

PSoC Based Blood Pressure Monitor

By

Escares, Jonas T.
Garcia, Arben M.
Geronimo, Edzel P.
Regala, Jerby C.

A Design Report Submitted to the School of Electrical Engineering,
Electronics and Communications Engineering, and Computer

Engineering in Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapua Institute of Technology
April 2009

ii

iii

ACKNOWLEDGMENT

 The group would like to acknowledge and extend their deepest gratitude

to the following who have contributed to the development of the project.

 First and foremost, our Heavenly Father, for giving them the knowledge,

wisdom, and strength to finish the design and other requirements on time;

 Engr. Noel B. Linsangan, for allowing them to pursue this study, and

giving advice, guidance, and consideration to assure the success of the project

design;

 Engr. Cyrel C. Ontimare, for sharing her expertise and experience which

gave them the confidence and inspiration; and also for spending her time in

meetings and consultations which the team needed;

 Prof. Filomena J. Berenguela, for guiding them in constructing their

paragraphs and checking the grammar of their documents;

 And lastly, to their respective parents/guardians’ support throughout the

development of the design.

iv

TABLE OF CONTENTS

TITLE PAGE i

APPROVAL SHEET ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT viii

Chapter 1: DESIGN BACKGROUND AND INTRODUCTION 1

 Introduction 1
 The Design Setting 3
 Statement of the Problem 4
 The Objective of the Design 5
 The Significance of the Study 5
 Conceptual Framework 6
 The Scope and Delimitation 7
 Definition of Terms 9

Chapter 2: REVIEW OF RELATED LITERATURE AND RELATED STUDIES 14

Chapter 3: DESIGN METHODOLOGY AND PROCEDURES 22

 Design Methodology 22
 Design Procedure 22
 Design Procedure for Actual Design 24
 Hardware Design 25
 List of Materials 28
 Hardware Component 29
 Circuit Design 30
 Hardware Implementation 31
 Software Design 31
 Software Component 31
 System Flowchart 32
 Prototype Development 35

v

Chapter 4: TESTING, PRESENTATION, AND INTERPRETATION OF DATA 36

 Testing of Accuracy 36
 Testing of Reliability 44

Chapter 5: CONCLUSION AND RECOMMENDATION 47

 Conclusion 47
 Recommendation 47

BIBLIOGRAPHY 49

APPENDICES 50

 Appendix A Circuit/Schematic Diagram 50
 Appendix B Source Code 53

Appendix C Actual Photo 71
Appendix D 28Pin CY8C29466 Datasheet 74
Appendix E LM324 Datasheet 82
Appendix F MPS-2000 Pressure Sensor Datasheet 84
Appendix G L78XX Voltage Regulator Datasheet 87
Appendix H User’s Manual 93

vi

LIST OF TABLES

 Table 3.1: List of Materials and Cost 28
 Table 4.1: Classifications of Blood Pressure for Adults 38
 Table 4.2: Test Results of Test Subject A 39
 Table 4.3: Test Results of Test Subject B 39
 Table 4.4: Test Results of Test Subject C 41
 Table 4.5: Test Results of Test Subject D 42

Table 4.6: Computed Average of Test Results 43
Table 4.7: Computed Percentage Errors for Accuracy 44
Table 4.8: Test Results for Reliability Testing 45

 Table 4.9: Computed Percentage Errors for Reliability 46

vii

LIST OF FIGURES

Figure 1.1: Conceptual Framework of the System 6
Figure 2.1: Indirect Blood Pressure Measurements 15
Figure 2.2: Hardware Block Diagram of SE-1000 18
Figure 3.1: Design Procedure Flowchart 23
Figure 3.2: Block Diagram of Hardware Design 27
Figure 3.3: Schematic Diagram of the Design 30
Figure 3.4: System Flowchart of the Design Prototype 34
Figure 3.5: Actual Photo of the Prototype 35
Figure 6.1: Schematic Diagram of the Design Prototype 51
Figure 6.2: PCB Layout with Components of the Design 52
Figure 6.3: PCB Layout of the Design 52
Figure 6.4: Internal View of the Prototype 72
Figure 6.5: Top View of the Prototype 72
Figure 6.6: Front View of the Prototype 73
Figure 6.7: Back View of the Prototype 73

viii

ABSTRACT

 The design study is all about PSoC based Blood Pressure Monitor. It is
developed using a Programmable System on Chip which is being manufactured
by Cypress Semiconductor Corporation. The systolic, diastolic and the pulse rate
reading are displayed on a Liquid Crystal Display or LCD making it digital. The
date and time is present in the display. It can also store the readings with the
date and time information included. Also, this prototype has a battery
rechargeable function. The purpose of the design is to create a low cost design
and to enhance the functionality of the blood pressure meter in the market using
the PSoC microcontroller. The design is conducted by gathering related literature
and studies which was used in determining the features that is needed in the
design. It is followed by creating the circuit diagram, studying the program to be
used and developing the design with all the gathered components. After
developing the design and did actual testing, the group can say that the
accuracy of the design is almost the same with the existing blood pressure
monitor in the market. The functionality of the design and all of its features are
properly working.

Keywords: Programmable System on Chip, systolic, diastolic, pulse rate,
rechargeable

1

CHAPTER 1

DESIGN BACKGROUND AND INTRODUCTION

Introduction

Hypertension, or commonly referred to as high blood pressure, is one of

the most serious conditions our society is facing nowadays. It is dangerous in a

sense that it can lead to coronary heart disease, heart failure, stroke, kidney

failure, and other health problems. “Blood pressure” is the force of blood pushing

against the walls of the arteries as the heart pumps out blood. When this

pressure rises and stays high over time, it can damage the body in many ways.

There is a device that monitors the blood pressure condition of a person

and that is the blood pressure meter. A blood pressure meter is a device used to

measure blood pressure, comprising an inflatable cuff to restrict blood flow, and

a mercury or mechanical manometer to measure the pressure. It is always used

in conjunction with a means to determine at what pressure blood flow is just

starting, and at what pressure it is unimpeded. The device was invented by

Samuel Siegfried Karl Ritter von Basch. Scipione Riva-Rocci, an Italian physician,

introduced a more easily used version in 1896. Harvey Cushing discovered this

device in 1901 and popularized it. This device is also known as

sphygmomanometer, which came from the Greek word sphygmós or pulse, plus

the scientific term manometer which is a pressure meter.

A sphygmomanometer usually consists of an inflatable cuff, a measuring

unit, a tube to connect the two, and an inflation bulb also connected by a tube to

2

the cuff which is commonly found in models that don't inflate automatically. The

inflation bulb contains a one-way valve to prevent inadvertent leak of pressure

while there is an adjustable screw valve for the operator to allow the pressure in

the system to drop in a controlled manner. This device had been improved to

different kind of models that include application of modern technology having

microcontrollers in it.

Developing a digital blood pressure meter that does the same job as what

the analog devices do will have numerous advantages. There are existing digital

blood pressure meters but these are expensive because of the microcontrollers

and components used in these devices. That is why innovating the existing blood

pressure monitor that uses PSoC or the Programmable System on Chip will be

very efficient in terms of its functionality, portability and cost effectiveness. It

will read and display the pressure through the blood pressure cuff getting its

systolic and diastolic pressure. Systolic blood pressure is the pressure when the

heart beats while pumping blood. Diastolic blood pressure is the pressure when

the heart is at rest between beats. The unit of measurement for blood pressure

reading is millimeters of mercury (mmHg). The blood pressure readings can be

classified according to the range of systolic and diastolic reading to determine if

it is normal, hypotension or hypertension condition (see Table 4.1). The pulse

rate reading can be measured and can be classified if the user has bradycardia,

tachycardia or has normal pulse rate.

3

The Design Setting

 Developing this PSoC based Blood Pressure Monitor will help avoid high

blood pressure condition. It can be used in monitoring the blood pressure status

of a person so that they are always aware of their heart condition even when

they are at home, office, or anywhere since this design is portable. The design is

also easy to use as compared to the usual blood pressure device because it is

automatic, meaning there is no need to pump air manually and to be

knowledgeable on how to use a stethoscope. By pushing the start button, the

design will automatically pump air and display the result in systolic and diastolic

reading as well as the pulse rate reading.

 The user of the existing blood pressure meter in the market either analog

or digital requires them to record the readings that they got so that there is still

a record for future comparison of their blood pressure measurements. Doing this

design study will make it easier for them to automatically record and view their

blood pressure measurements.

 In addition, current digital blood pressure meter in the market are quite

expensive and uses only a battery to make them work. This design would

enhance the usability and reliability of blood pressure meter by making it

rechargeable.

4

Statement of the Problem

 High blood pressure is a serious condition that tends to rise with age. A

healthy lifestyle can prevent it but there is always a need to monitor our heart’s

condition. Having a personal blood pressure meter is a good way of monitoring

blood pressure.

 At present, people spend their money on cheaper products without

considering the efficiency and functionality of the product. When it comes to

blood pressure meter, an aneroid blood pressure meter is still being used and

available at home because of its cheaper price compared to the digital blood

pressure meter. This requires a medical knowledge and a stethoscope in using

this device, and a companion who will assist you while getting the readings.

 Although there is already an existing digital blood pressure meter in the

market which is easier to use, the price is not affordable. The company who

manufactures this device uses microcontrollers and other components that make

it expensive. People who will buy this device will spend more money in

maintaining its functionality and usability because it requires a battery to make it

work.

 Due to the problems that arise, our group needs to create a low cost

digital blood pressure monitor that can reassure the user of its accuracy,

efficiency and reliability.

5

The Objective of the Design

 The main objective of this design is to create a low-cost digital blood

pressure monitor prototype using Programmable System on Chip or PSoC

microcontroller. The group considered the following to implement the design

project:

1. To be able to store systolic reading, diastolic reading and pulse rate

reading.

2. To be able to store the readings into four different memory modules that

contain the date and time it was taken.

3. To be able to design a prototype that will work using either a battery

supply or a direct power supply as its main power source.

4. To be able to incorporate rechargeability feature through the use of

rechargeable battery supply.

The Significance of the Study

 Having this design done will be very beneficial to people especially to

those who suffer high blood pressure condition. This study promotes health

awareness to people and that they can monitor their own blood pressure using

this prototype. Using this would be simple and some features were enhanced

making it valuable. This was created to minimize the expenses of the people who

are using a battery operated blood pressure meter which costs much and not

environment friendly. Through this study, the group was able to apply their

6

technical skills and knowledge learned not just in engineering but also their

research in the field of health and science.

The Conceptual Framework

 In order to build this design, the group shared and discussed different

ideas and principles related to this study. Figure 1.1 shows the conceptualized

design of the system. This conceptual framework illustrates the flow of which the

device works starting from its input then how it will be processed until it

produces an output.

Figure 1.1 Conceptual Framework of the System

 Using the conceptual framework Figure 1.1 above, the design shows that

the arm cuff pressure and pulse beat are the input of the system. The pulse beat

is an independent variable which comes from the user. The arm cuff is

pressurized during inflation that will cause a series of pulse beat during deflation.

A change in pressure is detected by the pressure sensor which generates a signal

Arm cuff

Pressure

Pulse Beat

Detection of pressure

Conversion of signal

Calculation of systolic,

diastolic and pulse rate

reading

Blood Pressure

reading

Pulse Rate

reading

INPUT PROCESS OUTPUT

7

that will pass to the operational amplifier. The process of converting the signal

from analog to digital takes place in the microcontroller. The calculation of the

systolic, diastolic and pulse rate is also processed in the PSoC microcontroller.

The process will continue until deflation is finished. After the systolic, diastolic

and pulse rate has been determined, it will be sent to the LCD to display the

blood pressure reading and the pulse rate reading.

The Scope and Delimitations

The design will cover innovation and development of the Programmable

System on Chip based Blood Pressure Monitor. The group has set the scope and

delimitation of the design as follows:

The Scope:

1. The design uses a PSoC microcontroller as a substitute to the usual

microcontroller used in the market.

2. The blood pressure monitor works automatically once started.

3. The blood pressure monitor can also determine and display the pulse rate

reading.

4. It can record blood pressure reading and pulse rate reading including the

date and time it was taken.

5. It can record 30 blood pressure readings on each memory modules.

6. It consists of 4 memory modules which are A, B, C and D.

7. An indicator SA that means save is displayed every after blood pressure

reading.

8

8. An indicator EE that means error is displayed if the reading is out of range.

9. The prototype uses a rechargeable battery and a 6V-12V adaptor.

10. The prototype still works while charging.

11. The date and time can be set manually and updates automatically.

12. There is a light indicator when the prototype is charging.

13. There is a display indicator when the battery is drained or emptied.

Delimitations:

1. The battery should not be emptied so that the records in the memory will not

be deleted.

2. The blood pressure monitor can only record up to a maximum of 120

readings.

3. The maximum range of the blood pressure reading is up to 190 mmHg.

4. The time setting in the device uses only 24 hour military time.

5. The arm cuff cannot be detached from the main device.

7. The prototype is unable to determine and display the hypertension

classification of the reading.

8. The prototype has a preset of memory locations A, B, C, and D and cannot

store names as indicator for each memory module.

9. There is no indicator when the battery is fully charged.

10. There is no display indicator of how much battery charge is remaining.

9

Definition of Terms

Adaptor is a device connecting electric appliances to a single socket. (Oxford,

2007).

Amplitude is the maximum value of a signal. (Alexander and Sadiku, 2003).

Artery is one of the tube-shaped blood vessels that carries blood away from the

heart; these are thick-walled, flexible and muscular. (Brueschke, 1993).

Auscultation is the technical term for listening to the internal sounds of the

body using a stethoscope. Auscultation is performed for the purposes of

examining the circulatory system and respiratory system (heart sounds and

breath sounds), as well as the gastrointestinal system (bowel sounds).

(Brueschke, 1993).

Bradycardia occurs when the pulse rate is below 60 per minute. (Brueschke,

1993).

Battery is a device containing electrical cells or cells used as a source of power.

(Oxford, 2007).

Brachial Artery is the major blood vessel of the upper arm. (Brueschke, 1993).

Blood Pressure is the pressure blood against the walls of the arteries.

(Brueschke, 1993).

Blood Pressure Meter also called as sphygmomanometer; is a device used to

measure blood pressure, comprising an inflatable cuff to restrict blood flow, and

a mercury or mechanical manometer to measure the pressure. It is always used

in conjunction with a means to determine at what pressure blood flow is just

10

starting, and at what pressure it is unimpeded. Manual sphygmomanometers are

used in conjunction with a stethoscope. (Brueschke, 1993).

Blood Vessel is any tube in the body through which blood circulates. The most

important vessels in the system are the capillaries, the microscopic vessels which

enable the actual exchange of water and chemicals between the blood and the

tissues, while the conduit vessels, arteries and veins, carry blood away from the

heart and through the capillaries or back towards the heart, respectively.

(Brueschke, 1993).

Capacitor is a passive element designed to store energy in its electric field, the

most common electrical components. It is consisted of two conducting plates

separated by an insulator (or dielectric). (Alexander and Sadiku, 2003).

Deflate means to let out air or gas from an inflatable object with the result that

it shrinks or collapses, or lose air or gas. (Encarta, 2007).

Diastole is the normal period of relaxation of the heart muscles. The diastolic

blood pressure is the point of least pressure in the arteries, because blood is not

being pumped by the heart during this phase. (Brueschke, 1993).

Diode is a semiconductor device with a single pn junction that conducts current

in only one direction. (Floyd, 2002).

Fuse is a protective device that burns open when the current exceeds a rated

limit. (Floyd, 2002).

Hypertension is a condition in which a person’s blood pressure is persistently

above normal. (Brueschke, 1993).

11

Hypotension is a condition in which the blood pressure is reduced or below

normal. (Brueschke, 1993).

Inflate means to fill something such as a ball, mattress, tire, or boat with air or

gas to bring it to the proper size, shape, and firmness for use, or to become filled

with air or gas. (Encarta, 2007).

Korotkoff Method is a non-invasive auscultatory technique for determining

both systolic and diastolic blood pressure levels. The method requires а

sphygmomanometer and а stethoscope. Due to ease and accuracy, it is

considered a "gold standard" for blood pressure measurement. (Brueschke,

1993).

Korotkoff Sounds are the sounds that medical personnel listen for when they

are taking blood pressure using non-invasive measurement. (Brueschke, 1993).

LED (Light Emitting Diode) is a type of diode that emits light when there is

forward current. (Floyd, 2002).

Manometer could also be referring to a pressure measuring instrument, usually

limited to measuring pressures near to atmospheric. The term manometer is

often used to refer specifically to liquid column hydrostatic instruments. (Encarta,

2007).

Microcontroller consists of an integrated CPU, memory (a small amount of

RAM, program memory, or both) and peripherals capable of input and output. A

microcontroller (also MCU) is a functional computer system-on-a-chip. (Ashby,

2005).

12

Normal Pulse Rate for a healthy adult, while resting, can range from 60 to 100

beats per minute (BPM), although well-conditioned athletes may have a healthy

pulse rate lower than 60 BPM. During sleep, the pulse can drop to as low as 40

BPM; during strenuous exercise, it can rise as high as 150–200 BPM. Generally,

pulse rates are higher in infants and young children. The resting heart rate for an

infant is usually close to an adult's pulse rate during strenuous exercise (average

110 BPM for an infant). (Brueschke, 1993).

Occlusion is an obstruction or a closure of a passageway or vessel. (Brueschke,

1993).

Operational Amplifier which is often called an op-amp is a DC-coupled high-

gain electronic voltage amplifier with differential inputs and, usually, a single

output. (Floyd, 2002).

Pressure is an expression of the force required to stop a fluid from expanding,

and is usually stated in terms of force per unit area. (Encarta, 2007).

Pressure Sensor generates a signal related to the pressure imposed. Typically,

such a signal is electrical, but optical, visual, and auditory signals are not

uncommon. (Encarta, 2007).

PSoC (Programmable System on Chip) is a device, configurable mixed

signal arrays that integrate the microcontroller and related peripheral circuits

typically found in an embedded design. (Ashby, 2005).

Pulse is the rhythmical expansion and contraction of an artery that can be felt

near the surface of the body. It can be palpated in any place that allows for an

13

artery to be compressed against a bone, such as at the neck (carotid artery), at

the wrist (radial artery), behind the knee (popliteal artery), on the inside of the

elbow (brachial artery), and near the ankle joint (posterior tibial artery). The

pulse rate can also be measured by measuring the heart beats directly (the

apical pulse). (Brueschke, 1993).

Relay is essentially an electromagnetic device used to open or close a switch

that controls another circuit. (Alexander and Sadiku, 2003).

Resistor is the simplest passive element. It is a device that has the ability to

resist the flow of electric current that is measured in ohms. It is usually made

from metallic alloys and carbon compounds. (Alexander and Sadiku, 2003).

Solenoid Valve is an electromechanical valve used for liquid or gas controlled

by running or stopping an electric current through the solenoid, which is a coil of

wire, thus changing the state of the valve. (Encarta, 2007).

Stethoscope is an instrument for listening to the internal sounds of the body.

(Brueschke, 1993).

Systole is the contraction of the heart muscle that causes the forceful ejection

of blood into the arterial system. (Brueschke, 1993).

Tachycardia occurs when the pulse rate is above 100 BPM. (Brueschke, 1993).

Transistor is a semiconductor device commonly used for amplification or

switching appliances. (Floyd, 2002).

Voltage Regulator is an electrical device that maintains an essentially constant

output voltage for a range of input voltage or load values. (Floyd, 2002).

14

Chapter 2

REVIEW OF RELATED LITERATURE AND RELATED STUDIES

The concept of doing the system of the design was brought up through

the ideas of the existing studies and principles from related literatures while

conducting the research.

 According to the concepts from the book Blood Pressure Measurements by

Shyam Rithalia, et al. in 2000 stated that indirect measurement is often called as

non-invasive blood pressure measurement. The upper arm, containing the

brachial artery, is the common site for indirect measurement because of its

closeness to the heart and convenience of measurement, although many other

sites may have been used such as forearm or radial artery, finger etc. Distal sites

such as the wrist may give much higher systolic pressure than brachial or central

sites as the result of the phenomena of impedance mismatch or reflective waves

(Saul, 1995). A cuff is normally placed over the upper arm and is inflated to a

pressure greater than the systolic blood pressure. The cuff is then gradually

deflated, while a detector system simultaneously employed determines the point

at which the blood flow restored to the limb.

The author explained non-invasive blood pressure measurement as well

the comparison of upper arm and wrist in getting blood pressure. These

concepts were used and gave the group an idea of implementing the design

using the upper arm as the source of indirect blood pressure measurement.

15

There are two common methods of indirect blood pressure measurement

that we have learned based from the Blood Pressure Measurements book. These

methods were analyzed and studied by the group to determine the method that

is applicable to our design.

 Auscultatory method uses sphygmomanometer, a cuff and a stethoscope.

The stethoscope is placed over the blood vessel for auscultation of the Korotkoff

sounds, which defines the systolic pressure and diastolic pressure. The Korotkoff

sounds are mainly generated by the pulse wave propagating through the brachial

artery. The Korotkoff sounds consist of five phases. The onset Phase I Korotkoff

sounds (first appearance of clear, repetitive tapping sounds) signifies systolic

pressure and the onset of Phase V Korotkoff sounds (sounds disappear

completely) often defines diastolic pressure.

Figure 2.1 Indirect Blood Pressure Measurements

16

 The Figure 2.1 illustrates the methods for indirect blood pressure

measurements. It shows how the pressure wave or sound wave moves during

the process of detecting the blood pressure. The information illustrated was used

in the study to understand the behavior of the signal from the pressure in the

arm cuff during the deflation period at a given pressure.

 In recent years, electronic pressure and pulse monitors based on

oscillometry have become popular for their simplicity of use and reliability. The

measurement principle of the Oscillometric Method is a measurement of the

amplitude of the pressure change in the cuff as it is inflated from above the

systolic pressure. The amplitude suddenly grows larger as the pulse breaks to

the occlusion. This is very close to systolic pressure. As the cuff pressure is

further reduced, the pulsation increase in amplitude reaches a maximum and

then diminishes rapidly. The index of the diastolic pressure is taken where this

rapid transition begins. Therefore, the systolic blood pressure and diastolic blood

pressure is obtained by identifying the region where there is a rapid increase

then decrease in the amplitude of the pulses respectively. An approach using this

technique could start with a cuff placed around the upper arm and rapidly

inflated to about 30 mmHg above the systolic blood pressure, occluding blood

flow to the brachial artery (Rithalia et al., 2000).

 It is important to know on how blood pressure is measured using those

two techniques. The oscillometric method is the technique which was used to the

design because of its simplicity to use. There is no need for a small improvised

17

stethoscope to determine which Korotkoff sound is the systolic and diastolic but

instead a pressure sensor will be used in the arm cuff of the design to determine

the amplitude of the pressure during deflation. This information helped the group

to understand the principles in getting the blood pressure measurements

automatically.

 A study entitled “Development of Automatic Blood Pressure Meter at

Home” by Nan H. Kim, et al. published in Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (1990), it is stated that most

clinical measurements of arterial blood pressure are made by

sphygmomanometer. Automated blood pressure meter has been developed as a

substitute for the manual sphygmomanometer. The design in this study is named

SE-1000 which has been manufactured by Sein Electronic Co. in Korea.

Using oscillometric method and a microcomputer MN175451 the digital

blood pressure meter was developed to measure blood pressure automatically

and the composition of this equipment is divided into three parts such as

hardware, software and specifications how the blood pressure meter is

developed.

Using this article, it helped the group to bring out an idea on how the

design will be developed as shown in Figure 2.2 on page 18.

18

Figure 2.2 Hardware Block Diagram of SE-1000

 The figure above gave the idea about the components that are going to

use for the design. It shows the different components used in SE-1000 such as

micro computer, LCD display, battery, speaker, power supply, motor, solenoid

valve, timer, pressure/frequency converter and cuff. It shows the interaction

between the components and the micro computer that was used. Some of the

components here were applied in the hardware construction of the design.

 The software part in the article explains the controls on the hardware and

processes the input signal. These are the functions of the software of SE-1000

written in the article such as auto zeroing, auto power off, removal of artifacts,

display of the blood pressure and pulse rate readings. These functions that were

stated in the article are used to conceptualize the process and form the

programming part of the design.

19

 The article also gave us the concept of improving the functions of this

study, and helped us to plan on how to record the measurements displayed from

the design. The function of SE-1000 is only to display the readings.

In the article “Oscillometric Blood Pressure Monitor Identification”

published in the journal 30th Annual International IEEE EMBS Conference by

Eduardo C. Pinheiro in year 2008, demonstrated a study and experiment that he

conducted. The experiments were conducted using a wrist-OBPM air pump KOGE

KPM14A, a KOGE KSV05A solenoid valve, the MEASUREMENT SPECIALITIES

1451 pressure sensor and a NATIONAL INSTRUMENTS USB-6008 Multifunction

I/O board with a defined sampling and writing rate of 50 Samples/second.

 The OBPM identification tests were developed connecting the air flow

circuit output to a wrist inflatable cuff, and repeated in a constant volume

reservoir, to perceive the differences in the system behavior induced by the

reservoir inflation.

 This information helped the researchers to know the type of motor and

valve that will be used in the design prototype. The idea of using KOGE as brand

of motor and solenoid valve was also adapted to our design to guarantee the

function of the inflation and deflation process. The motor to be used is important

in producing an air during the inflation process. Every motor has its own

specifications and pressure range. The solenoid valve is also needed to consider

in the design.

20

 Another related study that was used in the design is the article entitled

“Integrating Analog and Digital Signal Conditioning in a Programmable System on

Chip” published by Dennis Seguine from IEEE journal in 2000, it is stated that

sensors are analog and modern communication methods are digital.

Programmable System on Chip (PSoC) mixed signal microcontrollers offer

interconnect and signal processing techniques for the design of very low cost

smart sensors. Interface requirements of the sensors drive the analog design of

the PSoC microcontroller application in multiplexer, amplifier, filter, and digitizing

methodologies to support creation of the basic blocks which can be configured to

meet system needs.

 The group is going to use a pressure sensor that will be interfaced in a

CY8C29466 microcontroller. An example in the article uses a CY8C25xxx type of

PSoC microcontroller. The microcontroller architecture has analog module and

digital module. The analog functions are organized as groups of general purpose

analog blocks that can be configured into a user determined functions. The

controls of these blocks are register based and may be programmed or

reprogrammed by the user at run time. The analog array has twelve

programmable blocks that are connected to direct port inputs, input multiplexers,

column clock resources and output buffers.

 The digital module blocks include preprogrammed functions for basic

timer, counter and pulse width modulator. Flexible interconnect to analog and

21

digital blocks, General Purpose Input/Output (GPIO) and run-time

programmability makes the blocks an essential part of the analog acquisition.

 These concepts about the analog and digital module of the PSoC

microcontrollers helped the group to understand how the analog to digital

conversion takes place after the pressure has been detected by the sensor.

Specialized features in the CPU of the PSoC include a decimator for conversion of

delta sigma Analog-Digital Converter outputs to parallel data. The idea on

interfacing the sensor of the design to a PSoC microcontroller was also learned

from the article.

In our design, the use of PSoC microcontroller offers a unique set of

flexible resources to accomplish sensor interface and system control. The ability

to reprogram analog and digital hardware functionality allows the design to be

implemented in a microcontroller.

22

Chapter 3

DESIGN METHODOLOGY AND PROCEDURES

Design Methodology

The design methodology used is developmental research. It is a process

of finding or developing a better design that has been available. Using this type

of research is important in improving this field of technology. The group research

focused on the different studies from the past up to the present in relation to the

design project. To further understand the design concepts, additional information

and concepts needed were gathered from books, journals and internet. The data

gathered provides a solution to the process of the system. This method helps the

design obtain balance objectives and expectations from the actual results of the

produced design prototype.

Design Procedure

 Figure 3.1 on page 23 shows the process on how the research study is

done. The first step is to identify the problem of the study; the group has

gathered information about the problems that were encountered using the

existing digital blood pressure meter available in the market. After gathering

information, we researched on different related literature and studies through

books, journals and internet to support our design. Using all the articles that we

selected, the group discussed all the concepts that we are going to apply in our

design. We determined the features and functions it will cover. The circuit

diagram was then created, and we gathered all the appropriate components that

23

we are going to use considering its usability and functionality in the design. Since

we already have all the tools and components for our design, the development of

the PSoC based blood pressure monitor was started.

Figure 3.1 Design Procedure Flowchart

Start

Identify the problem with

the existing digital blood

pressure in the market

Gather all related literature

and studies

Are data

sufficient

?

Determine the features and

functions of the design

Design the circuit and gather

the materials needed

Develop the design

Test the design

End

Y

N

24

Design Procedure for Actual Design

 The design started after gathering all the components and information

needed for the development.

 Here are the steps that we followed in creating the design:

1. Develop the PCB layout of the blood pressure monitor using the PCB Wizard

software. Print the PCB layout on acetate.

2. Cut the printed circuit board acetate.

3. Place the acetate with PCB layout on top of the printed circuit board. Expose

it to UV light.

4. Dissolve developer into the right amount of water. Place the printed circuit

board into the solution and wait for a few minutes until the solution reacts

with the PCB.

5. Etch the layout on the printed circuit board.

6. When the layout is visible, wash the PCB with water. Place the etched circuit

board on a ferric chloride to dissolve unwanted copper.

7. Test all the connections of the circuit board using VOM, and check for

continuity. Drill holes for all the proper layout of the components.

8. Mount all the components needed for the design except for the

microcontroller.

9. Solder all the components properly.

10. Make a program for the design using PSoC Express 3.0 or PSoC Programmer

using C language and Assembly language.

25

11. Simulate program in the PSoC Express if all the functions are working and if

there are no errors.

12. Transfer the program on the PSoC microcontroller using a compatible PSoC

Burner device.

13. Mount the microcontroller on the corresponding IC socket on the circuit

board.

14. Place and screw the circuit board inside the casing.

15. Measure the dimensions of the LCD module. Mark the outline on the center

of the cover of the plastic case. Cut the edges on the marked outline, and

position the LCD module, and screw it on.

16. Mark outlines for the push buttons, and AC adaptor slot. Cut holes on the

outlines that fit the components.

17. Place the motor, solenoid valve, relay and batteries inside the case properly.

Make sure to attach each of them by using adhesive.

18. Connect all the ports from the circuit board to the LCD module.

19. Create a hole on the box and attach the arm cuff. Glue it properly so that

there is no opening for the air to leak.

20. Test if the design is working according to its functions. Troubleshoot if

necessary.

Hardware Design

 Figure 3.2 on page 27 is an illustration of the block diagram of the

hardware design. Initially, the user will press the push button to start the

26

operation. The prototype is using CY8C29466 PSoC microcontroller which

triggers the air pump motor to inflate the arm cuff. After the inflation period, the

microcontroller activates the solenoid valve to deflate the arm cuff gradually.

During deflation period, the pressure sensor detects all the pressure change

produced by the pulse beat of the user. The pressure sensor outputs a signal

that travels to the op-amp and will be amplified so that it will not lose the

efficiency of the data. This amplified signal will go to the ADC Module of PSoC

microcontroller to convert the signal from analog to digital. The CY8C29466

handles the process of determining the blood pressure and pulse rate as it is

being stored temporarily to the memory of the microcontroller. After that, the

microcontroller will send a signal to the LCD driver to open the segments of the

I/O ports of the LCD. The results of the readings will be displayed and then

stored to the memory of the microcontroller.

27

Figure 3.2 Block Diagram of Hardware Design

Push Button

CY8C29466

Microcontroller

Solenoid Valve

Op - Amp

Air Pump Motor

Arm Cuff

Pressure Sensor

LCD

Inflate

Deflate

28

List of Materials

Description Quantity Price per unit Total

28 pin CY8C29466-24PXI 1pc Php 360.00 Php 360.00

28 pin IC Socket 1pc Php 8.00 Php 8.00

6V KMP27C Motor pump 1pc Php 180.00 Php 180.00

6V KSV05B Solenoid valve 1pc Php 87.00 Php 87.00

MPS 2000 dip pressure sensor 1pc Php 600.00 Php 600.00

LM324 1pc Php 9.00 Php 9.00

12V SPST Relay 1pc Php 35.00 Php 35.00

12V/1A DC Fuse 1pc Php 12.00 Php 12.00

L7806CV Regulator 1pc Php 12.50 Php 12.50

LCD Module 1pc Php 1,500.00 Php 1,500.00

625-ohm 1/4 watt Resistor 1pc Php 0.50 Php 0.50

125-ohm 1/4 watt Resistor 1pc Php 0.50 Php 0.50

5k-ohm 1/4 watt Resistor 4pcs Php 0.50 Php 2.00

1k-ohm 1/4 watt Resistor 4pcs Php 0.50 Php 2.00

160k-ohm 1/4 watt Resistor 2pcs Php 0.50 Php 1.00

100k-ohm 1/4 watt Resistor 2pcs Php 0.50 Php 1.00

1.6M-ohm 1/4 watt Resistor 1pc Php 0.50 Php 0.50

0.01mF Capacitor 2pcs Php 2.00 Php 4.00

2N3702 pnp Transistor 2pcs Php 5.00 Php 10.00

LED Indicator 1pc Php 0.50 Php 0.50

1N4001 Diode 1pc Php 1.00 Php 1.00

Printed Circuit Board 2pcs Php 50.00 Php 100.00

Push button 4pcs Php 16.25 Php 65.00

Plastic casing 1pc Php 140.00 Php 140.00

Wires 3m Php 1.50 Php 4.50

AC Adaptor 1pc Php 150.00 Php 150.00

Rechargeable AA Battery 5pcs Php 40.00 Php 200.00

Arm cuff 1pc Php 175.00 Php 175.00

Total Price Php 3,661.00

Table 3.1 List of Materials and Cost

29

Hardware Component

 The blood pressure monitor that was designed consists of different

components such as push button, rechargeable battery, pressure sensor,

operational amplifier, air pump motor, solenoid valve, LCD module, resistor,

transistor, relay, voltage regulator and 28 pin PSoC microcontroller.

 The push buttons serve as input for the design. It is used for switching on

and off the power, setting the mode, searching for recorded data and changing

the date and time. The rechargeable batteries are the source of power of the

prototype to make it work. Once the prototype is on and is set to start the

operation, the air pump motor produces air to inflate the arm cuff. The solenoid

valve role is to release the pressure from the arm cuff if it is triggered by the

microcontroller. The pressure sensor is a component which generates a signal

from the pressure change detected in the arm cuff. That signal will be amplified

as it passes through the op amp then it goes to the microcontroller and will be

converted from analog to digital signal. The LCD module utilizes a built-in LCD

driver which is used to activate the segments of the LCD display. Resistors are

used to limit the flow of the electric current in the entire circuit. A relay is used

as a switch in transferring an electric power while charging the device.

Transistors are used as a switch also to drive the positive signal to run the air

pump motor and the solenoid valve. The voltage regulator is used to regulate the

voltage supply for the PSoC and to the components of the entire circuit. The

30

PSoC is the IC that was programmed to call and do the functions of the

components of the entire circuit.

Circuit Design

Figure 3.3 Schematic Diagram of the Design

This figure shows the whole circuitry of the design including the

microcontroller’s connection to the LCD module. There are four push buttons in

the design: Up and Down which can be used to navigate through the stored

readings in the memory and help in setting the time and date; Mode or Set

which is used to invoke the set time and date function and also to start viewing

of the stored readings; Power or Start or Stop which will power on the device,

and start or stop the inflation of the cuff. When the adaptor is plugged or

5.1k

100k

LM78L06 Voltage Regulator

1

3

2
VIN

G
N
D

VOUT

5.1k

2N3702 PNP

LM324 Quad Op Amp

1
2
3
4
5
6
7

11
12
13
14

8
9
10

LCD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A

-

+

KMP27C
AIR PUMP MOTOR

1
2

1k

160k

1m

5.1k

0.01m

SW1_start
1 2

KSV05B Solenoid Valv e
1
2

125

SW2_mode
1 2

DC Jack 12V

1

2
4

1k

SW4_dec
1 2

PSOC_PDIP

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

MPS2000 DIP Pressure Sensor

5
3

61

4
2

625

SW3_inc
1 2

12V/1A DC FUSE

1k

10k

LCD MODULE

1.6M

5.1k

LED

1N4001

100k
2N3702 PNP

RELAY SPST

4
3

1
2

1k

0.01m

7.5V BATTERY

1
2

160k

160k

31

connected on the power outlet, the circuit will automatically get the regulated

current from the adaptor while charging the battery. If not plugged, the circuit

will get electric current from its rechargeable battery. See Figure 6.1 for the

enhanced version of the circuit diagram.

Hardware Implementation

 In the implementation of the circuit design, a 6V voltage regulator is used

to control the voltage coming from either the DC voltage from the adaptor (while

the device is charging), or from the battery (while operating on battery power).

The output of 6V is used to power other components such as the solenoid valve,

the air pump motor, the pressure sensor, the operational amplifier, and the LCD

module. A voltage divider circuit, composed of a 125 ohm and a 625 ohm

resistor, is used to obtain a 5V input for powering the PSoC. The computation of

the voltage is shown below.

The typical PSoC input current is 8mA, at input voltage of 5V:

 Where Vin is the input voltage coming from the 6V voltage regulator, and

Vout is the voltage used for powering the PSoC.

32

Software Design

 The program was created using the free software of the Cypress

Company for the beginners. PSoC Express 3.0 is the software that we have used

in developing the program. The software is designed for the PSoC

microcontroller to handle the process of getting blood pressure up to the

function of displaying the reading. The software was created by selecting all the

components needed for the design in the PSoC Express 3.0; and was developed

using C Language. Assembly Language is also used in doing the software, a low-

level language that implements numeric machine code since port addressing is

very important to make all the components working.

Software Component

 PSoC Express is the development tool that we used to develop a

microcontroller-based design. Due to its features, we are able to create, simulate

and program the software for our design. Assembly language and C Language

are the languages that we used.

System Flowchart

The system flowchart of the design project is illustrated in Figure 3.4 on

page 34. It shows how the operation of the system works under different

conditions.

To start the system, press and hold the power button to switch on the

device. There are two operations that a user can choose from: to get blood

33

pressure reading or to recall previous reading. An option to configure the date

and time can be done before starting the operation.

If the user chooses an operation to get blood pressure reading, wrap the

arm cuff at the upper arm and press start button; inflation of the arm cuff will

follow. Anytime during this process, the user may stop the inflation by pressing

the stop button. Upon reaching the required pressure, it will start to deflate

gradually. The systolic and diastolic pressures, as well as the pulse rate, are

detected and calculated until the arm cuff deflates completely. Readings will be

displayed and then will be stored in the memory of the microcontroller.

If the user chooses an operation to recall previous reading, press the

mode button and select which memory module. Previous readings can be viewed

using the up and down buttons.

The system will still continue working every after operation unless the

user chose to turn off the device by pressing and holding the start button. The

device automatically switches off when left idle for a few minutes.

34

Figure 3.4 System Flowchart of the Design Prototype

START

Set date

and

time?

Press Setup

Configure date

and time

Turn on the device

Get BP

reading?

Press Start

Arm cuff will inflate

Recall

previous

reading?

Press Mode to select

memory module

Press Up and Down to

view previous readings Arm cuff will deflate

Calculate systolic,

diastolic and pulse

rate

Display systolic,

diastolic and pulse

rate reading

Save readings

N

Y

Y
Y

N N

END

Turn off

the

device?

N

Y

35

Prototype Development

Figure 3.5 Actual Photo of the Prototype

 Figure 3.5 show the actual picture of the PSoC based Blood Pressure

Monitor. It shows here how each component is properly placed inside the case.

The arm cuff is connected outside of the case and cannot be detached. The

components of the design were tested and chosen according to its function.

After doing all research and study, the ideas came in and were applied through

developing the correct circuit and program for the design. Testing and

troubleshooting were conducted to make this design working correctly. The

reliability and accuracy are the main features that we considered accordingly.

36

CHAPTER 4

TESTING, PRESENTATION AND INTERPRETATION OF DATA

 Majority of the concepts behind the design are generally based on many

of the existing types of blood pressure monitoring devices that are currently

available in the market. Therefore, it is necessary to test whether the device

would yield similar results as compared to the existing ones. We are to test the

design prototype for its accuracy, reliability, and efficiency. This chapter covers

all the tests done and the discussions of the results, as well as the significance

to the study.

Testing of Accuracy

 It is very important to determine how accurate the design prototype is

when obtaining results. This test is conducted to prove that the accuracy of the

design is as consistent as any other blood pressure measuring device available in

the market. As for this test, the blood pressure monitor that the prototype will

be compared to is the Full Automatic Kodea® Blood Pressure Monitor, which

also utilizes arm cuff automated inflation and pressure sensor to obtain pulse

readings.

 Before the test is conducted, there were several pointers to obtain

accurate results. When measuring blood pressure, an accurate reading requires

that one should not drink coffee, smoke cigarettes, or engage in strenuous

exercise for 30 minutes before taking the reading. A full bladder may have a

small effect on blood pressure readings, so if the urge to urinate exists, one

37

should do so before the reading. For 5 minutes before the reading, one should

sit upright in a chair with one's feet flat on the floor and with limbs uncrossed.

The blood pressure cuff should always be against bare skin, as readings taken

over a shirt sleeve are less accurate. During the reading, the arm that is used

should be relaxed and kept at heart level, for example by resting it on a table

(National Heart, Lung and Blood Institute. Tips for having your blood pressure

taken.). The following procedures are done for testing the accuracy of the

prototype device:

1. Choose four random persons to be the test subjects.

2. Gather information about each test subject through a simple interview.

3. Make necessary preparations before obtaining the readings. Refer to

Appendix H: User’s Manual for step-by-step procedures.

4. After each reading, rest the test subject for five minutes before

performing another reading.

5. After obtaining ten readings, follow the same procedures to get results

using the Kodea® BPM.

6. Follow the same procedures for all test subjects.

7. Compute for the average of the systolic, diastolic, and pulse rate readings

for both devices respectively.

8. Compute for the percentage difference and analyze the results.

 There are certain assumptions that should first be considered when

conducting the test. The readings are determined to be correct, or at least

38

reliable, based on the classification of blood pressure. The following table

indicates how the readings are being classified according to WHO (World Health

Organization).

Category Systolic, mmHg Diastolic, mmHg

Optimal less than 120 or less than 80

Normal less than 130 or less than 85

High Normal 130 – 139 85 – 89

Stage 1
Hypertension

140 – 159 90 – 99

Stage 2
Hypertension

160 – 179 100 - 109

Stage 3
Hypertension

greater than or equal to 180 greater than or equal to 110

Table 4.1 Classification of Blood Pressure Reading for Adults

There are many physical factors that influence arterial pressure. Each of

these may in turn be influenced by physiological factors, such as diet, exercise,

disease, drugs or alcohol, obesity, excess weight and so-forth. Therefore, to tell

whether the readings are acceptable, we determined physical information on the

test subjects, as well as their medical background. This is to distinguish if the

readings are still in accordance with these physical factors.

There are four different persons to undertake the tests. Two of which has

been determined to have medical illness which is critical in the analysis of the

results. The following tables show the systolic and diastolic readings of the test

subjects, as well as the pulse rate readings. For comparison, the readings from

the prototype and from the Kodea® BPM are made adjacent in each table. A

total of ten readings shall be taken from each test subjects. Since the blood

39

pressure readings vary from time to time, we shall take the average of the ten

readings to determine the most accurate value of the reading.

The first test subject is a 53 year-old female, weighing 100 pounds,

standing at 4-feet-3-inches, with no known medical disorder.

Test Subject A
Prototype Kodea® BPM

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

111 73 61 112 70 62
104 61 60 114 71 62
108 67 59 110 70 61
112 70 64 115 72 63
117 77 62 111 69 61
116 70 60 115 74 63
112 65 58 109 67 60
118 77 69 112 70 62
115 71 65 113 71 62
108 70 58 112 70 62

Table 4.2 Test Results of Test Subject A

 The second test subject is a 25 year-old female, weighing 105 pounds,

standing at 5-feet, also without any known medical disorder.

Test Subject B
Prototype Kodea® BPM

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

103 69 81 107 67 85
100 66 88 101 63 87
103 70 84 113 72 84
109 69 85 107 67 83
107 66 84 108 67 88
103 72 81 104 64 85
113 66 80 111 71 86
114 74 89 107 67 85
105 66 86 105 68 84
109 68 84 107 67 85

Table 4.3 Test Results of Test Subject B

40

 As observed, the test results for both test subjects A and B have been

identified to be in the optimal category, which shows no hint of hypertension

conditions. That is, the systolic and diastolic readings are all below 120 and 80

respectively for both test subjects. This supports the fact that both test subjects

are in healthy condition.

 Moreover, all readings obtained from both blood pressure monitors

indicate only a very minor differential compared to the readings from each other.

When averaged, the prototype test results yield 112.1 over 70.1 with average

pulse rate of 61.6, while the branded BPM test results yield 112.3 over 70.4 with

average pulse rate of 61.8 for the test subject A. The prototype test results yield

106.6 over 68.6 with average pulse rate of 84.2, while the branded BPM test

results yield 107.0 over 67.3 with average pulse rate of 85.2 for the test subject

B. There is only a differential of less than 1.0 mmHg obtained for the averaged

value of blood pressure readings.

 The next test subject is a 24 year-old male, weighing 144 pounds,

standing at 5-feet-4-inches, and is known to have developed an asthmatic

condition.

41

Test Subject C
Prototype Kodea® BPM

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

134 81 68 126 86 64
131 81 65 128 79 62
127 73 61 135 77 61
123 73 65 128 77 68
125 79 68 127 83 67
137 88 67 128 85 72
129 87 66 127 85 73
128 75 71 136 84 71
131 85 66 136 84 72
130 77 69 128 85 72

Table 4.4 Test Results of Test Subject C

 The test results for test subject C yielded a more distinct range of values

and are observed to be above the normal readings. The test subject has been

identified to be at the High Normal category, in which the readings are

considered to be at pre-hypertension level. The readings may have been

influenced by the condition of the test subject of having asthma.

 Similarly from the results of the previous test subjects, the readings from

both blood pressure monitor indicate a very minimal differential. When

averaged, the prototype test results yield 129.5 over 79.9 with average pulse

rate of 66.6, while the branded BPM test results yield 129.9 over 82.5 with

average pulse rate of 68.2 for the test subject. There is a differential of 2.6

mmHg obtained for the averaged value of the blood pressure readings.

The last test subject is a 62 year-old male, weighing 140 pounds,

standing at 5-feet-4-inches, and is known to have diabetes.

42

Test Subject D
Prototype Kodea® BPM

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

140 92 85 138 82 78
136 88 84 140 84 80
136 86 84 140 85 81
144 90 84 139 87 81
145 92 88 140 90 80
140 92 84 142 90 86
134 86 80 139 88 83
138 89 79 141 90 84
143 90 85 140 88 85
138 86 82 141 89 85

Table 4.5 Test Results of Test Subject D

The test results for test subject D yielded the highest range of values and

are observed also to be above normal readings. The test subject has been

identified to be between the High Normal category and the Stage 1

Hypertension category. The readings may have been influenced by the condition

of the test subject of having diabetes.

 The readings for the test subject from both blood pressure monitor also

indicate a very minimal differential. The prototype test results yield an average

of 139.4 over 89.1 with average pulse rate of 83.5, while the branded BPM test

results yield an average of 140.0 over 87.3 with average pulse rate of 82.3 for

the test subject. There is a differential of 1.8 mmHg obtained for the averaged

value of the blood pressure readings.

 Having obtained these data, we can determine the accuracy of the

prototype as compared to the branded BPM. Table 4.6 shows the tabulated

values of the averaged readings for the four test subjects.

43

Test
Subject

Prototype Kodea® BPM

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

Systolic
(mmHg)

Diastolic
(mmHg)

Pulse
Rate

A 112.1 70.1 61.6 112.3 70.4 61.8
B 106.6 68.6 84.2 107 67.3 85.2
C 129.5 79.9 66.6 129.9 82.5 68.2
D 139.4 89.1 83.5 140 87.3 82.3

Table 4.6 Computed Average of Test Results

The following are the formulas used to obtain the average values:

The formula below is used to obtain the percentage difference:

where x1 and x2 indicates the value obtained from the Kodea® BPM and the

value obtained from the prototype correspondingly.

Here is a sample computation of the percentage difference using the

average systolic readings for test subject A.

 %

44

Test Subject
Percentage Difference (%)

Systolic Diastolic Pulse Rate

A 0.18 0.43 0.32
B 0.37 1.91 1.18
C 0.31 3.20 2.37
D 0.43 2.04 1.45

Table 4.7 Computed Percentage Errors for Accuracy

 The largest percentage difference computed based on the table is at

3.20%, the percentage difference obtained for the diastolic pressure of test

subject C. This basically means that the PSoC-based Blood Pressure Monitor

prototype operates at 96.80% accuracy compared to the Kodea® BPM.

 Since the Kodea® BPM operates at a percentage difference of 3% or a

±5 mmHg differential of blood pressure readings, we may conclude that the

prototype is as accurate as the market-based BPM based on its specifications.

Testing of Reliability

 The design prototype may be operated either while on battery supply, or

while the device is being charged. It is necessary to determine whether the

device, while being charged, behaves and functions similarly when operating on

battery supply. This is to prove that the direct connection to the power outlet of

220V does not affect the operation of the system.

 Similar assumptions from the previous test conducted are to be followed.

The following procedures are done for testing the reliability of the prototype

device:

1. Choose ten random persons to be the test subjects.

45

2. Make necessary preparations before obtaining the readings. Refer to

Appendix H: User’s Manual for step-by-step procedures. Make sure that

the battery of the device is charged before operating.

3. After the first reading, rest the test subject for five minutes before

obtaining the second reading.

4. Record the average of the two readings.

5. Follow the same procedures for all the test subjects.

6. Do the same procedures, this time connect the adaptor to the device and

the power outlet. This allows the device to operate while being charged.

7. Compute for the percentage difference and analyze the results.

By following these procedures, we have come up with these results:

Test
Subject

Results While Operating
on Battery Supply

Results While Charging

Systolic,
mmHg

Diastolic,
mmHg

Systolic,
mmHg

Diastolic,
mmHg

1 97 63 95 65
2 124 88 127 85
3 121 92 118 95
4 132 92 130 90
5 127 89 130 93
6 112 70 120 70
7 118 84 110 81
8 123 87 118 90
9 127 94 125 92
10 130 80 132 79

Table 4.8 Test Results for Reliability Testing

Having obtained these data, we can determine the reliability of the

prototype while being charged compared to when the device is being operated

on battery supply. The reliability of the design prototype is measured according

46

to the percentage difference of the readings. The formula below is used to

obtain the percentage difference:

where the x1 and x2 is assumed to be the values obtained from the results while

the prototype operates on battery supply and the values obtained from the

results while prototype is being charged respectively.

Here is a sample computation of the percentage difference using the

systolic values of the first test subject.

 %

Test Subject
Percentage Difference (%)

Systolic Diastolic

1 2.08 3.13
2 2.39 3.47
3 2.51 3.21
4 1.53 2.20
5 2.33 4.40
6 6.90 0.00
7 7.02 3.64
8 4.15 3.39
9 1.59 2.15
10 1.53 1.26

Table 4.9 Computed Percentage Differences for Reliability

The largest percentage difference computed based on the table is at

7.02%, the percentage difference obtained for the systolic pressure of sixth test

subject. This basically means that the PSoC-based Blood Pressure Monitor

prototype operates at 92.98% accuracy while being charged compared to when

the prototype operates on battery supply.

47

Chapter 5

CONCLUSION AND RECOMMENDATION

Conclusion

 A Programmable System on Chip based Blood Pressure Monitor was

created. The design prototype was tested for its accuracy, reliability, and

efficiency. The design prototype has been determined to operate at an accurate

percentage as compared to a similar blood pressure monitor available in the

market.

 The design prototype is capable of accurately reading systolic reading,

diastolic reading and pulse rate reading. The prototype is successfully designed

to be able to store the readings into four different memory modules that contain

the date and time it was taken. This functionality was incorporated into the

design for the user to have future reference of the previous readings.

 The design prototype is also capable of operating using either a battery

supply or a direct power supply as its main power source. The design

implements the concept of a rechargeability function, through the use of

rechargeable batteries. The battery supply can be recharged when a direct

power supply is used by the circuit. The hardware implementation utilizes a relay

to toggle operation while recharging the battery supply.

Recommendation

There could be further improvements or studies on this design. One way

to innovate this is by creating a sugar level monitor aside from its main function,

48

which is getting the blood pressure of a person. A detachable arm cuff can also

be implemented in this design so that it will not be limited to a specific arm

circumference range. Lastly, it is also recommended to study the process on

how a user creates a personal profile for storing their own readings properly.

49

BIBLIOGRAPHY

Alexander, Charles K. and Sadiku, Matthew N.O. (2003). Fundamentals of

Electric Circuits, 2nd Edition, McGraw-Hill, New York.

Ashby, Robert (2005). Designer’s Guide to the Cypress PSoC, Newnes, MA.

Brueschke, Erich E. M.D. (1993). The World Book Rush-Presbyterian St. Luke’s

Medical Center Medical Encyclopedia, 6th edition, World Book, Inc., Chicago, IL.

Floyd, Thomas L. (2002). Electronic Devices, 6th Edition, Pearson Education,

Inc., publishing as Prentice Hall, New Jersey.

Fortmann, S.P. M.D. and P. Breitrose M.A. (1996). The Blood Pressure Book, 4th

Edition, Bull Publishing, Boulder, Colorado.

Rithalia, Shyam, et al. (2000). Blood Pressure Measurement, CRC Press LLC.

50

APPENDIX A

Circuit / Schematic Diagram

5
1

5
.1
k

1
0
0
k

L
M
7
8
L
0
6
 V
o
lt
a
g
e
 R
e
g
u
la
to
r

1

3

2
V
IN

GND

V
O
U
T

5
.1
k

2
N
3
7
0
2
 P
N
P

L
M
3
2
4
 Q

u
a
d
 O
p
 A
m
p

1 2 3 4 5 6 7

1
1
1
2
1
3
1
4

891
0

L
C
D

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

A -+

K
M
P
2
7
C

A
IR

 P
U
M
P
 M
O
T
O
R

1 2

1
k

1
6
0
k

1
m

5
.1
k

0
.0
1
m

S
W
1
_
s
ta
rt

1
2

K
S
V
0
5
B
 S
o
le
n
o
id
 V
a
lv
e

1 2

1
2
5

S
W
2
_
m
o
d
e

1
2

D
C
 J
a
c
k
 1
2
V

1 24

1
k

S
W
4
_
d
e
c

1
2

P
S
O
C
_
P
D
I
P

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

2
8
2
7
2
6
2
5
2
4
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
1
5

M
P
S
2
0
0
0
 D

IP
 P
re
s
s
u
re
 S
e
n
s
o
r

5
3

6
1

4
2

6
2
5

S
W
3
_
in
c

1
2

1
2
V
/1
A
 D

C
 F
U
S
E

1
k

1
0
k

L
C
D

M
O
D
U
L
E

1
.6
M

5
.1
k

L
E
D

1
N
4
0
0
1

1
0
0
k

2
N
3
7
0
2
 P
N
P

R
E
L
A
Y
 S
P
S
T

4
3

12

1
k

0
.0
1
m

7
.5
V
 B
A
T
T
E
R
Y

1 2

1
6
0
k

1
6
0
k

F
ig
u
re
 6
.1
 S
c
h
e
m
a
ti
c
 D
ia
g
ra
m
 o
f
P
S
o
C
 b
a
s
e
d
 B
lo
o
d
 P
re
s
s
u
re
 M
o
n
it
o
r

52

Figure 6.2 PCB Layout with components of the design

Figure 6.3 PCB Layout of the design

53

APPENDIX B

Source Code

54

//---

// C main line
//---

#include <m8c.h> // part specific constants and macros
#include "PSoCAPI.h" // PSoC API definitions for all User Modules

#include "driverdecl.h"
#include "CMXSystem.h"
#include "CMXSystemExtern.h"
#include "TransferFunction.h"

#include "cmx.h"
#include "ProjectProperties.h"
#include "Custom.h"

// Channel includes
// ADC_00 Include
#include "CMX_ADC_CHAN.h"

void main()
{
 // Initialize Project
 M8C_EnableGInt; // Turn on interrupts
 I2C_CFG &= 0xFC; // Disable I2C in case
it's not used.
 SystemTimer_Start();
 SystemTimer_SetInterval(SystemTimer_64_HZ);
 SystemTimer_EnableInt();

 // Initialize Channels
 // ADC_00 Initialization
 ADCBUF_Start(3); // Power up ADC Buffer PGA
 ADC_Start(3); // Power up ADC
 AdcScanReset(); // Initialize ADC scanner
 ADC_GetSamples(0); // Turn on GetSamples

 // Initialize Variables
 SystemVars.ReadOnlyVars.pse_Minus = 0;
 SystemVars.ReadOnlyVars.pse_Mode = 0;
 SystemVars.ReadOnlyVars.pse_Plus = 0;
 SystemVars.ReadOnlyVars.pse_Switch_on = 0;
 SystemVars.ReadOnlyVars.pse_air = 0;
 SystemVars.ReadOnlyVars.pse_air_switch = 0;
 SystemVars.ReadOnlyVars.pse_motor = 0;
 SystemVars.ReadOnlyVars.pse_neg = 0;
 SystemVars.ReadOnlyVars.pse_pos = 0;
 SystemVars.ReadOnlyVars.pse_power = 0;
 SystemVars.ReadOnlyVars.pse_pump = 0;
 SystemVars.ReadOnlyVars.pse_set = 0;

 // Driver instantiations
CMX_DIO_Instantiate(&pse_neg);
CMX_DIO_Instantiate(&pse_motor);
CMX_DIO_Instantiate(&pse_air);

55

CMX_GSWITCH_Instantiate(&pse_Switch_on);
CMX_DIO_Instantiate(&pse_power);
CMX_GSWITCH_Instantiate(&pse_Mode);
CMX_DIO_Instantiate(&pse_set);
CMX_GSWITCH_Instantiate(&pse_Plus);
CMX_DIO_Instantiate(&pse_pos);
CMX_GSWITCH_Instantiate(&pse_Minus);
CMX_mVolts_Instantiate(&pse_pump);
CMX_mVolts_Instantiate(&pse_air_switch);

 // Custom initization code.
 CustomInit();
 // End Initialize Project

 while(1)
 {
 // Sync loop sample rate
#if (SAMPLE_DIVIDER)
 SystemTimer_SyncWait(SAMPLE_DIVIDER, SystemTimer_WAIT_RELOAD);
#endif
 // update input variables
 SystemVars.ReadOnlyVars.pse_Minus =
CMX_GSWITCH_GetValue(&pse_Minus);
 SystemVars.ReadOnlyVars.pse_Mode =
CMX_GSWITCH_GetValue(&pse_Mode);
 SystemVars.ReadOnlyVars.pse_Plus =
CMX_GSWITCH_GetValue(&pse_Plus);
 SystemVars.ReadOnlyVars.pse_Switch_on =
CMX_GSWITCH_GetValue(&pse_Switch_on);
 SystemVars.ReadOnlyVars.pse_air_switch =
CMX_mVolts_GetValue(&pse_air_switch);
 SystemVars.ReadOnlyVars.pse_pump =
CMX_mVolts_GetValue(&pse_pump);

 // Custom Post Input function
 CustomPostInputUpdate();

 // run transfer function and update output variables
 TransferFunction();

 // CustomPreOutputUpdate();
 CustomPreOutputUpdate();

 // set outputs
 CMX_DIO_SetValue(&pse_air,
(BYTE)SystemVars.ReadOnlyVars.pse_air);
 CMX_DIO_SetValue(&pse_motor,
(BYTE)SystemVars.ReadOnlyVars.pse_motor);
 CMX_DIO_SetValue(&pse_neg,
(BYTE)SystemVars.ReadOnlyVars.pse_neg);
 CMX_DIO_SetValue(&pse_pos,
(BYTE)SystemVars.ReadOnlyVars.pse_pos);
 CMX_DIO_SetValue(&pse_power,
(BYTE)SystemVars.ReadOnlyVars.pse_power);
 CMX_DIO_SetValue(&pse_set,
(BYTE)SystemVars.ReadOnlyVars.pse_set);

56

 }
}
//***

//***

// FILENAME: calibration.c
// @Version@
// `@PSOC_VERSION`
//
// DESCRIPTION: This files contains the calibration constansts for
the
// ADC. Currently these values are default values that
// are not calibrated.
//
//---

// Copyright (c) Cypress MicroSystems 2004. All Rights Reserved.
//***

//***

#pragma abs_address:0x7FC0
const int CountsPerVolt = 25206; // ADC gain for 0 to 2.6 volt range.
const int ADC_Offset = 0; // ADC offset in counts

// This array of offsets allows for custom calibration
// of each input that uses the mVolts channel. The offset
// will be in the drivers native units. For the mVolts
// driver it will be in mVolts. For a temperature driver
// it will be in tenths of degrees, etc.
const int imVolts_Chan_Offset[8] = {0,0,0,0,0,0,0,0};
#pragma end_abs_address

; Generated by PSoC Designer ???
;
;@Id: boot.tpl#101 @
;==
=======
; FILENAME: boot.asm
; VERSION: 4.15
; DATE: 2 August 2004
;
; DESCRIPTION:
; M8C Boot Code for CY8C29xxx microcontroller family.
;
; Copyright (C) Cypress MicroSystems 2000-2004. All rights reserved.
;
; NOTES:
; PSoC Designer's Device Editor uses a template file, BOOT.TPL, located
in
; the project's root directory to create BOOT.ASM. Any changes made to
; BOOT.ASM will be overwritten every time the project is generated;
therfore
; changes should be made to BOOT.TPL not BOOT.ASM. Care must be taken
when

57

; modifying BOOT.TPL so that replacement strings (such as
@PROJECT_NAME)
; are not accidentally modified.
;
;==
=======

include ".\lib\GlobalParams.inc"
include "m8c.inc"
include "m8ssc.inc"
include "memory.inc"

;--------------------------------------
; Export Declarations
;--------------------------------------

export __Start
export __bss_start
export __data_start
export __idata_start
export __func_lit_start
export __text_start
export _bGetPowerSetting
export bGetPowerSetting

;--------------------------------------
; Optimization flags
;--------------------------------------
;
; To change the value of these flags, modify the file boot.tpl, not
; boot.asm. See the notes in the banner comment at the beginning of
; this file.

; Optimization for Assembly language (only) projects and C-language
projects
; that do not depend on the C compiler to initialize the values of RAM
variables.
; Set to 1: Support for C Run-time Environment initialization
; Set to 0: Support for C not included. Faster start up, smaller code
space.
;
C_LANGUAGE_SUPPORT: equ 1

; The following equate is required for proper operation. Reseting its
value
; is discouraged. WAIT_FOR_32K is effective only if the crystal
oscillator is
; selected. If the designer chooses to not wait then stabilization of
the ECO
; and PLL_Lock must take place within user code. See the family data
sheet for
; the requirements of starting the ECO and PLL lock mode.
;
; Set to 1: Wait for XTAL (& PLL if selected) to stabilize before
; invoking main

58

; Set to 0: Boot code does not wait; clock may not have stabilized by
; the time code in main starts executing.
;
WAIT_FOR_32K: equ 1

; For historical reasons, by default the boot code uses an lcall
instruction
; to invoke the user's _main code. If _main executes a return
instruction,
; boot provides an infinite loop. By changing the following equate from
zero
; to 1, boot's lcall will be replaced by a ljmp instruction, saving two
; bytes on the stack which are otherwise required for the return
address. If
; this option is enabled, _main must not return. (Beginning with the
4.2
; release, the C compiler automatically places an infinite loop at the
end
; of main, rather than a return instruction.)
;
ENABLE_LJMP_TO_MAIN: equ 0

;--

; Interrupt Vector Table
;--

;
; Interrupt vector table entries are 4 bytes long. Each one contains
; a jump instruction to an ISR (Interrupt Service Routine), although
; very short ISRs could be encoded within the table itself. Normally,
; vector jump targets are modified automatically according to the user
; modules selected. This occurs when the 'Generate Application' opera-
; tion is run causing PSoC Designer to create boot.asm and the other
; configuration files. If you need to hard code a vector, update the
; file boot.tpl, not boot.asm. See the banner comment at the beginning
; of this file.
;--

 AREA TOP (ROM, ABS, CON)

 org 0 ;Reset Interrupt Vector
 jmp __Start ;First instruction executed
following a Reset

 org 04h ;Supply Monitor Interrupt Vector
 halt ;Stop execution if power falls too
low

 org 08h ;Analog Column 0 Interrupt Vector
 // call void_handler
 reti

 org 0Ch ;Analog Column 1 Interrupt Vector

59

 // call void_handler
 reti

 org 10h ;Analog Column 2 Interrupt Vector
 // call void_handler
 reti

 org 14h ;Analog Column 3 Interrupt Vector
 // call void_handler
 reti

 org 18h ;VC3 Interrupt Vector
 // call void_handler
 reti

 org 1Ch ;GPIO Interrupt Vector
 // call void_handler
 reti

 org 20h ;PSoC Block DBB00 Interrupt Vector
 // call void_handler
 reti

 org 24h ;PSoC Block DBB01 Interrupt Vector
 ljmp _ADC_ADConversion_ISR
 reti

 org 28h ;PSoC Block DCB02 Interrupt Vector
 // call void_handler
 reti

 org 2Ch ;PSoC Block DCB03 Interrupt Vector
 // call void_handler
 reti

 org 30h ;PSoC Block DBB10 Interrupt Vector
 // call void_handler
 reti

 org 34h ;PSoC Block DBB11 Interrupt Vector
 // call void_handler
 reti

 org 38h ;PSoC Block DCB12 Interrupt Vector
 // call void_handler
 reti

 org 3Ch ;PSoC Block DCB13 Interrupt Vector
 // call void_handler
 reti

 org 40h ;PSoC Block DBB20 Interrupt Vector
 // call void_handler
 reti

 org 44h ;PSoC Block DBB21 Interrupt Vector
 // call void_handler

60

 reti

 org 48h ;PSoC Block DCB22 Interrupt Vector
 // call void_handler
 reti

 org 4Ch ;PSoC Block DCB23 Interrupt Vector
 // call void_handler
 reti

 org 50h ;PSoC Block DBB30 Interrupt Vector
 // call void_handler
 reti

 org 54h ;PSoC Block DBB31 Interrupt Vector
 // call void_handler
 reti

 org 58h ;PSoC Block DCB32 Interrupt Vector
 // call void_handler
 reti

 org 5Ch ;PSoC Block DCB33 Interrupt Vector
 // call void_handler
 reti

 org 60h ;PSoC I2C Interrupt Vector
 // call void_handler
 reti

 org 64h ;Sleep Timer Interrupt Vector
 ljmp _SystemTimer_ISR
 reti

;--

; Start of Execution.
;--

; The Supervisory ROM SWBootReset function has already completed the
; calibrate1 process, loading trim values for 5 volt operation.
;
 org 68h
__Start:

 ; initialize SMP values for voltage stabilization, if required,
 ; leaving power-on reset (POR) level at the default (low) level, at
 ; least for now.
 ;
 M8C_SetBank1
 mov reg[VLT_CR], SWITCH_MODE_PUMP_JUST | LVD_TBEN_JUST |
TRIP_VOLTAGE_JUST
 M8C_SetBank0

IF (WATCHDOG_ENABLE) ; WDT selected in Global Params
 M8C_EnableWatchDog
ENDIF

61

IF (SELECT_32K)
 or reg[CPU_SCR1], CPU_SCR1_ECO_ALLOWED ; ECO will be used in
this project
ELSE
 and reg[CPU_SCR1], ~CPU_SCR1_ECO_ALLOWED ; Prevent ECO from being
enabled
ENDIF

 ;---------------------------
 ; Set up the Temporary stack
 ;---------------------------
 ; A temporary stack is set up for the SSC instructions.
 ; The real stack start will be assigned later.
 ;
_stack_start: equ 80h
 mov A, _stack_start ; Set top of stack to end of used
RAM
 swap SP, A ; This is only temporary if going to
LMM

 ;---
 ; Set Power-related Trim & the AGND Bypass bit.
 ;---

IF (POWER_SETTING & POWER_SET_5V0) ; *** 5.0 Volt operation

 IF (POWER_SETTING & POWER_SET_SLOW_IMO) ; *** 6MHZ Main
Oscillator ***
 or reg[CPU_SCR1], CPU_SCR1_SLIMO
 M8SSC_Set2TableTrims 2, SSCTBL2_TRIM_IMO_5V_6MHZ, 1,
SSCTBL1_TRIM_BGR_5V, AGND_BYPASS_JUST
 ELSE ; *** 12MHZ Main
Oscillator ***
 IF (AGND_BYPASS)
 ;-
- -
 ; The 5V trim has already been set, but we need to update the
AGNDBYP
 ; bit in the write-only BDG_TR register. Recalculate the register
 ; value using the proper trim values.
 ;-
- -
 M8SSC_SetTableVoltageTrim 1, SSCTBL1_TRIM_BGR_5V, AGND_BYPASS_JUST
 ENDIF
 ENDIF
ENDIF ; 5.0 V Operation

IF (POWER_SETTING & POWER_SET_3V3) ; *** 3.3 Volt operation

 IF (POWER_SETTING & POWER_SET_SLOW_IMO) ; *** 6MHZ Main
Oscillator ***
 or reg[CPU_SCR1], CPU_SCR1_SLIMO
 M8SSC_Set2TableTrims 2, SSCTBL2_TRIM_IMO_3V_6MHZ, 1,
SSCTBL1_TRIM_BGR_3V, AGND_BYPASS_JUST
 ELSE ; *** 12MHZ Main
Oscillator ***

62

 M8SSC_SetTableTrims 1, SSCTBL1_TRIM_IMO_3V_24MHZ,
SSCTBL1_TRIM_BGR_3V, AGND_BYPASS_JUST
 ENDIF
ENDIF ; 3.3 Volt Operation

 mov [bSSC_KEY1], 0 ; Lock out Flash and Supervisiory
operations
 mov [bSSC_KEYSP], 0

 ;---------------------------------------
 ; Initialize Crystal Oscillator and PLL
 ;---------------------------------------

IF (SELECT_32K & WAIT_FOR_32K)
 ; If the user has requested the External Crystal Oscillator (ECO)
then turn it
 ; on and wait for it to stabilize and the system to switch over to
it. The PLL
 ; is left off. Set the SleepTimer period is set to 1 sec to time
the wait for
 ; the ECO to stabilize.
 ;
 M8C_SetBank1
 mov reg[OSC_CR0], (SELECT_32K_JUST | OSC_CR0_SLEEP_1Hz |
OSC_CR0_CPU_12MHz)
 M8C_SetBank0
 M8C_ClearWDTAndSleep ; Reset the sleep timer to
get a full second
 or reg[INT_MSK0], INT_MSK0_SLEEP ; Enable latching of
SleepTimer interrupt
 mov reg[INT_VC], 0 ; Clear all pending
interrupts
.WaitFor1s:
 tst reg[INT_CLR0], INT_MSK0_SLEEP ; Test the SleepTimer
Interrupt Status
 jz .WaitFor1s ; Interrupt will latch but
will not dispatch
 ; since interrupts are not
globally enabled
ELSE ; !(SELECT_32K & WAIT_FOR_32K)
 ; Either no ECO, or waiting for stable clock is to be done in main
 M8C_SetBank1
 mov reg[OSC_CR0], (SELECT_32K_JUST | PLL_MODE_JUST |
SLEEP_TIMER_JUST | OSC_CR0_CPU_12MHz)
 M8C_SetBank0
 M8C_ClearWDTAndSleep ; Reset the watch dog

ENDIF ;(SELECT_32K & WAIT_FOR_32K)

IF (PLL_MODE)
 ; Crystal is now fully operational (assuming WAIT_FOR_32K was
enabled).
 ; Now start up PLL if selected, and wait 16 msec for it to
stabilize.
 ;
 M8C_SetBank1

63

 mov reg[OSC_CR0], (SELECT_32K_JUST | PLL_MODE_JUST |
OSC_CR0_SLEEP_64Hz | OSC_CR0_CPU_3MHz)
 M8C_SetBank0
 M8C_ClearWDTAndSleep ; Reset the sleep timer to
get full period
 mov reg[INT_VC], 0 ; Clear all pending
interrupts

.WaitFor16ms:
 tst reg[INT_CLR0],INT_MSK0_SLEEP ; Test the SleepTimer
Interrupt Status
 jz .WaitFor16ms
 M8C_SetBank1 ; continue boot at CPU Speed
of SYSCLK/2
 mov reg[OSC_CR0], (SELECT_32K_JUST | PLL_MODE_JUST |
OSC_CR0_SLEEP_64Hz | OSC_CR0_CPU_12MHz)
 M8C_SetBank0

IF (WAIT_FOR_32K)
ELSE ; !(WAIT_FOR_32K)
 ; Option settings (PLL-Yes, ECO-No) are incompatible - force a
syntax error
 ERROR_PSoC Disabling WAIT_FOR_32K requires that the PLL_Lock must
be enabled in user code.
ENDIF ;(WAIT_FOR_32K)
ENDIF ;(PLL_MODE)

 ;------------------------
 ; Close CT leakage path.
 ;------------------------
 mov reg[ACB00CR0], 05h
 mov reg[ACB01CR0], 05h
 mov reg[ACB02CR0], 05h
 mov reg[ACB03CR0], 05h

 ;---
 ; Enter the Large Memory Model, if applicable
 ;---
IF (SYSTEM_LARGE_MEMORY_MODEL)
 RAM_SETPAGE_STK SYSTEM_STACK_PAGE ; relocate stack page ...
 mov A, SYSTEM_STACK_BASE_ADDR ; and offset, if any
 swap A, SP
 RAM_SETPAGE_IDX2STK ; initialize other page pointers
 RAM_SETPAGE_CUR 0
 RAM_SETPAGE_MVW 0
 RAM_SETPAGE_MVR 0

 IF (SYSTEM_IDXPG_TRACKS_STK_PP); Now enable paging:
 or F, FLAG_PGMODE_11b ; LMM w/ IndexPage<==>StackPage
 ELSE
 or F, FLAG_PGMODE_10b ; LMM w/ independent IndexPage
 ENDIF ; SYSTEM_IDXPG_TRACKS_STK_PP
ELSE
 mov A, __ramareas_end ; Set top of stack to end of used
RAM
 swap SP, A
ENDIF ; SYSTEM_LARGE_MEMORY_MODEL

64

 ;-------------------------
 ; Load Base Configuration
 ;-------------------------
 ; Load global parameter settings and load the user modules in the
 ; base configuration. Exceptions: (1) Leave CPU Speed fast as
possible
 ; to minimize start up time; (2) We may still need to play with the
 ; Sleep Timer.
 ;
 lcall LoadConfigInit

 ;-----------------------------------
 ; Initialize C Run-Time Environment
 ;-----------------------------------
IF (C_LANGUAGE_SUPPORT)
IF (SYSTEM_SMALL_MEMORY_MODEL)
 mov A,0 ; clear the 'bss' segment to
zero
 mov [__r0],<__bss_start
BssLoop:
 cmp [__r0],<__bss_end
 jz BssDone
 mvi [__r0],A
 jmp BssLoop
BssDone:
 mov A,>__idata_start ; copy idata to data segment
 mov X,<__idata_start
 mov [__r0],<__data_start
IDataLoop:
 cmp [__r0],<__data_end
 jz C_RTE_Done
 push A
 romx
 mvi [__r0],A
 pop A
 inc X
 adc A,0
 jmp IDataLoop

ENDIF ; SYSTEM_SMALL_MEMORY_MODEL

IF (SYSTEM_LARGE_MEMORY_MODEL)
 mov reg[CUR_PP], >__r0 ; force direct addr mode
instructions
 ; to use the Virtual Register
page.

 ; Dereference the constant (flash) pointer pXIData to access the
start
 ; of the extended idata area, "xidata." Xidata follows the end of
the
 ; text segment and may have been relocated by the Code Compressor.
 ;
 mov A, >__pXIData ; Get the address of the flash
 mov X, <__pXIData ; pointer to the xidata area.
 push A

65

 romx ; get the MSB of xidata's
address
 mov [__r0], A
 pop A
 inc X
 adc A, 0
 romx ; get the LSB of xidata's
address
 swap A, X
 mov A, [__r0] ; pXIData (in [A,X]) points to
the
 ; XIData structure list in
flash
 jmp .AccessStruct

 ; Unpack one element in the xidata "structure list" that specifies
the
 ; values of C variables. Each structure contains 3 member elements.
 ; The first is a pointer to a contiguous block of RAM to be
initial-
 ; ized. Blocks are always 255 bytes or less in length and never
cross
 ; RAM page boundaries. The list terminates when the MSB of the
pointer
 ; contains 0xFF. There are two formats for the struct depending on
the
 ; value in the second member element, an unsigned byte:
 ; (1) If the value of the second element is non-zero, it represents
 ; the 'size' of the block of RAM to be initialized. In this case,
the
 ; third member of the struct is an array of bytes of length 'size'
and
 ; the bytes are copied to the block of RAM.
 ; (2) If the value of the second element is zero, the block of RAM
is
 ; to be cleared to zero. In this case, the third member of the
struct
 ; is an unsigned byte containing the number of bytes to clear.

.AccessNextStructLoop:
 inc X ; pXIData++
 adc A, 0
.AccessStruct: ; Entry point for first block
 ;
 ; Assert: pXIData in [A,X] points to the beginning of an XIData
struct.
 ;
 M8C_ClearWDT ; Clear the watchdog for long
inits
 push A
 romx ; MSB of RAM addr (CPU.A <-
*pXIData)
 mov reg[MVW_PP], A ; for use with MVI write
operations
 inc A ; End of Struct List?
(MSB==0xFF?)

66

 jz .C_RTE_WrapUp ; Yes, C runtime environment
complete
 pop A ; restore pXIData to [A,X]
 inc X ; pXIData++
 adc A, 0
 push A
 romx ; LSB of RAM addr (CPU.A <-
*pXIData)
 mov [__r0], A ; RAM Addr now in
[reg[MVW_PP],[__r0]]
 pop A ; restore pXIData to [A,X]
 inc X ; pXIData++ (point to size)
 adc A, 0
 push A
 romx ; Get the size (CPU.A <-
*pXIData)
 jz .ClearRAMBlockToZero ; If Size==0, then go clear RAM
 mov [__r1], A ; else downcount in
__r1
 pop A ; restore pXIData to [A,X]

.CopyNextByteLoop:
 ; For each byte in the structure's array member, copy from flash to
RAM.
 ; Assert: pXIData in [A,X] points to previous byte of flash source;
 ; [reg[MVW_PP],[__r0]] points to next RAM destination;
 ; __r1 holds a non-zero count of the number of bytes
remaining.
 ;
 inc X ; pXIData++ (point to next data
byte)
 adc A, 0
 push A
 romx ; Get the data value (CPU.A <-
*pXIData)
 mvi [__r0], A ; Transfer the data to RAM
 tst [__r0], 0xff ; Check for page crossing
 jnz .CopyLoopTail ; No crossing, keep going
 mov A, reg[MVW_PP] ; If crossing, bump MVW page
reg
 inc A
 mov reg[MVW_PP], A
.CopyLoopTail:
 pop A ; restore pXIData to [A,X]
 dec [__r1] ; End of this array in flash?
 jnz .CopyNextByteLoop ; No, more bytes to copy
 jmp .AccessNextStructLoop ; Yes, initialize another RAM
block

.ClearRAMBlockToZero:
 pop A ; restore pXIData to [A,X]
 inc X ; pXIData++ (point to next data
byte)
 adc A, 0
 push A
 romx ; Get the run length (CPU.A <-
*pXIData)

67

 mov [__r1], A ; Initialize downcounter
 mov A, 0 ; Initialize source data

.ClearRAMBlockLoop:
 ; Assert: [reg[MVW_PP],[__r0]] points to next RAM destination and
 ; __r1 holds a non-zero count of the number of bytes
remaining.
 ;
 mvi [__r0], A ; Clear a byte
 tst [__r0], 0xff ; Check for page crossing
 jnz .ClearLoopTail ; No crossing, keep going
 mov A, reg[MVW_PP] ; If crossing, bump MVW page
reg
 inc A
 mov reg[MVW_PP], A
 mov A, 0 ; Restore the zero used for
clearing
.ClearLoopTail:
 dec [__r1] ; Was this the last byte?
 jnz .ClearRAMBlockLoop ; No, continue
 pop A ; Yes, restore pXIData to
[A,X] and
 jmp .AccessNextStructLoop ; initialize another RAM
block

.C_RTE_WrapUp:
 pop A ; balance stack

ENDIF ; SYSTEM_LARGE_MEMORY_MODEL

C_RTE_Done:

ENDIF ; C_LANGUAGE_SUPPORT

 ;-------------------------------
 ; Voltage Stabilization for SMP
 ;-------------------------------

IF (POWER_SETTING & POWER_SET_5V0) ; 5.0V Operation
IF (SWITCH_MODE_PUMP ^ 1) ; SMP is operational
 ;-
- -
 ; When using the SMP at 5V, we must wait for Vdd to slew from 3.1V
to
 ; 5V before enabling the Precision Power-On Reset (PPOR).
 ;-
- -
 or reg[INT_MSK0],INT_MSK0_SLEEP
 M8C_SetBank1
 and reg[OSC_CR0], ~OSC_CR0_SLEEP
 or reg[OSC_CR0], OSC_CR0_SLEEP_512Hz
 M8C_SetBank0
 M8C_ClearWDTAndSleep ; Restart the sleep timer
 mov reg[INT_VC], 0 ; Clear all pending
interrupts
.WaitFor2ms:

68

 tst reg[INT_CLR0], INT_MSK0_SLEEP ; Test the SleepTimer
Interrupt Status
 jz .WaitFor2ms ; Branch fails when 2 msec
has passed
ENDIF ; SMP is operational
ENDIF ; 5.0V Operation

 ;-------------------------------
 ; Set Power-On Reset (POR) Level
 ;-------------------------------
 M8C_SetBank1

IF (POWER_SETTING & POWER_SET_5V0) ; 5.0V Operation?
 IF (POWER_SETTING & POWER_SET_SLOW_IMO) ; and Slow Mode?
 ELSE ; No, fast mode
 IF (CPU_CLOCK_JUST ^ OSC_CR0_CPU_24MHz) ; As fast as 24MHz?
 ; no, set midpoint
POR in user code, if desired
 ELSE ; 24HMz ;
 or reg[VLT_CR], VLT_CR_POR_HIGH ; yes, highest POR
trip point required
 ENDIF ; 24MHz
 ENDIF ; Slow Mode
ENDIF ; 5.0V Operation

 M8C_SetBank0

 ;----------------------------
 ; Wrap up and invoke "main"
 ;----------------------------

 ; Disable the Sleep interrupt that was used for timing above. In
fact,
 ; no interrupts should be enabled now, so may as well clear the
register.
 ;
 mov reg[INT_MSK0],0

 ; Everything has started OK. Now select requested CPU & sleep
frequency.
 ;
 M8C_SetBank1
 mov reg[OSC_CR0],(SELECT_32K_JUST | PLL_MODE_JUST |
SLEEP_TIMER_JUST | CPU_CLOCK_JUST)
 M8C_SetBank0

 ; Global Interrupt are NOT enabled, this should be done in main().
 ; LVD is set but will not occur unless Global Interrupts are
enabled.
 ; Global Interrupts should be enabled as soon as possible in
main().
 ;
 mov reg[INT_VC],0 ; Clear any pending interrupts which
may
 ; have been set during the boot
process.
IF ENABLE_LJMP_TO_MAIN

69

 ljmp _main ; goto main (no return)
ELSE
 lcall _main ; call main
.Exit:
 jmp .Exit ; Wait here after return till power-
off or reset
ENDIF

 ;---------------------------------
 ; Library Access to Global Parms
 ;---------------------------------
 ;
 bGetPowerSetting:
_bGetPowerSetting:
 ; Returns value of POWER_SETTING in the A register.
 ; No inputs. No Side Effects.
 ;
 mov A, POWER_SETTING
 ret

 ;---------------------------------
 ; Order Critical RAM & ROM AREAs
 ;---------------------------------
 ; 'TOP' is all that has been defined so far...

 ; ROM AREAs for C CONST, static & global items
 ;
 AREA lit (ROM, REL, CON) ; 'const' definitions
 AREA idata (ROM, REL, CON) ; Constants for
initializing RAM
__idata_start:

 AREA func_lit (ROM, REL, CON) ; Function Pointers
__func_lit_start:

IF (SYSTEM_LARGE_MEMORY_MODEL)
 ; We use the func_lit area to store a pointer to extended
initialized
 ; data (xidata) area that follows the text area. Func_lit isn't
 ; relocated by the code compressor, but the text area may shrink
and
 ; that moves xidata around.
 ;
__pXIData: word __text_end ; ptr to extended idata
ENDIF

 AREA psoc_config (ROM, REL, CON) ; Configuration Load &
Unload
 AREA UserModules (ROM, REL, CON) ; User Module APIs

 ; CODE segment for general use
 ;
 AREA text (ROM, REL, CON)
__text_start:

 ; RAM area usage
 ;

70

 AREA data (RAM, REL, CON) ; initialized RAM
__data_start:

 AREA virtual_registers (RAM, REL, CON) ; Temp vars of C compiler
 AREA InterruptRAM (RAM, REL, CON) ; Interrupts, on Page 0
 AREA bss (RAM, REL, CON) ; general use
__bss_start:

; end of file boot.asm

71

APPENDIX C

Actual Photos

72

Figure 6.4 Internal View of the Prototype

Figure 6.5 Top View of the Prototype

73

Figure 6.6 Front View of the Prototype

Figure 6.7 Back View of the Prototype

74

APPENDIX D

28Pin CY8C29466 Datasheet

75

76

77

78

79

80

81

82

APPENDIX E

LM324 Datasheet

83

84

APPENDIX F
MPS-2000 Pressure Sensor Datasheet

85

86

87

APPENDIX G
L78XX Voltage Regulator Datasheet

88

89

90

91

92

93

APPENDIX H

User’s Manual

94

Parts of the Design Prototype

1. LCD Screen

2. Arm Cuff

3. Air Hose

4. Power/Start/Stop Button

5. Mode/Setup Button

6. Up Button

7. Down Button

8. AC Adaptor Slot

1

2

4

6

7

5

8

3

95

Parts of the LCD Display

1. Systolic Reading

2. Diastolic Reading

3. Hour

4. Minute

5. Month

6. Day

7. Memory Module (A,B,C & D)

8. Memory Location (1-30)

9. Pulse Rate Reading

1

2

3 5 6

8

7 9

4

96

Tips before taking a blood pressure measurement

1. Avoid eating, smoking, exercising and bathing for 30 minutes before

taking a measurement. Rest at least 15 minutes before taking a

measurement.

2. Stress raises blood pressure. Avoid taking measurements during stressful

times.

3. Measurement should be taken in a quiet place.

4. Remove tight-fitting clothing from your arm.

5. Seat in a chair with your feet flat on the floor. Rest your arm on a table so

that the cuff is at the same level as your heart.

6. Remain still and do not talk during the measurement.

7. A single measurement does not provide an accurate indication of your

true blood pressure. You need to take several readings over a period of

time. Try to measure your blood pressure at about the same time for

consistency.

8. Wait 2-3 minutes between measurements. The wait time allows the

arteries to return to the condition prior to taking blood pressure

measurement. You may need to increase the wait time depending on your

individual physiological characteristics.

97

Procedure in getting blood pressure reading

1. Wrap the arm cuff into your upper arm well gripped. Be sure to place the

cord a distance of about two fingers above the brachial artery. The grip

should be able to allow at most two fingers be inserted inside the arm

cuff.

2. Press the power button and hold it for a couple of seconds. The LCD

screen will display 0/0 when you first press the power button.

3. To start getting the blood pressure reading, press the start button lightly.

Note. After pressing the start button, the device will automatically pump

air into the arm cuff; expect the cuff to get tighter until it reaches around

190 mmHg.

4. The arm cuff will deflate gradually while the reading in the LCD screen is

decreasing.

5. The LCD will display the systolic reading, diastolic reading and pulse rate

reading.

6. After a few seconds display SA will be seen as a sign that readings are

stored in the memory.

7. After so, remove the arm cuff carefully.

8. To turn the device off, press and hold the power button.

Note: User may press stop button to discontinue the process of getting the

blood pressure reading.

98

Procedure in setting the date and time

1. Press the setup button.

2. The month mode will blink.

3. Press the mode button to select which mode to change such as hour,

minute, month and day.

4. After selecting the mode, use the up and down button to change the

setting.

5. Setting will be saved by pressing the mode button until it goes back to the

month mode and hold for a second.

6. The setting is changed if the mode stops blinking.

Note: Configuring the date and time can only be done before starting the

operation.

Procedure in recalling previous reading

1. Press and hold the power button.

2. Press setup button.

3. The memory location will blink.

4. Press the mode button to select memory module (A, B, C & D).

5. The memory module will blink. (A is the default memory module).

6. Press the up and down button to select from A to D.

7. After selecting the memory module, press mode button to go back to the

memory location mode.

8. Press up and down button to view the readings.

99

Troubleshooting Procedures

Problems Causes and Solutions

No Power.
No Display on the LCD Screen.

Get the AC adapter, plug it to the jack
of the prototype then connect it to the
power outlet. Charge the prototype.

There is a display but cannot start the
operation.
The display is dim.

The power of the battery is insufficient,
charge the prototype.

An ‘EE’ error appears after getting
blood pressure measurement.

An accurate reading cannot be
obtained. The arm cuff in under-
inflated. Wait 15 minutes and measure
again. Try loosening the cuff to allow
blood circulation in your arm while
waiting.

The arm cuff does not inflate after
starting.

The tube inside the case is not
connected to the sensor. Connect the
tube properly.

Measurement values appear too high
or too low.

Blood pressure varies constantly.
Review tips before taking blood
pressure.

The LED does not lit up while using the
AC adapter and charging.

The AC adapter is not properly
connected to the jack. Connect the
adapter properly.

100

Safety Measures

1. Do not spill any liquid or insert any foreign objects
Do not spill any liquids or insert any foreign objects into the PSoC

Based Blood Pressure Monitor or the adapter. If any liquids or foreign
objects enter the system, immediately remove the adapter from the wall
outlet. Continued use could cause fire damage to the system.

2. Do not expose to strong impacts

Do not expose the blood pressure meter to strong impact by
striking the system with other objects, or by dropping it. If the LCD is
damaged, it could cause injury, or if the built in battery pack is damaged
and builds up heat, it could cause burns.

3. Do not use any adapters other than the one suited to the PSoC Based

Blood Pressure Monitor
Be sure to use the adapter suited to this device. Failure to do such

could cause fire or injury.

4. Do not use any power source other than household power.
The adapter can only be used with household power (220 Volts),

such as overseas; it could cause fire or injury.

5. Do not use defective adapter.
Do not use a deformed adapter or one with damaged adapter

prongs. Doing so could cause fire or electric shock.

6. Insert the adapter prongs fully into the wall outlet.
Insert the adapter prongs fully into the wall outlet. If it is inserted

inappropriately, it could cause fire or electric shock.

7. Do not damage the adapter itself and cord.

8. The LCD screen is made of glass. External causes, including striking it with
an object, pushing hard on it or dropping the Blood Pressure Meter could
break it. Take great care when handling it.

9. Although an LCD screen is made using high precision technology, due to

the characteristics of the LCD, there are some dots that do not light up or
that never turn OFF. However, please take note that this is not a defect.

