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SandMatrix_4 Module - Revision K
Matrix Extensions for the HP-41 System.

1. Introduction.

The release of the CCD Module by W&W in 1983 provided convenient and reliable tools for matrix
algebra in the 41 platform for the first time. It was an MCODE quantum leap ahead, beyond the very
many user programs written on the subject in the previous years. Looking back it's clear that the
“ARRAY FNS” was beyond a doubt an amazing landmark in the legacy of the 41 platform. So much so
that rather than re-invent the wheel HP decided to use it almost in its entirety in the Advantage Pac,
only enhancing it with the major matrix operations sorely missing in the CCD implementation (which
incidentally were the subject of the majority of Matrix programs written for the CCD).

Perhaps because the relative tardiness of its appearance, with the HP-42S already on the horizon - or
due to other factors like the HP-48S luring folks into RPL - the fact is that Matrix programs using the
Advantage Pac functions were very few and far in between. The demise of PPC and the newsletter
wars that followed suit certainly didn't encourage the scene either, and the end result was slightly
disappointing in terns of net results.

About 30 years later the SandMatrix picks up the gauntlet and compiles a collection of noteworthy
programs and routines on Matrix and Polynomial algebra, with the specific criteria to be based on the
CCD/Advantage function set — in an attempt to straighten the record and pay the due credit to that
superb toolset that had been so underutilized.

1.1. The logical next chapter after the SandMath

In many respects the SandMatrix is a very conventional module. There are no fancy overlays or
alternate keyboards, no auxiliary FATs with sub-functions, nor will you find dedicated function
launchers a la SandMath. Most of the new routines are written in FOCAL, and the programs are
typically large ones. Programming with the Matrix functions is more about Alpha strings and auxiliary
data sets than concerning with data registers and to some extent even algorithmic strategy. Also
because they are FOCAL programs they are slower than other areas, although the 41CL has blurred
the lines separating MCODE and FOCAL in terms of speed.

In terms of its contents, it was clear from the beginning that it should be an extension to the
SandMath. However the dilemma was how to manage the dependencies: should it be a self-contained
ROM or rely on functions from other modules? The former option implied including many auxiliary
functions in the FAT's, taking precious entries and causing redundancy in the global scheme. The latter
option however meant a potential loss of usability, since several modules were involved — the Library
#4, the SandMath, AMC_QS/X, the Solve & Integrate ROM, the Polynomial ROM, etc.

The solution to this riddle came only with the latest revision of the SandMath 3x3, which added a third
bank with Solve and Integrate — plus an important consolidation of functions in its auxiliary FAT. This
really cleared things off for the SandMatrix, in that the only dependencies left are the Library#4 and
the SandMath itself — for a total of only 8k “effective” footprint needed additionally (since the
Library#4 is located in the otherwise reserved page-4).

So there you have it, the SandMatrix more or less replaces all previous versions of the “Advanced
Matrix ROM”, the “Matrix ROM”, and the “Polynomial ROM” (not counting the one co-produced w/ JM
Baillard. Also in this regard it's worth mentioning that the SandMatrix is totally independent from the
"JMB_Matrix ROM”, which doesn’t use the Advantage function set at all).
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1.2. The many names of Dr. Who.

The SandMatrix is the last incarnation of a series of different modules previously released that also
dealt with Matrix and Polynomial algebra. Some of them were based on the Advantage itself,
combining the matrix functions with other applications and thus followed the same bank-switching
implementation: two pages, with two banks in the upper page. The differences amongst them were
about what else (beyond the matrix set) they included — once you removed the less notorious content
of the Advantage.

The table below illustrates this, showing the dependencies and choices made in all the predecessors of
the SandMatrix.

Size Main Dependency Requires Notes
8k + 8k ALGEBRA Advantage n/a
4k + 8k MATRIX_4k Pl n/a
4k POLYN_4k
4k +8k MATRIX_4L4 Lib#4
Advantage
8k + 4k Adv_Matrix POLYN_4k n/a Includes SOLVE/INTEG
8k + 4k Adv_Matrxd. | POLYN_4L4 Lib#4 Includes SOLVE/INTEG
9k Adv_Matrixd_Il n/a Lib#4 Includes CURVE FIT
SIROM (*) (*) for EIGEN only
8k SandMatrix SandMath Ll

We sure have a much simpler situation now, glad to say we left all those behind.

What isn’t included?’

When compared to the original Advantage Pac, the following functionality areas are not included in the
SandMatrix — but in other dedicated modules (and in a superior implementation if I may add), as
shown in the table below:

Section In Module Also Available in Comments

Digital Functions Digit Pac HP-IL Development Includes 16C Emulator

Solve & Integrate

SandMath 3x3

Solve & Integrate ROM

Fully embedded

Curve Fitting

SandMath 3x3

AECROM

Fully embedded

Complex Operations HP-41Z - Dedicated 8k ROM
Vectors / Coordinates Vector Calculator ROM | - Dedicated 4k ROM
Differential Equations Diffeq ROM Math Pac Dedicated 8k ROM
Time Value of Money Financial Pacs HP-12C don't care that much

\ Note: Make sure that revision “"H” (or higher) of the Library#4 module is installed.
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Function index at a glance.

And without further ado, here’s the list of functions included in the module.

# | Function Description Input Output Author
1 | -SNDMTRX 4 | Section Header none Displays "Order=?" Angel Martin
2 | ABSP Alpha Back Space Text in Alpha Last char deleted W&W GmbH
3 | AIP Appends integer part xin X INT(x) appended to Alpha Angel Martin
4 | ASWAP Alpha Swap A,Bin Alpha B,A in Alpha Angel Martin
5 | CLAC CLA from Comma Text in Alpha Removed from left to comma W&W GmbH
6 | DOTN N-dimensional Dot product cntl words in Y,X cntl word result in X JM Baillard
7 | EQT Displays Curve Equation Eg# in ROO Writes equation in Alpha Angel Martin
8 | SQR? Tests for Square matrices Mname in Alpha Yes.No — Do it true Angel Martin
9 | "MATRX" "Easy Matrix" Program Driver for Major Matrix Ops. Under prgm control HP Co.
10 | MPOL Matrix polynomial Mname in Alpha, Cnt'l word in X Calculates P([A]) Angel Martin
11 | ST<>A Swaps Alpha/Stack V1 in Stack, V2 in Alpha V2 in Stack, V1 in Alpha Angel Martin
12 | V¥V 3-dimensional Dot product prompts for coeffs result in Matrix Angel Martin
13 | "3DV" 3D Vectors Promppts "|V| V* VX" performs operation Angel Martin
14 | -CCD MTRX Section Header none Displays "Running..." Angel Martin
15 | C<>C Column exchange (k<>l) kkk,IIl'in X Columns swapped W&W GmbH
16 | CMAX Column Maximum Col#in X, "OP1" in Alpha Element value in X W&W GmbH
17 | CNRM Column Norm Col# in X, "OP1" in Alpha colum norm in X W&W GmbH
18 | CSUM Column Sum "OP1,RES" in Alpha Sum of Cols in RES matrix W&W GmbH
19 | DIM? Matrix Dimension "OP1" in Alpha dimension placed in X W&W GmbH
20 | FNRM Frobenius Norm "OP1" in Alpha value in X W&W GmbH
21 | I+ Increase row index "OP1" in Alpha increased i HP Co.
22 | I- Decrease row index "OP1" in Alpha decreased i HP Co.
23 | )+ Increase column index "OP1" in Alpha increased j HP Co.
24 | J- Decrease column index "OP1" in Alpha decreased j HP Co.
25 | M*M Matrix Product "OP1,0P2, RES" in Alpha matrix product in RES W&W GmbH
26 | MAT* element multiplication value in X, "OP1,X" in Alpha aij = aij * x W&W GmbH
27 | MAT+ addition of scalar value in X, "OP1,X" in Alpha aij = aij + x W&W GmbH
28 | MAT- element substraction value in X, "OP1,X" in Alpha aij=aij-x W&W GmbH
29 | MAT/ Division by scalar value in X, "OP1,X" in Alpha aij = aij / x W&W GmbH
30 | MATDIM Dimensions a matrix mmm,nnn in X, "OP1" in Alpha Matrix Dimensioned W&W GmbH
31 | MAX Maximum element "OP1" in Alpha Element value in X W&W GmbH
32 | MAXAB Absolute maximum "OP1" in Alpha Element value in X W&W GmbH
33 | MDET Determinant "OP1" in Alpha Determinant in X HP Co.
34 | MIN Minimum element "OP1" in Alpha minimum element in X W&W GmbH
35 | MINV Inverse Matrix "OP1" in Alpha Matrix replaced w/ Inverse HP Co.
36 | MMOVE Moves part of a matrix Lj; kl; b,m,n in XYZ Elements moved W&W GmbH
37 | MNAME Get current Mname to Alpha none Matrix Name in Alpha W&W GmbH
38 | MR Recall element from pt none value in X HP Co.
39 | MRC+ Recall and advance in Column  "OP1"in Alpha elementin X, increased i W&W GmbH
40 | MRC- Recall and back one in Column  "OP1" in Alpha element in X, decreased i W&W GmbH
41 | MRU Recall ij pointer of current none pointer in X W&W GmbH
42 | MRUA Recall ij pointer of Alpha "OP1" in Alpha pointer in X W&W GmbH
43 | MRR+ Recall and advance in Row "OP1" in Alpha elementin X, increased j W&W GmbH
44 | MRR- Recall and back one in Row "OP1" in Alpha element in X, decreased j W&W GmbH
45 | MS Store element at pointer value in X, OP1 in Alpha Element stored HP Co.
46 | MSC+ Store and advance in Column value in X, OP1 in Alpha element stored, increased i W&W GmbH
47 | MSU Sets pointer of current matrix iii,jjj in X pointer set W&W GmbH
48 | MSUA Sets points of Matrix in Alpha iii,jjj in X; OP1 in Alpha pointer set W&W GmbH
49 | MSR+ Store and advance in Row value in X, OP1 in Alpha element stored, increased j W&W GmbH
50 | MSWAP Swapps part of a matrix Lj; kl; b,m,n in XYZ Elements Swapped W&W GmbH
51 | MSYS Linear Systems "OP1,0P2, RES" in Alpha Resolves Linear System HP Co.
52 | PIV Sets pointer to pivot element Col# in X, "OP1" in Alpha Element value in X W&W GmbH
(c) Angel Martin - August 2013 Page 7
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# | Function Description Input Output Author
53 | R<>R Row Exchange (k<>l) kkk,IIl'in X Rows swapped W&W GmbH
54 | R>R? Row comparison test kkk,IIl'in X skip line if false W&W GmbH
55 | RMAXAB Absolute maximum row# in X, OP1 in Alpha element in X, pointer to ij W&W GmbH
56 | RNRM Row Norm "OP1" in Alpha Row Norm in X W&W GmbH
57 | RSUM Row Sum "OP1,RES" in Alpha sums of rows in RES matrix W&W GmbH
58 | SUM Element Sum "OP1" in Alpha element sum in X W&W GmbH
59 | SUMAB Absolute Values Sum "OP1" in Alpha element absolute sum in X W&W GmbH
60 | TRNPS Transpose "OP1" in Alpha Matrix replaced w/ transposed  HP Co.
61 | YC+C Adds Y*Col (l) to Col (k) value in Y, kkk.Ill in X column k changed W&W GmbH
62 | "MEDIT" Matrix Editor prompts for elements Edits Matrix HP Co.
63 | "CMEDIT" Complex Matrix Editor prompts for coeffs Edits Complex matrix HP Co.
64 | MPT Matrix Prompt lii,jjj in x Prompts for element Angel Martin
1 | -ADV MATRIX | Section Header none Displays "Not Square" Angel Martin
2 | A\MROW Input Row "OP1" in Alpha, row# in x Prompts for Row Angel Martin
3 | Ik>) Swaps indexes i, jjj in X j,00i in X, i00j in LastX Angel Martin
4 | 1#? Isi#j? i, jj in X comparison, skip if False Angel Martin
5 | IMC Input Matrix by Columns "OP1" in Alpha Inputs elements by columns Angel Martin
6 | IMR Input Matrix by Rows "OP1" in Alpha Inputs elements by rows Angel Martin
7 | LU? Tests for L/U Decomposed Mname in Alpha Yes.No — Do it true Angel Martin
8 | MAL/X x-th. root of a Matrix "OP1" in Alpha, xin X Matrix replaced by its root Angel Martin
9 | MA2 Matrix Square "OP1" in Alpha Matrix replaced by [M][M] Angel Martin
10 | MAT= Copy Matrix "OP1,RES" in Alpha Copies matrix A into B Angel Martin
11 | MATP Driver for M*M Driver for M*M Under prgm control Angel Martin
12 | MCON Constant "OP1" in Alpha, xin X Makes all elements =x Angel Martin
13 | MDPS Diagonal Product Sum "OP1" in Alpha Sum of diagonal products Angel Martin
14 | "MEXP" Matrix Exponential "OP1" in Alpha Matrix replaced by exp(M) Angel Martin
15 | MFIND Element finder "OP1" in Alpha, xin X Element pointer if found Angel Martin
16 | MIDN Identity Matrix "OP1" in Alpha Makes it Identity Matrix Angel Martin
17 | MLIE Matrix Lie Product "OP1,0P2,RES" in Alpha [A][B] - [BI[A] Angel Martin
18 | MLN Matrix Natural Log "OP1" in Alpha Matrix replaced by LN(M) Angel Martin
19 | MPWR Matrix Power to X "OP1" in Alpha, x in X Matrix replaced by [M]AINT(x) ~ Angel Martin
20 | MRDIM Matrix Redimension "OP1" in Alpha, dim in X Matrix redimensioned Angel Martin
21 | MSQRT Matrix Square Root "OP1" in Alpha Matrix replaced by SQRT([M])  Angel Martin
22 | MSORT Sorts matrix elements "OP1" in Alpha Matrix Elements sorted Angel Martin
23 | MSZE? Matriz Size "OP1" in Alpha Matrix size in X Angel Martin
24 | MTRACE Matrix Trace "OP1" in Alpha Trace in x Angel Martin
25 | MZERO Zeroes a Matrix "OP1" in Alpha All elements zeroed Angel Martin
26 | OMC Output Matrix by Columns "OP1" in Alpha Shows elements by columns Angel Martin
27 | OMR Output Matrix by Rows "OP1" in Alpha Shows elements by rows Angel Martin
28 | OCX Output x-th column "OP1" in Alpha, Col# in X Shows Col elements Angel Martin
29 | ORX Output x-th row "OP1" in Alpha, Row# in X Shows Row elements Angel Martin
30 | PMTM Prompts for Matrix "OP1" in Alpha Prompts for complete Rows Angel Martin
31 | R/aRR Unitary Diagonal "OP1" in Alpha Diagonal elements = 1 Angel Martin
32 | 2 Sum of crossed products "OP1" in Alpha Y[aij*aji] in X Angel Martin
33 | -ADV POLYN Section Header none Displays "X(ak*X"k)" Angel Martin
34 | "BRSTW" Bairstow Method Cntl word in Z, guesses in Y,X shows results JM Baillard
35 | CHRPOL Characteristic Polynomial Under prgm control Characteristic Pol Coeffs Angel Martin
36 | DTC Detele Tiny Coefficients Cntl word in X Deletes ak < 1E-7 JM Baillard
37 | EIGEN Eigen Values by SOLVE Under prgm control Eigen Values by Solve Angel Martin
38 | EV3 Eigen values 3x3 Matrix in XMEM Eigen Values by Formula Angel Martin
39 | EV3X3 Eigen values 3x3 Prompts Matrix Elements Eigen Values by Formula Angel Martin
40 | JACOBI Symmetrical Eigenvalues Under prgm control Eigen Values by Jacobi Valentin Albillo
41 | OPFIT Orthogonal polynomial Fit Under prgm control shows results Eugenio Ubeda
42 | "P+P" Polynomial Addition Driver for PSUM w/CF 01 shows results Angel Martin
43 | "p-pP" Polynomial Substraction Driver for PSUM w/SF 01 shows results Angel Martin
44 | "p*p" Polynomial Multiplication Driver for PPRD shows results Angel Martin
(c) Angel Martin - August 2013 Page 8
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# | Function Description Input Output Author

45 | "p/P" Polynomial Division Driver for PDIV shows results Angel Martin
46 | PCPY Copy of Polynomial from, to cntl words in Y, X polynomial copied JM Baillard
47 | PDIV Euyclidean Division cont words in Y and X cntl words remainder & result  JM Baillard
48 | PEDIT Polynomial Editor cntl word in X prompts for each coeff value Angel Martin
49 | PFE Partial Fraction Expansion Under prgm control see description to decode JM Baillard
50 | "PF>X" Prime Factors to Number Matrix w/ Prime Facts in XMEM  restores the original argument  Angel Martin
51 | PMTP Prompts for Polynomial cntl word in X prompts for complete list Angel Martin
52 | POLFIT Polynomial Fit Under prgm control calculates polynomial fit Valentin Albillo
53 | POLINT Aitken Interpolation Under prgm control interpolation made Ulrich Deiters
54 | POLZER From Poles to Zeros Under prgm control shows coeffs and roots Angel Martin
55 | PPRD Polynomial Product cntlwordsin Z, Y, bbb in X cntl word result in X JM Baillard
56 | "PRMF" Prime Factors Decomposition number in X prime factors in XMEM Matrix  Angel Martin
57 | "PROOT" Polynomial Roots Under prgm control Shows all roots Angel Martin
58 | PSUM Polynomial Sum cntl words in Z, Y; bbb in X cntl word result in X JM Baillard
59 | PVAL Polynomial Evaluation CntlwordinY, xin X Result in X JM Baillard
60 | PVIEW Polinomial View Cntl word in X Sequential listing of coeffs Angel Martin
61 | QUART Quartic Equation Roots coeefs in Stack (a4=1) shows results JM Baillard
62 | "RTSN" Roots subroutine Under prgm control calculates roots Angel Martin
63 | TOTNT Euler's Totient Function argument in X Result in X Angel Martin
64 | "H#HEV" Subroutine for EIGEN Under prgm control Under prgm control Angel Martin

Functions in blue are all in MCODE. Functions in black are MCODE entries to FOCAL programs.
Light blue background denotes new or improved in this revision.

I have adapted most of the FOCAL programs for optimal fit in the SandMatrix, but as you can see the
original authors are always credited — including W&W for the array functions set, renamed here as
'-CCD MATRIX"”. Many of the routines in this manual include the program listing, this provides an
opportunity to see how the functions are used and of course adds completion to the documentation.

The function groups are distributed in both lower and upper pages, as follows:

e The lower page contains the general intro section plus the CCD Matrix set. Very much like the
lower page of Advantage Pac minus the digital functions.

e The upper page has the Advanced Matrix and Polynomial sections. Basically all new and
additional to the Advantage Pac.

e The second bank in the upper page is practically identical to that in the Advantage, with a few
changes made after removing the Digital functions as well. It mostly contains the MCODE for
the CCD Matrix functions and the major matrix calculations (MSYS, MINV, MDET, TRNPS).

The SandMath checks for the presence of its two dependencies, ie. The Library#4 and the SandMath.
Note that if the SandMath module is not plugged in the calculator the following warning message is
shown every time the calculator is switched on, (but not halting the polling points process):

i

NO SHAHNIMATH

USER

\ Note: Make sure that revision “"H” (or higher) of the Library#4 module is installed.

¢) Angel Martin - August 2013 Page 9
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2. Lower-Page Functions in detail

The first section groups the auxiliary functions used for ALPHA string management, plus some leftover
functions that either didn't belong to the other categories or were added at latest stages of the
development.

{ GANIMATRX Y “SNIMAIRX 4

J
c. USER 01

2.1. Alpha String Management

The use of the ALPHA register for Input/Output certainly isn't new in the 41 platform, but the
utilization by the Matrix functions effectively turned it into an abstraction layer for programming;
therefore the importance of auxiliary utilities like these.

Some of these functions are also included in the AMC_OSX Module — yet it appeared convenient not to
add it as another dependency (even if it's just a 4k footprint for its 3 banks), so here they are as well.

# | Function Description Input

1 | ABSP Alpha Back Space Text in Alpha

2 | AIP Appends integer part X in X

3 | ASWAP Alpha Swap A,B in Alpha

4 | CLAC CLA from Comma Text in Alpha

5 | EQT Displays Curve Equation Eg# in ROO (1 - 16)

6 | ST<>A Exchanges Alpha and Stack Values in Stack and Alpha registers

ABSP deletes the rightmost character in ALPHA — equivalent to “back space” in manual mode.

AIP was HP’s answer to the need to append just the integer part of the number in X to Alpha — not
changing the FIX and radix settings. Note also that AIP appends the absolute value of the number,
which is not the case with ARCLI or AINT from the CCD and AMC_OS/X modules.

ASWAP handles comma-separated strings, exchanging the strings placed left and right of the first
comma found in Alpha. Very handy to manage all those operations that have an input and output
matrix names defined in ALPHA, separated by comma.

CLAC deletes the contents of ALPHA located to the right of a comma (i.e. after the comma but not
including it). It is adapted from CLA- in the CCD Module.

EQT is an extension to the Curve Fitting functions in the SandMath. Use it to display (and write in
Alpha) one of the 16 the equations available for CURVE. It requires the equation number (1 to 16) in
ROO. Easy does it!

ST<=>A simply exchanges the contents of the stack and the four Alpha registers {M,N,O,P}. Used in
3D-vector operations where one of the operands is stored in Alpha.

(c) Angel Martin - August 2013 Page 10
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2.2. Other functions in the Header section.

# | Function Description Input

1 | "MATRX" "Easy Matrix" Program Driver for Major Matrix Ops.

2 | SQR? Tests for Square Matrix Mname in Alpha

3 | MPOL Matrix polynomial Mname in Alpha, Cnt'l word in X
4 | DOTN N-dimensional Dot product cnt'l words in Y, X

5 |V*V 3-dimensional Dot product prompts for coeffs

6 | "3DbV" 3D Vectors Prompts "|V] V* VX"

MATRX is the main driver program provided in the Advantage Pac for the major matrix calculations
(MDET, MINV, SIMEQ, TRNPS). Nice and easy, maybe the only one to use for users not needing any
further functionality. MTR was part of the same program, but has been eliminated in this revision.

The following extract describing the use of MATRX is taken from the Advantage Pac manual — and it's
included here for convenience and completeness. It's useful to revise the underlying concepts as well.

2.2.1 The Matrix Program

This chapter describes the matrix program, MATRX - the easy, "user-friendly" way to use the most
common matrix operations on a newly created matrix. To use MATRX you do not need to know how
the calculator stores and treats matrices in its memory. The next chapter lists and defines every matrix
function in the pac, including those called by MATRX. Using these functions on their own requires a
more intimate knowledge of how and where the calculator stores matrices.

What this program can do.

Consider the equations:
38X +7.2x,=16.5
1.3x-0.9x; =-22.1

for which you must determine the values of x1 and x2 . These equations can be expressed in matrix
form as AX = B, where A is the coefficient matrix for the system, B is the column or constant matrix,
and X is the solution or result matrix.

28 7.2 X 16.5
A= p X , and B =
1.3 09 X, -22.1

For such a matrix system, the MATRX program creates (dimensions) a square real ar complex matrix,
A, and a column matrix, B. You can then:

Enter, change (‘edit"), or just view elements in A and B.

Invert A.

Transpose A if A is real.

Find the determinant of A if A is real.

Solve the system of simultaneous equations by finding the solution to AX = B.

The size of your matrix is limited only by available memory (each real matrix requires one register pIus
one register for each element.) If you want to store more than one matrix, you will need to use the
matrix function MATDIM, described in the next chapter. The MATRX program does not store or
recall matrices; it works with a single square matrix A and a single column matrix B. When you enter
new elements into A you destroy its old elements.

(c) Angel Martin - August 2013 Page 11
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Instructions

MATRX has two menus to show you which key corresponds to which function. The initial menu you
see is to select a real ox complex matrix: (picture on the left below)

Initial Menu Main Menu

(RL L x g R I IT B SE]

USER | USER

JLUO00 LUUWUI
JuUuuts U E

e

After you make this selection, input the order of the matrix, and press R/S, you will see the main
menu (picture on the right above). This menu shows you the choice of matrix operations you have in
MATRX. Press [J] to recall this menu to the display at any time. This will not disturb the program in
any way.

To clear the menu at any time press “Back Arrow”. This shows you the contents of the X-register, but
does not end the program. You can perform calculations, and then recall the menu by pressing [J].
(However you don't need to clear the program’s display before performing calculations.)

e The program starts by asking you for a new matrix. It has you specify real vs. complex and
the order (dimension) of a square matrix for A.

e The program does not clear previous matrix data, so previous data — possible meaningless
data — will fill your new matrices A and B until you enter new values for their elements.

e Each element of a complex matrix has two values (a real part and an imaginary part) and
requires four times as much memory to store as an element in a real matrix. The promprs for
real parts x11, x12, etc. are "1:1=?", “1:2="?", etc. The prompts for complex parts x11+ i
y1ll, x2+iy22, etc. are "RE.1:1="?", “IM.1:1="?", etc.

Remarks

Alteration of the Original Matrix. The input matrix A is altered by the operations finding the
inverse, the determinant, the transpose and the solution of the matrix equation. You can re-invert A%,
and re-transpose A’ to restore the orignal form of A. However, if you have calculated the determinant
or the solution matrix, then A is in its LU-decomposed form. To restore A, simply /invert it twice. The
LU-decompostion does not interfere with any subsequent MATRX operation except transposition and
editing (do not attempt to edit an LU-decomposed matrix unless you intend to change every element).
For more information on LU-decomposition, refer to "LU-Decomposition" in the next chapter (‘Matrix
Functions").
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Matrix Storage. The MATRX program stores a matrix A starting in RO of main memory; it is nhamed
“RO". Its column matrix B is stored after it, and the result matrix X overwrites B, Refer to the chapter
"Matrix Punctions' for an explaniation of how matrices are named and stored, and how much room
they need. MATRX cannot access any other matrices, with the exception of the previous RO and its
corresponding column matrix.

Redefined Keys. This program uses local Alpha labels (as explained in the owner's manual for the
HP-41) assigned to keys [A]-[E], [J], [a], [b], and [d]. These local assgnments are overriden by any
User-key assigments you might have made to these same keys, thereby defeating this program.
Therefore be sure to clear any existing User-key assignments of these kep before using this program,
and avoid redefining these keys in the future.

Example 1.

Given the system of equations at the beginning of this section, find the inverse, determinant and
transpose of A, and then find the solution matrix of the equation AX = B

38 72||x| | 16s
1.3 09| x| [-221

Keystrokes Display Comments

XEQ "MTRX" “"RL CX” Starts the MTRX program

[A] (RL) “ORDER=?" Selects a real Matrix

2, R/S “A I DT B SE” Dimensions a 2x2 square matrix

[A] “1:1=a11?" Enters the Editor and displays old value
3.8, R/S “1:2=a12?" enters the new value for a4

7.2, R/S “2:1=a21?"

1.3, R/S “2:2=a22?"

.9, CHS, R/S “A I DT B SE” enters ay, and returns main menu

[B] (I) “A I DT BSE" Inverts A

[SHIFT][A] “1:1=0.0704" Displays the current contents

R/S "1:2=0.5634" of A after the inversion

R/S “2:1=0.1017"

R/S “2:2=-0.2973"

R/S “A I DT BSE"

[B] () “A I DT BSE” Re-inverts A to the original
[SHIFT][B] “A I DT BSE” Transposes A

[SHIFT][A] “1:1=3.8000" Displays the current contents

R/S "1:2=1.3000" of A after the transposition

R/S "2:1=7.2000"

R/S "2:2==0.9000"

R/S “A I DT BSE"

[SHIFT][B] “A I DT BSE” Re-transposes AT to the original A

[C] (DT) “DET=-12.7800" Det(A)

[B] “1:1=b11?" Enters the editor for B and displays old elements
16.5, R/S “2:1=b12?" Enters the new value for by,

22.1, CHS, R/S “A I DT BSE" Enters b,, and returns main menu

[E] (SE) “A I DT B SE” Solves the system AX = B, placing X in B
[SHIFT] [D] "1:1=-11.2887" displays the solution matrix

R/S "2:1=8.2496"

R/S (or [J])
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Example 2. Find the inverse of the complex matrix:

Note that the original MATRX has been slightly edited in the SandMatrix so that the program sets the
required SIZE if not enough registers are currently available to store the matrices — so you don't need
to worry about that mundane detail. This example is also interesting because also shows how to make

corrections to the data entered by mistake.

Starts the MTRX program

Selects a complex Matrix

Dimensions a 2x2 complex matrix
Enters the editor and sisplays old value
ditto for the imaginary part

Wrong entry! Should be 3, not 4...
Moves editor back to xi

The wromg imaginary part

Correct value is entered for y;,. Proceed

Enters last element and returns main menu

Keystrokes Display Comments
XEQ "MATRX" “RL CX”

[B] (CX) “ORDER=?"

2, R/S “A I DT BSE"

[A], R/S “RE1:1=x11?"

1, R/S “IM1:1=y11?"

2, R/S “"RE1:2=x12?"

3, R/S “IM1:2=y12?"

4, R/S “RE:2:1=x21?"

1,002, [A] “RE1:2=3.000?"

R/S “IM1:2=4.000?

3, R/S “RE2:1=x21?"

4, R/S “IM2:1=y21?"

5, R/S “RE2:2=x22?"

6, R/S “IM2:2=y22?"

7, R/S “A I DT BSE”

[B] (D) “A I DT B SE” Inverts A
[SHIFT][A] “RE1:1=-0.9663" Viewing A-1
2.002, [A] “RE2:2=-0.2369" Displays Xy, + i y»
R/S “IM2:2=-0.0225"

R/S (or [J]) “A I DT BSE” Exits the editor

Other (more advanced) examples are available in the next sections of the manual, during the

description of the individual matrix functions.
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2.2.2.- Matrix Polynomial (MPOL)

MPOL was a last-minute addition to the ROM, which somehow combines both matrix and polynomial
algebra. Use it to calculate a matrix polynomial P(A) - not to be confused with a polynomial matrix -
based on an existing square matrix [A] and a polynomial P(x).

P(A) is the result matrix calculated replacing the real variable x with [A], using the polynomial
coefficients to multiply the different matrix powers as per the order of the polynomial terms. As it's the
case all throughout polynomials, Honer’s method proves very useful to reduce all the matrix powers to
matrix multiplications — with considerable execution time reduction and simplification of the code.
Example.- Calculate P{A) for the following matrix and polynomial:

PX)=2x*'-x+3x*-4x+5; and:

i
A=
[

N w P
= NN
Do W

]
]
1]

This is also a good example to become familiar with the editor and input routines available in the
SandMatrix. First we'll create and populate the matrix using the Matrix Editor input functionality —
very recommended for integer elements, as follows:

IALPHA|, “A”, |ALPHA, 3,003, XEQ "MATDIM” creates the matrix in X-Mem, then:

XEQ "PMTM"” -> at the prompt "R1: _" we type: 4, ENTER”, 2, ENTER”, 3, R/S
-> at the prompt "R2: _" we type: 3, ENTER”, 2, ENTER”, 5, R/S
-> at the prompt "R3: _" we type: 2, ENTER”, 1, ENTER®, 4, R/S

The Matrix has been completely input using “batches” (or lists) including all elements of each row
simultaneously — this is an advantageous way to handle them that results in faster and less error-
prone method, not based on a single-element prompt.

Note how pressing ENTER” during this process results into a blank space in the display separating
each of the elements, and that the sequence is terminated pressing R/S. Upon completion the matrix
elements are stored in the Matrix file in extended memory.

The analogous function for the polynomial is PMTP, which requires the control word in x — a nhumber
of the form bbb.eee, denoting the beginning and ending registers that contain the polynomial
coefficients. In this case:

2.006, XEQ "PMTP”  -> at the prompt "R2: _" we type:
2, ENTER”, CHS, 1, ENTER”, 3, ENTERA, CHS, 4, ENTERA, 5, R/S

Note how in this case the function knows there’s no more “rows” to add, and also that negative values
are easily input using the CHS key. Upon completion the coefficients are stored in registers RO1 to
RO5.

The last step is executing MPOL itself. To do that we place the matrix name in Alpha and the
polynomial control word in X, then call MPOL. The resulting P(A) is stored in a new matrix named “P”
- also located in an XM file - therefore [A] is not overwritten. Note however that this will overwrite [P]
if it already exists. In this case we have:

[[ 3548 1887 4705 ]
P(A) = [ 3727 1987 4962 ]
[ 2539 1351 3385 ]]
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The result matrix name is placed in ALPHA when the execution ends, so you can directly use any
matrix editor routine (like OMR) to review its elements. Note how OMR will display integer values
without any zeros after the decimal point, regardless of the current FIX settings. Set flag 21 to stop
the display of each individual element.

In addition to the result matrix P(A), MPOL also requires an auxiliary matrix for intermediate
calculations. The matrix file “#” is temporarily created during the execution for this purpose, and
deleted upon completion of the program. While this is transparent to the user you may want to
remember this fact due to the extended memory needed to allow for it — with a total of 3 x (N2 + 2)
registers used (including the file headers).

The last point to remember about MPOL is that it uses data registers RO0 and RO1 — which therefore
cannot be used to store the polynomial coefficients.

e ROO has the polynomial control word and is used as counter for the loop execution
e RO1 has the matrix name. It's left unchanged.

Below you can see the program listing for MPOL — not a long program, albeit not as short as a simple
polynomial evaluation for real variables. Note the use of function 1#J? to check for square matrix, as
well as the “shortcut” -ADV MTRX that puts the error message “NO7 SQUARE' in the display and
terminates the execution.

[ o1 LBL "MPOL" | " 23 p

Tom DIM? " 24  ARCLO1

i 03 1#)? is it square? f 25 - 8" "PA,#"

f 04 -ADV MTRX no, prompt error " 2 M*M

" o5 RDN cnt'l word to X o7 mgpr

" 06 E-3 " 28 ot

o7 - " 29  MMOVE

" 08 sTOO00 " 30 I1sG00 next index

" 09  AsTOO1 " 31  Groo0 loop back

" 10 biwe " 32 Xeqo2

i 11 "p" "33 PURFL purge auxiliary mat
"o MATDIM " 32  MNAME? bring result name
L g " 35 RIN

" 14 mATDIM " 36 LBLO2 |

" 15 ny " YRS

" 16  ARcLO1 " 38  MIDN

Y " pn "X A,P" 39 nxas

" 18  RCLIND 00 " 40 RCLIND 0O next coeff
19 MAT* initial value ¥ a1 MmAT*

" 20  I1SG 00 next index " 4 wpp

r 21 LBL 00 o4 MAT+ add it to partial result
Y XEQ 02 " 44  END

The auxiliary matrix “#" is needed because unfortunately M*M does not allow the result product
matrix to be the same as any of the multiplication factors. At least we double-use it for other
intermediate calculations as well (identity matrix products), killing two birds with the same stone.

MPOL is representative of the kind of routine that makes the extensions to the base matrix functions
set of the Advantage — hopefully it has whet your appetite and are looking forward to seeing more...
and that we will in later sections of the manual.
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2.2.3.- N-dimensional Vector Operations

DOTN is an all-MCODE implementation of a n-dimensional vector dot (scalar) product, the norms of
each operand and the angle between them. Originally written by JM Baillard, the input parameters are
the control words for each vector in registers X and Y (more about this later), and the result value are
placed in the stack.

Obviously the vector components must be input in the appropriate registers, which you can do using
any of the available input programs available in the SandMatrix — will be seen with detail in the
polynomial section later in the manual. Incidentally the code for DOTN is located in the second bank
of the upper page — taking advantage of the available room after the removal of the digital functions.

Example. Calculate the scalar product of vectors U(2,3,7,1) and V(3,1,4,6), storing their
components in registers {R01 - R04} for U, and {R06 - R09} for V.

For the data input we have several choices; here we'll Use the PMTP function seen before, just
pretending the vector components are analogous to polynomial coefficients (which is irrelevant to the
actual workings of PMTP).

1.004, XEQ “PMTP”  ->"R1:_", we type: 2, ENTERA, 3, ENTER”, 7, ENTERA, 1, R/S
6.009, XEQ "PMTP”  ->“R6: _", we type: 3, ENTER”?, 1, ENTERA, 4, ENTER”, 6, R/S

Re-entering the control codes in X, and Y we execute the function, which returns:

XEQ "DOTN" -> 43,, see table below for all the available data.
STACK INPUTS OUTPUTS Results
T / vl 46.52626239°
Z / 11U 1] 7.874007874
Y bbb.eee(U) 11V1I 7.937253933
X bbb.eee(V) u.v 43,000000
L / cos U

A good example of Jean-Marc’s very complete and economical programming. Needless to say it
executes at blazing light speed, as you would expect from an MCODE routine like this.

The alternative — Vectors as Matrices.

V*V performs the same tasks (n-dimensional vector dot product) but using a different approach:
treating the vectors as column matrices it simply uses M*M to calculate the resuilt, multiplying the
first operand vector by the transpose of the second operand vector. All data input/output are driven
under program contol. The execution time is longer than DOTN, trading so convenience for speed.

To appreciate the workings of V*V you need to consider that it transposes V2 before doing the
multiplication, and that it calculates the Frobenius norms of each matrix on the fly to obtain the angle.
The dot product is placed in a 1x1 matrix named “V*V” in X-Mem.

Here’s the listing of the program that clearly shows all the housekeeping chores required to prepare
the strings needed in ALPHA for the matrix functions as input. Even if it's somehow slower and less
efficient, it's a good “academic example” of utilization of the standard matrix functions.
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[ 01 LBL"v*v" | " 31 FENRM
f 02 FS? 06 subroutine use? " o3 /
i 03 GTO 00 yes, skip data entry o33 "v2"
" 04  -SNDMTRX 4 prompts "ORDER=?" " 34 ENRM
" 05  sTOP " o35y
06 INT " 36  AcOS
" oo7 "1t " 37 Xy
" o8 MATDIM - V2 I
" 09 XEQ 05 V1 data input " 39 ARCLY
" 10 DIM? " 40  PROMPT show angle
on "y2n " 41 RIN
"o MATDIM " 42  LBLOS
13 XEQO5 V2 data input )
14  LBLOD <« 44 X<ooF
15 ny " s N
i 16 CLX " 46 MSIJA position pointer
" 17 MATDIM " 47 1BLO4
ET: "y "o e
¥ 19 TRNPS ¥ 49  MRU
" 20 " V2,V " 50  wmpP
oo M*M " 51 MR
" 22 ASHF " 52 ARCLX
" 23 o0 " 53 upw
" 24 MmsuA position pointer " 54 PROMPT
r 25 MR recall element 55 MS
" 26  ENTERA " 56
d 27 =" " 57 FC? 10 reached the end?
r 28 ARCL X i 58 GTO 04 no, loop back
o2 PROMPT show result ¥ 59  MNAME?
" 30 g " 6 END

The usage of user flag 06 determines whether the program is used as a subroutine — in which case the
data entry is skipped. This is more or less consistently done throughout the SandMatrix module, and
has the benefit of saving one entry in the FAT — which would be needed for the subroutine label.

Line 4 uses the header function “-SNDMTRX 4”, which in program mode adds the text "ORDER=?" to
the display (not ALPHA). This saves bytes and keeps the contents of ALPHA unchanged.

2.2.4.- 3D Vectors Mini-Calculator.

Lastly “3DV” is a mini-vector calculator; use it to calculate the Module of a vector, or the DOT and
CROSS products of two 3D vectors. It's basically a small menu-driven shell that uses functions VMOD,
V*A, and VXA available in the auxiliary FAT within the SandMath. One of the operand vectors is
placed in ALPHA registers {M,N,QO}, therefore their names.

iirs 1 s ! Ly s
LN ¥ n
Its prompt looks like this: ER

Which assumes no assignments are done on the [A], [C], and [E] keys and that USER mode is on.

Data entry is also under program contol, and nice alphanumeric mnemonics describe the result(s). The
module and the dot product are left in X upon completion. For the cross product case the three
components are sequentially displayed, with a pause in between them. They're also placed in the stack
registers Z,Y,X for subroutine use.
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The program listing is below — note how this trivial little application manages to make good use of
some of the sub-functions in the SandMath module, as well as the interesting way to use the ALPHA
register for the vector components.

1 LBL "3DV"

2 LBL 02 new start

3 CF 00

4 "IV1] Vx VX" menu options
5 SF 27 User mode ON
6 PROMPT

7 LBLA Modulus / Norm
8 SF 00

9 XEQ 05

10 VMOD SandMath's

11 "IV]=

12 GTO 00

13 LBLC | poT product
14 XEQ 03

15 V*A SandMath's

16 "y

17 LBLOO |

18 ARCL X

19 PROMPT

20 GTO 02 start over

21 LBL E CROSS product
22 XEQ 05

23 VXA SandMath's

24 "WX="

25 ARCL X

26 AVIEW

27 PSE

28 "Vy=

29 ARCLY

30 AVIEW

31 PSE

32 "vz="

33 ARCL Z

34 AVIEW

35 PSE

36 GTO 02 start over

37 LBL 05

38 "ay1=?" prompt for V1
39 PROMPT

40 FS? 00 module?

41 RTN yes, go back
42 "A\2=2" prompt for V2
43 CF 21

a4 AVIEW display first,
45 ST<>A then exchange
46 STOP

47 END

You're encouraged to check the Vector Analysis ROM for a comprehensive implementation of a 3D-
Vector calculator, as well as other geometry programs. The Vectors ROM is completely self-contained,
and only takes up one page (4k), complementing the SandMatrix (and the SandMath) very effectively.

AN =

AN —>

VCALC

Ve=A
VSTO _

VENTER"

VNORM
VADST
VANG
VMOD

R-S
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2.2.1. Setting up a matrix: Name, Storage, and Dimension

The first group of matrix functions are used to create, populate and store the matrices.

Function Description Inputs
1 MATDIM Dimensions a Matrix Name in Alpha, dimensions in X
2 MNAME? Returns name of current Matrix to Alpha | none
3 DIM? Returns the dimension of Matrix Name in Alpha
4 “MEDIT” Matrix Editor Name in Alpha
5 “CMEDIT” Complex Matrix Editor Name in Alpha

You can create, manipulate, and store real and complex matrices. The size and number of matrices is
limited only by the amount of memory available in the calculator. If you have extended memory you
can also store matrices there.

To create a matrix you must provide its name and dimensions. The function MATDIM uses the text in
the Alpha register as its name, and the dimensions mmm.nnn in the X-register to create a matrix. It
does not clear (zero) the elements of a new matrix in main memory, but retains the existing contents
of the previous matrix or registers. It does clear the elements of a new matrix in extended memory.
You then enter values- numeric or Alpha- into a matrix via the matrix editors.

Naming a Matrix

The name you give a matrix determines where it will be stored. A matrix to be stored in main (non-
extended) memory must be named Rxxx, where xxx is up to three digits. (You can drop leading
zeros.) The matrix will be stored starting in Rxx. For example, RO0O7 is the same as R7, which would
store this matrix header in R07. As a shortcut, if you specify matrix R, its name and location will be
RO.

A matrix to be stored in extended memory can be named with up to seven Alpha characters, excepting
just the letter “X” (which is reserved to name the X-register) and the letter "R” followed by up to three
digits (which is reserved to name the main memory arrays). You do not need to specify a file type; it
will automatically be given one unique to matrices. Use the Alpha register to specify matrix names.
When specifying more than one name (as parameters for certain functions), separate them with
commas.

Dimensioning a Matrix

Specify the dimensions of a new matrix as mmm.nnn, where m is the number of rows and n is the
number of columns. You can drop leading zeros for m and trailing zeros for n. For a complex matrix,
specify mmm.nnn as twice the number of rows and fwice the number of columns. (Refer to “Working
with Complex Matrices”). A zero part defaults to a 1, so 0 is equivalent to 1.001, 3 to 3.00 1, and .023
to 1.023.

1 & 3 1= 281
4 5 & 445 K17t
mmm.nnn = 2.003 mmm.nnn = 4.004
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e |MATDIM | Dimensions a new matrix or redimensions an existing one to the given dimensions.
e |MNAME?| Returns the name of the current matrix to the Alpha register.
. Returns the dimensions mmm.nnn of the matrix specified in the Alpha register to the

X-register. (A blank Alpha register specifies the current matrix.)

How a Matrix Is Stored

The elements of a matrix are stored in memory in order from left to right along each row, from the
first row to the last. Each element occupies one data-storage register. A complex number requires four
registers to store its parts.

Memory Space.- A matrix in main memory occupies (m x n) + 1 datastorage regis ters, one register
being used as a status header. A complex matrix uses (2m x 2n) + 1 registers, where m is the number
of rows in the complex matrix and n is the number of columns in the complex matrix.

A matrix in extended memory has a file length of m x n . (2m x 2n for a complex matrix). Its file type
is unique to matrices. Do not use the function CLFL with a matrix in extended memory: this destroys
part of the file's header information. Instead, use PURFL to purge the entire matrix.

Changing Matrix Dimensions.- If you redimension a matrix to a different size, then the existing
elements are reassigned to new elements according to the new dimensions. Extra old elements are
lost; extra new elements take on the values already present in the new registers- except in extended
memory, where new elements are set to zero.

Redimensioning 2 x 3to 2x 2 : 1 2 3 1 32 o
—. w
4 5 6 3 4 2 6
Redimensioning 2 x 3to 2 x 4 : r 7
1 2 3 1 2 3 4
—
4 5 6 T T

This is what happens each time you dimension a new matrix since the old elements from the previous
current matrix remain until you change them.

Caution.- When MATDIM is used to redimension a matrix stored in extended memory, the position
of the matrix pointer is not readjusted. If the pointer happened to be positioned to an element that is
outside the new bunds of the redimensioned matrix, it must be repositioned to be within the new
bounds by executing either MSIJ or MSIJA with valid indices before the pointer can be used again.

Existing matrices in extended memory cannot be redimensioned to completely fill extended memory.
The maximum allowable size of a redimensioned matrix is one register less than the currently available
extended memory. A new matrix can, however, be dimensioned to completely fill available extended
memory.

Using the Matrix Editors

There are two matrix editors: MEDIT for real matrices and CMEDIT for complex matrices. They are
otherwise quite similar. The matrix editors are used for three purposes:

(c) Angel Martin - August 2013 Page 21



SandMatrix_4 Manual

e Entering new values into the elements of a matrix.

e Reviewing and changing (editing) the elements of a matrix, either in order or by “random
access” of specific elements.

¢ Viewing (without being able to change) the elements of a matrix (flag 08 set).

When you execute MEDIT or CMEDIT, the editor displays element 1,1 of the matrix specified in the
Alpha register or of the current matrix if the Alpha register is empty. Pressing R/S steps the display
through the elements; for a complex matrix, each part of the complex element is shown separately.

Function Display Function Display
“MEDT 1:1=1.0000? - RE.1:1=1.0000?
R/S 1:2=2.0000? R/S] IM.1:1=1.00007
R/S ] RE.1:2=2.0000?
R/S (X-register) R/S (X-register)

The “?” at the end of the display line indicates that you can change that value. In effect, you are
being asked whether this is the value you want. If you want to change the element you see, just enter
the new value and press R/S. You do this for a brand new matrix as well as for correcting or altering a
single value. If you press R/S without entering a new value, the current value remains unchanged.

Viewing without editing.- If you set flag 08, the editor will let you only view the elements, not
change them. The display appears without the “?” at the end of the line. 1:1=1.0000

If you have a printer attached while flag 08 is set, it will print out all the elements of the matrix
without pausing.

Directly accessing any element.- You can directly access any specific element while the editor is
active (and the User keyboard is also active). To access the element in the i-th row and the j-th
column, enter iii.jjj and press [A]. (This is as in the MATRX program.) You can drop leading zeros in iii
and trailing zeros in jjj. For a complex matrix, you can directly access the real pari of element i, j .Then
use R/S to access its imaginary part. You can drop leading zeros in the i-part and trailing zeros in the
j-part. A zero part defaults to a 1.

Exiting the Editor.- To leave the editor before it has reached the last element, do either:

e Press [J].
e Try to access a nonexistent element. For instance, in a 4 x 4 matrix, press 5 [A].

How to Specify a Matrix

Given the matrix multiplication operation AB = C, you know A and B and are looking for the product
matrix, C. In performing this operat ion, the calcula tor must be given the identit ies of the existing
matrices A and B, and also be told where to put the result matrix, C. (However, the result matrix can
be the same as one of the input matrices.) All given matrices must al ready exist as named,
dimensioned matrices. Naturally, only A and B must contain valid data.

Some functions use only one input matrix, and some functions automatically use one of the input
matrices for output. So the minimum number of matrices to specify is one, and the maximum is three.

A matrix function checks the Alpha register for the names (that is, the locations) of the matrices it

needs for input and output. Before executing that function, you should specify all needed parameters
on one line in the Alpha register, separating each with a comma:

Alpha Register | input matrix|jnput matrix][,result matrix]
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Scalar Operations.- Scalar input and output must be in the X-register, and so this location does not
need to be specified unless the function in question can use either a scalar or a matrix for the same
input parameter. To specify the X-register, use X.

For instance, MATDIM requires a scalar input and a matrix name, so you do not need to specify the
X- register. On the other hand, the scalar arithmentic functions, such as MAT+, can use either two
matrices or a scalar and a matrix for input. Therefore, you must specify X if you want to use it.

The Current Matrix.- The current matrix is the last one accessed (used) by a matrix operation. If
the Alpha register is clear and you execute a matrix function that requires a matrix specification, the
current matrix is used by default. (If there is no current matrix, "UNDEF ARRAY” results).

The result matrix of a matrix function becomes the current matrix following that operation. To find out
the name of the current matrix, execute MNAME?. Its name is returned into the Alpha register,
overwriting its previous contents.

Default Matrix Parameters.- If you don't specify any or all the matrices that a matrix function
needs, then certain default parameters exist. (Default parameters are those automatically assumed if
you don't specify them.) The most common default you will probably use is the current matrix. If you
don't specify a particular matrix name and the Alpha register is clear, then the default matrix is the
current one.

For matrix operations requiring up to three matrix names in the Alpha register, the following table
gives the conventions to interpret the parameters.

Alpha Register's Contents Matrices Specified
A,B,C A B C
A,B A B, B
A AAA
A,,B A A B
,AB current, A, B
A current, A, A
LA current, current, A
X,A,B X-reg, A, B
XA X-reg, A, A
A, X A X-reg, A
A, X A, A, A (ignores X)
X X-reg, current, current
(blank) current, current, current
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2.2.2.- Storing and Recalling individual Matrix elements.

The matrix editor provides a method of storing and reviewing matrix elements. For programming, you
can use the following functions to manipulate individual matrix elements. A specific element is
identified by the value /i jjj for its location in the i-th row of the j-th column. You can drop leading
zeros in the i-index and trailing zeros in the j-index. The value of the pointer defines the current
element.

Setting and recalling the Pointer

Function Description Inputs
1 MSIJA Sets element pointer of matrix in Alpha Name in Alpha, iii,jjj in X-reg.
2 MSI1J Sets element pointer of current matrix iii,jjj in X-reg.
3 MRIJA Recalls element pointer of Matrix in Alpha | Name in Alpha, iii,jjj in X-reg.
4 MRI1J Recalls element pointer of current matrix | iii,jjj in X-reg.

The following functions increment and decrement the element pointer rowwise (iii) or column wise
(jij). If the end of a column is reached (with the i-index) or the end of a row is reached (with the j-
index), then the index advances to the next larger or smaller column or row and sets flag 09. If the
index advances beyond the size of the matrix, both flags 09 and 10 are set. These functions always
either set or clear flags 09 and 10. If the conditions listed above don't occur, the flags are cleared
every time the functions are executed.

Incrementing and Decrementing the Pointer

The following functions were not in the original CCD ARRAY FNS group, therefore are HP's:

Function Description Inputs
5 1+ Increments iii pointer by one none
6 1- Decrements iii pointer by one none
7 J+ Increments jjj pointer by one none
8 J- Decrements jjj pointer by one none

Storing and Recalling the Element’s Value. (alone or sequentially)

The following functions provide a faster, more automated alternative to adjusting the pointer value to
access each element. These combine storing or recalling values and then incrementing or
decrementing the i- or j-index, so that the pointer is automatically set to the next element.

Function Description Inputs

9 MS Stores value in X-reg into current element Value in X-Reg
10 | MR Recalls current element to X-reg None. Returns element to X-reg
11 | MSC+ Stores value in X-reg to current element and | Value in X-reg.

advances pointer to next element in column
12 | MSR+ Stores value in X-reg to current element and | Value in X-reg.

advances pointer to next element in row
13 | MRC+ Recalls current element to X-reg and then | None.

advances pointer to next element in column | Returns element value to X-reg
14 | MRR+ Recalls current element to X-reg and then | None.

advances pointer to next element in row Returns element value to X-reg
15 | MRC- Recalls current element to X-reg and then | None.

decrements pointer to previous in column Returns element value to X-reg
16 | MRR- Recalls current element to X-reg and then | None.

decrements pointer to previous one in row. | Returns element value to X-reg
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When the end of a column or row is reached, the pointer's index advances to the next (or previous)
column or row. If the pointer’s index is moved beyond the boundaries of the matrix, it cannot be
moved back using these functions. You must use MSI1J or MSIJA .

The following sequence of keystrokes will create the matrix ABC (in extended memory).

5 & 7
ABC =
g2 9 10
Keystrokes Display Comments
IALPHA, “ABC”, |ALPHA
2.003, XEQ "MATDIM" 2.003 Dimensions matrix ABC in X-Mem.
0, XEQ “"MSIJA” 0,000 Sets pointer to 1.001 position
5, XEQ "MSR+" 5.000 Enters element and advances pointer
to next column for next entry
6, XEQ "MSR+" 6.000 Ditto as above
7, XEQ “"MSR+" 7.000 Pointer automatically moves to second row,
also setting flag 09.
8, XEQ "MSR+" 8.0000
9, XEQ "MSR+" 9.0000
10, XEQ "MSR+" 10.0000 This sets both flags 09 and 10.
SF 08 This sets the editor to display only.
XEQ “MEDIT" "1:1=5.0000"
R/S “1:2=6.0000"
R/S *1:3=7.0000"
R/S "2:1=8.0000"
R/S "2:2=9.0000"
R/S “2:3=10.0000"

Updated Matrix Editor: Row Input mode.

From the examples of MPOL we have already seen another, more effective way to enter the element
values — using PMTM (instead of MEDIT) to handle them “one row at a time”. This drastically
speeds up the process, although some limitations apply:

e The maximum length for all values and the blank spaces in between them is 24 characters, as
it uses the Alpha register to temporarily hold them.

e Decimal and negative values are supported in this mode, but values with exponential notation
(i.e. 2.4 E23) cannot be entered using PMTM.

Here's the how the sequence would change using this approach:

Keystrokes Display Comments

IALPHA, “ABC", IALPHAI

2.003, XEQ "MATDIM" 2.003 Dimensions matrix ABC in X-Mem.
XEQ “"PMTM" “R1:” prompts to enter the first row

5, ENTER”, 6, ENTERA, 7, R/S “R2:" prompts for the second row

8, ENTER”, 9, ENTERA, 10, R/S done!
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This section briefly defines the matrix functions besides the dimensioning, storing, and recalling
functions discussed above. Note that most of these functions are not meaningful for matrices
containing Alpha data and that many of these functions are not meaningful for complex matrices. In
any case. a complex matrix appears as a real matrix to all functions except CMEDIT. Refer to
“Working with Complex Matrices' for more information on using these functions with complex
matrices.

2.3.1. Matrix Arithmetic

Function Description Input
1 MAT+ Adds scalar or element to each element A,B,C, or X,B,Cin Alpha
2 MAT- Subtracts scalar/element to each element | A,B,C, or X,B,C in Alpha
3 MAT>* Multiplies scalar/element to each element | A,B,C, or X,B,C in Alpha
4 MAT/ Divides each element by scalar or element | A,B,C, or X,B,C in Alpha
5 M*M Calculates the true matrix product A,B,Cin Alpha

The matrix arithmetic functions provided are scalar addition, subtraction, multiplication, and division,
as well as true matrix multiplication. The scalar arithmetic functions can use two matrices as operands,
or one scalar and one matrix. When using two matrices, the matrices do not have to be of the same
dimension, but the total number of elements in each must be the same. This also applies to the result
matrix. (Note that the i-j notation below assumes that the dimensions of the matrices are the same. If
this is not the case, the i-j notation does not apply.)

Matrix multiplication, on the other hand, calculates each new element by summing the products of the
first matrix's row elements by the second's column elements. The number of columns in the first
matrix must equal the number of rows in the second matrix. The result matrix must have the same
number of rows as the first matrix and the same number of columns as the second matrix.

If there is a scalar operand, it must be in the X-register, and X must be specified in the Alpha register.

The input specifies matrix name A (or X), matrix name B (or X), result matrix C in Alpha register. The
outputs are respectively:

Cy = a;+ X or C; = @y — xor

c; = X + by or Cij = X — by or
c; = a;+ by forall i, jin C. Cj = & — bjforali jinC,
Cy = X + by or By = X + by of

cj = a; X bjtoralllijinC c; = @ + by for all i, f in C.

The true matrix multiplication calculates each new element i.j by multiplying the i-th. row in A by the j-
th. column in B. The input is the three matrix names in Alpha where C must be different from the two
operands A and B. The output is:

¢ = z a, X b, where A has p columns and B has p rows.
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2.3.2. Major Matrix Operations.

The major matrix operations are: inversion, finding the determinant, transposition, and solving a
system of linear equations.

Function Description Input
1 MDET Finds the Determinant of a square matrix | Matrix Name in Alpha
2 MINV Inverts and replaces the square matrix Matrix Name in Alpha
3 MSYS Solves a system of linera equations Matrix Name A. Name B in Alpha
4 MTRPS Transposes and replaces the real matrix Matrix name in Alpha

This is where the Advantage really took the original CCD implementation to its full fulfillment, as the
CCD was sorely lacking the major operations - no doubt due to the size constrains in a module that
already had tons of other wonders and was packed bursting to its seams.

I recall the awe with which we used to run MINV and the other functions: just a single keystroke
doing the same as all those intricate FOCAL programs did using Gaussian algorithms, element pivoting
and row simplification... simply amazing back then. It was the ultimate Matrix function set, pretty
much surpassing the HP-15C implementation in this area. If you're reading this now I suspect you
probably had a similar experience too; but enough reminiscing and let’s get on with the manual.

The output of these operations always replaces the original matrix with the result. Moreover, for
MDET and MSYS the result matrix is placed in its LU-decomposed form, which makes it not suitable
for some direct subsequent operations.

Nole: You cannot transpose or change any element of a matrix A that has had its determinant found
or has had its solution matrix found because MDET and MSYS transform the input matrix A into its
LU-decomposed form. (Refer to "LU-Decomposition” for more information.) However, you can retrieve
the original form of A from its decomposed form by inverting it twice (execute MINV twice). The LU-
decomposition does not interfere with the ca Iculations for MINV, MSYS, or MDET.

Example 1. & 3 -2

Find the determinant of the inverse of the transpose of the matrix .
Storing it in Main Memory, starting in Register RO. 2 3 -1

First make sure that the calculator SIZE is set at least to 10 to accommodate the elements plus the
header register, typing XEQ “SI1ZE"” 010. Next we begin by creating the matrix in main memory, using
the name ‘R0” in Alpha and the dimension in X:

ALPHA], “R0",

3.003, XEQ "MATDIM”
Since the elements are all integer numbers, this is an ideal candidate for PMTM:
XEQ “"PMTM"”, -> at the prompt "R1: _" we type: 6, ENTER”, 3, ENTER”, CHS, 2, R/S

-> at the prompt "R2: _" we type: 1, ENTER”, 4, ENTER”, CHS, 3, R/S
-> at the prompt "R3: _" we type: 2, ENTERA, 3, ENTER”, CHS, 1, R/S

And now the festival begins - type:

XEQ “TRNPS”, RO is transposed
XEQ “MINV”, RO (which was transposed) is inverted
XEQ “MDET” -> 0.040 is the solution.

(c) Angel Martin - August 2013 Page 27




SandMatrix_4 Manual

Note that if you had wantecacad to find the transpose of the original matrix after having found its
determinant, you would have needed to invert the matrix twice to change the LU-decomposed form
back to the original matrix.

LU-Decomposition

The flower-upper (LU) decomposition is an unrecognizably altered form of a matrix, often containing
Alpha data. This transformation properly occurs in the process of finding the:

e Solution to a system of equations (MSYS; SE in the MATRX program).
e Determinant (MDET; DT in MATRX program).
e Inverse (MINV; I in MATRX program).

The first two of these operations convert the input matrix to its LU-decomposed form and leave it
there, whereas inversion leaves the matrix in its inverted form. When you use functions that produce
an LU-decomposed form, there are several things that you need to be aware of:

e You cannot edit an LU-decomposed matrix unless you edit every element. Also care must be
exercised when viewing an LU-decomposed matrix. Certain operations can alter elements without
your knowledge (refer to "Editing and Viewing an LU-Decomposed Matrix” below for more details).

¢ You cannot perform any operation that will modify the matrix (other than MINV) because the LU
status of the matrix will be cleared and it will become unrecognizable. Operations that have this effect
are: R<>R, C<>C, MS, MSR+, MSR-, MSC+, MSC-, MMOVE (intramatrix), MSWAP, and
TRNPS.

¢ LU-decomposition destroys the original form of the matrix. So if you perform MSYS or MDET and
then try to look at your input matrix (A in the MATRX program), you will find only the altered,
decomposed form.

e You cannot calculate the transpose (TRNPS; [SHIFT][B] in MATRX program) of a matrix in LU-
decomposed form. LU-decomposition does not hinder the correct calculation of the inverse,
determinant, or solution matrix, since these operations require the LU-decomposition anyway.

Reversing the LU-Decomposition.- To restore a matrix to its original form from its decomposed
form, simply /nvert it twice (in effect: find the inverse and then re-invert to the original). Naturally, for
this to work the matrix must be invertible (non-singular). The result can differ slightly from the original
due to rounding-off during operations.

Editing and Viewing an LU-Decomposed Matrix.- LU-decomposed matrices are stored in a
different form than normal matrices:

e Certain elements contain alpha data. (or Non-normalized numbers to be precise)
e The matrix status register is modified to indicate that the matrix is in LU form.

Editing any element of the matrix will clear the LU-flag in the status register, which makes the matrix
unrecognizable to the program. Because of this, if you edit one element, you must edit them all if you
wish to use the matrix again. Note that the matrix will no longer be in LU-decomposed form after this
action. You can view the contents of an LU-decomposed matrix by doing one of the following:

e From the MATRX main menu press [SHIFT][A] to view individual elements without modifying
them.

e Set flag 08 before executing MEDIT or CMEDIT. This allows you to view the elements
without modifying them.
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Header Register X-ray. {|LU? |}

The graphic below shows the different fields in the Matrix header register (14 bytes in total):

13/12/11/10/ 9/ 8 7/6/5/4/3 2/1/0
"4"| File Addr [LU?|#0f Columns| Activej | File Size |

Note that a matrix file in X-mem has its type set to 4 (in leftmost byte), and that the matrix
dimensions can be derived from the information in the file size field (nybbles 0,1,2) and the number of
columns field (nybbles 6,7,8), whereby: Number of rows = File size / Number of Columns.

Lastly the pointer field stores the information on the current element as a counter starting from the
first element (1) to the last (nxm). Given the length of this field it follows that a maximum of 4,096
elements (FFF) can be tracked, equivalent to a square matrix of dimensions 64 x 64 or any equivalent
(m x n) combination.

You can use the function to check whether a matrix is in its LU-decomposed form. It'll return
YES/NO in Run mode, and in a program will skip the next line when false (i.e. it's NOT decomposed).

Working with Complex Matrices.

When working with complex matrices it is most important to remember that, in the calculator, a
complex matrix is simply a real matrix with four times as many elements. Only the MATRX program
and the complex-matrix editor (CMEDIT) “recognjze” a matrix as complex and treat its elements
accordingly. All other functions treat the real and imaginary parts of the complex elements as separate
real elements.

How Complex Elements are represented

In its internal representation a complex matrix has twice as many columns and twice as many rows as
it "normally' would.

100 =200
The complex number 100 + 200i is stored as 2000 100 |
1 —1_
_ 1+ 2 21
The 2 x 1 complex matrix | i= stored as
3 — & i 4
4 3

There is one important exception to this scheme: for the column matrix (a vector) in a system of
simultaneous equations.

Solving Complex Simultaneous Equations.- The easiest way to work with complex matrices is to
use the MATRX program. It automatically dimensions, input and output complex matrices. However,
MSYS can solve more complicated systems of equations than MATRX can.

In addition, a complex result-matrix from the MATRX program cannot be used for many complex-
matrix operations outside of MATRX. This is because MATRX will dimension a complex column matrix
differently than 2m x 2. Instead, it uses the dimensions 2m X 1, in which the real and imaginary parts
of @ number become successive elements in a single column.

(c) Angel Martin - August 2013 Page 29



SandMatrix_4 Manual

This form has the advantage of saving memory and speeding up opera tions. The complex-matrix
editor and MSYS can also use this 2m X 1 form, though they do not require it. This means you can
use MSYS on a matrix system from MATRX. You can convert an existing 2m x 2 complex column
matrix to the 2m X 1 form by transposing it, redimensioning it to 1 x 2m, then retransposing it. There
is no easy way back.

Accessing Complex Elements.- If you use the complex-matrix editor (CMEDIT or the editor in the
MATRX program), you can access complex elements as if they were actual complex numbers.
Otherwise (such as when you use pointer-setting functions), you must access complex elements as
real elements stored according to the 2m x 2n scheme given above.

Storage Space in Memory.- Since the dimensions required for a complex matrix are four times
greater than the actual nhumber of complex elements (an m X n complex matrix being dimensioned as
2m x 2n), realize that the number of registers a complex matrix occupies in memory is correspondingly
four times greater than a real matrix with the same number of elements. In other words, think of a
complex matrix's storage size in terms of its MATDIM or DIM? dimensions, not its number of complex
elements.

Using Functions with Complex Matrices

Most matrix functions do not operate meaningfully on complex matrices: since they don't recognize
the different parts of a complex number as a single number, the results returned are not what you
would expect for complex entries.

Valid Complex Operations. Certain matrix functions work equally well with real and complex
functions. These are:

MSYS Solving simultaneous equatiohs

MINV Matrix inverse

MAT+ Matrix add

MAT- Matrix subtract

MAT* Matrix scalar multiply, but only by a real scalar in X-reg.
M*M  Matrix multiplication

Both the input and result matrices must be complex.

Example 2.

Engineering student A.C. Dimmer wants to analyze the electrical circuir shown below. The impedances
of the components are indicated in complex form. Determine the complex representation of the
currents i1 and i2

Zg— 10

E=05 Iy :rr i Zp ==300
' z, = 200i T

The system can be represented by the complex matrix equation: AX = B, or

10 + 200§ —200i || I, 5
2000 (200 — 30N || L. 0
We'll use the individual matrix functions instead of MATRX program, already covered in the previous
sections.
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The main thing to sort out in this example is the dimension of the matrices involved. The coefficients
matrix A is a 2 x 2 complex matrix, thus as per the previous paragraphs we will need (4x4 +1) = 17
registers. The independent terms matrix B is a 2 x 1 complex matrix, thus will need (4x2 +1) = 9
registers.

This makes for a total of 26 registers needed for the example; therefore we adjust the SIZE
accordingly first typing: XEQ ‘SIZE" 026.

Next we create the two matrices in main memory, starting at RO0 and R17 respectively. Note the
shortcut in the RO name — dropped the zero.

|ALPHA|, \\RII, |ALPHA| , \\R17”,

4.004, XEQ “MATDIM” 4.002, XEQ “MATDIM”

The next step is entering the element values — using CMEDIT because that is the only editor capable
of editing complex matrices, as we know.

RE.1:1= ? Complex-matrix editor.
1 IRHSIEDU [R/S] RE.1:2= ? Loads the real and
0 [R/S] 200 [cHs ] [R/S) RE.2:1= ? imaginary parts of ele-
0 [(R/S] 200 [chs] [R/S]) RE.2:2= ‘- ments into RO, the
0 [R/3] 170 [R/5] —170.0000 coefficient matrix (A).
ALPHA | 1 Dimensions the col-
4.002 [MATDIM 4.0020 umn matrix R17 to
o 4 x 2 for 2 complex
rows and 1 complex
column, [t needs 9
registers,
MEDIT RE.1:1= ? Complex-matrix editor,
5 0 RE.2:1= ? Loads the real and
0[R/S] 0 [R/sS 0.0000 imaginary parts of ele-

ments into R17, the
column matrix (B).

Finally it comes the time for the real work: using MSYS to solve the system, and MCEDIT again (in
view-only mode) to review the results:

Keystrokes Display

1,F 0.0000 Calculates the solution

KEQ | | MSYE matrix (X) and loads it
into R17.

08 Sets editor for view-

only operation.

[ALPHA] H Displays the complex

G | RE.1:1=0.0372 results for Iy and I,

IM.1:1=0.1311 which are in R17. If

RE.2:1=0.0437 yvou have a printer at-

X
S
oo

IM.2:1=0.1543 tached and set flag 08
before executing
cventl |, all elements
will be prmt«ed out
automatically.
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The solution is:

I (.0372 + 0.1311L;
I 0.0437 + 0.1543
As you can see this is an EE student’s dream for circuit .
analysis — if this is in your area of interests you should check ' Y e i)

RIC 10 R ou ——
out the macro-program written by Ted Wadman, Chris Coffin ADVAN TAGE

and Robert Bloch as one of the proverbial three best A CRATEVINETFORLICATI O
examples of utilization of the Advantage Module. S i

The program is documented in its dedicated Grapevine
booklet, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID
=523

and for further convenience Jean-Francois Garnier put it in
ROM module format, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID
=613

Flectrical
Circuits for Students

The module also contains the other two famous applications
of yore:

1. “Electrical Circuits for Students”,
2. “Statics for Students” , and
3. “"Computer Sicence on your HP-41"” (a.k.a. the HP-16C Emulator).

Anybody curious enough to see what could be done with the Advantage is encouraged to check those
out — you'll be rewarded.

The last example asks you to solve a set of six simultaneous equations with six unknown variables.
This requires the use of MSYS, as the constant matrix B is not a column matrix.

Example 3.

Silas Farmer has the following record of sales of cabbage and broccoli forthree different weeks. He
knows the total weight of produce sold each week, the total price received each week, and the price
per pound of each crop. The price of cabbage is $0.24/kg and the price of broccoli is $0.86/kg.
Determine the weights of cabbage and broccoli he sold each week.

Week-1 | Week-2 | Week-3
Combined Weight (kg) 274 233 331
Combined Value $130.32 | $112.96 | $151.36

The following set of linear equations describes the two unknowns (the weights of cabbage and
broccoli) for all three weeks, where the first row of the constant matrix represents the weights of
cabbage for the three weeks and the second row represents the weights of broccoli. Since the
constant matrix is not a column matrix, you must use MSYS and not the SE function in the MATRX
program.
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1 1 dyy dy dy 274 233 331
024 0864, 4 4y 12032 11296 15136

Where the subindices indicate the crop (1= broccoli, 2=cabbage), and the week (1,2,3), and the first
row describes the weight equations, and the second the prices relationship.

Calling "FACTORS" the coefficients matrix and “"LINKS” the costant matrix, we first create them by
dimensioning in X-Memory as follows:

[ALPHA], “FACTORS", [ALPHA, [ALPHA], “LINKS", [ALPHA,

2.002, XEQ “MATDIM” 2.003, XEQ “"MATDIM”

Next we'll use PMTM to input all the element values. Note that even the “longest” row has 20
characters (including the separator blanks), which is below the limits of the ALPHA register length, of
24 characters max.

With “"FACTORS" in Alpha we type:

XEQ"PMTM"” -> at the prompt "R1: _" we type: 1, ENTERA, 1, R/S
-> at the prompt "R2: _" we type: O, [,], 2, 4, ENTER®, O, [,], 8, 6, R/S

With “LINKS"” in Alpha we type:
XEQ "PMTM”  -> at the prompt "R1: _"” we type: 2,7,4, ENTERA, 2,3,3, ENTER", 3,3,3, R/S
-> at the prompt "R2: _ " we type: 1,2,0,[,],3,2, ENTER, 1,1,2,[,],9,6,
ENTER", 1,5,1,[,1,3,6, R/S

All set up we simply execute MSYS to obtain the solutions shought for:

IALPHA|, “FACTORS, LINKS”,

XEQ “"MSYS”
Week-1 | Week-2 | Week-3
Cabbage Weight (kg) 186 141 215
Broccoli Weight (kg) 88 92 116

Note: using OMR (or OMC) to output the elements of the matrix B you can see how the results are all
integer values — which speaks of the accuracy of the internal operaions, taking advantage of the 13-
digit math routines available in the OS for MCODE.

Note also that with these programs the integer results are shown without any zeros after the decimal
point, regardless of the current display settings (FIX or otherwise).

OMR and OMC are extension functions — pretty much like PMTM is - and will be described in detail
in chapter 3.
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2.3.3.- Other Matrix Functions (“Utilities™)

The remaining matrix functions, also called utilities, are those for copying and exchanging parts of
matrices, and miscellaneous, extra arithmetic functions: finding sums, norms, maxima, and minima,
and matrix reduction.

Moving and Exchanging Matrix Sections.

Function Description Input
1 C<>C Exchange columns k and | in @ matrix | Name in Alpha, kkk.lIl in X-reg
2 R<>R Exchange Rows k and | in a matrix Name in Alpha, kkk.lll in X-reg
3 MMOVE Matrix Move Names in Alpha, Pointers in stack
4 MSWAP Matrix Swap Names in Alpha, Pointers in stack

MMOVE and MSWAP Copies or Exchanges the submatrix defined by pointers in the source matrix to
the area defined by one pointer in the target matrix. The inputs require both matrix names in Alpha
separated by a comma, plus the pointers in the stack as follows:

in X-reg: fi.fff for A’s initial element;
in Y-reg: sijjj for A's final element,

When executing MMOVE and MSWAP if A and B are the same matrix and the source submatrix
overlaps the target submatrix, the elements are processed in the following order: reverse column
order (last to first) and reverse element order (last to first) within each column.

it Jj(X) == it fij(Z)

i)

Source matrix {A) Target matrix (8)

When an input of the form iii.jjj is expected in the X-register, a zero value for either the i-part or the j-
part is interpreted as 1. (Zero alone equals 1.001.) This is true for the iii.ijj-values that MMOVE and
MSWAP expect in the X- and Z-registers, but not for the pointer value in the Y-register.

For the Y-register input, a zero value for the i-part is interpreted as m, the last row, while a zero value
for the j-part is interpreted as n, the last column. This convention facilitates easy copying (or
exchanging) of entire matrices because simply by clearing the stack (CLST) or entering three zeros
you specify the elements 1.001 (X) and mmm.nnn (Y) for the first matrix and element 1.001 (Z) for
the second matrix, thus defining two entire matrices.

For example in a 4 x 5 matrix: Y-Register Pointer Value

0.000 4.005
3.000 3.005
0.003 4.003
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Miscellaneous Arithmetic Functions: Maxima and Minima

Function Description Input / OQutput

5 MAX Finds the maximum element in matrix. | Matrix Name in Alpha.
Sets element pointer to it. QOutputs element value to X-reg

6 MIN Finds the minimum element in matrix. | Matrix Name in Alpha
Sets element pointer to it. Outputs element value to X-reg

7 MAXAB Like MAX but in absolute value. Sets | Matrix Name in Alpha
element point to it. Outputs element value to X-reg

8 CMAXAB Finds maximum absolute value in k- | Matrix name in Alpha, kkk in X-reg.
th. column. Sets element pointer to it. | Outputs element value to X-reg

9 RMAXAB Finds maximum absolute value in k-th. | Matrix name in Alpha, kkk in X-reg.

row. Sets element pointer to it.

Outputs element value to X-reg

Miscellaneous Arithmetic functions: Norms and Sums

Function Description Input /7 OQutput
10 | CNRM Column Norm. Finds the largest sum | Matrix name in Alpha.
of the absolute values of the elements | Outputs colum norm to X-reg.
in each colum of matrix. Sets pointer to first element of colum.
11 | FNRM Frobenius Norm. Calculates the square | Matrix name in Alpha.
root of the sum of the squares of all | Outputs frobenius norm into X-reg
elements in matrix.
12 | RNRM Row Norm. Finds the largest sum of | Matrix name in Alpha.
the absolute values of the elements in | Outputs row norm to X-reg.
each row of matrix. Sets pointer to first element of row.
13 | SUM Sums all elements in matrix. Matrix name in Alpha.
Outputs the sum to X-reg
14 | SUMAB Sums absolute values of all elements | Matrix name in Alpha
in matrix. QOutputs the sum to X-reg
15 | CSUM Finds the sum of each column and | Matrix name , result matrix name
stores them in a result vector. (Vector) in Alpha. (*)
16 | RSUM Finds the sum of each row and stores | Matrix name , result matrix name

the sums in a result vector.

(Vector) in Alpha. (*)

(*) For CSUM and

Miscellaneous Arithmetic functions: Matrix Reductions

RSUM the number of elements in the result matrix (vector) must equal the
number of columns/rows in the input matrix.

Function Description Input / Output
17 | YC+C Multiplies each element in column k of | Matrix name in Alpha, kkk.lll in X-reg,
matrix by value in Y-ref. and adds it to | y in Y-reg.
corresponding element in column | It changes the elements in colum |
18 | PIV Finds the pivot value in column k, that | Matrix Name in Alpha, kkk in X-reg
is the maximum absolute value of an
element on or below the diagonal.
19 | R>R? Compares elements in rows k and I. If | Matrix name in Alpha, kkk.lIl in X-reg

(and only if) the first non-equal
element in k is greater than its
corresponding element in |, then the
comparison is positive for the “do if
true” rule of programming.

Outputs “YES” if first non-equal
element in row k is greater than
element in row I. *NO” in all other case.
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The last two functions are not operating on a matrix, but are auxiliary for the FOCAL programs:

Function Description Input /7 Output
20 | AIP Appends the absolute value of the | Valuein X.
integer part of the number in X to the
contents of the Alpha register.

21 | MPT Appends a matrix prompt “rrr.ccc="to | rrr.ccc in X-reg
the contents of the Alpha register
(dropping leading zeros in each part)

Note that AIP and AINT in the SandMath are very similar — but AINT won't take the absolute value.
This fact is useful to append integer vaules to alpha without decimal numbers, but respecting the sign.

Note that MPT in the SandMatrix is an enhanced version written in MCODE - that replaces the mini-
FOCAL program used in the Advantage.

Example. Calculate the Row, Column and Frobenius norms for the matriw

|Alle =

pla
I
= b2 L2
| S e W |
00 W= =]

H¢j| y which is simply the maximum absolute column sum of the matrix.

All, = max

T
max D _|
I=Mim
n
:1”30 = lréla{x E |£I~;j|,whi|:h is simply the maximum absolute row sum of the matrix
=1

The results are: Row Norm =19
Column Norm =15
Frobenius Norm = 14,38749457

The Frobenius norm will come very handy for some programs in Chapter-3 as convergence criteria,
and to determine whether two matrices are “equivalent” in reduction algorithms.

B

b1,2 b1,3 Ai1XBlj
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3. Upper-Page Functions in detalil

This chapter is all above and beyond the matrix functionality present in the Advantage Pac — a true
extension of its capabilities into new and often uncharted territories.

~-HIy MHATRIX

USER

4« RIv MRTRIX

3.1. The Enhanced Matrix Editor(s)

Often the most tedious part of a matrix calculation becomes the data entry for the input matrices and
the review of the results. With this in mind the SandMatrix includes convenient alternatives to MEDIT,
the “standard” Matrix Editor from the Advantage, seen in the previous chapter. There are as follows:

Function Description Input /7 Output
1 PMTM Prompt Matrix by Rows Matrix name in Alpha
2 IMR Input Matrix by Rows Matrix name in Alpha
3 IMC Input Matrix by Columns Matrix name in Alpha
4 OMR Output Matrix by Rows Matrix name in Alpha
5 oMC Output Matrix by Column Matrix name in Alpha
6 OXC Output Column k Matrix name in Alpha, kkk in X-reg
7 OXR Output Row k Matrix name in Alpha, kkk in X-reg

Of all these more remarkable one is of course PMTM — which expedites element data entry to the
maximum possible in the 41 platform, almost as if it were a full-fledge editor in a graphical screen.

The idea is to use the Alpha register as repository for all the elements, separating the individual values
by spaces (entered using the ENTER” key). The data input is terminated by presing R/S.

The back arrow key is always active to correct a wrong entry, and will terminate the function if Alpha
is completely cleared. PMTM allows for negative and decimal numbers to be entered, thus the CHS
and RADIX keys are also active during the data entry prompt. Furthermore, the logic will only allow
one occurrence of these per each element within the prompt string.

PMTM knows how many rows should be input (it is part of the matrx dimension), thus the prompts
will continue to appear until the last row is completed. A row counter is added to the promt to indicate
the current row being edited.

If you enter fewer elements in the prompt than existing columns, the remaing elements will be left
unchanged and the execution will end. Conversely, if you enter more elements in the prompt than
existing columns, those exceeding the quota (the extra ones) will simply be ignored.

The two limitations of PMTM are as follows:

e« A maximum length of 24 characters is possible during the prompt. This includes the blank
separators, the comma (radix), and the negative signs if present.

+ No support for the Exponential format is implemented (EEX). You need to use any of the other
editors if your element values require such types of data.

Obviously this makes PMTM ithe ideal choice for matrices containing integer numbers as elements —
but not exclusively so as it can also be used for other values (real-numbers) as long as the two
condicions above are respected.
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At the heart of PMTM there is is function “MROW (“Enter Matrix Row”), responsible for the
presentation of the prompt in Alpha and accepting the keyboard pressings there to make up the string
(or list) with all values. It also provides the logic of actions for the control keys, like ENTER”, Back
arrow, R/S, etc.

~MROW is called in a loop as many times as rows exist in the matrix, while ANUMDL (in the
SandMath) is used every iteration (each time a row is being processed) to “extract” the individual
element data from the global string in the prompt.

Below is the program listing for PMTM, and as you can see it's just a sweet & short driver for
~MROW that also takes advantage of the auxiliary functions in the SandMatrix.

| 1 LBL "PMTM" |

2 0

3 MSUA position pointer to 1.1
[ 4 LBL 01 |

5 MR recall pointer

6 INT row number

7 AMROW prompts for string

8 CF 22 default reset

9 LBL 00 |separate elements

10 ANUMDL

11 FC?C22 last one reached?

12 GTO02 — | yes, exit

13 MSR+ store element

14 FC? 09 end of row?

15 GTO 00 no, do next element

16 FC? 10 end of matrix?

17 GTO 01 no, do next row

18 LBLO2 €< —

19 MNAME? recall Mname

20 END done.

AMROW is the first function listed in CAT"2 within the “-ADV MATRIX"” group — and rightfully so. Note
that even if PMTM is not strictly an MCODE function, de-facto it is a hybrid one, and therefore it's
denoted in blue color all throughout this manual. If PMTM is the beauty then ~“MROW is the beast.
If you're interested you can review the MCODE listings for it in appendix “M".

Below are two examples of the lists being edited, for the first two rows of a given matrix:

L+ 3 2a. Rd Y43 -28._

USER 1 3 PRGH USER 1 3 PRGH

, and

The built-in logic allows for just one negative sign and one radix character per each value entry.

Note that “MROW is also used by PMTP, the “Polynomial Input” function, which has a very parallel
structure to PMTM and is used to enter the coefficients of a polynomial into data registers. It will be
covered in the polynomial section later on.

The remaining routines in this section all deal with Input and Output of the matrix elements,
depending on whether it's done following the Row or Column sequence, as well as two functions to
only view one specific row or column (OXR and OXC).
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They are very much equivalent to MEDIT in many aspects, although the symbol “a” is used in the
prompts. They are slightly faster and offer the added convenient feature that for /nteger element
values the zeros after the decimal point are not shown in the prompt — regardless of the current
display settings (FIX or otherwise). This makes for a clearer UI.

The program listing is shown below; note how the different entry points set the appropriate subset of
user flags, and that they all share the main section for tha actual element input and review.

| 1 LBL "OMR" | 33 MSUA set pointer to row/col
2 o clears FO-F7 [ 34 1BLOO
3 GTO 05 35 "a" element symbol
| 4 LBL "OMC" | 36 MRU recall index
5 £ sets F1 37 MP prompt index
6 GT005 — 38 MR recal value
R LBL "IMR" | 39 FS?04 LU decomposed?
8 E sets FO 40 GTO XX synthetic jump (!)
9 GTO 05 —>| 41 INT? integer?
[ 10 LBL "IMC" | 42 AINT ves, append IP
11 3 sets FO& F1 43 FRC? fractional?
[ 12 1BLOs «<— 44  ARCLX <— |yes, append all
13 X<>F 45 FC? 00 view only?
14 Lu? is LU decomposed? 46 AVIEW yes, show it
15 SF 04 yes, flag this fact 47 FC? 00 view only?
16 o 48 GTO02 — ves, skip editing
17 MSUA resets pointer to 1:1 49 -2 append "?"
18 GTO 00 go to first element 50 PROMPT show current value
[ 19 LBL "OXC" 51 MS store new value
20 E1 sets F1& F3 52 LBLO2 <— |
21 GTO 04 — 53 FC? 01 by column?
| 22 LBL "OXR" | 54 + yes, next column
23 8 sets F3 55 FS? 01 by row?
| 24 LBL04 <— | 56 I+ yes, increase row
25 X<>F 57 E1l F10
26 Lu? is LU decomposed? 58 FS? 03 by row?
27 SF 04 yes, flag this fact 59 DSE X yes, F9
28 RDN 60 FC? IND X end of matrix/row?
29 INT 61 GTO 00 no, next element
30 E3/E+ 62 MNAME? yes, recall Mname
31 FC? 01 row? 63 END and end.
32 I1<>) yes, transpose

Other pointer utilities included are listed in the table below; they are used in many of the FOCAL

programs described in the following sections.

Function Description Input / Output
8 ~MROW Prompts the list and controls input Element values as Alpha List
9 1<>J Swaps iii and jjj in X iii.jjj in X-reg.
(also does E3/ for integers) Index swapped to jjj.iii
10 | 1#J? Tests whether iii is different from jjj iii.jjj in X.
YES/NO, do if true.
11 | SQR? Tests for Square Matrices MNAME in Alpha.
YES/NO, do if True..
12 | MFIND Finds an element in a given matrix Element value in X-reg
and sets element pointer to it Outputs the pointer iii/jjj to X-reg

(c) Angel Martin - August 2013

Page 39




SandMatrix_4 Manual

3.2. New Matrix Math functions.

3.3.1. Utility /7 housekeeping functions: rounding the capabilities.

This group comes very handy for the handling and management of intermediate steps required as part
of more complex algorithms. As a rule, the functions work for matrices stored either in main memory
or in X-memory. Only | MATP | and | MAT= | create new matrices; all other functions expect them
already dimensioned.

Function Description Input /7 Output
1 MAT= Makes matrix B equal to A Matrix names in Alpha: “A,B".
B=A Both must exist.
2 MATP Driver for M*M operation Under program control. Creates both
matrices on the fly.
3 MCON Matrix from a constant Matrix name in Alpha, constant in X-reg
Makes aij = x, i=1,2,..m; j=1,2,..n Makes all matrix elements equal to x
4 MFIND Finds an element within a matrix Matrix Name in Alpa, element in X-reg.
Returns pointer to X and set to element.
5 MIDN Makes identity Matrix Matrix name in Alpha. (must exist)
Makes aii =1 and aij=0 for i#j
6 MRDIM Re-dimensions Matrix (properly) Matrix name in Alpha, dimension in X.
It keeps existing elements in place. QOutput is @ new matrix (adds * to hame)
7 MSORT Sorts all elements within a matrix Matrix Name in Alpha. Reorders
elements in ascending order.
8 MSZE? Calculates the Matrix size Matrix name in Alpha.
Size=mxn Output is placed into X-reg.
9 MZERO Zeroes (clears) all elements in matrix | Matrix name in Alpha
Makes aij = 0, i=1,2..m; j=1,2,..n All elements are set to zero.

A few remarks on each of these functions follow, as well as the program listings.

copies an existing matrix into another, with names in Alpha. Prior to doing the bulk element
copy, it redimensions the target matrix to be the same as the source one. It /s however not required
that the target matrix already already exist — it will be created if not already there.

MCON | does a simple thing: converts the value in the X-Reg into a matrix with all elements equal to
this value. This is useful in some calculations and for matrix manipulations. See the simple program
listings for these routines below;

1 LBL "MAT=" | "A,B" expected in Alpha 1 LBL "MCON" MNAME in Alpha
2 DIM? dimension 2 MZERO clear all elements
3 ASWAP swap Alpha 3 RDN get constant back to X
4 MATDIM re-dimension target 4 "X" prepare alpha string
5 ASWAP undo the swap 5 MAT+ add x to all elements
i 6 CLST prepare pointers 6 MNAME? recall MNAME to Alpha
i 7 MMOVE move all elements 7 END done
i 8 END done
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MZERO | is the unsung hero behind other routines — as the proper way to clear a matrix file, since
CLFL cannot be used because it also clears the header register (it was meant for Data files). Use it
safely for matrices in main and x-memory.

MSORT | uses an auxiliary matrix in main memory ("R0”) where RGSORT (from the SandMath) is
applied to; then data are copied back to the original matrix. It also checks for available registers,
adjusting the calculator SIZE if necessary. The contents of those (n x m +1) data registers will be lost.

1 LEL "MSORT" |MHame in Alpha 1 LEL "MZERO" |MNA.|W:' in Alpha

2 SIZE? current SIZE 2 Din? get dimension

3 MSZE? matrix 5ize 3 5F 25

4 E 4 PURFL purge file

5 + pius one 5 FC?C 25 was in main mem

& K7 is it larger? & GTo0l — Jjump over

7 PSIZE yes, adjust size 7 MATDIM re-create file

B - K" prepare Alpha string B RTHN done

9 MAT= make matrix B0 equal 9 LBL 01 - |

10 MSZE? its size agoin 10 AMNUM get first reg from title
11 E3/E+ prepare control word 11 EMTER" copy in Y-reg

12 RGSORT 50rt registers 12 MSZE? get matrix size

13 ASWAP swap aipha 13 + add to first reg

14 CLST prepare pointers 14 E3/3+ prepare index format
15 MMOWVE move all elements 15 + odd to first reg

16 MMNAME? recall original name 16 CLRGX clear registers

17 END done 17 END done

MSZE? | has a new MCODE implementation in this revision — directly reading the matrix header
register. Its funcionallity is equivalent to FLSIZE for matrices stored in X-mem — but not so for
matrices stored in main memory.

1 MSZE? Header A60A OBF rd

2 MSZE? Header A60B 005 "E" Matrix Size?

3 MSZE? Header A60C 01A "z"

4 MSZE? Header A6OD 013 "s”

5 MSZE? Header A60E 00D "M" Angel Martin

6 MSZE? [msze? A60F (379  PORT DEP: Jumps to Bank_2
7 MSZE? A610 03C xXQ adds "4" to [XS]
8 A611 1D9 ->A5D9 [LNCHO]

9 valid for main and X-mem A612 |388 <parameter> B788

10 the proper way to do it! A613 00B JNC +01

11 A614 100 ENROM1 restore bank-1
12 MSZE? A615 0BO C=N ALL header register
13 MSZE? A616 106  A=C S&X

14 MSZE? A617 17D ?NC GO [BIN-BCD] plus [RCL]
15 MSZE? A618 0c6 ->315F [ATOX20]

PMAT | is nothing more than a user-friendly driver program to automate the complete matrix product
procedure, without any need to dimension the result matrix in advance. The routine will guide you
step-by-step thru the complete sequence, including the element data input and output.
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is @ good example of a sorely missing function: the majority of matrix algorithms involve
identity matrices, one way or another, so having a routine that does the job becomes rather
important. The SandMatrix routine follows a single-element approach, storing ones in the main
diagonal after zeroing the matrix first. This is faster and more convenient that block-based methods,
even if not requiring scratch matrices for intermediate calculations. See an the example below
courtesy of Thomas Klemm:

DIM(n+l, n) T DIM(n, n)
11 1 1] |1 © O O] |11 © O]
|11 1 1] - 10 0 O] - |1 © O O] = |0 1 O]
10 0 O] |1 © O Q] |0 O 1]
10 0 O]
1 LEL "MIDN" MNAME in Alpha 1 LEL "IDMN2" |
2 MZEROD clear ail elements 2 Dz current dimension
5 ] 5 EMTER” pushitto ¥
4 MSIA set pointer to 1:1 4 INT n
5 E element value 5 MATDIM row matrix, nx 1
6 LBL 00 | B E
7 MSC+ store and increase | 7 MCOMN ail anes
B FC? 09 end of rowr B K<Y n
] 1+ VYES, NEXT row ] + n+1
10 FC? 10 end of matrix? 10 LASTX n
11 GTO 00 no, next element 11 l=] 0,00n
12 END yes, done 12 + (n+1},00m
13 MATDIM
shorter and faster, even if more pedestrian 14 TRMNPS
15 K<Y origingl nx mn
16 MATDIM bach to shape
17 EMND done

Of all these perhaps only needs further explanation. Contrary to MATDIM, a proper re-
dimensioning should respect the elements in the re-dimensioned matrix that held the same position in
the original one. does this, deleting the discarded elements when the redimensioned sub-
matrix is smaller than the original, and completing the new onew with zeroes wihen it is bigger (super-
matrix). It always starts with a1l (no random origin is possible).

| 1 LBL "MRDIM" | MNAME in Alpha 16 X<>Y min(j1,j2)
2 DIM? get dimension 17 RCLZ
3 X<>Y new dimension to X 18 INT min (1)
4 ASTOT temporary safekeep 19 + min (1), min(j)
5 e add tilde 20 ()
6 MATDIM create new matrix 21 STO Z prepare pointers
7 CLA 22 ASTO T temporary safekeep
8 ARCLT MNAME 23 -
9 X>Y? 24 ARCLT MNAME
10 X<>Y min(i1,i2) 25 e prepare Alpha string
11 STO Z keep in Z 26 MMOVE copy elements
12 FRC 27 PURFL purge original file
13 X<>Y 28 MNAME? recall name to Alpha
14 FRC 29 END done
15 X>Y?

A logical enhancement to this routine would be to change the matrix name back to its original one,
removing the tilde. This can be done in two ways:

1. creating a new matrix file and copying it over once again, or (preferable)
2. using RENMFL (in the AMC_QOS/X module) to rename the X-mem file
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Finding an element within a Matrix {|MFIND |} - plus an easy-driver for M*M

MFIND | will search a given matrix looking for an element that equals the value in the X-register. If it
is found it returns its location pointer to the X-reg (and leaves the pointer set to it). If it's not found, it

returns -1 to X and the pointer is outside the matrix.

You can further use this result adding the conditional test function “X>=07?" (available in the
SandMath) right after MFIND - which in a program will skip a line if the element wasn’t found.

Below are the program listings for your perusal.

[ 1 LBL "MFIND" | MNAME in Alpha
T2 0

r 3 MSUA sets pointer to 1:1
[ 4 LBL 05

I 5 RDN target value to X-reg
r 6 MR recall element

d 7 X=Y? equal?

o8 GT002 —|— yes, exit

r 9 J+ no, increase column
I 10 FC? 10 end of matrix?

r 11 GTO 05 no, next element

d 12 RDN target value to X-reg
" 13 ax

"o -

" o15 E put -1in X

" 16 GTOO00 exit

[ 17 LBLO2 <

T8 RDN

" 19 ax

" 20 MRUA

[ 21 LBLOD <—

Ton END done

1 LBL "MATP"

2 "DIM1=7"
i 3 PROMPT
i 4 M1
i 5 MATDIM
i 6 PMTM
i 7 "DINM2=7"
i 8 PROMPT
i 9 "“W2"
i 10 MATDIM
i 11 PMTM
i 12 DIM?
i 13 FRC
i 14 "M1"
i 15 DIM?
i 16 INT
i 17 +
i 18 g
i 19 MATDIM
i 20 "[-M1,M2,"
i 21 2
i 22 AROT
i 23 M*M
i 24 ASHF
i 25 OMR
i 26 END

M1 dimension

prompt for it

matrix name - M1
create matrix in X-mem
input elements

M2 dimension

prompt for it

matrix name - M2
create matrix in X-mem
input elements

# of columns for M2

# of rows for M1

cresult matrix dimension
matrix name - M*
create matrix in X-mem
prepare Alpha string

matrix product
remove acratch
output values
done

Note that in MATP I have chosen PMTM to enter the element data values — therefore it's somehow
limited by the same constraints described before, ie. total length in Alpha and no support for the EEX

key.
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3.2.2. New Math functions.- Completing the core function set.

The next group incudes advanced application areas in “core” matrix math.

Function Description Input /7 Output
9 MN1/X Brute-force Matrix X-th Root Matrix name in Alpha, order in X
A = exp(1/x * Ln[A]) The result matrix replaces the input
10 | M2 Square power of a square Matrix Matrix name in Alpha
A = [A]"2 = [A].[A] The result matrix replaces the input
11 | MDPS Matrix Diagonal Product Sum Matrix name in Alpha.
MDPS = Z[aii*aii+1], i=1,2...n Output is result in X-reg
12 | MEXP Exponential of a Matrix Matrix name in Alpha.
A = exp(A) The result matrix replaces the input.
13 | MLIE Matrix Lie Product Matrix names in Alpha: “A,B,C”
C=AB-BA Result matrix C must be different.
14 | MLN Matrix Logarithm Matrix name in Alpha.
A=Ln (A) The result matrix replaces the input.
15 | MPWR Matrix Power of integer order Matrix name in Alpha, order in X-reg.
A = A"NX The result matrix replaces the input.
16 | MSQRT Matrix Square Root Matrix name in Alpha.
A = sgrt(A) The result matrix replaces the input.
17 | MTRACE Calculates the Trace of a Square | Matrix name in Alpha.
Matrix Output is put into W-reg.
Trace = ¥ aii, i=1,2,.m
18 | R/aRR Row division by diagonal element Matrix name in Alpha, row kkk in X-reg
akj=akj/akk,j=1,1,..n All row elements divided by akk
19 | Z13J1 Sum of crossed-elements products Matrix name in Alpha
SCEP = X[Z(aij * aji)] Output is put in X-reg.

Formulae and algorithms used.

The algorithms used impose some restrictions to the matrices. These are generally not checked by the
programs, thus in some instances there won't converge to a solution. Suffice it to say that the
programs are not fool-proof, and assume the user has a general understanding of the subjects — so
they won't be used foolishly.

Matrix Exponential {| MEXP | }

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the
ordinary exponential function. Let X be an nxn real or complex matrix. The exponential of X, denoted
by e~ X or exp(X), is the nxn matrix given by the power series

EX — Z HXk
k=0

where X0 is the identity matrix, 1. The above series always converges, so the exponential of X is
well-defined. Note that if X is @ 1x1 matrix the matrix exponential of X is a 1x1 matrix consisting of
the ordinary exponential of the single element of X.

Finding reliable and accurate methods to compute the matrix exponential is difficult, and this is still a
topic of considerable current research in mathematics and numerical analysis. The SandMath uses a
direct approach, so no claims of discovering new algorithms”

exp(A) = | + A+ A2 + A¥31+ ...+ A¥K! + ...
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The program adds new terms until their contribution is negligible, i.e. it results in the same matrix
after addng it. This by itself poses an interesting question: how to check whether two matrices are the
same? Obviously doing it element-to-element would be a long and impractical method. The
alternative is to use the matrix Frobenius norm as a surrogate criterion; assuming that 7or very similar
matrices, they’'ll be equal when they have the same norm.

There’s no saying to the execution time or whether the calculator numeric range will be exceeded in
the attempt — so you can expect several iterations until it converges. The matrix norm will be
displayed after each iteration, so you'll have an indication of the progress made comparing two
consecutive values.

Logarithm of a Matrix { | MLN | }

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the
latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some
sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those
matrices that do have a logarithm may have more than one logarithm. Furthermore, many real
matrices only have complex logarithms — making it so even more challenging.

The SandMatrix uses the following algorithm:

If |A-1 || <21, thelogarithm of a n x n matrix A is defined by the series expansion:

Ln(A) = (A-1)-(A-1)42+(A-1)3- (A-1)4+ ... where I is the identity matrix.

Example 1- Calculate the exponential of the matrix A given below, and then calculate its logarithm
to see how the result matrix compares to the original.

[1 2 3]
A= [0 1 2]
(1 3 2]]

The first part of the assignment is rather simple: Executing MEXP results in the following matrix:

[[19.45828375 63.15030507 66.98787675]
exp(A) = [ 8.534640269 32.26024414 33.27906416]
[ 16.63953207 58.45323648 61.70173665]]

However trying to calculate the logarithm will not work, because exp(A) doesn't satisfy the
requirement:  Det[exp(A)-I] = -52,95249156; therefore trying on it will eventually reach an
“OUT OF RANGE" condition.

Example 2.- Calculate the Logarithm of the following matrix:
[[1.2 0.1 0.3]
A= [01 08 0.1]
[0.1 0.2 0.9]]
In this example, || A-1]|| = 0.5099... < 1, thus the program will work.
The result matrix after executing is as follows:
[[ 0.167083396 0.069577923 0.287707999]

Ln(A) = [ 0.097783005 -0.240971674 0.103424021]
[ 0.086500972 0.235053124 -0.131906636]]
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So we see that unfortunately the logarithm is not a trivial exercise. The programs are listed below,
note the combination of both exponential and logarithm into a single program, with flag 01 controlling
the case.

[ 1 LBL "MLN" | 44 LBL 02 |
2 SF 01 exp flag 45 VIEW 00
3 GTO00 — 46 "#"
[ 4 LBL "MEXP" | 47 ARCL 01
5 CF 01 LN flag 48 "l-,P"
[ s LBLOO <«— | 49 M*M
7 DIM? get dimension 50 "p#"
8 1#)? not square? 51 CLST
9 -ADV MATRX error message 52 MMOVE
10 ASTO 01 53 RCL 02
11 -, 54 FC? 01 exp?
12 MAT= safekeeping copy 55 FACT to be used as divisor
13 DIM? get dimension 56 FC? 01 exp?
14 "p" 57 GTO 04
15 MATDIM auxiliary matrix 58 ENTERA
16 "#" 59 ENTERA
17 MATDIM auxiliary matrix 60 E to be used as divisor
18 MIDN 61 +
19 ARCL 01 62 CHSYX
20 Fs?01 LN? 63 LBLO4 <— |
21 ASWAP yes, swap names 64 "P,X"
22 "[-, A" 65 MAT/ divide by scalar
23 FS? 01 LN? 66 ABSP remove "X"
24 MAT- 67 "[-A A prepare new string
25 FC? 01 exp? 68 MAT= safekeeping copy
26 MAT+ 69 E
27 At 70 ST+ 02 increase term index
28 FNRM initial norm 71 At
29 STO 00 store in ROO 72 FNRM new frobenius norm
30 FC? 01 exp? 73 X<> 00 swao with old norm
31 CLA 74 RCL 00 recall new again
32 ARCL 01 75 X#Y? are the different?
33 FC? 01 exp? 76 GTO 02 yes, keep at it
34 GTO04 — 77 ARCL 01 no, we're done
35 MAT= 78 MAT=
36 CLAC 79 PURFL purges "A"
37 ABSP 80 "P,#"
38 LBLO4 < | 81 PURFL purges "P"
39 - 8" 82 ASWAP
40 CLST 83 PURFL purges "#"
41 MMOVE 84 MNAME? recalls name to Alpha
22 R 85 END
43 STO 02

Remarks.- The program is relatively short but hefty in data requirements: three auxiliary matrices
are created and used during the calculations, meaning that the total numbers of registers needed
(including the original matrix) is: 4 x dim (A)

Note also that the convergence is based on equal Frobenius norms of two consecutive iterations, and
that the comparison is made using the full 9 decimal digits (see instruction “X#Y?"in line 75). A
rounded comparison would result in shorter execution times, but it wouldn't be as accurate.

As usual, these routines will result in “"ALPHA DATA" if the matrix is in LU decomposed form.
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Square root of a Matrix {| MSORT |}

In mathematics, the square root of a matrix extends the notion of square root from numbers to
matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.

Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root
with complex-valued entries. In general, @ matrix can have many square roots, however, a positive-
semidefinite matrix M (that satisfy that x * M x >=0 for all x in R") has precisely one positive-
semidefinite square root, which can be called its principal square root.

Computing the matrix square root in the SandMatrix uses a modification of the the Denman-Beavers
iteration. Let YO = A and Z0 = I, where I is the n x n identity matrix. The iteration is defined by

(Y + Z;),
(Ze+Y,70).

Convergence is not guaranteed, even for matrices that do have square roots, but if the process
converges, the matrix Yk converges quadratically to a square root AY?, while Zk converges to its
inverse, A /2

Contrary to the exponential and logarithm programs, the square root convergence is checked using
the rounded values of the norms for two consecutive iterations. You can set FIX 9 for maximum
accuracy (and longest run time — not a problem on V41 and on the 41CL of course).

Example 1. Find a square root of the 3. order Hilbert matrix:

1T 12 1/3]
A= [1/2 13 1/4]
[1/3 14  1/5]]

We'll use to input the element vaules (as PMTM is not really suitable for this example).
Previously we need to create the matrix, as follows:

BLPHA, H1L63', ALPHA

3.003, XEQ “MATDIM”

Once all elements are entered, we execute | MSQRT |, which shows the norms of the different
iterations. Let's assume we set the calculator in FIX 9 for the maximum accuracy available; then the
result matrix is as follows:

Final Frobenius norm = 1,238278374
[[0,917390290 0,345469265 0,197600714]
Sqrt(A) = [0,345469265 0,374984280 0,270871020]
[0,197600714 0,270871020 0,295943995]]
Squaring the result matrix again (you can use for that) we can check the accuracy:
[[0,999999999 0,499999999 0,333333333]
[Sar(A)]~2 = [0,500000000 0,333333333 0,250000000]
[0,333333333 0,249999999 0,2000000001]]

which isn't bad at all for a 33 years old calculator indeed...
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Example 2.- Find a square root of the 4 x 4 matrix below, and check the accuracy by squaring it

back.

56 97 17 89
33 -68 -42 5
-206 -48 -34 -104
-39 92 27 30

Using FIX 4 and PMTM for the data input (nice integer values), the result is as follows:

SORT (&) =

&.0000 6.0000
-7.0000 -1.0001
-8.0001 6.0000

6.0000 7.0000

1.0000
-8.0000
8.0000
7.0000

7.0000
3.0000
-6.0000
3.0000

which is exact to 4 decimal places save a couple of w/ps here and there.

The program listing is shown below. Note the relatively short program, but here too the data
requirements are equally hefty as three auxiliary matrices are required, for a total of 4 x dim(A)
registres needed either in main or X-memory (including the original matrix).

[ 1 LBL "MSQRT" |
2 DIM? get dimension
3 1#)? is it square?
4 -ADV MATRX no, show error
5 CF 00
6 FNRM initial norm
7 STO 00 store it in ROO
8 ASTO 01 matrix name to RO1
9 RDN dimension to X-reg
10 "p"
11 MATDIM auxiliary matrix P
12 "Q"
13 MATDIM auxiliary matrix Q
14 MIDN
15  LBLOO |
16 "Q#"
17 MINV
18 MAT= auxiliary matrix #
19 CLA
20 ARCL 01
21 "4 P"
22 MAT+
23 "P,X"
24 R
25 MAT/
26 FNRM Frobenius norm
27 VIEW X show progress
28 X<> 00 swao with old norm
29 RCL 00 recall new one again

30 X=YR? are they equal>

31 SF 00 yes, flag this fact

32 X=YR? are they equal>

33 GTO 02 — yes, jump over

34 CLA no, keep at it

35 ARCL 01

36 "-#" prepare Alpha string
37 MINV invert matrix

38 MAT= copy in auxiliary

39 MINV undo the inversion
40 "Q#,Q"

41 MINV invert auxiliary

42 MAT+ sum it to partial result
43 "QX"

44 g)

45 MAT/ divide by scalar 2

46 LBLO2 <« |

47 "P,"

48 ARCL 01

49 MAT=

50 FC? 00 were norms equal?
51 GTO 00 no, next iteration

52 PURFL purge P

53 Q"

54 PURFL purge Q

55 "

56 PURFL purge #

57 MNAME? matrix name to Alpha
58 END done

As usual, this routine will result in "ALPHA DATA” if the matrix is in LU decomposed form.
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MPWR

Matrix Integer Powers and Roots. {| M2 MNL/X | }

This application will be dealt with using a relatively brute force approach, in that the powers will be
computed by successive application of the matrix multiplication; therefore the restriction to integer
powers.

MPWR | calculates the general case n, whilst is used to square a matrix (i.e. n=2). The first
requires the matrix name in Alpha and the exponent in the X-register, whereas for the second only the
matrix name in Alpha is needed.

The exponent may also be a negative integer. For that case the inverse matrix is calculated first, and
the positive integer power is used for it. Lastly, for n=0 the result is the identity matrix of course.

A feeble attempt is also made for the integer roots calculation: the function | M™1/X | will attempt to
calculate the x-th. root of a matrix using the general expression:

[A]*Y = exp[L/x . Ln(A], which is only valid when abs(||A-1||) < 1

Despite the inherent limitations of these programs they are interesting examples of extension of the
“native” matrix function set, and therefore their inclusion in the SandMatrix.

Examplel. Calculate the 7-th. power of the matrix below: = 4 g
L} L} —
[[ 1 4 ] UZER PRGM
A= [3 5 7] R 3 5 .
[ 2 1 8 ]] USER PRGM
3 2 ¢ 8_
USER PRGM

Type XEQ "MPWR", and the result is:

[[ 7851276 8652584 31076204 ]
A’ = [ 8911228 9823060 35267932 ]
[ 5829472 6422156 23076808 1]

Example 2. Calculate the 5™. root of matrix A below, then compare its 5" power to the original
matrix.

PLoLe v 3.

[[1.2 0.1 0.3] USER FRGM
A= [0.1 0.8 0.1] =R t g i
[01 02 0.9]] e
3,0 2 8.
USER PRGM

The results are as follows:

[[1,034632528 0,015156701 0,057916477]
AY® = [0,019601835 0,953558110 0,020490861]
[0,017823781 0,045426856 0,974937998]]

[[1,199999994 0,100000000 0,300000000]
[AY*]° = [0,100000000 0,800000000 0,100000000]
[0,100000000 0,200000000 0,900000000]]
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Program listings for [ MPWR |, [M~2]|and [M~1/X .

| 1 LBL "MPWR" |
2 DIM?
3 1#1?
4 -ADV MATRX
5 -CCD MATRX
6 X<>Y
7 INT
8 X#0?
9 GTO 01
10 MIDN
11 RTN
12 LBLO1 <— |
13 X<0?
14 MINV
15 ABS
16 E
17 -
18 X=0?
19 RTN
20 STO 00
21 ASTO 01
22 " #"
23 MAT=
24 DIM?
25 "pr
26 MATDIM
27 LBL 00
28 g
29 ARCL 01
30 "I-,p"
31 M*M
32 VIEW 00
33 " #"
34 cLsT
35 MMOVE
36 DSE 00
37 GTO 00
38 g
39 ARCL 01
40 MAT=
41 PURFL
42 "pr
43 PURFL
44 MNAME?
45 END

MNAME in Alpha
get dimension
square?

yes, show error

no, show "RUNNING..."
power index to X-reg
make integer

is it zero?

no, skip over

yes, make identity
done.

is it negative?
yes, invert matrix

n-1
was n=17?

yes, we're done
store in ROO

store Mname in RO1

copy to aux matrix #
get dimansion

auxiliary matrix P

| prepare alpha string

ngg
"#MNAME"

"# MNAME,P"
matrix product
show current index

copy result to #
decrement index
loop back if not ready
ngg

"#, MNAME"

copy result to #
purge #

purge P
recal MNAME to Alpha
done.

1 LBL "MA2" MNAME in Alpha
2 DIM? get dimension

3 1#)? is it square?

4 -ADV MATRX yes, error message
5 -CCD MATRX no, show 'Running..."
6 ASTO L

7 "l

8 ARCL L

9 "[-,P" "M,M,P"

10 ASWAP "M,P,M""

11 ASWAP "P,M,M"

12 MATDIM auxiliary P

13 ASWAP "M, M, P"

14 M*M matrix product

15 CLAC "M,M,"

16 CLAC "M,"

17 "-p" "M,P"

18 ASWAP "P,M"

19 MAT= result to M

20 PURFL purge P

21 MNAME? MNAMIE to Alpha
22 END done

1 LBL "MA1/X" MNAME in Alpha
2 1/X

3 STO 05 store in RO5

4 MLN matrix logarithm

5 RCL 05

6 - X" prepare Alpha string
7 ASWAP swap string

8 MAT* scalar multiplication
9 MNAME? recall MNAME

10 MEXP exponential

11 END done

Remarks:- Both MPWR and M2 need one auxiliary matrix (P) to temporarily place the results of the

matrix product — Additionally, MPWR needs a second auxiliary matrix (#) as well.

An alternative listing for M™1/X that includes a convergency check is shown in next page. Note how
the calculations to check for the condition are a taxing step, in that it requires a scratch matrix to
calculate its norm. On the positive side though, it'll spare us the wait for a non-convergent process
that would take much longer until it's apparent so. So after some consideration the longer version is

now in the module.
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1 LBL "ML " |M|'-.r.£| ME in Alpha 19 E

2 1% 1/m 20 K=v? meets condition 7

3 STC 05 save it in RO5 21 GTO0D — yes, go on

4 D dimansion 22 g no

5 1#1? not square 7 23 PURFL get rid of scratch

& -ADV MATRX show error 24 "DIVRGNT"

7 -CCD MATRX show "RUNNING.." 25 PROMPT show error message
B ASTO 01 save MNAME in ROI 26 LBLOD €— |

9 27 CLA

10 - scratch matrix 28 ARCL 01 MNAME to Alpha

11 MATDIM 29 MLN matrix logarithm

12 MIDM make it ldentity 30 RCL 05 1/m

13 CLA 31 - X" prepare string

14 ARCL 01 MNAME to Alpha 32 ASWAP

15 RE-%- prepare string 33 MAT= element muitiplication
16 MAT- intermediate resw't 34 MMNAME? MNAME to Aipha
17 ASWAP 35 MEXP Exponential matrix
1B FRMNM get its norm 36 EMD done

The scratch matrix is removed in case there is divergence, or reused to calculate the logarithm if not —
thus at least it's not all a waste of time. If there is no convergence you may still go ahead and hit R/S
after the error message to see how the precision factor keeps increasing until the *OUT OF RANGE”
condition.

A general-purpose algorithm for the p-th. root.

The principal p-th root of a non-singular matrix A ( det A # 0 ) may be computed by the algorithm:
MO=A Mk+l=Mk[(2I+(p-2)Mk)(I+(p-1)Mk)-1]p
X0=1 Xk+1 =Xk (2I+(p-2)Mk)-1(I+ (p-1)Mk)

where 1 is the Identity matrix

Mk tendsto I as k tends to infinity
Xk tendsto A 1/p as k tends to infinity

The convergence is also quadratic if A has no negative real eigenvalue.
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Lie Product of two Matrices. {{ MLIE |}

The lie product is defines as the resultimg matrix obtained from the difference between the right and
left multiplications of the matrices or in equation form:

Lie(A,B) = - Lie(B,A) = AB - BA

Example.- Calculate the Lie product for matrices:

[[1 2 4] 1 4 1]
A= [3 5 7] and: B= [5 9 2]
[7 9 8]] [6 5 3]
The results are:
ALPHA|, “A,B,C”, [15 11  -23]
XEQ “MLIE” -> Lie(AB)= [24 19 -65 ]
[58 85 -34 1]
ALPHA. “B,A,C", |ALPHA [-15 -11 23]
XEQ “MLIE” -> Lie(BA) = [-24 -19  65]

[-58 -85  341]]

The program listing is shown on the left. Note the usage of auxiliary matrix # to temporatily hold the
result of the two matrix products (always the same limitation imposed by M*M), and the extensive
usage of the alpha string management functions, like ASWAP — necessary to deal with the three
matrix nhames in the string.

In fact SWAP swaps the contents of the Alpha register around the first comma character encounterd,;
which makes it so interesting in this case.

1 LEL "MLIE" | "OPI, OP2, RES" in Aipha 15 ARCL 00 "RE5# RES"

2 XKEQ 00 calculate [OPIJ[OP2] 16 MAT-

3 ST<=A complete string to stack 17 -

4 MMNAME? RES 18 PURFL purge #

5 ASTO 00 19 MMNAME?

] S5T<=A restores complete string 20 RTN done

7 CLAC "OPI10R2" 21 LBL 00

B ABSP "OP1,0P2" 22 DMz get dimension

9 ASWAP "OP2,0PI" 23 ASWAP "OP2, RES, OPI"
10 -2 "OPIOP2 A" 24 ASWAP "RES5, OPI1, QP2
11 KEQ 00 calculate [OP2][OP1] 25 MATDIM create RES

12 CcLa 26 ASWAP "OP1, OP2 RES"
13 ARCL 00 "RES" 27 0 matrix product
14 A "RES A" 28 EMND returm
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Matrix Trace and remaining functions. { | MTRACE | }

In linear algebra, the trace of an n-by-n square matrix A is defined to be the sum of the elements on
the main diagonal (the diagonal from the upper left to the lower right) of A, i.e.,
"

tr(d)=an +an+- -+ @ = E (L
i=1
where aii represents the entry on the ith row and ith column of A. The trace of a matrix is the sum of

the (complex) eigenvalues, and it is invariant with respect to a change of basis. Note that the trace is
only defined for a square matrix (i.e., n xn).

Some of the properties of the trace are quite interesting and useful for other calculations, like
eigenvalues and even determinants. In particular one could use the relationship that defines the trace
of a product of matrices:

tr(XTY) = tr(XYT) = tr(VTX) = tr(YXT) = ) X, ;Y5
6
If we use an identity matrix in place of Y on the equation above it's clear that: tr(A) = SUM {[A] o [i]},
where the “0” symbol denotes the Hadamard or entry-wise product - as obtained by MAT>*.

The program in the SandMath however uses a direct approach, summing the elements in the diagonal
— it’s faster and doesn't require any auxiliary matrix to hold intermediate results.

Eigenvalues relationships.

The trace of a matrix is intricately related to its eigenvalues. In contrast with the determinant (which is
the product of its eigenvalues); if A is a square n-by-n matrix with real or complex entries and if
Al,...,An are the eigenvalues of A (listed according to their algebraic multiplicities), then

tr(A) = Z A det(A) = H A

Another powerful property relates the trace to the determinant of the exponential of a matrix, as
follows: (Jacobi’s formula):

dEt-(EA) — Etr{.-l] .

MTRACE | uses a single-element approach, basically adding all the elements in the principal diagonal.
For small to mid-size matrices this is faster than a block-approach, redimensioning and transposing the
matrix such as the one sketched below (coutesy of Thomas Klemm):

DIM(n, n+l) aT DIM(1, n) DET
| * | [ « . | * * ¥ 111
o % o1 = % « v o] =% |. . 0] => |***| x |1] -> [|*] -» *
1. . *] * 0 0 0] 1. . O] 11]
1. . O]

Here's the sweet and short SandMatrix program listing, compared side-to-side to a block-approach
alternative implementation — which also requires a scratch matrix if one wishes to keep the original
matrix unchanged, as well as some additional steps for Alpha housekeeping.
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Note how the alternative approach function SUM is used, whch removes the need to calculate the
determinant in the last step of the sketch. Regardless, it's bigger and takes longer excution time, even
without the test for square matrix condition.

1 LEL "MTRACE" |MHM-‘IE in Alpha
2 DMz

3 1#1? square’?

4 -ADV MATRX no, show error

5 o initial sum value
] MSUA sets pointer to 1:1
7 LBL 05

B MRR+ recail element

9 + odd to partial result
10 FC? 09 end of row

11 + ne, next row

12 FC? 10 end of matrix?

13 GTO 05 no, next element
14 EMND done

Row Division by Diagonal element. (Diagonal Unitary) {|R/aRR |}

1 LBL "TRACEZ"
2 -8

3 MAT=

4 ASWAP
5 Dz

] E

7 l<=]

2 +

9 MATDIM
10 TRMPS
11 INT

12 MATDIM
13 SUM

14 PURFL
15 ASWAP
16 CLAC

17 ABSP

18 EMD

prepare Alpha string
make scratch

place in hot spot
gets its dimensions

0,001

odd one more column
transpose it

make it @ column matrix
summ ail elements
purge scratch

bring focus to original
aipha housekeeping

to erase all tracks

The last function in this chapter is used to modify the values of all elements, dividing each row by its

diagonal element; that is: aij = aij / aii, j=1,2,...n

In effect the result matrix has all its diagonal elements equal to 1 (i.e. diagonal unitary). This type of
calculation is useful for row simplification steps in matrix reductions; more like a vestigial function from
when the major matrix operations were not available (i.e. the CCD days, pre-Advantage Pac).

| 1 LBL "R/aRR" | MNAME in Alpha
2 DIM? get dimansion
3 1#)? not square?
4 -ADV MATRX show error
s
6 MSUA set pointer to 1:1
7 LBL 01
8 MR recall diag element
9 1/X inverse value
10 X<>Y pointer to X
11 Msl set pointer
12 X<>Y value back to X-reg
13 ENTERN
14 ENTERA fill stack w/ value
15 LBL 00
16 MR recall element
17 * multiply
18 MSR+ store and increase column

discard product

end of row?

no, get next element
end of matrix?

yes, exit

recall pointer

does E3/ if integer
J,00j
set pointer

next row

19 RDN

20 FC? 09
21 GTO 00
22 FS? 10
23 GTO 02
24 MR

25 ENTERA
26 INT

27 ENTERA
28 I<>)

29 +

30 Msl

31 X<>Y
32 GTO 01
33 LBL02 <——
34 DIM?
35 END

get dimansion
end
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Sum of Diagonal and Crossed Elements products. {| MPDS |, [Z1JJ1 |}

Other two functions directly related to the eigenvalues are | MDPS | and | 21331 ]. They compute sums of
pairs of element multiplication, either for those in the diagonal (aii * a kk); or for “crossed” (i.e.
opposite) ones, (aij * aji), with i#j — excluding the diagonal.-2*1 — 4*2 + 3*0

Armed with these functions the characteristic polynomial of a 3 x 3 matrix can be expressed very
succinctly — as we'll see in Chapter 4 of the manual.

Example. Calculate the trace and the sums of diagonal and crossed elements for the matrix below:

-2 2 Tr(A) =-2+1-1=-2
-11 3 MDPS = (-2*1) — (1*1) + (2*1) = -1
2 0 -1 Yaijaji=-2*1-4*2+3*0 =-10

Program listings — easy does it, element-wise.

| 1 LBL"Z 11" | MINAME in Alpha 1 LBL "MDPS" MNAME in Alpha
2 DIM? get dimension 2 DIM? get dimansion
3 1#)? not square? 3 1#)? not square?
4 -ADV MATRX error message 4 -AVD MATRX show error
5 INT n 5 CF 00 default case
6 E 6 3
7 - n-1 7 X<=Y? isi>= 3?
8 E3/E+ 1,00(n-1) 8 SF 00 flag case
9 CLA 9 0] initial sum
10 STO M 10 MSUA set pointer to 1:1
11 LBL 00 | 11 LBL 06
12 RCL M k,00(n-1) 12 MRR+ recall element
13 E 13 FS? 09 end of row?
14 E3/E+ 1,001 14 GTO 00 yes, juom out
15 + (k+1),00n 15 I+ no, increase row
16 STO N 16 MR recall element
17 LBL 01 | 17 * multiply
18 RCL M k,00(n-1) 18 + add to partial sum
19 INT k 19 FC? 10 end of matrix?
20 RCLN (k+1),00n 20 GTO 06 no, do next row
21 INT k+1 21 LBLO0O <«——
22 I<>) does E3/ for integers 22 FC? 00 order >3?
23 + (k+1),00(n+k+1) 23 RDN yes, get result to X-reg
24 Mmsl sel pointer 24 FC?C00 order >3?
25 MR recall element 25 RTN yes, done.
26 X<>Y 26 0
27 I<>) does E3/ for integers 27 Msl set pointer to 1:1
28 msl set pointer 28 RDN ann to X-reg
29 RDN 29 MR aoo
30 MR recall element 30 * a00 * ann
31 * multiply them 31 + add to the sum
32 ST+ 0 add to partial sum 32 END done
33 ISG N increase row
34 GTO 01 next element in row
35 ISG M increase colum
36 GTO 00 next colum
37 RCLO partial sum to X-reg
38 MNAME? recall mname to Alpha
39 END done
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Appendix.- Square root of a 2x2 Matrix.

A square root of a 2x2 matrix M is another 2x2 matrix R such that M = R”2, where R"2 stands for
the matrix product of R with itself. In many cases, such a matrix R can be obtained by an explicit
formula. Let

A B
M=(272)

where A, B, C, and D may be real or complex numbers. Furthermore, let T = A + D be the trace of M,
and 0 = (AD — BC) be its determinant. Let s be such that s~2 = §, and t be such that t*"2 = T + 2s.

That is, _
s =4+vV0o t =474+ 25

Then, if t # 0, a square root of M is: 1 145 B
R==-|["
t ( ' D—I—s)

1 LBL "SORT2" MNAME in Alpha 16 - prepare string

2 Ex-a Prepare Alpha string 17 ARCLT “NLE N B

3 MAT= create scratch 18 ST+ X 25

4 ASWAP bring to hot spot 19 MTRACE tr

5 MDET determinant 20 R~ get 2s to X-reg

& ABS asolute value 21 + tr+2s

7 SORT 5 22 SORT t

B MIDH 23 MAT=+ [A] =[A] +5[1]

9 R* get s to X-reg 24 g

10 ASWAP LA 25 MAT/ [Al=[A] /t

11 ASTOT save MNAME in T 26 -

12 X" 27 PURFL get rid of scratch
15 MAT= =54 28 MMNAME? MNAME to Alpha
14 CLA 29 END done

15 ARCLT recall MNAME

There it is, directly without doing any iterations or finding inverses. Your assignment now is to write a
short program to calculate the square root of a 2x2 matrix applying the formula above.- Go ahead and
try your hand at it ... or cheat and look below.-

Note,- Not as trivial as you may think because the LU decomposition performing the determinant will
conflict with other functions needed. Therefore one scratch matrix should be used here as well.

Example: calculate one square root of the matrix given below, and compare its square power to it.

8+ 24/5 -2
a_ (8 -2\ _| 2£v5 2£V5
A6 1 6 1+2V5

2++v5 246

This concludes the core matrix sections; it's time now to embark into the fascinating journey of
characteristic polynomials and eigenvalues, as a prelude to the advanced polynomial chapter.

¢) Angel Martin - August 2013 Page 56
g g g




SandMatrix_4 Manual

4. Polynomials and Linear Algebra

=

H Ll HI

V7 (] v A
4 Fj Lt &N

N

- F? }} =‘ [y =

USER 01

Linear algebra is the branch of mathematics concerning vector spaces, as well as linear mappings
between such spaces. Such an investigation is initially motivated by a system of linear equations in
several unknowns. Such equations are naturally represented using the formalism of matrices and

vectors.
Function Description Input /7 Output
1 CHRPOL Characteristic Polynomial Under prgm control
2 EIGEN Eigen Values by SOLVE Under prgm control
3 HEV Subroutine for EIGEN Under prgm control
4 EV3 Eigen values 3x3 Matrix in X-Mem
5 EV3X3 Eigen values 3x3 Prompts Matrix Elements
6 JACOBI Symmetrical Eigenvalues Under prgm control

4.1. Eigenvectors and Eigenvaules.

An eigenvector of a square matrix A is a non-zero vector v that, when the matrix is multiplied by v,
yields a constant multiple of v, the multiplier being commonly denoted by A. That is:

Av = Av

The number A lis called the eigenvalue of A corresponding to v.

In analytic geometry, for example, a three-element vector may Ay
be seen as an arrow in three-dimensional space starting at the
origin. In that case, an eigenvector of a 3x3 matrix v is an
arrow whose direction is either preserved or exactly reversed

after multiplication by A.

The corresponding eigenvalue determines how the length of the
arrow is changed by the operation, and whether its direction is
reversed or not, determined by whether the eigenvalue is

negative or positive.

0 X

Aix

A vector with three elements may represent a point in three-dimensional space, relative to some
Cartesian coordinate system. It helps to think of such a vector as the tip of an arrow whose tail is at
the origin of the coordinate system. In this case, the condition "u is parallel to v" means that the two

arrows lie on the same straight line, and may differ only in length and direction along that line.

If we multiply any square matrix A with n rows and n columns by such a vector v, the result will be
another vector w = A v, also with n rows and one column. That is,

™ N
(R s

is mapped to | =
(2 Uy
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where, for each index i,
n
wy = :13'11?..-‘1 -+ :13':'2?..32 + -+ :h:ln?}ﬂ = z fh‘,j“j
i=1

In general, if v is not all zeros, the vectors v and A v will not be parallel. When they are parallel (that is,
when there is some real number A such that A v = A v) we say that v is an eigenvector of A. In that
case, the scale factor A is said to be the eigenvalue corresponding to that eigenvector.

In particular, multiplication by a 3x3 matrix A may change both the direction and the magnitude of an
arrow v in three-dimensional space. However, if v is an eigenvector of A with eigenvalue A, the
operation may only change its length, and either keep its direction or flip it (make the arrow point in

the exact opposite direction). Specifically, the length of the arrow will increase if | A | > 1, remain the
same if | A | = 1, and decrease it if | A |< 1. Moreover, the direction will be precisely the same if A >
0, and flipped if A < 0. If A = 0, then the length of the arrow becomes zero.

4.4.4. Eigenvalues and eigenvectors of matrices: Characteristic Polynomial.

The eigenvalue equation for a matrix A is

Av — v =10,

which is equivalent to

(A—X)v=0,

where 1 is the n x n identity matrix. It is a fundamental result of linear algebra that an equation M v =
0 has a non-zero solution v if, and only if, the determinant det(M) of the matrix M is zero. It follows

that the eigenvalyes 9f A are precisely the real numbers A that satisfy the equation

det(A — AI) =0

The left-hand side of this equation can be seen to be a polynomial function of the variable A. The
degree of this polynomial is n, the order of the matrix. Its coefficients depend on the entries of A,
except that its term of degree n is always (-1)" A". This polynomial is called the characteristic
polynomial of A; and the above equation is called the characteristic equation (or, less often, the secular
equation) of A.
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SOLVE-based Implementation. {{EIGEN [}

There are three Programs in the SandMatrix that calculate eigenvalues. The first one is aptly named
, and is a brute-force approach using the direct definition of the eigenvalue given above.
What makes it interesting is the direct application of SOLVE (of FROOT in the SandMath) plus the
combination of matrix functions to calculate the secular equation to solve for.

can be used in manual mode (with guided prompts and data entry — or in a subroutine. In
manual mode it creates a matrix named “EV” in X-mem. and will prompt for the elements data. In
subroutine mode it'll take the matrix name from Alpha. You need to set flag 06 for subroutine use, or
clear it for manual mode — this approach saves one FAT entry, although requires you to be aware of
the rule.

The program checks that the matrix is square and not in LU-decomposed form — presenting error and
warning messages respectively. For LU-decomposed matrices you can double-invert them “on the spot”
(assuming they're invertible) and keep going just pressing R/S.

NO T O SOURARE Ll FORM

USER USER

The selection of the interval [a,b] plays an important role in finding the solution — obviously the closer
to the actual value the faster it'll find it. Remember also that the accuracy is determined by the display
settings on the calculator, so FIX 9 will provide for both the most accurate and longest execution time.

Example. Find one eigenvalue for the matrix A below using the subroutine mode.

3 1 5
A=|3 3 1

4 6 4
Keystrokes Display Result
ALPHA, “EV3”, ALPHA X-reg contents MNAME is in Alpha
3.003, XEQ"MATDIM" 3.003 Creates matrix in X-Mem
XEQ “"PMTM" “R1: " Prompts for the first row
3, ENTER”, 1, ENTERA, 5, R/S “R2: " ... second row
3, ENTER”, 3, ENTERN, 1, R/S “R3: " ... third row
4, ENTER™, 6, ENTERA, 4, R/S 6.0000
SF 06 6.0000 Sets it in subroutine mode
XEQ “EIGEN" “LO"v=?" Prompts for lower bound
5, R/S “HI' V=" Higher bound
15, R/S flying goose... FROOQT is working on it

“EV=10,00000" ev found (in FIX 5).

The original matrix is not modified in any way, but note that an auxiliary matrix is created for the
calculations. This scratch matrix “#" is not purged automatically from X-Mem, you'll have to do that
after you're done calculating as many eigenvalues as you need.

Below is the program listing for | EIGEN |. Note how the equation to solve already requires an auxiliary
FAT entry, — since a global label is always needed by FROOT. (You can refer to the SandMath
manual if you need to refresh your understanding of FROOT and FINTG)
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[ 1 LBL 02 o scratch matrix
i 2 "LU FORM" warning text o7 MATDIM as identity one
o3 AVIEW display it [ 28 LBLOO
"o MNAME? MNAME back to Alpha " 29 "LOW V'=?"
i 5 STOP your chance to fix it " 30 PROMPT prompt lower bound
" 6 GTO 01 try again o311 "Hiv=en
r 7 LBL "EIGEN" Y PROMPT prompt upper bound
i 8 ASTO 00 save MNAME in ROO i 33 -CCD MATRX show "RUNNING..."
" 9 FS? 06 subroutine mode? T34 rmEv
i 10 GTO 01 yes, skip data entry o35 FROOT Solve for Ev (!)
o -SNDMATRX 4 prompts "ORDER=?" " 3 | TONE4 found!
" 12 sTOP " 37 "Ev=t
" o13 k " 38 ARCLX
T E3/E+ "1,001 " 39 PROMPT display result
T * n,00n " 40 GTOOO next guess
i 16 "EV" hard-coded name r 41 LBL "H#EV" |subroutine
i 17 MATDIM create square matrix ) "
i 18 IMR input elements o3 MIDN make matrix identity
[ 19 1BLO1 «—— o4 e
i 20 ASTO 00 " o5 MAT* multiply it by scalar guess
" 21 Diwe? get dimension o4 g
[ 22 1#)? not square? Yy ARCL 00 prepare Aplha string
[ 23 -ADV MATRX show error T "[-,#"
[ 24 LuU? LU decomposed? T 49 MAT- calculate the eigen matrix
[ 25 GTO 02 yes, warning loop - MDET get its determinant

i 51 END return

EIGEN | works for N-dimensional orders. In that regard its execution time (provided that a decent

initial guess is given) compares favorably to that of

CHRPOL |, the other program that calculates

eigenvalues. The difference of course is that | CHRPOL | obtains a// the eigen values simultaneously,

whilst | EIGEN | does it one at a time.

When compared to other approaches, the program listed above is almost minimalistic — that's its real

benefit and the reason that justifies its inclusion in the

SandMatrix module. However relying on FROOT

is clearly not a robust approach to calculate eigenvalues - The calculation of the characteristic

polynomial using dedicated methods is a necessity.
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3-Dimensional case. {| EV3X3 | , | EV3 | 3}

Let's start with the particular case n = 3. In this scenario there are simple formulas to calculate the
characteristic polynomial, which make the calculations simpler and faster. The formulas are derived
from the properties of the characterictic polynomial. Let's enumerate the most important ones.

The polynomial pA(x) is monic (its leading coefficient is 1) and its degree is n. The most important fact
about the characteristic polynomial was already mentioned in the motivational paragraph: the
eigenvalues of A are precisely the roots of pA(x). The coefficients of the characteristic polynomial are
all polynomial expressions in the entries of the matrix. In particular its constant coefficient pA(0) is
det(—A) = (—1)"n det(A), and the coefficient of x~(n—1) is tr(-A) = —tr(A), where tr(A) is the matrix
trace of A. For a 2x2 matrix A, the characteristic polynomial is therefore given by:

det(A) — tr(A) X+ A%,
For a 3x3 matrix, the formula specifies the characteristic polynomial to be
det(A4) — e A +tr(A)A% = A* .
((trd)>—tr(A?))

where c2 is the sum of the principal minors of the matrix =

B2 | =

Given the above definitions it is clear now why functions MDPS and Z1JJ1 will be helpful to obtain the
coefficients of the characteristic polynomial for n=3. In effect, when using those functions the formulas
change as follows: c2 = ( MDPS - Z1JJ1)

For the manual mode (not as subroutine), a choice is offered to see the coefficients of the polynomial
before calculating its roots (i.e. the eigenvalues).

FFS3 v/ N
USER PRGM

, which will only take [Y] / [N] as valid inputs.

Example 1. Calculate the eigenvalues for A, with aij = ij
Solution: pA(x) = 75,349 x3 - 66 x2 -60 x =0

x1 = 66,890

x2 = -0,897

x3 = 2,24000E-9

Example 2. Calculate the eigenvaules for A, with aij = 1,2,3...9
Solution: pA(x) = 0,076 x3 -15x2 -18 x =0

x1= 16,117

X2 =-1,117

x3 = 2,89100E-9

It is therefore a relatively easy exercise to write a program to deal with this case, as shown in the
program listing in next page.
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1 LBL "EV3X3"
2 CF 06 clear subroutine flag
3 "EV"
4 E
5 E3/E+ "1,001
6 3
7 * 3,003
8 MATDIM
9 IMR enter elements
10 GTO 06
[ 11 1BL"3EV" |
12 SF 06 set subroutine flag
[ 13 1BLop <«—
14 -CCD MATRX show "RUNNING..."
15 MTRACE calculates tr(A)
16 CHS change sign
17 STO 02 save it in RO2
18 MDPS get the sum of minors
19 STO 01 as a combination
20 Zu of functions into RO1
21 ST- 01
22 MDET calculate determinant
23 CHS change sign
24 STO 00
25 FS? 06 subroutine mode?
26 GTO 11 yes, skip prompting
27 CF 21
28 "CFS? Y/N" offer choice
29 AVIEW
30 LBLO1 | decode the Y/N input
31 GETKEY
32 'm
33 X=Y?
34 GTO 11 choice rejected
35 30

Program remarks.-

wrong key
choice accepted

|coefficientes loop

last one?
yes, jump over
no, get next one

|proceed with roots

fill stack with coeffs

calculate roots
was subroutine?
yes, end

show results
always a real one

complex?
no, skip prompting
yes, clear Z

show other two roots

36 +

37 X#Y?

38 GTO 01
39 3

40 LBL 05
4 "p("

42 AP

43 "-)="
44 ARCL IND X
45 PROMPT
46 E

47 -

48 X<0?

49 GTO 11
50 GTO 05
51 LBL11
52 E

53 RCL 02
54 RCL 01
55 RCL 00
56 CROOT
57 FS?C06
58 RTN

59 "x="

60 ARCLZ
61 PROMPT
62 FC? 43
63 GTO 01
64 X<>Z

65 cix

66 X<>Z

67 LBLO1 € |
68 QROUT
69 END

done

Note that in manual mode | EV3X3 | creates a matrix named “EV”, but that the subroutine will work
with any 3x3 matrix which name is in Alpha. This is compatible with | EIGEN | in its subroutine mode as

well.

The roots are obtained using the SandMath function CROOT, an all-MCODE implementation of the
Cardano-Vieta formulas. Function QROUT is also used to display them.
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General case: N-dimensional general matrix. { | CHRPOL | }

The original - as it appeared in previous versions of the SandMatrix - was written by
Eugenio Ubeda (as published in the UPLE), and later on adapted to the SandMatrix. Note however that
it didn't make use of any advanced Matrix function, thus was pretty much the same as its initial
version. It was a user-friendly program; providing step-by-step guidance for the data entry and didn't
require any set-up preparation (like creating matrices) prior to the execution.

In this version has been re-written from the ground up, really taking advantage of the
powerful matrix function set. It is a much improved solution, about twice as fast and with half the
(comparable) code - It however now requires you to first create the matrix and input its elements.
Algorithmically it still uses the same maodification of the Leverrier-Faddeev method to determine the
coefficients of the characteristic equation of the n x n matrix; which roots are the eigenvalues of the
matrix. It also employes the matrix trace in the process.

The coefficients are calculated using the iterations:

b1 = -tr (B1) , with B1 = the original matrix, and
bk = - tr (BK) / k, with Bk = A(Bk-1 + bk-11), k=2,... n

The program works for orders n between 3 and 14. The case n=2 has a trivial solution [given by b2=1,
b1l= tr(A), and b0 = -det(A)] ; therefore doesn't need to be included.

Example. Obtain the characteristic polynomial for the matrix A given below:

[[ 1 -069 0.28]

A= [-0.69 1 0.18]
[0.28 0.18 17]
Keystrokes Display Result
IALPHA , “AA”, IALPHA current X-reg Matrix name in Alpha
3.003 , XEQ "MATDIM" 3.003 Creates matrix in X-Mem
XEQ “"IMR"” “al,1= 7?" Prompts for data, also
1, R/S “al, 2= ?" showing current values
0.69, CHS, R/S “al,3= ?"
0.28, R/S “az2,1"= ?"
0.69, CHS, R/S “az,2= ?"
1, R/S “az2,3= ?"
0.18, R/S “a3,1= ?"
0.28, R/S “a3,2= ?"
0.18, R/S “a3,3= ?” Last element
1, R/S 1.000
XEQ “"CHRPOL" “"RUNNING...” scrolls in the display, then
“T(@K*X~K)” Reminder of convention
(*) set F21 “a3=1,000000" Coefficient of x/3

Iif you want AVIEW
to stop each time

R/S

“a2=-3.000000"
“a1=2.413100"
“a0=-0.343548"
“"RUNNING...”
“X=0,180390390"
“X=1,121568609"
“X=1,698238062"

Coefficient of x"2

Coefficient of x

First coef (independent term).
Scrolls in the display, then
First eigenvalue

Second eigenvalue

Third and last.
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See the program code below in its entire splendor — realizing that it may be the last program written
using Advantage Matrix functions...

Remarks: Two auxiliary matrices are used, but the original matrix is left unaltered. The first part of
the program (up to line 60) calculates the coefficients of the characteristic polynomial — and displays
them for informational purposes. It then transfers the execution to the root finder routines. Note that
for cases n=3 and n=4 we take advantage of the dedicated functions (in the SandMath) and
[QUART ], which result in much faster execution than the general case using :

| 1 LBL "CHRPOL" | MNAME in Alpha
2 DIM? n,00n
3 1#)?
4 -ADV MATRX
5 ASTO 01 MNAME
6 -CCD MATRIX shows 'RUNNING..."
7 "-p"
8 MAT= B=A
9 ASWAP
10 DIM? n,00n
11 INT n
12 E
13 + n+1
14 MDET independent term
15 STOIND Y stored in Rn+1
16 ASWAP
17 MAT= avoids LU issues
18 DIM?
19 " auxiliary array
20 MATDIM
21 FRC 0,00n
22 2
23 + 2,00n
24 STO 00
25 CF 21 not halting VIEW
26 LBLOO |
27 VIEW 00 shows index
28 "#"
29 MIDN [#] =[]
30 "p"
31 MTRACE tr (B)
32 RCL 00
33 INT k+1
34 E
35 - k
36 /
37 CHS
38 STO IND 00 pk =-tr (B) / k
39 "X 48"
40 MAT* [#] = pk [1]
41 "P##"
42 MAT+ [#] =[B] +p[ 1]
43 CLA
44 ARCL 01
45 -4 P"
46 M*M B=A(B-pl)
47 ISG 00
48 GTO 00
49 DIM? n,00n
50 FRC 0,00n
51 E
52 STO 01 it's monic (!)

53  E3/E+

54 +

55 gt

56 PURFL

57 "pr

58 PURFL

59  PVIEW

60  -CCD MATRIX
61 PDEG

62  STOO00

63 4

64 X>=Y?

65 GTOO04

66  CLX

67 E

68 +

69  E6

70 |/

71 3

72 E3[E+

73 +

74  REGMOVE

75  RTSN

76 GTOO00

77 LBLO4 <—
78 X#Y?

79  GTOO03

80  RCLO2

81  RCLO3

82  RCLO4

83  RCLOS

84  QUART

85  GTO00

86 LBLO3 <
87  RCLO1

88  RCLO2

89  RCLO3

90  RCLO4

91  CROOT

92 "x="

93  ARCLZ

94  PROMPT

95  FC?43

9% GTO01 —
97 X<>2Z

98  CLX

99 X<>Z

100 LBLO1 <€ — |
101  QROUT

102 LBLOQ <«——— |
103  MNAME?
104  END

1.001
1.00(n+1) - cnt'l word

for information
shows 'RUNNING..."
new destination

as expected by RTSN

n<=4?
yes, particular case
no, general case

n+1

0,000/00(n+1)

build the "from,to"
1.003

1.003/00(n+1)

as expected by RTSN

go to EXIT

n#4?

a3
a2
al
a0

go to EXIT

a3
a2
al
a0

real root

is RAD on?

yes, complex roots
no, real roots

so we clear Z

output roots

bring MNAME back
done
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Particular case: Symmetric Matrices {|JACOBI | }

For symmetric matrices the Jacobi algorithm provides a faster method. JACOBI was written by
Valentin Albillo, and published in PPC TN, VIN3 (October 1980). As with CHRPOL, I've only slightly
adapted it to the SandMatrix, but basically remains the same as originally written. The paragraphs
below are directly taken from the above reference to explain its workings.

This program computes all eigenvalues of a real symmetric matrix up to 22 x 22. It uses the Jacobi
method, which annihilates in turn selected off-diagonal elements of the given matrix A using
elementary orthogonal transformations in an iterative fashion, until all off-diagonal elements are zero
when rounded to a given number of decimal places. Then the diagonal values are the eigenvalues of
the final matrix.

The method explained. The Jacobi method does not attempt to solve the characteristic equation for
its roots. It is based in the fact that a n x n symmetric matrix has exactly n real eigenvalues. Given A,
another matrix S can be found so that: S A ST = D is a diagonal matrix, whose elements are the
eigenvalues of A.

The Jacobi method starts from the original matrix A and keeps on annihilating selected off-diagonal
elements, performing elementary rotations. Let's single out an off-diagonal element, say apq,, and
annihilate it using an elementary rotation. The transformation R is defined as follows:

Rpp=cosz; Rpg=sinz; Rgp=-sinz; Rqg=-cosz
Rii=1; Rpk =Riq=Rik =0 ; for i#p,q and k#p,q

Let’s now denote: B = R"T AR, which elements are as follows:

bip = aip cos z - aiq sin z
big = aip sin z + aiq cos z
bik =aik; whereik # p,q

bpp = app cos?z + aqq sin® z — 2 apq sin z cos z
bqq = app sin®z + aqq cos® z + 2 apq sinz cos z
bpq =0, and the remaining elements are symmetric.

where: sin z = w/ sqrt(2(1+sqrt(1-w”2))), and cos z = sqrt (1-sin? z)
with: L=-apgq, M =(app-aqq)/2, and w =L sign(M)/ sqrt (M*+L?)

This is iterated using a strategy for selecting each non-diagonal element in turn, until all non-diagonal
elements are zero when rounded to a specific number of decimal places.When this is so, the diagonal
contains the eigenvalues.

Program remarks. The accuracy and running times are display settings-dependent, however the
computed eigenvalues are very often more accurate that it'd appear; for instance usinf FIX 5 it's quite
possible to have eigenvalues accurate to 8 decimal digits. The program is written to be as fast as
possible and to occupy the minumim amount of program memory; the matrix is stored taking into
account its symmetry, so that all elements are stored only once (as aji = aij). For a nxn matrix
minimum size is [ Y2 ( n~2 + n) + 7].

[[25 -41 10 -6 ]
Example. Find the eigenvalues for the 4x4 matrix: A= [-41 68 -17 10]

[10 -17 5 -3 1]

[-6 10 -3 217]
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Prompts for dimension
Data entry starts

Note how the symmetric
elements are skipped

input the last element
Asks for precision
Scrolling on the display

After a while ~ 2.5m in normal 41
the four ev’s are displayed.

Keystrokes Display Result

XEQ “JACOBI” “ORDER=?"

4, R/S “al:1=?"

25, R/S “al:2=?"

41, CHS, R/S “al1:3=?"

10, R/S “al:4=?"

6, CHS, R/S “a2:2=?"

68, R/S “a2:3=?"

17, CHS, R/S “a2:4=?"

10, R/S “a3:3=?"

5, R/S “a3:4=?"

3, CHS, R/S “a4:4=?"

2, R/S “PREC.=?"

5, R/S “"RUNNING..."”
“X=0,03302"

R/S “X=98,52170"

R/S “X=1,18609"

R/S “X=0,25920"

Example. Repeat the same case but using | CHRPOL |, to obtain the polynomial and its roots.

Matrix name in Alpha
Creates mtrix in X-Mem

Keystrokes Display Result
IALPHA , "AA", IALPHAI current X-reg

4.004, XEQ "MATDIM" 4.003

XEQ “"PMTM" “R1: "

25, ENTERA, CHS, 41, ENTER”, 10, ENTER, CHS, 6, R/S

CHS, 41, ENTER”, 68, ENTER”, CHS 17, ENTER*, 10, R/S

A\ R2 : _”

“R3: nw

10, ENTER”, CHS, 17, ENTERA, 5, ENTER”, CHS, 3, R/S

\\R4: n

CHS, 6, ENTER”, 10, ENTER”, CHS, 3, ENTER”, 2, R/S

XEQ “CHRPOL"
R/S

R/S
R/S
R/S

“"RUNNING..."”
"5 (@K*XAK)”
“a4=1"
“a3=-100"
“a2=146"
“al=-35"
“a0=1,00000"
“"RUNNING...”
"X1=98,52170"
“X2=1,18609"
“X3=0,25919"
“X4=0,03302"

prompts for row-1
prompte for row-2
prompts for row-3
prompts for row-4

Scrolling on the display
Reminder of convention
Coefficient of x4
Coefficient of x3
Coefficient of x"2
Coefficient of x

First coef. (independent term)
Scrolling on the display
Frst root

Second root

Third root

Fourth and last root.

The solution is: Chr(A) = x™4 -100 X3 + 146 x™"2 — 35 x +1
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4.2.- Managing Polynomials.

The remaing of this chapter is about polynomials. Let’s first cover those functions used to manage the
data entry and output for them, polynomial math and some handy utilities used in the other programs.

Function Description Input /7 Output
7 DTC Deleting Tiny Coefficients Control word in X
8 “P+P” Polynomial Sum Driver for PSUM
9 “P-p” Polynomial Subtraction Driver for PSUM
10 | “P*P” Product of Polynomials Driver for PPRD
11 | “P/P” Division of Polynomials Driver for PDIV
12 | PCPY Polynomial Copy Control word in X-reg, destination in Y
13 | PDIV Euclidean Division Control words in Y- and X-regs
14 | PEDIT Edits Polynomial Coefficients Control word in X-Reg
15 | PMTP Prompts for Coeffs in Alpha List Control word in X-Reg
16 | PPRD Polynomial Multiplication Control words in Y- and X-regs
17 | PSUM Polynomial Addition & Subtraction Control words in Y- and X-regs
18 | PVAL Polynomial Evaluation Control word in Y, argument in X
19 | PVIEW Views Polynomial Coefficients Control word in X-Reg

4.2.1. Defining and Storing Polynomials.

A polynomial is an expression of the form

2™ + 12" 4+ @’ + ax + ag,
where a(n)#0

Or, more concisely:
ﬂ .
>
=0

Polynomials can only be stored in main memory (ie. not as X-mem files), thus the way to handle them
will be by a control word of the form bbb.eee, which denotes the beginning and end registers that
hold the polynomial coefficients, a(i)

The coefficients are stored starting with the highest order term first (ie. x~n) in register bbb, and
ending with the zero-th term last, stored in register eee. It follows that the degree of a polynomial n
verifies: n = (eee —bbb).

For instance, the control word 1,007 represents a polynomial of degree 6, which coefficients are stored
as follows: a(6) in RO1, a(5) in R0O2, a(4) in RO3, a(3) in RO4, a(2) in RO5, a(1) in RO6 and a(0) in RO7.

The Polynomial Editor. There are three functions available in the SandMatrix to enter and review
polynomials in the calculator. The main one is , which takes the input from the control word in
the X-register and sequentially prompts for each coefficient value. The first thing it does is present a
reminder of the convention used, relating the subindex to the power of the variable for each term:

L {eyH EXPAH}
012

A nice feature is that it'll check for available data registers to complete all the storage, re-adjusting the
calculator SIZE if necessary. | PEDIT | does not use any data registers itself.
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Note that includes in the prompts the current value held in the corresponding data register, so
you don't need to type a new one if it’s already correct. Alternatively you can use to review
the coefficients without any editing capabilities. In this mode the prompts don't have the question mark
at the end, which indicates the value cannot be changed from the program.

T o A A A
[ E,uuu* BS:“E,EEE
0z USER 12
In edit mode In review mode.

You can control wether PVIEW stops after each prompt or does the complete listing without stopping
by setting or clearing the user flag 21. Note also that if the coefficient is an integer value it will not
display the zeroes after the decimal point — in both editi and review modes.

A faster alternative for data entry is | PMPT | — the polynomial prompt. This one does for polynomials
what PMTM did for matrices: the data entry is done as a list in Alpha, containing the values of all
coefficients at once.

Obviously this is limited by the total length available in the Alpha register (24 characters), including the
blank spaces that separate each entry, and the minus signs for negative values. The two leftmost
characters in the prompt indicate the first data register used to sore the coefficients (not the row# as
in the Matrix case). These characters are not part of the final list, and therefore aren't included in the
total count.

Y 3 -44 5.

UZER 12 PRGM

Another restriction of | PMTP | is that values cannot be expressed in exponential form (using EEX),
which key is ignored during the process. You can use negative and decimal values as the CHS and [,]
(radix) keys are active. Obviously the back arrow key is always active to correct wrong entries.

[ 1 LBL "PEDIT" | Y, "=t

i 2 SF 08 flags mode i 28 RCLIND Y append current value
i 3 ENTERA copies cntl word to Y i 29 FRC? has fractional part?
i 4 I<>) swaps bbb and eee i 30 ARCL X yes, append as is

i 5 E i 31 INT? integer

i 6 + i 32 AINT yes, append IP only
i 7 SIZE? current size i 33 FC? 00 editable?

i 8 X<>Y f 34 AVIEW no, show already

i 9 X>Y? not enough? f 35 FC? 08 editable?

" 10  psizE adjust size " 36 GTO 02 no, next coeff
"o RDN [ 37 LBL 00

[ 12 RDN cntl word to X-reg i 38 -2 append "?"

i 13 GTO00 — 7 skip over i 39 CF 22 reset data entry flag
[ 14 LBL"PVIEW" " a0 PROMPT

i 15 CF 00 flags mode i 41 FC? 22 value entered?

r 16 LBL 00 <— i 42 GTO 02 no, next coeff

i 17 -ADV POLYN shows convention i 43 STOIND Z yes, store it

" 18 PSE " am RDN discard entry

" 19 ENTERA copies cntl word to Y [ a5 LBLO2 <—

i 20 PDEG polyn degree d 46 DSE X decrement counter
T Xeov cntl word to X-reg Y NOP

i 22 STOL saves itin L i 48 ISGY increment register
i 23 X<>Y degree to X-reg i 49 GTO 01 next register

r 24 LBL 01 i 50 LASTX get control word
S i END done

i 26 AIP append index
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4.2.2. Polynomial Arithmetic {|PSUM]|, |PPRD|,PDIV]|}

The arithmetic functions provide convenient functionality for the basic operations: addition, subtraction,
multiplication and eucliedean division. A distinction is made between the three base routines (PSUM,
PPRD, and PDIV written by JM Baillard), and the four user-friendly drivers that automate the element
data entry and work out all the details behind the scenes.

For the first group, beside the element data entry, the control words for each operand polynomial and
the result are typically input in the X-, Y- and Z-registers of the stack. As follows:

Operation Addition, Subtraction, Euclidean Division Copy
Multiplication
Input bbb.eee2 in ¥ bbb.eee of divisor in'Y bbb or destination in X

1st. Reg of result in X

) bbb.eee of reminder in Y
Output bbb.eee of result in X bbb.eee of quotient in X bbb.eee or result in X

Because registers RO0 to RO3 are used internally, they cannot be used to hold the polynomial
coefficients. (ie. all control words must start at bbb = 4 at least). Note also that none of the register
ranges should overlap. In addition, for the Euclidean Division the original polynomials are overwritten
with the results (quotient and reminder).

Let a(x) = ap.X"+ar.X"+ ... + an.1.X+an
and  b(x) = bo.X™+b.X™+ ... + bp.1.X+by

then there are only 2 other polynomials q(x) and r(x) such that: a = b.q + r, with deg(r) < deg(b) .
Note that does not work if deg(a) < deg(b), but in this case q=0 and r=a.

Example 1.- Find the result of the polynomial product of a(x) * b(x), where:

a(X) = 2X°+5x*-21.x°+23.x%+3x+5 and b(x)=2x*-3x+1
We'll use for convenience. It'll automatically store the coefficients of the operand polynomial in
registers {R04 to R09} and in registers {R10 to R12} respectively. The result polynomial will be stored

starting with register R20, leaving the operand polynomials untouched.

The solution is:  p(X) = 4.x" + 4.x%-55.x° + 114.x* - 84.x%+ 24.x*- 12.x + 5

Example 2.- Find the quotient and reminder for the polynomial division a(x) / b(x), where::

a(x) = 2xX°+5x*-21.x°+23.x°+3.x+5 and b(x)=2x*-3x+1

We'll use for convenience. It'll store the dividend coefficients in registers {R04 to R09} and the
divisor’s in registers {R10 to R12}. Note that in this case the coefficients are already there — as entered
in the previous example, so you just have to press R/S during the process.

The solutions are displayed sequentially, starting with the quotient first. The indices convention
message " Z(aK*X~K)” is shown prior to the enumeration of each result polynomial. After completion,
the control word for the reminder is left in X, and the control word for the quatient is saved in R0O.

The solutions are:  q(x) = x>+ 4.x°-5x+2 and r(x)=14.x+3
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Example 3.- Calculate the addition and subtraction of the polynomials a(x) and b(x) below:

a(X) =2x3+4x*+5x+6 and b(x)=2x*-3xX°+7x+1

We'll use | P+P | and | P-P | for convenience. It'll automatically store the coefficients of the operand
polynomials in registers {R04 to R07} and in registers {R08 to R11} respectively. The result polynomial
will be stored starting with register R12, leaving the operand polynomials untouched. After completion,
the control word for the result is left in X

The solutions are: ~ a(x) + b(X) = 43+ X2+ 12.x + 7
a(x) -b(x) =7.x*-2x+5

Below you can see the program listing for the four arithmetic driver routines.

| 1 LBL "P*P" | [ 32 BL1O |
2 CF 01 33 "N#1?" order P1
3 GTO00 — ] 34 PROMPT nl
[ 4 LBL "P/P" | 35 a4
5 SF 01 36 +
| 6 LBLOO <— | 37  E3/E+ 1,00(n+4)
7 XEQ 10 combined data entry 38 '3
8 FC? 01 product? 39 + 4,00(n+4)
9 GTO00 — yes, go there 40 STO 00
10 RND division 41 PEDIT
11 PDIV 42 XEQ 05 adjust index
12 X<>Y reminder cntl word 43 ENTERA push stack
13 STO 00 store 44 "N#2?" order P2
14 X<>Y 45 PROMPT n2
15 PVIEW show quotient 46 + n2+eeel
16 X<> 00 47 I<>) 0,00(n2+eeel)
17 GTO 02 48 + (eeel+1),00(eeel+n2)
[ 18  1BLoO <— | muttiplication 49  PEDIT
19 PPRD 50 RCL 00 bbb.eeel
20 GT002 —7 51 X<>Y bbb.eee2
[ 21 1BL"P+P" | 52 LBLOS
22 CF 01 53 ENTERA bbb.eee2
23 GTO 01 — 54 I<>) eee.bbb2
[ 24  1BL"P-P" | 55 INT eee2
25 SF 01 56 E
[ 26 1BLO1 <— | 57+ eee2+1
27 XEQ 10 combined data entry 58 END
28 PSUM
[ 29 1BLo2 «— |
30 PVIEW show result (reminder)
31 RTN done
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4.2.3. Deleting tiny Coefficients. {|DTC|}
Evaluating and Copying Polynomials. {| PVAL

,|PCPY| >

These three small routines were written by JM Baillard to perform the following housekeeping chores:

e Evaluate a polynomial value entered in the X-reg,

e Copy a polynomial from a source to a destination location, and
e Delete small coefficients (below 1E-7), wich typically appear due to rounding errors in the
intermediate operations. This has a cumulative effect that can alter the final result if not

corrected.

The evaluation leaves the result value in X. The other two functions return the destination control word
to X upon completion. Below you can see the program listings for these; always a beauty to behold
JM’s mastery of the RPN stack.

| 1 LBL "PCPY" | 1 LBL"PVAL" |ent't word in x
2 RCLY bbb.eeel 2 0
3 E3 3 LBL14 |
4 * 4  RCLY
5 INT " s *
6 I<>J does E3/ for integers " 6  RCLINDZ
7 SIGN puts bbb.eee in L AL
8 RDN ] 1SG Z
9 ENTERA " 9 | GTO14
10 ENTERA " 10 X<
11 LBL 06 " 11 SIGN
12 cLX " 12 RDN
13 RCL IND L " 13 END
14  STOINDY
15 ISG Y
16 CLX 1 LBL "DTC" cnt'l word in X
17 ISG L 2 LBL 05
18  GTOO06 3 RCL IND X
19  Cx 4  ABS
20 SIGN 5 E-7 threshold value
21 - 6  X<Y?
22 I<>J 7  GTOO06
23 + 8 X<>2Z
24 X<>Y 9 ISG X
25 FRC 10 GTOO05
26 I1SG X 11 E
27 INT 12 ST-Y drecrease Y
28  E5 13 o
29 / 14 STOIND Z overwrite w/ zero
30+ 15  LBLOG <«—
31 END 16 X<>Z cnt'l word to X
17  END

When using | PCPY | be careful that the register ranges for both polynomials do not overlap.
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4.3. Polynomial Root Finders.

Once upon a time there was a program called POLYN available in HP’s infamous MATH PAC. That
program was capable of calculating the roots of a polynomial up to degree *five*, which perhaps back
then when it first came out could be regarded as a remarkable affair — but by today standards certainly
isn't much to write home about.

Function Description Input / Output
1 QUART Solution of Quartic Equation Polynomial coeffs in Memory
2 PROOT Polynomial Roots Prompts for all data
3 RTSN Subroutine mode of PROOT Polynomial coeffs in Memory
4 BRSTW Quadratic Factors - Bairstow method Cnt'l word in X-reg

The SandMatrix picks up where the SandMath left things off, providing functions to calculate the roots
of the quadratic and cubic equations, ie. polynomials of degrees 2 and 3. The next step would then be
a Quartic equation, or polynomial of degree 4.

4.3.1. Quartic Equation solutions. {|QUART |}

QUART | solves the equation x*+a.x>+b.x*+c.x+d = 0

If you have a polynomial not in monic form (which leading coefficient is not 1), simply divide all the
equation by this coefficient. With this convention we can use the stack registers {T,Z,Y,X} to hold the
coefficients a, b, ¢, and d — which provides a convenient method for data input.

The method used can be summarized as follows:
First, the term in X is removed by a change of argument, leading to:
x*+p.x2+q.x+r =0 (E)

Then, the resolvant z3+p_22/2+(p2-4r).z/16-q2/64 = 0 is solved by CROOT, and if we call z; , z»,
and z; the 3 roots of this equation, the zeros of (E') are:

x= Y2 sign(-q) +/- (Y% + z3

1/2 )
X = _(211/2) Slgn(_q) +/_ ( 221/2 _ 231/2 )

Note that QUART uses R0O to R04 for scratch; therefore those registers cannot hold the polynomial.

The data output is done automatically by the program, presenting the roots as either real or complex
conjugated. This is done using the status of flags 01 and 02 as appropriate — but the user needs not to
concern him or herself with the decoding rules. The output uses function ZOUT from the SandMath,
which uses “]” to denote the imaginary unit “i”

Examplel: Solve x*-2.x°-35.x°+ 36.x + 180 = 0

-2 ENTER” , -35 ENTER” 36 ENTER”, 180, XEQ "QUART" >>>>
X1=6,000, X2=3,000

X3=-2,000 X4=-5,000
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Example2: Solve x*-5.x3+ 11.x*-189.x + 522 =0
-5 ENTER”, 11 ENTER”, -189 ENTERA, 522 , XEQ "QUART" >>>>

Z=-2+15,000 (note how true integer values don't display zeros after the decimal point)
X3=3,000, X4=3,000

Example3: Solve x*- 8.3+ 26.x*- 168.x + 1305 =0
-8 ENTER” , 26 ENTER” , -168 ENTER” , 1305, XEQ "QUART” >>>>

Z=-2+15,000 (note how true integer values don't display zeros after the decimal point)
Z=6+13,000

25-}.

20 4

15 A

r T 1
-4 —}\/2 -1 1\/2 3
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4.3.2. General case: degree N. (|PROOT| |RTSN|, [BAIRS|}

Given a polynomial P,

P(z) =Y az"", a=1 a,#0
=0

This method is based on quadratic factorizations, that is one quotient polynomial of degree 2, plus a
reminder polynomial of degree one - reducing the original degree by 2 and thereby changing the
expression as follows:

P(z) = P"(z) Q(z) + R(z); with P"(z) = [Z bi z*n-i ], i=2,1...(n-2)

This will then be repeated until the reduced polynomial P”(x) reaches degree one or two/.

Let QxX) =x"2+px+q; and
RX)=rx+s

Then the reduced polynomial coefficients are given by
bi = a(i-2) - p b(i-1) =g b(i-2) ; i=2, 3, ..., (n+2) (1)

and we have the following expressions for the coefficients of the reminder:

r = b(n+1)
s = b(n+2) + p b(n+1) (2)

clearly with both r and s depending on the p,q values — formally expressed as: r=r(p,q) and s=s(p,q).

The problem is thus obtaining the coefficients p,q of such a quotient polynomial that would cancel
the reminder (i.e. that make r=0 and s=0. This is accomplished by using an iterative approach,
starting with some initial guesses for them (p0, q0), iterating until there is no change in two
consecutive values,

r(p,g) +r=0; or: r(pq)=-r
s(pg)+s=0; or: s(pq)=-s

Expressing it using their partial derivarives it results:

dp (dr/dp) + dq (dr/8q) = -r
dq (3s/8p) + dq (3s/3q) = -s

Using the relationships (1) above, we can formally obtain the partial derivatives using the coefficients of
the original polynomial, ai. The problem will then be equivalent to solving a system of 2 linear
equations with two unknowns, dp and dq.

From equation (1) above it follows:

dbi/dp = ci = -b(i-1) = p c(i-1) = q c(i-2); i=2,3...,(n+2)
dbi/dq = c(i-1)

Making use of equation (2) to apply it for i=n we have as final expression

c¢(n+1) dp + cn dq
-qcn  dp + [c(n+1) + pcn] dqg

-b(n+1)
-[b(n+2) +p b(n+1)] 3)
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Starting with (p0=0,5; q0=0,5) as initial guesses we'll obtain dp and dq for each pair of values (p,q).
With them we adjust the previous guess, so that the new corrected values for p and q are

A\ SN/

This will be repeated until the precision factor “¢” is smaller than the convergence criteria; The
precision factor is calculated as follows:

¢ = [abs(dp) + abs(dq)] / [abs(p) + abs (q)]

The program dimensions and populates matrices [RS] and [CN] to hold the current values of p,q and
the coefficients Cn respectively:

e [RS] is the column matrix, of dimension (2x1).
e [CN] is the coefficients matrix, of dimension (2x2).

The linear system is solved as many times as iterations needed to establish the convergence. With
each factorization the program obtains two roots. This is repeated for, until all roots have been found.

Program Details.

In manual (RUN) mode | PROOT | prompts first for the order n (ie. the degree) and for each of the
coefficients sequentially. It then presents the option to store the roots into a matrix in X-Mem. To use it
you just have to press “Y” at the prompt below:

.
ST07 Y/N

r
USER a0 PRGM

All roots are stored in matrix [ROOTS], of dimension (n x 2) - with the first column holding the real
parts and the second the imaginary parts of each root (assumed complex).

The global label | RTSN | is meant to be used in subroutines. It expects the degree stored in R00, and
the coefficients stored in registers RO3 until R(3+n). Registers RO1 and R02 are used internally and

cannot be used for your data. In subroutine mode the roots will always be stored in the matrix
[ROOTS].

Example 1. Find the five roots of the polynomial below

P(x) = 2.X°+ 7.x*+ 20.x* + 81.x* + 190.x + 150

Keystrokes Display Result

XEQ “"PROOT"” “ORDER=? Prompts for the degree

5, R/S “T(@K*X~K)” Reminder of convention
“ab= ?” prompts for coeffs, showing current

2, R/S “ad4= ?"

7, R/S “a3= ?"

20, R/S “az2= ?"

81, R/S “al= ?"

190, R/S “a0= ?

150, R/S “STO? Y/N” prompts for storage option

y” “"RUNNING"”

At this point the different precision factors are shown, which shoud be decreasing as the iterations
converge towards the solutions — and this repeated as many times at quadratic factors are needed.
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The solutions are shown below (in FIX 5):
Z=-2,00000+J1,00000 and its conjugate (not shown)
Z=1,00000+13,00000 and its conjugate (not shown)
Z=-1,50000

And the matrix [ROOTS] is left in X-Mem, with 5 rows and two columns, as follows:

[-2 1]
[-2 -1]
[ROOTS]= [1 3]
[1 3]
[-1.5 01]]

To be sure it isn't the fastest method in town (typically 5-6 iterations are needed, each iteration takes a
bout one full minute at normal speeds), but it's applicable to any degree and stores the results in a
matrix — which makes it very useful as a general-purpose approach.

Bairstow Method.

A faster program is , which also uses a factorization method but does not utilize any of the
matrix functions. Therefore the solutions are just prompted to the display, but not saved into an X-Mem
file. expects the coefficients already stored in main memory, and the polynomial control word
in X . Note that they will be overwritten during the execution of the program. It uses registers R00 to
RO8 internally, thus cannot be used to store your data.

For both programs the accuracy of the solutions (and therefore their run times) depends on the display
settings.
BAIRS factorizes the polynomial

p(X) = ap.X"+a;.x"'+ ... + a,.1.x+a, into quadratic factors and solves p(x) =0 (n >1)

If deg(p) is odd, we have p(x) = (ag.X+b).(X>+U1.X+V1)........ (OC+Um.X+Vy); With m = (n-1)/2
If deg(p) is even P(X) = (aX+U1.X+V1)(CH+U2.X+V2) ure . (C+UmX+V) ; Withm = n/2

The coefficients u and v are found by the Newton method for solving 2 simultaneous equations. Then p
is divided by (x*+u.x+v) and u & v are stored into R(ee-1) & Ree respectively . The process is
repeated until all quadratic factors are found

Example 2. Solve x°-6.x°+ 8.x*+ 64.x°-345x°+590.x - 312 =0

Using | PMTP | to store the coefficients beginning in R09, thus the control word is 9,015

Keystrokes Display Result

9.015, XEQ “PMTP” “R9: "

1, ENTER, CHS, 6, ENTER”~,~8, ENTER”, 64, ENTER”, CHS, 345, ENTER”, 590, ENTER”, CHS, 312,
R/S 9,015

XEQ "BAIRS" shows precisions factors...

The solutions are: “Z=-4,000" and “Z=2,000"

“Z=2,000+13,000” and conjugate (not shown)
“Z=1,000" and "“Z=3,000"
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4.4. Extended Polynomial Applications.

A few related topics - in that polynomials are involved - even if some programs don’t make direct
utilization of matrix functions. Here too the SandMatrix complements the functionallity included in the

SadnMath. The table below summarizes them:

Function Description Input /7 Output
1 EQT Equation Display Equation number in RO0 0(1 to 15)
2 POLINT Polynomial interpolation Under program control
3a | PRMF Prime Factors decomposition Argument in X-reg
3b | PF=>X From prime factors to argument Prime factors in matrix [PRMF]
3c | TOTNT Euler’s Totient function Argument in X-reg
4 POLFIT Polynomial Fitting Under program control
5 OPFIT Orthogonal Polynomial Fit Under program Control
6a | POLZER From Poles to Zeroes Under program control
6b | PFE Partial Fractions Expansion Under program control

4.4.1. Displaying the Equations for Curve Fitting Programs {|EQT |}

As there was plenty of available space in the module, I decided to include this routine to complement
the Curve Fitting program in the SandMath (CURVE). The routine will write in Alpha the actual
equation which reference number is in register R00, ranging from 0 to 15 as per the table below:

0. Linear @1eLBL “ER" JBe| EL B2
1. Reciprocal B2 XER _IHE' ae 31 "atbLHE"
2. Hyperbola A1 AYIEM 32 BTN
3. Reciprocal Hyperbola R4 BTk I3eLBL B9
4. Power B GTO “EET 34 “atbE+(cs"
5. Modified Power AreLBL B8 35 RTH
6. Root B “atha” JoeLBL [H
7. Exponential Be IJ'-:'!' 37 'g*(bf?.:‘l'rxl:fﬂ-‘.TE:"
8. Logarithmic B3¢LEL B " 38 RTH
9. Linear Hyperbolic 1o .1",".[3)“'""" 3eLBL 11
10. 2" Order Hyperbolic RN 4 asbkeckte-
11. Parabola - s (b} :?_-‘FE'H y
12. Linear Exponential 4 ETH b :a;f'b;'
14 Log Normal IS8 ¥ @
15 Cauchy 16 “£/Caxth)* 43eLBL 13
17 1M 46 "aet(((X-h42irg-
IBHLEL @4 47 "y
19 =354 -
Note that _dogs not perform any 28 F,?L?ﬂ' ::,SE 14
calculations, thus it's just an embellishing  zysipL 85 S8 =30 ((h-LHEI42)
addition to CURVE. 77 =abti" 51 *krche
3 RTH 52 ETH
The original listing was originally 24+LRL BE SIeLBL 15
published in the AECROM manual, and it's 25 wahti s 54 " 1/((a0N+b P 4c"
reproduced here practically unaltered. 26 RTH 55 -fyn
ZT+LEL B7 5% ETH
28 maet(bEl" 57 EHD
29 BTN
(c) Angel Martin - August 2013 Page 77




SandMatrix_4 Manual

4.4.2. Polynomial interpolation. {|POLINT |}

The program | POLINT | follows the Aitken’s interpolation method. 1It's an elegant simple
implementation and a nice example of utilization of the capabilities of the platform. It was written by
Ulrich K. Deiters, and it is posted at: _http://www.hp41.org/LibView.cfm?Command=View&ItemID=600

The program performs polynomial interpolations of variable order on (xi, yi) data sets, with the order
determined by the number of data pairs. It is applied as follows:

- You have a set of (xi, yi) data pairs. The xi are all different, and they need not be equidistant.

- You need to know the y value at the location x, which is not one of the xi.

- You start the program XEQ "POLINT"
and enter x at the prompt. X, R/S
- Then you enter the first data pair, x0, R/S
preferably one which has an x_i close to x. y0, R/S

The program returns y0.

- You enter another data pair. R/S
The program returns the results of a linear x1, R/S
interpolation. v1l, R/S

- You enter another data pair. R/S
The program returns the results of a x2, R/S
quadratic interpolation. y2, R/S

- You enter another data pair. R/S
The program returns the results of a cubic x3, R/S
interpolation. v3, R/S

- ... and so on, until you exceed the SIZE of your calculator.

Going beyond the cubic interpolation is seldomly useful. High-order interpolations become increasingly
sensitive to round-off errors and inaccuracies of the input data.

The number of data registers used depends on the order of the interpolation. An nth order interpolation
(which uses n+1 pairs of data) occupies the registers R00 to R(2n+4), e.g., a cubic interpolation needs
all registers up to R10.

If a printer is connected, the interpolation results are printed out, and the "empty" R/S entries are not

required.

Example. Given the table below with a set of vapor pressure data for superheated water, what is the
vapor pressure at 200 °C (= 473.15 K)?

T/K 380 400 450 480 500 530 560

p/MPa 0.12885 | 0.24577 ] 0.93220 | 1.7905 2.6392 4.4569 7.1062

Here’s the sequence followed to resolve it.
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input display
XEQ "INTPOL" X=?

473.15, R/S X0="?

480, R/S Y0=?
1.7905, R/S Y = 1.79050
R/S X1="?

450 ,R/S Y1=?
0.9322, R/S Y = 1.59452
R/S X2="?

500, R/S Y2=?
2.6392, R/S Y = 1.55067
R/S X3="?

400 ,R/S Y3="?
0.24577, R/S Y = 1.55453
R/S X4=?

530, R/S Y4=?
4.4569, R/S Y = 1.55495

linear interpolation

quadratic interpolation

cubic interpolation

4th order

From this we conclude that 1.55 MPa is a reasonably good estimate; and that the linear interpolation
was certainly not sufficient. Incidentally, the true value is 1.554950 MPa..

The program listing is shown below.

[ 1 LBL "POLINT" |
T2 FC? 55
o3 SF 21
"o nx=p"

F 5 PROMPT
" 6 STO 00
o7 3,05
"8 STO 01
[ 9 LBL 01

T 10 RCL 01
Foon INT

" E
"3 -
Y E3/E+

" 15 3

" 16 +

" 17  st002
T RCL 01
"1 INT

" 20 3
o1

" 22 -
T3 /
Y nyr
"o AIP

" 2 "|-=p"
Y, PROMPT
Y RCL 00
L) -

" 30 STO IND 01
T3 ISG 01
V) y

xvalue of point

k

k-1
1,00(k-1)

4,00(k-1)

k-3

prompts for Xk

33 XY

" 33 AP

" 35 Xeov

o3 -=pn

Y/ PROMPT prompts for Yk
" 338 DSsEo02

¥ 39 Groo02

[ 40 1BLO3

" 41  RCLIND 02
"o+

¥ 43 LASTX

" 4 RoLZ

o4

" 46 I1sG02

" 47  RCLIND 02

" 48 LASTX

o4 #

" 50 sT-2

" 51 LASTX

" 52 RDN

" 53 RDN

" s4a

[ 55 1BLO2 <«—
" 56  STOIND 01

" 57 I1sGo2

" 58 GroO03

" 59 my=r

¥ 60  ARCLX

" 61 AVIEW

" 6 Isco1

i 63 GTO 01 next order
" 64 END done
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PF>X

4.4.3. Prime Factors Decomposition { | PRMF| , TOTNT | 3}

This section describes the three functions provided in the SandMatrix related to Prime factorization.

Function Description Input / Output
1 PRMF Prime Factors (Matrix Form) Argument in X-reg
2 PF>X From Factors to Number Prime factors in Matrix file
3 TOTNT Euler’s Totient function Argument in X-reg

The first one extends the basic prime factorization capability in the SandMath, PFCT. The
difference is that whereas PFCT only uses the Alpha register to output the result (as Alpha string), here
the prime factors and their multiplicities are also stored in a matrix in X-Mem - named [PRFM]. This
ensures that no information will be lost (scrolled off the display if the length exceeds 24 char), and also
provides a permanent storage of the results.

You can use to check the result: it re-builds the original argument from the values in the
[PRMF] matrix, using the obvious relationship:

x = [1 PFGi) ~m(i) ; for i=1,2... primes

Euler’s Totient function.
In number theory, Euler's totient or phi function, ¢(n) is an arithmetic function that counts the totatives

of n, that is, the positive integers less than or equal to n that are relatively prime to n. The graphic
below shows (well, sort of) the first thousand values of ¢(n)

1000
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600

()

400

200

0 200 400 600 800 1000

Examples. Calculate the prime factors and the totient for the following numbers:

n PE phi

1,477 7%211 1,260
819,735 3*¥5x7%37*211 362,880
123,456 2°N6*3*%643 41.088,000
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The programs are listed below. There’s no fancy algorithm for | TOTNT |, it just counts the number of
prime factors after doing the decomposition as a preliminary step.

| 1 LBL "TOTNT" | Euler's Totient Function 55 GTO03 | skip if yes
2 SF 04 flag case 56 ST/L divide number by PF
3 XEQ 10 get all Prime Factors 57 LASTX Reduced number
s N 58  GTO00 loop back
5 MSl sets pointer to 1:1 59 LBLO3 < — |Store Exponent
6 X<>Y argument to x 60 RCL 00 recover PF
7 LBL 07 | 61 MSR+ store in matrix
8 MRC+ get element 62 GT001 — > next factor
9 1/x invert it 63  LBLO2 | New PF found
10 CHS sign change 64 STO 01 Store for comparisons
11 65 RCL 00 previous exponent
12 add 1 66 MSR+ Store Old PF Exponent
13 * multiply 67 RDN
14 FC? 09 end of row? 68 ST/ L divide number by PF
15 GTO 07 loop back 69 LASTX Reduced number
16 CLD refesh display 70 DIM?
17 RTN done. 71 X<>2Z Bring the new PF back
| 18 LBL "PRMF" |Prime Factors 72 MSR+ store new PF
19 CF 04 flag case 73 FS?C 00 Was it Prime?

[ 20 BL1O | 74  GTO01 —> Bail Out, we're done
21 "PRMF" 75 X<>Y Bring the number back
2 " 76 GTOO05 Start Over
23 E3/E+ 1,002 77 LBL "PF>X" |Rebuild number
24 MATDIM Create Matrix 78 SF 04 flag case
25 CLX 79 "PRMF" matrix name
26 MSUA sets pointer to 1:1 80 SF 10 fake condition
27  RDN argument to x 81  LBLO1 | PF completed
28 CF 00 default: not prime 82 E "1
29 INT condition x 83 FC? 10 end of matrix?

30 ABS to avoid errors 84 MSR+ store it as last exp.

31 PRIME? is it prime? 85 STO 00 initial value

32 SF 00 FIRST PF found 86 MSUA sets pointer to 1:1

33 MSR+ Store this PF 87 CLA Clean Slate

34 X=1? is PF =1? 88 LBL 06 |Rebuild the number

35 GTO 01 yes, leave the boat 89 MRR+ get prime factor

36 FS?C 00 Was it Prime? 90 FC? 04 if not totient case

37 GTO01 ——> if Prime, we're done 91 AIP add it to Alpha

38 STO 01 Store PF for comparisons 92 MRR+ get multiplicity

39 ST/ L divide number by PF 93 FC? 04 if not totient and/

40 LASTX Reduced number 94 X=1? or if it is one

41 LBL 05 | 95 GTO 04~ | skip adding to Alpha

42 E reset counter 96 "[-A otherwise put symbol

43 STO 00 97 AlP and add it to the string

44 RDN 98  LBLO4 €

45 LBL 00 99 YAX PFAExp

46 RCL 01 recall PF 100 ST* 00 Rebuilding the number

47 X<>Y Reduced number 101 FS?10 End of Array?

48 PRIME? isitprime? 102 GTO 04~ | yes, leave the boat

49 SF 00 PF found 103 FC? 04 if not totient case

50 X#Y? Compare this and old PF's 104 - append symbol

51 GTO 02 skip over if different 105 GTO 06 next PF

52 ISG 00 Same One [ 106 1BLO4 <— |

53 NOP Increase counter 107 RCL 00 final result

54 FS?C 00 Was it Prime? 108 FC? 04 if not totient case
109 AVIEW Show the construct
110 END done.
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4.4.4. Polynomial Fitting {|POLFIT |}

The next program is taken from Valent'in Albillo article “Long Live the Advantage ROM’' - showcasing
the matrix functions included in it. As one can expect from that reference, it's an excellent example and
therefore more that worth including in the SadnMatrix.

The original article is partially reproduced below — it is so well described that I could not resist adding it
practically verbatim.

is a small, user-friendly, fully prompting 62-line program (124 bytes) written specifically to
demonstrate the excellent matrix capabilities of the Advantage ROM. can find the coefficients
of a polynomial of degree N which exactly fits a given set of N+1 arbitrary data points (not necessarily
equally spaced), where N is limited only by available memory.

Among the many functions we could fit to data, polynomials are by far the easiest to evaluate and
manipulate numerically or symbolically, so our problem is:

Given a set of n+1 data points (x1, y1), ..., (xn+1, yn+1), find an Nth-degree polynomial
y=P(X)=al+a2x+a3x2+a4x3+..+an+lxn

which includes the (n+1) data points (x1, y1), (X2, y2), ..., (xn+1, yn+1). The coefficients (al, ...,
an+1) can be determined solving a system of (n+1) equations:
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Program listing

o1 LBL "POLFIT" | to use, simply XEQ "POLFIT"

02 "N=?" prompts for the degree N of the polynomial

03 PROMPT .. and waits for the user to enter N

04 1 add 1 to get the number of data points

05 + N+1

06 1.001 the required multiplier

07 * forms the matrix dimensions [N+1].00[N+1]

08 "MX" specifies matrix MX to be created in X-Mem

09 MATDIM creates and dimensions matrix MX in X-MEM

10 0 specifies first row, first column and ..

11 MSIJ .. resets the row/column indexes

112 LBL 00 | loop to ask for data & compute MX elements

13 MRI1J recalls the current value of the indexes

14 X" forms the prompt to ask the user to enter xi

15 AIP appends the index to the prompt

16 -=2" appends “=?" to the prompt

17 PROMPT prompts to enter xi and resume execution

18 ENTERAN fills the stack with the value of xi ..

19 ENTERAN in order to compute all powers of xi ..

20 ENTERAN from 1 to xi”*n and store them in MX

21 1 initializes the value of xi™0 [i.e.: 1]

22 MSR+ stores it in MX and updates the indexes
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Notes

23 LBL 01 | loop to compute the powers of xi 24 * computes Xi®j
25 MSR+ stores it in MX and updates the indexes
26 FC? 09 are we done with this row ?

27 GTO 01 not yet, go back for the next xi power

28 FC? 10 row done. Are we done with all rows?

29 GTO 00 not yet, go back to ask for the next xi

30 CLA all rows done, MX complete. Make it current
31 DIM? get its dimensions: [N+1].00[N+1]

32 INT get N+1 (avoid using a register)

33 "My" specify vector MY to be created in X-MEM
34 MATDIM creates and dimensions vector MY in X-MEM
35 LBL B ask for yi data and store them in MY

36 0 specifies 1st element of the vector and ...
37 MSIJ .. resets the index to the 1st element

38 LBL 02 | loop for next data and store them in MY
39 MRI1J recalls the current value of the index

40 "y forms the prompt to ask for vyi

41 AIP .. appends the index to the prompt

42 "-=2" appends “=?" to the prompt

43 PROMPT prompts the user to enter yi

44 MSR+ stores it in MY and updates the index

45 FC? 10 are we done with all elements?

46 GTO 02 not yet, go back to ask for the next yi

47 "MXMY" all yi stored. Specify MX,MY for the system
48 MSYS solves the system for the coefficients

49 LBL C retrieve and display each coeff.

50 0 specifies 1st element of the coeffs. vector
51 MSI1J resets the index to the 1st coefficient

52 LBL 03 | loop to retrieve the next coefficient

53 MRIJ recalls the current value of the index

54 "A" forms the prompt to display each coeff.

55 AlP .. appends the index to the prompt

56 "-=" appends “=" to the prompt

57 MRR+ retrieves the value of the current coeff.

58 ARCL X appends the value to the prompt

59 PROMPT shows the value to the user

60 FC? 10 are we done outputting all the coeffs?

61 GTO 03 not yet, go back for the next coefficient
62 END all done. End of execution.

As the Advantage ROM can work with matrices directly in X-Mem, | POLFIT | doesn't use any
main RAM registers and so it will run even at SIZE 000. This has the added advantage (pun
intended) of avoiding any register conflicts with other programs.

POLFIT creates two matrices in X-Mem, namely [MX] and [MY], which aren't destroyed upon
termination. Retaining [MX] allows the user to compute the coefficients of another polynomial
using the same x data but different y data. In that case, the x data need not be entered again,
only the new y data must be entered. Further, as the MX matrix is left in LU-decomposed form
after the first fit, the second fit willproceed much faster. Retaining [MY] allows the user to
employ the polynomial for interpolating purposes, root finding, numeric integration or
differentiation, etc.

Lines 2-11 prompt the user for the degree of the polynomial, then allocate the system matrix in
Extended Memory (MATDIM) and reset the indexes (MSI1J).
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e Lines 12-22 set up a loop that will fill up the rows of [MX]. Notice the use of the miscellaneous
function AIP to build the prompt, and MSR+ to store the value and automatically advance the
indexes to point to the next element.

e Lines 23-27 form a tight loop that computes each power of xi and uses MSR+ to store it and
advance the indexes. Flag 9 logs if were done with the column in which case we would
proceed to the next row. If so, Flag 10 is then checked to see if we're done with all the rows.

e Once the system matrix has been populated, lines 30-45 do likewise dimension, and populate
the MY matrix, prompting the user for the required yi values. Then, once all the data have
been input and both matrices are allocated and populated, lines 46-47 solve the system for the
coefficients of the polynomial using MSYS.

e Finally, lines 48-59 establish a loop that labels and outputs all the coefficients.

Example

Rumor has it that the seemingly trigonometric function y = cos(5 arccos x) is actually a 5th-degree
polynomial in disguise. Attempt to retrieve its true form.

If it is indeed a 5th-degree polynomial, we can retrieve its true form by fitting a 5th-degree polynomial
to a set of 6 arbitrary data points (x,y). Any set with different x values (-1.0 <= x <= +1.0) will do, but
for simplicity’s sake we'll use x=0, 0.2, 0.4, 0.6, 0.8, and 1. Proceed like this:

- set Rad mode, 4 decimals: XEQ “RAD”, FIX 4

- start the program: XEQ “POLFIT” “N=?"

- specify degree 5: 5R/S “X1=?"

- enter 1st x value: 0R/S “X2=?"

- enter 2nd x value: 0.2 R/S “X3=?"

- enter 3rd x value: 0.4 R/S “X4=?"

- enter 4th x value: 0.6 R/S “X5=2?"

- enter 5th x value: 0.8 R/S “X6=?"

- enter 6th x value: 1R/S “Y1=2?"

- enter 1st y value: 0, ACOS, 5, *, COS, R/S “Y2=2?"

- enter 2nd y value: 0.2, ACOS, 5, *, COS, R/S Y3=?"

- enter 3rd y value: 0.4, ACOS, 5, *, COS, R/S “Y4=?"

- enter 4th y value: 0.6, ACCS, 5, *, COS, R/S “Y5=?"

- enter 5th y value: 0.8, ACOS, 5, *, COS, R/S “Y6=2"

- enter 6th y value: 1, ACOS, 5, *, COS, R/S “al=-1.0250E-9"
R/S “a2=5.0000"
R/S “a3=7.0867E-8"
R/S “a4=-20.0000"
R/S “a5=2.6188E-7"
R/S “a6=16.0000"

So, disregarding the very small coefficients due to rounding errors, the undisguised polynomial is:
P(x) = cos(5 arccos x) = 5 x =20 x*3 + 16 x5
You might want to execute now CAT"4 (or EMDIR), to see that the matrices used are still available so

that you can redisplay the coefficients, solve for a new set of y values, or use the polynomial for
interpolation, etc.

CAT”4 “MX M036"” [the system matrix is 6x6 = 36 elements]
“MY M006" [the coeff. matrix is 6x1 = 6 elementss]
554.0000 [this value varies with your configuration]
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4.4.5. Orthogonal Polynomial Fit. {|OPFIT |}

Orthogonal polynomials are a very advantageous method for polynomial regression. Not only it allows
for a more progressive approach, but also the accuracy of the values so obtained is typically better.
This program employs this method; even if it doesn't calculate any orthogonal polynomials explicitely.

Given m value pairs (xi, yi) and a maximum degree to explore (n), this program calculates the
n(n+3)//2 polynomial coefficients of the corresponding n polynomials of degrees 1, 2, 3,... n that best
fit the given data (therefore equivalent to the least squares method). It also obtains the determination
coefficients and typical errors for each degree,

The method followed uses the construct Y(x) = dO PO(x) + d1 P1(x) + ... dn Pn(x) ; where p0,
pl, ... pn are the orthogonal polynomials corresponding to the entered data that satisfy the expression

2pi Pj = 0, for every i#j

The advantage of this approach is a better accuracy, as it avoids the resolution of the usual n linear
systems, frequently ill-conditioned, that arise in the least squares method.

Example.- To check the program we took the following 11 value pairs from the polynomial

P(X) = x™N4 — 2X"3 + 3x™N2 -4 x +5

Xi -3 -2 -1 0 1 2 3 4 5 6 7560

Yi 179 57 15 5 3 9 47 165 435 953 | 1839

Using the data above explore up to degree n=4, showing the correlation coefficients, the D-factors and
the errors for each of the alternatives.

The results are all provided in the table below:

Degree (n)

Corrlt. (r™2)

Errors (en™2)

Determ. (d™2)

Coefficients

R1=4,482218E-1

E0=3,295160E5
E1=1,818197E5

D0=3,370000E2
D1=1,228000E2

a0=9,140000E1
al=1,228000E2

R2=9,000134E-1

E2=3,294720E4

D2=4,000000E1

a0=-1,486000E2
al=-3,720000E1
a2=4,000000E1

R3=9,821452E-1

E3=5,883429E3

D3=6,000000E0

a0=1,700000E1
al=-7,200000E1
a2=4,000000E0Q
a3=6,000000E0

R4=1,000000E0

E4=0,000000E0

D4=1,000000E0

a0=5,000000E0
al=-4,000000E0
a2=3,000000E0
a3=-2,000000E0
a4=1,000000E0Q

Original author: | OPFIT | was written bu Eugenio Ubeda, and published in the UPLE. The version in the
SandMatrix has only minimal changes made to it. It is by far the longest program in the module.
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4.4.6. From Poles to Zeros... and back. {| POLZER

PFE|}

These two programs complete the applications section. The first one calculates the zeros of a
polynomial expressed as a partial expansion of factors, as would typically be the case when working
with transfer functions in control theory. The second program builds the partial fraction expansion for a
polynomial given it its “standard” (or natural) form.

Function Description Input / OQutput
1 POLZER Zeros of transfer functions Under program control
2 PFE Partial Fraction Expansion Under program control

This program calculates the polynomial coefficients and roots of expressions such as:

P(X)=% [1/ (x-pi)];i=1,2,..n

Which will be transformed into:

P(X) =% aix™i; i=0,1,.. (n-1)

The coefficients are obtained using the following formulae:

a(n-1) =n

a(n-2) = (n-1) X pi

a(n-3) = (n-2) X X pi pj

a(n-4) = (n-3) £ X X pi pj pk

a(n-5) = (n-4) £ X X X pi pj pk pl
a(n-6) =(n-5) XX XX X pi pj pk pl pm

in general the n-th. coefficient would require the calculation of n-dimensional product sums. However
the program |POLZER | is limited to expressions up to 7 poles max. (resulting in 6 zeroes).

Example.- To study the stability of the transfer function below, calculate its roots.

G(s) = 1/s + 1/(s-1) + 1/(s-2) + 1/(s-3) + 1/(s-4)

Keystrokes Display

XEQ “"POLZER" #POL=?

5, R/S P(1)=?

0, R/S P(2)="

1, R/S P(3)=?

2, R/S P(4)=?

3, R/S P(5)=?

4. R/S YIS 2 YD 3 YD) ) ) Y
“CFS? Y/N”

“y” a(4)=5,00000

R/S a(3)=-40,00000

R/S a(2)=105,00000

R/S a(1)=-100,00000

R/S a(0)=24,00000

Therefore the “natura

G(s) =5s"4-40s"3 + 105s72—-100s + 24

|ll

polynomial form is as follows:
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Next the execution is transferred to | RTSN | , which will calculate the roots following the iterative
process explained in section 4.3.1. Remember that the accuracy is dictated by the number of decimals
places set .

R/S “RUNNING...”
R/S Z=0,35557
R/S Z=1,45609
R/S Z=2,54395
R/S 7=3,64442

POLZER | is also rather long — and dates back to the days the author attended EE School many moons
ago, so I'm somehow attached to it.

4.4.7. Partial Fraction Decomposition

In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is
a fraction such that the numerator and the denominator are both polynomials) is the operation that
consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions
with a simpler denominator.

In symbols, one can use partial fraction expansion (where f and g are polynomials) to change
expression forms as shown below

glx) L., T el

where gj (x) are polynomials that are factors of g(x), and are in general of lower degree. Thus, the
partial fraction decomposition may be seen as the inverse procedure of the more elementary operation
of addition of rational fractions, which produces a single rational fraction with a numerator and
denominator usually of high degree. The full decomposition pushes the reduction as far as it will go: in
other words, the factorization of g is used as much as possible. Thus, the outcome of a full partial
fraction expansion expresses that fraction as a sum of fractions, where:

the denominator of each term is a power of an irreducible (not factorable) polynomial and the
numerator is a polynomial of smaller degree than that irreducible polynomial. To decrease the degree
of the numerator directly, the Euclidean division can be used, but in fact if f already has lower degree
than g this isn't helpful.

Implementation

POLZER may be an old program but is @ much more modern event, written by JM Baillard and
published at:  http://hp41programs.yolasite.com/part-frac-expan.php

Given a rational function R(x) = P(x) / Q(x) with Q(X) = [ qu(x) ! cevrrvennee. [g.(x) "™ and
gcd(gi, ;) =1 foralli#j, thisprogram returns the partial fraction expansion:
RO) = E(X) + P11 /[ 60 I* + p1a(x) / [ (¥) 7 + o + Prp1(X) / qu(x)

+ Do, () / [an() ™ + o) / [ Gn() ™+ o + Prun(X) / Qn(X)
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where deg pix < deg g;, and E(x) is the quotient in the Euclidean division P(x) = E(x) Q(x) + p(x)
and p(x) is the remainder.

Data entry is a complicated affair but it has been automated — just follow the process carefully.
It makes extensive use of the polynomial arithmetic routines [ PPRD | and [ PDIV |. Also the polynomial

entry routine | PEDIT | is called several times...

The program prompts for the number of factors in the denominator, as well as for their degrees and
multiplicities. It also prompts for the coefficients of the numerator polynomial and of each factor
polynomial in the denominator; so you don’t need to store those values manually prior to executing
PFE.

Data output is not automated; therefore you'd need to interpret the control words returned in stack
registers. Some guidelines will follow in the examples.

Examplel. Calculate the partial fraction decomposition for R(x) below.

R(X) = P(X)/Q(X) = (6X°-19x* +20x>-7x*+7x+10) /[ (2x*+x+1).(x-2)*]

Keystrokes Display Result

XEQ “PFE” “#DEN=?" Input number of factors

2, R/S “NUM#=?" inputs degree of numerator

5, R/S “T(@K*X~K)” Reminder of convention
“ab= ?” coefficients data entry

6, R/S “a4= ?"

19, CHS, R/S “a3= ?"

20, R/S “a2= ?

7, CHS, R/S “al1=?"

7, R/S “a0=?"

10, R/S “Ql#=?" Input degree of Q1 in den.

2, R/S “T(@K*X~K)” Reminder of convention
“a2=?"

2, R/S “al=?"

1, R/S “a0=?"

1, R/S “Q2#=?"

1, R/S "2 (aK*X~K)" Reminder of convention
“al=?"

1, R/S “a0="?

2, CHS, R/S “XPAL” time to enter the multiplicities now
“al= ?" exponent of first factor

1, R/S “a0= ?" exponent of second factor

2, R/S flying goose... beep sounds
“E(x)"” informs that E(x) follws
"2 (aK*X~K)"” Reminder of convention
“a1=3"

R/S “a0=1" end of data output.

There are three control words placed registers R05, R06, and R15 upon completion, as follows:
1. The cnt'l word stored in R15 is for the Quotient polynomial, E(x)

2. The cnt'l word in RO5 gives the entire register range for the coefficients of all the pi(x)
polynomials — the numerators of the expanded fractions. It needs to be interpreted depending
on the denominators qi(x) are polynomials of degree 1 or polynomials pf degree 2 with
negative discriminant. The contents of these registers are to be read
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e bygroups of 1 numberif deggj=1 the numerators are constants
e by groups of 2 numbers if deg gj =2 the numerators are polynomials of degree 1
e by groups of 3 numbers if deg qj = 3 the numerators are polynomials of degree 2, and
soon ...
3. The third in RO6 is for an alternative solution using a new reminder p(x)
Thus in this case registers R16 and R17 contain the coefficients for ;
And registers R33 — R36 for the denominator polynomials: (which must be three of them!)
pl,1(x) =2x+3; p2,1(x)=4; p2,2(x)=5

Thus the final result is as follows:

R(X) = E(X) + p1,1(X) /(2x"2 + x +1) + p2,1(X) / (x-2)"2 + p2,2(Xx) / (x-2)

Or alternatively using the data in registers R18 — R21 (cnt'l word in Z):
p(x) = 12 X3 — 12x~2 — 5x +6 ; and thefore:

R(X) = E(x) + p(x) /Q(x)

Example 2.- Calculate the partial fraction decomposition for R(x) below.
R(X) = P(x)/Q(X) = X5 /(3 x"2 +1)2

The three control words returned are:

Z: 18.021 with: R18=-2/3, R19=0, R10 =-1/9, R21 =0
Y: 28.031 with R29=1/9, R29=0, | R30=-2/9, and R31=0
X: 16,017 with: R16 =1/9and R17 =0

The range in Y must be split as p1,2 = x/9 x + 0; and p2,2 =-2x/9 + 0
Therefore:
R(x) = E(X) + p1,2(x)/(3X"2 + 1)"2 + p2,2(x)/(3x"2 + 1)

All in all a powerful program, which flexibility requires some careful attention to the details involved.

Note:- you can check another Partial Fraction expansion program (by Narmwon Kim) available at the
HP-41 archive site, which features a simpler user interaction and data entry/output, but at the expense
of more limited functionality. It is also less general-purpos, and more geared towards control system
applications.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=776
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Appendix —M. MCODE listings for | LU? | And | "MROW | .

There are a few new M-Code functions in the SandMatrix that make direct usage of the module’s
subroutines. A representative example is given below, showing the very short routine LU? — that checks
whether the matris is in its decomposed form — simply by reading the appropriate digit in the matrix
header register.

1 LU? Header ASFA  O0BF e

2 Lu? Header AsFB 015 "wu”

3 LU? Header ASFC  00C "L"

4 Lu? [Lu? AseD 379 PORT DEP: Jumps to Bank_2
5 LU? ASFE 03C XQ adds "4" to [XS]
6 LU? ASFF 1D9 ->A5D9 [LNCHO]

7 Lu? A600 |[388 <parameter> B788

8 LU? A601 00B JNC +01

9 LU? A602 '100 ENROM1 restore bank-1
10 LU? A603  0BO C=N ALL header register
11 LuU? A604 25C PT=9 LU digit

12 LU? A605 '2E2 ?CH#0 @PT

13 LU? A606 0B9 ’NCGO False

14 LU? A607 05A ->162E [SKP]

15 LU? A608 065 ?NCGO True

16 LU? A609 05A ->1619 [NOSKP]

Lastly, and just in case you though that functions PMTM and PMTP are actually not a big deal (which
would be the logical conclusion if you only look at their FOCAL program listing) — here is in all its gory
detail the listing for its MCODE-heart, function ~“MROW.

I'll spare you the more onerous details, but suffice it to say that it was an involved assignment. And
don't forget that another function is also used to support the matrix prompt mode: ANUMDL - although
in this case I just had to copy HP’s code from the HP-IL Development Module (thanks HP! :-)

1 AMROW Header B658 097  "W"

2 AMROW Header B659 OOF "o"

3 AMROW Header B65A 012 "R" Input Matrix Row

4 AMROW Header B65B 00D "mM"

5 AMROW Header B65C 01E A Angel Martin

6 AMROW |"MROW B65D 0C4 CLRF 10 start anew: no CHS yet

7 AMROW B65E "184 CLRF 11 start anew: no commas yet

8 AMROW B65F 344 CLRF 12 start anew: no digits yet

9 AMROW B660 OF8 READ 3(X)

10 AMROW B661 070  N=CALL

11 AMROW B662 345 PNCXQ Clears Alpha

12 AMROW B663  [040  ->10D1 [CLA]

13 AMROW B664 215 ’NC XQ Build Msg - all cases

14 AMROW B665 OFC ->3F85 [APRMSG2]

15 AMROW B666 212 "R"

16 AMROW B667 iOBO C=N ALL row number in BCD format i
17 AMROW B668 137C RCR 12 move the MSB to C{0) '
18 AMROW B669 121C PT=2 !
19 AMROW B66A 1010  LD@PT-0 !
20 AMROW B66B  12D0 LD@PT-B add colon to digit !
21 AMROW B66C i'358 WRIT 15(e) write it in display (9-bit) |
22 AMROW B66D 355 PNCXQ blank space to LCD

23 AMROW B66E 03C ->0FD5 DSPL20

24 AMROW B66F Input List in Alpha

25 "MROW B670 [ALIST]

Not such a big deal, you keep saying? Well, let’s have a look at the remaining part in the Libary+#4
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1 ALIST |BCKARW 44CD Delete char plus logic

2 ALIST 44CE [DELCHRI

3 ALIST [ausT aace [115 PNCXQ Partial Data Entry!

4 ALIST 44D0  |038 ->0E45 [NEXT1]

5 ALIST 44D1  3E3 INC -04 —— [BCKARW]

6 ALIST 44D2  00C ?FSET 3 numeric input?

7 ALIST 44D3 093 INC +18d ——— NO, KEEP LOOKING

8 ALIST 44D4 fOBE __ A<>CMS ___ __ N S recall LS digit from A[13] ___ __ /

9 ALIST 44D5 {130 LDI S&X 1

10 ALIST 44D6 4003 CON: _ . S U N pre-load the numeric mask ____|

11 ALIST 4407 |l2Frc RCR 13 move it to C[S&X] !

12 ALIST 44D8 | 3E8 WRIT 15(e) write it in display (9-bit) |

13 AUST 44D9 (348 SETF 12 enable SPACE |

14 ALIST TOALPH 44DA  [39C PT=0 <

15 ALIST 44DB {058 G=C @PT,+ i

16 ALIST 44DC /149 PNCXQ Disable PER, enable RAM i

17 ALIST 44DD 1024 ->0952 [ENCPOO] /

18 ALIST 44DE 1051 PNCXQ |

19 ALIST aspF | oBa ->2D14 [APNDNW] !

20 ALIST GOBACK 44e0 o042 C=0 @PT !

21 ALIST 441|058 G=C @PT,+ reset PTEMP bits I

22 ALST 44E2  (3D9 NC XQ Enable Display (not cleared) [

23 ALIST 44E3  (01C ->07F6 [ENLCD] 1

24 ALIST ANCHOR1 44E4  [358B INC -21d ONEPROMPT i

25 ALIST A4E5 28C ?FSET 7 D S decimal key pressed?

26 ALIST 44E6 INC +07

27 ALIST 44E7 118C ?FSET 11 been used already? !

28 ALIST 44E8 | 3E7 Jc-04 ONE PROMPT !

29 ALIST 44E9 ! 188 SETF 11 no more radix (unless deletion) l

30 ALIST 44EA adds proper radix sign

31 ALIST 44E8 [RADIX4]

32 ALIST ANCHOR2 44EC (373 INC -18d [TOALPH] ]

33 ALIST 44ED  OBO C=N ALL PRESSED KEY CODE

34 AUST 44EE 106 A=CS&X | I

35 ALIST 44EF i130 LDl S&X |

36 AUST 44F0 1030 CON: _ _ __ __ . do ENTER” keycode [030] __ __ _

37 ALIST 44F1 366 PA#C S&X

38 ALIST 44F2  04F  Jc+09  —1 | | | ]

39 ALIST A4F3 ! 34C ?FSET 12 digits input already? ‘,

40 ALIST ANCHOR1 44F4 | 383 INC -16d ONE PROMPT !

41 ALIST 44F5 ! oc4 CLRF 10 clear CHS flag !

42 ALIST 44F6  |184 CLRF 11 allow RADIX f

43 AUST 44F7 (344 CLRF 12 set SPACE flag '

44 ALIST 44F8 (355 PNC XQ add space to LCD

45 ALIST 44F9  |03C ->0FD5 [DSPL20]

46 ALIST 44FA 1393 INC -14d > add to Alpha 1

47 ALIST 44FB 1130 LDl S&X  <«—— |

48 ALIST 44FC 1370 CON: i ._._._.E/_S_’@EQ"’_E[-*JQ]_________!

49 ALIST 44FD ,.'366 PAH#HC S&X terminate digit entry

50 AUST 44FE  07B _ INC +15d ———— | _|___ [[WAvouT] __ __ __ __ __ __

51 ALIST a4rF 130 LDI S&X |

52 AUST 200 230 _ con: . Lo _._|cHskeycode [230) _ _ _ |

53 ALIST 4501 366 PAHC S&X

54 ALIST (1502 023 INC +04 —

55 ALIST 4503 265 PNCXQ Blink Display - pass #2

56 ALIST 4504 [020 ->0899 [BLINK1]

57 ALST 4s0s 378 NC-17d > | ONEPROMPT _

58 ALIST 4506 |occ PFSET10 < been used already? ]

59 ALIST (4507 |3F7 Jc -02 ONE PROMPT !

60  ALIST 4508 |ocs SETF 10 irst time I

61 ALIST 4509 130 LDI S&X [

62 ALIST 450A (02D appends "-" 1

63 ALIST 450B i:a'Es WRIT 15(e) 9-bit LCD write i

64 ALIST 450C 1303  UNC-32d T——1— | [TOALPH] _

65  ALIST [wavout 4500 |30D NCXQ Left-justify LCD L
1t i — ] (/) C ->2BF7 [LEFTJ]
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67 ALIST 450F Clear LCD and reset things

68 ALIST 4510 [EXIT3]

69 ALIST 4511 Adjust F10 Status

70 ALIST 4512 [ADJF10]

71 ALIST 4513 31D ?NC GO Normal Function ReturnkB

72 ALIST 4514 002 ->00C7 [NFRKB]

73 ALIST DELCHR 4515 3B8 READ 14(d) to delete rightmost chr

74 ALIST 4516 158 M=C ALL save it for later

75 ALIST 4517 149 PNC XQ Disable PER, enable RAM

76 ALIST 4518 024 ->0952 [ENCPOO]

77 ALIST 4519 178 READ 5(M)

78 ALIST 451A 2EE ?CHO ALL anything in Alpha?

79 ALIST 451B 037 JC +06 I yes, go on

80 ALIST 451C 104 CLRF 8 no, abort if empty

81 ALIST 451D 1B1 PNC XQ Mainframe Message

82 ALIST 451E 070 ->1C6C [MSGA]

83 ALIST 451F 03C "NULL" from table

84 ALIST fixed bug l4520 37B JNC -17d Reset everything and leave

85 ALIST 4521 remove last Alpha char

86 ALIST 4522 [ABSP4]

87 ALIST M523 198 C=M ALL recall deleted char value

88 ALIST f4524 "06 A=C S&X store in A for comparisons

89 ALIST I'4525 130 LDI S&X check for SPACE

90 ALIST M1526 020 "space” <space>

91  AUST 2527 [0 Q omplete the log

92 ALIST M4528 4 4528 4

93 ALIST 2529 8 0 epeat the promp

94 ALIST 452A 44E0 OBA

95 ALIST CHUNKA4 452B 1366 PAHC S&X carry if different J
96 ALIST 452Cc | 01F JC +03 —— I
97 ALIST 452D 348 SETF 12 allow new space entry

98 ALIST 452E  [0A3 JNC +20d BAlLOUT |
99 ALIST [ 452F (130 LDl S&X <« —— check for "-" chr

100 ALIST 4530 02D " "-"" char value

101 2531 /366 PA#C S&X carry if not "-" f

102 Executed within [DELCHR] '4532 02F JC + 05 e !

103 an opportunistic routine '4533 34cC PFSET 12 is there SPACE chr? !

104 just grouping common code '4534 '017 JC +02 !

105 fa535  |oca CLRF 10 allow new "-" entry I

106 ALIST (4536|063 JNC +12d BAILOUT N

107 ALIST 4537 "98 C=M ALL < recall deleted char value

108 ALIST 4538 3D8 C<>ST XP Got a radix? If so, we neet to

109 ALIST 4539 14C ?FSET 6 replace it without comma

110 ALIST 453A I'043 JNC +08 —>

111 ALIST 453B 3D9 PNC XQ Enable Display (not cleared)

112 ALIST 453C 0ic ->07F6 [ENLCD]

113 ALIST 453D 144 CLRF 6 remove the radix value

114 ALIST 453E 284 CLRF 7 (both if need be)

115 ALIST 453F 3D8 C<>ST XP recall deleted char value

116 ALIST '4540 "3E8 WRIT 15(e) write itin display

117 ALIST l4541 184 CLRF 11 Re-allow comma writing

118 ALIST 4542 I'350 RTN B —

119 ALIST RADIX4 4543 '149 ’NC XQ Disable PER, enable RAM

120 ALIST 4544 '024 ->0952 [ENCPOO]

121 ALIST f4545 3B8 READ 14(d) put F28 to F9

122 2546  2BC RCR 7

123 transfer staus of UF28 to F9, f4547 248 SETF 9

124 adds the converted crh code f4548 1EE C=C+C ALL comma or period ?

125 to the LCD and prepares ALPHA f4549 013 JNC +02 overflows if COMMA (cf28)

126 454A 244 CLRF 9 _I comma = CF 28

127 ALIST I 454B i 3D9 PNC XQ <« Enable Display (not cleared)

128  ALIST 454C  |01C ->07F6 [ENLCD]

129  ALIST 454D  3B8 READ 14(d) read right

130 ALIST 454E 3D8 C<>ST XP

131 ALIST asar  "as SETF 6

132 ALIST f4550 24C ?FSET 9 comma or period ?

133 ALIST 2551 013 INC +02

134 ALIST 4552 88 SETF 7 should replace the last chr

135 ALIST 4553 3D8 C<>ST Xp <€ with the same one w/ radix

136 ALST 4554 368 WRIT15(e) | 9-bitLCDwrite_ __________

137 AUST (2555 [130 LDI S&X ]

138 ALIST (asse jo2c %t . appends ", [02¢)

139 ALIST 74557 24C ?FSET 9

140 ALIST 4558 360  ?2cRTW no need, return

141 ALIST 4550 1226 C=C+1 S&X ]

142 AUST assa 226  c=ceasex . appends_"." [02E] _ ___ ___ .
1 e e S —— 'k
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The End.

This concludes the SandMatrix Manual — Hope you have found it useful and interesting enough to keep
as a reference. Better yet, go ahead and write a few more functions on your own. A few suggestions
are:

- Program to calculate Eigenvectors from Eigenvalues
- General-purpose p-th. root of a matrix

- General-purpose Logarithm of a matrix

- Anything else you feel like going for!
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\ Note: Make sure that revision “"H” (or higher) of the Library#4 module is installed.
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