
Document Number: MD00036
Revision 1.07

December 4, 2000

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

MIPS32 4K™
Processor Core Family

Integrator’s Guide

Copyright © 1999-2000 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX,
SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV
and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

Table of Contents

Chapter 1 Overview ..1
1.1 Environment Variable Setup ...1

Chapter 2 Signal Description ..3
2.1 Naming Convention ..3
2.2 Signal Description ...3

Chapter 3 EC™ Interface ..9
3.1 Introduction ...9
3.2 Interface Transactions ...9

3.2.1 Fastest Read Transaction ..9
3.2.2 Single Read with Wait States ..10
3.2.3 Fastest Write Transaction ...11
3.2.4 Single Write with Wait States ...12
3.2.5 Burst Read ...13
3.2.6 Burst Write ..15
3.2.7 Back-to-Back Reads ..16
3.2.8 Back-to-Back Writes ...17
3.2.9 Read Followed by Write with Reordering ..18
3.2.10 Write Followed by Read with Reordering ..19

3.3 Outstanding Transactions ..20
3.4 Sequential Transactions ..21
3.5 Write Buffer ..21

3.5.1 Merge Pattern Control ...21
3.6 External Write Buffers ..23

Chapter 4 EJTAG Interface ...25
4.1 EJTAG versus JTAG ..25

4.1.1 EJTAG similarities to JTAG ...25
4.1.2 Sharing EJTAG resources with JTAG ..25

4.2 How to connectEJ_* pins ..27
4.2.1 EJTAG chip-level pins ..27
4.2.2 EJTAG Device ID input pins ..29
4.2.3 EJTAG Software Reset pins ...29

4.3 Multi-Core implementation ...30
4.3.1TDI/TDO daisy-chain connection ...31
4.3.2 Multi-Core Breakpoint Unit ..31

Chapter 5 Simulation Models ..33
5.1 Bus Functional Model ...33

5.1.1 Installing and Using the BFM ...33
5.1.2 Simple Testbench ..34

5.2 Cycle-Exact Simulation Model ...34
5.2.1 Installing the VMC Model ..34
5.2.2 Verifying the VMC Installation ..35
5.2.3 SWIFT Template Generation ..35
5.2.4 Back-annotating with SDF Timing ...35
5.2.5 Register Windows ...36
5.2.6 VMC Simulation configuration ..37
5.2.7 Trace Files ...39
5.2.8 Simple Testbench ..41
5.2.9 Multiple VMC Instances ...41
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 iii

5.2.10 Assertion Checks ..41

Chapter 6 Clocking, Reset & Power ...43
6.1 Clocking ..43

6.1.1SI_ClkIn Clock ..43
6.1.2EJ_TCK Clock ..43
6.1.3 Handling Clock Insertion Delay ...43

6.2 Reset and Hardware Initialization ...44
6.2.1SI_ColdReset ...44
6.2.2SI_Reset ...45
6.2.3SI_NMI ..45
6.2.4EJ_TRST_N ...45

6.3 Power Management ...45
6.3.1 ReducingSI_ClkIn frequency ...45
6.3.2 Software-induced sleep mode ...45

Appendix A Revision History ...47
iv MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 v

List of Figures

Figure 3-1: Fastest Read Cycle...10
Figure 3-2: Single Read Transaction with Wait States ..11
Figure 3-3: Fastest Write Transaction ..12
Figure 3-4: Single Write Transaction with Wait States..13
Figure 3-5: Burst Read Transaction Timing Diagram..15
Figure 3-6: Burst Write Transaction Timing Diagram...16
Figure 3-7: Back-to-Back Read Transaction Timing Diagram ..17
Figure 3-8: Back-to-Back Write Transactions ...18
Figure 3-9: Read Followed by Write Transaction with Reordering...19
Figure 3-10: Write Followed by Read Transaction with Reordering...20
Figure 4-1: Daisy chained TDI-TDO between JTAG and EJTAG TAP controller ...26
Figure 4-2: Multiplexing between JTAG and EJTAG TAP controller ..27
Figure 4-3: EJTAG chip-level pin connection ...28
Figure 4-4: Possible Reset circuitry implementation ...30
Figure 4-5: Multi-Core Implementation...31
Figure 5-1: Jade Bus Functional Model ...33

vi MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

List of Tables

Table 2-1: Signal Type Key ...3
Table 2-2: Signal Prefix Key..3
Table 2-3: Signal Descriptions ..4
Table 3-1: Sequential Burst Order ...13
Table 3-2: SubBlock Burst Order...14
Table 3-3: Valid SysAD Byte Enable Patterns...22
Table 3-4: MergeMode Example..22
Table 5-1: Core signals visible in VMC model ...36
Table 5-2: VMC Configuration Options ..37

to both

AP

lude
erilog
odel
that

used by

4K
iscussed.

t to the
Chapter 1

Overview

This document, theMIPS32 4K™ Processor Core Family Integrator’s Manual,is targeted for the ASIC designer who
is integrating a version of a MIPS32 4K processor core into his/her system ASIC. This document is applicable
those integrators who are using a hard core and those who are incorporating a soft core.

Chapter 2, “Signal Description,” on page 3 describes the pins of the core.

Chapter 3, “EC™ Interface,” on page 9 describes the EC™ interface protocol used by the core.

Chapter 4, “EJTAG Interface,” on page 25 discusses the EJTAG interface used by the core, including the EJTAG T
controller.

Chapter 5, “Simulation Models,” on page 33 describes models that can be used in place of the 4K core. These inc
the Bus Functional Model (BFM) and a cycle-accurate simulation model consisting of a model compiled with the V
Model Compiler tool (VMC™). The BFM is a fast model that can inject EC interface transactions into a system m
to verify its compliance with the EC interface protocol. The VMC model provides a cycle-exact model of a 4K core
is used as a golden reference model in the customer verification environment for soft core licensees. It is also
hard core integrators, and others who do not receive the RTL, to simulate with the 4K core.

Chapter 6, “Clocking, Reset & Power,” on page 43covers issues related to handling the clock insertion delay of the
core. Additionally, the hardware reset requirements of the core, as well as power management techniques, are d

1.1 Environment Variable Setup

Some Unix paths described in the document refer to the JADEHOME environment variable, which should poin
top level of your 4K core deliverables. To set this variable:

% cd <release directory>
% setenv JADEHOME ‘pwd‘ # Note that these are back-ticks, not single quotes
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 1

Chapter 1 Overview
2 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

mes are

nction.

 in the

d

Chapter 2

Signal Description

This chapter describes the signals on a MIPS32 4K™ processor core. Only naming convention and actual pin na
listed here. The specific interface protocol to which each pin adheres is described in subsequent chapters.

2.1 Naming Convention

The pin direction key for the signal descriptions is shown inTable 2-1 below.

The names of interface signals present on a 4K core are prefixed with a unique string, according to their primary fu
Table 2-2 defines the prefixes used for 4K core interface signals.

Generally, most signals have high-active assertion levels if not otherwise specified in the tables. Signals ending
suffix “_N” are low active.

2.2 Signal Description

All core signals are listed inTable 2-3 below. Note that the signals are grouped by logical function, not by expecte
physical location. All signals, with the exception ofEJ_TRST_N, are active high signals.EJ_DINT andSI_NMI go
through edge-detection logic so that only one exception is taken each time they are asserted.

Table 2-1 Signal Type Key

Type Description

I Input to the core, unless otherwise noted, sampled on the rising edge of the appropriate clock
signal.

O Output of the core, unless otherwise noted, driven at the rising edge of the appropriate clock
signal.

A Asynchronous inputs that are synchronized by the core

S Static Input to the core. These signals control configuration options and are normally tied to
either power or ground. They should not change state while SI_ColdReset is deasserted.

Table 2-2 Signal Prefix Key

Prefix Description

EB_ Signals directly related to the EC interface.

SI_ General system interface signals, which are not part of the EC interface.

EJ_ Signals related to the EJTAG interface.

PM_ Performance monitoring signals.

Scan/Bist Signals related to design-for-test features, either scan or memory BIST.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 3

Chapter 2 Signal Description
Table 2-3 Signal Descriptions

Signal Name Type Description

System Interface: Refer toChapter 6, “Clocking, Reset & Power,” on page 43 for more details

Clock Signals: Refer toSection 6.1 , "Clocking" on page 43 for more details

SI_ClkIn I Clock input. All inputs and outputs, except a few of the EJTAG signals, are
sampled and/or asserted relative to the rising edge of this signal.

SI_ClkOut
O Reference clock for the External Bus Interface. This clock signal is intended

to provide a reference for de-skewing any clock insertion delay created by the
internal clock buffering in the core.

Reset Signals: Refer toSection 6.2 , "Reset and Hardware Initialization" on page 44 for a description of the various
types of reset.

SI_ColdReset A Hard/Cold reset signal. Causes a Reset Exception in the core.

SI_NMI
A Non-maskable Interrupt. An edge detect is used on this signal. When this

signal is sampled asserted (high) one clock after being sampled deasserted, an
NMI is posted to the core.

SI_Reset A Soft/Warm reset signal. Causes a SoftReset Exception in the core.

Power management signals: SeeSection 6.3 , "Power Management" on page 45 for more details

SI_ERL
O This signal represents the state of the ERL bit (2) in the CP0 Status register and

indicates the error level. The core asserts SI_ERL whenever a Reset, Soft
Reset, or NMI exception is taken.

SI_EXL
O This signal represents the state of the EXL bit (1) in the CP0 Status register

and indicates the exception level. The core asserts SI_EXL whenever any
exception other than a Reset, Soft Reset, NMI, or Debug exception is taken.

SI_RP
O This signal represents the state of the RP bit (27) in the CP0 Status register.

Software can write this bit to indicate that the device can enter a reduced power
mode.

SI_SLEEP
O This signal is asserted by the core whenever the WAIT instruction is executed.

The assertion of this signal indicates that the clock has stopped and that the
core is waiting for an interrupt.

Interrupt Signals:

SI_Int[5:0]

A Active high Interrupt pins. These signals are driven by external logic and when
asserted indicate the corresponding interrupt exception to the core. These
signals go through synchronization logic and can be asserted asynchronously
to SI_ClkIn

SI_TimerInt

O This signal is asserted whenever the Count and Compare registers match and
is deasserted when the Compare register is written. In order to have timer
interrupts, this signal needs to be brought back into the 4K core on one of the
six SI_Int interrupt pins. Traditionally, this has been accomplished via muxing
SI_TimerInt with SI_Int[5]. Exposing SI_TimerInt as an output allows more
flexibility for the system designer. Timer interrupts can be muxed or ORed into
one of the interrupts, as desired in a particular system. In a complex system, it
could even be fed into a priority encoder to allow SI_Int[5:0] to map up to 63
interrupt sources.

Configuration Inputs:

SI_Endian

S Indicates the base endianness of the core.

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian
4 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

2.2 Signal Description
SI_MergeMode[1:0] S

The state of these signals determines the merge mode for the 16-byte
collapsing write buffer. SeeSection 3.5.1 , "Merge Pattern Control" on page
21 for more information about these modes.

EC™ interface Refer toChapter 3, “EC™ Interface,” on page 9 for more details.

EB_ARdy I
Indicates whether the target is ready for a new address. The core will not
complete the address phase of a new bus transaction until the clock cycle after
EB_ARdy is sampled asserted.

EB_AValid O
When asserted, indicates that the values on the address bus and access types
lines are valid, signifying the beginning of a new bus transaction. EB_AValid
must always be valid.

EB_Instr O When asserted, indicates that the transaction is an instruction fetch versus a
data reference. EB_Instr is only valid when EB_AValid is asserted.

EB_Write O When asserted, indicates that the current transaction is a write. This signal is
only valid when EB_AValid is asserted.

EB_Burst O

When asserted, indicates that the current transaction is part of a cache fill or a
write burst. Note that there is redundant information contained in EB_Burst,
EB_BFirst, EB_BLast, and EB_BLen. This is done to simplify the system
design - the information can be used in whatever form is easiest.

EB_BFirst O When asserted, indicates beginning of burst. EB_BFirst is always valid.

EB_BLast O When asserted, indicates end of burst. EB_BLast is always valid.

EB_BLen<1:0> O

Indicates length of the burst. This signal is only valid when EB_AValid is
asserted.

EB_SBlock S When sampled asserted, sub block ordering is used. When sampled deasserted,
sequential addressing is used.

EB_BE<3:0> O

Indicates which bytes of the EB_RData or EB_WData buses are involved in
the current transaction. If an EB_BE signal is asserted, the associated byte is
being read or written. EB_BE lines are only valid while EB_AValid is asserted
.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

Encoding Merge Mode

00 No Merge

01 SysAD Valid

10 Full Merge

11 Reserved

EB_BLength<1:0> Burst Length

0 reserved

1 4

2 reserved

3 reserved

EB_BE
Signal

Read Data Bits Sampled Write Data Bits
Driven Valid

EB_BE<0> EB_RData<7:0> EB_WData<7:0>

EB_BE<1> EB_RData<15:8> EB_WData<15:8>

EB_BE<2> EB_RData<23:16> EB_WData<23:16>

EB_BE<3> EB_RData<31:24> EB_WData<31:24>
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 5

Chapter 2 Signal Description
EB_A<35:2> O Address lines for external bus. Only valid when EB_AValid is asserted.
EB_A[35:32] are tied to 0 in the 4K cores.

EB_WData<31:0> O Output data for writes

EB_RData<31:0> I Input Data for reads

EB_RdVal I
Indicates that the target is driving read data on EB_RData lines. EB_RdVal
must always be valid. EB_RdVal may never be sampled asserted until the
rising edge after the corresponding EB_ARdy was sampled asserted.

EB_WDRdy I
Indicates that the target of a write is ready. The EB_WData lines can change
in the next clock cycle. EB_WDRdy will not be sampled until the rising edge
where the corresponding EB_ARdy is sampled asserted.

EB_RBErr I

Bus error indicator for read transactions. EB_RBErr is sampled on every rising
clock edge until an active sampling of EB_RdVal. EB_RBErr sampled with
asserted EB_RdVal indicates a bus error during read. EB_RBErr must be
deasserted in idle phases.

EB_WBErr I
Bus error indicator for write transactions. EB_WBErr is sampled at the rising
clock edge following an active sample of EB_WDRdy. EB_WBErr must be
deasserted in idle phases.

EB_EWBE I

Indicates that any external write buffers are empty. The external write buffers
must deassert EB_EWBE in the cycle after the corresponding EB_WDRdy is
asserted and keep EB_EWBE deasserted until the external write buffers are
empty. SeeSection 3.6 , "External Write Buffers" on page 23for more details

EB_WWBE O When asserted, indicates that the core is waiting for external write buffers to
empty. SeeSection 3.6 , "External Write Buffers" on page 23for more details.

EJTAG Interface: Refer toChapter 4, “EJTAG Interface,” on page 25 for more details

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core
does not implement the TAP controller.

EJ_TRST_N I Active low Test Reset Input (TRST*) for the EJTAG TAP. EJ_TRST_N must
be asserted at power-up to cause the TAP controller to be reset.

EJ_TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

EJ_TDOzstate O

Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the value of EJ_TDO.

IEEE Standard 1149.1-1990 defines TDO as a tri-stated signal. To avoid
having a tri-state core output, the 4K core outputs this signal to drive an
external tri-state buffer.

Debug Interrupt:

EJ_DINTsup S

Value of DINTsup for the Implementation register. A 1 on this signal indicates
that the EJTAG probe can use DINT signal to interrupt the processor. This
signal should be asserted if the DINT pin on the EJTAG probe header is
connected to the EJ_DINT input of the core.

EJ_DINT I
Debug exception request when this signal is asserted in a CPU clock period
after being deasserted in the previous CPU clock period. The request is cleared
when debug mode is entered. Requests when in debug mode are ignored.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
6 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

2.2 Signal Description
Debug Mode Indication

EJ_DebugM O

Asserted when the core is in DebugMode. This can be used to bring the core
out of a low power mode (seeSection 6.3 , "Power Management" on page 45
for more details). In systems with multiple processor cores, this signal can be
used to synchronize the cores when debugging.

Device ID bits: These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller
is not implemented, these inputs are not connected. These inputs are always available for soft core customers. On hard
cores, the core “hardener” may set these inputs to their own values

EJ_ManufID[10:0] S

Value of the ManufID[10:0] field in the Device ID register. As per IEEE
1149.1-1990 section 11.2,the manufacturer identity code shall be a
compressed form of JEDEC standard manufacturer’s identification code in the
JEDEC Publications106, which can be found at: http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by
discarding the parity bit. ManufID[10:7] bits provide a binary count of the
number of bytes in the JEDEC code that contain the continuation character
(0x7F). Where the number of continuations characters exceeds 15, these 4 bits
contain the modulo-16 count of the number of continuation characters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs: These signals come from EJTAG control registers. They have no effect
on the core, but can be used to give EJTAG debugging software additional control over the system.

EJ_SRstE O
Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft
resets. If this signal is deasserted, none, some, or all soft reset sources are
masked.

EJ_PerRst O Peripheral Reset. EJTAG can assert this signal to request the reset of some or
all of the peripheral devices in the system.

EJ_PrRst O Processor Reset. EJTAG can assert this signal to request that the core be reset.
This can be fed into the SI_Reset signal

Performance Monitoring Interface: These signals can be used to implement performance counters which can be
used to monitor HW/SW performance

PM_DCacheHit O This signal is asserted whenever there is a data cache hit.

PM_DCacheMiss O This signal is asserted whenever there is a data cache miss.

PM_DTLBHit O
This signal is asserted whenever there is a hit in the data TLB. This signal is
valid only on the 4Kc™ core and should be ignored when using the 4Kp™ and
4Km™ cores.

PM_DTLBMiss O
This signal is asserted whenever there is a miss in the data TLB. This signal is
valid only on the 4Kc core and should be ignored when using the 4Kp and
4Km cores.

PM_ICacheHit O This signal is asserted whenever there is an instruction cache hit.

PM_ICacheMiss O This signal is asserted whenever there is an instruction cache miss.

PM_InstComplete O This signal is asserted each time an instruction completes in the pipeline.

PM_ITLBHit O
This signal is asserted whenever there is an instruction TLB hit. This signal is
valid only on the 4Kc core and should be ignored when using the 4Kp and
4Km cores.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 7

Chapter 2 Signal Description
PM_ITLBMiss O
This signal is asserted whenever there is an instruction TLB miss. This signal
is valid only on the 4Kc core and should be ignored when using the 4Kp and
4Km cores.

PM_JTLBHit O
This signal is asserted whenever there is a joint TLB hit. This signal is valid
only on the 4Kc core and should be ignored when using the 4Kp and 4Km
cores.

PM_JTLBMiss O
This signal is asserted whenever there is a joint TLB miss. This signal is valid
only on the 4Kc core and should be ignored when using the 4Kp and 4Km
cores.

PM_WTBMerge O This signal is asserted whenever there is a successful merge in the write
through buffer.

PM_WTBNoMerge O This signal is asserted whenever a non-merging store is written to the write
through buffer.

Scan Test Interface:These signals provide the interface for testing the core. The use and configuration of these pins
are implementation dependent.

ScanEnable I
This signal should be asserted while scanning vectors into or out of the core.
The ScanEnable signal must be deasserted during normal operation and during
capture clocks in test mode.

ScanMode I
This signal should be asserted during all scan testing both while scanning and
during capture clocks. The ScanMode signal must be deasserted during normal
operation.

ScanIn<n:0> I This signal is input to scan chain.

ScanOut<n:0> O This signal is output from scan chain.

BistIn<n:0> I Input to the BIST controller

BistOut<n:0> O Output from the BIST controller

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
8 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

rface is

EC

st type of
Chapter 3

EC™ Interface

3.1 Introduction

This chapter describes the EC™ interface, which is present on all MIPS32 4K™ processor cores. The EC inte
generally described in the companion document, titledEC™ Interface Specification, which is included in this release
(file $JADEHOME/doc/ECiSpec.pdf). The rest of this chapter discusses the specific 4K implementation of the
interface.

3.2 Interface Transactions

The cores implement 32-bit unidirectional data buses:EB_RData[31:0]for read operations andEB_WData[31:0] for
write operations. The following sections describe following bus transactions:

• Section 3.2.1 , "Fastest Read Transaction"

• Section 3.2.2 , "Single Read with Wait States"

• Section 3.2.3 , "Fastest Write Transaction"

• Section 3.2.4 , "Single Write with Wait States"

• Section 3.2.5 , "Burst Read"

• Section 3.2.6 , "Burst Write"

• Section 3.2.7 , "Back-to-Back Reads"

• Section 3.2.8 , "Back-to-Back Writes"

• Section 3.2.9 , "Read Followed by Write with Reordering"

• Section 3.2.10 , "Write Followed by Read with Reordering"

3.2.1 Fastest Read Transaction

The core allows data to be returned in the same clock that the address is driven onto the bus. This is the faste
read cycle as shown inFigure 3-1.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 9

Chapter 3 EC™ Interface

 core

ersions
arger

k 2
ress.
Figure 3-1 Fastest Read Cycle

In this transaction, the core drives address and control onto the bus and samplesEB_RdValactive on the next rising edge
of the clock.

3.2.2 Single Read with Wait States

Figure 3-2 shows the basic timing relationships of signals during a single read transaction with wait states. The
drives address ontoEB_A[35:2] and byte enable information ontoEB_BE[3:0]. To maximize performance, the bus
interface does not define a maximum number of outstanding bus cycles. Instead the interface provides theEB_ARdy
input signal; this signal is driven by external logic and controls the generation of addresses on the bus. Current v
of the 4K cores can only have a maximum of 8 reads and 4 writes outstanding, but future version may have a l
number of outstanding transactions.

The core drives an address whenever it becomes available, regardless of the state ofEB_ARdy. However, the core always
continues to drive address until the clock afterEB_ARdyis sampled asserted. For example, at the rising edge of cloc
in Figure 3-2, theEB_ARdysignal is sampled low, indicating that external logic is not ready to accept the new add
However, the core still drivesEB_A[35:2] in this clock as shown. At the rising edge of clock 3 the core samples
EB_ARdy asserted and continues to drive address until the rising edge of clock 4.

TheEB_Instrsignal is asserted during a single read cycle if the read is for an instruction fetch. TheEB_AValidsignal is
driven in each clock thatEB_A[35:2] is valid on the bus. The core drives theEB_Write signal low to indicate a read
transaction.

TheEB_RData[31:0]andEB_RdValsignals are first sampled at the rising edge of clock 4, one clock afterEB_ARdyis
sampled asserted. Data is sampled on every clock thereafter untilEB_RdVal is sampled asserted.

If a bus error occurs during the data transaction, external logic asserts theEB_RBErr signal in the same clock as
EB_RdVal.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr,
EB_BE[3:0]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

Driven by system logic

1 2 3 4 5 6 7 8

Valid

Valid

Valid
10 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

3.2 Interface Transactions

o the
Figure 3-2 shows a single read transaction with one address wait state and one data wait state.

Figure 3-2 Single Read Transaction with Wait States

3.2.3 Fastest Write Transaction

The core allows theEB_WDRdy signal to be driven active in the same clock that address and data are driven ont
bus. This is the fastest type of write cycle as shown inFigure 3-3.

Address and Control held until clock after EB_ARdy
sampled asserted

Driven by system logic

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr,
EB_BE[3:0]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

1 2 3 4 5 6 7 8

Valid

Valid

Valid

Addr
Wait
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 11

Chapter 3 EC™ Interface

to the
se

s.

ock
sserts
Figure 3-3 Fastest Write Transaction

In this transaction, the core drives address and control onto the bus and samplesEB_WDRdy active on the next rising
edge of the clock.

3.2.4 Single Write with Wait States

Figure 3-4 shows a typical write transaction with wait states. The core drives address and control information on
EB_A[35:2] andEB_BE[3:0] signals at the rising edge of clock 2. As in the single read cycle with wait states, the
signals remain active until the clock edge after theEB_ARdysignal is sampled asserted. The core asserts theEB_Write
signal to indicate that a valid write cycle is on the bus, and assertsEB_AValidto indicate that a valid address is on the bu

The core drives write data ontoEB_WData[31:0]in the same clock as address and continues to drive data until the cl
edge after theEB_WDRdysignal is sampled asserted. If a bus error occurs during a write operation, external logic a
theEB_WBErr signal one clock after assertingEB_WDRdy.

Figure 3-4 shows a write transaction with one address wait state and two data wait states.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Write

EB_BE[3:0]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Valid

Valid

Valid

Driven by system logic

Data is Driven until clock after EB_WDRdy
12 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

3.2 Interface Transactions

ta items

in four
ted for

ed by
ecution
Figure 3-4 Single Write Transaction with Wait States

3.2.5 Burst Read

The core is capable of generating burst transactions on the bus. A burst transaction is used to transfer multiple da
in one transaction.

Figure 3-5shows an example of a burst read transaction. Burst read transactions initiated by the core always conta
data transfers. In addition, the data requested is always a 16- byte-aligned block. Burst reads are always initia
cacheable instruction or data reads which have missed in the primary instruction or data cache.

The order of words within this 16-byte block varies depending on which of the words in the block is being request
the execution unit and the ordering protocol selected. The burst always starts with the word requested by the ex
unit and proceeds in either an ascending or descending order wrapping at the end of an aligned block.Table 3-1 and
Table 3-2 show the sequence of address bits 2 and 3.

Table 3-1 Sequential Burst Order

Starting Address EB_A[3:2] Address Progression of EB_A[3:2]

00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Write

EB_BE[3:0]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Valid

Driven by system logic

Data is Driven until clock after EB_WDRdy

Valid

Valid

Addr
Wait

Address and Control held until clock after EB_ARdy
sampled asserted
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 13

Chapter 3 EC™ Interface

rs
The core drives address and control information onto theEB_A[35:2] andEB_BE[3:0] signals at the rising edge of clock 2.
As in the single read cycle, these signals remain active until the clock edge after theEB_ARdysignal is sampled asserted.
The core continues to driveEB_AValid as long as a valid address is on the bus.

The EB_Instr signal is asserted if the cycle is an instruction fetch. TheEB_Burstsignal is asserted throughout the cycle
to indicate that a burst transaction is in progress. The core asserts theEB_BFirst signal in the same clock as the first
address is driven to indicate the start of a burst cycle. In the clock that the last address is driven, the core assertsEB_BLast
to indicate the end of the burst transaction.

The core first samples theEB_RData[31:0] bus one clock afterEB_ARdy is sampled asserted. External logic asserts
EB_RdVal to indicate that valid data is on the bus. The core latches data internally wheneverEB_RdVal is sampled
asserted.

Note that at the rising edge of clock 6 inFigure 3-5 theEB_RdVal signal is sampled deasserted, causing a wait state
betweenData 2 andData 3. External logic asserts theEB_RBErr signal in the same clock as data if a bus error occu
during that data transfer.

Table 3-2 SubBlock Burst Order

Starting Address EB_A[3:2] Address Progression of EB_A[3:2]

00 00, 01, 10, 11

01 01, 00, 11, 10

10 10, 11, 00, 01

11 11, 10, 01, 00
14 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

3.2 Interface Transactions

write
ctions
ays

t.

le. In
Figure 3-5 Burst Read Transaction Timing Diagram

3.2.6 Burst Write

Burst write transactions are used to empty one of the write buffers. A burst transaction is only performed if the
buffer contains 16 bytes of data associated with the same aligned memory block; otherwise individual write transa
are performed.Figure 3-6shows a timing diagram of a burst write transaction. Unlike the read burst, a write burst alw
begins with EB_A[3:2] equal to 00b.

The core drives address and control information onto theEB_A[35:2] andEB_BE[3:0] signals at the rising edge of clock 2.
As in the single read cycle, these signals remain active until the clock edge after theEB_ARdysignal is sampled asserted.
The core continues to driveEB_AValid as long as a valid address is on the bus.

The core asserts theEB_Write, EB_Burst, andEB_AValid signals during the time the address is driven.EB_Write
indicates that a write operation is in progress. The assertion ofEB_Burst indicates that the current operation is a burs
EB_AValid indicates that valid address is on the bus.

The core asserts theEB_BFirst signal in the same clock that address 1 is driven to indicate the start of a burst cyc
the clock that the last address is driven, the core assertsEB_BLast to indicate the end of the burst transaction.

In Figure 3-6 the first data word (Data1) is driven in clocks 2 and 3 due to theEB_WDRdy signal being sampled
deasserted at the rising edge of clock 2, causing one wait state cycle. WhenEB_WDRdyis sampled asserted at the rising
edge of clock 3, the core responds by driving the second word (Data2) at the rising edge of clock 4.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr

EB_BE[3:0]

EB_Burst

EB_BFirst

EB_BLast

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

1 2 3 4 5 6 7 8

Adr1 Adr2 Adr3 Adr4

Valid

Data1

Driven by system logic

Data2 Data3 Data4
Read
Wait
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 15

Chapter 3 EC™ Interface

or has

-back

s within
s may

 core
es on

of
ew

.

External logic drives the EB_WBErr signal one clock after the corresponding assertion of EB_WDRdy if a bus err
occurred as shown by the arrows inFigure 3-6.

Figure 3-6 Burst Write Transaction Timing Diagram

3.2.7 Back-to-Back Reads

Figure 3-7shows the basic timing relationships of signals during a back-to-back read transaction. During a back-to
read cycle, the core drives addresses for both read cycles ontoEB_A[35:2] and byte enable information onto
EB_BE[3:0]. The 4K cores always leave a dead clock between new address transactions (but address transaction
a burst will not have the dead clock). This dead clock is not part of the EC interface specification and future core
not have this.

To maximize performance, the core does not define a maximum number of outstanding bus cycles. Instead the
provides theEB_ARdy input signal. This signal is driven by external logic and controls the generation of address
the bus.

An address is driven by the core whenever it becomes available, regardless of the state ofEB_ARdy. However, the core
always continues to drive address until the clock afterEB_ARdyis sampled asserted. For example, at the rising edge
clock 2 inFigure 3-7 theEB_ARdy signal is sampled low, indicating that external logic is not ready to accept the n
address. However, the core still drivesEB_A[35:2] in this clock as shown. At the rising edge of the clock 3, the core
samplesEB_ARdy asserted and continues to drive the address until the rising edge of clock 4.

TheEB_Instrsignal is asserted during a read cycle if the read is for an instruction fetch. TheEB_AValidsignal is driven
in each clock thatEB_A[35:2] is valid on the bus. The core drives theEB_Writesignal low to indicate a read transaction

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_BE[3:0]

EB_Write

EB_Burst

EB_BFirst

EB_BLast

EB_AValid

EB_WData[31:0

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Adr1 Adr2 Adr3 Adr4

Data1

Driven by system logic

Data2 Data3 Data4

Write
Wait

Write
Wait
16 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

3.2 Interface Transactions

data

ress,

 accept

ing
ady to

us

of clock

ge

ample
e data
TheEB_RData[31:0]andEB_RdValsignals are first sampled at the rising edge of clock 4, one clock afterEB_ARdyis
sampled asserted. Data is sampled on every clock thereafter untilEB_RdVal is sampled asserted.

For the two back-to-back reads shown inFigure 3-7, the first read has one address wait state. The first read has one
wait state since theEB_RdVal for that read is sampled in clock 5, two cycles after the sampled assertion ofEB_ARdy.
The second read data is returned as fast as possible, with no data wait states since itsEB_RdVal is sampled in clock 6,
one clock after the sampling of itsEB_ARdy.

If a bus error occurs during the data transaction, external logic asserts theEB_RBErr signal in the same clock as
EB_RdVal.

Figure 3-7 Back-to-Back Read Transaction Timing Diagram

3.2.8 Back-to-Back Writes

Figure 3-8 shows a timing diagram of a back-to-back write operation. In any bus transaction the core drives add
control, and data information onto the bus as it becomes available, regardless of the state ofEB_ARdy. If the EB_ARdy
signal is asserted at the time that the address is driven by the processor, indicating that the external agent can
another address, the processor can drive a new address on the following clock.

In Figure 3-8, address, control, and data (Write1/Data1) become available and are driven onto the bus by the core dur
clock 2.EB_ARdy is sampled deasserted at the rising edge of clock 2, indicating that the external agent is not re
accept a new address. This causes one address wait state for theWrite1address. The processor continues to drive the b
with theWrite1address and control until the clock afterEB_ARdyis sampled asserted. In this case,EB_ARdyis sampled
asserted at the rising edge of clock 3, allowing the processor to drive new address and control at the rising edge
4. The new address (Write2) is not driven until the rising edge of clock 5. SinceEB_ARdy was immediately sampled
asserted, there were no address wait states onWrite2. The core might drive a new address onto the bus at the rising ed
of clock 6 (not shown).

TheEB_WDRdysignal is driven by the external agent to indicate that it has accepted the data on the bus. In this ex
theEB_WDRdysignal is sampled deasserted by the core at the rising edge of clock 3, causing the core to hold th
(Data1) during the following cycle, clock 4. The external agent assertsEB_WDRdyduring clock 3, which is sampled by

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr,
EB_BE[3:0]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

1 2 3 4 5 6 7 8

Address 1

Driven by system logic

Addr2

Valid

Address and Control held until clock after EB_ARdy
sampled asserted

Valid

Data 1 Data 2

Addr
Wait
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 17

Chapter 3 EC™ Interface

rive data

t of

respect

ble,
sor,
ing clock.

e at the
he

ddress

ock after
.

the core on the rising edge of clock 4, indicating that is has accepted the data on the bus. The core continues to d
until one clock afterEB_WDRdyis sampled asserted, so the core drivesData1until the rising edge of clock 5. Note that
EB_WDRdywill never be sampled earlier than the rising edge in which the associatedEB_ARdyis sampled asserted. So
if EB_WDRdy was asserted on the rising edge of clock 2 (one cycle before theEB_ARdy), it would have been ignored.

The core can drive new data (Data2) at the rising edge of clock 5. At the rising edge of clock 5 the core samples
EB_WDRdy deasserted, causing the processor to holdData2 in the following cycle. At the rising edge of clock 6
EB_WDRdy is sampled asserted, so the core can stop drivingData2 at the rising edge of clock 7.

Figure 3-8 Back-to-Back Write Transactions

3.2.9 Read Followed by Write with Reordering

Figure 3-9 shows a timing diagram of a read followed by write operation with the operations being completed ou
order. Since data is transferred for read and write operations on independent unidirectional busses (and their
corresponding ready indicators), the bus interface allows read and write operations to complete out of order with
to how the read and write addresses were initiated.

In any bus transaction the core drives address, control, and data information onto the bus as it becomes availa
regardless of the state ofEB_ARdy. If the EB_ARdysignal is asserted at the time that address is driven by the proces
indicating that the external agent can accept the address, the processor can drive a new address on the follow

In Figure 3-9, address and control for the read operation become available and are driven onto the bus by the cor
rising edge of clock 2. The external agent hasEB_ARdy asserted so there are no address wait states for the read. T
processor continues to drive the bus until one clock afterEB_ARdy is sampled asserted. After a dead clock, the write
address and control information are driven at the rising edge of clock 4. The external agent assertsEB_ARdy for an
additional clock, which is sampled by the core at the rising edge of clock 4, so the core could have driven a new a
(not shown) at the rising edge of clock 6.

In this example, the external agent asserts theEB_WDRdy signal at the rising edge of clock 4, indicating its ability to
accept the write data, even though the read operation has not completed. The core drives write data for one cl
EB_WDRdy has been sampled asserted. This causes the processor to drive data until the rising edge of clock 5

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2],
EB_BE[3:0]

EB_Write

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Write1 Write2

Data1 Data2

Valid1 Valid2

Write
Wait
18 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

3.2 Interface Transactions

ed. The
and
d when

ut of

ble,
sor,
ing clock.

by the

esults.
s and
dge of

sing edge
In this example read data is driven onto the bus during clock 5, one clock after the write operation has complet
core samples theEB_RdVal signal asserted at the rising edge of clock 6, causing the processor to latch the data
terminates the read cycle. Note that it is the responsibility of the external agent to ensure the correct data is returne
re-ordering data transactions.

Figure 3-9 Read Followed by Write Transaction with Reordering

3.2.10 Write Followed by Read with Reordering

Figure 3-10 shows a timing diagram of a write followed by read operation with the operations being completed o
order.

In any bus transaction the core drives address, control, and data information onto the bus as it becomes availa
regardless of the state ofEB_ARdy. If the EB_ARdysignal is asserted at the time that address is driven by the proces
indicating that the external agent can accept the address, the processor can drive a new address on the follow

In Figure 3-10, address, control, and data for the write operation become available and are driven onto the bus
core at the rising edge of clock 2. The processor continues to drive the address and control busses untilEB_ARdy is
sampled asserted. SinceEB_ARdy was not sampled asserted at the rising edge of clock 2, an address wait state r
The assertion ofEB_ARdyis sampled at the rising edge of clock 3, causing the processor to drive the write addres
control until the rising edge of clock 4. The read address and control are then initiated on the bus at the rising e
clock 5. Note that a new address (not shown) could have been driven on the bus at the rising edge of clock 7.

In this example the external agent drives read data and asserts theEB_RdValsignal in clock 5, indicating that valid read
data is on the bus, even though the write operation has not completed. The core latches the read data at the ri
of clock 6, thereby completing the read operation.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2],
EB_BE[3:0]

EB_Write

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Read Write

RData

RValid

WData

Valid1
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 19

Chapter 3 EC™ Interface

ck after
ternal
r the
ation is
rdering

number
r

ions to
By default, the core drives write data at the same time as the write address and continues to drive data for one clo
EB_WDRdy is sampled asserted. This causes the processor to drive data in clocks 2 - 7. In this example, the ex
agent assertsEB_WDRdy in clock 6 and is sampled active by the core at the rising edge of clock 7, one clock afte
read operation has completed. The core continues to drive data until the rising edge of clock 8 and the write oper
completed. Note that it is the responsibility of the external agent to ensure the correct data is returned when re-o
data transactions

.

Figure 3-10 Write Followed by Read Transaction with Reordering

3.3 Outstanding Transactions

The EC interface itself does not limit the number of transactions which may be active at any time. Instead, the
of external transactions can be throttled via control of theEB_ARdyinput. This input indicates that the external controlle
can accept a new transaction.

The bus interface implementation of the 4K core contains enough buffering to allow a maximum of 12 transact
be active simultaneously, as follows:

• Four bursted instruction reads

• Four bursted data reads

• Four bursted writes

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2],
EB_BE[3:0]

EB_Write

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Write Read

RData

RValid

Write Data

WValid
20 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

3.4 Sequential Transactions

he EC

between
by the

cessor

ly one
us until
terface

ock of
er

 the
ternal

e to
e that
When designing a generic EC interface controller, keep in mind that other MIPS processor cores designed to t
interface may allow a different number of transactions to be active.

3.4 Sequential Transactions

The 4K cores always leave a dead clock between address transactions to a new line. There is not a dead clock
the beats of a bursted transaction or between mutliple writes to the same 16B line. This dead clock is not required
EC interface specification. When designing a generic EC interface controller, keep in mind that other MIPS pro
cores may not have this dead clock.

Back to back read accesses of the same type (Instruction or Data) will have an additional timing constraint. On
request of a given type is allowed to be outstanding. Therefore, the second address will not come out onto the b
at least 1 cycle after the last read data for the first address was returned. Again, this behavior is not part of the EC in
specification and should not be relied on in a generic EC interface controller.

3.5 Write Buffer

The write buffer is organized as two 16 byte buffers. Each buffer contains data from a single 16 byte aligned bl
memory. One buffer contains the data currently being transferred on the external interface, while the other buff
contains accumulating data from the core.

Data from the accumulation buffer is transferred to the external interface buffer under one of the conditions:

• When a store is attempted from the core to a different 16-byte block than is currently being accumulated.

• SYNC instruction. TheCACHE instruction performs an implicitSYNC.

• Store to a invalid merge pattern.

• Any stores to uncached memory.

• A load to the line being merged.

Note that if the data in the external interface buffer has not been written out to memory, the core is stalled until
memory write completes. After completion of the memory write, accumulated buffer data can be written to the ex
interface buffer.

3.5.1 Merge Pattern Control

All 4K cores implement two 16 byte collapsing write buffers that allow byte, half-word, or word writes from the cor
be accumulated in the buffer into a 16 byte value before bursting the data out onto the bus in word format. Not
writes to uncached areas are never merged.

The core provides three options for merge pattern control:

• No merge

• Full merge

• SysAD valid

The merging option is selected by theSI_MergeMode[1:0] input. The encoding is shown inTable 2-3 on page 4.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 21

Chapter 3 EC™ Interface

ction
onto the

yte
st be a
vious

.

3.5.1.1 No Merge

In No Mergemode writes to a different word within the same line are accumulated in the buffer. A burst write transa
occurs when the buffer becomes full (4 words). Stores to the same word cause the previous word to be driven
bus.

3.5.1.2 Full Merge

In Full Merge mode all combinations of writes to the buffer are allowed.

3.5.1.3 SysAD Valid Merge

In SysAD Valid Merge mode only valid SysAD byte enable patterns to be stored into the write buffer. When the b
enable pattern of a write to the buffer is merged with the pattern for the previous write, the resulting pattern mu
valid SysAD pattern in order for the merge to occur. If the resulting pattern is not a valid SysAD pattern the pre
write is driven onto the bus before the current write is written to the buffer.Table 3-3 shows the valid SysAD patterns.

Table 3-4 shows a typical code sequence of three store byte instructions and the behavior of each merge mode

In Table 3-4 above, the following sequence occurs inNo Merge mode:

• The SB 0 instruction causes a value of 0001 on EB_BE[3:0] to be written to the write buffer.

Table 3-3 Valid SysAD Byte Enable Patterns

EB_BE[3:0]

0001

0010

0100

1000

0011

1100

0111

1110

1111

Table 3-4 MergeMode Example

Instruction EB_BE[3:0] (No Merge) EB_BE[3:0] (Full Merge) EB_BE[3:0]
(SysAD Merge)

SB 0 0001 merge 0001

SB 1 0010 (0001 written out) merge (0011) merge (0011)

SB 2 1000 (0010 written out) merge (1011) 1011 = invalid merge pattern

0011 written out, then

1000 written to buffer

SYNC flush buffer (1000 written out) flush buffer (1011 written out) flush buffer (1000 written out)
22 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

3.6 External Write Buffers

g of
nable

g of
nable

 2

s are

s are

om the

lue of

lue of
to the

om the

as a

. Upon
The

f
g
ystem
• The SB 1 instruction causes a value of 0010 on EB_BE[3:0] to be written to the write buffer. Since no mergin
data is allowed in this mode, the data from the SB 0 instruction is driven onto the bus along with the 0001 byte e
pattern.

• The SB 2 instruction causes a value of 1000 on EB_BE[3:0] to be written to the write buffer. Since no mergin
data is allowed in this mode, the data from the SB 1 instruction is driven onto the bus along with the 0010 byte e
pattern.

• Execution of the SYNC instruction causes the contents of the buffer to be written out. In this example the SB
instruction is driven onto the bus along with a byte enable pattern of 1000.

In Table 3-4 above, the following sequence occurs inFull Merge mode:

• The SB 0 instruction causes a value of 0001 on EB_BE[3:0] to be written to the write buffer.

• The SB 1 instruction causes a value of 0010 on EB_BE[3:0] to be written to the write buffer. Since all pattern
allowed in Full Merge mode, a value of 0011 (0001 + 0010) is stored in the buffer.

• The SB 2 instruction causes a value of 1000 on EB_BE[3:0] to be written to the write buffer. Since all pattern
allowed in Full Merge mode, a value of 1011 (0001 + 0010 + 1000) is stored in the buffer.

• Execution of the SYNC instruction causes the contents of the buffer to be written out. In this example data fr
SB 0, SB 1, and SB 2 instructions are driven onto the bus along with a byte enable pattern of 1011.

In Table 3-4 above, the following sequence occurs inSysAD Valid Merge mode:

• The SB 0 instruction causes a byte enable value of 0001 to be written to the write buffer.

• The SB 1 instruction causes a byte enable value of 0010 to be written to the write buffer. Since the merge va
0011 (0001 + 0010) is a valid SysAD pattern, this value is written to the buffer.

• The SB 2 instruction causes a byte enable value of 1000 to be written to the write buffer. Since the merge va
1011 (0001 + 0010 + 1000) is not a valid SysAD pattern, the buffer is emptied and the 0011 pattern is driven on
bus. Once the buffer is empty, the new value (1000) is written to the buffer since it is a valid SysAD pattern.

• Execution of the SYNC instruction causes the contents of the buffer to be written out. In this example data fr
SB 2 instruction is driven onto the bus along with a byte enable pattern of 1000.

3.6 External Write Buffers

Some systems may have external write buffers to increase bus efficiency and system performance. The core h
two-signal interface which can allow software to have some control over the external write buffers. TheSYNC
instruction is intended to form a barrier between load/store instructions before and after it in the instruction stream
execution of aSYNC instruction, the core will complete all pending read requests and flush the internal write buffer.
core will also assertEB_WWBEto signal to the system that it is Waiting for the Write Buffer Empty signal. TheSYNC
instruction will not complete until theEB_EWBE input is asserted.

In most systems you can tie theEB_EWBEsignal high. Just using theEB_WWBEsignals does not ensure coherency. I
a write is in the external write buffer the core can generate a read request to the given address without assertin
EB_WWBE(because the core has no knowledge of the external write buffers). Therefore, any write buffers in the s
must maintain coherency with reads.

TheEB_WWBE/EB_EWBE interface can be used to makeSYNCs “harder” by forcing the flush of the external write
buffers. This is a system/SW design issue - you need to decide what if anything you want the system to do when aSYNC
instruction is executed (and the same will be done for other synchronizing instructions such asCACHE).
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 23

Chapter 3 EC™ Interface
24 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

system
Then

th
r
r chip.

JTAG
JTAG is
 within a
he JTAG

l

AG and
 does
ss this

ntrol
 The 4K
Chapter 4

EJTAG Interface

This chapter discusses chip-level integration details for the EJTAG-related pins on a 4K core, as well as some
level requirements. A comparison of EJTAG versus JTAG is covered first, to clarify the differences and similarities.
EJTAG chip and system issues related to one or multiple 4K cores within a single chip are discussed.

The EJTAG TAP controller is an optional feature in a 4K core. If your 4K core does not contain the EJTAG TAP
controller, then most of this chapter is irrelevant.

A reference to the general “EJTAG Specification” can be found several times in this chapter. The full title of this
document isEJTAG Specification, Revision 2.5-1(MIPS Document Number MD00027). The document is included wi
your 4K core deliverables, in file$JADEHOME/doc/EJTAGSpec.pdf . MIPS recommends that you become familia
with the general EJTAG Specification in addition to this chapter, before deciding how to integrate EJTAG into you

4.1 EJTAG versus JTAG

The name EJTAG is often confused with IEEE JTAG boundary scan, but EJTAG is not related to boundary scan. E
is a set of hardware-based debugging features on a MIPS processor, which are accessible by debug software. E
used by software programmers to control and debug code execution, as well as to access hardware resources
MIPS processor, during code development. The interface for EJTAG access to the core does use a super-set of t
TAP interface, but that is really its only similarity with boundary scan.

Please read the “EJTAG Debug Support” chapter in theMIPS32 4K™ Processor Core Family Software User’s Manua
to learn more about the software debugging capabilities of EJTAG.

4.1.1 EJTAG similarities to JTAG

From a functional viewpoint, the following features are inherited from the JTAG TAP interface:

• Protocol for selecting data and control registers usingEJ_TMS.

• Serial protocol for transmitting data into and out of the selected register usingEJ_TDI andEJ_TDO.

• Asynchronous reset to the EJTAG TAP controller usingEJ_TRST_N (TRST*).

• EJ_TCK driving the clock input of all the EJTAG TAP controller registers.

Because of these similarities it is possible to share certain physical resources between the TAP controllers in EJT
JTAG. MIPS generally recommends NOT sharing any logic or pins between JTAG and EJTAG. However MIPS
recognize that reducing pin count is often necessary in large SOC chip designs. The following section will discu
issue further.

4.1.2 Sharing EJTAG resources with JTAG

It is theoretically possible to share the TAP controller for JTAG and EJTAG functionality, because the EJTAG co
commands do not use reserved JTAG commands. This TAP sharing is not supported by the 4K core, however.
core has its own independent TAP controller, reserved exclusively for EJTAG operation.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 25

Chapter 4 EJTAG Interface

al chip
ut both

oller in

ccess,

AG
ends
P.

uts of
Because the EJTAG electrical specification is identical to the JTAG specification, it is possible to share the physic
pins between the two TAP controllers for EJTAG and JTAG. There are two ways this might be accomplished, b
of them have issues which must be considered.

4.1.2.1 Daisy chained TDI-TDO

One method is to hook up the physical pinsTCK, TMS andTRST* in parallel to both TAP controllers, and then daisy
chain theTDI/TDO pins in the following manner:

• physical pinTDI to JTAGTDI

• JTAGTDO to EJTAGEJ_TDI

• EJTAGEJ_TDO to physical pinTDO. And EJTAGEJ_TDOzstate to output enable of physicalTDO.

Figure 4-1 show the serial TDI-TDO chain setup with parallel control of the TAP controllers.

Figure 4-1 Daisy chained TDI-TDO between JTAG and EJTAG TAP controller

Some EJTAG debug tool-chains can handle this configuration. You can identify that there is another TAP contr
the path to the EJTAG TAP controller. And then tell the debug software the following items:

• the Instruction word length of the JTAG TAP controller

• the Instruction word command to select the bypass register

• the length of the bypass register

This will enable the debugger to always select the bypass register within the JTAG TAP controller during EJTAG a
and compensate for the bypass register length.

The main problem here is the presence of the serial EJTAG TAP controller in the JTAG TAP path; automatic JT
test-benches generally do not like the visibility of another TAP controller inside the chip. MIPS strongly recomm
NOT using the setup inFigure 4-1 for sharing TAP controller external pins between an EJTAG TAP and a JTAG TA

4.1.2.2 Multiplexed pin access

A select signal can choose which TAP controller has access to the physical pins. How you wish to gate off the inp
the un-selected TAP controller depends on the presence of an asynchronous reset input. InFigure 4-2 a setup which
anticipates the existence ofTRST* on the “CHIP JTAG TAP” controller is shown.

TCK
TMS

TRST*

TDI
TDO
TDO_OEN

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

TCK
TMS

TRST*

TDI

TDO

CHIP JTAG TAP

EJTAG TAP

4K core

SOC_CHIP
26 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

4.2 How to connect EJ_* pins

This

n

e TAP

can

s.
ctor.

ler

section
equire
Figure 4-2 Multiplexing between JTAG and EJTAG TAP controller

TAPSelectin Figure 4-2is shown as an SOC_CHIP external input, and NOT as internal logic or registered signal.
is so for two important reasons:

1. When doing board level interconnect testing. The JTAG controller should be able to work the boundary sca
without any other controlled pins beyond the five JTAG pins.

2. When the board holding the SOC_CHIP is used for software development, EJTAG must be functional on th
controller while the 4K core (and thus probably the entire SOC_CHIP) is held in reset. During reset, EJTAG
commands can initialize the 4K core to leave the reset state in Debug Mode, and thus the debug interface
control the 4K core before the it attempts to fetch the first instruction.

The two reasons above also imply thatTAPSelectmust be valid and fixed while using either of the two TAP controller
For system integrity,TAPSelectshould also be kept valid while there is no probe connected to the TAP Probe Conne
This is a violation of the EJTAG specification. It also leaves theTAPSelect input untested by JTAG boundary scan, it
should in deed not be part of the boundary scan. This is, however, the only problem in this shared TAP control
configuration. A two-way jumper on the PCB could be created to select the fixed state ofTAPSelect.

If pin sharing between EJTAG and JTAG TAP controllers is absolutely unavoidable, MIPS recommends the
implementation shown inFigure 4-2.

4.2 How to connectEJ_* pins

In the previous section, issues concerning the sharing of EJTAG TAP and JTAG TAP pins were discussed. This
assumes that your chip has a separate set of EJTAG TAP pins. Other non-TAP EJTAG pins on the 4K core will r
separate pins on the chip, but most do not. This section will discuss how to connect all theEJ_* pins in your chip.

4.2.1 EJTAG chip-level pins

The EJTAG TAP pins on the 4K core are:EJ_TCK, EJ_TMS, EJ_TDI, EJ_TRST_N, EJ_TDO andEJ_TDOzstate. An
extra signalEJ_DINT (Debug Interrupt) can also be connected to an external pin.Figure 4-3 shows the intended
connection to the chip. Pin names for the chip have been chosen as the usual JTAG TAP pins, with an “E” prefix.

TCK
TMS

TRST*

TDI
TDO
TDO_OEN

TCK
TMS

TRST*

TDI

TDO

CHIP JTAG TAP

4K core

SOC_CHIP
TAPSelect

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

1
0

1
0

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 27

Chapter 4 EJTAG Interface

on
 logic

ffect
rough

he
Figure 4-3 EJTAG chip-level pin connection

AC timing characteristics for theETDOdriver and the input buffers can be found in the “EJTAG Specification”, Secti
7.2 “AC Timing Characteristics”. In particular notice here that all the probe pins must have pull-up or pull-down
attached. As shown inFigure 4-3, all the chip-level pins have corresponding pins on the EJTAG Probe Connector.RST*
is special though, because an assertion (low active) on this pin must result in a system level reset. Please seeFigure 4-4
for further details on EJTAG-related reset circuitry.

4.2.1.1 OptionalETRST* pin

TheETSRT*in an optional input pin on the chip. However it is strongly recommended that theETRST*pin be present.
If you choose not to include this pin, you will need on-chip logic which assertsEJ_TRST_Nat power-up. This assertion
can ONLY happen on power-up, or at cold-start. Any soft reset of the chip and 4K core must not affect theEJ_TRST_N
signal. Special timing also applies to the deassertion ofEJ_TRST_N. Please refer to “EJTAG Specification”, Section 6.3
“OptionalTRST* Pin” for more details.

4.2.1.2 OptionalEDINT pin

TheEDINT input pin is also optional. An assertion ofEJ_DINT in the 4K core triggers a Debug Interrupt Exception.
This will stop the normal program flow within the 4K core, and force it to the Debug Exception Vector. The same e
can be achieved by setting the EjtagBrk Bit in the EJTAG Control Register. You access EJTAG Control Register th
the TAP controller pins, but it will take manyETCK clock periods to do this.

The difference is that asserting theEJ_DINTinput has much lower latency, and gives you faster control over forcing t
processor into Debug Mode. If you do not need fast entry into Debug Mode, you can remove theEDINT pin from the
chip.

EJ_DINT on the 4K core may also be connected to on chip logic, i.e. in a Multi-Core Breakpoint Unit (seeFigure 4-5
on page 31for more details). You should only assert (high-active) theEJ_DINTsup (EJTAG Debug Interrupt Pin
Supported) input on a 4K core if you have theEJ_DINT input connected to theDINT pin of the Probe Connector. You
will not disable theEJ_DINTinput if you de-assert theEJ_DINTsupinput.EJ_DINTsupis only used to set the DINTsup
bit in the EJTAG Implementation Register.

If you do not plan to connectEJ_DINT on the 4K core to an interrupt source, you must deassert bothEJ_DINT and
EJ_DINTsup, by connecting them to logic zero.

EJ_TCK
EJ_TMS

EJ_DINT

EJ_TDI
EJ_TDO
EJ_TDOzstate

ETCK
ETMS

EDINT

ETDI
ETDO

4K core

SOC_CHIP

EJ_TRST_NETRST*

Optional

Optional

EJ_DINTsupVDD

EJ_DebutM

RESET Chip Reset

Probe Connector

TCK
TMS

DINT

TDI
TDO

TRST*

RST*
System

Reset logic

Optional

Optional
28 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

4.2 How to connect EJ_* pins

JTAG

re. A

l Reset

le in

G debug

ccurs.

rted
4.2.2 EJTAG Device ID input pins

The Device ID Register in the EJTAG TAP controller gets its values directly from the pinsEJ_ManufID[10:0],
EJ_PartNumber[15:0] andEJ_Version[3:0]. If these pins are not already tied off to specific values by a hard core
provider, the integrator is free to choose what values to place onEJ_PartNumeber[15:0] andEJ_Version[3:0].

4.2.2.1 EJ_ManufID[10:0]

EJ_ManufID[10:0]must be a compressed form of a JEDEC standard manufacturer’s identification code. See “E
Specification”, section 5.5.2 “Device Identification Register”.

4.2.2.2 EJ_PartNumber[15:0]

EJ_PartNumber[15:0]is recomended to be a manufacturer specific number identifying this core as a MIPS 4K co
new physical cache configuration could facilitate a new value onEJ_PartNumber[15:0], but it could also be an
increment of the number on theEJ_Version[3:0] input.

4.2.2.3 EJ_Version[3:0]

EJ_Version[3:0]is recomended to be unique for each new physical layout, with the sameEJ_PartNumber[15:0]input.

4.2.3 EJTAG Software Reset pins

Two reset-related EJTAG outputs are controlled by corresponding bits in the EJTAG Control Register. Periphera
(EJ_PerRst) is controlled by the PerRst bit. And Processor Reset (EJ_PrRst) is controlled by the PrRst bit.

One other software reset-related pin is the Soft Reset Enable (EJ_SRstE). This pin is driven from the SRE bit in the
Debug Control Register (The DCR is a memory mapped register present within the 4K core, which is accessib
Debug-Mode).

4.2.3.1 EJ_PrRst pin

Processor Reset should really be interpreted as “System Soft Reset”. When the PrRst bit is asserted, by EJTA
software, the result must be one of two possible scenarios:

1. The entire system is reset. This could be achieved by connectingEJ_PrRst to chip (internal or external) soft reset
logic.

2. Nothing happens. EitherEJ_PrRstis left unconnected, or the assertion is gated of by other logic like theEJ_SRstE
pin.

A protocol exists, using the Rocc (Reset Occurred) bit, for debug software to identify which of the two scenarios o
Figure 4-4 shows one possible implementation for the use ofEJ_PrRst.

4.2.3.2 EJ_PerRst pin

Peripheral Reset can be used as a soft reset of the peripherals surrounding the 4K core. The effect of an asse
EJ_PerRst pin is implementation dependent. However it should never result in a reset of the 4K core itself.Figure 4-4
show one possible implementation of the use ofEJ_PerRst.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 29

Chapter 4 EJTAG Interface

e

t pins,

JTAG

roller
4.2.3.3 EJ_SRstE pin

As described earlier, this pin can be used to control one or more Soft Reset sources in the system reset logic. SeFigure
4-4 for a possible implementation.

4.2.3.4 One possible Reset Logic implementation

Figure 4-4show a possible implementation of theEJ_PrRst, EJ_PerRstandEJ_SRstEpins in a system. Note that in this
example all the Reset control logic is place outside the chip containing the 4K core. This requires 3 extra outpu
but this need not be the case in your system.

Figure 4-4 Possible Reset circuitry implementation

Note:TheRST*input to the Reset Logic from the Probe Connector is a required connection, when implementing E
into your system.

4.3 Multi-Core implementation

In a chip configuration with multiple 4K cores, all the EJTAG TAP controllers can share one set of EJTAG TAP cont
pins. The MIPS-recommended daisy-chain connection for a Multi-Core configuration is shown inFigure 4-5.

SI_ColdReset

EJ_SRstE

RESET

SRSTEN

4K core

SOC_CHIP

Reset Logic

EJ_PerRstPERRST
EJ_PrRstPRRST

Chip Reset

PROCESSOR_RESET

Hard Reset
Sources

Other Soft
Reset Sources

PERHIP_RESET

MIPS_4K_RESET

OTHER_RESET

Soft Reset

 Peripheral
devices reset

Hard Reset

Periph Soft Reset

Timer Hold
Reset

EJTAG
Probe

Connector

TCK
TMS

DINT

TDI
TDO

TRST*

RST*

Timer Hold
Reset

Optional

Optional

Optional
30 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

4.3 Multi-Core implementation

n the
ent of

res on
n full

Debug
Figure 4-5 Multi-Core Implementation

4.3.1 TDI/TDO daisy-chain connection

In a Multi-Core implementation one of the processor cores will often be the Master. InFigure 4-5 the Master core has
been put at first in theTDI/TDOdaisy-chain. This is done to get a low latency access to control and data registers i
Master core. Only if a large number of EJTAG TAP controllers are connected in the daisy-chain, will the placem
the Master core be of any significance.

Output enable of the chipETDO, is only controlled byEJ_TDOzstate of the last core in the chain. This must be so
because this is the core which actually drive theTDO chip pin.

4.3.2 Multi-Core Breakpoint Unit

The Multi-Core Breakpoint Unit (MCBU) shown to the right inFigure 4-5, is an implementation-dependent block. The
idea here is that each core could signal whether or not it is in Debug Mode, based on itsEJ_DebugMoutput. When doing
Multi-Core debug, a low latency entry into Debug Mode may be desired for all or some of the other processor co
the chip, based on the entry of one of the processors into Debug Mode. For example, a slave core might rely o
operation by the master core; then the master core’s entry into Debug Mode can trigger a Debug Interrupt (EJ_DINT) to
the slave core(s). This would place each slave core in Debug Mode with low latency after the master core entered
Mode. (Depending on implementation, the latency would be less than 10 cycles.)

ETCK
ETMS

ETRST*

ETDI
ETDO

4K core

SOC_CHIP

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

4K core

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

4K core

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

EJ_DINT

EJ_DebugM

EJ_DINT

EJ_DebugM

EJ_DebugM

DINT_n

DebugM_n

EJ_DINT

EDINT DebutM_Ext

Multi-Core
Breakpoint Unit

DebugM_1

DebugM_0

DINT_1

DINT_0

Master

⇓ One or more Processor cores with EJTAG ⇓
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 31

Chapter 4 EJTAG Interface

the slave
ore the
which

is

nt
Debugger software can of course detect that the master core has entered Debug Mode, and then trigger this for
core(s) also. This might or might not be supported by your Debug software as an automatic feature. Further m
detection and the following slave core(s) debug trigger, would have to go through the serial TAP controller chain,
could take hundreds of cycles before the slave core(s) enter Debug Mode.

The physical implementation and/or programmability of the MCBU is a system decision beyond the scope of th
document. However one thing to keep in mind, if you design an MCBU, is that theEJ_DebugMsignal is a level sensitive
signal andEJ_DINT is rising edge-triggered. Creating aDINT_x signal from a simple OR-function of one or more
DebugM_x signals, will not have the desired effect. A rising edge detection on aDebugM_xoutput signal is needed to
generate the desired rising edge on aDINT_xinput signal. Once in Debug Mode, the 4K core will ignore any subseque
Debug Interrupts onEJ_DINT.
32 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

ing

of the
e
ing the
s. The
 Jade

shown

M.
Chapter 5

Simulation Models

This chapter discusses the simulation models included in your MIPS32 4K™ core release. It contains the follow
sections:

• Section 5.1 , "Bus Functional Model"

• Section 5.2 , "Cycle-Exact Simulation Model"

5.1 Bus Functional Model

The MIPS32 4K™ core Bus Functional Model (BFM) is intended to provide the user with an abstracted version
external interface of the 4K core. It’s purposes is to provide a simple, highly controllable model of EC™ interfac
transactions. The BFM provides two mechanisms for managing transactions. A script file can be provided describ
transactions can be provided or the HDL testbench can make task calls to control the sequence of transaction
following sections describe the function and interfaces for the BFM script sequencer, the HDL interface and the
core BFM verilog module.

Figure 5-1 shows the partitioning of the model components. Although the script sequencer and the task I/F are
together, only one of them should be used with the bus functional model at any given time.

Figure 5-1 Jade Bus Functional Model

5.1.1 Installing and Using the BFM

The BFM script language and the Task I/F is described in a separate documentBFMUsersManual.pdf , which is
located in the$JADEHOME/bfm directory. Please refer to this document for further details on using the Jade BF

User Testbench Modules

System Modules

Script File

jade_bfm
Proxy Module

mips_jade_bfm.so
Shared Object File

PLI EC (Beer) I/F

Verilog

Task Calls

Provided by MIPS
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 33

Chapter 5 Simulation Models

he
. It has
are

.v are
ls

h
se
does

into
ulator

logies,

del:

e one
that

nly

S as
XL,
age
se that
5.1.2 Simple Testbench

To simplify bring-up of the BFM, a simple testbench is included in the$JADEHOME/bfm/verification directory.
This testbench can be used to verify that the BFM is installed correctly and shows examples of how to use it. T
testbench ties off many of the Jade inputs not directly related to the memory access portion of the EC™ interface
a verilog memory that is loaded from thetest.hex file. Random wait states are generated and reads and writes
done from/to the memory.

Two models are included in the$JADEHOME/bfm/verification directory. The file jade_bfm.v instantiates
a single version of the BFM which executes commands from the bfm.script file. The filedual_bfm.v is an example
of how to include multiple instances of the BFM to model a multi-processor system. Two instances of jade_bfm
instantiated. The filedual_bfm.v can also drive the BFM through the Task I/F. The verilog ‘define TASK contro
whether thejade_bfm.v model uses the Task I/F or the script-based I/F.

The Makefile in$JADEHOME/bfm/verification provides targets for building either the single or dual BFM wit
a variety of simulators. TheConstlite.def file contains a number of configuration options for the testbench. The
should not need to be changed, but if you feel like experimenting, there is a brief description of what each of them
in the file.

5.2 Cycle-Exact Simulation Model

A VMC™ model is available if cycle-exact simulation is required. VMC is a tool from Synopsys that compiles RTL
a protected binary executable. This resulting executable can then be linked into a SWIFT R41 compatible RTL sim
to simulate a MIPS32 4K™ processor core.

5.2.1 Installing the VMC Model

1. Currently, the Jade VMC model is only supported on the Sun Solaris Unix platform. Contact MIPS Techno
Inc. via email at “support@mips.com” if you require another platform.

2. The Jade VMC model is a SWIFT R-41 compatible model. This model can be loaded into a site-wide R41
LMC_HOME tree or into its own stand-alone LMC_HOME tree. As appropriate, set the LMC_HOME
environment variable to the location you want the installation to reside:

% setenv LMC_HOME <your_install_path>

3. Now invoke the admin install tool, which is supplied in the top level of the release package for the VMC mo
% $JADEHOME/vmc/jade_vmc_release/sl_admin.csh

1. A dialog box labeled “Install From...” should pop up.

2. Make sure the text input box points to the package, “jade_vmc_release”.

3. Press “Open” to continue.

4. Now you should get another dialog box used to select the models that will be installed. You should only se
choice available in this release, a model called “jade_vmc_model” followed by a version number. Click on
model to bring it into the “Models to Install” window.

5. Click “Continue” to close this dialog box.

6. Next you’ll get another dialog box to select the platforms for this model installation. Since this release o
supports the Sun Solaris platform, the platform default should be correct. You’ll also need to specify the
appropriate simulator package you’ll be using under the “EDAV Packages” heading. If you’ll be using VC
a simulator, then the default push-button selection of “Other” is appropriate. If your simulator is Verilog-
NC-Verilog, or ModelSim, then select the “Cadence Design Systems” push-button, as the support pack
needed for all of these simulators is identical. Or if you’re using one of the other simulators listed, choo
push-button. Then press “Install” to continue.
34 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

5.2 Cycle-Exact Simulation Model

admin

IPS

and
VMC

rors

plate
the

ur

idual
 more
ut from

e file

late.
7. You should get an “Install complete” message in the main message window and you can exit from the sl_
tool.

4. During the installation, a documentation directory will be created at$LMC_HOME/doc. There are pdf files in this
directory structure which contain additional details about the install process, administering and using
SmartModels, and licensing.

5. The 4K VMC model requires a GLOBEtrotter FLEXlm license in order to run. You can get this license from M
through your IP vendor. For details on how to install the license, see the “Network Licensing” chapter of
$LMC_HOME/doc/smartmodel/manuals/install.pdf.

5.2.2 Verifying the VMC Installation

A utility called swiftcheck is available in the VMC installation to ensure that your model, environment variables
FLEXlm license key are set up properly. You should run this command before attempting to simulate with the 4K
model. Invocation is as follows:

% $LMC_HOME/bin/swiftcheck jade_vmc_model

The fileswiftcheck.out will be produced by the command. You should check it to verify that there are no er
as reported at the end of the file.

5.2.3 SWIFT Template Generation

In order to instantiate the Jade VMC model in your RTL simulation environment, you need to create a SWIFT tem
of the 4K VMC model, which is then instantiated in your RTL design. This template file provides a conversion from
VMC model to your simulator’s SWIFT interface. The SWIFT template is simulator-specific, so your simulator
documentation should provide additional details on creating a SWIFT template and including the template in yo
design.

To create a SWIFT template under Synopsys VCS, the following command can be used:
% vcs -lmc-swift-template jade_vmc_model

To generate a SWIFT template for Verilog-XL, NC-Verilog, and ModelSim, a script calledvsg which is included in the
$LMC_HOME/bin area of your installed VMC area is used. The invocation is:

% vsg -z jade_vmc_model

For reference, two SWIFT templates for the 4K VMC model are included in each release, under the directory
vmc/jade_vmc_release/readme/swift_template . Templates are included for the VCS and Verilog-XL
Verilog simulators in separate directories.

If you are using thevsg script to create your SWIFT template, the module it creates leaves the bits of a bus as indiv
ports in the input/output header and does not “busify” them. The instantiation of the SWIFT template is usually
convenient if the bits of a bus are concatenated together in the module’s port header. An example of the raw outp
vsg is provided in the filevmc/jade_vmc_release/readme/swift_template/jade_vmc_model.v.
An example of thevsg output which has been modified to concatenate bus bits in the port header is provided in th
vmc/jade_vmc_release/readme/swift_template/jade_vmc_model.v.mod. If you runvsg
directly, however, you will need to perform the bus concatenation manually if you desire it for your SWIFT temp

The SWIFT template created by VCS (version 5.1 and later) automatically busifies the port header.

5.2.4 Back-annotating with SDF Timing

This is not currently supported.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 35

Chapter 5 Simulation Models

s. This
are

s VCS,

ew.

d

A).

e VA).

d by

 the
5.2.5 Register Windows

To increase the visibility into the VMC model, a number of core signals are made available via register window
added information can make it easier to determine what the core is doing and help debug any integration/softw
problems.Table 5-1 shows the signals available via register windows.

5.2.5.1 Enabling VMC Window Signals in Synopsys VCS

Enabling the register window signals so they are visible is dependent on the simulator you are using. For Synopsy
the register windows are globally enabled with the following code, which must be included somewhere in your
testbench:

initial $swift_window_monitor_on(“<instance_path_to_jade_vmc_model>”);

5.2.5.2 Enabling VMC Window Signals in Other Verilog Simulators

For Verilog-XL, NC-Verilog, and ModelSim, you need to individually specify every window signal you want to vi
The code required is most easily placed in the SWIFT template produced by thevsg command, as described inSection
5.2.3 , "SWIFT Template Generation". The format of the enabling code is:

Table 5-1 Core signals visible in VMC model

Name Size Description

RFn [31:0] Contents of register n. Entries 1-31 of the register file are available. (Entry 0 is always 0).

CPZ_xxx [31:0] Contents of Coprocessor 0 register xxx. All possible 4K Cop0 registers are included, but TLB-relate
ones are not valid when using the Fixed Block Address Translation instead of the TLB.

InstnVA [31:0] Virtual Address for the Instruction Fetch.

InstnPA [31:12] Physical Address for the Instruction Fetch (bits [11:0] are untranslated and thus the same as the V

InstnCacheable [0:0] Indicates whether the Instruction Fetch is a cacheable reference.

ICacheHit [0:0] Indicates that Instruction reference hit in the I$.

InstnData [31:0] Instruction Data returned for Instruction Fetch.

DataVA [31:0] Virtual Address for the Load/Store reference.

DataPA [31:12] Physical Address for the Load/Store reference (bits [11:0] are untranslated and thus the same as th

DataCacheable [0:0] Indicates whether the Load/Store reference is cacheable.

DCacheHit [0:0] Indicates that Load/Store reference hit in the D$.

LoadData [31:0] Load Data returned on a Load.

BusType [2:0]
Indicates what type of Load/Store operation is occurring. Use to qualify DataVA etc.

0-No operation, 1-load, 2-store, 3-prefetch, 4-sync, 5-ICacheOp, 6-DCacheOp

BIU_LWptr [3:0]

Bus Interface Unit read transaction tracking. LWptr is bumped every time a read address is accepte
the system. LRptr is bumped every time read data is returned. When LWptr != LRptr, the 4K core is
waiting for read data to be returned. Useful for debugging system problems. Core “hangs” are often
result of a system not returning all requested data.

BIU_LRptr [3:0] See above.
36 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

5.2 Cycle-Exact Simulation Model

ou
the code

TAG
ifferent
$lm_monitor_vec_map(<verilog_register>, “<instance_path_to_jade_vmc_model>”,
“<window_signal_name>”);

In the SWIFT template created byvsg , the <verilog_register> statements exist in the template but are dangling. Y
can use these dangling registers in the command required to enable each window signal. Here is an example of
required to view some specific window signals:

initial
begin
$lm_monitor_vec_map(RF1, “<instance_path_to_jade_vmc_model>”, “RF1”);
$lm_monitor_vec_map(RF2, “<instance_path_to_jade_vmc_model>”, “RF2”);
...
end

The examplevsg -generated template provided in
vmc/jade_vmc_release/readme/swift_template/verilog-xl/jade_vmc_model.v.mod
includes the full code needed to enable all the window signals, so you can look there as a reference.

5.2.6 VMC Simulation configuration

The VMC model is configurable so that all 4K™ cores can be run. The available options are shown inTable 5-2 on page
37 and include processor model (4Kc™, 4Km™, or 4Kp™ core), cache config, and configuration of optional EJ
features. The configuration is done by setting up a memory file which is read in and used to select between the d
modules. The memory file is calledmemory.jade_config and needs to be in a swift readmem format which is:

#Comment
<Address>/<Data>;

The available configuration options are shown in the following table.
Table 5-2 VMC Configuration Options

Name: Addr
(hex)

Description Legal Values Default

ICacheAssoc 1 Associativity of the instruction cache. 1,2,3,4 2

ICacheWaySize 2 Size of each way of instruction cache (in KB). 0(no I$), 1, 2, 4 4

DCacheAssoc 3 Associativity of the data cache. 1,2,3,4 2

DCacheWaySize 4 Size of each way of data cache (in KB). 0(no D$), 1, 2, 4 4

InitCaches 5 Magically flush caches at time 0 to avoid simulation
cycles for software cache initialization.

0 - No Magic Init

1- Magic Init
1

BATMMU 6 Use Fixed Block Address Translation instead of TLB.

0 - Use TLB (4Kc core)

1- Use Fixed MMU (4Kmcore
/ 4Kp core)

0

LITEMDU 7 Use smaller, iterative multiplier.

0 - Fast MDU (4Kc core/4Km
core)

1 - Iterative MDU (4Kp core)
0

EJSModule 8 Which ejtag simple break module should be used.

0 - No SB

1 - 2I/1D SB

2 - 4I/2D SB

2

MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 37

Chapter 5 Simulation Models
An examplememory.jade_config file is shown below:

EJTModule 9 Use ejtag TAP module.
0 - No TAP

1 - Use TAP
1

Inst A Unique instance identifier. Tags output messages and
trace files to more easily support multiple instances.0-63 0

dispEn B Display Enable. Controls printing of warning or error
messages coming from the VMC model.

0 - No messages

1 - Messages
1

haltit C Controls stopping of VMC model. Determines which
conditions will cause a $finish within the model.

0 - Never stop

1 - Stop on FATAL errors

2 - Stop on any warning or error

1

bus_trace D Enables logging of all transactions on the cores EC™
interface (external bus).

0 - No log

1 - Log bus transactions
1

dumpTrace E Enables instruction trace.
0 - No tracing

1 - Trace file will be created
1

Table 5-2 VMC Configuration Options

Name: Addr
(hex)

Description Legal Values Default
38 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

5.2 Cycle-Exact Simulation Model

 and a

he

ons, the

ain, all

ed

on
Memory Image File containing simulation configuration information
Variable Number/Variable Value

#DCacheWaySize
4/2;
#ICacheWaySize
2/4;
#LITEMDU
7/0;
#BATMMU
6/0;
#EJSModule
8/2;
#EJTModule
9/1;
#DCacheAssoc
3/4;
#ICacheAssoc
1/4;
#InitCaches
5/0;
#Inst
A/0;
#dispEn
B/1;
#haltIt
C/1;
#bus_trace
D/1;
#dumpTrace
E/1;

5.2.7 Trace Files

The VMC model is capable of producing two types of trace files: a log of all transactions on the EC™ interface
trace of all instructions executed.

5.2.7.1 Bus Trace

The bus trace file (vmc.bus(.Inst).trace) contains information about all transactions on the EC interface. T
fields are:

• Idle: Indicates how many idle cycles immediately preceded this transaction on the bus. For bursted transacti
value for the first beat of the burst is used for all beats of the burst.

• Pipe: Indicates the pipeline depth - how many transactions were outstanding when this transaction started. Ag
beats of a burst reflect the value for the first beat of the burst.

• Type: Transaction type: RI- Instruction read, RD- Data read, W- Data write.

• Beat: Indicates which beat of the burst this is and the total length of the burst. “1 of 1x” indicates a non-burst
transaction. “3 of 4” indicates the 3rd beat of a 4 beat burst.

• EB_A<35:0>: Address value.

• EB_R/WData<31:0>: Read or Write data. The value in parentheses is the valid mask. A zero in any bit positi
indicates that there was an x in the corresponding bit of the data.

• BE<3:0>: Byte Enables - indicates which byte lanes are active for this transaction.

• Error: Indicates whether a bus error was signalled on this transaction.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 39

Chapter 5 Simulation Models

of the

le
w format
• A wait states: Indicates the number of address wait states seen by this transaction.

• D wait states: Indicates the number of data wait states seen by this transaction.

• Cycle: Indicates a cycle number when this transaction completed. (Cycles are counted from the falling edge
first Cold Reset). For bursts, all beats of the burst report the cycle that the burst completed.

5.2.7.2 Instruction Trace

The instruction trace file (vmc(.Inst).trace) tracks the instruction flow in the processor. The architectural-visib
effects of each instruction (register updates, memory writes, etc.) are also logged. The trace comes out in a ra
and is most easily read after a post-processing step. Thebin/rtlSort script does this post-processing. It sorts the
trace file to group all lines associated with a given instruction, adds instruction disassembly (usingbin/MIPSdis) and
slightly reformats the trace.

[Ins:4 Cyc:6]bfc00000 1fc00000 2: 00000000 NOP
|<-----a---->|<--------b-------->|<-------c------->|
a) Each line is tagged with an instruction number and a cycle number. Gaps in the
instruction number sequence can occur near exceptions. The cycle number reflects
the cycle at which the information was dumped. Most of the information is dumped
from a canonical point in the pipeline, so most of the lines for a given
instruction will have the same cycle number. The exception is the update of the
HI/LO registers in the MDU. Because the MDU pipeline can run independently from the
main pipeline, these register updates can be reported in a different cycle.
b) For instructions that do not take a fetch exception, the first line of the
instruction will be a fetch line. This field shows the hex values of the Virtual
Address, Physical Address, and Cache Coherency Attribute (CCA) for the instruction
fetch. On the 4K cores, only two of the eight CCA values are truly supported. When
simulating a 4Kc core, the entire CCA is not maintained in the ITLB, so the CCA for
mapped instruction addresses will always be reported as 2 (uncacheable) or 3
(cacheable)
c) This field is the instruction opcode and disassembly.
[Ins:954 Cyc:8166]Write GPR[26] = 80024230(ffffffff)
|<-------a------->|<------d------>|<-------e------->|
d) This indicates that the instruction caused a register update. Possible registers
are GPR[1-31] for the general purpose registers, HI and LO for the MDU registers,
and C0* for Coprocessor Zero registers.
e) This is the data value in hex. The value in parentheses is the valid mask. A 0
indicates that the corresponding bit in the data was an x. A dash in the data value
is used for sub-word loads and stores to indicate invalid bytes on the memory
read/write line.
[Ins:972 Cyc:8359]Mem Read [80024168 00024168 3] = 00000000(ffffffff)
|<--------a------>|<---f--->|<--------g-------->|<---------e-------->|
f) This is for memory accesses. Mem Read indicates a load that missed in the cache.
Cache Read indicates a load that hit in the cache. Mem Write indicates a store
40 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

5.2 Cycle-Exact Simulation Model

how to
C™

is seen,

ding

 that the

.

can be
 the

c2”,

ribed in

s and
(since the 4K cores have write-through caches, memory is always written so there is
no distinction for cache hit/miss).
g) This is the virtual address, physical address, and cache coherency algorithm for
the data access.
[Ins:187 Cyc:1978]Write TLB Entry[15]: PageMask(mask) = 00000000(ffffffff)
[Ins:187 Cyc:1978] TLB Entry[15]: EnHi(mask) = 80000000(ffffffff)
[Ins:187 Cyc:1978] TLB Entry[15]: EnLo1(mask) = 00000000(ffffffff)
[Ins:187 Cyc:1978] TLB Entry[15]: EnLo0(mask) = 00000000(ffffffff)
|<-------a------->|<-------------------------h--------------------------->|
h) A TLB write is shown on multiple lines indicating the TLB entry number and the
source registers for data being written into the entry.

5.2.8 Simple Testbench

To simplify bring-up of the VMC model, a simple testbench is included in the$JADEHOME/vmc/verification
directory. This testbench can be used to verify that the VMC model is installed correctly and shows examples of
use it. The testbench ties off many of the Jade inputs not directly related to the memory access portion of the E
interface. It has a verilog memory that is loaded from thetest.hex file. The includedtest.hex has a simple boot
sequence that executes a few instructions, then does a store to a trick box in the system model. When that store
the system model does a $finish to stop the simulation.

In order to use the VMC model, you will need a verilog template. This template is specific to your simulator (inclu
the particular version in some cases). There are directions for creating the template file in the file
$JADEHOME/vmc/jade_vmc_release/readme/README.txt . There are two sample templates in the
verification directory:jade_vmc_model.vcs.v is a template for vcs, andjade_vmc_model.vxl.v is a
template for VerilogXL, ModelSim, and NC Verilog. These templates are slightly modified from how they were
generated. Buses are broken up into bits by VMC. These templates have the bits of the buses reassembled so
interface looks identical to the original RTL.

The Makefile in$JADEHOME/bfm/verification provides targets for building the VMC model in this testbench
Support for several simulators is included.

5.2.9 Multiple VMC Instances

It is possible to instantiate multiple 4K VMC models to simulate a multi-CPU system. The swift template file is
parameterized to control which configuration file is read in. By reading a unique configuration file, each instance
configured differently. By specifying unique instance tags in the memory file, the log output and trace files from
different models can be distinguished. The following example shows how this multiple instantiation can be
accomplished. The following Verilog code will instantiate two VMC models, with instance names “vmc1” and “vm
which will read thememory1.jade_config andmemory2.jade_config configuration files respectively. Note
that you must manually create the unique configuration files with the desired options for each instance, as desc
Section 5.2.6 , "VMC Simulation configuration" on page 37.

jade_vmc_model vmc1 (....);
defparam vmc1.InstanceName = “vmc1”;
defparam vmc1.MemoryFile = “memory1”

jade_vmc_model vmc2 (...);
defparam vmc2.InstanceName = “vmc2”;
defparam vmc2.MemoryFile = “memory2”;

5.2.10 Assertion Checks

A variety of assertion checks are embedded within the 4K VMC model. These checkers look for error condition
unknown state on critical signals. These checks are divided into a few basic categories:
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 41

Chapter 5 Simulation Models

. These

ally,
al Fatal

if the
t inputs

ion

n

o control
• Fatal HW Errors - These errors should never occur and indicate a problem with the CPU. MIPS support
(support@mips.com) should be contacted with the details of the problem.

• Fatal SW Errors - These errors indicate that the chip cannot proceed due to unknown state on internal signals
errors can be caused by faulty software or incorrect chip hook up.

• XWarning - This indicates unknown state inside the chip from which it is theoretically possible to recover. Typic
these warnings will give a more descriptive message and better point to start debugging from than the eventu
SW Error.

• I/O Warning - This indicates that the chip is possibly not hooked up correctly. For example, this will be flagged
reset inputs are asserted for more than 2000 cycles. This is symptomatic of someone assuming that the rese
are active low rather than active high, but it might be the desired behavior in the system testbench or simulat
environment. Thus these events are classified as warnings and not fatal errors.

• Fatal I/O Errors - These errors indicate illegal conditions on the primary I/O. Examples of this include undrive
inputs or insufficient reset pulse width.

Recall that configuration options are available to enable or disable the display of these assertion messages, and t
whether or not a fatal error will stop simulation; seeSection 5.2.6 , "VMC Simulation configuration" on page 37 for
more details.
42 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

ed.

amed

s; no

ped if

ndard
neral
 clock

ated for

s well

le
-60%

ller.
The

um
JTAG
s

 of the
Chapter 6

Clocking, Reset & Power

This chapter describes the clocking and initialization interface on a MIPS32 4K™ processor core, when the core is
integrated into a system environment. The power-reduction features available on a 4K™ core are also discuss

6.1 Clocking

There are potentially two input clocks which must be generated and driven to a 4K core. The main clock input is n
SI_ClkIn,and exists on every 4K core. An optional clock input is calledEJ_TCK, and is only present if an EJTAG TAP
controller is implemented within the core. Both clocks are used internally at 1x their respective input frequencie
frequency multiplication or division is performed internally. No phase-locked loop is present within the 4K core.
Typically no minimum frequency is required, so the frequency of the input clocks can be quickly changed or stop
desired, as long as edge rate integrity is maintained.

The following discussion describes general clocking characteristics of a typical 4K core implemented with a sta
ASIC physical design methodology. It is possible that a specific hard core implementation may differ from the ge
clock guidelines discussed here; e.g., dynamic circuit implementation techniques may mandate that a minimum
frequency be met for a particular hard core. So the general clocking assumptions described here must be valid
the specific 4K core which is being integrated before proceeding with system clock design.

6.1.1 SI_ClkIn Clock

SI_ClkIn is the primary 1x input clock to the 4K core. It is used to enable the vast majority of sequential logic, a
as time the synchronous SRAMs normally used to implement the caches, within the 4K core.

Generally, only the positive edge of theSI_ClkIn clock is used internally to the core, so there is no specific duty cyc
requirement. Transparent-low latches usually do exist within the core, so the duty cycle should still be within 40
of the period. Since no dynamic logic or PLL is present, the minimum frequency is 0 MHz; i.e.,SI_ClkIncan be stopped
if desired. The maximumSI_ClkIn frequency depends on the specific 4K core implementation.

6.1.2 EJ_TCK Clock

EJ_TCKis an optional 1x clock input to the 4K core, which only exists if the core implements an EJTAG TAP contro
EJ_TCK is the test input clock used to synchronize the serial shifting of data into and out of the TAP controller.
EJ_TCK clock is completely asynchronous to theSI_ClkIn clock, in terms of both frequency and phase.

The minimum frequency ofEJ_TCKis 0 MHz, so it can be stopped when the TAP controller is not used. The maxim
frequency is specified as 40 MHz (25 ns period), due to limitations of the probes which usually interface to the E
TAP port. Both the rising and falling edges ofEJ_TCKare used to control flops. The minimum clock high and low time
are specified as 10 ns, yielding a duty cycle requirement of 40 to 60% at 40MHz.

6.1.3 Handling Clock Insertion Delay

When a 4K core is implemented, clock trees are usually created to buffer and distribute theSI_ClkInandEJ_TCKclocks
throughout the core. These clock trees impart a finite delay from the primary clock inputs to the eventual usage
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 43

Chapter 6 Clocking, Reset & Power

teristic

st of the
the
 as well

e core
at the

to the

ts are
lly the

clock
s, so
nts
ich

the 4K
d

e clock

pins
core,

e basic
reset
st be

ving
buffered clocks at the sequential elements within the core. The exact amount of clock insertion delay is a charac
of each specific 4K core implementation.

The clock insertion delay presents an issue which must be managed when the 4K core is instantiated in the re
system. Any clock insertion delay from the clock input to the actual clock usage at the sequential elements for
primary inputs and outputs of the core reduces the primary input setup times but increases the input hold times
as the clock-> out delays on the primary outputs. Since all 4K core inputs are received directly by flops, and th
outputs come directly from flops, the setup and hold times for the primary inputs and outputs can be balanced
system level.

Several different techniques can be used to manage the 4K core’s internal clock insertion delay.

• Tolerate the core clock insertion delay at the system level, if possible, within the system logic which interfaces
4K core. This may entail adding delay elements when driving inputs, so that hold times are not violated, and
receiving “late” outputs, which reduces the number of logic stages that can exist in the same cycle the outpu
driven since the clock insertion delay is visible. This may not be acceptable for all system designs, but is usua
simplest approach.

• When creating the system clock tree for the sequential logic which interfaces to the 4K core, match this system
to the core’s internal insertion delay. Clock tree generation tools have the ability to match relative clock delay
knowing the core’s internal clock insertion delay will allow the internal clocks to be specified as matching poi
(within reasonable skew limits). With this approach, input hold times and output delays can be minimized wh
allows more time in the cycle for useful work.

• Use theSI_ClkOut reference clock.SI_ClkOut is an output of the 4K core which is tapped from the internal clock
tree so that it is identical (within reasonable skew limits) to the clock seen by the sequential elements within
core. The difference betweenSI_ClkInandSI_ClkOutrepresents the clock insertion delay of the primary clock use
within the 4K core. (Note that there is no corresponding reference clock output for theEJ_TCK clock, so this
technique cannot be applied to that clock domain.) Due to loading limitations, theSI_ClkOutclock probably can’t be
used directly to control system logic that interfaces to the core, but it can be used, for example, as the referenc
to a de-skewing phase-locked loop in the system to “hide” the core’s clock insertion delay.

6.2 Reset and Hardware Initialization

Hardware initialization is accomplished through theSI_ColdReset, SI_Reset andSI_NMI input pins, and via the
EJ_TRST_Npin if the optional EJTAG tap controller is present within the 4K core. This section describes how these
are typically used in systems. These reset input pins must always be driven, either to a logic “1” or “0”, to the 4K
and not left floating or indeterminate. Each of the reset-relatedSI_* inputs trigger a different type of exception within
the 4K core; the MIPS32 4K™ Processor Core Family Software User’s Manualdescribes more details about these
exceptions.

The initialization process for a 4K core requires a combination of hardware and software. This section describes th
hardware initialization interface. In accordance with the MIPS-32™ Architecture, only a minimal amount of state is
by hardware; so much internal state, like the Translation Look-Aside Buffer (TLB) and the cache tag arrays, mu
initialized via software before it can be used. TheMIPS32 4K™ Processor Core Family Software User’s Manual
describes the software initialization requirements of a 4K core.

6.2.1 SI_ColdReset

TheSI_ColdResetinput is a hard reset signal which initializes the internal hardware state of the 4K core without sa
any state information. It is active high, and must be asserted for a minimum of 5SI_ClkIn cycles. The falling edge
triggers a reset exception which is taken by the core as the highest priority. Typically,SI_ColdReset is driven by a
power-on-reset circuit in the system. For reliable operation, the power supply must be stable and theSI_ClkInclock must
be running beforeSI_ColdReset is deasserted.
44 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

6.3 Power Management

f 5

et to

must
n NMI
f

.
ly

n (or

ither

power

egister
r

the clock
peed

gic is

s
e to
6.2.2 SI_Reset

TheSI_Reset input is a warm reset input to the 4K core. It is active high, and must be asserted for a minimum o
SI_ClkIncycles. The falling edge triggers a soft reset exception which is taken by the core. Typically,SI_Resetis driven
by the OR ofSI_ColdReset and the reset “button” in the system. Historically, MIPS processors have required Res
be asserted during a ColdReset. The 4K cores do not require this, so an assertion ofSI_ColdResetdoes not need to force
the assertion ofSI_Reset.For reliable operation, the power supply must be stable and theSI_ClkInclock must be running
beforeSI_Reset is deasserted.

6.2.3 SI_NMI

TheSI_NMIinput signals a non-maskable interrupt (NMI). This signal is active high and rising edge sensitive, but
be asserted for a minimum of one clock cycle in order to be recognized. The sampling of the rising edge triggers a
exception to be taken by the core. Typically,SI_NMIis used to indicate time-critical information, like impending loss o
power in the system.

6.2.4 EJ_TRST_N

An additional reset signal is required when the EJTAG TAP controller is present.EJ_TRST_Nis an active low reset signal
that resets the TAP controller. This is an asynchronous reset andEJ_TCKdoes not need to be toggling for it to take effect
EJ_TRST_N must be asserted during power-on reset in order for the TAP controller and processor to be proper
initialized. In general, the low-asserted pulse width should be the equivalent of at least oneEJ_TCK cycle wide.

6.3 Power Management

Two primary mechanisms exist for managing system power with a 4K core: the hardware method of slowing dow
stopping) the primarySI_ClkInclock and the software method of initiating “sleep” mode via the execution of theWAIT
instruction.

6.3.1 ReducingSI_ClkIn frequency

The most global method of power control is to hold the primarySI_ClkIninput static, or at a lower frequency, when the
4K core is not in use, if desired by your system logic. The 4K core is internally fully static so the clock can be held e
high or low, and the input frequency can be changed from maximum to a lower frequency, including zero, (and
vice-versa) in a single cycle since there is no internal PLL.

The core outputs some pins which can be used, if desired, by the system logic to control entry or exit to this low-
state. TheSI_RP output is directly driven from the internal CP0 Status register, as an external indication that it is
desirable to place the 4K core in a low-power state by reducing the clock frequency. When the RP bit in the Status r
is set by software, system logic can detect the assertion of theSI_RPoutput and choose to place the 4K core in a lowe
power state by reducing the clock frequency. Additionally, theSI_ERLandSI_EXLoutputs, derived from the ERL and
EXL bits in the Status register, indicate that an error or exception has been taken, and can be sensed to speed
frequency up again if desired.EJ_DebugMindicates that a debug exception has been taken. This can also be used s
the clock back up. These output pins need not be used to control the core’s clock frequency, if other system lo
available to indicate that the 4K core is not being used.

6.3.2 Software-induced sleep mode

Upon execution of the softwareWAIT instruction, the 4K core will enter a low-power state once all outstanding bu
activity has completed. Most of the clocks in the 4K core will be stopped, but a handful of flops will remain activ
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 45

Chapter 6 Clocking, Reset & Power

re back
ck

ower
the 4K
sense an external hardware event which will awaken the core again. The external events which can wake the co
up are any enabled interrupt, NMI, debug interrupt (viaEJ_DINT), or reset. Power is reduced since the global gated clo
which goes to the vast majority of flops within the 4K core is held idle during this sleep mode. TheSI_Sleeppin will be
asserted when the core enters this low power mode. This can be used by the system logic to achieve further p
savings. There will be no bus activity while the core is in sleep mode, so the system bus logic which interfaces to
core could be placed into a low power state as well.
46 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

Appendix A

Revision History

Revision Date Who Description

0.9.4 Dec 20, 1999 • Updated BFM references to be more in-line with the current BFM structure.

0.9.5 Jan 19, 2000

• Updated simulation model chapters with details on simple testbench.

• Fixed trademark usage.

• Added more text describing theEB_WWBE/EB_EWBE interface.

01.00 Jan 31, 2000

• AddedPM_DTLB{Hit,Miss} signals.

• Updated text forEB_WWBE/EB_EWBE.

• Added simple testbench for BFM and VMC models.

• Updated references toMIPS32 4K™ Processor Core Family Software
User’s Manual to reflect name change.

01.01 Mar 21, 2000

• ChangedSI_TimerOut to SI_TimerInt to correctly reflect the RTL name of
this output.

• Describe new VMC features - better tracing and controllability.

• Pulled VMC installation information into this document from
README.txt .

01.02 April 14, 2000

• RenamedBFMScript.pdf document toBFMUsersManual.pdf in
thebfm subdirectory.

• Added discussion about handling multiple instances of the VMC model.

• Added general description of assertion messages which can emanate from
the VMC model.

• Switched to a fixed-width font in the explanation of the VMC instruction
trace file format.
MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07 47

Appendix A Revision History
01.03 May 30, 2000

• Added description of the maximum outstanding transactions that will exist
in a 4K core.

• Clarified instructions for “EDAV Packages” selection when installing the
VMC model.

• Added description of prefixes used in names of system interface signals.

• Updated copyright notice to conform to latest standard.

01.04 July 18, 2000

• Reformatted cover sheet, added MD number.

• Added details about assertion ofEJ_TRST_N in Clocking, Reset & Power
chapter.

01.05 October 18, 2000

• AddedChapter 4, “EJTAG Interface.”

• Split System Interface chapter into two separate chapters forChapter 2,
“Signal Description,” andChapter 3, “EC™ Interface.”.

• Modified timing diagrams in EC™ Interface chapter to reflect Jade-specific
behavior on back to back transactions.

01.06 October 24, 2000 Steve/
franzt

• Converted document to new template.

01.07 December 4, 2000

• Removed the EJ_PartNumber inputs from the Multicore figure.

• UpdatedSection 4.2.2 , "EJTAG Device ID input pins" on page 29.

• Added discussion about busification of module ports in SWIFT template for
VMC model.

• Refer to the VMC model as “cycle-exact” instead of “cycle-accurate”.

• Added description about runningswiftcheck to verify the VMC
installation.

Revision Date Who Description
48 MIPS32 4K™ Processor Core Family Integrator’s Manual, Revision 1.07

	MIPS32 4K™ Processor Core Family Integrator’s Guide
	Table of Contents
	List of Figures
	List of Tables
	Overview
	1.1� Environment Variable Setup

	Signal Description
	2.1� Naming Convention
	2.2� Signal Description

	EC™ Interface
	3.1� Introduction
	3.2� Interface Transactions
	3.2.1� Fastest Read Transaction
	3.2.2� Single Read with Wait States
	3.2.3� Fastest Write Transaction
	3.2.4� Single Write with Wait States
	3.2.5� Burst Read
	3.2.6� Burst Write
	3.2.7� Back-to-Back Reads
	3.2.8� Back-to-Back Writes
	3.2.9� Read Followed by Write with Reordering
	3.2.10� Write Followed by Read with Reordering

	3.3� Outstanding Transactions
	3.4� Sequential Transactions
	3.5� Write Buffer
	3.5.1� Merge Pattern Control
	3.5.1.1� No Merge
	3.5.1.2� Full Merge
	3.5.1.3� SysAD Valid Merge

	3.6� External Write Buffers

	EJTAG Interface
	4.1� EJTAG versus JTAG
	4.1.1� EJTAG similarities to JTAG
	4.1.2� Sharing EJTAG resources with JTAG
	4.1.2.1� Daisy chained TDI-TDO
	4.1.2.2� Multiplexed pin access

	4.2� How to connect EJ_* pins
	4.2.1� EJTAG chip-level pins
	4.2.1.1� Optional ETRST* pin
	4.2.1.2� Optional EDINT pin

	4.2.2� EJTAG Device ID input pins
	4.2.2.1� EJ_ManufID[10:0]
	4.2.2.2� EJ_PartNumber[15:0]
	4.2.2.3� EJ_Version[3:0]

	4.2.3� EJTAG Software Reset pins
	4.2.3.1� EJ_PrRst pin
	4.2.3.2� EJ_PerRst pin
	4.2.3.3� EJ_SRstE pin
	4.2.3.4� One possible Reset Logic implementation

	4.3� Multi-Core implementation
	4.3.1� TDI/TDO daisy-chain connection
	4.3.2� Multi-Core Breakpoint Unit

	Simulation Models
	5.1� Bus Functional Model
	5.1.1� Installing and Using the BFM
	5.1.2� Simple Testbench

	5.2� Cycle-Exact Simulation Model
	5.2.1� Installing the VMC Model
	5.2.2� Verifying the VMC Installation
	5.2.3� SWIFT Template Generation
	5.2.4� Back-annotating with SDF Timing
	5.2.5� Register Windows
	5.2.5.1� Enabling VMC Window Signals in Synopsys VCS
	5.2.5.2� Enabling VMC Window Signals in Other Verilog Simulators

	5.2.6� VMC Simulation configuration
	5.2.7� Trace Files
	5.2.7.1� Bus Trace
	5.2.7.2� Instruction Trace

	5.2.8� Simple Testbench
	5.2.9� Multiple VMC Instances
	5.2.10� Assertion Checks

	Clocking, Reset & Power
	6.1� Clocking
	6.1.1� SI_ClkIn Clock
	6.1.2� EJ_TCK Clock
	6.1.3� Handling Clock Insertion Delay

	6.2� Reset and Hardware Initialization
	6.2.1� SI_ColdReset
	6.2.2� SI_Reset
	6.2.3� SI_NMI
	6.2.4� EJ_TRST_N

	6.3� Power Management
	6.3.1� Reducing SI_ClkIn frequency
	6.3.2� Software-induced sleep mode

	Revision History

