or
Absorbance spectrum. The Spectrum Correction data can be used to correct the spectral data, e.g. for
Pixel Response Non Uniformity (PRNU), or for temperature effects. The Reflectance and Correction
arrays are not yet used for calibration purposes by Avantes.

How to convert ScopeData (A/D Counts) to a power distribution [µWatt/(cm2.nm)]

In the application software, the smoothpix value in the preparemeasurement structure should be set
to the same value as the smoothpix during the intensity calibration. This value can be found in
m_Irradiance.m_IntensityCalib.m_Smoothing.m_SmoothPix.

Also, before the irradiance intensity for a pixel i can be calculated, a dark spectrum (= A/D Counts
with no light exposed to spectrometer) should be saved (once) at the integration time that will be
used in the measurements. The dark spectrum for each pixel i can be called e.g. darkdata(i).

The irradiance intensity at a certain pixel i (i = 0 ..totalpixels-1) can then
be calculated from:

ScopeData(i) = Measured A/D Counts at pixel i (AVS_GetScopeData)
DarkData(i) = Dark data at pixel i, saved in application software
IntensityCal(i) = m_Irradiance.m_IntensityCalib.m_aCalibConvers[i]
CalInttime = m_Irradiance.m_IntensityCalib.m_CalInttime
CurInttime = Integration time in measurement (used in the PrepareMeasurement structure)

The equation for irradiance intensity at pixel i then becomes:

Inttimefactor = (CalInttime/CurInttime)
Irradiance Intensity = Inttimefactor* ((ScopeData(i) -DarkData(i))/IntensityCal(i))

If Scopedata(i) and Darkdata(i) are taken with the 16bit ADC Counts range (see also section
2.3.36, function AVS_UseHighResAdc), an additional “ADCFactor” needs to be added to the
equation above, because the intensity calibration (if performed by Avantes, or by using AvaSoft
application software) is always recorded in 14bit mode. The value of “ADCFactor” becomes 0.25
when running in 16bit ADC mode and 1.0 when running in 14bit ADC mode. The equation
becomes:
Irradiance Intensity = ADCFactor * Inttimefactor * ((ScopeData(i) -DarkData(i))/IntensityCal(i))

56 AS-5216-DLL Manual.doc Oct-07

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6.4 EEProm structure: Temperature Sensors

The as5216 boards are prepared for using up to three thermistors. NTC1 is mounted on the board,
NTC2 is not mounted, and the third thermistor is in the NIR2.2 detector. The voltage level of the
thermistors can be retrieved by calling the AVS_GetAnalogIn function (see also section 2.3.16 and
3.5).
The structure TempSensorType can hold the coefficients for a polynomial that converts the voltage
level into a temperature.

3.6.5 EEProm structure: Tec Control

The TecControl parameters are used to control the cooling of the detector in the AvaSpec-256-NIR2.2
For this spectrometer, the m_Enable flag will always be set to true. The default setpoint in degrees
Celsius is –20 °C, but it can be changed if needed. It is not recommended to change the DAC
polynomial (m_aFit) which has been optimized for the AvaSpec-256-NIR2.2.

To monitor the detector temperature of the AvaSpec-256-NIR2.2, use the AVS_GetAnalogIn function,
with a_AnalogInId set to 0 (see also section 2.3.16 and 3.5).

The polynomial for converting the voltage (U) to degrees Celsius for the thermistor is:

Temp [oC] = 58.70 - 20.48*U

The thermistor coefficients are stored in m_Temperature[2] (see section 3.6.4).

Oct-07 AS-5216-DLL Manual.doc 57

Avantes website: http://www.avantes.com email: Info@avantes.com

3.6.6 EEProm structure: ProcessControl

The settings in the ProcessControl structure can be used for the 2 analog and 10 digital output signals
at the DB26 connector.

The analog settings can be used to store a function output range that should correspond to the 0-5V
range of the analog output signals. For example, if the measured function output is expected to be in a
range between 1000 and 2000, these values can be stored in the m_AnalogLow[0] and
m_AnalogHigh[0] parameters. The function output can then be converted to a 0-5V analog output at
pin 17 by using the range stored in eeprom.

The digital output settings can be used as lower- and upper thresholds, to set the corresponding pins to
0 or 5V if these thresholds are exceeded.

The Process Control structure has been successfully used in applications, in which the spectrometer
runs completely standalone, without a connection to a PC. Data processing is in that case done
onboard by dedicated firmware and the analog and digital outputs are used to signal the function
output.

