
SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 1

User’s Manual and Quick Reference Guide

Written and programmed by Ángel M. Martin

August 2013

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 2

This compilation revision 3.4.5

Copyright © 2012 – 2013 Ángel M. Martin

Acknowledgments.-

Documentation wise, this manual begs, steals and borrows from many other sources – in particular
from the HP-41 Advantage Manual. Not so from the CCD Manual but obviously that was how it all
began – with the excellent implementation of the Array Functions by W&W GmbH.

Thanks to the following contributors must be given: Jean-Marc Baillard; Valentín Albillo; Eugenio
Úbeda; and Ulrich Deiters. Original authors retain all copyrights, and should be mentioned in writing
by any party utilizing this material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. Its
breakpoints capability and MCODE trace console are a godsend to programmers. See www.hp41.org

Published under the GNU software licence agreement.

http://www.hp41.org/

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 3

Table of Contents. - Revision K.

1. Introduction.

SandMatrix_4 Revision k 5
Logical next chapter after the SandMath 5
The many names of Dr. Who 6
What isn’t included? 12
Function index at a glance. 15

2. Lower Page Functions in Detail

2.1. SandMatrix 4 Group

 Alpha String Manipulation. 10
 Other functions in header section 11
 The MATRX program 11
 Matrix Polynomial 15

N-dimensional Vector operations 17
 3D-Vectors mini calculator 18

2.2. Matrix-101

 Setting up a matrix 20
 How a matrix is stored. Matrix Editors. 21
 How to Specify a matrix 22
 Storing and Recalling Martrix Elements 24
 Updated Matrix Editor 25

2.3. Matrix Functions

 Matrix Arithmetic 26

Major Matrix Operations 27
 LU Decomposition 28
 Working with Complex Matrices 29

Using Functions with Complex Matrices 31

Other Matrix Functions (“Utilities”) 34
Moving and Exchanging sections 34
Maxima and minima 35
Norms and Sums 35

Note: Make sure that revision “H” (or higher) of the Library#4 module is installed.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 4

3. Upper Page Functions in Detail

3.1. Advanced Matrix

 The Enhanced Matrix Editor(s) 37
 New Matrix Utilities / housekeeping 40

Finding elements / Driver for M*M 43
 Exponential of a Matrix 44
 Logarithm of a Matrix 45
 Square Root of a Matrix 47

 Matrix Integer Powers and Roots 49
 Lie Product 52

Matrix Trace 53
Unitary Diagonal 54
Sum of Diagonal/Crossed element products 55
Appendix: Square root of a 2x2 matrix 56

 3.2. Polynomials and Linear Algebra.

 Eigenvectors and Eigenvalues 57
 Characteristic Polynomial 58
 SOLVE-based implementation 59
 Formula-based 3-Dimensional Case 61
 General n-dimensional case: Faddevv-Leverrier 63
 Jacobi method for Symmetric Matrices 65

 3.3. Managing Polynomials

 Defining and Storing Polynomials 67
 Polynomial Arithmetic 69
 Evaluating and Copying Polynomials 71
 Polynomial Root Finders 72
 Quartic Equation 72
 General case: Bairstow Method 74

 3.4. Applications of Polynomials

 Equations for Curve Fitting programs 77

Polynomial Interpolation 78
Prime Factors Decomposition. Totient function 80

 Fitting data to Polynomials 82
 Orthogonal Polynomial Fit 85
 From Poles to Zeros and back 86

Partial Fractions Expansion 87

Appendix “M” and END. 90

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 5

SandMatrix_4 Module – Revision K
Matrix Extensions for the HP-41 System.

1. Introduction.

The release of the CCD Module by W&W in 1983 provided convenient and reliable tools for matrix
algebra in the 41 platform for the first time. It was an MCODE quantum leap ahead, beyond the very
many user programs written on the subject in the previous years. Looking back it’s clear that the
“ARRAY FNS” was beyond a doubt an amazing landmark in the legacy of the 41 platform. So much so
that rather than re-invent the wheel HP decided to use it almost in its entirety in the Advantage Pac,
only enhancing it with the major matrix operations sorely missing in the CCD implementation (which
incidentally were the subject of the majority of Matrix programs written for the CCD).

Perhaps because the relative tardiness of its appearance, with the HP-42S already on the horizon - or
due to other factors like the HP-48S luring folks into RPL - the fact is that Matrix programs using the
Advantage Pac functions were very few and far in between. The demise of PPC and the newsletter
wars that followed suit certainly didn’t encourage the scene either, and the end result was slightly
disappointing in terns of net results.

About 30 years later the SandMatrix picks up the gauntlet and compiles a collection of noteworthy
programs and routines on Matrix and Polynomial algebra, with the specific criteria to be based on the
CCD/Advantage function set – in an attempt to straighten the record and pay the due credit to that
superb toolset that had been so underutilized.

1.1. The logical next chapter after the SandMath

In many respects the SandMatrix is a very conventional module. There are no fancy overlays or
alternate keyboards, no auxiliary FATs with sub-functions, nor will you find dedicated function
launchers á la SandMath. Most of the new routines are written in FOCAL, and the programs are
typically large ones. Programming with the Matrix functions is more about Alpha strings and auxiliary
data sets than concerning with data registers and to some extent even algorithmic strategy. Also
because they are FOCAL programs they are slower than other areas, although the 41CL has blurred
the lines separating MCODE and FOCAL in terms of speed.

In terms of its contents, it was clear from the beginning that it should be an extension to the
SandMath. However the dilemma was how to manage the dependencies: should it be a self-contained
ROM or rely on functions from other modules? The former option implied including many auxiliary
functions in the FAT’s, taking precious entries and causing redundancy in the global scheme. The latter
option however meant a potential loss of usability, since several modules were involved – the Library
#4, the SandMath, AMC_OS/X, the Solve & Integrate ROM, the Polynomial ROM, etc.

The solution to this riddle came only with the latest revision of the SandMath 3x3, which added a third
bank with Solve and Integrate – plus an important consolidation of functions in its auxiliary FAT. This
really cleared things off for the SandMatrix, in that the only dependencies left are the Library#4 and
the SandMath itself – for a total of only 8k “effective” footprint needed additionally (since the
Library#4 is located in the otherwise reserved page-4).

So there you have it, the SandMatrix more or less replaces all previous versions of the “Advanced
Matrix ROM”, the “Matrix ROM”, and the “Polynomial ROM” (not counting the one co-produced w/ JM
Baillard. Also in this regard it’s worth mentioning that the SandMatrix is totally independent from the
“JMB_Matrix ROM”, which doesn’t use the Advantage function set at all).

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 6

1.2. The many names of Dr. Who.

The SandMatrix is the last incarnation of a series of different modules previously released that also
dealt with Matrix and Polynomial algebra. Some of them were based on the Advantage itself,
combining the matrix functions with other applications and thus followed the same bank-switching
implementation: two pages, with two banks in the upper page. The differences amongst them were
about what else (beyond the matrix set) they included – once you removed the less notorious content
of the Advantage.

The table below illustrates this, showing the dependencies and choices made in all the predecessors of
the SandMatrix.

Size Main Dependency Requires Notes

8k + 8k

ALGEBRA Advantage n/a

4k + 8k MATRIX_4k
4k POLYN_4k

Advantage n/a

4k +8k MATRIX_4L4 Lib#4

Advantage

8k + 4k POLYN_4k n/a Includes SOLVE/INTEG

Adv_Matrix

8k + 4k POLYN_4L4 Lib#4 Includes SOLVE/INTEG

Adv_Matrx4_I

9k n/a Lib#4 Includes CURVE FIT

Adv_Matrix4_II

SIROM (*) (*) for EIGEN only

8k Lib#4

SandMatrix SandMath

We sure have a much simpler situation now, glad to say we left all those behind.

What isn’t included?’

When compared to the original Advantage Pac, the following functionality areas are not included in the
SandMatrix – but in other dedicated modules (and in a superior implementation if I may add), as
shown in the table below:

Section In Module Also Available in Comments
Digital Functions Digit Pac HP-IL Development Includes 16C Emulator
Solve & Integrate SandMath 3x3 Solve & Integrate ROM Fully embedded
Curve Fitting SandMath 3x3 AECROM Fully embedded
Complex Operations HP-41Z - Dedicated 8k ROM
Vectors / Coordinates Vector Calculator ROM - Dedicated 4k ROM
Differential Equations Diffeq ROM Math Pac Dedicated 8k ROM
Time Value of Money Financial Pacs HP-12C don’t care that much

Note: Make sure that revision “H” (or higher) of the Library#4 module is installed.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 7

Function index at a glance.

And without further ado, here’s the list of functions included in the module.

Function Description Input Output Author
1 ‐SNDMTRX 4 Section Header none Displays "Order=?" Ángel Martin
2 ABSP Alpha Back Space Text in Alpha Last char deleted W&W GmbH
3 AIP Appends integer part x in X INT(x) appended to Alpha Ángel Martin
4 ASWAP Alpha Swap A,B in Alpha B,A in Alpha Ángel Martin
5 CLAC CLA from Comma Text in Alpha Removed from left to comma W&W GmbH
6 DOTN N‐dimensional Dot product cntl words in Y,X cntl word result in X JM Baillard
7 EQT Displays Curve Equation Eq# in R00 Writes equation in Alpha Ángel Martin
8 SQR? Tests for Square matrices Mname in Alpha Yes.No – Do it true Ángel Martin
9 "MATRX" "Easy Matrix" Program Driver for Major Matrix Ops. Under prgm control HP Co.
10 MPOL Matrix polynomial Mname in Alpha, Cnt'l word in X Calculates P([A]) Ángel Martin
11 ST<>A Swaps Alpha/Stack V1 in Stack, V2 in Alpha V2 in Stack, V1 in Alpha Ángel Martin
12 V*V 3‐dimensional Dot product prompts for coeffs result in Matrix Ángel Martin
13 "3DV" 3D Vectors Promppts "|V| V* VX" performs operation Ángel Martin
14 ‐CCD MTRX Section Header none Displays "Running..." Ángel Martin
15 C<>C Column exchange (k<>l) kkk,lll in X Columns swapped W&W GmbH
16 CMAX Column Maximum Col# in X, "OP1" in Alpha Element value in X W&W GmbH
17 CNRM Column Norm Col# in X, "OP1" in Alpha colum norm in X W&W GmbH
18 CSUM Column Sum "OP1,RES" in Alpha Sum of Cols in RES matrix W&W GmbH
19 DIM? Matrix Dimension "OP1" in Alpha dimension placed in X W&W GmbH
20 FNRM Frobenius Norm "OP1" in Alpha value in X W&W GmbH
21 I+ Increase row index "OP1" in Alpha increased i HP Co.
22 I‐ Decrease row index "OP1" in Alpha decreased i HP Co.
23 J+ Increase column index "OP1" in Alpha increased j HP Co.
24 J‐ Decrease column index "OP1" in Alpha decreased j HP Co.
25 M*M Matrix Product "OP1,OP2, RES" in Alpha matrix product in RES W&W GmbH
26 MAT* element multiplication value in X, "OP1,X" in Alpha aij = aij * x W&W GmbH
27 MAT+ addition of scalar value in X, "OP1,X" in Alpha aij = aij + x W&W GmbH
28 MAT‐ element substraction value in X, "OP1,X" in Alpha aij = aij ‐ x W&W GmbH
29 MAT/ Division by scalar value in X, "OP1,X" in Alpha aij = aij / x W&W GmbH
30 MATDIM Dimensions a matrix mmm,nnn in X, "OP1" in Alpha Matrix Dimensioned W&W GmbH
31 MAX Maximum element "OP1" in Alpha Element value in X W&W GmbH
32 MAXAB Absolute maximum "OP1" in Alpha Element value in X W&W GmbH
33 MDET Determinant "OP1" in Alpha Determinant in X HP Co.
34 MIN Minimum element "OP1" in Alpha minimum element in X W&W GmbH
35 MINV Inverse Matrix "OP1" in Alpha Matrix replaced w/ Inverse HP Co.
36 MMOVE Moves part of a matrix I,j; k,l; b,m,n in XYZ Elements moved W&W GmbH
37 MNAME Get current Mname to Alpha none Matrix Name in Alpha W&W GmbH
38 MR Recall element from pt none value in X HP Co.
39 MRC+ Recall and advance in Column "OP1" in Alpha element in X, increased i W&W GmbH
40 MRC‐ Recall and back one in Column "OP1" in Alpha element in X, decreased i W&W GmbH
41 MRIJ Recall ij pointer of current none pointer in X W&W GmbH
42 MRIJA Recall ij pointer of Alpha "OP1" in Alpha pointer in X W&W GmbH
43 MRR+ Recall and advance in Row "OP1" in Alpha element in X, increased j W&W GmbH
44 MRR‐ Recall and back one in Row "OP1" in Alpha element in X, decreased j W&W GmbH
45 MS Store element at pointer value in X, OP1 in Alpha Element stored HP Co.
46 MSC+ Store and advance in Column value in X, OP1 in Alpha element stored, increased i W&W GmbH
47 MSIJ Sets pointer of current matrix iii,jjj in X pointer set W&W GmbH
48 MSIJA Sets points of Matrix in Alpha iii,jjj in X; OP1 in Alpha pointer set W&W GmbH
49 MSR+ Store and advance in Row value in X, OP1 in Alpha element stored, increased j W&W GmbH
50 MSWAP Swapps part of a matrix I,j; k,l; b,m,n in XYZ Elements Swapped W&W GmbH
51 MSYS Linear Systems "OP1,OP2, RES" in Alpha Resolves Linear System HP Co.
52 PIV Sets pointer to pivot element Col# in X, "OP1" in Alpha Element value in X W&W GmbH

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 8

Function Description Input Output Author
53 R<>R Row Exchange (k<>l) kkk,lll in X Rows swapped W&W GmbH
54 R>R? Row comparison test kkk,lll in X skip line if false W&W GmbH
55 RMAXAB Absolute maximum row# in X, OP1 in Alpha element in X, pointer to ij W&W GmbH
56 RNRM Row Norm "OP1" in Alpha Row Norm in X W&W GmbH
57 RSUM Row Sum "OP1,RES" in Alpha sums of rows in RES matrix W&W GmbH
58 SUM Element Sum "OP1" in Alpha element sum in X W&W GmbH
59 SUMAB Absolute Values Sum "OP1" in Alpha element absolute sum in X W&W GmbH
60 TRNPS Transpose "OP1" in Alpha Matrix replaced w/ transposed HP Co.
61 YC+C Adds Y*Col (l) to Col (k) value in Y, kkk.lll in X column k changed W&W GmbH
62 "MEDIT" Matrix Editor prompts for elements Edits Matrix HP Co.
63 "CMEDIT" Complex Matrix Editor prompts for coeffs Edits Complex matrix HP Co.
64 MPT Matrix Prompt Iii,jjj in x Prompts for element Ángel Martin

1 ‐ADV MATRIX Section Header none Displays "Not Square" Ángel Martin
2 ^MROW Input Row "OP1" in Alpha, row# in x Prompts for Row Ángel Martin
3 I<>J Swaps indexes iii,jjj in X j,00i in X, i00j in LastX Ángel Martin
4 I#J? Is i # j? iii,jjj in X comparison, skip if False Ángel Martin
5 IMC Input Matrix by Columns "OP1" in Alpha Inputs elements by columns Ángel Martin
6 IMR Input Matrix by Rows "OP1" in Alpha Inputs elements by rows Ángel Martin
7 LU? Tests for L/U Decomposed Mname in Alpha Yes.No – Do it true Ángel Martin
8 M^1/X x‐th. root of a Matrix "OP1" in Alpha, x in X Matrix replaced by its root Ángel Martin
9 M^2 Matrix Square "OP1" in Alpha Matrix replaced by [M][M] Ángel Martin
10 MAT= Copy Matrix "OP1,RES" in Alpha Copies matrix A into B Ángel Martin
11 MATP Driver for M*M Driver for M*M Under prgm control Ángel Martin
12 MCON Constant "OP1" in Alpha, x in X Makes all elements =x Ángel Martin
13 MDPS Diagonal Product Sum "OP1" in Alpha Sum of diagonal products Ángel Martin
14 "MEXP" Matrix Exponential "OP1" in Alpha Matrix replaced by exp(M) Ángel Martin
15 MFIND Element finder "OP1" in Alpha, x in X Element pointer if found Ángel Martin
16 MIDN Identity Matrix "OP1" in Alpha Makes it Identity Matrix Ángel Martin
17 MLIE Matrix Lie Product "OP1,OP2,RES" in Alpha [A][B] ‐ [B][A] Ángel Martin
18 MLN Matrix Natural Log "OP1" in Alpha Matrix replaced by LN(M) Ángel Martin
19 MPWR Matrix Power to X "OP1" in Alpha, x in X Matrix replaced by [M]^INT(x) Ángel Martin
20 MRDIM Matrix Redimension "OP1" in Alpha, dim in X Matrix redimensioned Ángel Martin
21 MSQRT Matrix Square Root "OP1" in Alpha Matrix replaced by SQRT([M]) Ángel Martin
22 MSORT Sorts matrix elements "OP1" in Alpha Matrix Elements sorted Ángel Martin
23 MSZE? Matriz Size "OP1" in Alpha Matrix size in X Ángel Martin
24 MTRACE Matrix Trace "OP1" in Alpha Trace in x Ángel Martin
25 MZERO Zeroes a Matrix "OP1" in Alpha All elements zeroed Ángel Martin
26 OMC Output Matrix by Columns "OP1" in Alpha Shows elements by columns Ángel Martin
27 OMR Output Matrix by Rows "OP1" in Alpha Shows elements by rows Ángel Martin
28 OCX Output x‐th column "OP1" in Alpha, Col# in X Shows Col elements Ángel Martin
29 ORX Output x‐th row "OP1" in Alpha, Row# in X Shows Row elements Ángel Martin
30 PMTM Prompts for Matrix "OP1" in Alpha Prompts for complete Rows Ángel Martin
31 R/aRR Unitary Diagonal "OP1" in Alpha Diagonal elements = 1 Ángel Martin
32 ΣIJJI Sum of crossed products "OP1" in Alpha Σ[aij*aji] in X Ángel Martin
33 ‐ADV POLYN Section Header none Displays "Σ(ak*X^k)" Ángel Martin
34 "BRSTW" Bairstow Method Cntl word in Z, guesses in Y,X shows results JM Baillard
35 CHRPOL Characteristic Polynomial Under prgm control Characteristic Pol Coeffs Ángel Martin
36 DTC Detele Tiny Coefficients Cntl word in X Deletes ak < 1E‐7 JM Baillard
37 EIGEN Eigen Values by SOLVE Under prgm control Eigen Values by Solve Ángel Martin
38 EV3 Eigen values 3x3 Matrix in XMEM Eigen Values by Formula Ángel Martin
39 EV3X3 Eigen values 3x3 Prompts Matrix Elements Eigen Values by Formula Ángel Martin
40 JACOBI Symmetrical Eigenvalues Under prgm control Eigen Values by Jacobi Valentín Albillo
41 OPFIT Orthogonal polynomial Fit Under prgm control shows results Eugenio Úbeda
42 "P+P" Polynomial Addition Driver for PSUM w/CF 01 shows results Ángel Martin
43 "P‐P" Polynomial Substraction Driver for PSUM w/SF 01 shows results Ángel Martin
44 "P*P" Polynomial Multiplication Driver for PPRD shows results Ángel Martin

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 9

Function Description Input Output Author
45 "P/P" Polynomial Division Driver for PDIV shows results Ángel Martin
46 PCPY Copy of Polynomial from, to cntl words in Y,X polynomial copied JM Baillard
47 PDIV Euyclidean Division cont words in Y and X cntl words remainder & result JM Baillard
48 PEDIT Polynomial Editor cntl word in X prompts for each coeff value Ángel Martin
49 PFE Partial Fraction Expansion Under prgm control see description to decode JM Baillard
50 "PF>X" Prime Factors to Number Matrix w/ Prime Facts in XMEM restores the original argument Ángel Martin
51 PMTP Prompts for Polynomial cntl word in X prompts for complete list Ángel Martin
52 POLFIT Polynomial Fit Under prgm control calculates polynomial fit Valentín Albillo
53 POLINT Aitken Interpolation Under prgm control interpolation made Ulrich Deiters
54 POLZER From Poles to Zeros Under prgm control shows coeffs and roots Ángel Martin
55 PPRD Polynomial Product cntl words in Z, Y, bbb in X cntl word result in X JM Baillard
56 "PRMF" Prime Factors Decomposition number in X prime factors in XMEM Matrix Ángel Martin
57 "PROOT" Polynomial Roots Under prgm control Shows all roots Ángel Martin
58 PSUM Polynomial Sum cntl words in Z, Y; bbb in X cntl word result in X JM Baillard
59 PVAL Polynomial Evaluation Cntl word in Y, x in X Result in X JM Baillard
60 PVIEW Polinomial View Cntl word in X Sequential listing of coeffs Ángel Martin
61 QUART Quartic Equation Roots coeefs in Stack (a4=1) shows results JM Baillard
62 "RTSN" Roots subroutine Under prgm control calculates roots Ángel Martin
63 TOTNT Euler's Totient Function argument in X Result in X Ángel Martin
64 "#EV" Subroutine for EIGEN Under prgm control Under prgm control Ángel Martin

Functions in blue are all in MCODE. Functions in black are MCODE entries to FOCAL programs.
Light blue background denotes new or improved in this revision.

I have adapted most of the FOCAL programs for optimal fit in the SandMatrix, but as you can see the
original authors are always credited – including W&W for the array functions set, renamed here as
 ‘-CCD MATRIX”. Many of the routines in this manual include the program listing, this provides an
opportunity to see how the functions are used and of course adds completion to the documentation.

The function groups are distributed in both lower and upper pages, as follows:

• The lower page contains the general intro section plus the CCD Matrix set. Very much like the
lower page of Advantage Pac minus the digital functions.

• The upper page has the Advanced Matrix and Polynomial sections. Basically all new and
additional to the Advantage Pac.

• The second bank in the upper page is practically identical to that in the Advantage, with a few
changes made after removing the Digital functions as well. It mostly contains the MCODE for
the CCD Matrix functions and the major matrix calculations (MSYS, MINV, MDET, TRNPS).

The SandMath checks for the presence of its two dependencies, ie. The Library#4 and the SandMath.
Note that if the SandMath module is not plugged in the calculator the following warning message is
shown every time the calculator is switched on, (but not halting the polling points process):

Note: Make sure that revision “H” (or higher) of the Library#4 module is installed.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 10

2. Lower-Page Functions in detail

The first section groups the auxiliary functions used for ALPHA string management, plus some leftover
functions that either didn’t belong to the other categories or were added at latest stages of the
development.

2.1. Alpha String Management

The use of the ALPHA register for Input/Output certainly isn’t new in the 41 platform, but the
utilization by the Matrix functions effectively turned it into an abstraction layer for programming;
therefore the importance of auxiliary utilities like these.

Some of these functions are also included in the AMC_OSX Module – yet it appeared convenient not to
add it as another dependency (even if it’s just a 4k footprint for its 3 banks), so here they are as well.

Function Description Input
1 ABSP Alpha Back Space Text in Alpha
2 AIP Appends integer part x in X
3 ASWAP Alpha Swap A,B in Alpha
4 CLAC CLA from Comma Text in Alpha
5 EQT Displays Curve Equation Eq# in R00 (1 – 16)
6 ST<>A Exchanges Alpha and Stack Values in Stack and Alpha registers

ABSP deletes the rightmost character in ALPHA – equivalent to “back space” in manual mode.

AIP was HP’s answer to the need to append just the integer part of the number in X to Alpha – not
changing the FIX and radix settings. Note also that AIP appends the absolute value of the number,
which is not the case with ARCLI or AINT from the CCD and AMC_OS/X modules.

ASWAP handles comma-separated strings, exchanging the strings placed left and right of the first
comma found in Alpha. Very handy to manage all those operations that have an input and output
matrix names defined in ALPHA, separated by comma.

CLAC deletes the contents of ALPHA located to the right of a comma (i.e. after the comma but not
including it). It is adapted from CLA- in the CCD Module.

EQT is an extension to the Curve Fitting functions in the SandMath. Use it to display (and write in
Alpha) one of the 16 the equations available for CURVE. It requires the equation number (1 to 16) in
R00. Easy does it!

ST<>A simply exchanges the contents of the stack and the four Alpha registers {M,N,O,P}. Used in
3D-vector operations where one of the operands is stored in Alpha.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 11

2.2. Other functions in the Header section.

Function Description Input
1 "MATRX" "Easy Matrix" Program Driver for Major Matrix Ops.
2 SQR? Tests for Square Matrix Mname in Alpha
3 MPOL Matrix polynomial Mname in Alpha, Cnt'l word in X
4 DOTN N-dimensional Dot product cnt'l words in Y,X
5 V*V 3-dimensional Dot product prompts for coeffs
6 "3DV" 3D Vectors Prompts "|V| V* VX"

MATRX is the main driver program provided in the Advantage Pac for the major matrix calculations
(MDET, MINV, SIMEQ, TRNPS). Nice and easy, maybe the only one to use for users not needing any
further functionality. MTR was part of the same program, but has been eliminated in this revision.

The following extract describing the use of MATRX is taken from the Advantage Pac manual – and it’s
included here for convenience and completeness. It’s useful to revise the underlying concepts as well.

2.2.1 The Matrix Program

This chapter describes the matrix program, MATRX - the easy, "user-friendly" way to use the most
common matrix operations on a newly created matrix. To use MATRX you do not need to know how
the calculator stores and treats matrices in its memory. The next chapter lists and defines every matrix
function in the pac, including those called by MATRX. Using these functions on their own requires a
more intimate knowledge of how and where the calculator stores matrices.

What this program can do.

Consider the equations:

3.8 x1 + 7.2 x2 = 16 .5
1.3 x1 - 0.9 x2 = -22.1

for which you must determine the values of x1 and x2 . These equations can be expressed in matrix
form as AX = B, where A is the coefficient matrix for the system, B is the column or constant matrix,
and X is the solution or result matrix.

For such a matrix system, the MATRX program creates (dimensions) a square real ar complex matrix,
A, and a column matrix, B. You can then:

• Enter, change ('edit"), or just view elements in A and B.
• Invert A.
• Transpose A if A is real.
• Find the determinant of A if A is real.
• Solve the system of simultaneous equations by finding the solution to AX = B.

The size of your matrix is limited only by available memory (each real matrix requires one register pIus
one register for each element.) If you want to store more than one matrix, you will need to use the
matrix function MATDIM, described in the next chapter. The MATRX program does not store or
recall matrices; it works with a single square matrix A and a single coIumn matrix B. When you enter
new elements into A you destroy its old elements.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 12

Instructions

MATRX has two menus to show you which key corresponds to which function. The initial menu you
see is to select a real ox complex matrix: (picture on the left below)

After you make this selection, input the order of the matrix, and press R/S, you will see the main
menu (picture on the right above). This menu shows you the choice of matrix operations you have in
MATRX. Press [J] to recall this menu to the display at any time. This will not disturb the program in
any way.

To clear the menu at any time press “Back Arrow”. This shows you the contents of the X-register, but
does not end the program. You can perform calculations, and then recall the menu by pressing [J].
(However you don’t need to clear the program’s display before performing calculations.)

• The program starts by asking you for a new matrix. It has you specify real vs. complex and
the order (dimension) of a square matrix for A.

• The program does not clear previous matrix data, so previous data – possible meaningless

data – will fill your new matrices A and B until you enter new values for their elements.

• Each element of a complex matrix has two values (a real part and an imaginary part) and
requires four times as much memory to store as an element in a real matrix. The promprs for
real parts x11, x12, etc. are “1:1=?”, “1:2=?”, etc. The prompts for complex parts x11+ i
y11, x2+ i y22, etc. are “RE.1:1=?”, “IM.1:1=?”, etc.

Remarks

Alteration of the Original Matrix. The input matrix A is altered by the operations finding the
inverse, the determinant, the transpose and the solution of the matrix equation. You can re-invert A-1,
and re-transpose AT to restore the orignal form of A. However, if you have calculated the determinant
or the solution matrix, then A is in its LU-decomposed form. To restore A, simply invert it twice. The
LU-decompostion does not interfere with any subsequent MATRX operation except transposition and
editing (do not attempt to edit an LU-decomposed matrix unless you intend to change every element).
For more information on LU-decomposition, refer to "LU-Decomposition" in the next chapter ('Matrix
Functions").

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 13

Matrix Storage. The MATRX program stores a matrix A starting in R0 of main memory; it is named
“R0”. Its column matrix B is stored after it, and the result matrix X overwrites B, Refer to the chapter
"Matrix Punctions' for an explaniation of how matrices are named and stored, and how much room
they need. MATRX cannot access any other matrices, with the exception of the previous R0 and its
corresponding column matrix.

Redefined Keys. This program uses local Alpha labels (as explained in the owner's manuaI for the
HP-41) assigned to keys [A]-[E], [J] , [a], [b], and [d]. These local assgnments are overriden by any
User-key assigments you might have made to these same keys, thereby defeating this program.
Therefore be sure to clear any existing User-key assignments of these kep before using this program,
and avoid redefining these keys in the future.

Example 1.

Given the system of equations at the beginning of this section, find the inverse, determinant and
transpose of A, and then find the solution matrix of the equation AX = B

Keystrokes Display Comments
XEQ “MTRX” “RL CX” Starts the MTRX program
[A] (RL) “ORDER=?” Selects a real Matrix
2, R/S “A I DT B SE” Dimensions a 2x2 square matrix
[A] “1:1=a11?” Enters the Editor and displays old value
3.8, R/S “1:2=a12?” enters the new value for a11

7.2, R/S “2:1=a21?”
1.3, R/S “2:2=a22?”
.9, CHS, R/S “A I DT B SE” enters a22 and returns main menu
 [B] (I) “A I DT B SE” Inverts A
[SHIFT][A] “1:1=0.0704” Displays the current contents
R/S “1:2=0.5634” of A after the inversion
R/S “2:1=0.1017”
R/S “2:2=-0.2973”
R/S “A I DT B SE”
[B] (I) “A I DT B SE” Re-inverts A-1 to the original
[SHIFT][B] “A I DT B SE” Transposes A
[SHIFT][A] “1:1=3.8000” Displays the current contents
R/S “1:2=1.3000” of A after the transposition
R/S “2:1=7.2000”
R/S “2:2==0.9000”
R/S “A I DT B SE”
[SHIFT][B] “A I DT B SE” Re-transposes AT to the original A
[C] (DT) “DET=-12.7800” Det(A)
[B] “1:1=b11?“ Enters the editor for B and displays old elements
16.5, R/S “2:1=b12?” Enters the new value for b11

22.1, CHS, R/S “A I DT B SE” Enters b22 and returns main menu
[E] (SE) “A I DT B SE” Solves the system AX = B, placing X in B
[SHIFT] [D] “1:1=-11.2887” displays the solution matrix
R/S “2:1=8.2496”
R/S (or [J]) “A I DT B SE” Exits the editor

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 14

Example 2. Find the inverse of the complex matrix:

Note that the original MATRX has been slightly edited in the SandMatrix so that the program sets the
required SIZE if not enough registers are currently available to store the matrices – so you don’t need
to worry about that mundane detail. This example is also interesting because also shows how to make
corrections to the data entered by mistake.

Keystrokes Display Comments
XEQ “MATRX” “RL CX” Starts the MTRX program
[B] (CX) “ORDER=?” Selects a complex Matrix
2, R/S “A I DT B SE” Dimensions a 2x2 complex matrix
[A], R/S “RE1:1=x11?” Enters the editor and sisplays old value
1, R/S “IM1:1=y11?” ditto for the imaginary part
2, R/S “RE1:2=x12?”
3, R/S “IM1:2=y12?”
4, R/S “RE:2:1=x21?” Wrong entry! Should be 3, not 4...
1,002, [A] “RE1:2=3.000?” Moves editor back to x12

R/S “IM1:2=4.000? The wromg imaginary part
3, R/S “RE2:1=x21?” Correct value is entered for y12. Proceed
4, R/S “IM2:1=y21?”
5, R/S “RE2:2=x22?”
6, R/S “IM2:2=y22?”
7, R/S “A I DT B SE” Enters last element and returns main menu
[B] (I) “A I DT B SE” Inverts A
[SHIFT][A] “RE1:1=-0.9663” Viewing A-1
2.002, [A] “RE2:2=-0.2369” Displays x22 + i y22

R/S “IM2:2=-0.0225”
R/S (or [J]) “A I DT B SE” Exits the editor

Other (more advanced) examples are available in the next sections of the manual, during the
description of the individual matrix functions.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 15

2.2.2.- Matrix Polynomial (MPOL)

MPOL was a last-minute addition to the ROM, which somehow combines both matrix and polynomial
algebra. Use it to calculate a matrix polynomial P(A) - not to be confused with a polynomial matrix -
based on an existing square matrix [A] and a polynomial P(x).

P(A) is the result matrix calculated replacing the real variable x with [A], using the polynomial
coefficients to multiply the different matrix powers as per the order of the polynomial terms. As it’s the
case all throughout polynomials, Honer’s method proves very useful to reduce all the matrix powers to
matrix multiplications – with considerable execution time reduction and simplification of the code.

Example.- Calculate P{A) for the following matrix and polynomial:

 P(x) = 2 x4 - x3 + 3 x2 - 4 x + 5 ; and:

 [[4 2 3]
 A = [3 2 5]
 [2 1 4]]

This is also a good example to become familiar with the editor and input routines available in the
SandMatrix. First we’ll create and populate the matrix using the Matrix Editor input functionality –
very recommended for integer elements, as follows:

ALPHA, “A”, ALPHA, 3,003, XEQ “MATDIM” creates the matrix in X-Mem, then:

XEQ “PMTM” -> at the prompt “R1: _” we type: 4, ENTER^, 2, ENTER^, 3, R/S

-> at the prompt “R2: _” we type: 3, ENTER^, 2, ENTER^, 5, R/S
-> at the prompt “R3: _” we type: 2, ENTER^, 1, ENTER^, 4, R/S

The Matrix has been completely input using “batches” (or lists) including all elements of each row
simultaneously – this is an advantageous way to handle them that results in faster and less error-
prone method, not based on a single-element prompt.

Note how pressing ENTER^ during this process results into a blank space in the display separating
each of the elements, and that the sequence is terminated pressing R/S. Upon completion the matrix
elements are stored in the Matrix file in extended memory.

The analogous function for the polynomial is PMTP, which requires the control word in x – a number
of the form bbb.eee, denoting the beginning and ending registers that contain the polynomial
coefficients. In this case:

2.006, XEQ “PMTP” -> at the prompt “R2: _” we type:

 2, ENTER^, CHS, 1, ENTER^, 3, ENTER^, CHS, 4, ENTER^, 5, R/S

Note how in this case the function knows there’s no more “rows” to add, and also that negative values
are easily input using the CHS key. Upon completion the coefficients are stored in registers R01 to
R05.

The last step is executing MPOL itself. To do that we place the matrix name in Alpha and the
polynomial control word in X, then call MPOL. The resulting P(A) is stored in a new matrix named “P”
- also located in an XM file - therefore [A] is not overwritten. Note however that this will overwrite [P]
if it already exists. In this case we have:

 [[3548 1887 4705]
 P(A) = [3727 1987 4962]
 [2539 1351 3385]]

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 16

The result matrix name is placed in ALPHA when the execution ends, so you can directly use any
matrix editor routine (like OMR) to review its elements. Note how OMR will display integer values
without any zeros after the decimal point, regardless of the current FIX settings. Set flag 21 to stop
the display of each individual element.

In addition to the result matrix P(A), MPOL also requires an auxiliary matrix for intermediate
calculations. The matrix file “#” is temporarily created during the execution for this purpose, and
deleted upon completion of the program. While this is transparent to the user you may want to
remember this fact due to the extended memory needed to allow for it – with a total of 3 x (n^2 + 2)
registers used (including the file headers).

The last point to remember about MPOL is that it uses data registers R00 and R01 – which therefore
cannot be used to store the polynomial coefficients.

• R00 has the polynomial control word and is used as counter for the loop execution
• R01 has the matrix name. It’s left unchanged.

Below you can see the program listing for MPOL – not a long program, albeit not as short as a simple
polynomial evaluation for real variables. Note the use of function I#J? to check for square matrix, as
well as the “shortcut” -ADV MTRX that puts the error message “NOT SQUARE” in the display and
terminates the execution.

01 LBL "MPOL" 23 "P,"
02 DIM? 24 ARCL 01
03 I#J? is it square? 25 "|‐,#" "P,A,#"
04 ‐ADV MTRX no, prompt error 26 M*M
05 RDN cnt'l word to X 27 "#,P"
06 E‐3 28 CLST
07 ‐ 29 MMOVE
08 STO 00 30 ISG 00 next index
09 ASTO 01 31 GTO 00 loop back
10 DIM? 32 XEQ 02
11 "P" 33 PURFL purge auxiliary mat
12 MATDIM 34 MNAME? bring result name
13 "#" 35 RTN
14 MATDIM 36 LBL 02
15 "X," 37 "#"
16 ARCL 01 38 MIDN
17 ",P" "X,A,P" 39 "X,#,#"
18 RCL IND 00 40 RCL IND 00 next coeff
19 MAT* initial value 41 MAT*
20 ISG 00 next index 42 "#,P,P"
21 LBL 00 43 MAT+ add it to partial result
22 XEQ 02 44 END

The auxiliary matrix “#” is needed because unfortunately M*M does not allow the result product
matrix to be the same as any of the multiplication factors. At least we double-use it for other
intermediate calculations as well (identity matrix products), killing two birds with the same stone.

MPOL is representative of the kind of routine that makes the extensions to the base matrix functions
set of the Advantage – hopefully it has whet your appetite and are looking forward to seeing more…
and that we will in later sections of the manual.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 17

2.2.3.- N-dimensional Vector Operations

DOTN is an all-MCODE implementation of a n-dimensional vector dot (scalar) product, the norms of
each operand and the angle between them. Originally written by JM Baillard, the input parameters are
the control words for each vector in registers X and Y (more about this later), and the result value are
placed in the stack.

Obviously the vector components must be input in the appropriate registers, which you can do using
any of the available input programs available in the SandMatrix – will be seen with detail in the
polynomial section later in the manual. Incidentally the code for DOTN is located in the second bank
of the upper page – taking advantage of the available room after the removal of the digital functions.

Example. Calculate the scalar product of vectors U(2,3,7,1) and V(3,1,4,6), storing their
components in registers {R01 - R04} for U, and {R06 - R09} for V.

For the data input we have several choices; here we’ll Use the PMTP function seen before, just
pretending the vector components are analogous to polynomial coefficients (which is irrelevant to the
actual workings of PMTP).

1.004, XEQ “PMTP” -> “R1: _”, we type: 2, ENTER^, 3, ENTER^, 7, ENTER^, 1, R/S
6.009, XEQ “PMTP” -> “R6: _”, we type: 3, ENTER^, 1, ENTER^, 4, ENTER^, 6, R/S

Re-entering the control codes in X, and Y we execute the function, which returns:

XEQ “DOTN” -> 43,, see table below for all the available data.

STACK INPUTS OUTPUTS Results
T / µ 46.52626239°
Z / || U || 7.874007874
Y bbb.eee(U) || V || 7.937253933
X bbb.eee(V) U.V 43,000000
L / cos µ

A good example of Jean-Marc’s very complete and economical programming. Needless to say it
executes at blazing light speed, as you would expect from an MCODE routine like this.

The alternative – Vectors as Matrices.

V*V performs the same tasks (n-dimensional vector dot product) but using a different approach:
treating the vectors as column matrices it simply uses M*M to calculate the resuilt, multiplying the
first operand vector by the transpose of the second operand vector. All data input/output are driven
under program contol. The execution time is longer than DOTN, trading so convenience for speed.

To appreciate the workings of V*V you need to consider that it transposes V2 before doing the
multiplication, and that it calculates the Frobenius norms of each matrix on the fly to obtain the angle.
The dot product is placed in a 1x1 matrix named “V*V” in X-Mem.

Here’s the listing of the program that clearly shows all the housekeeping chores required to prepare
the strings needed in ALPHA for the matrix functions as input. Even if it’s somehow slower and less
efficient, it’s a good “academic example” of utilization of the standard matrix functions.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 18

01 LBL "V*V" 31 FNRM
02 FS? 06 subroutine use? 32 /
03 GTO 00 yes, skip data entry 33 "V2"
04 ‐SNDMTRX 4 prompts "ORDER=?" 34 FNRM
05 STOP 35 /
06 INT 36 ACOS
07 "V1" 37 X<>Y
08 MATDIM 38 "V<)="
09 XEQ 05 V1 data input 39 ARCL Y
10 DIM? 40 PROMPT show angle
11 "V2" 41 RTN
12 MATDIM 42 LBL 05
13 XEQ 05 V2 data input 43 3
14 LBL 00 44 X<>F
15 "V*V" 45 0
16 CLX 46 MSIJA position pointer
17 MATDIM 47 LBL 04
18 "V1" 48 "c"
19 TRNPS 49 MRIJ
20 "|‐,V2,V*V" 50 MP
21 M*M 51 MR
22 ASHF 52 ARCLX
23 0 53 "|‐?"
24 MSIJA position pointer 54 PROMPT
25 MR recall element 55 MS
26 ENTER^ 56 I+
27 "|‐=" 57 FC? 10 reached the end?
28 ARCL X 58 GTO 04 no, loop back
29 PROMPT show result 59 MNAME?
30 "V1" 60 END

The usage of user flag 06 determines whether the program is used as a subroutine – in which case the
data entry is skipped. This is more or less consistently done throughout the SandMatrix module, and
has the benefit of saving one entry in the FAT – which would be needed for the subroutine label.

Line 4 uses the header function “-SNDMTRX 4”, which in program mode adds the text “ORDER=?” to
the display (not ALPHA). This saves bytes and keeps the contents of ALPHA unchanged.

2.2.4.- 3D Vectors Mini-Calculator.

Lastly “3DV” is a mini-vector calculator; use it to calculate the Module of a vector, or the DOT and
CROSS products of two 3D vectors. It’s basically a small menu-driven shell that uses functions VMOD,
V*A, and VXA available in the auxiliary FAT within the SandMath. One of the operand vectors is
placed in ALPHA registers {M,N,O}, therefore their names.

Its prompt looks like this:

Which assumes no assignments are done on the [A], [C], and [E] keys and that USER mode is on.

Data entry is also under program contol, and nice alphanumeric mnemonics describe the result(s). The
module and the dot product are left in X upon completion. For the cross product case the three
components are sequentially displayed, with a pause in between them. They’re also placed in the stack
registers Z,Y,X for subroutine use.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 19

The program listing is below – note how this trivial little application manages to make good use of
some of the sub-functions in the SandMath module, as well as the interesting way to use the ALPHA
register for the vector components.

1 LBL "3DV" 25 ARCL X
2 LBL 02 new start 26 AVIEW
3 CF 00 27 PSE
4 "|V1| Vx VX" menu options 28 "VY=
5 SF 27 User mode ON 29 ARCL Y
6 PROMPT 30 AVIEW
7 LBL A Modulus / Norm 31 PSE
8 SF 00 32 "VZ="
9 XEQ 05 33 ARCL Z
10 SandMath's 34 AVIEW
11 "|V|= 35 PSE
12 GTO 00 36 GTO 02 start over
13 LBL C DOT product 37 LBL 05
14 XEQ 03 38 "^V1=?" prompt for V1
15 SandMath's 39 PROMPT
16 "V*=" 40 FS? 00 module?
17 LBL 00 41 RTN yes, go back
18 ARCL X 42 "^ V2=?" prompt for V2
19 PROMPT 43 CF 21
20 GTO 02 start over 44 AVIEW display first,
21 LBL E CROSS product 45 ST<>A then exchange
22 XEQ 05 46 STOP
23 SandMath's 47 END
24 "VX="

VMOD

V*A

VXA

You’re encouraged to check the Vector Analysis ROM for a comprehensive implementation of a 3D-
Vector calculator, as well as other geometry programs. The Vectors ROM is completely self-contained,
and only takes up one page (4k), complementing the SandMatrix (and the SandMath) very effectively.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 20

2.2.1. Setting up a matrix: Name, Storage, and Dimension

The first group of matrix functions are used to create, populate and store the matrices.

 Function Description Inputs
1 MATDIM Dimensions a Matrix Name in Alpha, dimensions in X
2 MNAME? Returns name of current Matrix to Alpha none
3 DIM? Returns the dimension of Matrix Name in Alpha
4 “MEDIT” Matrix Editor Name in Alpha
5 “CMEDIT” Complex Matrix Editor Name in Alpha

You can create, manipulate, and store real and complex matrices. The size and number of matrices is
limited only by the amount of memory available in the calculator. If you have extended memory you
can also store matrices there.

To create a matrix you must provide its name and dimensions. The function MATDIM uses the text in
the Alpha register as its name, and the dimensions mmm.nnn in the X-register to create a matrix. It
does not clear (zero) the elements of a new matrix in main memory, but retains the existing contents
of the previous matrix or registers. It does clear the elements of a new matrix in extended memory.
You then enter values- numeric or Alpha- into a matrix via the matrix editors.

Naming a Matrix

The name you give a matrix determines where it will be stored. A matrix to be stored in main (non-
extended) memory must be named Rxxx, where xxx is up to three digits. (You can drop leading
zeros.) The matrix will be stored starting in Rxx. For example, R007 is the same as R7, which would
store this matrix header in R07. As a shortcut, if you specify matrix R, its name and location will be
R0.

A matrix to be stored in extended memory can be named with up to seven Alpha characters, excepting
just the letter “X” (which is reserved to name the X-register) and the letter “R” followed by up to three
digits (which is reserved to name the main memory arrays). You do not need to specify a file type; it
will automatically be given one unique to matrices. Use the Alpha register to specify matrix names.
When specifying more than one name (as parameters for certain functions), separate them with
commas.

Dimensioning a Matrix

Specify the dimensions of a new matrix as mmm.nnn, where m is the number of rows and n is the
number of columns. You can drop leading zeros for m and trailing zeros for n. For a complex matrix,
specify mmm.nnn as twice the number of rows and twice the number of columns. (Refer to “Working
with Complex Matrices”). A zero part defaults to a 1, so 0 is equivalent to 1.001, 3 to 3.00 1, and .023
to 1.023.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 21

• MATDIM Dimensions a new matrix or redimensions an existing one to the given dimensions.

• MNAME? Returns the name of the current matrix to the Alpha register.

• DIM? Returns the dimensions mmm.nnn of the matrix specified in the Alpha register to the
X-register. (A blank Alpha register specifies the current matrix.)

How a Matrix Is Stored

The elements of a matrix are stored in memory in order from left to right along each row, from the
first row to the last. Each element occupies one data-storage register. A complex number requires four
registers to store its parts.

Memory Space.- A matrix in main memory occupies (m x n) + 1 datastorage regis ters, one register
being used as a status header. A complex matrix uses (2m x 2n) + 1 registers, where m is the number
of rows in the complex matrix and n is the number of columns in the complex matrix.

A matrix in extended memory has a file length of m x n . (2m x 2n for a complex matrix). Its file type
is unique to matrices. Do not use the function CLFL with a matrix in extended memory: this destroys
part of the file's header information. Instead, use PURFL to purge the entire matrix.

Changing Matrix Dimensions.- If you redimension a matrix to a different size, then the existing
elements are reassigned to new elements according to the new dimensions. Extra old elements are
lost; extra new elements take on the values already present in the new registers- except in extended
memory, where new elements are set to zero.

Redimensioning 2 x 3 to 2 x 2 :

Redimensioning 2 x 3 to 2 x 4 :

This is what happens each time you dimension a new matrix since the old elements from the previous
current matrix remain until you change them.

Caution.- When MATDIM is used to redimension a matrix stored in extended memory, the position
of the matrix pointer is not readjusted. If the pointer happened to be positioned to an element that is
outside the new bunds of the redimensioned matrix, it must be repositioned to be within the new
bounds by executing either MSIJ or MSIJA with valid indices before the pointer can be used again.

Existing matrices in extended memory cannot be redimensioned to completely fill extended memory.
The maximum allowable size of a redimensioned matrix is one register less than the currently available
extended memory. A new matrix can, however, be dimensioned to completely fill available extended
memory.

Using the Matrix Editors

There are two matrix editors: MEDIT for real matrices and CMEDIT for complex matrices. They are
otherwise quite similar. The matrix editors are used for three purposes:

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 22

• Entering new values into the elements of a matrix.
• Reviewing and changing (editing) the elements of a matrix, either in order or by “random

access” of specific elements.
• Viewing (without being able to change) the elements of a matrix (flag 08 set).

When you execute MEDIT or CMEDIT, the editor displays element 1,1 of the matrix specified in the
Alpha register or of the current matrix if the Alpha register is empty. Pressing R/S steps the display
through the elements; for a complex matrix, each part of the complex element is shown separately.

The “?” at the end of the display line indicates that you can change that value. In effect, you are
being asked whether this is the value you want. If you want to change the element you see, just enter
the new value and press R/S. You do this for a brand new matrix as well as for correcting or altering a
single value. If you press R/S without entering a new value, the current value remains unchanged.

Viewing without editing.- If you set flag 08, the editor will let you only view the elements, not
change them. The display appears without the “?” at the end of the line. 1:1= 1.0000
If you have a printer attached while flag 08 is set, it will print out all the elements of the matrix
without pausing.

Directly accessing any element.- You can directly access any specific element while the editor is
active (and the User keyboard is also active). To access the element in the i-th row and the j-th
column, enter iii.jjj and press [A]. (This is as in the MATRX program.) You can drop leading zeros in iii
and trailing zeros in jjj. For a complex matrix, you can directly access the real pari of element i, j .Then
use R/S to access its imaginary part. You can drop leading zeros in the i-part and trailing zeros in the
j-part. A zero part defaults to a 1.

Exiting the Editor.- To leave the editor before it has reached the last element, do either:

• Press [J].
• Try to access a nonexistent element. For instance, in a 4 x 4 matrix, press 5 [A].

How to Specify a Matrix

Given the matrix multiplication operation AB = C, you know A and B and are looking for the product
matrix, C. In performing this operat ion, the calcula tor must be given the identit ies of the existing
matrices A and B, and also be told where to put the result matrix, C. (However, the result matrix can
be the same as one of the input matrices.) All given matrices must al ready exist as named,
dimensioned matrices. Naturally, only A and B must contain valid data.

Some functions use only one input matrix, and some functions automatically use one of the input
matrices for output. So the minimum number of matrices to specify is one, and the maximum is three.

A matrix function checks the Alpha register for the names (that is, the locations) of the matrices it
needs for input and output. Before executing that function, you should specify all needed parameters
on one line in the Alpha register, separating each with a comma:

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 23

Scalar Operations.- Scalar input and output must be in the X-register, and so this location does not
need to be specified unless the function in question can use either a scalar or a matrix for the same
input parameter. To specify the X-register, use X.

For instance, MATDIM requires a scalar input and a matrix name, so you do not need to specify the
X- register. On the other hand, the scalar arithmentic functions, such as MAT+, can use either two
matrices or a scalar and a matrix for input. Therefore, you must specify X if you want to use it.

The Current Matrix.- The current matrix is the last one accessed (used) by a matrix operation. If
the Alpha register is clear and you execute a matrix function that requires a matrix specification, the
current matrix is used by default. (If there is no current matrix, “UNDEF ARRAY” results).

The result matrix of a matrix function becomes the current matrix following that operation. To find out
the name of the current matrix, execute MNAME?. Its name is returned into the Alpha register,
overwriting its previous contents.

Default Matrix Parameters.- If you don’t specify any or all the matrices that a matrix function
needs, then certain default parameters exist. (Default parameters are those automatically assumed if
you don't specify them.) The most common default you will probably use is the current matrix. If you
don't specify a particular matrix name and the Alpha register is clear, then the default matrix is the
current one.

For matrix operations requiring up to three matrix names in the Alpha register, the following table
gives the conventions to interpret the parameters.

Alpha Register's Contents

Matrices Specified

A,B,C A, B, C
A,B A, B, B
A A, A, A
A,,B A, A, B
,A,B current, A, B
,A current, A, A
,,A current, current, A
X,A,B X-reg, A, B
X,A X-reg, A, A
A,X A, X-reg, A
A,,X A, A, A (ignores X)
X X-reg, current, current
(blank) current, current, current

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 24

2.2.2.- Storing and Recalling individual Matrix elements.

The matrix editor provides a method of storing and reviewing matrix elements. For programming, you
can use the following functions to manipulate individual matrix elements. A specific element is
identified by the value iii.jjj for its location in the i-th row of the j-th column. You can drop leading
zeros in the i-index and trailing zeros in the j-index. The value of the pointer defines the current
element.

Setting and recalling the Pointer

 Function Description Inputs
1 MSIJA Sets element pointer of matrix in Alpha Name in Alpha, iii,jjj in X-reg.
2 MSIJ Sets element pointer of current matrix iii,jjj in X-reg.
3 MRIJA Recalls element pointer of Matrix in Alpha Name in Alpha, iii,jjj in X-reg.
4 MRIJ Recalls element pointer of current matrix iii,jjj in X-reg.

The following functions increment and decrement the element pointer rowwise (iii) or column wise
(jjj). If the end of a column is reached (with the i-index) or the end of a row is reached (with the j-
index), then the index advances to the next larger or smaller column or row and sets flag 09. If the
index advances beyond the size of the matrix, both flags 09 and 10 are set. These functions always
either set or clear flags 09 and 10. If the conditions listed above don't occur, the flags are cleared
every time the functions are executed.

Incrementing and Decrementing the Pointer

The following functions were not in the original CCD ARRAY FNS group, therefore are HP’s:

 Function Description Inputs
5 I+ Increments iii pointer by one none
6 I- Decrements iii pointer by one none
7 J+ Increments jjj pointer by one none
8 J- Decrements jjj pointer by one none

Storing and Recalling the Element’s Value. (alone or sequentially)

The following functions provide a faster, more automated alternative to adjusting the pointer value to
access each element. These combine storing or recalling values and then incrementing or
decrementing the i- or j-index, so that the pointer is automatically set to the next element.

 Function Description Inputs
9 MS Stores value in X-reg into current element Value in X-Reg
10 MR Recalls current element to X-reg None. Returns element to X-reg
11 MSC+ Stores value in X-reg to current element and

advances pointer to next element in column
Value in X-reg.

12 MSR+ Stores value in X-reg to current element and
advances pointer to next element in row

Value in X-reg.

13 MRC+ Recalls current element to X-reg and then
advances pointer to next element in column

None.
Returns element value to X-reg

14 MRR+ Recalls current element to X-reg and then
advances pointer to next element in row

None.
Returns element value to X-reg

15 MRC- Recalls current element to X-reg and then
decrements pointer to previous in column

None.
Returns element value to X-reg

16 MRR- Recalls current element to X-reg and then
decrements pointer to previous one in row.

None.
Returns element value to X-reg

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 25

When the end of a column or row is reached, the pointer's index advances to the next (or previous)
column or row. If the pointer’s index is moved beyond the boundaries of the matrix, it cannot be
moved back using these functions. You must use MSIJ or MSIJA .

The following sequence of keystrokes will create the matrix ABC (in extended memory).

Keystrokes Display Comments
ALPHA, “ABC”, ALPHA
2.003, XEQ “MATDIM” 2.003 Dimensions matrix ABC in X-Mem.
0, XEQ “MSIJA” 0,000 Sets pointer to 1.001 position
5, XEQ “MSR+” 5.000 Enters element and advances pointer
 to next column for next entry
6, XEQ “MSR+” 6.000 Ditto as above
7, XEQ “MSR+” 7.000 Pointer automatically moves to second row,
 also setting flag 09.
8, XEQ “MSR+” 8.0000
9, XEQ “MSR+” 9.0000
10, XEQ “MSR+” 10.0000 This sets both flags 09 and 10.
SF 08 This sets the editor to display only.
XEQ “MEDIT” “1:1=5.0000”
R/S “1:2=6.0000”
R/S “1:3=7.0000”
R/S “2:1=8.0000”
R/S “2:2=9.0000”
R/S “2:3=10.0000”

Updated Matrix Editor: Row Input mode.

From the examples of MPOL we have already seen another, more effective way to enter the element
values – using PMTM (instead of MEDIT) to handle them “one row at a time”. This drastically
speeds up the process, although some limitations apply:

• The maximum length for all values and the blank spaces in between them is 24 characters, as
it uses the Alpha register to temporarily hold them.

• Decimal and negative values are supported in this mode, but values with exponential notation
(i.e. 2.4 E23) cannot be entered using PMTM.

Here’s the how the sequence would change using this approach:

Keystrokes Display Comments
ALPHA, “ABC”, ALPHA
2.003, XEQ “MATDIM” 2.003 Dimensions matrix ABC in X-Mem.
XEQ “PMTM” “R1:” prompts to enter the first row
5, ENTER^, 6, ENTER^, 7, R/S “R2:” prompts for the second row
8, ENTER^, 9, ENTER^, 10, R/S done!

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 26

This section briefly defines the matrix functions besides the dimensioning, storing, and recalling
functions discussed above. Note that most of these functions are not meaningful for matrices
containing Alpha data and that many of these functions are not meaningful for complex matrices. In
any case. a complex matrix appears as a real matrix to all functions except CMEDIT. Refer to
“Working with Complex Matrices'” for more information on using these functions with complex
matrices.

2.3.1. Matrix Arithmetic

 Function Description Input
1 MAT+ Adds scalar or element to each element A,B,C, or X,B,C in Alpha
2 MAT- Subtracts scalar/element to each element A,B,C, or X,B,C in Alpha
3 MAT* Multiplies scalar/element to each element A,B,C, or X,B,C in Alpha
4 MAT/ Divides each element by scalar or element A,B,C, or X,B,C in Alpha
5 M*M Calculates the true matrix product A,B,C in Alpha

The matrix arithmetic functions provided are scalar addition, subtraction, multiplication, and division,
as well as true matrix multiplication. The scalar arithmetic functions can use two matrices as operands,
or one scalar and one matrix. When using two matrices, the matrices do not have to be of the same
dimension, but the total number of elements in each must be the same. This also applies to the result
matrix. (Note that the i-j notation below assumes that the dimensions of the matrices are the same. If
this is not the case, the i-j notation does not apply.)

Matrix multiplication, on the other hand, calculates each new element by summing the products of the
first matrix's row elements by the second's column elements. The number of columns in the first
matrix must equal the number of rows in the second matrix. The result matrix must have the same
number of rows as the first matrix and the same number of columns as the second matrix.

If there is a scalar operand, it must be in the X-register, and X must be specified in the Alpha register.

The input specifies matrix name A (or X), matrix name B (or X), result matrix C in Alpha register. The
outputs are respectively:

The true matrix multiplication calculates each new element i.j by multiplying the i-th. row in A by the j-
th. column in B. The input is the three matrix names in Alpha where C must be different from the two
operands A and B. The output is:

, where A has p columns and B has p rows.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 27

2.3.2. Major Matrix Operations.

The major matrix operations are: inversion, finding the determinant, transposition, and solving a
system of linear equations.

 Function Description Input
1 MDET Finds the Determinant of a square matrix Matrix Name in Alpha
2 MINV Inverts and replaces the square matrix Matrix Name in Alpha
3 MSYS Solves a system of linera equations Matrix Name A. Name B in Alpha
4 MTRPS Transposes and replaces the real matrix Matrix name in Alpha

This is where the Advantage really took the original CCD implementation to its full fulfillment, as the
CCD was sorely lacking the major operations - no doubt due to the size constrains in a module that
already had tons of other wonders and was packed bursting to its seams.

I recall the awe with which we used to run MINV and the other functions: just a single keystroke
doing the same as all those intricate FOCAL programs did using Gaussian algorithms, element pivoting
and row simplification... simply amazing back then. It was the ultimate Matrix function set, pretty
much surpassing the HP-15C implementation in this area. If you’re reading this now I suspect you
probably had a similar experience too; but enough reminiscing and let’s get on with the manual.

The output of these operations always replaces the original matrix with the result. Moreover, for
MDET and MSYS the result matrix is placed in its LU-decomposed form, which makes it not suitable
for some direct subsequent operations.

Nole: You cannot transpose or change any element of a matrix A that has had its determinant found
or has had its solution matrix found because MDET and MSYS transform the input matrix A into its
LU-decomposed form. (Refer to '"LU-Decomposition” for more information.) However, you can retrieve
the original form of A from its decomposed form by inverting it twice (execute MINV twice). The LU-
decomposition does not interfere with the ca lculations for MINV, MSYS, or MDET.

Example 1.

Find the determinant of the inverse of the transpose of the matrix :
Storing it in Main Memory, starting in Register R0.

First make sure that the calculator SIZE is set at least to 10 to accommodate the elements plus the
header register, typing XEQ “SIZE” 010. Next we begin by creating the matrix in main memory, using
the name ‘R0” in Alpha and the dimension in X:

ALPHA, “R0”, ALPHA
3.003, XEQ “MATDIM”

Since the elements are all integer numbers, this is an ideal candidate for PMTM:

XEQ “PMTM” , -> at the prompt “R1: _” we type: 6, ENTER^, 3, ENTER^, CHS, 2, R/S

-> at the prompt “R2: _” we type: 1, ENTER^, 4, ENTER^, CHS, 3, R/S
-> at the prompt “R3: _” we type: 2, ENTER^, 3, ENTER^, CHS, 1, R/S

And now the festival begins - type:

XEQ “TRNPS”, R0 is transposed
XEQ “MINV”, R0 (which was transposed) is inverted
XEQ “MDET” -> 0.040 is the solution.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 28

Note that if you had wantecacad to find the transpose of the original matrix after having found its
determinant, you would have needed to invert the matrix twice to change the LU-decomposed form
back to the original matrix.

LU-Decomposition

The lower-upper (LU) decomposition is an unrecognizably altered form of a matrix, often containing
Alpha data. This transformation properly occurs in the process of finding the:

• Solution to a system of equations (MSYS; SE in the MATRX program).
• Determinant (MDET; DT in MATRX program).
• Inverse (MINV; I in MATRX program).

The first two of these operations convert the input matrix to its LU-decomposed form and leave it
there, whereas inversion leaves the matrix in its inverted form. When you use functions that produce
an LU-decomposed form, there are several things that you need to be aware of:

• You cannot edit an LU-decomposed matrix unless you edit every element. Also care must be
exercised when viewing an LU-decomposed matrix. Certain operations can alter elements without
your knowledge (refer to "Editing and Viewing an LU-Decomposed Matrix” below for more details).

• You cannot perform any operation that will modify the matrix (other than MINV) because the LU
status of the matrix will be cleared and it will become unrecognizable. Operations that have this effect
are: R<>R, C<>C, MS, MSR+, MSR-, MSC+, MSC-, MMOVE (intramatrix), MSWAP, and
TRNPS.

• LU-decomposition destroys the original form of the matrix. So if you perform MSYS or MDET and
then try to look at your input matrix (A in the MATRX program), you will find only the altered,
decomposed form.
• You cannot calculate the transpose (TRNPS; [SHIFT][B] in MATRX program) of a matrix in LU-
decomposed form. LU-decomposition does not hinder the correct calculation of the inverse,
determinant, or solution matrix, since these operations require the LU-decomposition anyway.

Reversing the LU-Decomposition.- To restore a matrix to its original form from its decomposed
form, simply invert it twice (in effect: find the inverse and then re-invert to the original). Naturally, for
this to work the matrix must be invertible (non-singular). The result can differ slightly from the original
due to rounding-off during operations.

Editing and Viewing an LU-Decomposed Matrix.- LU-decomposed matrices are stored in a
different form than normal matrices:

• Certain elements contain alpha data. (or Non-normalized numbers to be precise)
• The matrix status register is modified to indicate that the matrix is in LU form.

Editing any element of the matrix will clear the LU-flag in the status register, which makes the matrix
unrecognizable to the program. Because of this, if you edit one element, you must edit them all if you
wish to use the matrix again. Note that the matrix will no longer be in LU-decomposed form after this
action. You can view the contents of an LU-decomposed matrix by doing one of the following:

• From the MATRX main menu press [SHIFT][A] to view individual elements without modifying
them.

• Set flag 08 before executing MEDIT or CMEDIT. This allows you to view the elements

without modifying them.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 29

Header Register X-ray. { LU? }

The graphic below shows the different fields in the Matrix header register (14 bytes in total):

Note that a matrix file in X-mem has its type set to 4 (in leftmost byte), and that the matrix
dimensions can be derived from the information in the file size field (nybbles 0,1,2) and the number of
columns field (nybbles 6,7,8), whereby: Number of rows = File size / Number of Columns.

Lastly the pointer field stores the information on the current element as a counter starting from the
first element (1) to the last (nxm). Given the length of this field it follows that a maximum of 4,096
elements (FFF) can be tracked, equivalent to a square matrix of dimensions 64 x 64 or any equivalent
(m x n) combination.

You can use the function LU? to check whether a matrix is in its LU-decomposed form. It’ll return
YES/NO in Run mode, and in a program will skip the next line when false (i.e. it’s NOT decomposed).

Working with Complex Matrices.

When working with complex matrices it is most important to remember that, in the calculator, a
complex matrix is simply a real matrix with four times as many elements. Only the MATRX program
and the complex-matrix editor (CMEDlT) “recognjze” a matrix as complex and treat its elements
accordingly. All other functions treat the real and imaginary parts of the complex elements as separate
real elements.

How Complex Elements are represented

In its internal representation a complex matrix has twice as many columns and twice as many rows as
it "normally' would.

The complex number 100 + 200i is stored as

The 2 x 1 complex matrix

There is one important exception to this scheme: for the column matrix (a vector) in a system of
simultaneous equations.

Solving Complex Simultaneous Equations.- The easiest way to work with complex matrices is to
use the MATRX program. It automatically dimensions, input and output complex matrices. However,
MSYS can solve more complicated systems of equations than MATRX can.

In addition, a complex result-matrix from the MATRX program cannot be used for many complex-
matrix operations outside of MATRX. This is because MATRX will dimension a complex column matrix
differently than 2m x 2. Instead, it uses the dimensions 2m X 1, in which the real and imaginary parts
of a number become successive elements in a single column.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 30

This form has the advantage of saving memory and speeding up opera tions. The complex-matrix
editor and MSYS can also use this 2m X 1 form, though they do not require it. This means you can
use MSYS on a matrix system from MATRX. You can convert an existing 2m x 2 complex column
matrix to the 2m X 1 form by transposing it, redimensioning it to 1 x 2m, then retransposing it. There
is no easy way back.

Accessing Complex Elements.- If you use the complex-matrix editor (CMEDIT or the editor in the
MATRX program), you can access complex elements as if they were actual complex numbers.
Otherwise (such as when you use pointer-setting functions), you must access complex elements as
real elements stored according to the 2m x 2n scheme given above.

Storage Space in Memory.- Since the dimensions required for a complex matrix are four times
greater than the actual number of complex elements (an m X n complex matrix being dimensioned as
2m x 2n), realize that the number of registers a complex matrix occupies in memory is correspondingly
four times greater than a real matrix with the same number of elements. In other words, think of a
complex matrix's storage size in terms of its MATDlM or DIM? dimensions, not its number of complex
elements.

Using Functions with Complex Matrices

Most matrix functions do not operate meaningfully on complex matrices: since they don't recognize
the different parts of a complex number as a single number, the results returned are not what you
would expect for complex entries.

Valid Complex Operations. Certain matrix functions work equally well with real and complex
functions. These are:

• MSYS Solving simultaneous equatiohs
• MINV Matrix inverse
• MAT+ Matrix add
• MAT- Matrix subtract
• MAT* Matrix scalar multiply, but only by a real scalar in X-reg.
• M*M Matrix multiplication

Both the input and result matrices must be complex.

Example 2.

Engineering student A.C. Dimmer wants to analyze the electrical circuir shown below. The impedances
of the components are indicated in complex form. Determine the complex representation of the
currents i1 and i2

The system can be represented by the complex matrix equation: AX = B, or

We’ll use the individual matrix functions instead of MATRX program, already covered in the previous
sections.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 31

The main thing to sort out in this example is the dimension of the matrices involved. The coefficients
matrix A is a 2 x 2 complex matrix, thus as per the previous paragraphs we will need (4x4 +1) = 17
registers. The independent terms matrix B is a 2 x 1 complex matrix, thus will need (4x2 +1) = 9
registers.

This makes for a total of 26 registers needed for the example; therefore we adjust the SIZE
accordingly first typing: XEQ ‘SIZE” 026.

Next we create the two matrices in main memory, starting at R00 and R17 respectively. Note the
shortcut in the R0 name – dropped the zero.

ALPHA, “R”, ALPHA ALPHA, “R17”, ALPHA
4.004, XEQ “MATDIM” 4.002, XEQ “MATDIM”

The next step is entering the element values – using CMEDIT because that is the only editor capable
of editing complex matrices, as we know.

Finally it comes the time for the real work: using MSYS to solve the system, and MCEDIT again (in
view-only mode) to review the results:

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 32

The solution is:

As you can see this is an EE student’s dream for circuit
analysis – if this is in your area of interests you should check
out the macro-program written by Ted Wadman, Chris Coffin
and Robert Bloch as one of the proverbial three best
examples of utilization of the Advantage Module.

The program is documented in its dedicated Grapevine
booklet, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID
=523

and for further convenience Jean-Francois Garnier put it in
ROM module format, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID
=613

The module also contains the other two famous applications
of yore:

1. “Electrical Circuits for Students”,
2. “Statics for Students” , and
3. “Computer Sicence on your HP-41” (a.k.a. the HP-16C Emulator).

Anybody curious enough to see what could be done with the Advantage is encouraged to check those
out – you’ll be rewarded.

The last example asks you to solve a set of six simultaneous equations with six unknown variables.
This requires the use of MSYS, as the constant matrix B is not a column matrix.

Example 3.

Silas Farmer has the following record of sales of cabbage and broccoli forthree different weeks. He
knows the total weight of produce sold each week, the total price received each week, and the price
per pound of each crop. The price of cabbage is $0.24/kg and the price of broccoli is $0.86/kg.
Determine the weights of cabbage and broccoli he sold each week.

 Week-1 Week-2 Week-3
Combined Weight (kg) 274 233 331
Combined Value $130.32 $112.96 $151.36

The following set of linear equations describes the two unknowns (the weights of cabbage and
broccoli) for all three weeks, where the first row of the constant matrix represents the weights of
cabbage for the three weeks and the second row represents the weights of broccoli. Since the
constant matrix is not a column matrix, you must use MSYS and not the SE function in the MATRX
program.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=523
http://www.hp41.org/LibView.cfm?Command=View&ItemID=523
http://www.hp41.org/LibView.cfm?Command=View&ItemID=613
http://www.hp41.org/LibView.cfm?Command=View&ItemID=613

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 33

Where the subindices indicate the crop (1= broccoli, 2=cabbage), and the week (1,2,3), and the first
row describes the weight equations, and the second the prices relationship.

Calling “FACTORS” the coefficients matrix and “LINKS” the costant matrix, we first create them by
dimensioning in X-Memory as follows:

ALPHA, “FACTORS”, ALPHA, ALPHA, “LINKS”, ALPHA,
2.002, XEQ “MATDIM” 2.003, XEQ “MATDIM”

Next we’ll use PMTM to input all the element values. Note that even the “longest” row has 20
characters (including the separator blanks), which is below the limits of the ALPHA register length, of
24 characters max.

With “FACTORS” in Alpha we type:

XEQ”‘PMTM” -> at the prompt “R1: _” we type: 1, ENTER^, 1, R/S

-> at the prompt “R2: _” we type: 0, [,], 2, 4, ENTER^, 0, [,], 8, 6, R/S

With “LINKS” in Alpha we type:

XEQ “PMTM” -> at the prompt “R1: _” we type: 2,7,4, ENTER^, 2,3,3, ENTER^, 3,3,3, R/S

-> at the prompt “R2: _ ” we type: 1,2,0,[,],3,2, ENTER^, 1,1,2,[,],9,6,
 ENTER^, 1,5,1,[,],3,6, R/S

All set up we simply execute MSYS to obtain the solutions shought for:

ALPHA, “FACTORS,LINKS”, ALPHA
XEQ “MSYS”

 Week-1 Week-2 Week-3
Cabbage Weight (kg) 186 141 215
Broccoli Weight (kg) 88 92 116

Note: using OMR (or OMC) to output the elements of the matrix B you can see how the results are all
integer values – which speaks of the accuracy of the internal operaions, taking advantage of the 13-
digit math routines available in the OS for MCODE.

Note also that with these programs the integer results are shown without any zeros after the decimal
point, regardless of the current display settings (FIX or otherwise).

OMR and OMC are extension functions – pretty much like PMTM is - and will be described in detail
in chapter 3.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 34

2.3.3.- Other Matrix Functions (“Utilities”)

The remaining matrix functions, also called utilities, are those for copying and exchanging parts of
matrices, and miscellaneous, extra arithmetic functions: finding sums, norms, maxima, and minima,
and matrix reduction.

Moving and Exchanging Matrix Sections.

 Function Description Input
1 C<>C Exchange columns k and l in a matrix Name in Alpha, kkk.lll in X-reg
2 R<>R Exchange Rows k and l in a matrix Name in Alpha, kkk.lll in X-reg
3 MMOVE Matrix Move Names in Alpha, Pointers in stack
4 MSWAP Matrix Swap Names in Alpha, Pointers in stack

MMOVE and MSWAP Copies or Exchanges the submatrix defined by pointers in the source matrix to
the area defined by one pointer in the target matrix. The inputs require both matrix names in Alpha
separated by a comma, plus the pointers in the stack as follows:

When executing MMOVE and MSWAP if A and B are the same matrix and the source submatrix
overlaps the target submatrix, the elements are processed in the following order: reverse column
order (last to first) and reverse element order (last to first) within each column.

When an input of the form iii.jjj is expected in the X-register, a zero value for either the i-part or the j-
part is interpreted as 1. (Zero alone equals 1.001.) This is true for the iii.ijj-values that MMOVE and
MSWAP expect in the X- and Z-registers, but not for the pointer value in the Y-register.

For the Y-register input, a zero value for the i-part is interpreted as m, the last row, while a zero value
for the j-part is interpreted as n, the last column. This convention facilitates easy copying (or
exchanging) of entire matrices because simply by clearing the stack (CLST) or entering three zeros
you specify the elements 1.001 (X) and mmm.nnn (Y) for the first matrix and element 1.001 (Z) for
the second matrix, thus defining two entire matrices.

For example in a 4 x 5 matrix:

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 35

Miscellaneous Arithmetic Functions: Maxima and Minima

 Function Description Input / Output
5 MAX Finds the maximum element in matrix.

Sets element pointer to it.
Matrix Name in Alpha.
Outputs element value to X-reg

6 MIN Finds the minimum element in matrix.
Sets element pointer to it.

Matrix Name in Alpha
Outputs element value to X-reg

7 MAXAB Like MAX but in absolute value. Sets
element point to it.

Matrix Name in Alpha
Outputs element value to X-reg

8 CMAXAB Finds maximum absolute value in k-
th. column. Sets element pointer to it.

Matrix name in Alpha, kkk in X-reg.
Outputs element value to X-reg

9 RMAXAB Finds maximum absolute value in k-th.
row. Sets element pointer to it.

Matrix name in Alpha, kkk in X-reg.
Outputs element value to X-reg

Miscellaneous Arithmetic functions: Norms and Sums

 Function Description Input / Output
10 CNRM Column Norm. Finds the largest sum

of the absolute values of the elements
in each colum of matrix.

Matrix name in Alpha.
Outputs colum norm to X-reg.
Sets pointer to first element of colum.

11 FNRM Frobenius Norm. Calculates the square
root of the sum of the squares of all
elements in matrix.

Matrix name in Alpha.
Outputs frobenius norm into X-reg

12 RNRM Row Norm. Finds the largest sum of
the absolute values of the elements in
each row of matrix.

Matrix name in Alpha.
Outputs row norm to X-reg.
Sets pointer to first element of row.

13 SUM Sums all elements in matrix. Matrix name in Alpha.
Outputs the sum to X-reg

14 SUMAB Sums absolute values of all elements
in matrix.

Matrix name in Alpha
Outputs the sum to X-reg

15 CSUM Finds the sum of each column and
stores them in a result vector.

Matrix name , result matrix name
(Vector) in Alpha. (*)

16 RSUM Finds the sum of each row and stores
the sums in a result vector.

Matrix name , result matrix name
(Vector) in Alpha. (*)

(*) For CSUM and RSUM the number of elements in the result matrix (vector) must equal the
number of columns/rows in the input matrix.

Miscellaneous Arithmetic functions: Matrix Reductions

 Function Description Input / Output
17 YC+C Multiplies each element in column k of

matrix by value in Y-ref. and adds it to
corresponding element in column l

Matrix name in Alpha, kkk.lll in X-reg,
y in Y-reg.
It changes the elements in colum l

18 PIV Finds the pivot value in column k, that
is the maximum absolute value of an
element on or below the diagonal.

Matrix Name in Alpha, kkk in X-reg

19 R>R? Compares elements in rows k and l. If
(and only if) the first non-equal
element in k is greater than its
corresponding element in l, then the
comparison is positive for the “do if
true” rule of programming.

Matrix name in Alpha, kkk.lll in X-reg
Outputs “YES” if first non-equal
element in row k is greater than
element in row l. “NO” in all other case.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 36

 The last two functions are not operating on a matrix, but are auxiliary for the FOCAL programs:

 Function Description Input / Output
20 AIP Appends the absolute value of the

integer part of the number in X to the
contents of the Alpha register.

Value in X.

21 MPT Appends a matrix prompt “rrr.ccc=” to
the contents of the Alpha register
(dropping leading zeros in each part)

rrr.ccc in X-reg

Note that AIP and AINT in the SandMath are very similar – but AINT won’t take the absolute value.
This fact is useful to append integer vaules to alpha without decimal numbers, but respecting the sign.

Note that MPT in the SandMatrix is an enhanced version written in MCODE – that replaces the mini-
FOCAL program used in the Advantage.

Example. Calculate the Row, Column and Frobenius norms for the matriw

The results are: Row Norm = 19

Column Norm = 15
Frobenius Norm = 14,38749457

The Frobenius norm will come very handy for some programs in Chapter-3 as convergence criteria,
and to determine whether two matrices are “equivalent” in reduction algorithms.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 37

3. Upper-Page Functions in detail

This chapter is all above and beyond the matrix functionality present in the Advantage Pac – a true
extension of its capabilities into new and often uncharted territories.

3.1. The Enhanced Matrix Editor(s)

Often the most tedious part of a matrix calculation becomes the data entry for the input matrices and
the review of the results. With this in mind the SandMatrix includes convenient alternatives to MEDIT,
the “standard” Matrix Editor from the Advantage, seen in the previous chapter. There are as follows:

 Function Description Input / Output
1 PMTM Prompt Matrix by Rows Matrix name in Alpha
2 IMR Input Matrix by Rows Matrix name in Alpha
3 IMC Input Matrix by Columns Matrix name in Alpha
4 OMR Output Matrix by Rows Matrix name in Alpha
5 OMC Output Matrix by Column Matrix name in Alpha
6 OXC Output Column k Matrix name in Alpha, kkk in X-reg
7 OXR Output Row k Matrix name in Alpha, kkk in X-reg

Of all these more remarkable one is of course PMTM – which expedites element data entry to the
maximum possible in the 41 platform, almost as if it were a full-fledge editor in a graphical screen.

The idea is to use the Alpha register as repository for all the elements, separating the individual values
by spaces (entered using the ENTER^ key). The data input is terminated by presing R/S.

The back arrow key is always active to correct a wrong entry, and will terminate the function if Alpha
is completely cleared. PMTM allows for negative and decimal numbers to be entered, thus the CHS
and RADIX keys are also active during the data entry prompt. Furthermore, the logic will only allow
one occurrence of these per each element within the prompt string.

PMTM knows how many rows should be input (it is part of the matrx dimension), thus the prompts
will continue to appear until the last row is completed. A row counter is added to the promt to indicate
the current row being edited.

If you enter fewer elements in the prompt than existing columns, the remaing elements will be left
unchanged and the execution will end. Conversely, if you enter more elements in the prompt than
existing columns, those exceeding the quota (the extra ones) will simply be ignored.

The two limitations of PMTM are as follows:

• A maximum length of 24 characters is possible during the prompt. This includes the blank
separators, the comma (radix), and the negative signs if present.

• No support for the Exponential format is implemented (EEX). You need to use any of the other
editors if your element values require such types of data.

Obviously this makes PMTM ithe ideal choice for matrices containing integer numbers as elements –
but not exclusively so as it can also be used for other values (real-numbers) as long as the two
condicions above are respected.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 38

At the heart of PMTM there is is function ^MROW (“Enter Matrix Row”), responsible for the
presentation of the prompt in Alpha and accepting the keyboard pressings there to make up the string
(or list) with all values. It also provides the logic of actions for the control keys, like ENTER^, Back
arrow, R/S, etc.

^MROW is called in a loop as many times as rows exist in the matrix, while ANUMDL (in the
SandMath) is used every iteration (each time a row is being processed) to “extract” the individual
element data from the global string in the prompt.

Below is the program listing for PMTM, and as you can see it’s just a sweet & short driver for
^MROW that also takes advantage of the auxiliary functions in the SandMatrix.

1 LBL "PMTM"

2 0
3 MSIJA position pointer to 1.1
4 LBL 01
5 MRIJ recall pointer
6 INT row number
7 ^MROW prompts for string
8 CF 22 default reset
9 LBL 00 separate elements
10
11 FC?C 22 last one reached?
12 GTO 02 yes, exit
13 MSR+ store element
14 FC? 09 end of row?
15 GTO 00 no, do next element
16 FC? 10 end of matrix?
17 GTO 01 no, do next row
18 LBL 02
19 MNAME? recall Mname
20 END done.

ANUMDL

^MROW is the first function listed in CAT”2 within the “-ADV MATRIX” group – and rightfully so. Note
that even if PMTM is not strictly an MCODE function, de-facto it is a hybrid one, and therefore it’s
denoted in blue color all throughout this manual. If PMTM is the beauty then ^MROW is the beast.
If you’re interested you can review the MCODE listings for it in appendix “M”.

Below are two examples of the lists being edited, for the first two rows of a given matrix:

 , and

The built-in logic allows for just one negative sign and one radix character per each value entry.

Note that ^MROW is also used by PMTP, the “Polynomial Input” function, which has a very parallel
structure to PMTM and is used to enter the coefficients of a polynomial into data registers. It will be
covered in the polynomial section later on.

The remaining routines in this section all deal with Input and Output of the matrix elements,
depending on whether it’s done following the Row or Column sequence, as well as two functions to
only view one specific row or column (OXR and OXC).

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 39

They are very much equivalent to MEDIT in many aspects, although the symbol “a” is used in the
prompts. They are slightly faster and offer the added convenient feature that for integer element
values the zeros after the decimal point are not shown in the prompt – regardless of the current
display settings (FIX or otherwise). This makes for a clearer UI.

The program listing is shown below; note how the different entry points set the appropriate subset of
user flags, and that they all share the main section for tha actual element input and review.

1 LBL "OMR"

4 LBL "OMC"

7 LBL "IMR"

10 LBL "IMC"

LBL "OXC"

LBL "OXR"

33 MSIJA set pointer to row/col
2 0 clears F0‐F7 34 LBL 00
3 GTO 05 35 "a" element symbol

36 MRIJ recall index
5 2 sets F1 37 MP prompt index
6 GTO 05 38 MR recal value

39 FS? 04 LU decomposed?
8 E sets F0 40 GTO XX synthetic jump (!)
9 GTO 05 41 integer?

42 yes, append IP
11 3 sets F0 & F1 43 fractional?
12 LBL 05 44 ARCL X yes, append all
13 X<>F 45 FC? 00 view only?
14 LU? is LU decomposed? 46 AVIEW yes, show it
15 SF 04 yes, flag this fact 47 FC? 00 view only?
16 0 48 GTO 02 yes, skip editing
17 MSIJA resets pointer to 1:1 49 "|‐?" append "?"
18 GTO 00 go to first element 50 PROMPT show current value
19 51 MS store new value
20 E1 sets F1 & F3 52 LBL 02
21 GTO 04 53 FC? 01 by column?
22 54 J+ yes, next column
23 8 sets F3 55 FS? 01 by row?
24 LBL 04 56 I+ yes, increase row
25 X<>F 57 E1 F10
26 LU? is LU decomposed? 58 FS? 03 by row?
27 SF 04 yes, flag this fact 59 DSE X yes, F9
28 RDN 60 FC? IND X end of matrix/row?
29 INT 61 GTO 00 no, next element
30 62 MNAME? yes, recall Mname
31 FC? 01 row? 63 END and end.
32 I<>J yes, transpose

INT?
AINT
FRC?

E3/E+

Other pointer utilities included are listed in the table below; they are used in many of the FOCAL
programs described in the following sections.

 Function Description Input / Output
8 ^MROW Prompts the list and controls input

Element values as Alpha List

9 I<>J Swaps iii and jjj in X
(also does E3/ for integers)

iii.jjj in X-reg.
Index swapped to jjj.iii

10 I#J? Tests whether iii is different from jjj iii.jjj in X.
YES/NO, do if true.

11 SQR? Tests for Square Matrices MNAME in Alpha.
YES/NO, do if True..

12 MFIND Finds an element in a given matrix
and sets element pointer to it

Element value in X-reg
Outputs the pointer iii/jjj to X-reg

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 40

3.2. New Matrix Math functions.

3.3.1. Utility / housekeeping functions: rounding the capabilities.

This group comes very handy for the handling and management of intermediate steps required as part
of more complex algorithms. As a rule, the functions work for matrices stored either in main memory
or in X-memory. Only MATP and MAT= create new matrices; all other functions expect them
already dimensioned.

 Function Description Input / Output
1 MAT= Makes matrix B equal to A

B = A
Matrix names in Alpha: “A,B”.
Both must exist.

2 MATP Driver for M*M operation Under program control. Creates both
matrices on the fly.

3 MCON Matrix from a constant
Makes aij = x, i=1,2,..m; j=1,2,..n

Matrix name in Alpha, constant in X-reg
Makes all matrix elements equal to x

4 MFIND Finds an element within a matrix Matrix Name in Alpa, element in X-reg.
Returns pointer to X and set to element.

5 MIDN Makes identity Matrix
Makes aii =1 and aij=0 for i#j

Matrix name in Alpha. (must exist)

6 MRDIM Re-dimensions Matrix (properly)
It keeps existing elements in place.

Matrix name in Alpha, dimension in X.
Output is a new matrix (adds ‘ to name)

7 MSORT Sorts all elements within a matrix Matrix Name in Alpha. Reorders
elements in ascending order.

8 MSZE? Calculates the Matrix size
Size = m x n

Matrix name in Alpha.
Output is placed into X-reg.

9 MZERO Zeroes (clears) all elements in matrix
Makes aij = 0, i=1,2..m; j=1,2,..n

Matrix name in Alpha
All elements are set to zero.

A few remarks on each of these functions follow, as well as the program listings.

 MAT= copies an existing matrix into another, with names in Alpha. Prior to doing the bulk element
copy, it redimensions the target matrix to be the same as the source one. It is however not required
that the target matrix already already exist – it will be created if not already there.

MCON does a simple thing: converts the value in the X-Reg into a matrix with all elements equal to
this value. This is useful in some calculations and for matrix manipulations. See the simple program
listings for these routines below;

1 LBL "MAT=" LBL "MCON""A,B" expected in Alpha 1 MNAME in Alpha
2 DIM? dimension 2 MZERO clear all elements
3 ASWAP swap Alpha 3 RDN get constant back to X
4 MATDIM re‐dimension target 4 "X" prepare alpha string
5 ASWAP undo the swap 5 MAT+ add x to all elements
6 CLST prepare pointers 6 MNAME? recall MNAME to Alpha
7 MMOVE move all elements 7 END done
8 END done

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 41

MZERO is the unsung hero behind other routines – as the proper way to clear a matrix file, since
CLFL cannot be used because it also clears the header register (it was meant for Data files). Use it
safely for matrices in main and x-memory.

 MSORT uses an auxiliary matrix in main memory (“R0”) where RGSORT (from the SandMath) is
applied to; then data are copied back to the original matrix. It also checks for available registers,
adjusting the calculator SIZE if necessary. The contents of those (n x m +1) data registers will be lost.

MSZE? has a new MCODE implementation in this revision – directly reading the matrix header
register. Its funcionallity is equivalent to FLSIZE for matrices stored in X-mem – but not so for
matrices stored in main memory.

1 MSZE? Header A60A 0BF "?"
2 MSZE? Header A60B 005 "E" Matrix Size?
3 MSZE? Header A60C 01A "Z"
4 MSZE? Header A60D 013 "S"
5 MSZE? Header A60E 00D "M" Ángel Martin
6 MSZE? MSZE? A60F 379 PORT DEP: Jumps to Bank_2

03C XQ
1D9 ‐>A5D9 [LNCH0]

7 MSZE? A610 adds "4" to [XS]
8 A611
9 valid for main and X‐mem A612 388 <parameter> B788
10 the proper way to do it! A613 00B JNC +01
11 A614 100 ENROM1 restore bank‐1
12 MSZE? A615 0B0 C=N ALL header register
13 MSZE? A616 106 A=C S&X
14 MSZE? A617 17D ?NC GO [BIN‐BCD] plus [RCL]
15 MSZE? A618 0C6 ‐>315F [ATOX20]

 PMAT is nothing more than a user-friendly driver program to automate the complete matrix product
procedure, without any need to dimension the result matrix in advance. The routine will guide you
step-by-step thru the complete sequence, including the element data input and output.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 42

 MIDN is a good example of a sorely missing function: the majority of matrix algorithms involve
identity matrices, one way or another, so having a routine that does the job becomes rather
important. The SandMatrix routine follows a single-element approach, storing ones in the main
diagonal after zeroing the matrix first. This is faster and more convenient that block-based methods,
even if not requiring scratch matrices for intermediate calculations. See an the example below
courtesy of Thomas Klemm:

Of all these perhaps only MRDIM needs further explanation. Contrary to MATDIM, a proper re-
dimensioning should respect the elements in the re-dimensioned matrix that held the same position in
the original one. MRDIM does this, deleting the discarded elements when the redimensioned sub-
matrix is smaller than the original, and completing the new onew with zeroes wihen it is bigger (super-
matrix). It always starts with a11 (no random origin is possible).

1 LBL "MRDIM" MNAME in Alpha 16 X<>Y min(j1,j2)
2 DIM? get dimension 17 RCL Z
3 X<>Y new dimension to X 18 INT min (I)
4 ASTO T temporary safekeep 19 + min (I), min(j)
5 "|‐' " add tilde 20 0
6 MATDIM create new matrix 21 STO Z prepare pointers
7 CLA 22 ASTO T temporary safekeep
8 ARCL T MNAME 23 "|‐,"
9 X>Y? 24 ARCL T MNAME
10 X<>Y min(i1,i2) 25 "|‐' " prepare Alpha string
11 STO Z keep in Z 26 MMOVE copy elements
12 FRC 27 PURFL purge original file
13 X<>Y 28 MNAME? recall name to Alpha
14 FRC 29 END done
15 X>Y?

A logical enhancement to this routine would be to change the matrix name back to its original one,
removing the tilde. This can be done in two ways:

1. creating a new matrix file and copying it over once again, or (preferable)
2. using RENMFL (in the AMC_

OS/X module) to rename the X-mem file

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 43

Finding an element within a Matrix { MFIND } - plus an easy-driver for M*M

 MFIND will search a given matrix looking for an element that equals the value in the X-register. If it
is found it returns its location pointer to the X-reg (and leaves the pointer set to it). If it’s not found, it
returns -1 to X and the pointer is outside the matrix.

You can further use this result adding the conditional test function “X>=0?” (available in the
SandMath) right after MFIND - which in a program will skip a line if the element wasn’t found.

Below are the program listings for your perusal.

1 LBL "MFIND" LBL "MATP"MNAME in Alpha 1
2 0 2 "DIM1=?" M1 dimension
3 MSIJA sets pointer to 1:1 3 PROMPT prompt for it
4 LBL 05 4 "M1" matrix name ‐ M1
5 RDN target value to X‐reg 5 MATDIM create matrix in X‐mem
6 MR recall element 6 PMTM input elements
7 X=Y? equal? 7 "DIM2=?" M2 dimension
8 GTO 02 yes, exit 8 PROMPT prompt for it
9 J+ no, increase column 9 "M2" matrix name ‐ M2
10 FC? 10 end of matrix? 10 MATDIM create matrix in X‐mem
11 GTO 05 no, next element 11 PMTM input elements
12 RDN target value to X‐reg 12 DIM?
13 CLX 13 FRC # of columns for M2
14 ‐ 14 "M1"
15 E put ‐1 in X 15 DIM?
16 GTO 00 exit 16 INT # of rows for M1
17 LBL 02 17 + cresult matrix dimension
18 RDN 18 "M*" matrix name ‐ M*
19 CLX 19 MATDIM create matrix in X‐mem
20 MRIJA 20 "|‐M1,M2," prepare Alpha string
21 LBL 00 21 2
22 END done 22 AROT

23 M*M matrix product
24 ASHF remove acratch
25 OMR output values
26 END done

Note that in MATP I have chosen PMTM to enter the element data values – therefore it’s somehow
limited by the same constraints described before, ie. total length in Alpha and no support for the EEX
key.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 44

3.2.2. New Math functions.- Completing the core function set.

The next group incudes advanced application areas in “core” matrix math.

 Function Description Input / Output
9 M^1/X Brute-force Matrix X-th Root

A = exp(1/x * Ln[A])
Matrix name in Alpha, order in X
The result matrix replaces the input

10 M^2 Square power of a square Matrix
A = [A]^2 = [A].[A]

Matrix name in Alpha
The result matrix replaces the input

11 MDPS Matrix Diagonal Product Sum
MDPS = Σ[aii*aii+1], i=1,2…n

Matrix name in Alpha.
Output is result in X-reg

12 MEXP Exponential of a Matrix
A = exp(A)

Matrix name in Alpha.
The result matrix replaces the input.

13 MLIE Matrix Lie Product
C = AB – BA

Matrix names in Alpha: “A,B,C”
Result matrix C must be different.

14 MLN Matrix Logarithm
A= Ln (A)

Matrix name in Alpha.
The result matrix replaces the input.

15 MPWR Matrix Power of integer order
A = A^x

Matrix name in Alpha, order in X-reg.
The result matrix replaces the input.

16 MSQRT Matrix Square Root
A = sqrt(A)

Matrix name in Alpha.
The result matrix replaces the input.

17 MTRACE Calculates the Trace of a Square
Matrix
Trace = Σ aii, i= 1, 2,..m

Matrix name in Alpha.
Output is put into W-reg.

18 R/aRR Row division by diagonal element
akj = akj / akk , j= 1,1,…n

Matrix name in Alpha, row kkk in X-reg
All row elements divided by akk

19 ΣIJJI Sum of crossed-elements products
SCEP = Σ[Σ(aij * aji)]

Matrix name in Alpha
Output is put in X-reg.

Formulae and algorithms used.

The algorithms used impose some restrictions to the matrices. These are generally not checked by the
programs, thus in some instances there won’t converge to a solution. Suffice it to say that the
programs are not fool-proof, and assume the user has a general understanding of the subjects – so
they won’t be used foolishly.

Matrix Exponential { MEXP }

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the
ordinary exponential function. Let X be an n×n real or complex matrix. The exponential of X, denoted
by e^X or exp(X), is the n×n matrix given by the power series

where X^0 is the identity matrix, I. The above series always converges, so the exponential of X is
well-defined. Note that if X is a 1×1 matrix the matrix exponential of X is a 1×1 matrix consisting of
the ordinary exponential of the single element of X.

Finding reliable and accurate methods to compute the matrix exponential is difficult, and this is still a
topic of considerable current research in mathematics and numerical analysis. The SandMath uses a
direct approach, so no claims of discovering new algorithms”

 exp(A) = I + A + A2/2! + A3/3! + + Ak/k! +

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 45

The program adds new terms until their contribution is negligible, i.e. it results in the same matrix
after addng it. This by itself poses an interesting question: how to check whether two matrices are the
same? Obviously doing it element-to-element would be a long and impractical method. The
alternative is to use the matrix Frobenius norm as a surrogate criterion; assuming that for very similar
matrices, they’ll be equal when they have the same norm.

There’s no saying to the execution time or whether the calculator numeric range will be exceeded in
the attempt – so you can expect several iterations until it converges. The matrix norm will be
displayed after each iteration, so you’ll have an indication of the progress made comparing two
consecutive values.

Logarithm of a Matrix { MLN }

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the
latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some
sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those
matrices that do have a logarithm may have more than one logarithm. Furthermore, many real
matrices only have complex logarithms – making it so even more challenging.

The SandMatrix uses the following algorithm:

If || A - I || < 1 , the logarithm of a n x n matrix A is defined by the series expansion:

 Ln(A) = (A - I) - (A - I)2/2 + (A - I)3/3 - (A - I)4/4 + where I is the identity matrix.

Example 1- Calculate the exponential of the matrix A given below, and then calculate its logarithm
to see how the result matrix compares to the original.

 [[1 2 3]
 A = [0 1 2]
 [1 3 2]]

The first part of the assignment is rather simple: Executing MEXP results in the following matrix:

 [[19.45828375 63.15030507 66.98787675]
 exp(A) = [8.534640269 32.26024414 33.27906416]
 [16.63953207 58.45323648 61.70173665]]

However trying to calculate the logarithm will not work, because exp(A) doesn’t satisfy the
requirement: Det[exp(A)-I] = -52,95249156; therefore trying MLN on it will eventually reach an
“OUT OF RANGE” condition.

Example 2.- Calculate the Logarithm of the following matrix:

 [[1.2 0.1 0.3]
 A = [0.1 0.8 0.1]
 [0.1 0.2 0.9]]

In this example, || A - I || = 0.5099... < 1 , thus the program will work.

The result matrix after executing MLN is as follows:

 [[0.167083396 0.069577923 0.287707999]
 Ln(A) = [0.097783005 -0.240971674 0.103424021]
 [0.086500972 0.235053124 -0.131906636]]

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 46

So we see that unfortunately the logarithm is not a trivial exercise. The programs are listed below,
note the combination of both exponential and logarithm into a single program, with flag 01 controlling
the case.

1 LBL "MLN"

LBL "MEXP"

44 LBL 02
2 SF 01 exp flag 45 VIEW 00
3 GTO 00 46 "#,"
4 47 ARCL 01
5 CF 01 LN flag 48 "|‐,P"
6 LBL 00 49 M*M
7 DIM? get dimension 50 "P,#"
8 I#J? not square? 51 CLST
9 ‐ADV MATRX error message 52 MMOVE
10 ASTO 01 53 RCL 02
11 "|‐,^" 54 FC? 01 exp?
12 MAT= safekeeping copy 55 FACT to be used as divisor
13 DIM? get dimension 56 FC? 01 exp?
14 "P" 57 GTO 04
15 MATDIM auxiliary matrix 58 ENTER^
16 "#," 59 ENTER^
17 MATDIM auxiliary matrix 60 E to be used as divisor
18 MIDN 61 +
19 ARCL 01 62
20 FS? 01 LN? 63 LBL 04
21 ASWAP yes, swap names 64 "P,X"
22 "|‐,^" 65 MAT/ divide by scalar
23 FS? 01 LN? 66 ABSP remove "X"
24 MAT‐ 67 " |‐^,^" prepare new string
25 FC? 01 exp? 68 MAT= safekeeping copy
26 MAT+ 69 E
27 "^," 70 ST+ 02 increase term index
28 FNRM initial norm 71 "^,"
29 STO 00 store in R00 72 FNRM new frobenius norm
30 FC? 01 exp? 73 X<> 00 swao with old norm
31 CLA 74 RCL 00 recall new again
32 ARCL 01 75 X#Y? are the different?
33 FC? 01 exp? 76 GTO 02 yes, keep at it
34 GTO 04 77 ARCL 01 no, we're done
35 MAT= 78 MAT=
36 CLAC 79 PURFL purges "^"
37 ABSP 80 "P,#"
38 LBL 04 81 PURFL purges "P"
39 "|‐,#" 82 ASWAP
40 CLST 83 PURFL purges "#"
41 MMOVE 84 MNAME? recalls name to Alpha
42 2 85 END
43 STO 02

CHSYX

Remarks.- The program is relatively short but hefty in data requirements: three auxiliary matrices
are created and used during the calculations, meaning that the total numbers of registers needed
(including the original matrix) is: 4 x dim (A)

Note also that the convergence is based on equal Frobenius norms of two consecutive iterations, and
that the comparison is made using the full 9 decimal digits (see instruction “X#Y?”in line 75). A
rounded comparison would result in shorter execution times, but it wouldn’t be as accurate.

As usual, these routines will result in “ALPHA DATA” if the matrix is in LU decomposed form.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 47

Square root of a Matrix { MSQRT }

In mathematics, the square root of a matrix extends the notion of square root from numbers to
matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A.

Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root
with complex-valued entries. In general, a matrix can have many square roots, however, a positive-
semidefinite matrix M (that satisfy that x * M x >=0 for all x in Rn) has precisely one positive-
semidefinite square root, which can be called its principal square root.

Computing the matrix square root in the SandMatrix uses a modification of the the Denman-Beavers
iteration. Let Y0 = A and Z0 = I, where I is the n × n identity matrix. The iteration is defined by

Convergence is not guaranteed, even for matrices that do have square roots, but if the process
converges, the matrix Yk converges quadratically to a square root A1/2, while Zk converges to its
inverse, A−1/2

Contrary to the exponential and logarithm programs, the square root convergence is checked using
the rounded values of the norms for two consecutive iterations. You can set FIX 9 for maximum
accuracy (and longest run time – not a problem on V41 and on the 41CL of course).

Example 1. Find a square root of the 3rd. order Hilbert matrix:

 [[1 1/2 1/3]
 A = [1/2 1/3 1/4]
 [1/3 1/4 1/5]]

We’ll use IMR to input the element vaules (as PMTM is not really suitable for this example).
Previously we need to create the matrix, as follows:

ALPHA, “HILB3”, ALPHA
3.003, XEQ “MATDIM”

Once all elements are entered, we execute MSQRT , which shows the norms of the different
iterations. Let’s assume we set the calculator in FIX 9 for the maximum accuracy available; then the
result matrix is as follows:

Final Frobenius norm = 1,238278374

 [[0,917390290 0,345469265 0,197600714]
 Sqrt(A) = [0,345469265 0,374984280 0,270871020]
 [0,197600714 0,270871020 0,295943995]]

Squaring the result matrix again (you can use M^2 for that) we can check the accuracy:

 [[0,999999999 0,499999999 0,333333333]
 [Sqr(A)]^2 = [0,500000000 0,333333333 0,250000000]
 [0,333333333 0,249999999 0,200000000]]

which isn’t bad at all for a 33 years old calculator indeed…

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 48

Example 2.- Find a square root of the 4 x 4 matrix below, and check the accuracy by squaring it
back.

Using FIX 4 and PMTM for the data input (nice integer values), the result is as follows:

which is exact to 4 decimal places save a couple of ulps here and there.

The program listing is shown below. Note the relatively short program, but here too the data
requirements are equally hefty as three auxiliary matrices are required, for a total of 4 x dim(A)
registres needed either in main or X-memory (including the original matrix).

1 LBL "MSQRT" 30 are they equal>
2 DIM? get dimension 31 SF 00 yes, flag this fact
3 I#J? is it square? 32 are they equal>
4 ‐ADV MATRX no, show error 33 GTO 02 yes, jump over
5 CF 00 34 CLA no, keep at it
6 FNRM initial norm 35 ARCL 01
7 STO 00 store it in R00 36 "|‐,#" prepare Alpha string
8 ASTO 01 matrix name to R01 37 MINV invert matrix
9 RDN dimension to X‐reg 38 MAT= copy in auxiliary
10 "P" 39 MINV undo the inversion
11 MATDIM auxiliary matrix P 40 "Q.#,Q"
12 "Q" 41 MINV invert auxiliary
13 MATDIM auxiliary matrix Q 42 MAT+ sum it to partial result
14 MIDN 43 "Q,X"
15 LBL 00 44 2
16 "Q,#" 45 MAT/ divide by scalar 2
17 MINV 46 LBL 02
18 MAT= auxiliary matrix # 47 "P,"
19 CLA 48 ARCL 01
20 ARCL 01 49 MAT=
21 "|‐,#,P" 50 FC? 00 were norms equal?
22 MAT+ 51 GTO 00 no, next iteration
23 "P,X" 52 PURFL purge P
24 2 53 "Q"
25 MAT/ 54 PURFL purge Q
26 FNRM Frobenius norm 55 "#"
27 VIEW X show progress 56 PURFL purge #
28 X<> 00 swao with old norm 57 MNAME? matrix name to Alpha
29 RCL 00 recall new one again 58 END done

X=YR?

X=YR?

As usual, this routine will result in “ALPHA DATA” if the matrix is in LU decomposed form.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 49

Matrix Integer Powers and Roots. { M^2 , MPWR , M^1/X }

This application will be dealt with using a relatively brute force approach, in that the powers will be
computed by successive application of the matrix multiplication; therefore the restriction to integer
powers.

 MPWR calculates the general case n, whilst M^2 is used to square a matrix (i.e. n=2). The first
requires the matrix name in Alpha and the exponent in the X-register, whereas for the second only the
matrix name in Alpha is needed.

The exponent may also be a negative integer. For that case the inverse matrix is calculated first, and
the positive integer power is used for it. Lastly, for n=0 the result is the identity matrix of course.

A feeble attempt is also made for the integer roots calculation: the function M^1/X will attempt to
calculate the x-th. root of a matrix using the general expression:

[A]^1/x = exp[1/x . Ln(A], which is only valid when abs(||A-I||) < 1

Despite the inherent limitations of these programs they are interesting examples of extension of the
“native” matrix function set, and therefore their inclusion in the SandMatrix.

Example1. Calculate the 7-th. power of the matrix below:

 [[1 4 9]
 A = [3 5 7]

 [2 1 8]]

Type XEQ “MPWR”, and the result is:

[[7851276 8652584 31076204]
 A7 = [8911228 9823060 35267932]

 [5829472 6422156 23076808]]

Example 2. Calculate the 5th. root of matrix A below, then compare its 5th power to the original
matrix.

 [[1.2 0.1 0.3]
 A = [0.1 0.8 0.1]
 [0.1 0.2 0.9]]

The results are as follows:

 [[1,034632528 0,015156701 0,057916477]
 A1/5 = [0,019601835 0,953558110 0,020490861]
 [0,017823781 0,045426856 0,974937998]]

 [[1,199999994 0,100000000 0,300000000]
 [A1/5]5 = [0,100000000 0,800000000 0,100000000]
 [0,100000000 0,200000000 0,900000000]]

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 50

Program listings for MPWR , M^2 and M^1/X .

1 LBL "MPWR" LBL "M^2"

LBL "M^1/X"

MNAME in Alpha 1 MNAME in Alpha
2 DIM? get dimension 2 DIM? get dimension
3 I#J? square? 3 I#J? is it square?
4 ‐ADV MATRX yes, show error 4 ‐ADV MATRX yes, error message
5 ‐CCD MATRX no, show "RUNNING…" 5 ‐CCD MATRX no, show 'Running…"
6 X<>Y power index to X‐reg 6 ASTO L
7 INT make integer 7 "|‐,"
8 X#0? is it zero? 8 ARCL L
9 GTO 01 no, skip over 9 "|‐,P" "M,M,P"
10 MIDN yes, make identity 10 ASWAP "M,P,M""
11 RTN done. 11 ASWAP "P,M,M"
12 LBL 01 12 MATDIM auxiliary P
13 X<0? is it negative? 13 ASWAP "M,M,P"
14 MINV yes, invert matrix 14 M*M matrix product
15 ABS 15 CLAC "M,M,"
16 E 16 CLAC "M,"
17 ‐ n‐1 17 "|‐P" "M,P"
18 X=0? was n=1? 18 ASWAP "P,M"
19 RTN yes, we're done 19 MAT= result to M
20 STO 00 store in R00 20 PURFL purge P
21 ASTO 01 store Mname in R01 21 MNAME? MNAME to Alpha
22 "|‐,#" 22 END done
23 MAT= copy to aux matrix #
24 DIM? get dimansion
25 "P"
26 MATDIM auxiliary matrix P
27 LBL 00 prepare alpha string 1 MNAME in Alpha
28 "#," "#," 2 1/X
29 ARCL 01 "#,MNAME" 3 STO 05 store in R05
30 "|‐,P" "#,MNAME,P" 4 MLN matrix logarithm
31 M*M matrix product 5 RCL 05
32 VIEW 00 show current index 6 "|‐,X" prepare Alpha string
33 "P,#" 7 ASWAP swap string
34 CLST 8 MAT* scalar multiplication
35 MMOVE copy result to # 9 MNAME? recall MNAME
36 DSE 00 decrement index 10 MEXP exponential
37 GTO 00 loop back if not ready 11 END done
38 "#," "#,"
39 ARCL 01 "#,MNAME"
40 MAT= copy result to #
41 PURFL purge #
42 "P"
43 PURFL purge P
44 MNAME? recal MNAME to Alpha
45 END done.

Remarks:- Both MPWR and M^2 need one auxiliary matrix (P) to temporarily place the results of the
matrix product – Additionally, MPWR needs a second auxiliary matrix (#) as well.

An alternative listing for M^1/X that includes a convergency check is shown in next page. Note how
the calculations to check for the condition are a taxing step, in that it requires a scratch matrix to
calculate its norm. On the positive side though, it’ll spare us the wait for a non-convergent process
that would take much longer until it’s apparent so. So after some consideration the longer version is
now in the module.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 51

The scratch matrix is removed in case there is divergence, or reused to calculate the logarithm if not –
thus at least it’s not all a waste of time. If there is no convergence you may still go ahead and hit R/S
after the error message to see how the precision factor keeps increasing until the “OUT OF RANGE”
condition.

A general-purpose algorithm for the p-th. root.

The principal p-th root of a non-singular matrix A (det A # 0) may be computed by the algorithm:

 M0 = A Mk+1 = Mk [(2.I + (p - 2) Mk) (I + (p - 1) Mk) -1] p

 X0 = I Xk+1 = Xk (2.I + (p - 2) Mk) -1 (I + (p - 1) Mk)

where I is the Identity matrix

 Mk tends to I as k tends to infinity
 Xk tends to A 1/p as k tends to infinity

The convergence is also quadratic if A has no negative real eigenvalue.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 52

Lie Product of two Matrices. { MLIE }

The lie product is defines as the resultimg matrix obtained from the difference between the right and
left multiplications of the matrices or in equation form:

Lie(A,B) = - Lie(B,A) = AB – BA

Example.- Calculate the Lie product for matrices:

[[1 2 4] [[1 4 1]
 A = [3 5 7] and: B= [5 9 2]
 [7 9 8]] [6 5 3]

The results are:

ALPHA, “A,B,C”, ALPHA [[15 11 -23]
XEQ “MLIE” -> Lie(A,B) = [24 19 -65]
 [58 85 -34]]

ALPHA. “B,A,C”, ALPHA [[-15 -11 23]
XEQ “MLIE” -> Lie (B,A) = [-24 -19 65]
 [-58 -85 34]]

The program listing is shown on the left. Note the usage of auxiliary matrix # to temporatily hold the
result of the two matrix products (always the same limitation imposed by M*M), and the extensive
usage of the alpha string management functions, like ASWAP – necessary to deal with the three
matrix names in the string.

In fact SWAP swaps the contents of the Alpha register around the first comma character encounterd,;
which makes it so interesting in this case.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 53

Matrix Trace and remaining functions. { MTRACE }

In linear algebra, the trace of an n-by-n square matrix A is defined to be the sum of the elements on
the main diagonal (the diagonal from the upper left to the lower right) of A, i.e.,

where aii represents the entry on the ith row and ith column of A. The trace of a matrix is the sum of
the (complex) eigenvalues, and it is invariant with respect to a change of basis. Note that the trace is
only defined for a square matrix (i.e., n ×n).

Some of the properties of the trace are quite interesting and useful for other calculations, like
eigenvalues and even determinants. In particular one could use the relationship that defines the trace
of a product of matrices:

If we use an identity matrix in place of Y on the equation above it’s clear that: tr(A) = SUM {[A] o [i]},
where the “o” symbol denotes the Hadamard or entry-wise product - as obtained by MAT*.

The program in the SandMath however uses a direct approach, summing the elements in the diagonal
– it’s faster and doesn’t require any auxiliary matrix to hold intermediate results.

Eigenvalues relationships.

The trace of a matrix is intricately related to its eigenvalues. In contrast with the determinant (which is
the product of its eigenvalues); if A is a square n-by-n matrix with real or complex entries and if
λ1,...,λn are the eigenvalues of A (listed according to their algebraic multiplicities), then

Another powerful property relates the trace to the determinant of the exponential of a matrix, as
follows: (Jacobi’s formula):

 MTRACE uses a single-element approach, basically adding all the elements in the principal diagonal.
For small to mid-size matrices this is faster than a block-approach, redimensioning and transposing the
matrix such as the one sketched below (coutesy of Thomas Klemm):

ere’s the sweet and short SandMatrix program listing, compared side-to-side to a block-approach

H
alternative implementation – which also requires a scratch matrix if one wishes to keep the original
matrix unchanged, as well as some additional steps for Alpha housekeeping.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 54

ote how the alternative approach function SUM is used, whch removes the need to calculate the

ow Division by Diagonal element. (Diagonal Unitary) { R/aRR }

N
determinant in the last step of the sketch. Regardless, it’s bigger and takes longer excution time, even
without the test for square matrix condition.

R

The last function in this chapter is used to modify the values of all elements, dividing each row by its

 effect the result matrix has all its diagonal elements equal to 1 (i.e. diagonal unitary). This type of

diagonal element; that is: aij = aij / aii, j=1,2,... n

In
calculation is useful for row simplification steps in matrix reductions; more like a vestigial function from
when the major matrix operations were not available (i.e. the CCD days, pre-Advantage Pac).

1 LBL "R/aRR" MNAME in Alpha 19 RDN discard product
2 DIM? get dimansion 20 FC? 09 end of row?
3 I#J? not square? 21 GTO 00 no, get next element
4 ‐ADV MATRX show error 22 FS? 10 end of matrix?
5 0 23 GTO 02 yes, exit
6 MSIJA set pointer to 1:1 24 MRIJ recall pointer
7 LBL 01 25 ENTER^
8 MR recall diag element 26 INT
9 1/X inverse value 27 ENTER^
10 X<>Y pointer to X 28 I<>J does E3/ if integer
11 MSIJ set pointer 29 + j,00j
12 X<>Y value back to X‐reg 30 MSIJ set pointer
13 ENTER^ 31 X<>Y
14 ENTER^ fill stack w/ value 32 GTO 01 next row
15 LBL 00 33 LBL 02
16 MR recall element 34 DIM? get dimansion
17 * multiply 35 END end
18 MSR+ store and increase column

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 55

Sum of Diagonal and Crossed Elements products. { MPDS , ΣIJJI }

Other two functions directly related to the eigenvalues are MDPS and ΣIJJI . They compute sums of
pairs of element multiplication, either for those in the diagonal (aii * a kk); or for “crossed” (i.e.
opposite) ones, (aij * aji), with i#j – excluding the diagonal.-2*1 – 4*2 + 3*0

Armed with these functions the characteristic polynomial of a 3 x 3 matrix can be expressed very
succinctly – as we’ll see in Chapter 4 of the manual.

Example. Calculate the trace and the sums of diagonal and crossed elements for the matrix below:

Tr(A) = -2 + 1 – 1 = -2
MDPS = (-2*1) – (1*1) + (2*1) = -1
Σaij aji = -2 * 1 – 4 * 2 + 3* 0 = -10

Program listings – easy does it, element-wise.

1 LBL "Σ IJJI" LBL "MDPS"MNAME in Alpha 1 MNAME in Alpha
2 DIM? get dimension 2 DIM? get dimansion
3 I#J? not square? 3 I#J? not square?
4 ‐ADV MATRX error message 4 ‐AVD MATRX show error
5 INT n 5 CF 00 default case
6 E 6 3
7 ‐ n‐1 7 X<=Y? is i >= 3?
8 1,00(n‐1) 8 SF 00 flag case
9 CLA 9 0 initial sum
10 STO M 10 MSIJA set pointer to 1:1
11 LBL 00 11 LBL 06
12 RCL M k,00(n‐1) 12 MRR+ recall element
13 E 13 FS? 09 end of row?
14 1,001 14 GTO 00 yes, juom out
15 + (k+1),00n 15 I+ no, increase row
16 STO N 16 MR recall element
17 LBL 01 17 * multiply
18 RCL M k,00(n‐1) 18 + add to partial sum
19 INT k 19 FC? 10 end of matrix?
20 RCL N (k+1),00n 20 GTO 06 no, do next row
21 INT k+1 21 LBL 00
22 I<>J does E3/ for integers 22 FC? 00 order >3?
23 + (k+1),00(n+k+1) 23 RDN yes, get result to X‐reg
24 MSIJ sel pointer 24 FC?C 00 order >3?
25 MR recall element 25 RTN yes, done.
26 X<>Y 26 0
27 I<>J does E3/ for integers 27 MSIJ set pointer to 1:1
28 MSIJ set pointer 28 RDN ann to X‐reg
29 RDN 29 MR aoo
30 MR recall element 30 * a00 * ann
31 * multiply them 31 + add to the sum
32 ST+ O add to partial sum 32 END done
33 ISG N increase row
34 GTO 01 next element in row
35 ISG M increase colum
36 GTO 00 next colum
37 RCL O partial sum to X‐reg
38 MNAME? recall mname to Alpha
39 END done

E3/E+

E3/E+

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 56

Appendix.- Square root of a 2x2 Matrix.
A square root of a 2x2 matrix M is another 2x2 matrix R such that M = R^2, where R^2 stands for
the matrix product of R with itself. In many cases, such a matrix R can be obtained by an explicit
formula. Let

where A, B, C, and D may be real or complex numbers. Furthermore, let τ = A + D be the trace of M,
and δ = (AD – BC) be its determinant. Let s be such that s^2 = δ, and t be such that t^2 = τ + 2s.
That is,

Then, if t ≠ 0, a square root of M is:

There it is, directly without doing any iterations or finding inverses. Your assignment now is to write a
short program to calculate the square root of a 2x2 matrix applying the formula above.- Go ahead and
try your hand at it … or cheat and look below.-

Note,- Not as trivial as you may think because the LU decomposition performing the determinant will
conflict with other functions needed. Therefore one scratch matrix should be used here as well.

Example: calculate one square root of the matrix given below, and compare its square power to it.

This concludes the core matrix sections; it’s time now to embark into the fascinating journey of
characteristic polynomials and eigenvalues, as a prelude to the advanced polynomial chapter.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 57

4. Polynomials and Linear Algebra

Linear algebra is the branch of mathematics concerning vector spaces, as well as linear mappings
between such spaces. Such an investigation is initially motivated by a system of linear equations in
several unknowns. Such equations are naturally represented using the formalism of matrices and
vectors.

 Function Description Input / Output
1 CHRPOL Characteristic Polynomial Under prgm control
2 EIGEN Eigen Values by SOLVE Under prgm control
3 #EV Subroutine for EIGEN Under prgm control
4 EV3 Eigen values 3x3 Matrix in X-Mem
5 EV3X3 Eigen values 3x3 Prompts Matrix Elements
6 JACOBI Symmetrical Eigenvalues Under prgm control

4.1. Eigenvectors and Eigenvaules.

An eigenvector of a square matrix A is a non-zero vector v that, when the matrix is multiplied by v,
yields a constant multiple of v, the multiplier being commonly denoted by λ. That is:

The number λ lis called the eigenvalue of A corresponding to v.

In analytic geometry, for example, a three-element vector may
be seen as an arrow in three-dimensional space starting at the
origin. In that case, an eigenvector of a 3×3 matrix v is an
arrow whose direction is either preserved or exactly reversed
after multiplication by A.

The corresponding eigenvalue determines how the length of the
arrow is changed by the operation, and whether its direction is
reversed or not, determined by whether the eigenvalue is
negative or positive.

A vector with three elements may represent a point in three-dimensional space, relative to some
Cartesian coordinate system. It helps to think of such a vector as the tip of an arrow whose tail is at
the origin of the coordinate system. In this case, the condition "u is parallel to v" means that the two
arrows lie on the same straight line, and may differ only in length and direction along that line.

If we multiply any square matrix A with n rows and n columns by such a vector v, the result will be
another vector w = A v , also with n rows and one column. That is,

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 58

where, for each index i,

In general, if v is not all zeros, the vectors v and A v will not be parallel. When they are parallel (that is,
when there is some real number λ such that A v = λ v) we say that v is an eigenvector of A. In that
case, the scale factor λ is said to be the eigenvalue corresponding to that eigenvector.

In particular, multiplication by a 3×3 matrix A may change both the direction and the magnitude of an
arrow v in three-dimensional space. However, if v is an eigenvector of A with eigenvalue λ, the
operation may only change its length, and either keep its direction or flip it (make the arrow point in
the exact opposite direction). Specifically, the length of the arrow will increase if | λ | > 1, remain the
same if | λ | = 1, and decrease it if | λ |< 1. Moreover, the direction will be precisely the same if λ >
0, and flipped if λ < 0. If λ = 0, then the length of the arrow becomes zero.

4.4.4. Eigenvalues and eigenvectors of matrices: Characteristic Polynomial.

The eigenvalue equation for a matrix A is

which is equivalent to

where I is the n x n identity matrix. It is a fundamental result of linear algebra that an equation M v =
0 has a non-zero solution v if, and only if, the determinant det(M) of the matrix M is zero. It follows
that the eigenvalues of A are precisely the real numbers λ that satisfy the equation

The left-hand side of this equation can be seen to be a polynomial function of the variable λ. The
degree of this polynomial is n, the order of the matrix. Its coefficients depend on the entries of A,
except that its term of degree n is always (-1)n λn. This polynomial is called the characteristic
polynomial of A; and the above equation is called the characteristic equation (or, less often, the secular
equation) of A.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 59

SOLVE-based Implementation. { EIGEN }

There are three Programs in the SandMatrix that calculate eigenvalues. The first one is aptly named
 EIGEN , and is a brute-force approach using the direct definition of the eigenvalue given above.
What makes it interesting is the direct application of SOLVE (of FROOT in the SandMath) plus the
combination of matrix functions to calculate the secular equation to solve for.

 EIGEN can be used in manual mode (with guided prompts and data entry – or in a subroutine. In
manual mode it creates a matrix named “EV” in X-mem. and will prompt for the elements data. In
subroutine mode it’ll take the matrix name from Alpha. You need to set flag 06 for subroutine use, or
clear it for manual mode – this approach saves one FAT entry, although requires you to be aware of
the rule.

The program checks that the matrix is square and not in LU-decomposed form – presenting error and
warning messages respectively. For LU-decomposed matrices you can double-invert them “on the spot”
(assuming they’re invertible) and keep going just pressing R/S.

The selection of the interval [a,b] plays an important role in finding the solution – obviously the closer
to the actual value the faster it’ll find it. Remember also that the accuracy is determined by the display
settings on the calculator, so FIX 9 will provide for both the most accurate and longest execution time.

Example. Find one eigenvalue for the matrix A below using the subroutine mode.

Keystrokes Display Result
ALPHA, “EV3”, ALPHA X-reg contents MNAME is in Alpha
3.003, XEQ”MATDIM” 3.003 Creates matrix in X-Mem
XEQ “PMTM” “R1: _” Prompts for the first row
3, ENTER^, 1, ENTER^, 5, R/S “R2: _” … second row
3, ENTER^, 3, ENTER^, 1, R/S “R3: _” … third row
4, ENTER^, 6, ENTER^, 4, R/S 6.0000
SF 06 6.0000 Sets it in subroutine mode
XEQ “EIGEN” “LO’ V=?” Prompts for lower bound
5, R/S “HI’ V=?” Higher bound
15, R/S flying goose… FROOT is working on it
 “EV=10,00000” ev found (in FIX 5).

The original matrix is not modified in any way, but note that an auxiliary matrix is created for the
calculations. This scratch matrix “#” is not purged automatically from X-Mem, you’ll have to do that
after you’re done calculating as many eigenvalues as you need.

Below is the program listing for EIGEN . Note how the equation to solve already requires an auxiliary
FAT entry, #EV – since a global label is always needed by FROOT. (You can refer to the SandMath
manual if you need to refresh your understanding of FROOT and FINTG)

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 60

1 LBL 02 26 "#" scratch matrix
2 "LU FORM" warning text 27 MATDIM as identity one
3 AVIEW display it 28 LBL 00
4 MNAME? MNAME back to Alpha 29 "LOW V'=?"
5 STOP your chance to fix it 30 PROMPT prompt lower bound
6 GTO 01 try again 31 "HI V'=?"
7 LBL "EIGEN" 32 PROMPT prompt upper bound
8 ASTO 00 save MNAME in R00 33 ‐CCD MATRX show "RUNNING…"
9 FS? 06 subroutine mode? 34 "#EV"
10 GTO 01 yes, skip data entry 35 Solve for Ev (!)
11 ‐SNDMATRX 4 prompts "ORDER=?" 36 TONE 4 found!
12 STOP 37 "EV="
13 38 ARCL X
14 1,001 39 PROMPT display result
15 * n,00n 40 GTO 00 next guess
16 "EV" hard‐coded name 41 subroutine
17 MATDIM create square matrix 42 "#"
18 IMR input elements 43 MIDN make matrix identity
19 LBL 01 44 "X"
20 ASTO 00 45 MAT* multiply it by scalar guess
21 DIM? get dimension 46 "#,"
22 I#J? not square? 47 ARCL 00 prepare Aplha string
23 ‐ADV MATRX show error 48 "|‐,#"
24 LU? LU decomposed? 49 MAT‐ calculate the eigen matrix
25 GTO 02 yes, warning loop 50 MDET get its determinant

51 END return

FROOT

E
E3/E+

LBL "#EV"

 EIGEN works for N-dimensional orders. In that regard its execution time (provided that a decent
initial guess is given) compares favorably to that of CHRPOL , the other program that calculates
eigenvalues. The difference of course is that CHRPOL obtains all the eigen values simultaneously,
whilst EIGEN does it one at a time.

When compared to other approaches, the program listed above is almost minimalistic – that’s its real
benefit and the reason that justifies its inclusion in the SandMatrix module. However relying on FROOT
is clearly not a robust approach to calculate eigenvalues - The calculation of the characteristic
polynomial using dedicated methods is a necessity.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 61

3-Dimensional case. { EV3X3 , EV3 }

Let’s start with the particular case n = 3. In this scenario there are simple formulas to calculate the
characteristic polynomial, which make the calculations simpler and faster. The formulas are derived
from the properties of the characterictic polynomial. Let’s enumerate the most important ones.

The polynomial pA(x) is monic (its leading coefficient is 1) and its degree is n. The most important fact
about the characteristic polynomial was already mentioned in the motivational paragraph: the
eigenvalues of A are precisely the roots of pA(x). The coefficients of the characteristic polynomial are
all polynomial expressions in the entries of the matrix. In particular its constant coefficient pA(0) is
det(−A) = (−1)^n det(A), and the coefficient of x^(n−1) is tr(−A) = −tr(A), where tr(A) is the matrix
trace of A. For a 2×2 matrix A, the characteristic polynomial is therefore given by:

For a 3×3 matrix, the formula specifies the characteristic polynomial to be

where c2 is the sum of the principal minors of the matrix =

Given the above definitions it is clear now why functions MDPS and ΣIJJI will be helpful to obtain the
coefficients of the characteristic polynomial for n=3. In effect, when using those functions the formulas
change as follows: c2 = (MDPS - ΣIJJI)

For the manual mode (not as subroutine), a choice is offered to see the coefficients of the polynomial
before calculating its roots (i.e. the eigenvalues).

 , which will only take [Y] / [N] as valid inputs.

Example 1. Calculate the eigenvalues for A, with aij = ij

Solution: pA(x) = 75,349 x3 - 66 x2 -60 x =0

x1 = 66,890
x2 = -0,897
x3 = 2,24000E-9

Example 2. Calculate the eigenvaules for A, with aij = 1,2,3…9

Solution: pA(x) = 0,076 x3 -15 x2 -18 x = 0

x1= 16,117
x2 = -1,117
x3 = 2,89100E-9

It is therefore a relatively easy exercise to write a program to deal with this case, as shown in the
program listing in next page.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 62

1 LBL "EV3X3"

LBL "3EV"

36 +
2 CF 06 clear subroutine flag 37 X#Y?
3 "EV" 38 GTO 01 wrong key
4 E 39 3 choice accepted
5 1,001 40 LBL 05 coefficientes loop
6 3 41 "b("
7 * 3,003 42 AIP
8 MATDIM 43 "|‐)="
9 IMR enter elements 44 ARCL IND X
10 GTO 06 45 PROMPT
11 46 E
12 SF 06 set subroutine flag 47 ‐
13 LBL 06 48 X<0? last one?
14 ‐CCD MATRX show "RUNNING…" 49 GTO 11 yes, jump over
15 MTRACE calculates tr(A) 50 GTO 05 no, get next one
16 CHS change sign 51 LBL 11 proceed with roots
17 STO 02 save it in R02 52 E fill stack with coeffs
18 MDPS get the sum of minors 53 RCL 02
19 STO 01 as a combination 54 RCL 01
20 Σ IJJI of functions into R01 55 RCL 00
21 ST‐ 01 56 calculate roots
22 MDET calculate determinant 57 FS?C 06 was subroutine?
23 CHS change sign 58 RTN yes, end
24 STO 00 59 "X=" show results
25 FS? 06 subroutine mode? 60 ARCL Z always a real one
26 GTO 11 yes, skip prompting 61 PROMPT
27 CF 21 62 FC? 43 complex?
28 "CFS? Y/N" offer choice 63 GTO 01 no, skip prompting
29 AVIEW 64 X<> Z yes, clear Z
30 LBL 01 decode the Y/N input 65 CLX
31 GETKEY 66 X<> Z
32 41 67 LBL 01
33 X=Y? 68 show other two roots
34 GTO 11 choice rejected 69 END done
35 30

E3/E+

CROOT

QROUT

Program remarks.-

Note that in manual mode EV3X3 creates a matrix named “EV”, but that the subroutine will work
with any 3x3 matrix which name is in Alpha. This is compatible with EIGEN in its subroutine mode as
well.

The roots are obtained using the SandMath function CROOT, an all-MCODE implementation of the
Cardano-Vieta formulas. Function QROUT is also used to display them.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 63

General case: N-dimensional general matrix. { CHRPOL }

The original CHRPOL - as it appeared in previous versions of the SandMatrix - was written by
Eugenio Úbeda (as published in the UPLE), and later on adapted to the SandMatrix. Note however that
it didn’t make use of any advanced Matrix function, thus was pretty much the same as its initial
version. It was a user-friendly program; providing step-by-step guidance for the data entry and didn’t
require any set-up preparation (like creating matrices) prior to the execution.

In this version CHRPOL has been re-written from the ground up, really taking advantage of the
powerful matrix function set. It is a much improved solution, about twice as fast and with half the
(comparable) code - It however now requires you to first create the matrix and input its elements.

Algorithmically it still uses the same modification of the Leverrier-Faddeev method to determine the
coefficients of the characteristic equation of the n x n matrix; which roots are the eigenvalues of the
matrix. It also employes the matrix trace in the process.

The coefficients are calculated using the iterations:

b1 = -tr (B1) , with B1 = the original matrix, and
bk = - tr (Bk) / k, with Bk = A(Bk-1 + bk-1 I), k=2,… n

The program works for orders n between 3 and 14. The case n=2 has a trivial solution [given by b2=1,
b1= tr(A), and b0 = -det(A)] ; therefore doesn’t need to be included.

Example. Obtain the characteristic polynomial for the matrix A given below:

 [[1 -0.69 0.28]
 A = [-0.69 1 0.18]
 [0.28 0.18 1]]

Keystrokes Display Result
ALPHA , “AA”, ALPHA current X-reg Matrix name in Alpha
3.003 , XEQ “MATDIM” 3.003 Creates matrix in X-Mem
XEQ “IMR” “a1,1= ?” Prompts for data, also
1, R/S “a1,2= ?” showing current values
0.69, CHS, R/S “a1,3= ?”
0.28, R/S “a2,1”= ?”
0.69, CHS, R/S “a2,2= ?”
1, R/S “a2,3= ?”
0.18, R/S “a3,1= ?”
0.28, R/S “a3,2= ?”
0.18, R/S “a3,3= ?” Last element
1, R/S 1.000
XEQ “CHRPOL” “RUNNING…” scrolls in the display, then

 “Σ(aK*X^K)” Reminder of convention
(*) set F21 “a3=1,000000” Coefficient of x^3
if you want AVIEW “a2=-3.000000” Coefficient of x^2
to stop each time “a1=2.413100” Coefficient of x
 “a0=-0.343548” First coef (independent term).
 “RUNNING…” Scrolls in the display, then
 “X=0,180390390” First eigenvalue
R/S “X=1,121568609” Second eigenvalue
 “X=1,698238062” Third and last.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 64

See the program code below in its entire splendor – realizing that it may be the last program written
using Advantage Matrix functions…

Remarks: Two auxiliary matrices are used, but the original matrix is left unaltered. The first part of
the program (up to line 60) calculates the coefficients of the characteristic polynomial – and displays
them for informational purposes. It then transfers the execution to the root finder routines. Note that
for cases n=3 and n=4 we take advantage of the dedicated functions CROOT (in the SandMath) and
QUART , which result in much faster execution than the general case using RTSN .

1 LBL "CHRPOL" MNAME in Alpha 53 1.001
2 DIM? n,00n 54 + 1.00(n+1) ‐ cnt'l word
3 I#J? 55 "#"
4 ‐ADV MATRX 56 PURFL
5 ASTO 01 MNAME 57 "P"
6 ‐CCD MATRIX shows 'RUNNING…" 58 PURFL
7 "|‐,P" 59 PVIEW for information
8 MAT= B = A 60 ‐CCD MATRIX shows 'RUNNING…"
9 ASWAP 61 new destination
10 DIM? n,00n 62 STO 00 as expected by RTSN
11 INT n 63
12 64 n<=4?
13 + n+1 65 GTO 04 yes, particular case
14 MDET independent term 66 CLX no, general case
15 STO IND Y stored in Rn+1 67
16 ASWAP 68 + n+1
17 MAT= avoids LU issues 69
18 DIM? 70 / 0,000|00(n+1)
19 "#" auxiliary array 71 build the "from,to"
20 MATDIM 72 1.003
21 FRC 0,00n 73 + 1.003|00(n+1)
22 74 REGMOVE as expected by RTSN
23 + 2,00n 75 RTSN
24 STO 00 76 GTO 00 go to EXIT
25 CF 21 not halting VIEW 77 LBL 04
26 LBL 00 78 X#Y? n#4?
27 VIEW 00 shows index 79 GTO 03
28 "#" 80 RCL 02 a3
29 MIDN [#] = [I] 81 RCL 03 a2
30 "P" 82 RCL 04 a1
31 MTRACE tr (B) 83 RCL 05 a0
32 RCL 00 84 QUART
33 INT k+1 85 GTO 00 go to EXIT
34 86 LBL 03
35 ‐ k 87 RCL 01 a3
36 / 88 RCL 02 a2
37 CHS 89 RCL 03 a1
38 STO IND 00 pk = ‐tr (B) / k 90 RCL 04 a0
39 "X,#,#" 91
40 MAT* [#] = pk [I] 92 "X="
41 "P,#,#" 93 ARCL Z
42 MAT+ [#] = [B] + p[I] 94 PROMPT real root
43 CLA 95 FC? 43 is RAD on?
44 ARCL 01 96 GTO 01 yes, complex roots
45 "|‐,#,P" 97 X<> Z no, real roots
46 M*M B= A (B ‐ p I) 98 CLX so we clear Z
47 ISG 00 99 X<> Z
48 GTO 00 100 LBL 01
49 DIM? n,00n 101 output roots
50 FRC 0,00n 102 LBL 00
51 103 MNAME? bring MNAME back
52 STO 01 it's monic (!) 104 END done

E3/E+

PDEG

4
E X>=Y?

E

E6

3
E3/E+

2

E

CROOT

QROUT

E

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 65

Particular case: Symmetric Matrices { JACOBI }

For symmetric matrices the Jacobi algorithm provides a faster method. JACOBI was written by
Valentín Albillo, and published in PPC TN, V1N3 (October 1980). As with CHRPOL, I’ve only slightly
adapted it to the SandMatrix, but basically remains the same as originally written. The paragraphs
below are directly taken from the above reference to explain its workings.

This program computes all eigenvalues of a real symmetric matrix up to 22 x 22. It uses the Jacobi
method, which annihilates in turn selected off-diagonal elements of the given matrix A using
elementary orthogonal transformations in an iterative fashion, until all off-diagonal elements are zero
when rounded to a given number of decimal places. Then the diagonal values are the eigenvalues of
the final matrix.

The method explained. The Jacobi method does not attempt to solve the characteristic equation for
its roots. It is based in the fact that a n x n symmetric matrix has exactly n real eigenvalues. Given A,
another matrix S can be found so that: S A ST = D is a diagonal matrix, whose elements are the
eigenvalues of A.

The Jacobi method starts from the original matrix A and keeps on annihilating selected off-diagonal
elements, performing elementary rotations. Let’s single out an off-diagonal element, say apq,, and
annihilate it using an elementary rotation. The transformation R is defined as follows:

Rpp = cos z ; Rpq = sin z ; Rqp = -sin z ; Rqq = cos z
Rii = 1 ; Rpk = Riq = Rik = 0 ; for i#p,q and k#p,q

Let’s now denote: B = RT A R, which elements are as follows:

bip = aip cos z – aiq sin z
biq = aip sin z + aiq cos z
bik = aik ; where i,k # p,q

bpp = app cos2 z + aqq sin2 z – 2 apq sin z cos z
bqq = app sin2 z + aqq cos2 z + 2 apq sinz cos z
bpq = 0, and the remaining elements are symmetric.

where: sin z = w / sqrt(2(1+sqrt(1-w^2))), and cos z = sqrt (1-sin2 z)
with: L = - apq, M = (app-aqq) / 2 , and w = L sign(M) / sqrt (M2+L2)

This is iterated using a strategy for selecting each non-diagonal element in turn, until all non-diagonal
elements are zero when rounded to a specific number of decimal places.When this is so, the diagonal
contains the eigenvalues.

Program remarks. The accuracy and running times are display settings-dependent, however the
computed eigenvalues are very often more accurate that it’d appear; for instance usinf FIX 5 it’s quite
possible to have eigenvalues accurate to 8 decimal digits. The program is written to be as fast as
possible and to occupy the minumim amount of program memory; the matrix is stored taking into
account its symmetry, so that all elements are stored only once (as aji = aij). For a nxn matrix
minimum size is [½ (n^2 + n) + 7].

 [[25 -41 10 -6]
Example. Find the eigenvalues for the 4x4 matrix: A = [-41 68 -17 10]
 [10 -17 5 -3]
 [-6 10 -3 2]]

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 66

Keystrokes Display Result
XEQ “JACOBI” “ORDER=?” Prompts for dimension
4, R/S “a1:1=?” Data entry starts
25, R/S “a1:2=?”
41, CHS, R/S “a1:3=?”
10, R/S “a1:4=?”
6, CHS, R/S “a2:2=?” Note how the symmetric
68, R/S “a2:3=?” elements are skipped
17, CHS, R/S “a2:4=?”
10, R/S “a3:3=?”
5, R/S “a3:4=?”
3, CHS, R/S “a4:4=?” input the last element
2, R/S “PREC.=?” Asks for precision
5, R/S “RUNNING…” Scrolling on the display
 “X=0,03302”
R/S “X=98,52170” After a while ~ 2.5m in normal 41
R/S “X=1,18609” the four ev’s are displayed.
R/S “X=0,25920”

Example. Repeat the same case but using CHRPOL , to obtain the polynomial and its roots.

Keystrokes Display Result
ALPHA , “AA”, ALPHA current X-reg Matrix name in Alpha
4.004, XEQ “MATDIM” 4.003 Creates mtrix in X-Mem
XEQ “PMTM” “R1: _” prompts for row-1
25, ENTER^, CHS, 41, ENTER^, 10, ENTER, CHS, 6, R/S
 “R2: _” prompte for row-2
CHS, 41, ENTER^, 68, ENTER^, CHS 17, ENTER^, 10, R/S
 “R3: _“ prompts for row-3
10, ENTER^, CHS, 17, ENTER^, 5, ENTER^, CHS, 3, R/S
 “R4: _“ prompts for row-4
CHS, 6, ENTER^, 10, ENTER^, CHS, 3, ENTER^, 2, R/S
XEQ “CHRPOL“ “RUNNING…” Scrolling on the display
R/S “Σ(aK*X^K)” Reminder of convention
 “a4=1” Coefficient of x^4
 “a3=-100” Coefficient of x^3
 “a2=146” Coefficient of x^2
 “a1=-35” Coefficient of x
 “a0=1,00000” First coef. (independent term)
 “RUNNING…” Scrolling on the display
 “X1=98,52170” Frst root
R/S “X2=1,18609” Second root
R/S “X3=0,25919” Third root
R/S “X4=0,03302” Fourth and last root.

 The solution is: Chr(A) = x^4 -100 x^3 + 146 x^2 – 35 x +1

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 67

4.2.- Managing Polynomials.

The remaing of this chapter is about polynomials. Let’s first cover those functions used to manage the
data entry and output for them, polynomial math and some handy utilities used in the other programs.

4.2.1. Defining and Storing Polynomials.

A polynomial is an expression of the form

where a(n)#0

Or, more concisely:

Polynomials can only be stored in main memory (ie. not as X-mem files), thus the way to handle them
will be by a control word of the form bbb.eee, which denotes the beginning and end registers that
hold the polynomial coefficients, a(i)

The coefficients are stored starting with the highest order term first (ie. x^n) in register bbb, and
ending with the zero-th term last, stored in register eee. It follows that the degree of a polynomial n
verifies: n = (eee –bbb).

For instance, the control word 1,007 represents a polynomial of degree 6, which coefficients are stored
as follows: a(6) in R01, a(5) in R02, a(4) in R03, a(3) in R04, a(2) in R05, a(1) in R06 and a(0) in R07.

The Polynomial Editor. There are three functions available in the SandMatrix to enter and review
polynomials in the calculator. The main one is PEDIT , which takes the input from the control word in
the X-register and sequentially prompts for each coefficient value. The first thing it does is present a
reminder of the convention used, relating the subindex to the power of the variable for each term:

A nice feature is that it’ll check for available data registers to complete all the storage, re-adjusting the
calculator SIZE if necessary. PEDIT does not use any data registers itself.

 Function Description Input / Output
7 DTC Deleting Tiny Coefficients Control word in X
8 “P+P” Polynomial Sum Driver for PSUM
9 “P-P” Polynomial Subtraction Driver for PSUM
10 “P*P” Product of Polynomials Driver for PPRD
11 “P/P” Division of Polynomials Driver for PDIV
12 PCPY Polynomial Copy Control word in X-reg, destination in Y
13 PDIV Euclidean Division Control words in Y- and X-regs
14 PEDIT Edits Polynomial Coefficients Control word in X-Reg
15 PMTP Prompts for Coeffs in Alpha List Control word in X-Reg
16 PPRD Polynomial Multiplication Control words in Y- and X-regs
17 PSUM Polynomial Addition & Subtraction Control words in Y- and X-regs
18 PVAL Polynomial Evaluation Control word in Y, argument in X
19 PVIEW Views Polynomial Coefficients Control word in X-Reg

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 68

Note that PEDIT includes in the prompts the current value held in the corresponding data register, so
you don’t need to type a new one if it’s already correct. Alternatively you can use PVIEW to review
the coefficients without any editing capabilities. In this mode the prompts don’t have the question mark
at the end, which indicates the value cannot be changed from the program.

 In edit mode In review mode.

You can control wether PVIEW stops after each prompt or does the complete listing without stopping
by setting or clearing the user flag 21. Note also that if the coefficient is an integer value it will not
display the zeroes after the decimal point – in both editi and review modes.

A faster alternative for data entry is PMPT – the polynomial prompt. This one does for polynomials
what PMTM did for matrices: the data entry is done as a list in Alpha, containing the values of all
coefficients at once.

Obviously this is limited by the total length available in the Alpha register (24 characters), including the
blank spaces that separate each entry, and the minus signs for negative values. The two leftmost
characters in the prompt indicate the first data register used to sore the coefficients (not the row# as
in the Matrix case). These characters are not part of the final list, and therefore aren’t included in the
total count.

Another restriction of PMTP is that values cannot be expressed in exponential form (using EEX),
which key is ignored during the process. You can use negative and decimal values as the CHS and [,]
(radix) keys are active. Obviously the back arrow key is always active to correct wrong entries.

1 LBL "PEDIT"

LBL "PVIEW"

27 "|‐="
2 SF 08 flags mode 28 RCL IND Y append current value
3 ENTER^ copies cntl word to Y 29 has fractional part?
4 I<>J swaps bbb and eee 30 ARCL X yes, append as is
5 E 31 integer
6 + 32 yes, append IP only
7 SIZE? current size 33 FC? 00 editable?
8 X<>Y 34 AVIEW no, show already
9 X>Y? not enough? 35 FC? 08 editable?
10 PSIZE adjust size 36 GTO 02 no, next coeff
11 RDN 37 LBL 00
12 RDN cntl word to X‐reg 38 "|‐?" append "?"
13 GTO 00 skip over 39 CF 22 reset data entry flag
14 40 PROMPT
15 CF 00 flags mode 41 FC? 22 value entered?
16 LBL 00 42 GTO 02 no, next coeff
17 ‐ADV POLYN shows convention 43 STO IND Z yes, store it
18 PSE 44 RDN discard entry
19 ENTER^ copies cntl word to Y 45 LBL 02
20 polyn degree 46 DSE X decrement counter
21 X<>Y cntl word to X‐reg 47 NOP
22 STO L saves it in L 48 ISG Y increment register
23 X<>Y degree to X‐reg 49 GTO 01 next register
24 LBL 01 50 LASTX get control word
25 "a" 51 END done
26 AIP append index

FRC?

INT?
AINT

PDEG

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 69

4.2.2. Polynomial Arithmetic { PSUM , PPRD , PDIV }

The arithmetic functions provide convenient functionality for the basic operations: addition, subtraction,
multiplication and eucliedean division. A distinction is made between the three base routines (PSUM,
PPRD, and PDIV written by JM Baillard), and the four user-friendly drivers that automate the element
data entry and work out all the details behind the scenes.

For the first group, beside the element data entry, the control words for each operand polynomial and
the result are typically input in the X- , Y- and Z-registers of the stack. As follows:

Operation

Addition, Subtraction,
Multiplication

Euclidean Division Copy

Input

bbb.eee1 in Z
bbb.eee2 in Y

1st. Reg of result in X

bbb.eee of dividend in Y
bbb.eee of divisor in Y

bbb.eee of source in Y
bbb or destination in X

Output bbb.eee of result in X

bbb.eee of reminder in Y
bbb.eee of quotient in X

bbb.eee or result in X

Because registers R00 to R03 are used internally, they cannot be used to hold the polynomial
coefficients. (ie. all control words must start at bbb = 4 at least). Note also that none of the register
ranges should overlap. In addition, for the Euclidean Division the original polynomials are overwritten
with the results (quotient and reminder).

Let a(x) = a0.xn+a1.xn-1+ ... + an-1.x+an
and b(x) = b0.xm+b1.xm-1+ ... + bm-1.x+bm

then there are only 2 other polynomials q(x) and r(x) such that: a = b.q + r , with deg(r) < deg(b) .
Note that PDIV does not work if deg(a) < deg(b), but in this case q=0 and r=a.

Example 1.- Find the result of the polynomial product of a(x) * b(x), where:

a(x) = 2.x5 + 5.x4 - 21.x3 + 23.x2 + 3.x + 5 and b(x) = 2.x2 - 3.x + 1

We’ll use P*P for convenience. It’ll automatically store the coefficients of the operand polynomial in
registers {R04 to R09} and in registers {R10 to R12} respectively. The result polynomial will be stored
starting with register R20, leaving the operand polynomials untouched.

 The solution is: p(x) = 4.x7 + 4.x6 - 55.x5 + 114.x4 - 84.x3 + 24.x2 - 12.x + 5

Example 2.- Find the quotient and reminder for the polynomial division a(x) / b(x), where::

 a(x) = 2.x5 + 5.x4 - 21.x3 + 23.x2 + 3.x + 5 and b(x) = 2.x2 - 3.x + 1

We’ll use P/P for convenience. It’ll store the dividend coefficients in registers {R04 to R09} and the
divisor’s in registers {R10 to R12}. Note that in this case the coefficients are already there – as entered
in the previous example, so you just have to press R/S during the process.

The solutions are displayed sequentially, starting with the quotient first. The indices convention
message ” Σ(aK*X^K)” is shown prior to the enumeration of each result polynomial. After completion,
the control word for the reminder is left in X, and the control word for the quatient is saved in R00.

 The solutions are: q(x) = x3 + 4.x 2 -5.x + 2 and r(x) = 14.x + 3

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 70

Example 3.- Calculate the addition and subtraction of the polynomials a(x) and b(x) below:

 a(x) = 2.x3 + 4.x2 + 5.x + 6 and b(x) = 2.x3 - 3.x2 + 7.x + 1

We’ll use P+P and P-P for convenience. It’ll automatically store the coefficients of the operand
polynomials in registers {R04 to R07} and in registers {R08 to R11} respectively. The result polynomial
will be stored starting with register R12, leaving the operand polynomials untouched. After completion,
the control word for the result is left in X

 The solutions are: a(x) + b(x) = 4.x3 + x2 + 12.x + 7

a(x) - b(x) = 7.x2 - 2.x + 5

Below you can see the program listing for the four arithmetic driver routines.

1 LBL "P*P"

LBL "P/P"

LBL "P+P"

LBL "P‐P"

32 LBL 10
2 CF 01 33 "N#1?" order P1
3 GTO 00 34 PROMPT n1
4 35 4
5 SF 01 36 +
6 LBL 00 37 1,00(n+4)
7 XEQ 10 combined data entry 38 3
8 FC? 01 product? 39 + 4,00(n+4)
9 GTO 00 yes, go there 40 STO 00
10 RND division 41 PEDIT
11 PDIV 42 XEQ 05 adjust index
12 X<>Y reminder cntl word 43 ENTER^ push stack
13 STO 00 store 44 "N#2?" order P2
14 X<>Y 45 PROMPT n2
15 PVIEW show quotient 46 + n2+eee1
16 X<> 00 47 I<>J 0,00(n2+eee1)
17 GTO 02 48 + (eee1+1),00(eee1+n2)
18 LBL 00 multiplication 49 PEDIT
19 PPRD 50 RCL 00 bbb.eee1
20 GTO 02 51 X<>Y bbb.eee2
21 52 LBL 05
22 CF 01 53 ENTER^ bbb.eee2
23 GTO 01 54 I<>J eee.bbb2
24 55 INT eee2
25 SF 01 56 E
26 LBL 01 57 + eee2+1
27 XEQ 10 combined data entry 58 END
28 PSUM
29 LBL 02
30 PVIEW show result (reminder)
31 RTN done

E3/E+

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 71

4.2.3. Deleting tiny Coefficients. { DTC }
Evaluating and Copying Polynomials. { PVAL , PCPY }

These three small routines were written by JM Baillard to perform the following housekeeping chores:

• Evaluate a polynomial value entered in the X-reg,
• Copy a polynomial from a source to a destination location, and
• Delete small coefficients (below 1E-7), wich typically appear due to rounding errors in the

intermediate operations. This has a cumulative effect that can alter the final result if not
corrected.

The evaluation leaves the result value in X. The other two functions return the destination control word
to X upon completion. Below you can see the program listings for these; always a beauty to behold
JM’s mastery of the RPN stack.

1 LBL "PCPY" LBL "PVAL"

LBL "DTC"

1 cnt'l word in X
2 RCL Y bbb.eee1 2 0
3 E3 3 LBL 14
4 * 4 RCL Y
5 INT 5 *
6 I<>J does E3/ for integers 6 RCL IND Z
7 SIGN puts bbb.eee in L 7 *
8 RDN 8 ISG Z
9 ENTER^ 9 GTO 14
10 ENTER^ 10 X<>Y
11 LBL 06 11 SIGN
12 CLX 12 RDN
13 RCL IND L 13 END
14 STO IND Y
15 ISG Y
16 CLX 1 cnt'l word in X
17 ISG L 2 LBL 05
18 GTO 06 3 RCL IND X
19 CLX 4 ABS
20 SIGN 5 E‐7 threshold value
21 ‐ 6 X<Y?
22 I<>J 7 GTO 06
23 + 8 X<> Z
24 X<>Y 9 ISG X
25 FRC 10 GTO 05
26 ISG X 11 E
27 INT 12 ST‐ Y drecrease Y
28 E5 13 0
29 / 14 STO IND Z overwrite w/ zero
30 + 15 LBL 06
31 END 16 X<> Z cnt'l word to X

17 END

When using PCPY be careful that the register ranges for both polynomials do not overlap.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 72

4.3. Polynomial Root Finders.

Once upon a time there was a program called POLYN available in HP’s infamous MATH PAC. That
program was capable of calculating the roots of a polynomial up to degree *five*, which perhaps back
then when it first came out could be regarded as a remarkable affair – but by today standards certainly
isn’t much to write home about.

The SandMatrix picks up where the SandMath left things off, providing functions to calculate the roots
of the quadratic and cubic equations, ie. polynomials of degrees 2 and 3. The next step would then be
a Quartic equation, or polynomial of degree 4.

4.3.1. Quartic Equation solutions. { QUART }

 QUART solves the equation x4+a.x3+b.x2+c.x+d = 0

If you have a polynomial not in monic form (which leading coefficient is not 1), simply divide all the
equation by this coefficient. With this convention we can use the stack registers {T,Z,Y,X} to hold the
coefficients a, b, c, and d – which provides a convenient method for data input.

The method used can be summarized as follows:

First, the term in x3 is removed by a change of argument, leading to:

 x4+p.x2+q.x+r = 0 (E')

Then, the resolvant z3+p.z2/2+(p2-4r).z/16-q2/64 = 0 is solved by CROOT, and if we call z1 , z2 ,
and z3 the 3 roots of this equation, the zeros of (E') are:

x = z1
1/2 sign(-q) +/- (z2

1/2 + z3
1/2);

x = -(z1
1/2) sign(-q) +/- (z2

1/2 - z3
1/2)

Note that QUART uses R00 to R04 for scratch; therefore those registers cannot hold the polynomial.

The data output is done automatically by the program, presenting the roots as either real or complex
conjugated. This is done using the status of flags 01 and 02 as appropriate – but the user needs not to
concern him or herself with the decoding rules. The output uses function ZOUT from the SandMath,
which uses “J” to denote the imaginary unit “ï”

Example1: Solve x4 - 2.x3 - 35.x2 + 36.x + 180 = 0

-2 ENTER^ , -35 ENTER^ 36 ENTER^, 180 , XEQ "QUART" >>>>

X1=6,000, X2=3,000

X3=-2,000 X4=-5,000

 Function Description Input / Output
1 QUART Solution of Quartic Equation Polynomial coeffs in Memory
2 PROOT Polynomial Roots Prompts for all data
3 RTSN Subroutine mode of PROOT Polynomial coeffs in Memory
4 BRSTW Quadratic Factors - Bairstow method Cnt’l word in X-reg

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 73

Example2: Solve x4 - 5.x3 + 11.x2 - 189.x + 522 = 0

-5 ENTER^, 11 ENTER^, -189 ENTER^, 522 , XEQ “QUART” >>>>

Z=-2+J5,000 (note how true integer values don’t display zeros after the decimal point)
X3=3,000, X4=3,000

Example3: Solve x4 - 8.x3 + 26.x2 - 168.x + 1305 = 0

-8 ENTER^ , 26 ENTER^ , -168 ENTER^ , 1305 , XEQ “QUART” >>>>

Z=-2+J5,000 (note how true integer values don’t display zeros after the decimal point)
Z=6+J3,000

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 74

4.3.2. General case: degree N. (PROOT , RTSN , BAIRS }

This method is based on quadratic factorizations, that is one quotient polynomial of degree 2, plus a
reminder polynomial of degree one - reducing the original degree by 2 and thereby changing the
expression as follows:

P(z) = P”(z) Q(z) + R(z); with P”(z) = [Σ bi z^n-i] , i=2,1...(n-2)

This will then be repeated until the reduced polynomial P”(x) reaches degree one or two/.

Let Q(x) = x^2 + p x + q; and

R(x) = r x + s

Then the reduced polynomial coefficients are given by

bi = a(i-2) – p b(i-1) – q b(i-2) ; i = 2, 3, ..., (n+2) (1)

and we have the following expressions for the coefficients of the reminder:

 r = b(n+1)

s = b(n+2) + p b(n+1) (2)

clearly with both r and s depending on the p,q values – formally expressed as: r=r(p,q) and s=s(p,q).

The problem is thus obtaining the coefficients p,q of such a quotient polynomial that would cancel
the reminder (i.e. that make r=0 and s=0. This is accomplished by using an iterative approach,
starting with some initial guesses for them (p0, q0), iterating until there is no change in two
consecutive values,

r’(p,q) + r = 0; or: r’(p,q) = -r
s’(p,q) + s = 0; or: s’(p,q) = -s

Expressing it using their partial derivarives it results:

dp (δr/δp) + dq (δr/δq) = -r
dq (δs/δp) + dq (δs/δq) = -s

Using the relationships (1) above, we can formally obtain the partial derivatives using the coefficients of
the original polynomial, ai. The problem will then be equivalent to solving a system of 2 linear
equations with two unknowns, dp and dq.

From equation (1) above it follows:

δbi/δp = ci = -b(i-1) – p c(i-1) – q c(i-2); i = 2,3...,(n+2)
δbi/δq = c(i-1)

Making use of equation (2) to apply it for i=n we have as final expression

c(n+1) dp + cn dq = -b(n+1)
-q cn dp + [c(n+1) + p cn] dq = -[b(n+2) +p b(n+1)] (3)

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 75

Starting with (p0=0,5; q0=0,5) as initial guesses we’ll obtain dp and dq for each pair of values (p,q).
With them we adjust the previous guess, so that the new corrected values for p and q are

p’ = p + dp
q’ = q + dq

This will be repeated until the precision factor “ε” is smaller than the convergence criteria; The
precision factor is calculated as follows:

ε = [abs(dp) + abs(dq)] / [abs(p) + abs (q)]

The program dimensions and populates matrices [RS] and [CN] to hold the current values of p,q and
the coefficients Cn respectively:

• [RS] is the column matrix, of dimension (2x1).
• [CN] is the coefficients matrix, of dimension (2x2).

The linear system is solved as many times as iterations needed to establish the convergence. With
each factorization the program obtains two roots. This is repeated for, until all roots have been found.

Program Details.

In manual (RUN) mode PROOT prompts first for the order n (ie. the degree) and for each of the
coefficients sequentially. It then presents the option to store the roots into a matrix in X-Mem. To use it
you just have to press “Y” at the prompt below:

All roots are stored in matrix [ROOTS], of dimension (n x 2) - with the first column holding the real
parts and the second the imaginary parts of each root (assumed complex).

The global label RTSN is meant to be used in subroutines. It expects the degree stored in R00, and
the coefficients stored in registers R03 until R(3+n). Registers R01 and R02 are used internally and
cannot be used for your data. In subroutine mode the roots will always be stored in the matrix
[ROOTS].

Example 1. Find the five roots of the polynomial below

P(x) = 2.x5 + 7.x4 + 20.x3 + 81.x2 + 190.x + 150

Keystrokes Display Result
XEQ “PROOT” “ORDER=? Prompts for the degree
5, R/S “Σ(aK*X^K)” Reminder of convention
 “a5= ?” prompts for coeffs, showing current
2, R/S “a4= ?”
7, R/S “a3= ?”
20, R/S “a2= ?”
81, R/S “a1= ?”
190, R/S “a0= ?
150, R/S “STO? Y/N” prompts for storage option
“Y” “RUNNING”

At this point the different precision factors are shown, which shoud be decreasing as the iterations
converge towards the solutions – and this repeated as many times at quadratic factors are needed.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 76

The solutions are shown below (in FIX 5):

Z=-2,00000+J1,00000 and its conjugate (not shown)
Z=1,00000+J3,00000 and its conjugate (not shown)
Z=-1,50000

And the matrix [ROOTS] is left in X-Mem, with 5 rows and two columns, as follows:

 [[-2 1]
 [-2 -1]

[ROOTS] = [1 3]
 [1 -3]

 [-1.5 0]]

To be sure it isn’t the fastest method in town (typically 5-6 iterations are needed, each iteration takes a
bout one full minute at normal speeds), but it’s applicable to any degree and stores the results in a
matrix – which makes it very useful as a general-purpose approach.

Bairstow Method.

A faster program is BAIRS , which also uses a factorization method but does not utilize any of the
matrix functions. Therefore the solutions are just prompted to the display, but not saved into an X-Mem
file. BAIRS expects the coefficients already stored in main memory, and the polynomial control word
in X . Note that they will be overwritten during the execution of the program. It uses registers R00 to
R08 internally, thus cannot be used to store your data.

For both programs the accuracy of the solutions (and therefore their run times) depends on the display
settings.

BAIRS factorizes the polynomial
 p(x) = a0.xn+a1.xn-1+ ... + an-1.x+an into quadratic factors and solves p(x) = 0 (n >1)

If deg(p) is odd, we have p(x) = (a0.x+b).(x2+u1.x+v1)........(x2+um.x+vm); with m = (n-1)/2
If deg(p) is even p(x) = (a0x2+u1.x+v1)(x2+u2.x+v2)......(x2+um.x+vm) ; with m = n/2

The coefficients u and v are found by the Newton method for solving 2 simultaneous equations. Then p
is divided by (x2+u.x+v) and u & v are stored into R(ee-1) & Ree respectively . The process is
repeated until all quadratic factors are found

Example 2. Solve x - 6.x + 8.x + 64.x - 345.x + 590.x - 312 = 0 6 5 4 3 2

Using PMTP to store the coefficients beginning in R09, thus the control word is 9,015

Keystrokes Display Result
9.015, XEQ “PMTP” “R9: _”
1, ENTER, CHS, 6, ENTER^,^8, ENTER^, 64, ENTER^, CHS, 345, ENTER^, 590, ENTER^, CHS, 312,
R/S 9,015
XEQ “BAIRS“ shows precisions factors...

The solutions are: “Z=-4,000” and “Z=2,000”
 “Z=2,000+J3,000” and conjugate (not shown)
 “Z=1,000” and “Z=3,000”

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 77

4.4. Extended Polynomial Applications.

A few related topics - in that polynomials are involved - even if some programs don’t make direct
utilization of matrix functions. Here too the SandMatrix complements the functionallity included in the
SadnMath. The table below summarizes them:

 Function Description Input / Output
1 EQT Equation Display Equation number in R00 0(1 to 15)
2 POLINT Polynomial interpolation Under program control
3a PRMF Prime Factors decomposition Argument in X-reg
3b PF>X From prime factors to argument Prime factors in matrix [PRMF]
3c TOTNT Euler’s Totient function Argument in X-reg
4 POLFIT Polynomial Fitting Under program control
5 OPFIT Orthogonal Polynomial Fit Under program Control
6a POLZER From Poles to Zeroes Under program control
6b PFE Partial Fractions Expansion Under program control

4.4.1. Displaying the Equations for Curve Fitting Programs { EQT }

As there was plenty of available space in the module, I decided to include this routine to complement
the Curve Fitting program in the SandMath (CURVE). The routine EQT will write in Alpha the actual
equation which reference number is in register R00, ranging from 0 to 15 as per the table below:

0. Linear
1. Reciprocal
2. Hyperbola
3. Reciprocal Hyperbola
4. Power
5. Modified Power
6. Root
7. Exponential
8. Logarithmic
9. Linear Hyperbolic
10. 2nd. Order Hyperbolic
11. Parabola
12. Linear Exponential
13. Normal
14. Log Normal
15 Cauchy

Note that EQT does not perform any
calculations, thus it’s just an embellishing
addition to CURVE.

The original listing was originally
published in the AECROM manual, and it’s
reproduced here practically unaltered.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 78

4.4.2. Polynomial interpolation. { POLINT }

The program POLINT follows the Aitken’s interpolation method. It’s an elegant simple
implementation and a nice example of utilization of the capabilities of the platform. It was written by
Ulrich K. Deiters, and it is posted at: http://www.hp41.org/LibView.cfm?Command=View&ItemID=600

The program performs polynomial interpolations of variable order on (xi, yi) data sets, with the order
determined by the number of data pairs. It is applied as follows:

- You have a set of (xi, yi) data pairs. The xi are all different, and they need not be equidistant.

- You need to know the y value at the location x, which is not one of the xi.

- You start the program XEQ "POLINT"
 and enter x at the prompt. x, R/S

- Then you enter the first data pair, x0, R/S
 preferably one which has an x_i close to x. y0, R/S
 The program returns y0.

- You enter another data pair. R/S
 The program returns the results of a linear x1, R/S
 interpolation. y1, R/S

- You enter another data pair. R/S
 The program returns the results of a x2, R/S
 quadratic interpolation. y2, R/S

- You enter another data pair. R/S
 The program returns the results of a cubic x3, R/S
 interpolation. y3, R/S

- ... and so on, until you exceed the SIZE of your calculator.

Going beyond the cubic interpolation is seldomly useful. High-order interpolations become increasingly
sensitive to round-off errors and inaccuracies of the input data.

The number of data registers used depends on the order of the interpolation. An nth order interpolation
(which uses n+1 pairs of data) occupies the registers R00 to R(2n+4), e.g., a cubic interpolation needs
all registers up to R10.

If a printer is connected, the interpolation results are printed out, and the "empty" R/S entries are not
required.

Example. Given the table below with a set of vapor pressure data for superheated water, what is the
vapor pressure at 200 °C (= 473.15 K)?

T/K 380 400 450 480 500 530 560
p/MPa 0.12885 0.24577 0.93220 1.7905 2.6392 4.4569 7.1062

Here’s the sequence followed to resolve it.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=600

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 79

input display
XEQ "INTPOL" X=?
473.15, R/S X0=?
480 , R/S Y0=?
1.7905 , R/S Y = 1.79050
R/S X1=?
450 ,R/S Y1=?
0.9322, R/S Y = 1.59452 linear interpolation
R/S X2=?
500, R/S Y2=?
2.6392, R/S Y = 1.55067 quadratic interpolation
R/S X3=?
400 ,R/S Y3=?
0.24577, R/S Y = 1.55453 cubic interpolation
R/S X4=?
530, R/S Y4=?
4.4569, R/S Y = 1.55495 4th order

From this we conclude that 1.55 MPa is a reasonably good estimate; and that the linear interpolation
was certainly not sufficient. Incidentally, the true value is 1.554950 MPa..

The program listing is shown below.

1 LBL "POLINT" 33 X<>Y
2 FC? 55 34 AIP
3 SF 21 35 X<>Y
4 "X=?" 36 "|‐=?"
5 PROMPT x value of point 37 PROMPT prompts for Yk
6 STO 00 38 DSE 02
7 39 GTO 02
8 STO 01 40 LBL 03
9 LBL 01 41 RCL IND 02
10 RCL 01 42 *
11 INT k 43 LASTX
12 44 RCL Z
13 ‐ k‐1 45 ‐
14 1,00(k‐1) 46 ISG 02
15 47 RCL IND 02
16 + 4,00(k‐1) 48 LASTX
17 STO 02 49 *
18 RCL 01 50 ST‐ Z
19 INT k 51 LASTX
20 52 RDN
21 ‐ k‐3 53 RDN
22 54 /
23 / 55 LBL 02
24 "X" 56 STO IND 01
25 AIP 57 ISG 02
26 "|‐=?" 58 GTO 03
27 PROMPT prompts for Xk 59 "Y="
28 RCL 00 60 ARCL X
29 ‐ 61 AVIEW
30 STO IND 01 62 ISG 01
31 ISG 01 63 GTO 01 next order
32 "Y" 64 END done

3,05

E

3

3

2

E3/E+

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 80

4.4.3. Prime Factors Decomposition { PRMF , PF>X , TOTNT }

This section describes the three functions provided in the SandMatrix related to Prime factorization.

 The first one PRMFC extends the basic prime factorization capability in the SandMath, PFCT. The
difference is that whereas PFCT only uses the Alpha register to output the result (as Alpha string), here
the prime factors and their multiplicities are also stored in a matrix in X-Mem - named [PRFM]. This
ensures that no information will be lost (scrolled off the display if the length exceeds 24 char), and also
provides a permanent storage of the results.

You can use PF>X to check the result: it re-builds the original argument from the values in the
[PRMF] matrix, using the obvious relationship:

X = Π PF(i) ^m(i) ; for i = 1, 2… primes

Euler’s Totient function.

In number theory, Euler's totient or phi function, φ(n) is an arithmetic function that counts the totatives
of n, that is, the positive integers less than or equal to n that are relatively prime to n. The graphic
below shows (well, sort of) the first thousand values of φ(n)

Examples. Calculate the prime factors and the totient for the following numbers:

n PF phi
1,477 7*211 1,260
819,735 3*5*7*37*211 362,880
123,456 2^6*3*643 41.088,000

 Function Description Input / Output
1 PRMF Prime Factors (Matrix Form) Argument in X-reg
2 PF>X From Factors to Number Prime factors in Matrix file
3 TOTNT Euler’s Totient function Argument in X-reg

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 81

The programs are listed below. There’s no fancy algorithm for TOTNT , it just counts the number of
prime factors after doing the decomposition as a preliminary step.

1 LBL "TOTNT" Euler's Totient Function 55 GTO 03 skip i f yes
2 SF 04 flag case 56 ST/ L divide number by PF
3 XEQ 10 get all Prime Factors 57 LASTX Reduced number
4 0 58 GTO 00 loop back
5 MSIJ sets pointer to 1:1 59 LBL 03 Store Exponent
6 X<>Y argument to x 60 RCL 00 recover PF
7 LBL 07 61 MSR+ store in matrix
8 MRC+ get element 62 GTO 01 next factor
9 1/X invert it 63 LBL 02 New PF found
10 CHS sign change 64 STO 01 Store for comparisons
11 65 RCL 00 previous exponent
12 + add 1 66 MSR+ Store Old PF Exponent
13 * multiply 67 RDN
14 FC? 09 end of row? 68 ST/ L divide number by PF
15 GTO 07 loop back 69 LASTX Reduced number
16 CLD refesh display 70 DIM?
17 RTN done. 71 X<> Z Bring the new PF back
18 Prime Factors

E

LBL "PRMF" 72 MSR+ store new PF
19 CF 04 flag case 73 FS?C 00 Was it Prime?
20 LBL 10 74 GTO 01 Bail Out, we're done
21 "PRMF" 75 X<>Y Bring the number back
22 2 76 GTO 05 Start Over
23 1,002 77 Rebuild numberE3/E+ LBL "PF>X"
24 MATDIM Create Matrix 78 SF 04 flag case
25 CLX 79 "PRMF" matrix name
26 MSIJA sets pointer to 1:1 80 SF 10 fake condition
27 RDN argument to x 81 LBL 01 PF Completed
28 CF 00 default: not prime 82 1
29 INT condition x 83 FC? 10 end of matrix?
30 ABS to avoid errors 84 MSR+ store it as last exp.
31 is it prime? 85 STO 00 ini tia l value
32 SF 00 FIRST PF found 86 MSIJA sets pointer to 1:1
33 MSR+ Store this PF 87 CLA Clean Slate
34 is PF =1? 88 LBL 06 Rebuild the number
35 GTO 01 yes, leave the boat 89 MRR+ get prime factor
36 FS?C 00 Was it Prime? 90 FC? 04 if not totient case
37 GTO 01 if Prime, we're done 91 AIP add it to Alpha
38 STO 01 Store PF for comparisons 92 MRR+ get multiplicity
39 ST/ L divide number by PF 93 FC? 04 if not totient and/
40 LASTX Reduced number 94 or if it is one
41 LBL 05 95 GTO 04 skip adding to Alpha
42 reset counter 96 "|‐^" otherwise put symbol
43 STO 00 97 AIP and add it to the string
44 RDN 98 LBL 04
45 LBL 00 99 Y^X PF^Exp
46 RCL 01 reca l l PF 100 ST* 00 Rebuilding the number
47 X<>Y Reduced number 101 FS?10 End of Array?
48 is i t prime? 102 GTO 04 yes, leave the boat
49 SF 00 PF found 103 FC? 04 if not totient case
50 X#Y? Compare this and old PF's 104 "|‐*" append symbol
51 GTO 02 skip over if different 105 GTO 06 next PF
52 ISG 00 Same One 106 LBL 04
53 NOP Increase counter 107 RCL 00 final result
54 FS?C 00 Was it Prime? 108 FC? 04 if not totient case

109 AVIEW Show the construct
110 END done.

E

E

PRIME?

X=1?

X=1?

PRIME?

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 82

4.4.4. Polynomial Fitting { POLFIT }

The next program is taken from Valent’in Albillo article “Long Live the Advantage ROM” - showcasing
the matrix functions included in it. As one can expect from that reference, it’s an excellent example and
therefore more that worth including in the SadnMatrix.

The original article is partially reproduced below – it is so well described that I could not resist adding it
practically verbatim.

 POLFIT is a small, user-friendly, fully prompting 62-line program (124 bytes) written specifically to
demonstrate the excellent matrix capabilities of the Advantage ROM. POLFIT can find the coefficients
of a polynomial of degree N which exactly fits a given set of N+1 arbitrary data points (not necessarily
equally spaced), where N is limited only by available memory.

Among the many functions we could fit to data, polynomials are by far the easiest to evaluate and
manipulate numerically or symbolically, so our problem is:

Given a set of n+1 data points (x1, y1), …, (xn+1, yn+1), find an Nth-degree polynomial

y = P(x) = a1 + a2 x + a3 x2 + a4 x3 + ... + an+1 xn

which includes the (n+1) data points (x1, y1), (x2, y2), ..., (xn+1, yn+1). The coefficients (a1, ...,
an+1) can be determined solving a system of (n+1) equations:

Program listing

01 LBL "POLFIT" to use, simply XEQ "POLFIT"
02 "N=?" prompts for the degree N of the polynomial
03 PROMPT .. and waits for the user to enter N
04 1 add 1 to get the number of data points
05 + N+1
06 1.001 the required multiplier
07 * forms the matrix dimensions [N+1].00[N+1]
08 "MX" specifies matrix MX to be created in X-Mem
09 MATDIM creates and dimensions matrix MX in X-MEM
10 0 specifies first row, first column and ..
11 MSIJ .. resets the row/column indexes
12 LBL 00 loop to ask for data & compute MX elements
13 MRIJ recalls the current value of the indexes
14 "X" forms the prompt to ask the user to enter xi
15 AIP appends the index to the prompt
16 "|-=?" appends “=?” to the prompt
17 PROMPT prompts to enter xi and resume execution
18 ENTER^ fills the stack with the value of xi ..
19 ENTER^ in order to compute all powers of xi ..
20 ENTER^ from 1 to xi^n and store them in MX
21 1 initializes the value of xi^0 [i.e.: 1]
22 MSR+ stores it in MX and updates the indexes

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 83

23 LBL 01 loop to compute the powers of xi 24 * computes xi^j
25 MSR+ stores it in MX and updates the indexes
26 FC? 09 are we done with this row ?
27 GTO 01 not yet, go back for the next xi power
28 FC? 10 row done. Are we done with all rows?
29 GTO 00 not yet, go back to ask for the next xi
30 CLA all rows done, MX complete. Make it current
31 DIM? get its dimensions: [N+1].00[N+1]
32 INT get N+1 (avoid using a register)
33 "MY" specify vector MY to be created in X-MEM
34 MATDIM creates and dimensions vector MY in X-MEM
35 LBL B ask for yi data and store them in MY
36 0 specifies 1st element of the vector and ...
37 MSIJ .. resets the index to the 1st element
38 LBL 02 loop for next data and store them in MY
39 MRIJ recalls the current value of the index
40 "Y" forms the prompt to ask for yi
41 AIP .. appends the index to the prompt
42 "|-=?" appends “=?” to the prompt
43 PROMPT prompts the user to enter yi
44 MSR+ stores it in MY and updates the index
45 FC? 10 are we done with all elements?
46 GTO 02 not yet, go back to ask for the next yi
47 "MX,MY" all yi stored. Specify MX,MY for the system
48 MSYS solves the system for the coefficients
49 LBL C retrieve and display each coeff.
50 0 specifies 1st element of the coeffs. vector
51 MSIJ resets the index to the 1st coefficient
52 LBL 03 loop to retrieve the next coefficient
53 MRIJ recalls the current value of the index
54 "A" forms the prompt to display each coeff.
55 AIP .. appends the index to the prompt
56 "|-=" appends “=” to the prompt
57 MRR+ retrieves the value of the current coeff.
58 ARCL X appends the value to the prompt
59 PROMPT shows the value to the user
60 FC? 10 are we done outputting all the coeffs?
61 GTO 03 not yet, go back for the next coefficient
62 END all done. End of execution.

Notes

• As the Advantage ROM can work with matrices directly in X-Mem, POLFIT doesn't use any
main RAM registers and so it will run even at SIZE 000. This has the added advantage (pun
intended) of avoiding any register conflicts with other programs.

• POLFIT creates two matrices in X-Mem, namely [MX] and [MY], which aren't destroyed upon

termination. Retaining [MX] allows the user to compute the coefficients of another polynomial
using the same x data but different y data. In that case, the x data need not be entered again,
only the new y data must be entered. Further, as the MX matrix is left in LU-decomposed form
after the first fit, the second fit willproceed much faster. Retaining [MY] allows the user to
employ the polynomial for interpolating purposes, root finding, numeric integration or
differentiation, etc.

• Lines 2-11 prompt the user for the degree of the polynomial, then allocate the system matrix in

Extended Memory (MATDIM) and reset the indexes (MSIJ).

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 84

• Lines 12-22 set up a loop that will fill up the rows of [MX]. Notice the use of the miscellaneous
function AIP to build the prompt, and MSR+ to store the value and automatically advance the
indexes to point to the next element.

• Lines 23-27 form a tight loop that computes each power of xi and uses MSR+ to store it and

advance the indexes. Flag 9 logs if we’re done with the column in which case we would
proceed to the next row. If so, Flag 10 is then checked to see if we’re done with all the rows.

• Once the system matrix has been populated, lines 30-45 do likewise dimension, and populate

the MY matrix, prompting the user for the required yi values. Then, once all the data have
been input and both matrices are allocated and populated, lines 46-47 solve the system for the
coefficients of the polynomial using MSYS.

• Finally, lines 48-59 establish a loop that labels and outputs all the coefficients.

Example

Rumor has it that the seemingly trigonometric function y = cos(5 arccos x) is actually a 5th-degree
polynomial in disguise. Attempt to retrieve its true form.

If it is indeed a 5th-degree polynomial, we can retrieve its true form by fitting a 5th-degree polynomial
to a set of 6 arbitrary data points (x,y). Any set with different x values (-1.0 <= x <= +1.0) will do, but
for simplicity’s sake we’ll use x=0, 0.2, 0.4, 0.6, 0.8, and 1. Proceed like this:

- set Rad mode, 4 decimals: XEQ “RAD”, FIX 4
- start the program: XEQ “POLFIT” “N=?”
- specify degree 5: 5 R/S “X1=?”
- enter 1st x value: 0 R/S “X2=?”
- enter 2nd x value: 0.2 R/S “X3=?”
- enter 3rd x value: 0.4 R/S “X4=?”
- enter 4th x value: 0.6 R/S “X5=?”
- enter 5th x value: 0.8 R/S “X6=?”
- enter 6th x value: 1 R/S “Y1=?”
- enter 1st y value: 0, ACOS, 5, *, COS, R/S “Y2=?”
- enter 2nd y value: 0.2, ACOS, 5, *, COS, R/S “Y3=?”
- enter 3rd y value: 0.4, ACOS, 5, *, COS, R/S “Y4=?”
- enter 4th y value: 0.6, ACOS, 5, *, COS, R/S “Y5=?”
- enter 5th y value: 0.8, ACOS, 5, *, COS, R/S “Y6=?”
- enter 6th y value: 1, ACOS, 5, *, COS, R/S “a1=-1.0250E-9”

R/S “a2=5.0000”
R/S “a3=7.0867E-8”
R/S “a4=-20.0000”
R/S “a5=2.6188E-7”
R/S “a6=16.0000”

So, disregarding the very small coefficients due to rounding errors, the undisguised polynomial is:

P(x) = cos(5 arccos x) = 5 x – 20 x^3 + 16 x^5

You might want to execute now CAT”4 (or EMDIR), to see that the matrices used are still available so
that you can redisplay the coefficients, solve for a new set of y values, or use the polynomial for
interpolation, etc.

CAT”4 “MX M036” [the system matrix is 6x6 = 36 elements]
“MY M006” [the coeff. matrix is 6x1 = 6 elementss]
554.0000 [this value varies with your configuration]

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 85

4.4.5. Orthogonal Polynomial Fit. { OPFIT }

Orthogonal polynomials are a very advantageous method for polynomial regression. Not only it allows
for a more progressive approach, but also the accuracy of the values so obtained is typically better.
This program employs this method; even if it doesn’t calculate any orthogonal polynomials explicitely.

Given m value pairs (xi, yi) and a maximum degree to explore (n), this program calculates the
n(n+3)//2 polynomial coefficients of the corresponding n polynomials of degrees 1, 2, 3,… n that best
fit the given data (therefore equivalent to the least squares method). It also obtains the determination
coefficients and typical errors for each degree,

The method followed uses the construct Y(x) = d0 P0(x) + d1 P1(x) + … dn Pn(x) ; where p0,
p1, … pn are the orthogonal polynomials corresponding to the entered data that satisfy the expression
Σpi Pj = 0, for every i#j

The advantage of this approach is a better accuracy, as it avoids the resolution of the usual n linear
systems, frequently ill-conditioned, that arise in the least squares method.

Example.- To check the program we took the following 11 value pairs from the polynomial

P(x) = x^4 – 2x^3 + 3x^2 –4 x +5

Xi -3 -2 -1 0 1 2 3 4 5 6 7560
Yi 179 57 15 5 3 9 47 165 435 953 1839

Using the data above explore up to degree n=4, showing the correlation coefficients, the D-factors and
the errors for each of the alternatives.

The results are all provided in the table below:

Degree (n) Corrlt. (r^2) Errors (e^2) Determ. (d^2) Coefficients

n = 1 R1=4,482218E-1 E0=3,295160E5
E1=1,818197E5

D0=3,370000E2
D1=1,228000E2

a0=9,140000E1
a1=1,228000E2

n =2 R2=9,000134E-1 E2=3,294720E4 D2=4,000000E1

a0=-1,486000E2
a1=-3,720000E1
a2=4,000000E1

n = 3 R3=9,821452E-1 E3=5,883429E3 D3=6,000000E0

a0=1,700000E1
a1=-7,200000E1
a2=4,000000E0
a3=6,000000E0

n = 4 R4=1,000000E0 E4=0,000000E0 D4=1,000000E0

a0=5,000000E0
a1=-4,000000E0
a2=3,000000E0
a3=-2,000000E0
a4=1,000000E0

Original author: OPFIT was written bu Eugenio Úbeda, and published in the UPLE. The version in the
SandMatrix has only minimal changes made to it. It is by far the longest program in the module.

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 86

4.4.6. From Poles to Zeros… and back. { POLZER , PFE }

These two programs complete the applications section. The first one calculates the zeros of a
polynomial expressed as a partial expansion of factors, as would typically be the case when working
with transfer functions in control theory. The second program builds the partial fraction expansion for a
polynomial given it its “standard” (or natural) form.

This program calculates the polynomial coefficients and roots of expressions such as:

P(x) = Σ [1 / (x-pi)] ; i= 1,2,… n

Which will be transformed into:

P(x) = Σ ai x^i ; i= 0,1,… (n-1)

The coefficients are obtained using the following formulae:

a(n-1) = n
a(n-2) = (n-1) Σ pi
a(n-3) = (n-2) Σ Σ pi pj
a(n-4) = (n-3) Σ Σ Σ pi pj pk
a(n-5) = (n-4) Σ Σ Σ Σ pi pj pk pl
a(n-6) = (n-5) Σ Σ Σ Σ Σ pi pj pk pl pm

in general the n-th. coefficient would require the calculation of n-dimensional product sums. However
the program POLZER is limited to expressions up to 7 poles max. (resulting in 6 zeroes).

Example.- To study the stability of the transfer function below, calculate its roots.

G(s) = 1/s + 1/(s-1) + 1/(s-2) + 1/(s-3) + 1/(s-4)

Keystrokes Display
XEQ “POLZER” #POL=?
5, R/S P(1)=?
0, R/S P(2)=?
1, R/S P(3)=?
2, R/S P(4)=?
3, R/S P(5)=?
4. R/S “Σ ... ΣΣ .. ΣΣΣ... ΣΣΣΣ.... ΣΣΣΣΣ..... “
 “CFS? Y/N”
“Y” a(4)=5,00000
R/S a(3)=-40,00000
R/S a(2)=105,00000
R/S a(1)=-100,00000
R/S a(0)=24,00000

Therefore the “natural” polynomial form is as follows:

G(s) = 5 s^4 – 40 s^3 + 105 s^2 – 100 s + 24

 Function Description Input / Output
1 POLZER Zeros of transfer functions Under program control
2 PFE Partial Fraction Expansion Under program control

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 87

Next the execution is transferred to RTSN , which will calculate the roots following the iterative
process explained in section 4.3.1. Remember that the accuracy is dictated by the number of decimals
places set .

R/S “RUNNING…”
R/S Z=0,35557
R/S Z=1,45609
R/S Z=2,54395
R/S Z=3,64442

 POLZER is also rather long – and dates back to the days the author attended EE School many moons
ago, so I’m somehow attached to it.

4.4.7. Partial Fraction Decomposition

In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is
a fraction such that the numerator and the denominator are both polynomials) is the operation that
consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions
with a simpler denominator.

In symbols, one can use partial fraction expansion (where ƒ and g are polynomials) to change
expression forms as shown below

 >>>

where gj (x) are polynomials that are factors of g(x), and are in general of lower degree. Thus, the
partial fraction decomposition may be seen as the inverse procedure of the more elementary operation
of addition of rational fractions, which produces a single rational fraction with a numerator and
denominator usually of high degree. The full decomposition pushes the reduction as far as it will go: in
other words, the factorization of g is used as much as possible. Thus, the outcome of a full partial
fraction expansion expresses that fraction as a sum of fractions, where:

the denominator of each term is a power of an irreducible (not factorable) polynomial and the
numerator is a polynomial of smaller degree than that irreducible polynomial. To decrease the degree
of the numerator directly, the Euclidean division can be used, but in fact if ƒ already has lower degree
than g this isn't helpful.

Implementation

POLZER may be an old program but PFE is a much more modern event, written by JM Baillard and
published at: http://hp41programs.yolasite.com/part-frac-expan.php

Given a rational function R(x) = P(x) / Q(x) with Q(x) = [q1(x)]µ1 [qn(x)]µn and
gcd(qi , qj) = 1 for all i # j , this program returns the partial fraction expansion:

 R(x) = E(x) + p1,1(x) / [q1(x)]µ1 + p1,2(x) / [q1(x)]µ1-1 + + p1,µ1(x) / q1(x)

 + ..

 + p (x) / [q (x)] + p (x) / [q (x)] + + p (x) / q (x) n,1 n
µn

n,2 n
µn-1

n,µn n

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 88

where deg pi,k < deg qi , and E(x) is the quotient in the Euclidean division P(x) = E(x) Q(x) + p(x)
and p(x) is the remainder.

Data entry is a complicated affair but it has been automated – just follow the process carefully.
It makes extensive use of the polynomial arithmetic routines PPRD and PDIV . Also the polynomial
entry routine PEDIT is called several times...

The program prompts for the number of factors in the denominator, as well as for their degrees and
multiplicities. It also prompts for the coefficients of the numerator polynomial and of each factor
polynomial in the denominator; so you don’t need to store those values manually prior to executing
PFE.

Data output is not automated; therefore you’d need to interpret the control words returned in stack
registers. Some guidelines will follow in the examples.

Example1. Calculate the partial fraction decomposition for R(x) below.

 R(x) = P(x)/Q(x) = (6 x5 - 19 x4 +20 x3 - 7 x2 + 7 x + 10) / [(2 x2 + x + 1).(x - 2)2]

Keystrokes Display Result
XEQ “PFE” “#DEN=?” Input number of factors
2, R/S “NUM#=?” inputs degree of numerator
5, R/S “Σ(aK*X^K)” Reminder of convention
 “a5= ?” coefficients data entry
6, R/S “a4= ?”
19, CHS, R/S “a3= ?”
20, R/S “a2= ?
7, CHS, R/S “a1=?”
7, R/S “a0=?”
10, R/S “Q1#=?” Input degree of Q1 in den.
2, R/S “Σ(aK*X^K)” Reminder of convention
 “a2=?”
2, R/S “a1=?”
1, R/S “a0=?”
1, R/S “Q2#=?”
1, R/S “Σ(aK*X^K)” Reminder of convention
 “a1=?”
1, R/S “a0=?
2, CHS, R/S “XP^μ” time to enter the multiplicities now
 “a1= ?” exponent of first factor
1, R/S “a0= ?” exponent of second factor
2, R/S flying goose… beep sounds
 “E(x)” informs that E(x) follws
 “Σ(aK*X^K)” Reminder of convention
 “a1=3”
R/S “a0=1” end of data output.

There are three control words placed registers R05, R06, and R15 upon completion, as follows:

1. The cnt’l word stored in R15 is for the Quotient polynomial, E(x)

2. The cnt’l word in R05 gives the entire register range for the coefficients of all the pi(x)
polynomials – the numerators of the expanded fractions. It needs to be interpreted depending
on the denominators qi(x) are polynomials of degree 1 or polynomials pf degree 2 with
negative discriminant. The contents of these registers are to be read

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 89

• by groups of 1 number if deg qj = 1 the numerators are constants
• by groups of 2 numbers if deg qj = 2 the numerators are polynomials of degree 1
• by groups of 3 numbers if deg qj = 3 the numerators are polynomials of degree 2 , and

so on

3. The third in R06 is for an alternative solution using a new reminder p(x)

Thus in this case registers R16 and R17 contain the coefficients for E(x) = 3x + 1 ;
And registers R33 – R36 for the denominator polynomials: (which must be three of them!)

p1,1(x) = 2x + 3 ; p2,1(x) = 4 ; p2,2(x) = 5

Thus the final result is as follows:

R(x) = E(x) + p1,1(x) /(2x^2 + x +1) + p2,1(x) / (x-2)^2 + p2,2(x) / (x-2)

Or alternatively using the data in registers R18 – R21 (cnt’l word in Z):

p(x) = 12 x^3 – 12x^2 – 5x +6 ; and thefore:

R(x) = E(x) + p(x) /Q(x)

Example 2.- Calculate the partial fraction decomposition for R(x) below.

R(x) = P(x)/Q(x) = x^5 /(3 x^2 + 1)2

The three control words returned are:

Z: 18.021 with: R18=-2/3, R19= 0, R10 =-1/9, R21 =0
Y: 28.031 with R29=1/9, R29=0, | R30=-2/9, and R31=0
X: 16,017 with: R16 = 1/9 and R17 = 0

The range in Y must be split as p1,2 = x/9 x + 0; and p2,2 = -2x/9 + 0

Therefore:

R(x) = E(x) + p1,2(x)/(3x^2 + 1)^2 + p2,2(x)/(3x^2 + 1)

All in all a powerful program, which flexibility requires some careful attention to the details involved.

Note:- you can check another Partial Fraction expansion program (by Narmwon Kim) available at the
HP-41 archive site, which features a simpler user interaction and data entry/output, but at the expense
of more limited functionality. It is also less general-purpos, and more geared towards control system
applications.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=776

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 90

Appendix –M. MCODE listings for LU? And ^MROW .

There are a few new M-Code functions in the SandMatrix that make direct usage of the module’s
subroutines. A representative example is given below, showing the very short routine LU? – that checks
whether the matris is in its decomposed form – simply by reading the appropriate digit in the matrix
header register.

1 LU? Header A5FA 0BF "?"
2 LU? Header A5FB 015 "U"
3 LU? Header A5FC 00C "L"
4 LU? LU? A5FD 379 PORT DEP: Jumps to Bank_2

03C XQ
1D9 ‐>A5D9 [LNCH0]

5 LU? A5FE adds "4" to [XS]
6 LU? A5FF
7 LU? A600 388 <parameter> B788
8 LU? A601 00B JNC +01
9 LU? A602 100 ENROM1 restore bank‐1
10 LU? A603 0B0 C=N ALL header register
11 LU? A604 25C PT= 9 LU digit
12 LU? A605 2E2 ?C#0 @PT
13 LU? A606 0B9 ?NC GO False
14 LU? A607 05A ‐>162E [SKP]
15 LU? A608 065 ?NC GO True
16 LU? A609 05A ‐>1619 [NOSKP]

Lastly, and just in case you though that functions PMTM and PMTP are actually not a big deal (which
would be the logical conclusion if you only look at their FOCAL program listing) – here is in all its gory
detail the listing for its MCODE-heart, function ^MROW.

I’ll spare you the more onerous details, but suffice it to say that it was an involved assignment. And
don’t forget that another function is also used to support the matrix prompt mode: ANUMDL – although
in this case I just had to copy HP’s code from the HP-IL Development Module (thanks HP! :-)

1 ^MROW Header B658 097 "W"
2 ^MROW Header B659 00F "O"
3 ^MROW Header B65A 012 "R" Input Matrix Row
4 ^MROW Header B65B 00D "M"
5 ^MROW Header B65C 01E "^" Ángel Martin
6 ^MROW ^MROW B65D 0C4 CLRF 10 start anew: no CHS yet
7 ^MROW B65E 184 CLRF 11 start anew: no commas yet
8 ^MROW B65F 344 CLRF 12 start anew: no digits yet
9 ^MROW B660 0F8 READ 3(X)
10 ^MROW B661 070 N=C ALL
11 ^MROW B662 345 ?NC XQ Clears Alpha
12 ^MROW B663 040 ‐>10D1 [CLA]
13 ^MROW B664 215 ?NC XQ Build Msg ‐ all cases
14 ^MROW B665 0FC ‐>3F85 [APRMSG2]
15 ^MROW B666 212 "R"
16 ^MROW B667 row number in BCD format
17 ^MROW B668 37C RCR 12 move the MSB to C{0)
18 ^MROW B669 21C PT= 2
19 ^MROW B66A 010 LD@PT‐ 0
20 ^MROW B66B 2D0 LD@PT‐ B add colon to digit
21 ^MROW B66C write it in display (9‐bit)
22 ^MROW B66D 355 ?NC XQ blank space to LCD
23 ^MROW B66E 03C ‐>0FD5 DSPL20
24 ^MROW B66F 33D ?NC GO Input List in Alpha
25 ^MROW B670 112 ‐>44CF [ALIST]

0B0 C=N ALL

3E8 WRIT 15(e)

Not such a big deal, you keep saying? Well, let’s have a look at the remaining part in the Libary#4

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 91

1 ALIST BCKARW 44CD 055 ?NC GO Delete char plus logic
2 ALIST 44CE 116 ‐>4515 [DELCHR]
3 ALIST ALIST 44CF 115 ?NC XQ Partial Data Entry!
4 ALIST 44D0 038 ‐>0E45 [NEXT1]
5 ALIST 44D1 3E3 JNC ‐04 [BCKARW]
6 ALIST 44D2 00C ?FSET 3 numeric input?
7 ALIST 44D3 093 JNC +18d NO, KEEP LOOKING
8 ALIST 44D4 0BE A<>C MS recall LS digit from A[13]
9 ALIST 44D5 130 LDI S&X
10 ALIST 44D6 003 CON: pre‐load the numeric mask
11 ALIST 44D7 2FC RCR 13 move it to C[S&X]
12 ALIST 44D8 3E8 WRIT 15(e)

GOBACK 44E0 042 C=0 @PT

write it in display (9‐bit)
13 ALIST 44D9 348 SETF 12 enable SPACE
14 ALIST TOALPH 44DA 39C PT= 0
15 ALIST 44DB 058 G=C @PT,+
16 ALIST 44DC 149 ?NC XQ Disable PER, enable RAM
17 ALIST 44DD 024 ‐>0952 [ENCP00]
18 ALIST 44DE 051 ?NC XQ
19 ALIST 44DF 0B4 ‐>2D14 [APNDNW]
20 ALIST
21 ALIST 44E1 058 G=C @PT,+ reset PTEMP bits
22 ALIST 44E2 3D9 ?NC XQ Enable Display (not cleared)
23 ALIST 44E3 01C ‐>07F6 [ENLCD]
24 ALIST ANCHOR1 44E4 35B JNC ‐21d ONE PROMPT
25 ALIST 44E5 28C ?FSET 7 decimal key pressed?
26 ALIST 44E6 03B JNC +07 NO, KEEP LOOKING
27 ALIST 44E7 18C ?FSET 11 been used already?
28 ALIST 44E8 3E7 JC ‐04 ONE PROMPT
29 ALIST 44E9 188 SETF 11 no more radix (unless deletion)
30 ALIST 44EA 10D ?NC XQ adds proper radix sign
31 ALIST 44EB 114 ‐>4543 [RADIX4]
32 ALIST ANCHOR2 44EC [TOALPH]
33 ALIST 44ED 0B0 C=N ALL PRESSED KEY CODE
34 ALIST 44EE 106 A=C S&X
35 ALIST 44EF 130 LDI S&X
36 ALIST 44F0 030 CON: ENTER^ keycode [030]
37 ALIST 44F1 366 ?A#C S&X
38 ALIST 44F2 04F JC +09
39 ALIST 44F3 34C ?FSET 12 digits input already?
40 ALIST ANCHOR1 44F4 383 JNC ‐16d ONE PROMPT
41 ALIST 44F5 0C4 CLRF 10 clear CHS flag
42 ALIST 44F6 184 CLRF 11 a l low RADIX
43 ALIST 44F7 344 CLRF 12 set SPACE flag
44 ALIST 44F8 355 ?NC XQ add space to LCD
45 ALIST 44F9 03C ‐>0FD5 [DSPL20]
46 ALIST 44FA add to Alpha
47 ALIST 44FB 130 LDI S&X
48 ALIST 44FC 370 CON: R/S keycode [370]
49 ALIST 44FD 366 ?A#C S&X terminate digit entry
50 ALIST 44FE 07B JNC +15d [WAYOUT]
51 ALIST 44FF 130 LDI S&X
52 ALIST 4500 230 CON: CHS keycode [230]
53 ALIST 4501 366 ?A#C S&X
54 ALIST 4502 023 JNC +04
55 ALIST 4503 265 ?NC XQ Blink Display ‐ pass #2
56 ALIST 4504 020 ‐>0899 [BLINK1]
57 ALIST 4505 37B JNC ‐17d ONE PROMPT
58 ALIST 4506 0CC ?FSET 10 been used already?
59 ALIST 4507 3F7 JC ‐02 ONE PROMPT
60 ALIST 4508 0C8 SETF 10 first time
61 ALIST 4509 130 LDI S&X
62 ALIST 450A 02D "‐" appends "‐"
63 ALIST 450B 9‐bit LCD write
64 ALIST 450C [TOALPH]
65 ALIST 3DD ?NC XQ Left‐justify LCD
66 ALIST 450E 0AC ‐>2BF7 [LEFTJ]

373 JNC ‐18d

393 JNC ‐14d

3E8 WRIT 15(e)
303 JNC ‐32d

WAYOUT 450D

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 92

67 ALIST 450F 161 ?NC XQ Clear LCD and reset things
68 ALIST 4510 124 ‐>4958 [EXIT3]
69 ALIST 4511 175 ?NC XQ Adjust F10 Status
70 ALIST 4512 114 ‐>455D [ADJF10]
71 ALIST 4513 31D ?NC GO Normal Function ReturnKB
72 ALIST 4514 002 ‐>00C7 [NFRKB]
73 ALIST DELCHR 4515 3B8 READ 14(d) to delete rightmost chr
74 ALIST 4516 158 M=C ALL save it for later
75 ALIST 4517 149 ?NC XQ Disable PER, enable RAM
76 ALIST 4518 024 ‐>0952 [ENCP00]
77 ALIST 4519 178 READ 5(M)
78 ALIST 451A 2EE ?C#0 ALL anything in Alpha?
79 ALIST 451B 037 JC +06 yes, go on
80 ALIST 451C 104 CLRF 8 no, abort if empty
81 ALIST 451D 1B1 ?NC XQ Mainframe Message
82 ALIST 451E 070 ‐>1C6C [MSGA]
83 ALIST 451F 03C "NULL" from table
84 ALIST 37B JNC ‐17d Reset everything and leave
85 ALIST 4521 2E5 ?NC XQ remove last Alpha char
86 ALIST 4522 110 ‐>44B9 [ABSP4]

fixed bug 4520

87 ALIST 4523 198 C=M ALL recall deleted char value
88 ALIST 4524 106 A=C S&X store in A for comparisons
89 ALIST 4525 130 LDI S&X check for SPACE
90 ALIST 4526 020 "space" <space>
91 ALIST 4527 0AD ?NC XQ complete the logic
92 ALIST 4528 114 ‐>452B [CHUNK4]
93 ALIST 4529 381 ?NC GO repeat the prompt
94 ALIST 452A 112 ‐>44E0 [GOBACK]
95 ALIST CHUNK4 452B 366 ?A#C S&X carry if different
96 ALIST 452C 01F JC + 03
97 ALIST 452D 348 SETF 12 allow new space entry
98 ALIST 452E 0A3 JNC +20d BAIL OUT
99 ALIST 452F 130 LDI S&X check for "‐" chr
100 ALIST 4530 02D "‐" "‐" char value
101 4531 366 ?A#C S&X carry if not "‐"
102 Executed within [DELCHR] 4532 02F JC + 05
103 an opportunistic routine 4533 is there SPACE chr?
104 just grouping common code 4534 017 JC +02
105 4535 0C4 CLRF 10 allow new "‐" entry
106 ALIST 4536 063 JNC +12d BAIL OUT
107 ALIST 4537 198 C=M ALL recall deleted char value
108 ALIST 4538 3D8 C<>ST XP Got a radix? If so, we neet to
109 ALIST 4539 14C ?FSET 6 replace it without comma
110 ALIST 453A 043 JNC +08
111 ALIST 453B 3D9 ?NC XQ Enable Display (not cleared)
112 ALIST 453C 01C ‐>07F6 [ENLCD]
113 ALIST 453D 144 CLRF 6 remove the radix value
114 ALIST 453E 284 CLRF 7 (both if need be)
115 ALIST 453F 3D8 C<>ST XP recall deleted char value
116 ALIST 4540 write i t in display
117 ALIST 4541 184 CLRF 11 Re‐allow comma writing
118 ALIST 4542 3E0 RTN
119 ALIST RADIX4 4543 149 ?NC XQ Disable PER, enable RAM
120 ALIST 4544 024 ‐>0952 [ENCP00]
121 ALIST 4545 3B8 READ 14(d) put F28 to F9
122 4546 2BC RCR 7
123 transfer staus of UF28 to F9, 4547 248 SETF 9
124 adds the converted crh code 4548 1EE C=C+C ALL comma or period ?
125 to the LCD and prepares ALPHA 4549 013 JNC +02 overflows if COMMA (cf28)
126 454A 244 CLRF 9 comma = CF 28
127 ALIST 454B 3D9 ?NC XQ Enable Display (not cleared)
128 ALIST 454C 01C ‐>07F6 [ENLCD]
129 ALIST 454D read right
130 ALIST 454E 3D8 C<>ST XP
131 ALIST 454F 148 SETF 6
132 ALIST 4550 24C ?FSET 9 comma or period ?
133 ALIST 4551 013 JNC +02
134 ALIST 4552 288 SETF 7 should replace the last chr
135 ALIST 4553 3D8 C<>ST XP with the same one w/ radix
136 ALIST 4554 9‐bit LCD write
137 ALIST 4555 130 LDI S&X
138 ALIST 4556 02C "," appends "," [02C]
139 ALIST 4557 24C ?FSET 9
140 ALIST 4558 360 ?C RTN no need, return
141 ALIST 4559 226 C=C+1 S&X
142 ALIST 455A 226 C=C+1 S&X appends "." [02E]
143 ALIST 455B 3E0 RTN

34C ?FSET 12

3E8 WRIT 15(e)

3B8 READ 14(d)

3E8 WRIT 15(e)

SandMatrix_4 Manual

(c) Ángel Martin ‐ August 2013 Page 93

The End.

This concludes the SandMatrix Manual – Hope you have found it useful and interesting enough to keep
as a reference. Better yet, go ahead and write a few more functions on your own. A few suggestions
are:

- Program to calculate Eigenvectors from Eigenvalues
- General-purpose p-th. root of a matrix
- General-purpose Logarithm of a matrix
- Anything else you feel like going for!

Note: Make sure that revision “H” (or higher) of the Library#4 module is installed.

	 This compilation revision 3.4.5
	Copyright © 2012 – 2013 Ángel M. Martin
	T/K
	Xi

