CUBE - User Manual

Generic Display for Application Performance Data

Version 2.0 / November 7, 2004

Fengguang Song, Felix Wolf

Copyright© 2004 University of Tennessee




Contents

1

Introduction 3
Installation
21 InstalingCUBE. . . . . . . . . . . . . . . e
2.2 Installing CUBE Libraryonly . . . ... ... ... .. ... ... ... ...
2.3 License . . . ... e 5
2.4 Libraries Required . . . . . . . . . .. e e 5
2.5 Support ... e e 5
Using the Display
3.1 BasicPrinciples . . . . . . . . e e e 5
3.2 GUICOMPoNENtS . . . . . . . e e e e 7
3.21 TreeBrowsers . . . . . . . . . 7
3.22 MenuBar . .. .. .. .. 8
3.23 ColorLegend . . . . . . . . .. 9
3.24 StatusBar . . . . . ... 9
3.25 ContextMenus . . . . . . . . .. 10
Performance Algebra 10
4.1 Difference . . . . . . L e 10
42 Merge . . . . . e e e e 11
4.3 Mean . . ... e 12
4.4 Implementation . . . . . . . . .. e e 12
4.4.1 Integration of the Performance Space . ... ... ... . ... ... 12
4.4.2 ArithmeticOperation . . . . . . . . . .. ... .. ... 12
Tools 13
5.1 tau2cube . . . ... 13
Creating CUBE Files 13
6.1 CUBEAPI . . . . e e e 13
6.1.1 MetricDimension . . . . . . . .. ... 31
6.1.2 Program DImension . . . . . . . . . .. e 4 1
6.1.3 SystemDimension . . . .. .. .. . ... 51
6.1.4 SeverityMapping . . . . . . . .. e 16



6.1.5 Miscellaneous . . . . . . . . .. 6 1
6.2 TypicalUsage . . . . . . . . . . . e e e e 17

Abstract

CUBE is a generic presentation component suitable for disptpgtiwide variety of perfor-
mance metrics for parallel programs including! and Opemp applications. Program per-
formance is represented in a multi-dimensional space dttuvarious program and system
resources. The tool allows the interactive explorationhig space in a scalable fashion and
browsing the different kinds of performance behavior witise& CUBE also includes a library
to read and write performance data as well as operators tpa@nintegrate, and summarize
data from different experiments. This user manual proviidgtsuctions of how to instaltUBE,
how to use the display, how to use the operators, and how te @uwBE files.

1 Introduction

cuBk (CUBE Uniform Behavioral Encoding) is a generic presentattomponent suitable for dis-
playing a wide variety of performance metrics for parallegrams includingvpi [2] and OpempP
[3] applications.cuBE allows interactive exploration of a multidimensional niespace in a scal-
able fashion. Scalability is achieved in two ways: hieramahdecomposition of individual dimen-
sions and aggregation across different dimensions. Altioseare uniformly accommodated in the
same display and thus provide the ability to easily comgaestfects of different kinds of program
behavior.

CUBE has been designed around a high-level data model of progedravior called thecuBE
performance space. ThecuBE performance space consists of three dimensions: a matmi&rgion,

a program dimension, and a system dimension. The metriadiioe contains a set of metrics, such
as communication time or cache misses. The program dinregsiatains the program’s call tree,
which includes all the call paths onto which metric values ba mapped. The system dimension
contains all the control flows of the program, which can becesses or threads depending on
the parallel programming model. Each poim,c,|) of the space can be mapped onto a number
representing the actual measurement for metrighile the control flom was executing call path

c. This mapping is called thgeverity of the performance space.

Each dimension of the performance space is organized inrarbiig. First, the metric dimension

is organized in an inclusion hierarchy where a metric at aeloavel is a subset of its parent, for
example, communication time is below execution time. Sd¢ctire program dimension is organized
in a call-tree hierarchy. Flat profiles can be representadudsple trivial call trees consisting only

of a single node. Finally, the system dimension is organizedmulti-level hierarchy consisting of

the levels: machinesmpP node, process, and thread.

CUBE also includes a library to read and write instances of theipusly described data model in
the form of anxmL file. The file representation is divided intav@tadata part and alata part. The
metadata part describes the structure of the three dimenplas the definitions of various program
and system resources. The data part contains the actuaitgenenbers to be mapped onto the
different elements of the performance space.

The display component can load such a file and display therdift dimensions of the performance
space using three coupled tree browsers (Figure 1). Theskrsvare connected so that the user
can view one dimension with respect to another dimensiom.ekample, the user can click on a



particular metric and see its distribution across the caé.t In addition, the display is augmented
with a source-code display that can show the exact posifiarcall site in the source code.

As performance tuning of parallel applications usuallyimes multiple experiments to compare the
effects of certain optimization strategie®)BE includes a new feature designed to simplify cross-
experiment analysis. TheuBE algebra [4] is an extension of the framework for multi-exemu
performance tuning by Karavanic and Miller [1] and offerse& af operators that can be used to
compare, integrate, and summarize multiplese data sets. The algebra allows the combination of
multiple CUBE data sets into a single one that can be displayed like thenatignes.

The following sections explain how to instatluBg, how to use the display, how to createBE
files, and how to use the algebra and other tools.

2 Installation
CUBE is available as a source-code distributiondonx platforms. You can downloaduBEe from:
http://icl.cs.utk.edu/ kojak/cube/

Building cuBE requires thexmL parser libxml2 and theul toolkit wxWidgets.

2.1 Installing CUBE

The full installation includes theuBE library to createcuBEfiles, and thecUBE display component
to display their contents.

1. gunzip cube-2.0.tar.gz | tar xvf
2. cd cube-2.0
3. EditMakefil e. defs

e Set the variabl®REFI X to your desired installation path.

e Depending on the platform, select and uncomment a specickbitorresponding to
your operating system. Available options anelux, AIX, IRIX, and SOLARIS. To
customize the compiler setting, please edit the followiagables:

CCC. C++ compiler. Note that the compiler must be the same as thpiber used for
compilingwxWIDGETS, unless you build the library only.

CCFLAGS: C++ compiler options

LDFLAGS: Linker options

AR Archive tool (e.g.ar or CC)

ARFLAGS: Archive tool options

4. make

5. make install



2.2 Installing CUBE Library only

The partial installation will build and install only tr@uBe library on your system. This is intended
for users who just need to createBe file, but need not display it on their machines.

1. Same as steps of 1 to 3 described in the above section.

2. mke |ib
3. make install-lib
2.3 License

This software is free but by downloading and using it you matically agree to comply with the
license agreement. You can read the [fll€ENSE in the distribution for precise wording.

24 LibrariesRequired

Both libraries listed below are necessary for using¢husE display component. For those users
who need thecUBE library only, only libxml2 is required to be installed.

e libxml2, which is an XML C parser and toolkit developed for the Gnomggzt. It is pre-
installed on many systems. Please refer to the libxml2 wele fiar details:

http://xm soft.org/

o WxWidgets, which is a cross-platform C++ framework for writing advaddGUI applications
using native controls. Please refer to the wxWidgets wele faigdetails:

http: // ww. wxwi dgets. or g/

2.5 Support

If you have any question or comments you would like to shaté thie CUBE developers, please
send e-mails t&oj ak@s. ut k. edu.

3 Usingthe Display

This section explains how to use theBE display component. After a brief description of the basic
principles, different components of tiea1 will be described in detail.

3.1 BasicPrinciples

The cuBE display consists of three tree browsers, each of them reptiag a dimension of the
performance space (Figure 1). The left tree displays theicriditnension, the middle tree displays
the program dimension, and the right tree displays the sydimension. The nodes in the metric



tree represent metrics. The nodes in the program dimenaiohave different semantics depending
on the particular view that has been selected. In Figureel, thpresent call paths forming a call
tree. The nodes in the system dimension represent machiogéss, processes, or threads from top
to bottom.

Users can perform two types of actions: selecting a node eareding/collapsing a node. At any
time, there are two nodes selected, one in the metric tredhendther in the call tree. It is not
possible to select a node in the system tree.

M CUBE: sweep3d_hyb.cube
File  Miew Help

=[] 0.0 Communication
= [ 0.0 Collective
[] 0.0 Early Reduce
O 0.0 Late Broadcast
0.6 Wait at M = M
=l 2.7 PP
[ 0.0 Late Receiver
3
] 0010
= [ 0.0 Synchronization
O 0.0 Barrier Completion
[ 0.0 Wait at Barrier

Late Sender

[] 0.0 decomp
=[] 0.0inner_auto
=[] 0.0 inner
[] 0.0 initialize
[] 0.0 barrier_sync
[ o.0timers_
[] 0.0 source
=[] 0.0 sweep
[] 0.0 octant
[] 0.0 i3omp parallel
[ 0.0 snd_real

Petfarmance Metrics | Call Trae System Tree
=[] 0.0 Time =[] 0.0 driver | = [ 0.0 Linux Cluster
= [ 474 Execution [ 0.0 task_init [ 0.4 zam0O0D8e3
=] 2.4 MPI [ 0.0 read_input 0.9 zam00ged

0.9 zam00ge5
=[] 0.0 zamO0ges
=[] 0.0 Process 3
1.0 Thread 0
[] 0.0 Thread 1
[] 0.0 Thread 2
[] 0.0 Thread 3

O 6.0 oMP
[ 37.6 Idle Threads

[] 0.0 global_int_sum

[ 0.0 flux_err

[1 0.0 global_real_sum
[] 0.0 task_end

i‘rlllllIIgUIFIIIIIIISIUIF“““m

100

L ‘ ‘ ‘
10 20 30 40

ﬂix 4 |

50‘ EU‘

Figure 1:cuBk display window.

Each node is associated with a metric value, which is callegaverity and is displayed simultane-
ously using a numerical value as well as a colored squareor€ehable the easy identification of
nodes of interest even in a large tree, whereas the numealteds enable the precise comparison of
individual values. The sign of a value is visually distinghued by the relief of the colored square. A
raised relief indicates a positive sign, a sunken relieiciaigis a negative sign. Figure 5 shows nodes
with positive and negative signs. Negative values can apgea result of applying the algebra’s
difference operator (Section 4.1) to two data sets.

A value shown in the metric tree represents the sum of a péatienetric for the entire program,
that is, across all call paths and the entire system. A vdlow/s in the call tree represents the sum
of the selected metric across all processes or threads fatiawar call path. A value shown in the
system tree represents the selected metric for the selealigzhth and a particular system resource.
Briefly, a tree is always an aggregation of all of its neightoees to the right. If there are multiple
call trees,CUBE has two options to compute the overall severity for a padicmetric. Either it
can calculate the sum of all call trees (i.e., their root isddecollapsed state) or their maximum. If
CUBE is unable to determine the correct mode it will ask the user.

Note that all the hierarchies mUBE are inclusion hierarchies, meaning that a child node reptss
a part of the parent node. For example, the metric hierardightdisplay cache misses as a child



node of cache accesses because the former event is a sutheetatfer event. Similarly, in Figure
2 the call pathmain contains the call pathsiain-foo and main-bar as child nodes because their
execution times are included in their parent’s executioreti

The severity displayed ioUBE follows the principle ofsingle representation, that is, within a tree
each fraction of the severity is displayed only once. Theppse of this display strategy is to
have a particular performance problem to appear only ondkeriree and, thus, help identify it
more quickly. Therefore, the severity displayed at a hogeedds on the node’s state, whether it
is expanded or collapsed. The severity of a collapsed nqatesents the whole subtree associated
with that node, whereas the severity of an expanded nodegepts only the fraction that is not
covered by its descendants because the severity of itsruktis is now displayed separately. We
call the former onénclusive severity, whereas we call the latter oaxelusive severity.

100 main

10 main
' 30 foo
60 bar

Figure 2: Node of the call tree in collapsed or expanded .state

For instance, a call tree may have a nod@n with two childrenmain-foo and main-bar (Figure
2). In the collapsed state, this node is labeled with the Sment in the whole program. In the
expanded state it displays only the fraction that is speitiieein foo nor inbar. Note that the label
of a node does not change when it is expanded or collapseuljfatie severity of the node changes
from exclusive to inclusive or vice versa.

3.2 GUI Components

The GuI consists of a menu bar, three tree browsers, a color legenlda atatus bar. In addition,
some tree browsers provides a context menu associated agthrede that can be used to access
node-specific information.

3.2.1 TreeBrowsers

The tree browsers are controlled by the left and right mousiihs. The left mouse button is used
to select or expand/collapse a node. The right mouse bigtoseid to pop up a context menu with
node-specific information, such as online documentatiant€xt menus are only available for the
metric and program trees.

A label in the metric tree shows a metric name. A label in thetoae shows the last callee of
a particular call path. If you want to know the complete cathp you must read all labels from
the root down to the particular node you are interested irterAgwitching to the module-profile
or region-profile view (see below), labels in the middle tdemote modules or regions depending
on their level in the tree. A label in the system tree showsrtame of the system resource it
represents, such as a node name or a machine name. Procebt#esads are usually identified by
a number, but it is possible to give them specific names wheatiog acUBE file. The thread level
of single-threaded applications is hidden. Note that aftsrcan have multiple root nodes.



— ' —
el CUBE: sweep3d_hyb.cube ==
Eile  Wiew| Help
Perfon © Call tree Call Tree ‘ System Tree
Module profile i T.00 alTel_Sye
= [ 1 Il p :‘ H e = A1 = [ 000 Linux Cluster
i [£] ;
o < Begion profile = i+ [ 0.071 zam00ge3
=[] 0.00 source
r Absolute = [ 000 £ 0.02 zam0O05e4
= .00 swes
| Percentage ; [+] 0.02 zamO0Ges
i Ol =[] 0.00 zam006e6
I Relative percentage =[] 0.00 rev_real S %
_I Comparative percentage .. 008 MELRecy | =1 [] 0.00 Process 3
— diver ey 5 DDI:BE;? 0.0Z Thread 0
Hide ialues Al =re ;:I E D.DD ; dep plara = [] 0.00 Thread 1
- 3 00 snd_rea
[] nooio o Megative K = [] o.o0 Thread 2
o [+ [] 0.00 global_int_sum
7 [ 0.00 Synchranization [] o.00 Thread 3
) [+ [] 0.00 flux_err
+ [ 016 OwP
[+ [] 0.00 global_real_sum
] 0.98 Idle Threads N
&[] 0.00 task_end /
BB L]
1.31e+02 Z2.hZe+02
l4x4 |

Figure 3:cuBE menu bar.

3.2.2 MenuBar

The menu bar consists of three menus, a file menu, a view medw help menu.

File
The file menu can be used to open and close a file and tc eBiE.

View
The view menu (Figure 3) can be used to alter the way the prodimension is displayed, to
change the number representation for the entire displdg, lude positive or negative values.

After opening a data set the middle panel shows the call frégegrogram - unless the data
set contains a flat profile. However, a user might wish to knawctvfraction of a metric can
be attributed to a particular region regardless of from wlitavas called. In this case, the user
can switch from the call-tree mode (default) to the modulzfife mode or the region-profile
mode (Figure 4). In the module-profile mode, the call-tresdrichy is replaced with a source-
code hierarchy consisting of three levels: module, regamg subregions. The subregions,
if applicable, are displayed as a single child node labsiduegions. A subregions node
represents all regions directly called from the region &bdw this way, the user is able to see
which fraction of a metric is associated with a region exgkly, that is, without its regions
called from there. The region-profile mode is similar to thedule-profile mode except that
modul es are not shown.

The severity can be displayed in four different ways: aslasolute value (default), aper-
centage, arelative percentage, or as acomparative percentage. The absolute value is the real
value measured. When displaying a value as a percentageeitentage refers to the value
shown at the root of the metric tree when it is in collapsetkstdowever, both absolute mode
and percentage mode have the disadvantage that valuesaandeery small the more you
go to the right, since aggregation occurs from right to [&ftavoid this problem, the user can
switch to relative percentages. Then, a percentage ingheair middle tree always refers to
the selection in the neighbor to the left, that is, a pergmia the system dimension refers
to the selection in the program dimension and a percentatieiprogram dimension refers



to the selected metric dimension. In this mode the percestagthe middle and right tree
always sum up to one hundred percent. Figure 4 shows a regpfitepvith relative percent-
ages. Furthermore, to facilitate the comparison of difieexperiments, users can choose the
comparative percentage mode to display percentagesvestatanother data set. The com-
parative percentage mode is basically like the normal pgage mode except that the value
equal to 100% is determined by another data set. Note thhtialisolute mode, all values
are displayed in scientific notation. To prevent clutterihg display, only the mantissa is
shown at the nodes with the exponent displayed at the cajent:

Finally, to help users distinguish between positive andatieg values more easily, users can
hide either positive or negative values.

Help
Currently, the help menu provides only an About dialog wélease information.

I CUBE: sweep3d hyb.cube
File  ¥iew Help
Performance hetrics | todule Profile | System Tree
=[] 0.0 Time # [] 0.0 UNENOWH = = [0 00 Linus Cluster =
=+ [ 474 Execution - [] 0.0 libmpi.a =+ [] 0.0 zam00ge3
= 2.4 MPI &[] 0.0 libomp.a =} [] 0.0 Process 0
=[O 6.6 Communication [ 0.3 sourcef & 74 Thread 0
ool =[] 0.0 sweepf 3.0 Thread 1
= [ 0.0 Synchronization [ 7.8 Igomp do [E 6.1 Thread 2
=[] 0.0 OmMP [ z2.7 I$omp ibarrier [ 6.3 Thread 3
[] 0.0 Flush [ W76.5 [$omp ibarriar =[] 25.5 zam00ged
1.7 Forl [# 99.5 Igomp parallel =[] 254 zam00&es
= [ FEE @ [ 0.2 flux_erf 1| = [ 0.0 zam008e
[ 37.8 Idle Threads # [] 0.0 drivermod.F = [] 0.0 Process 3
- [] 0.0 mpi_stuff O 7.2 Thread 0
#[] 0.0 read_inputmod.F 3.3 Thread 1
& [ 0.0 decomp.mod.F 5.7 Thread 2 |
&[] 0.0 inner_auto.mad F / & 7.9 Thread 3 /
Plllﬁ 1h| Z0 30| 4n| 5D| au| 70 a0 a0 100
[4%x4 |

Figure 4:cuBe module profile.

3.2.3 Color Legend

The color is taken from a spectrum ranging from blue to redasgnting the whole range of possible
values. To avoid an unnecessary distraction, insignificahies close to zero are displayed in dark
gray. Exact zero values just have the background color. Diipg on the severity representation,
the color legend shows a numeric scale mapping colors ohiiesa

3.24 StatusBar

The first column showingn x n indicates that there ara processes and for each process there are
at mostn threads in the execution.



3.25 Context Menus

The metric and program dimensions provide a context menuctira be used to obtain specific
information on each node. The context menu is accessiblihgigght mouse button. The context
menu displays all or a subset of the options described below:

Locati on: Displays the source-code location of a program resourcexinidl form. The location
of nodes in the call tree always refers to the call site fronenshthey have been called or
the calling region. In the module- and and region-profile moldowever, it refers to the
associated region.

Source code: Displays and highlights the source-code location of a @gresource in the
source code browser. The location of nodes in the call treaya refers to the call site
from where they have been called or the calling region. Imtlbdule- and and region-profile
mode, however, it refers to the associated region. Notenthtadl!l data sets provide sufficient
line-number information to show the correct section of thierse code.

Online description: Both metrics and regions can be linked to an online desoriptFor ex-
ample, metrics might point to an online documentation @rpig their semantics, or regions
representing library functions might point to the corresgiag library documentation.

I nfo: A brief description of metrics or regions supplied by thesEe data set.

4 Performance Algebra

As performance tuning of parallel applications usuallyoles multiple experiments to compare
the effects of certain optimization strategies|BE offers a mechanism callgubrformance algebra
that can be used to merge, subtract, and average the dataliffersnt experiments and and view
the results in the form of a single “derived” experiment. idsthe same representation for derived
experiments and original experiments provides accessetaéhived behavior based on familiar
metaphors and tools in addition to an arbitrary and easy ogitipn of operations. The algebra is
an ideal tool to verify and locate performance improvemantsdegradations likewise. The algebra
includes three operatodiff, merge, andmean provided as command-line utilities which take two or
moreCUBE files as input and generate anotloersEe file as output. The operations are closed in the
sense that the operators can be applied to the results abpseaperations. Note that although all
operators are defined for any valtiaBE data sets, not all possible operations make actually sense.
For example, whereas it can be very helpful to compare twsiames of the same code, computing
the difference between entirely different programs isketii to yield any useful results.

4.1 Difference

Changing a program can alter its performance behavior.riAgighe performance behavior means
that different results are achieved for different metri@me might increase while others might
decrease. Some might rise in certain parts of the prograg while they drop off in other parts.

Finding the reason for a gain or loss in overall performarftenarequires considering the perfor-
mance change as a multidimensional structure. WitBE's difference operator, a user can view

10



this structure by computing the difference between two grpents and rendering the derived re-

sult experiment like an original one. The difference opmrédkes two experiments and computes a
derived experiment whose severity function reflects thieiihce between the minuend’s severity
and the subtrahend'’s severity.

Figure 5 shows the difference betwaemiak [5] analysis results obtained from the original and an
optimized version of a nano-particle simulation. Raisdig¢igindicate performance improvements,

and sunken reliefs indicate performance degradations fifjee indicates that a certain optimiza-

tion was only partially successful because some of the watiés migrated to other locations in the

program instead of disappearing.

Usage: cube_di ff <ni nuend> <subtrahend> [-0 <out put >]

The default output file name @& f f . cube.

: diff,cube
File  Wiew  Help
Perfarmance Metrics | Call Tree | System Tree
=[] 0.0 Total [ 0.0 global_sumr 4] =[] 0.0 Linux Cluster =
= [ 0.3 Execution B -0.5 global_sumc =[] 0.0 zam008e1
=7 -03 MPI =[] 0.0 hpsi_comp_nso W -06 Process 0
=[] 0.0 Communication [] 0.0 MPI_Barrier W -05 Process 1
ol -5 7 Collective [] 0.0 d3ft_comp M -06 Process 2
Bl -21FzP = [T -0.5 Process 3
] ooio [1 0.0 MPI_Isend =} [] 0.0 zam00gez
= 2.7 Synchronization [] 0.0 MPI_Recy [T -0.2 Process 4
2.6 Bartier Completion [ 0.0 MPI_Wait [T -0.2 Process 5 -
& 12.2 Wait at Barrier =[] 0.0 global_sumr [T -0.1 Process &
W -0.5 MPL_Allreduce [T -0.2 Process 7
[T -0 diag_comp =[] 0.0 zam00ge3
M1 nnkdel =and ﬂ M1 nnBracoce 7 f‘
FIIII ‘ ‘ ‘ ‘ ‘ IFIIIIIIIIIFIIIIIIIII L] ‘
10 20 a0 40 50 g0 70 &1} 30 100
ex1 |
Figure 5: A derived experiment computed usodpe _di f f .
4.2 Merge

The merge operator’s purpose is the integration of perfonmalata from different sources. Often a
certain combination of performance metrics cannot be mredsduring a single run. For example,
certain combinations of hardware events cannot be couirtedtaneously due to hardware resource
limits. Or the combination of performance metrics requinsig different monitoring tools that
cannot be deployed during the same run. The merge oper&&s tawo CUBE experiments with

a different or overlapping set of metrics and yields a deri@eBE experiment with a joint set of
metrics.

Usage: cube_merge <opl> <op2> [-0 <out put>]

The default output file name m®r ge. cube.

11



4.3 Mean

The mean operator is intended to smooth the effects of ramumrs introduced by unrelated system
activity during an experiment or to summarize across a rafig@gecution parameters. The user can
conduct several experiments and create a single averagaraegnt from the whole series. Different
from the previous tow operators, which are binary operatiies mean operator takes an arbitrary
number of arguments.

Usage: cube_mean <opl> <op2> ...<opN> [-0 <output>]
The default output file name ier ge. cube.

4.4 Implementation

The actions performed by the operators can be divided inbostvibtasks: integration of the perfor-
mance space followed by the actual arithmetic operation.

4.4.1 Integration of the Performance Space

The integration of two or more performance spaces consfdisr@e separate parts: merging the
metric dimension, merging the program dimension, and mgrthe system dimension. Merging
metric trees and call trees works very similar to the stmadttumerge operator in [1]. While traversing
from the roots to the leavesUBE tries to match up the nodes. Nodes that cannot be matched are
separately included in the new performance space, wheoegsthat can be successfully matched
become shared nodes, that is, they appear as a single ndgenaw space.

Merging the system dimension is slightly different. There &our levels with different mean-
ings: machine, node, process, and thread. First, procassethreads are matched based on their
application-level identifiers, for example, their glob&tbi rank andopervip thread number. Next,
CUBE examines whether the partitioning of processes into naslesrinpatible between the two
operands. If compatible;UBE copies the entire node and machine hierarchy including ones¢
sponding process-node mapping of one of the operands iatedult. Otherwise it collapses the
machine and node level into a single machine and a single node

4.4.2 Arithmetic Operation

After performance-space integration, a new severity foncis computed whose domain is the
integrated space. An element-wise operation is perfornmethe two input arrays. To be able
to perform an element-wise operation, the operand’s dgvemction is extended with respect to
the integrated metadata so that it is defined for every tupktric, call path, thread) of the new
metadata. This is done by assigning zero to previously umelgfiuples. For example, a call path
occurring in one metadata set might not occur in anothehigfiappens the resulting value for this
call path will be set to zero in those experiments that didaittain the call path before.

In the case of the difference or the mean operators, the alewise operation is just a subtraction
or arithmetic mean operation, respectively. In the casb@hierge operataruse makes a simple

case distinction. Recall that the purpose of doing the mapgeation is to integrate performance ex-
periments with different metrics. For example, one experittounts floating point operations, and

12



the other one counts cache misses, since we might not becatsent both of them simultaneously.
So, if the metric is provided only by one experimentsE takes the data from that experiment. If it
is provided by both experimentauBE takes it from the first one (without loss of generality).

5 Tools

5.1 tau2cube

TAU is designed to provide a framework for integrating prograah performance analysis tools and
components. Using the tool bau2cube, TAU profiles are able to be converted to thesE format.

Usage: tau2cube [<tau-profile-dir>] [-0 <output>]

The first parameter is theau profile directory. The second parameter is the name of the
outputcuBek file. The default for<tau-profile-dit- is the current directory and the default
output file name is. cube.

Limitations:

e Converts only flat, two-level (one level more than flat), df éall path profiles (all callers up
to main).

e The main function must be included and every other functiarstnioe called from within
main. Static initializers outside the main function are sigpported.

6 Creating CUBE Files

The cuBE data format in arxmMmL instance [6]. The correspondinguLschema specification [7]
can be found imoc/ cube. xsd in the cuBE distribution. ThecUBE library provides an interface to
createcuBE files. It is a simple class interface and includes only a fewhwds. This section first
describes theUBE API and then presents a simple C++ program as an example of hose tib. u

6.1 CUBE API

The class interface defineschass Cube. The class provides a default constructor and sixteen
methods. The methods are divided into four groups. The firsetgroups are used to define the
three dimensions of the performance space and the last gsaiged to enter the actual data. In
addition, an output operatek to write the data to a file is provided.

The methods used to create the different entities of theopaence space always returrt@nst
object pointer which can be used for further reference.

6.1.1 Metric Dimension

This group refers to the metric dimension of the performasmace. It consist of a single method
used to build metric trees. Each node in the metric tree septs a performance metric. Met-

13



rics have different units of measurement. The unit can beeeitsec” (i.e., seconds) for time
based metrics, such as execution time,a@c” (i.e., occurrences) for event-based metrics, such as
floating-point operations. During the establishment of d&riméree, a child metric is usually more
specific than its parent, and both of them have same unit cfunement. Thus, a child performance
metric has to be a subset of its parent metric (e.g., systamifi a subset of execution time).

const Metric* def_met (string name, string uom string url,
string descr, const Metric* parent);

Returns a metric with namsanme and descriptiordescr . uomspecifies the unit of measure-
ment, which is eithersec” for seconds or 6cc” for number of occurrencesparent is a
previously created metric which will be the new metric’sqrdr To define a root node, use
NULL instead.ur | is a link to anHTML page describing the new metric in detail. If you want
to mirror the page at several locations, you can use the n@oror or @ as a prefix, which
will be replaced by an available mirror defined usted _mi rror () (see Section 6.1.5).

6.1.2 Program Dimension

This group refers to the program dimension of the perforraapace. The entities presented in this
dimension arenodule, region, call site, andcall-tree node (i.e., call paths). A module is a source
file, which can contain several code regions. A region can fametion, a loop, or a basic block.
Each region can have multiple call sites from which the adrftow of the program enters a new
region. Although we use the term call site here, any placedfiases the program to enter a new
region can be represented as a call site, including loojesni€orrespondingly, the region entered
from a call site is calledallee, which might as well be a loop. Every call-tree node pointa tall
site. The actual call path represented by a call-tree nadbeaerived by following all the call sites
starting at the root node and ending at the particular nodeterfest. Therefore, before defining a
call-tree node, the necessary call sites, callees, andlesbave to be defined. The user can chose
among three ways of defining the program dimension:

1. Call tree with line numbers
2. Call tree without line numbers

3. Flat profile

A call tree with line numbers is defined as a tree whose nodes fpocall sites. A call tree without
line numbers is defined as a tree whose nodes point to regienstlije callees). A flat profile is
simply defined as a set of regions, that is, no tree has to heedefi

const Mbdul e* def _module (string nane);
Returns a new module with module nameere, which can be either a complete path or a file
name.

const Region* def_region (string nane, |ong begln, long endln,
string url, string descr,
const Modul e* nod);

Returns a new region with region namane and descriptiordescr. The region is located
in the modulemd and exists from lindegl n to line endl n. url is a link to anHTML page

14



describing the new metric in detail. If you want to mirror {b&ge at several locations, you
can use the macro @rror @ as a prefix, which will be replaced by an available mirror
defined usinglef _m rror() (see Section 6.1.5).

const Callsite* def_csite (const Mdule* mod, int |ine,
const Regi on* callee);

Returns a new a call site located at the lin@me of the modulenod. The call site calls the
calleecal | ee (i.e., a previously defined region).

const Cnode* def cnode (const Callsite* csite,
const Cnode* parent);

Returns a new call-tree node representing a call from daltsi t e. parent is a previously
created call-tree node which will be the new one’s parentd@ine a root node, uséJLL
instead. This method is used to create a call tree with limebaus.

const Cnode* def cnode (const Regi on* region,
const Cnode* parent);

Defines a new call-tree node representing a call to the regiginon. par ent is a previously
created call-tree node which will be the new one’s parentdéfine a root node, usdéJLL
instead. Note that different from the previodef _cnode(), this method is used to create a
call-tree without line numbers where each call-tree nodetpdo a region, instead of a call
site.

To define a call tree with line numbers wf _csite() anddef _cnode(const Callsite*...).
To define a call tree without line numbers wd _cnode(const Region*...). To create a flat
profile use neither one - just defining a set of regions will iiicent.

6.1.3 System Dimension

This group refers to the system dimension of the performapeee. It reflects the system resources
on which the program is using at runtime. The entities preisathis dimension arenachine, node,
process, andthread, which populate four levels of the system hierarchy in theegiorder. That
is, the first level consists of machines, the second levebden, and so on. Finally, the last (i.e.,
leaf) level is populated only by threads. The system treaii$ in a top-down way starting with a
machine. Note that even if every process has only one thressas still need to define the thread
level.

const Machi ne* def _mach (string nane);
Returns a new machine with the namre.

const Node* def_node (string nane, const Machine* mach);
Returns a newgMpP) node which has the nammane and which belongs to the machimach.
const Process* def _proc (string name, int rank,

const Node* node);

Returns a new process which has the naware and the rank ank. The rank is a number
from 0— (n— 1), wheren is the total number of processesp| applications may use the rank
in MPI _COMLWORLD. The process runs on the noamde.

15



const Thread* def_thrd (string nane, int rank,
const Process* proc);

Defines a new thread which has the namaee and the rank ank. The rank is a number
from 0— (n—1), wheren is the total number of threads spawned by a process. @pen
applications may use the Open thread number. The thread belongs to the propess.

6.1.4 Severity Mapping

After the establishment of performance space, users cagnassverity values to points of the
space. Each point is identified by a tugleet, cnode, thrd). The value should be inclusive
with respect to the metric, but exclusive with respect toddlétree node, that is it should not cover
its children. Taking Figure 2 as an example, this means tiiat ivalue refers tonain then it should
not includemain-foo or main-bar. The default severity value for the data points left undefirse
zero. Thus, users only need to define non-zero data points.

void set_sev (const Metric* net, const Cnode* cnode,
const Thread* thrd, double val ue);

Assigns the valugal ue to the point(net, cnode, thrd).
void add_sev (const Metric* net, const Cnode* cnode,
const Thread* thrd, double value);
Adds the valueval ue to the present value at poifiret, cnode, thrd).

The previous two methodset _sev() andadd_sev() are intended to be used when the program
dimension contains a call tree and not a flat profile. As thefiafile does not require the definition
of call-tree nodes, the following two functions should bedigstead:

void set_sev (const Metric* net, const Region* region,
const Thread* thrd, double value);

Assigns the valugal ue to the point(net, region, thrd).
void add_sev (const Metric* nmet, const Region* region,
const Thread* thrd, double value);
Adds the valueral ue to the present value at poifret, region, thrd).

6.1.5 Miscellaneous

Often users may want to define some information related tathee file itself, such as the creation
date, experiment platform, and so on. For this purpasgE allows the definition of arbitrary
attributes in everycUBE data set. An attribute is simply a key-value pair and can i@k using
the following method:

void def _attr (string key, string value);
Assigns the valugal ue to the attributekey.
There is one predefined attribut®& BE_.CT_AGGR with valuesmAX andsum to stipulate the aggre-

gation mode applied in the presence of multiple call treestiSn 3.1). If this attribute is defined
cuBsk will use the specified mode and suppress the input dialog.

16



cUBE allows using multiple mirrors for the online documentat@Essociated with metrics and re-
gions. Theur| expression supplied as an argument def _netric() anddef regi on() can
contain a prefix@n rror @ When the online documentation is accessedgE can substitute all
mirrors defined for the prefix until a valid one has been foutfcho valid online mirror can be
found, cuBE will substitute the / doc directory of the installation path fa@ri rr or @

void def_mrror (string mrror);

Defines the mirroni rror as potential substitution for therL prefix @i rror @

6.2 Typical Usage

A simple C++ program is given to demonstrate how to usecthge write interface. Figure 6 shows
the correspondinguBE display. The source code of the target application is pexvid Figure 7.

CUBE: example.cube

File  ¥iew Help

Performance hetrics | Call Tree | System Tree
= Od = [E 4.00 main =[] 0.00 MSC =
O 6.00 User time = 4.00 foo =[] 0.00 Athena
O 6.00 System time & 4.00 bar =} [] 0.00 Frocess 0
O z.00 Thread 0
[ .00 Thread 1 4
FIIII IR
12.00 | 24.00
[1x2 |
Figure 6: Display okxanpl e. cube
1 void foo() {
10 }
11 void bar() {
20 }
21 int main(int argc, char* argv) {
60 foo();
80 bar ();
100 }

Figure 7: Target-application source codanpl e. ¢

Il A C++ exanple using CUBE wite interface
int main(int argc, char* argv[]) {
Il Declarations (Al const class pointers)

17



Cube cube;

Il specify mrrors (optional)
cube. def mirror("http://icl.cs.utk.edu/software/kojak/")
cube. def mirror("http://ww. fz-juelich.de/ zanf koj ak/");

Il specify information related to the file (optional)
cube. def _attr("experiment tine", "Novenber 1st, 2004");
cube. def _attr("description”, "a sinple exanple")

/1 build netric tree

met0 = cube. def nmet("Time", "sec",
“@rirror@atterns-2.1. htnl #executi on"
"root node", NULL); // using nmirror

met 1 = cube. def met("User tine", "sec",
"http://ww. cs. utk. edu/usr.htm ",
"2nd level", net0); // withoug using mrror
met2 = cube. def met("System time", "sec",

"http://ww cs. utk. edu/sys. htm ",
"2nd level", net0); // withoug using mirror

[l build a call tree with line nunmbers

mod = cube. def _modul e("/1 CL/ CUBE/ exanpl e.c");

regn0 = cube.def _region("min", 21, 100, "", "1st level", nod)
regnl = cube.def_region("foo", 1, 10, "", "2nd level", nod)
regn2 = cube.def _region("bar", 11, 20, "", "2nd level", nod)

Il \Wen creating flat profiles, you do not need
Il define call sites and call-tree nodes

csite0 = cube.def csite(nod, 21, regn0);
csitel = cube.def csite(nod, 60, regnl);
csite2 = cube.def csite(nod, 80, regn2);
cnode0 = cube. def cnode(csite0, NULL)

cnodel = cube. def cnode(csitel, cnode0);
cnode2 = cube. def cnode(csite2, cnode0);

[* If creating call trees without |ine nunbers
put a region as the 1st argunent in the
above def cnode()’'s and don’t define csites */

Il build systemtree

mach = cube. def _mach("nsc");

node = cube.def node("athena", mach);

proc = cube.def proc("Process 0", 0, node);
thrd0 = cube. def thrd("Thread", 0, proc);
thrdl = cube.def thrd("Thread", 1, proc)

Il severity mapping

cube. set_sev(nmet0, cnodeO, thrd0, 4);
cube. set_sev(nmet0, cnodeO, thrdl, 4);
cube. set _sev(met0, cnodel, thrd0, 4);
cube. set _sev(met0, cnodel, thrdl, 4);

18



cube. set _sev(met0, cnode2, thrdo,
cube. set _sev(met0, cnode2, thrdl,
cube. set_sev(metl, cnode0, thrdo,
cube. set_sev(metl, cnode0, thrdi,
cube. set _sev(metl, cnodel, thrdo,
cube. set _sev(metl, cnodel, thrdl,
cube. set_sev(metl, cnode2, thrdo,
cube. set_sev(

cube. set _sev(met2, cnode0, thrdo,
cube. set _sev(met2, cnode0, thrdl,
cube. set _sev(met2, cnodel, thrdo,
cube. set _sev(met2, cnodel, thrdl,
cube. set_sev(met2, cnode2, thrdo,
cube. set_sev(met2, cnode2, thrdl,

met1, cnode2, thrdil,

PR RPRPRRPRPRRPRPRERRREREB NN
oo oo oo o e

Il when creating a flat profile, put a region as the 2nd argument in
Il the above set _sev() calls

Il wite output to a file
of stream out ;
out . open("exanpl e. cube");
out << cube;

References

[1]

2]

[3]

[4]

[5]

K. L. Karavanic and B. Miller. A Framework for Multi-Exetion Performance Tunindparallel
and Distributed Computing Practices, 4(3), September 2001. Special Issue on Monitoring
Systems and Tool Interoperability.

Message Passing Interface ForumilPl: A Message Passing Interface Standard, June 1995.
http://www. npi - forum org.

OpenMP Architecture Review BoardpenMP Fortran Application Program Interface - Ver-
sion 2.0, November 2000ht t p: / / ww. opennp. or g.

F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. Agehra for cross-experiment
performance analysis. roc. of ICPP 2004, pages 63—72, Montreal, Canada, August 2004.

F. Wolf and B. Mohr. Automatic performance analysis obhg MPI/OpenMP applications.
Journal of Systems Architecture, 49(10-11):421-439, 2003. Special Issue “Evolutions imlpa
lel distributed and network-based processing”.

[6] World Wide Web ConsortiumExtensible Markup Language (XML) 1.0 (Second Edition), Oc-

tober 20000t t p: / / ww. w3. or g/ TR/ REC- xmi .

[7] World Wide Web Consortium XML Schema Part 0, 1, 2, May 2001. htt p: / / www. w3. or g/

XM/ Schema#dev.

19



