

Imote2.Builder Kit Manual
Revision A, September 2007
PN: 7430-0765-01

© 2007 Crossbow Technology, Inc. All rights reserved.

Information in this document is subject to change without notice.

Crossbow, MoteWorks, IRIS, MICA, TrueMesh and XMesh are trademarks of Crossbow
Technology, Inc. Other product and trade names are trademarks or registered trademarks of their
respective holders

 Imote2.Builder Kit Manual

Table of Contents

About This Document.. iii

1 Introduction...1
1.1 Imote2.Builder Kit Overview .. 1
1.2 Package contents.. 1

2 Hardware Overview ...2
2.1 Imote2 Processor Board... 2
2.2 ITS400 Sensor Board... 3

3 Software Installation ..4
3.1 Supported PC Platforms and Operating Systems... 4
3.2 USB driver installation .. 4
3.3 Additional Software Requirements.. 6

4 Application Quick Start ...12
4.1 Out of the box-demo .. 12
4.2 Run the Imote2.Builder Blink project.. 13
4.3 Create your own .NET Micro Framework application .. 15

5 Guided Tour ..20
5.1 Reference Manual .. 20
5.2 Micro Framework Samples.. 20

6 Sample Applications ...22
6.1 Blink .. 23
6.2 CountSend.. 23
6.3 CountReceive... 23
6.4 XSniffer ... 23
6.5 XSensorITS400.. 24
6.6 XAccel ... 26
6.7 XSensorITS400Sleep... 27

7 Client Tools and GUI..28
7.1 MotePlot .. 28
7.2 XSniffer ... 30
7.3 SerialDump .. 31
7.4 MFDeploy.. 32
7.5 MotePong... 35

8 Developer API Reference ...36

Doc.# 7430-0765-01 Rev. A Page i

Imote2.Builder User’s Manual

8.1 Platform ... 37
8.2 Radio Driver .. 38
8.3 Sensors ... 40
8.4 Utilities .. 43

Page ii Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

About This Document

The following annotations have been used to provide additional information.

 NOTE
Note provides additional information about the topic.

 EXAMPLE
Examples are given throughout the manual to help the reader understand the terminology.

 IMPORTANT
This symbol defines items that have significant meaning to the user

 WARNING
The user should pay particular attention to this symbol. It means there is a chance that physical
harm could happen to either the person or the equipment.

The following paragraph heading formatting is used in this manual:

1 Heading 1

1.1 Heading 2

1.1.1 Heading 3

This document also uses different body text fonts (listed in Table 0-1) to help you distinguish
between names of files, commands to be typed, and output coming from the computer.

Table 0-1. Font types used in this document.

Font Type Usage
Courier New Normal Sample code and screen output
Courier New Bold Commands to be typed by the user

Times New Roman Italic TinyOS files names, directory names
Franklin Medium Condensed Text labels in GUIs

Doc.# 7430-0765-01 Rev. A Page iii

 Imote2.Builder Kit Manual

1 Introduction

1.1 Imote2.Builder Kit Overview
Imote2.BuilderKit is designed to be a complete development environment for high performance
wireless sensor networking (WSN) applications leveraging the Microsoft .NET Framework.
Code on the “Mote tier” uses the .NET Micro Framework. The Imote2.Builder Kit provides the
tools to simplify development and deployment of highly customized distributed sensory systems.
It also makes it easy to connect to a base station mote, and capture the resultant data and sensor
readings.

1.2 Package contents
The contents of the Imote2.Builder kit include:

• 3 x Pre-programmed IPR2400 Imote2 Processor boards

• 2 x ITS400 Imote2 Sensor Boards

• 2 x IIB2400 Imote2 Battery Boards

• 1 x USB Cable – A Male to Mini Male

• 6 x AAA 1.5V Alkaline Batteries

• 1 x CD containing Imote2.Builder SDK CDROM

• 1 x CD containing Evaluation Copy of Microsoft® Visual Studio 2005

Doc.# 7430-0765-01 Rev. A Page 1

Imote2.Builder Kit Manual

2 Hardware Overview

2.1 Imote2 Processor Board
The Crossbow Imote2 is an advanced sensor network node platform designed for demanding
wireless sensor network applications requiring high CPU/DSP and wireless link performance and
reliability. The platform is built around Intel’s XScale® processor, PXA271. It integrates an
802.15.4 radio (TI CC2420) with an on-board antenna. It exposes a “basic sensor board”
interface, consisting of two connectors on one side of the board, and an “advanced sensor board”
interface, consisting of two high density connectors on the other side of the board. The Imote2 is
a modular stackable platform and can be stacked with sensor boards to customize the system to a
specific application, along with a “battery board” to supply power to the system.

 USB Connector Reset Button

2.1.1 Features
• PXA271 XScale® processor @ [13–416] MHz
• Wireless MMX coprocessor
• 256kB SRAM, 32MB FLASH, 32MB SDRAM
• Integrated 802.15.4 radio, support for external radios through SDIO and UART
• Integrated 2.4GHz antenna
• Multicolor status indicator LED
• Basic and advanced expansion connectors supporting : 3xUART, I2C, 2xSPI, SDIO, I2S,

AC97, USB host, Camera I/F, GPIO
• Mini-USB port for direct PC connection
• Size: 48 mm x 36 mm. PCB Thickness 1.75 mm

2.1.2 Processor
The Imote2 contains the PXA271 processor. This processor can operate in a low voltage (0.85V)
and a low frequency (13 MHz) mode, hence enabling low power operation. The frequency can
be scaled to 104 MHz at the lowest voltage level, and can be increased up to 416MHz with
Dynamic Voltage Scaling. The processor has many low power modes, including sleep and deep
sleep modes. It also integrates 256 KB of SRAM divided into 4 equal banks of 64 KB. The
PXA271 is a multi-chip module that includes three chips in a single package, the processor, 32
MB SDRAM and 32 MB of flash. The processor integrates many I/O options making it

Page 2 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

extremely flexible in supporting different sensors, A/Ds, radio options, etc. These I/O options
include I2C, 3 Synchronous Serial Ports one of which dedicated to the radio, 3 high speed
UARTs, GPIOs, SDIO, USB client and host, AC97 and I2S audio codec interfaces, fast infrared
port, PWM, Camera Interface and a high speed bus (Mobile Scaleable Link). The processor also
adds many timers and a real time clock. The PXA271 also includes a wireless MMX coprocessor
to accelerate multimedia operations. It adds 30 new media processor instructions, support for
alignment and video operations and compatibility with Intel MMX and SSE integer instructions.

2.2 ITS400 Sensor Board
The basic sensor board is designed to connect to the basic connectors on the Imote2. It contains a
3d Accelerometer, advanced temp/humidity sensor, light sensor and 4 channel A/D. It is a pass
through board to allow stacking with another sensor/communication board.

The sensor board is multi-sensor board that combines a popular set of sensors for wireless sensor
network applications, including:

• ST Micro LIS3L02DQ 3d 12 bit ±2g accelerometer
• High Accuracy, ±0.3°C Sensirion SHT15 temperature/humidity sensor
• TAOS TSL2651Light Sensor
• Maxim MAX1363 4 Channel General Purpose A/D for quick prototyping
• TI Tmp175 Digital Temperature Sensor with two-wire interface

For more detailed information about these boards, refer to the Imote2 hardware reference
manual.

Doc.# 7430-0765-01 Rev. A Page 3

Imote2.Builder Kit Manual

3 Software Installation

3.1 Supported PC Platforms and Operating Systems
The Imote2.builder SDK is supported on the following platforms:

• Windows XP Home

• Window XP Professional

• Windows 2000 with SP4

3.1.1 PC Interface Port Requirements
The Imote2.Builder Kit requires a USB port to provide connectivity to the development device
and gateway.

3.2 USB driver installation

 IMPORTANT: Every time you connect an Imote2 to the USB port of your PC, you
should press reset button for the PC to identify your hardware. The reset push button (SW1) is
found just above the mini USB connector.
The USB driver installation needs to be done at the very first time.

1. After you plug in the Imote2 via USB cable to your PC, press the reset button. The Green
LED would turn on for 2 seconds and the following window will pop up.

2. Check on “Install from a list or specific location” and click on Next>.

3. Insert the Imote2.Builder SDK CD into the CDROM drive and browse to USB Drivers
folder of the CD and click on Next>.

Page 4 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

4. Let the wizard search and install the Crossbow Imote2 driver automatically.

 NOTE: If you encounter a warning that the driver is not verified to be compatible with
Windows XP Logo, as appeared in the following window, you may ignore the warning by
clicking on Continue Anyway and complete the driver installation.

5. Click on Finish to complete the installation.

Doc.# 7430-0765-01 Rev. A Page 5

Imote2.Builder Kit Manual

6. After the installation is completed successfully, “Crossbow iMote2” should appear in the

Device Manager window (this can be accessed from Windows Start > Control Panel >
System >Hardware >Device Manager >Universal Serial Bus Controllers).

3.3 Additional Software Requirements
For the development environment to run, the following additional components are required:

• Microsoft Visual Studio 2005 (Evaluation version included in kit)

• Microsoft .NET Micro 2.0

The installation files for these components are included on their respective CDs included in the
Imote2.Builder Kit.

3.3.1 Microsoft Visual Studio 2005
All development using the Imote2.Builder Kit is done in C# and requires Visual Studio to be
installed. Follow the steps below for the installation.

Page 6 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

 IMPORTANT: The Visual Studio 2005 installation should be completed before running
the Imote2.Builder SDK installation.

An internet connection is required for the installation to succeed.

1. It is strongly recommended that you shut down all the programs running on your PC.

2. Insert the Microsoft Visual Studio 2005 Evaluation CD into the computer’s CD drive.
3. Double-click on the vcssetup.exe file to proceed.

4. Read and follow the instructions in Visual C# 2005 Express Edition Setup Wizard
window and proceed with the installation.

3.3.2 Microsoft .NET Micro Framework 2.0
The Microsoft .NET Micro Framework provides extensions for doing development on small
embedded platforms such as the Imote2. The Imote2.Builder SDK installer can automatically
install this software. Follow these installation steps.

1. Insert the Imote2.Builder SDK CD into the computer’s CD drive.
2. Double-click on Imote2BuilderSetup_<version>.exe located under Installer folder of the

CD.
3. At the Welcome to the Imote2.Builder Setup Wizard window, click on Next>.

4. Select the desired installation directory, then click on Next>.

Doc.# 7430-0765-01 Rev. A Page 7

Imote2.Builder Kit Manual

5. Select all available installation tasks (recommended) and click on Next>.

6. Confirm your selections and click on Install.

Page 8 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

7. If you see the message below, click on OK.

8. You will see an installation wizard for Microsoft .NET Micro Framework. Click on
Next>.

9. Be sure to read and accept the license agreement and then click on Next>.

Doc.# 7430-0765-01 Rev. A Page 9

Imote2.Builder Kit Manual

10. Check the Complete install and click on and Next> then Install.

11. The set-up would also install XSniffer GUI Tool as a part of the installation process.
Click on Next> at the setup dialog.

Page 10 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

12. Click on Finish to complete the installation.

Doc.# 7430-0765-01 Rev. A Page 11

Imote2.Builder Kit Manual

4 Application Quick Start

4.1 Out of the box-demo
The Imote2 modules in the Imote2.Builder kit are factory programmed to run a demo out-of-the-
box and visualize the sensor data on a PC.

1. Take an IPR2400 Imote2 board and an ITS400 sensor board and plug them together.

2. Connect the assembly to the PC’s USB port using the USB cable provided.

3. Press the reset button found just above the mini USB connector. The green LED should
come on for 2 seconds. After 5 seconds you should see solid Red and Blue LEDs with
blinking yellow.

4. Start MotePlot from Windows Start>Programs>Crossbow>Imote2.Builder>Tools>MotePlot

5. Specify the connection to be USBSPOT and click on CONNECT.

6. Select an axis to plot, and observe accelerometer data charting in real-time. You can
shake or tilt the assembly to see change in accelerometer readings.

7. You may repeat this exercise for all the Imote2s and sensor boards in your kit.

Page 12 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

4.2 Run the Imote2.Builder Blink project
During the installation of Imote2.builder SDK, a number of sample applications were included to
demonstrate the features of the platform easily. The steps below outline how to program Blink
application into the Imote2.
1. Open Crossbow.app.Blink from Windows Start>Programs>Crossbow>Imote2.Builder>Sample

App>Crossbow.app.Blink

2. If the following dialog window appears, select Visual C# Development Settings and click on Start
Visual Studio.

3. In the Solution Explorer section on the right hand side, double-click on the Blink.cs file.

Doc.# 7430-0765-01 Rev. A Page 13

Imote2.Builder Kit Manual

4. Connect an Imote2 board to your PC using the USB cable included in the kit and then press

the reset button. Wait for the green LED to turn off indicating the completion of booting
process.

5. On the right hand side Solution Explorer, double click on the Properties subfolder, and select
the Micro Framework tab. Specify USB from the Transport pull-down menu and verify that
the device name appears.

Page 14 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

6. To start debugging, press the ► play button or press the F5 key. This will compile the

project, upload the code to the Imote2, and begin running the code in debug mode indicated
by “Deploy Succeeded” in Status message bar on the lower right hand side. The Imote2
should begin blinking a blue LED at 1 Hz.

 IMPORTANT: When the Visual Studio is in Debug mode, the USB port gets locked and
not available for other applications such as MotePlot. To release the USB port, click on ■ stop
button or select detach from the debug menu.

Upon resetting the Imote2, if the green LED does not switch off in 5 seconds, the Imote2 cannot
be flashed. Check if the Imote2 is connected to any tool and close the tool. Reset the Imote2 and
try again. If the green LED does not turn off in a few moments, reboot your PC.

The current version of .NET Micro Framework does not support more than one Imote2
connecting to PC via USB at the same time, doing so will lead to strange behavior.

4.3 Create your own .NET Micro Framework application
Visual Studio provides New Project wizard for users to start their projects, the wizard can be
invoked when users select File > New > Project in the VS 2005 menu. The following screenshot
shows the first step to create a .NET Micro Framework application, Micro Framework is selected as
the project type, Console Application is selected as the template. Note that Window Application
template is not supported in the current edition. The users are recommended to select Console
Application template for application project, and Class Library for library project.

Doc.# 7430-0765-01 Rev. A Page 15

Imote2.Builder Kit Manual

We use the classic “Hello World” as an example in this section. After the user clicks the OK
button, a sub folder HelloWorld will be created in the folder C: \ NETMF \ Projects, and
VS2005 will open the newly created project, as shown in the next screenshot.

Page 16 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

The next step is to add Crossbow library references to your project. On the “Solution Explorer”
panel, right click the folder References, and click on Add Reference, the Add Reference window will
pop up. Select the 4 Crossbow library .dll files under .NET tab and press OK button. Note that
you may or may not need to select all 4 library files, it all depends on what your application
needs.

Doc.# 7430-0765-01 Rev. A Page 17

Imote2.Builder Kit Manual

Now add code to your application. It is recommended that the following 4 “using” clauses are
added to the code:

 using Crossbow.lib.utils;
using Crossbow.platform.imote2;
using Crossbow.radio.cc2420;
using Crossbow.sensor.its400;

The next statement simply prints the string “Hello World” to serial output:

SerialDump.print("Hello World");

Page 18 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

Now you can build and deploy the “Hello World” application the Imote2, refer to the procedure
in section 4.2 on how to perform the deployment.

Doc.# 7430-0765-01 Rev. A Page 19

Imote2.Builder Kit Manual

5 Guided Tour

This section provides a tour of the software and documentation that is included as part of the
Microsoft .NET Micro Framework.

5.1 Reference Manual
The Microsoft .NET Micro Framework includes documentation for the class libraries included.
This documentation can be accessed by going to Windows Start > Programs > Microsoft .NET Micro
Framework > Microsoft .NET Micro Framework 2.0 Documentation

5.2 Micro Framework Samples
The Microsoft .NET Micro Framework includes a few sample applications. These applications
can be accessed by going to Windows Start > Programs > Microsoft .NET Micro Framework > Samples

Page 20 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

 NOTE: TCP/IP socket is not yet supported in .NET MF v2, as such SocketServer and
SocketClient do not run on this Imote2.builder release.

5.2.1 Threading
This sample shows how to use many of the threading features offered by the .NET Micro
Framework, including:

- How to create a thread, start it and wait for it to terminate

- How to create a timer causing a thread pool thread to invoke your method periodically

- How to have a thread wait on an event signaled by another thread

5.2.2 ExtendedWeakReference
This sample shows how to use the Micro Framework’s ExtendedWeakReference class to persist
data across a reboot of the hardware. In particular, this sample records how many times the
hardware has been rebooted and displays the result in the debugger’s Output window.

Doc.# 7430-0765-01 Rev. A Page 21

Imote2.Builder Kit Manual

6 Sample Applications

This section will walk you through all the sample applications that are included as part of the
Imote2.builder SDK software that are included on the Crossbow CDROM.

Programming an application into Imote2 using Visual Studio involves the following steps:

1. Open the project or solution that you want to program, located under Windows
Start>Programs>Crossbow>Imote2.Builder> Sample App>Crossbow.app.<app name>

2. In the Solution Explorer section on the right hand side, expand the project and double-
click on the <app>.cs file.

3. Connect an Imote2 board to your PC using the USB cable included in the kit and then
press the reset button. Wait for the green LED to turn off indicating the completion of
booting process.

4. On the right hand side explorer, double click on the Properties subfolder, and select the
Micro Framework tab. Specify USB from the Transport pull-down menu.

5. To start debugging, press the ► play button or press the F5 key. This will compile the
project, upload the code to the Imote2, and begin running the code in debug mode
indicated by “Deploy Succeeded” in Status message bar on the lower right hand side.

6. When the application downloading is successful, to release the USB port, click on ■ stop
button or Shift + F5 key.

7. To deploy the application un-tethered with the battery board, select Debug>Detach All.

All Sample applications that use the radio follow a similar design template to allow simple
adjustment of basic configuration parameters.

To change the radio parameters, modify the following 2 lines in the sample application.
 const ushort _rfChannel = (ushort)RadioChannel.Ch11; // channel 11

 const ushort _rfPower = (ushort)RadioPower.M10DBM; // -10dbm

For example, the following changes use the radio channel 12 and radio power are set to 0 dBm:
 const ushort _rfChannel = (ushort)RadioChannel.Ch12;

 const ushort _rfPower = (ushort)RadioPower.M0DBM;

Please refer to API section 8.1.5 for the enum definition of radio power and radio channel for the
CC2420 chip.

The sample applications use the default radio channel (channel 11) and radio power (-10dBm).

Most of the sample applications use a packet format that is compatible with TinyOS, the packet
carries a 5-byte TosMsg header. This header provides Imote2 protocol compatibility with MICA
and IRIS motes.

Table 6-1. TosMsg Header contents

Type Field Name Description
uint16_t Address Destination address of the packet
uint8_t AM type TinyOS Active Message ID

Page 22 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

uint8_t Group ID TinyOS group ID
uint8_t Length Length of the packet payload

Please refer to API section 8.4.6.2 on how to set AM type and group ID for TinyOS radio
packets.

6.1 Blink
This application will simply blink a blue colored LED once every second. This application is
used as the example in section 4.2 earlier in this manual. The Blink application is a good test for
the timer subsystem of the platform.

6.1.1 Blink Light Pattern
Light Pattern: Blue (blinking once per second)

6.2 CountSend
The CountSend application provides a basic example for using the radio subsystem of the
platform. This application periodically increments a counter that starts at zero when the node is
booted, and increments by one every second. The count field is both displayed on the LED as a
rotating color representing the lower 3 bits, and sent over the radio in a packet that contains the
full count field in 16 bit resolution. Any nodes running CountReceive within radio range of this
sender will synchronize to the sending node, and display the count.

6.2.1 Count Light Pattern
 Light Pattern: Sequentially counts through all 8 colors, switching once per second.

6.2.2 Count Packet Format
Table 6-2. Payload contents of a Count message header

Type Field Name Description
uint16_t Count Incrementing count field

6.3 CountReceive
The CountReceive application is the sibling application to CountSend. This application turns on
the radio and puts it into receive mode, and waits until it hears a properly formed Count packet.
Once such a packet is received, the node will display the lower 3-bits on the LED just like the
CountSend application. This application can be used to perform simple range tests. The radio
range can be determined by walking the CountReceive node farther and farther away from the
CountSend node until the CountReceive node just stops tracking the count on its LED.

6.4 XSniffer
This firmware will promiscuously listen for radio packets, and forward them via USBSPOT
protocol to the USB port. The XSniffer can also be used as a base station application for single-
hop applications such as XSensorITS400, XSensorITS400Sleep and XAccel.

Doc.# 7430-0765-01 Rev. A Page 23

Imote2.Builder Kit Manual

6.4.1 XSniffer Light Pattern
 Light Pattern: Blue (solid -- flashing Yellow whenever packet is overheard)

6.4.2 Compatible PC Tools
The XSniffer app can be used with XSniffer GUI to view data.

6.5 XSensorITS400
This application will periodically send a packet filled with one sample from each sensor on the
ITS400 board. The packet includes the following sensor readings: temperature, light,
accelerometer (X, Y, and Z axis), ADC (all four channels). The default data rate is once every 5
seconds. This application serves as a good example for how to link in the various sensor drivers
and initiate sampling in the .NET Micro framework environment.

The application also offers an alert mode, in which an alert will print out if the temperature
exceeds a certain threshold.

The temperature threshold is set as 40 degree C, as shown below.

#if ALERT_ENABLED
 const float _threshold = 40;
 float temp;

#endif

To enable the alert functionality, simply uncomment the following line of code in the file
XSensorITS400.cs:
* $Id: XSensorITS400.cs,v 1.18 2007/09/19 21:50:56 nxu Exp $

 */

//To enable the alert, uncomment the following line

//#define ALERT_ENABLED

As an alternative, you can also go into project property/build/General section and type
ALERT_ENABLE in the textbox next to “Conditional compilation symbols”.

Page 24 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

6.5.1 XSensorITS400 Light Pattern
Light Pattern: Green (blinking once per second)

6.5.2 XSensorITS400 Packet Format
Table 6-3. Header contents of an XSensorITS400 message header

Type Field Name Description

uint8_t board_id
XSensor packet type field
(XSensorITS400 is always a constant value of 0x20)

uint8_t packet_id
XSensor packet sub-type field
(XSensorITS400 is always a constant value of 0x01)

uint16_t node_id Network short address of sending node.

Table 6-4. Payload contents of an XSensorITS400 message

Type Field Name Description
uint16_t count Incrementing sequence number for yield calculation
uint16_t accel_x Accelerometer reading of X axis
uint16_t accel_y Accelerometer reading of Y axis
uint16_t accel_z Accelerometer reading of Z axis
uint16_t temperature Temperature reading

Doc.# 7430-0765-01 Rev. A Page 25

Imote2.Builder Kit Manual

uint16_t temperature2 Temperature reading from Sensirion sensor
uint16_t humidity Humidity reading from Sensirion sensor
uint16_t light Light reading from Taos sensor
uint16_t adc1 ADC reading from channel 1
uint16_t adc2 ADC reading from channel 2
uint16_t adc3 ADC reading from channel 3

6.5.3 Compatible PC Tools
The XSensorITS400 can be used with SerialDump console to view raw data packets.

6.6 XAccel
This firmware performs high frequency sampling on the 3-axis accelerometer and streams the
data back to the XSniffer or MotePlot PC tools either via radio to a base station, or directly over
a USB connection.

6.6.1 XAccel Light Pattern
 Light Pattern: Purple (blinking Yellow twice per second)

6.6.2 XAccel Packet Format
Table 6-5. Header contents of an XAccel message header

Type Field Name Description

uint8_t board_id
XSensor packet type field
(Sensor streams are always a constant value of 0x11)

uint8_t packet_id
XSensor packet sub-type field
(XAccel is always a constant value of 0x01)

uint16_t node_id Network short address of sending node.

Table 6-6. Payload contents of an XAccel message

Type Field Name Description
uint16_t count Incrementing sequence number for yield calculation
uint16_t accel_x Accelerometer reading of X axis
uint16_t accel_y Accelerometer reading of Y axis
uint16_t accel_z Accelerometer reading of Z axis
 …
uint16_t accel_x Accelerometer reading of X axis
uint16_t accel_y Accelerometer reading of Y axis
uint16_t accel_z Accelerometer reading of Z axis

6.6.3 Compatible PC Tools
The XAccel can be used with MotePlot GUI to view data.

Page 26 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

6.7 XSensorITS400Sleep
This application is similar to the XSensorITS400 application, and periodically senses and sends
all the sensor data from an ITS400 board. The packet format is the same for both applications.
The main difference here is that this one uses the explicit power management interface to put the
mote into a deep sleep state in between samples. The application essentially reboots from this
deep sleep state at the specified data rate, and simply samples the data and sends it over the radio
and USB. This application uses an ExtendedWeakReference class to persist the packet sequence
number across a reboot, thus it also serves as an example on how to preserve data while the mote
go to deep sleep.

 NOTE: The XSensorITS400Sleep application should not be connected to the USB port,
since it shuts-down the USB hardware when it goes to deep sleep mode. But if used in
conjunction with XSniffer, the data sent over the radio can be viewed using Serial Dump or
XSniffer GUI.

Doc.# 7430-0765-01 Rev. A Page 27

Imote2.Builder Kit Manual

7 Client Tools and GUI

In this section we walk through the tools that are included as part of the Imote2.Builder SDK.

7.1 MotePlot
The MotePlot GUI is designed to connect with the XAccel application, and display the
accelerometer readings being sent out by the Mote. There are two configurations that are
possible:

7.1.1 Direct USB Connection
This is the default factory application that is programmed into Imote2s in the Kit to allow you to
run a demo out of the box.

1. Take one Imote2 board, connect an ITS400 sensor board to it, and connect it to the PC

using the USB cable provided.

2. Deploy XAccel application onto the Imote2 board using Visual Studio.
3. Click Detach All in the Debug menu or click stop button on the top menu, if the project is

in debug mode. This step detaches the USB of the Imote2 from the crossbow solution.
The USB port is now available to be connected to MotePlot.

4. Start MotePlot from Windows Start>Programs>Crossbow>Imote2.Builder>Tools>MotePlot

5. Specify the connection to be USBSPOT and click on CONNECT.

6. Select the axis to plot, and observe accelerometer data charting in real-time.

7. The user can zoom into and pan through data, as instructed in Table 7-1, within each of
the graphs independently of each other.

Page 28 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

Table 7-1. How to zoom, pan, and reset in the Charts.

Icon Desired Action Instructions

To zoom in Click on the “Zoom” icon.

Left click and drag a region to zoom into.
Release the mouse to complete the region selection.

To pan through data Click on the “Pan” icon.

Left click and drag a point within the chart to the new location.
Release the mouse button.

To undo a zoom/pan Click on the “Undo” icon once for each level of undo

To zoom out fully Click on the “View All” icon

7.1.2 Over the Radio Communication (Star Network)
This procedure will walk you through the setup of a star network using all the hardware in your
Imote2 .Builder kit. The final system will have two remote sensor nodes powered by battery,
and a base station connected to your PC via USB. The remote nodes will run XAccel and be
connected to the sensor board and battery board. The base station will run XSniffer firmware.
The PC will run MotePlot to visualize the data from both nodes, giving each a unique color
based on their factory programmed unique ID (see UID section 8.4.4).

1. Prepare three Imote2 boards, connect an ITS400 sensor board each to two of them.

2. Connect first Imote2 with sensor board to the PC using the USB cable provided

3. Deploy the XAccel application in to the Imote2 using Visual Studio
4. Click Detach All in the Debug menu or click stop button on the top menu and disconnect

the XAccel mote from the PC

Doc.# 7430-0765-01 Rev. A Page 29

Imote2.Builder Kit Manual

5. Power the Imote2 with sensor board with the battery board

6. Repeat steps 2-5 with the second Imote2 with sensor board

7. Connect the remaining Imote2 board to the PC with the USB cable

8. Deploy the XSniffer application onto the Imote2 using Visual Studio
9. Click Detach All in the Debug menu or click stop button on the top menu

10. MotePlot from Windows Start>Programs>Crossbow>Imote2.Builder>Tools>MotePlot

11. Specify the connection to be USBSPOT and click on CONNECT

12. Select an axis to plot, and observe accelerometer data charting in real-time

7.2 XSniffer
The XSniffer 2.0 GUI tool that is able to connect to an Imote2 over the USB is enclosed.
XSniffer can be used to monitor and display the radio messages overhead within its radio range.

1. Flash the XSniffer firmware application to the mote using Visual Studio.

2. Start the XSniffer GUI application from Windows
Start>Programs>Crossbow>XSniffer>XSniffer 2.0

3. Check on USB Spot connection and click on Start.

4. Any radio packets overheard will be displayed in the XSniffer GUI.

5. For specific packets types, look under respective tabs (Route, Health, Neighbor,
TimeSync etc applicable to XMesh-enabled packets) or use Options tab to set display
filter etc.

Page 30 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

7.3 SerialDump
The SerialDump tool will print the data an Imote2 is sending over its USB port out onto a simple
text-based terminal window. All the source code for the SerialDump application is also provided
under <Imote2.builder>\tools\SerialDump to allow developers to quickly get started connecting
to the data channel of the Imote2 in the .NET environment.

1. Start SeriaDump from Windows Start>Programs>Crossbow>Imote2.Builder>Tools>SerialDump

2. Observe the packets in the command console.

The above screenshot shows data captured by SerialDump, the packet is sent by XAccel
application. For details of the XAccel packet structure, please refer to section 6.6.2. As an
illustration, let us take a look at the last line of the data set:

126 0 50 125 64 32 1 218 0 185 0 127 0 172 3 185 0 128 0 173 3 …

The first group in blue is the TosMsg header (see table 6-1):

Address (2 bytes): 126

AM type (1 byte): 50

Group ID (1 byte): 125

Length (1 byte): 64

The next group in red is the sensor board header (see table 6-5):

Sensor-board ID (1 byte): 32

Packet ID (1 byte): 1

Node ID (2 bytes): 218

Next are the Accel sensor data, the group in green denotes 3 readings from X/Y/Z axis of the
sensor, each is 2 bytes. There are 10 groups in one packet.

 Accel_X (2 bytes): 185

 Accel_Y (2 bytes): 127

 Accel_Z (2 bytes): 940

Doc.# 7430-0765-01 Rev. A Page 31

Imote2.Builder Kit Manual

7.4 MFDeploy
Micro Framework deploy is a tool that can flash a program image in SREC format into the
Imote2, it can also erase the deployed application from the Imote2.

7.4.1 Starting the MFDeploy application
1. Start MFDeploy from Windows Start>Programs>Crossbow>Imote2.Builder>Tools>MFDeploy
2. From the Device dropdown, select USB. If the Mote is connected to the PC via USB and

reset button is pressed, the ID should show up in the right hand side textbox.

 WARNING
After resetting the Imote2, you have a window of 2 seconds to hit the Deploy or Erase button if
you are to update the TInyCLR image or to erase the existing managed application. Missing this
time window will lead to an operation failure and the procedure needs to be redone.

Deploying a managed C# application is not subjected to this 2-second window.

7.4.2 Deploying an application to the Imote2
1. Click on Browse and navigate to the location where the .hex files reside, select the files

that you would want to flash.

Page 32 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

2. Reconnect the USB cable to the Imote2 and push the Reset button.

3. Wait for the Imote2 ID to show up in the text box and while the green Led is still on,
click on Deploy button.

4. The program will be uploaded and start executing in the Imote2 once the Deployment
Status message disappears.

7.4.3 Erasing a deployed application
1. Reconnect the USB cable to the Imote2 and push the Reset button.

2. Wait for the Imote2 ID to show in the text box and while the green Led is still on, click
on Erase button.

3. A pop-up windows asks for confirmation for the operation, click on the Yes button.

4. The following window shows the progress of the erase operation.

 NOTE: This only clean up the managed application that is deployed to the Imote2, and it is
recommended if a corrupted application is deployed to the Imote2.

7.4.4 Crossbow pre-compiled srec files

Doc.# 7430-0765-01 Rev. A Page 33

Imote2.Builder Kit Manual

The Imote2.Builder SDK installer installs some useful srec files to user’s PC. These include
TinyCLR Crossbow build, and Crossbow sample applications.

• .NET Micro Framework (aka TinyCLR) resides in <Imote2.builder>\bin\srec\TinyCLR.

• Crossbow sample applications reside in <Imote2.builder>\bin\srec\XBowSampleApp.

We also include the script that allows users to generate the srec file from their application bin
directory. The script is Create_Srec.cmd located in <Imote2.builder>\Tools\MFDeploy. To run
this script, you need to open a DOS command window, add <Imote2.builder >\tools\MFDeploy
to your search path, and change directory into the application folder bin\release, and then issue
this command:
 Create_Srec <app_name>

A srec file <app_name>.hex will be generated under the same folder.

The screenshot below capture this process.

 NOTE: The Imote2 hardware in the kit is configured from the factory with the TinyCLR
version included on the CD. If you need to update the TinyCLR with more recent version
available from Crossbow, you need to restore/update TinyCLR onto your Imote2. To do this,
start MFDeploy, navigate to <Imote2.Builder\bin\srec\TinyCLR and select these 3 files:
ER_CONFIG, ER_DAT, ER_FLASH and deploy them on to the Imote2.

Page 34 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

7.5 MotePong
MotePong is a demo application that maps sensor control input from the XAccel firmware
application for use as a device controller in a simple Pong game. To start a game, first connect
an ITS400 equipped Imote2 running XAccel either directly through USB or via remote wireless
through an XSniffer base to the PC. Power all motes, and then start MotePong. To start game
play, select Game>New Game from the menu. The speed of the ball movement can be set from the
Difficulty menu.

The tilt measurement of the z-axis accelerometer is used to control the paddle. Hold the mote
vertically with the USB cable in between your middle and ring fingers. When the mote is
directly vertical, the paddle will be in the middle of the playing area. To move the paddle up to
the top of the screen, tilt the mote left. Horizontal left will place the paddle in the maximum
upward position. To move the paddle down to the bottom of the screen, tilt the mote right.
Horizontal right will place the paddle in the maximum downward position.

Doc.# 7430-0765-01 Rev. A Page 35

Imote2.Builder Kit Manual

8 Developer API Reference

The Imote2.Builder SDK provides APIs for the various hardware subsystems on the Imote2
(IPR2400) and sensor board (ITS400) hardware. This section provides a brief description of the
API for various sub-system on the Imote2, for more detailed description, please refer to the
document generated by doxygen at Windows
Start>Programs>Crossbow>Imote2.Builder>document>API Reference Manual

Table 8-1. C# Classes included in Imote2.Builder SDK

HW Subsystem Namespace of Driver C# Class of Driver
Radio Crossbow.platform.imote2 Radio
USB Croissbow.lib.utils SerialDump
UART Crossbow.platform.imote2 UART
LED Crossbow.platform.imote2 Leds
I2C Microsoft.SPOT.Hardware I2CDevice
SPI Microsoft.SPOT.Hardware SPI
EEPROM Microsoft.SPOT ExtendedWeakReference
ITS400 sensor board Crossbow.sensor.its400 Its400

Page 36 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

ADC Crossbow.sensor.its400 Its400Adc
Accelerometer Sensor Crossbow.sensor.its400 AccelerometerSensor
Light Sensor Crossbow.sensor.its400 Its400Light
Temperature Sensor Crossbow.sensor.its400 Its400Temp
Humidity Sensor Crossbow.sensor.its400 TempHumSensor

8.1 Platform
The Crossbow.platform.imote2 namespace contains classes for low-level access to the mote
hardware.

8.1.1 LED
The LED functionality is wrapped in class Leds (Leds.cs).

To turn the LED on and off:
 public void blueOn();
 public void blueOff();
 public void redOn();
 public void redOff();
 public void greenOn();
 public void greenOff();

To Set LED to integer value from 0 to 7:
 public void set(int i);
 void setRGB (LedColor rgb)

LED Color enumeration values:

BLACK
RED
GREEN
BLUE
PURPLE
CYAN
YELLOW
WHITE

8.1.2 UART
UART class provides access to COM1 on the Imote2, its default setting is 115200, 8N1, no flow
control.

To write data to COM1:
 public void Write(byte[] buf, int length)

To read data from COM1:
 public int Read (byte[] recvBuf, int count, int timeout)

To flush COM1:

Doc.# 7430-0765-01 Rev. A Page 37

Imote2.Builder Kit Manual

 public void Flush()

8.1.3 Pins
Pins.cs contains class Pins, which defines the PXA271 GPIO lines available in the Imote2
hardware. This class provides a mapping of GPIO lines to type Microsoft.SPOT.Hardware
Cpu.Pin. In general, access to this low-level call should be reserved for authors of managed
drivers. Developers are encouraged to use higher-level abstractions of the hardware rather than
access these pins directly. A good example would be the LEDs, which should be accessed
through the LED class rather than directly through these pin mappings.

For driver authors, the pin mappings are used as references for instantiation of OutportPort or
InputPort objects. An example follows:

 OutputPort greenLED = new OutputPort(Pins.GPIO_PORT_LED_GREEN, true);
 greenLED.Write(true);

8.1.4 Interrupts
To enable interrupt on a GPIO pin:
 public InterruptPort(Cpu.Pin portId, bool glitchFilter,
 Port.ResistorMode resistor, Port.InterruptMode interrupt);

To assign the ISR (Interrupt Service Routine) to an interrupt:
<InterruptPort>.OnInterrupt += new GPIOInterruptEventHandler(<ISRMethod>);

The ISR has the following signature:

[MethodImpl(MethodImplOptions.Synchronized)]

 private void ISRMethod(Cpu.Pin port, bool state, TimeSpan time)

8.1.5 Radio
The radio driver consists of 2 layers: PAL (Platform Abstraction Layer) and HAL (Hardware
Abstraction Layer). The former exists in namespace Crossbow.platform.imote2, the latter exists
in namespace Crossbow.radio.cc2420. Crossbow also provides TinyOS interoperability wrapper
library classes, which exist in namespace Crossbow.lib.utils.tos.

The application writer is given access to the native IEEE 802.15.4 capability on the Imote2
through the Crossbow.platform.imote2.radio class. This class will initialize the radio in 802.15.4
compatibility mode, and provides the standard radio API as defined by IRadioDevice for the
users.

8.2 Radio Driver
In this section we explain the radio APIs provided in the namespace Crossbow.radio.cc2420 and
Crossbow.lib.utils.tos

To set various radio options (Frequency, power, node address, PAN address):
public bool SetRadioOption

(RadioOption option, ushort val)

Page 38 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

To send out a packet:

public bool Send
 (ushort dstPanAddr, ushort dstAddr, byte[] data)

To send out a packet requesting acknowledgement:
public bool AcknowledgedSend

(ushort dstPanAddr, ushort dstAddr, byte[] data)

To turn on/off the receiver:

public void ReceiverOn(bool active)

To receive packet:

public byte[] ReceiveSrc
(ushort srcPanAddr, ushort srcAddr, int timeout)

public byte[] ReceiveAny

(ref ushort srcPanAddr, ref ushort srcAddr, int timeout)

8.2.1.1 Initialization

The radio can be initialized via the constructor in class Radio:
 public Radio(ushort freq, ushort power,
 ushort pan_address, ushort address);

The radio frequency and radio power are defined in 2 enums: RadioChannel and RadioPower.
 public enum RadioChannel : ushort

 {

 Ch11 = 2405, Ch12 = 2410, Ch13 = 2415, Ch14 = 2420,

 Ch15 = 2425, Ch16 = 2430, Ch17 = 2435, Ch18 = 2440,

 Ch19 = 2445, Ch20 = 2450, Ch21 = 2455, Ch22 = 2460,

 Ch23 = 2465, Ch24 = 2470, Ch25 = 2475, Ch26 = 2480

 }

 public enum RadioPower : ushort

 {

 M0DBM = 31, M1DBM = 27, M3DBM = 23, M5DBM = 19,

 M7DBM = 15, M10DBM = 11, M15DBM = 7, M25DBM = 3

 }

To set various radio options:
 public bool SetRadioOption(RadioOption option, ushort val);

Valid options are:

 LocalAddress = [0x0000, 0xFFFF]

 PANAddress = [0x0000, 0xFFFF]

 Channel = [11, 26]

 Frequency = [2400, 2483] (MHz)

 RFPower = [1, 31] (1 := -25dBm, 31 := 0dBm)

Doc.# 7430-0765-01 Rev. A Page 39

Imote2.Builder Kit Manual

8.2.1.2 Send/Receive

To send data:
 public bool Send

 (ushort dstPanAddr, ushort dstAddr, byte[] data);

Receive data sent to this device from a specified source or return null if no frame received within
a given timeout:
 public byte[] ReceiveSrc

 (ushort srcPanAddr, ushort srcAddr, int timeout);

To receive data sent to this device from any source or return null if no frame received within a
given timeout period:
 public byte[] ReceiveAny

 (ref ushort srcPanAddr, ref ushort srcAddr, int timeout);

8.2.1.3 TinyOS compatability

Note that TinyOS employs a specific 805.14 packet, we extend the radio support for TinyOS and
provided the functionalities in TOSRadio.cs:

TinyOS specifics (such as amType, groupID etc.) can be set via property in class TOSRadio.

The Receive method has been overriden to return the TosMsg.

A new method to support Promiscuous listening:
 public TosMsg PromiscuousListening(int timeout);

To convert a 805.14 style TosMsg (such as used in MicaZ, Iris and TelosB) to standard TosMsg
format:
 public byte[] ConvertToMica2Msg();

Please refer to section 8.4.6 for more of the TinyOS compatibility classes.

8.3 Sensors
Various sensor drivers exist in the namespace Crossbow.sensor.its400. Note that the sensor
board draws about 15mA current.

There is a facade class, Its400.cs, which wraps up all sensor classes and provides a simple
interface to the user applications, each of the sensors can be read from one of 2 read-only
properties: one for the raw reading, the other for the converted value with proper engineering
unit:

Page 40 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

Table 8-2. Sensor properties provided by ITS400 class

Return Type Name Description
float Adc0 Converted reading from ADC channel 0, in unit volt.

ushort Adc0Raw Raw reading from ADC channel 0
float Adc Converted reading from ADC channel 1, in unit volt.
ushort Adc1Raw Raw reading from ADC channel 1
float Adc2 Converted reading from ADC channel 2, in unit volt
ushort Adc2Raw Raw reading from ADC channel 2
float Adc3 Converted reading from ADC channel 3, in unit volt
ushort Adc3Raw Raw reading from ADC channel 3
float AccelX Converted reading from accel X axis, in unit G
ushort AccelXRaw Raw reading from accel X axis
float AccelY Converted reading from accel Y axis, in unit G
ushort AccelYRaw Raw reading from accel Y axis
float AccelZ Converted reading from accel Z axis, in unit G
ushort AccelZRaw Raw reading from accel Z axis
float Light Converted reading from light sensor, in unit Lux.
ushort LightRaw Raw reading from light sensor
float Humidity Converted reading from humidity sensor, in

percentage.
ushort HumidityRaw Raw reading from humidity sensor
float TempSensirion Converted reading from Sensirion temperature

sensor, in degree C.
ushort TempSensirionRaw Raw reading from Sensirion temperature sensor
float TempCTI Converted reading from TI temperature sensor, in

degree C.
float TempFTI Converted reading from TI temperature sensor, in

degree F.
ushort TempTIRaw Raw reading from TI temperature sensor

 If you instead prefer not to use the façade class, but the individual sensor driver,
here is a breakdown of the managed sensor drivers:

8.3.1 Sensirion Temp/Hum sensor
In TempHumSensor.cs:

Public properties:
float Hum: return the relative humidity reading in percentile.

float TempC: return the temperature reading in degree C.

ushort HumRaw: return the raw reading of the relative humidity.

ushort TempRaw: return the raw reading of the temperature.

Conversion formula:
 Hum = (-0.0000028)*HumRaw*HumRaw + 0.04*HumRaw - 4

 TempC = TempRaw * 0.01 – 39.6

Doc.# 7430-0765-01 Rev. A Page 41

Imote2.Builder Kit Manual

8.3.2 TAOS Light sensor
LightSensor.cs:

Public member functions:
uint32 readLux10(): return the 10X value of the lux.

Public properties:
float Light: return the light in lux.

ushort LightRaw: return the raw reading

Conversion formula:

 The conversion is based on a look-up table that contains a set of coefficients,

 please look at the implementation of function ReadLux10() in

LightSensor.cs in namespace crossbow.sensor.its400, or refer to the TAOS sensor

datasheet for the details.

8.3.3 TI Temperature sensor
TemperatureSensor.cs:

 Public member functions:
int ReadDegreeC10(int timeout): return the 10X value of the

temperature in Celsius.

int ReadDegreeF10(int timeout): return the 10X value of the
temperature in Fahrenheit.

int readRaw(int timeout): return the raw reading from the sensor.

Public properties:
float TempC: return the temperature reading in degree C.

float TempF: return the temperature reading in degree F.

ushort TempRaw: return the raw reading

Conversion formula:

TempC = (TempRaw*10 + 8) / 1.6

8.3.4 ST Micro Accelerometer
AccelerometerSensor.cs:

Public properties:
float ChannelX: return X axis accelerometer reading in unit G.

float ChannelY: return Y axis accelerometer reading in unit G.

float ChannelZ: return Z axis accelerometer reading in unit G.
 ushort ChannelXRaw: return X axis accelerometer raw reading.

Page 42 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

ushort ChannelYRaw: return Y axis accelerometer raw reading.

ushort ChannelZRaw: return Z axis accelerometer raw reading.

Conversion formula:
ChannelX = ChannelXRaw / 980

8.3.5 Maxim ADC
ADCSensor.cs:

Public properties:
float Channel0: return ADC channel 0 reading in volt.

float Channel1: return ADC channel 1 reading in volt.

float Channel2: return ADC channel 2 reading in volt.

float Channel3: return ADC channel 3 reading in volt.

ushort Channel0Raw: return ADC channel 0 raw reading.

ushort Channel1Raw: return ADC channel 1 raw reading.

ushort Channel2Raw: return ADC channel 2 raw reading.

ushort Channel3Raw: return ADC channel 3 raw reading.

Conversion formula:
 ChannelX = ChannelXRaw * 3 / 4096

 NOTE: The ADC reading is a value between 0 and 3V, the voltage applied to the ADC
channel. If the voltage is greater than 3v, it is capped at 3V.

8.4 Utilities
The Crossbow.lib.utils namespace contains a number of utility classes.

8.4.1 CRC
Compute CRC (Cyclical Redundancy Check) of a packet.

8.4.2 HDLC
Implement a byte stream framing using PPP-HDLC like protocol (See RFC 1662).

8.4.3 SerialDump
A class that dumps message over the USB port.

To dump a byte array to USB
static void print(byte[] str)

To dump a string to USB:

Doc.# 7430-0765-01 Rev. A Page 43

Imote2.Builder Kit Manual

static void print(string str)

8.4.4 UniqueID
Allows applications to read out information including SerialID, SKU, OEM, UID etc.

8.4.5 PowerManagement
Implement the power management API, such as putting the mote to deep sleep (drawing 525 uA)
for a specified period of time.

To put the mote into deep sleep mode, call the following method:
 PowerManagement pm = new PowerManagement();

 pm.DeepSleep(30);

The mote will go into deep sleep state for 30 seconds.

The PowerManagement class contains the following member functions:

 void DeepSleep(uint duration)

void SetCoreFreq (uint freq)

uint GetCoreFreq ()

void SetCoreVoltage(uint vltg)

float GetCoreVoltage()

uint GetResetCause()

Currently only DeepSleep is implemented. The rest are to be implemented in the future release.

 WARNING
When the Imote2 recovers from the deep sleep state, it is a reboot. For information that needs to
be preserve over reboots, it has to be written to the flash. The sample application
XSensorITS400Sleep demonstrates how to accomplish this by using ExtendedWeakReference.

8.4.6 TinyOS Compatibility
The Crossbow.lib.utils.tos namespace contains a number of utility classes for simplifying
TinyOS compatibility. This allows the Imote2 to interoperate with MicaZ, Iris and TelosB
motes.

The following classes exist in namespace Crossbow.lib.utils.tos:

8.4.6.1 TosMsg

This class encapsulates the TinyOS packet that works with 802.15.4 radio, which is used with
MICAz, IRIS and TelosB Motes.

The following method converts the message to the default TosMsg format:
 Byte[] ConvertToMica2Msg()

Page 44 Doc.# 7430-0765-01 Rev. A

 Imote2.Builder Kit Manual

8.4.6.2 TOSMac

TinyOS compatible radio driver, a wrapper classes of the RadioCC2420 class.

The AM type and group ID can be initialized through the constructor:
 Public TOSMac(byte am_type, byte group_id)

Or application can perform get/set operations on the public properties amType and groupId.

By default the AM type is set to 1, the group ID is set to 125.

8.4.6.3 TOSRadio

This class handles the initialization of the TinyOS compatible radio driver.

8.4.6.4 TOSSerialDump

This is a subclass of SerialDump, it prints out a string to USB port, with the TOS header
appending to the beginning.
 static void printWithTosHeader (byte[] str)

this method sends “TosMsg_header + str” to USB port.

The AM type and group ID field of the TosMsg header can be initialized by setting the
corresponding properties. By default, AM type is 0x04, group ID is 0x7D.

Doc.# 7430-0765-01 Rev. A Page 45

Crossbow Technology, Inc.
4145 N. First Street
San Jose, CA 95134
Phone: 408.965.3300
Fax: 408.324.4840
Email: info@xbow.com
Website: www.xbow.com

	About This Document
	Introduction
	Imote2.Builder Kit Overview
	Package contents

	Hardware Overview
	Imote2 Processor Board
	Features
	Processor

	ITS400 Sensor Board

	Software Installation
	Supported PC Platforms and Operating Systems
	PC Interface Port Requirements

	USB driver installation
	Additional Software Requirements
	Microsoft Visual Studio 2005
	Microsoft .NET Micro Framework 2.0

	Application Quick Start
	Out of the box-demo
	Run the Imote2.Builder Blink project
	Create your own .NET Micro Framework application

	Guided Tour
	Reference Manual
	Micro Framework Samples
	Threading
	ExtendedWeakReference

	Sample Applications
	Blink
	Blink Light Pattern

	CountSend
	Count Light Pattern
	Count Packet Format

	CountReceive
	XSniffer
	XSniffer Light Pattern
	Compatible PC Tools

	XSensorITS400
	XSensorITS400 Light Pattern
	XSensorITS400 Packet Format
	Compatible PC Tools

	XAccel
	XAccel Light Pattern
	XAccel Packet Format
	Compatible PC Tools

	XSensorITS400Sleep

	Client Tools and GUI
	MotePlot
	Direct USB Connection
	Over the Radio Communication (Star Network)

	XSniffer
	SerialDump
	MFDeploy
	MotePong

	Developer API Reference
	Platform
	LED
	UART
	Pins
	Interrupts
	Radio

	Radio Driver
	Initialization
	Send/Receive
	TinyOS compatability

	Sensors
	Sensirion Temp/Hum sensor
	TAOS Light sensor
	TI Temperature sensor
	ST Micro Accelerometer
	Maxim ADC

	Utilities
	CRC
	HDLC
	SerialDump
	UniqueID
	PowerManagement
	TinyOS Compatibility
	TosMsg
	TOSMac
	TOSRadio
	TOSSerialDump

