

Programming with CodeIgniter
MVC

Build feature-rich web applications using
the CodeIgniter MVC framework

Eli Orr

Yehuda Zadik

BIRMINGHAM - MUMBAI

Programming with CodeIgniter MVC

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1160913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-470-4

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

Credits

Authors
Eli Orr

Yehuda Zadik

Reviewers
Jason Hamilton-Mascioli

Muhammad Faisal Shabbir

Acquisition Editor
James Jones

Commissioning Editor
Shreerang Deshpande

Technical Editors
Dylan Fernandes

Dipika Gaonkar

Kapil Hemnani

Copy Editor
Brandt D'Mello

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Deenar Satam

Proofreader
Maria Gould

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Authors

Eli Orr brings over 30 years of experience in the high tech industry, mainly in
software product development. Eli published articles in several magazines such
as Wireless Systems Design, Telephony-Online, CommsDesign, EE Times, and for
various emerging technologies. Currently, Eli is a PHP Advanced Web Application
Developer, focused on CodeIgniter based projects for the last two years for rich
functionality heavy-duty web applications.

Prior to that, as an entrepreneur, Eli established LogoDial Zappix Ltd., and had the
role of CTO and server-side developer. Zappix enables dynamic visualization of
call center voice menus, which are currently available in USA and Israel on iOS
and Android-enabled smartphones.

Prior to that, Eli developed telecom solutions for Unified Communications with
AT&T. Prior to that, Eli developed VoIP developer toolkits as a product manager
with Radvision Ltd. During that period, he was an active member with the ITU-T
Signaling Group 16 for defining VoIP protocol standardization, mainly the H.323.

Prior to that, Eli led development teams with IAI (Israel Aircraft Industries) ELTA
based C and C++ programming languages. Eli can be contacted through his website,
http://EliOrr.com.

Wring a book about the CodeIgniter Framework that I use daily and
love was a great, thrilling challenge for me.

I would like to thank Yehuda Zadik who assisted me in writing this
book as well as the Packt Publishing team for advising and assisting
me through the entire book-writing process. In addition, I would like
to thank Asher Efrati who is a strong CodeIgniter supporter, who
assisted me by reviewing the book drafts and commenting on them.
Finally, I would like to thank my daughter Hila Orr who supported
me in my effort of writing this book.

Yehuda Zadik has over 20 years of experience in the IT industry, where he
mainly specialized in software development based object-oriented programming
(OOP) technologies.

Yehuda has over 8 years of experience developing with PHP OOP and open
source Linux environments for developing web-based applications. Yehuda used
state-of-the-art technologies for building dynamic web-based applications that
were e-commerce enabled as well as social network integrated. Yehuda has a vast
knowledge for integrating third-party plugins for network, mobile, and social
environments' integration. Among the environments, Yehuda integrated with
Facebook API, LinkedIn API, and various others.

Yehuda is an enthusiastic CodeIgniter developer who has been developing rich
functionality and heavy traffic web-based applications over the last two years.
Among Yehuda's clients are several major academic institutes. Yehuda can be
contacted through his website, http://yudazdk.co.il.

Writing this book has been a challenging experience for me. My
purpose was to write a practical book for developers that includes
many examples.

First of all, I would like to thank my family members, my wife,
Elana, and my son, Avishay, for their understanding and support
during the writing of this book.

I would like to thank Eli Orr a lot for assisting me in writing the
book and his helpful and fruitful feedback.

I would like to thank my clients: Omer Weissbein, CEO of Ontxt,
for his advice and support; and Merav Babai, CEO of Pro Man and
a LinkedIn expert, for her LinkedIn tips.

Finally, I would like to thank the Packt Publishing team for advising
and assisting me throughout the book-writing process.

About the Reviewers

Jason Hamilton-Mascioli leads the growth of 77robots.com, the Canadian-based
web development company he founded in 2005. Jason's role is to find and work with
entrepreneurs to produce sustainable online businesses including solutions that aid
early-stage startups.

With over 15 years as a senior web developer, Jason has worked with over 100 online
startups globally, in addition to providing consulting services and mentorship to
early-stage startups and entrepreneurs. For over 6 years, Jason has taught the Building
Database-Driven Websites course at McMaster University Continuing Ed based in
Hamilton, Ontario, Canada.

Muhammad Faisal Shabbir works as a senior software engineer at Strategic
Systems International. Faisal has more than 6 years of extensive experience in
software architecture, design, agile development, and deployment. Faisal completed
his BS (Information Technology) from Virtual University. He can be reached at
faisal215@gmail.com.

Special thanks to my mother, wife, and kids, who pushed me up to
do such activities.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started 7

Installing CodeIgniter 8
Folders overview 9

Mandatory components 9
Example 1 – hello world 10

The controller file 11
The view file 12

Example 2 – passing the complex parameters to a view 12
The controller file 13
The view file 14

Example 3 – the database query by a model rendering results to a view 14
The controller file 15
The model file 16
The view file 16

Example 4 – interactive contact forms 17
The controller file 18
The view file 19

Summary 20
Chapter 2: Configurations and Naming Conventions 21

CI directory tree 22
config.php 22
database.php 27
routes.php 29

Defining and using your own configurations 29
Understanding and using CI naming conventions 30

The main resource type naming rules 30
Controller definition naming rules 31

Table of Contents

[ii]

Example 1 – calling the controller index method 33
Example 2 – calling the controller and calc method without arguments 34
Example 3 – calling the controller and calc method with arguments 34
Example 4 – calling AJAX to an AJAX-oriented method with arguments 36
Loading libraries, models, and helpers 37

Miscellaneous naming conventions 39
Summary 39

Chapter 3: Controller Usage and Scope 41
Scope of the CI controller 43
The user-defined CI controller 44

Extending the CI controller 45
CI controller use cases 46
Example 1 – the default homepage controller 49

The controller file 49
The view file 50
The configuration file 51

Example 2 – sending e-mails with attachments 52
The controller file 52

Example 3 – admin and regular user log in 55
The controller file 56
The model file 59
The database file to upload for this example 60
The login_view view file 60
The login_in_view view file 62

Summary 63
Chapter 4: Libraries 65

The CI libraries' scope and usage 67
Available CI libraries 68

Example 1 – using the built-in libraries 69
The controller file 70
The view file 71

Example 2 – using third-party libraries such as
the Google Maps CI library wrapper 71

The controller file 72
The view file 75

Example 3 – building a library such as the Flickr API wrapper 76
The flickr_wrapper.php library file 77
The flickr_recent.php controller file 82
The flickr_recent_view.php view file 84

Table of Contents

[iii]

Example 4 – the LinkedIn API wrapper 85
Requirements 86
Authentication flowchart 86
The linkedin_handler.php library file 88
The linkedinfo.php controller file 96
The linkedin-me.php view file 101

Summary 105
Chapter 5: Helpers 107

CI helpers' scope and usage 108
Available CI helpers 109

CI system helpers 109
CI third-party helpers 110

Example 1 – using built-in helpers 110
The controller file 110
The view file 111

Example 2 – SSL helper 112
The helper file 112
The controller file 113
The view file 114

Example 3 – building your own helper 114
The helper file 115
The controller file 117
The view file 118

Summary 118
Chapter 6: Models 119

Scope of the CI model 120
The model resource path 120
Loading a model 120
Using model methods 121
Connecting to a database 121
Business logic 122

Object Relational Mapping (ORM) 122
ORM simple operations example 124

Example 1 – a CRUD example 125
The controller file 126
The model file 129
The view file 131

Table of Contents

[iv]

Example 2 – a business logic example 132
The controller file 132
The model file 133
The view file 136

Example 3 – retrieving data from Facebook 136
The controller file 137
The model file 139
The view file 140

Summary 141
Chapter 7: Views 143

Scope of the CI view 144
The CI view resources path 145
The rendering flow 146
View flexibility 147

Accessing the libraries/helpers 148
Forms 148
AJAX 149
Parser configuration issues 152
Integrating jQuery or other client-side libraries 152
Plugins for rendering view 153

Example 1 – HTML5 location powered by Google Maps 156
The controller file 156
The view file 159

Example 2 – user feedback powered by AJAX and the jQuery UI 161
The ajax_handler.php controller file 162
The users_model.php model file 163
The logged_in_view.php view file 165

Summary 168
Appendix 169
Index 171

Preface
This book aims to teach you how to develop web applications efficiently with the
Ellis Labs CodeIgniter platform. The CodeIgniter platform is an object-oriented
Model-View-Controller development platform. For more on MVC, please refer to
http://en.wikipedia.org/wiki/Model-view-controller. The reader of this book
is expected to be familiar with at least the PHP programming language, specifically
with PHP OOP (object-oriented programming) and its usage, as well as with MySQL.

CodeIgniter (referred to as CI in this book) is an Application Development
Framework, a toolkit for people who build websites and web applications using
PHP. CodeIgniter is a smart application development skeleton framework, with
flexible and expandable core powered high performance and low footprint. The
CodeIgniter framework (OSL 3.0 open source license), developed and maintained
by Ellis Labs, powers an echo system of developers across the globe. The first
public version of CodeIgniter was released on February 28, 2006. It got very good
feedback from web application professional developers. During November 2010,
the CodeIgniter development project was added to the well-known GitHub
community projects, and got increasing interest and usage by developers worldwide,
as well as more and more third parties providing more add-ons with a better
maturity and functionality set.

There is a rising trend of web applications based on OOP (object-oriented
programming) frameworks using MVC (Model-View-Controller) development
patterns, described in the next section, for developing advanced web applications.
CodeIgniter is such a framework. It seems that CodeIgniter is continuously increasing
its popularity as it has a simple yet high quality OOP core that enables great creativity,
reusability, and code clarity naming conventions, which are easy to expand (user
class extends CI class), while more third-party application plugins (including views/
controllers/models/libraries/helpers providing application-oriented solutions such
as CMS, shopping carts, or table grid navigators) and add-ons of libraries/helpers are
becoming available.

Preface

[2]

The MVC concept is a development pattern or an application framework for a
computer user interface that separates the representation of information from the
user interacting with it. MVC has been adopted as a successful architecture for web
application developments. The model consists of application data and provides
services to manipulate them. The controller handles business rules and executes
requests to the models and views. The controller mediates between the input, mostly
received from a user interacting with a web browser that executed the rendered
view. The browser runs a received rendered view by the controller through an HTTP
protocol. The controller is the heart of the application. It performs model/database
updates, business logic calculations, renders views to the user, and responds to an
asynchronous AJAX (Asynchronous JavaScript and XML) request sent from the client
side. The view code defines the presentation and user input logic to be rendered by the
controller as HTML and JavaScript to the browser. The browser receives the rendered
view via the HTTP response to be executed locally. The browser executing that content
can present data, such as a mix of text, charts, diagrams, and images.

There are legacy CMS (Content Management System) web development platforms
focused on CMS functionality and maintenance, such as a mature platform named
DRUPAL. It might be very useful for content-oriented projects, but less appealing
if the project aims to develop a new rich set of functionality, that is, web apps with
many inputs and customized UI operations. If the project's requirements involve
a low footprint and fast response/high performance, CodeIgniter is found to have
excellent results.

To sum up in terms of flexibility, code reusability, light infrastructure, enabling
developer creativity, code clarity, highest performance, minimal footprint, and
fast learning curve, CodeIgniter seems to be the best choice. Furthermore, it is
part of a proactive improvement process thanks to the growing developer's
community worldwide.

What this book covers
Chapter 1, Getting Started, introduces the CodeIgniter framework, while initially
getting started with web-based applications.

Chapter 2, Configurations and Naming Conventions, reviews the CI naming convention
rules, style guide, and spirit as well as the mandatory and optional configurations
and usage within a CI project, with several examples. The practice of user-defined
configurations will be reviewed as well.

Chapter 3, Controllers, reviews the CI controller and the user-defined controllers
extending the CI controller. The CI controller class services, role, definition, usage,
and scope will be reviewed with several examples to clarify.

Preface

[3]

Chapter 4, Libraries, reviews the user-defined libraries in a CI framework. Their services,
role, definition, usage, and scope will be reviewed with several examples to clarify.
Several examples for defining libraries and using them will be provided.

Chapter 5, Helpers, introduces you to the CI helpers and user-defined helpers'
reusability value, definition rules, scope, and usage. Several examples for defining
helpers and using them will be provided.

Chapter 6, Models, covers CI models and user-defined models' reusability value,
definition rules, scope, and usage. Several examples for defining the models,
extending the CI model, and using them will be provided.

Chapter 7, Views, explains the CI views concept as the generators for the client-side
visualization and user interaction provided via HTTP. The view of the PHP part and
scope, visual content (HTML/CSS), and program (JavaScript/AJAX/jQuery) for the
client browser will be reviewed. The view's scope, definition, and controller rendering
guidelines with practical practice and tips and tricks will be covered in this chapter.

Appendix, Appendix References, refers to recommended external resources
related to CodeIgniter's formal resources as well as the ECHO system of
the developer's community.

What you need for this book
In order to understand this book's content, the user is required to at least have
PHP programming language experience with some PHP OOP (object-oriented
programming) and MySQL knowledge.

Who this book is for
This book is for PHP web application developers who are interested in developing
applications using OOP MVC concepts and specifically the CodeIgniter platform.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started
This chapter covers the basics of the CI development framework and its usage
by reviewing some fundamental web application examples. We will start with
a basic hello world example and move to an interactive contact-form integration
with a database. We will construct the CI applications by following a step-by-step
method. Throughout this chapter, we need to remember that the CI development
framework is an MVC-based development architecture (for more information, refer
to the Wikipedia definition at http://en.wikipedia.org/wiki/Model-view-
controller).

This chapter will primarily focus on the following topics:

• The CI project directory tree framework
• Configurations (routing and autoloading are covered in this chapter,

while the other issues are covered in Chapter 2, Configurations and
Naming Conventions)

• Example 1: hello world
• Example 2: passing parameters to a view
• Example 3: the database query by a model rendering results to a view
• Example 4: interactive contact forms

By reviewing these examples, we will get the basics of using CI resources.
We will begin by briefly reviewing the CI resources used. Then we will review
a web application code that loads a static view page. Next we will use the model
to retrieve data from a database and show it in a view. Finally, we'll add a view
with a contact form to enter input and save it by calling a controller method into
the database.

Getting Started

[8]

Installing CodeIgniter
First of all, we need to have a hosted PHP server (Version 5.3 or later) and a MySQL
(one of the latest versions) server, where we know the database credentials. Local
database access from the PHP is recommended for simplicity.

Note that the server will operate in a CGI (Common Gateway Interface) fashion in
order to let CI operate. We can have a local web development environment on our
PC or a remote server hosted and dedicated.

Once we've set up a local web development environment, we'll need to download
the latest version of CI, which is Version 2.1.2 at the time of writing this book.
The link to download the latest version is http://codeigniter.com/downloads/.
Now, if we look inside the CI folder, we should see the following directory tree:

codeigniter/
 index.php
 application/
 cache/
 config/
 controllers/
 core/
 errors/
 helpers/
 hooks/
 language/
 libraries/
 logs/
 models/
 third_party/
 views/
 system/
 core/
 database/
 fonts/
 helpers/
 language/
 libraries/

Chapter 1

[9]

Folders overview
The root folder contains the index.php file, which handles all the URI requests.
The index.php file will process them with the CI core, and apply our application
controllers using the models, libraries, and helpers loaded by the controllers and
rendered views, license.txt, which is the CI's license file. .htaccess is used for
configuring the CI routing and removing index.php from the URL. JavaScript,
CSS, and HTML is incorporated into the rendered PHP output and their usage
is elaborated in Chapter 7, Views.

Let's review the folders and their content application.

The application directory folder is the root directory of our main activity project
coding zone. This is the heart of the CI-developed application project.

Mandatory components
Let's take a look at the mandatory components.

• application/config: This folder contains all the CI application
configuration files, which are covered in Chapter 2, Configurations
and Naming Conventions.

• application/controllers: This folder contains all the application
controllers in the CI application project. A controller, as mentioned in the
Preface, is a component in the MVC-design architecture that handles the
request by the user and presents the data shown to the user. A controller in
CI is a class extending a base class of the CI controller. The class methods can
be executed or called with a proper URI. The naming conventions related to
the controller definition and usage will be covered in Chapter 2, Configurations
and Naming Conventions.

• application/views: This folder contains all the view files. A view is the
HTML content executed by the user browser that presents and interacts
with the user. A view can be a webpage or an RSS page.

The following components are not mandatory but are highly recommended:

• application/models: This folder contains all the project model files. A model
is the component of the MVC design architecture, which handles the data
stored in the database. A model in CI is a PHP class that is designed to work
with the information in the database. Chapter 6, Models, will elaborate on the
CI models concept, definition, and usage with several usage examples.

Getting Started

[10]

• application/helpers: This folder contains all the additional helper files to
the CI helpers. They can be third-party or created by the developer. A helper
file is a collection of independent procedural functions in a particular category.
Each helper function performs one specific task, with no dependence on
other functions. Chapter 5, Helpers, will elaborate on the CI helpers concept,
definition, and usage with several usage examples.

• application/libraries: This folder contains all the libraries of the CI
application project created by the developer. A CI library is technically a PHP
class. The scope of the library can be any project resource, such as helpers,
models, controllers, and views. For example, a library can provide Facebook
library API services to simplify the application code for Facebook integration.
Chapter 4, Libraries, will elaborate on the CI libraries concept, definition, and
usage with several usage examples.

• system: This is the root of the CodeIgniter core directory. The system
folder contains important system components in the subfolders, such as
core, database, helpers (built-in system helpers), and libraries (built-in
system libraries).

Do not edit any of these files! Upgrading is much
easier if we don't.

Example 1 – hello world
Initially, we will start with a simple example that displays Hello World on the
rendered web page. This is an example that doesn't use a database.

The URI will be http://ourdomain.com/index.php/hello.

We can eliminate the index.php file from the path to enable a shorter URI;
that is, http://ourdomain.com/index.php/hello.

In order to enable these shorter URIs, we will make configuration changes as
described in Chapter 2, Configurations and Naming Conventions, regarding the
config.php index_page setting in config.php.

We will build the following two scripts:

• Controller class: application/controllers/hello.php
• View script: application/views/helloview.php

Chapter 1

[11]

In this example, we use the default configuration. For more information about
configurations, refer to Chapter 2, Configurations and Naming Conventions. The
controller in this example passes the parameters that are displayed in the view.

Passing the parameters from the controller to the view
is optional.

The controller file
Here's the code sample of the controller. The controller is responsible for rendering
the view with the parameters, such as mega title and message. For naming the
controller classes, refer to Chapter 2, Configurations and Naming Conventions.

<?php
class Hello extends CI_Controller {
 * Index Page for this controller.
 * Maps to the following URL
 http://example.com/index.php/hello
 - or -
 http://example.com/index.php/hello/index
 - or -
 * since this controller is set as the default controller in
 config/routes.php, it's displayed at http://example.com/
 * So any other public methods not prefixed with an underscore
 will map to /index.php/welcome/<method_name>
 @see http://codeigniter.com/user_guide/general/urls.html
 public function index()
 {
 // Note that $view_params is optional
 // we can use $this->load->view('helloview');as well.
 // if the view doesn't use php variables
 // The $view_params is extracted in the view script to php
 // variables $key = $value
 // In this example three variables will be generated by CI in the
 // view page
 // helloview.php variable: $mega_title
 // value: 'Codeigniter - Hello World'
 // variable: $title value: 'Welcome to
 // Codegniter'
 // variable: $message value: 'Hello World'
 $view_params = array(
 'mega_title' => 'Codeigniter - Hello World',
 'title' => 'Welcome to Codegniter',
 'message' => 'Hello World'
);
 $this->load->view('helloview', $view_params);
 }

Getting Started

[12]

 } // closing the class definition

 /* End of file welcome.php */
 /* Location: ./application/controllers/welcome.php */

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

The view file
The following is the corresponding rendered view that uses the parameters provided
by the controller to render the view to the web page and return it to the user:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title><?php echo $mega_title ?></title>
</head>
<body>
 <div id="container">
 <h1><?php echo $title ?></h1>
 <div id="body">
 <p><?php echo $message ?></p>
</div></div>
</body>
</html>

Example 2 – passing the complex
parameters to a view
In this example, we will show you how to pass and use complex parameters, such as
arrays and object arrays, from the CI controller to the rendered CI view to be used in
the view. You can pass any number of arrays as parameters to a view; you can also
pass objects, such as rows of a query result.

A standard GET parameters URI looks like this: http://ourdomain.com/index.
php/example2/more/?a=1&b=2&c=3.

However, let's remember that in CI the URI is passed in this manner: http://
ourdomain.com/index.php/example2/more/1/2/3. For more information, see
Chapter 2, Configurations and Naming Conventions.

Chapter 1

[13]

Looking at the URI, we will build the controller example2.php with the function
named more with the three parameters passed to it.

We will build the following two scripts:

• The controller class: application/controllers/example2.php
• The view script : application/views/ example2more.php

The controller file
The controller is responsible for rendering the view with parameters such as mega
title and message.

The following is the code sample of the controller:

<?php
class Example2 extends CI_Controller {
 //This function gets parameters and passes them to the view
 //example2more
 //The example url
 //http://ourdomain.com/index.php/example2/more/1/2/3
 so $a = 1, $b = 2, $c = 3
 public function more($a, $b, $c)
 {
 // The parameters in $view_params are extracted in the view
 //example2more.php
 // In this example 2 variables will be generated by CI in the
 //view page example2more.php
 //variable: $mega_title, value: Codeigniter, Passing
 //url parameters to view
 variable: $rows, value: array('a' => $a, 'b' => $b, 'c' => $c);
 $rows = array('a' => $a, 'b' => $b, 'c' => $c);
 $view_params = array('mega_title' => 'Codeigniter -
 Passing url parameters to view 'rows' => $rows);
 $this->load->view('example2more', $view_params);
 }
 }// closing the class definition
/* End of file welcome.php

Getting Started

[14]

The view file
The following is the corresponding rendered view:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title><?php echo $mega_title ?></title>
</head>
<body>
<table>
<tr>
 <td>Key</td>
 <td>Value</td>
</tr>
<?php foreach ($rows as $key => $value): ?>
<tr>
 <td><?php echo $key ; ?></td>
 <td><?php echo $value ; ?></td>
</tr>
<?php endforeach; ?>
</table>
</body>
</html>

Example 3 – the database query by
a model rendering results to a view
In this example, we will show you how the CI controller uses the CI model
to retrieve data from the database and render it to a CI view.

The URL will be http://ourdomain.com/index.php/user.

First, we will have to configure the database settings in the configuration file
application/config/database.php.

We should keep the default database settings unchanged, and only change the
following configuration parameters:

$db['default']['hostname'] = '127.0.0.1';
//In many cases when the hostname's value is 'localhost' the
connection to the database fails.
//Setting the hostname to 127.0.0.1 solves the problem.

Chapter 1

[15]

$db['default']['username'] = 'dbUser;
$db['default']['password'] = 'dbPassword';
$db['default']['database'] = 'dbDataAbse';
$db['default']['port'] = 'dbPort';

The model class will retrieve all the user details from the table users.

For more information on configurations, refer to Chapter 2, Configuration
and Naming Conventions.

We will build the following three scripts:

• The controller class: application/controllers/user.php
• The model file: application/model/usermodel.php
• The view script: application/views/userview.php

The controller file
The controller retrieves the users list from the database via the model and renders
the view with it.

The following is the code sample of the controller:

<?php
class User extends CI_Controller {
 function users()
 {
 //Manually loading the database
 $this->load->database();
 //Loading the model class
 $this->load->model('Usermodel');
 $view_params['mega_title'] = 'Model Example';
 //Calling the model to retrieve the users from the database
 $view_params['users']= $this->Usermodel->get_users();
 $this->load->view('userview', $view_params);
 }
}
/* End of file welcome.php */
/* Location: /application/controllers/welcome.php */

Getting Started

[16]

The model file
The following is the code sample of the model.

<?php
class Usermodel extends CI_Model {
 function __construct()
 {
 // Call the Model constructor parent::__construct();
 }
 //This method retrieves the users list and returns an array of
 //objects each containing user details
 function get_users()
 {
 //Calling CI's database object's method for generating SQL
 //queries.
 $query = $this->db->get('users');
 //returns an array of users objects
 return $query->result();
 }
}

In this example, the CI object database's method is called for generating
and executing the SQL query.

Please refer to the CI database's library at http://ellislab.com/codeigniter/
user-guide/database/index.html.

For more information about models, refer to Chapter 6, Models.

The view file
The view in this example shows the table content received from the controller
containing the users list as defined in the database.

The following is the corresponding rendered view:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title><?php echo $mega_title ?></title>
</head>
<body>
<table>
<tr>

Chapter 1

[17]

 <td>ID</td>
 <td>Name</td>
 <td>Email</td>
</tr>
<?php foreach ($users as $user): ?>
<tr>
 <td><?php echo $user->user_id ?></td>
 <td><?php echo $user->user_fname." ".$user->user_lname; ?></td>
 <td><?php echo $user->user_email ; ?></td>
</tr>
<?php endforeach; ?>
</body>
</html>

Example 4 – interactive contact forms
This example shows how to write a contact form using the CI form helper and the
form_validation library.

For more information about libraries, refer to Chapter 4, Libraries, and for information
about helpers, refer to Chapter 5, Helpers.

The CI controller defines a form validation setup using the form_validation library
and renders a form view that uses the form_validation library setup to apply a
desired validation on the submitted data by the user. If it's a success, the CI controller
will render a view page displaying a success message, otherwise it will render the view
page with the form and the error messages will be displayed.

The URI for this example is http://ourdomain.com/index.php/contact.

In order to perform this example, we shall build the following three scripts:

• The contact form controller class: application/controllers/contact.php
• The view form script: application/views/contactview.php
• The view success page script: application/views/contactsuccess.php

Getting Started

[18]

The controller file
The controller creates a form for adding and editing a product.

For more information, refer to Chapter 7, Views.

The following is the code sample of the controller:

<?php
class Contact extends CI_Controller {
 public function index()
 {
 //Loading the form helper
 $this->load->helper('form');
 //Loading the form_validation library
 $this->load->library('form_validation');
 $view_params['form']['attributes'] = array('id' =>'myform');
 //contact name details
 $view_params['form']['contact_name']['label'] = array
 ('text' => 'Your name:', 'for' => 'name');
 $view_params['form']['contact_name']['field']= array
 ('name' => 'contact_name', 'id' => 'contact_name',
 'value'=>isset($_POST['contact_name']) ?
 $_POST['contact_name'] : '',
 'maxlength' => '100', 'size' => '30', 'class' => 'input');
 //contact name details
 $view_params['form']['contact_email']['label'] = array
 ('text' => 'Your email:', 'for' => 'email');
 $view_params['form']['contact_email']['field'] = array
 ('name' => 'contact_email', 'id' => 'contact_email',
 'value'=> isset($_POST['contact_email']) ?
 $_POST['contact_email'] : '',
 'maxlength' => '100', 'size' => '30', 'class' => 'input');
 //contact message details
 $view_params['form']['contact_message']['label'] = array
 ('text' => 'Your message:', 'for' => 'message');
 $view_params['form']['contact_message']['field'] = array
 ('name' => 'contact_message', 'id' => 'contact_message',
 'value' => isset($_POST['contact_message']) ?
 $_POST['contact_message'] : '',
 'rows' => '10', 'cols' => '100', 'class' => 'input');
 // Setting validation rules
 $config_rules = array(array('field' => 'contact_name',
 'label' => 'Contact Name', 'rules' => 'trim|required'),
 array('field' => 'contact_email', 'label' => 'Contact Email',
 'rules' => 'trim|required|valid_email'));
 $this->form_validation->set_rules($config_rules);
 $this->form_validation->set_rules('contact_message',
 'Contact Message', 'trim|required');
 // Validating the form

Chapter 1

[19]

 if ($this->form_validation->run() == FALSE)
 // failed
 {
 for ($index = 0; $index < count($a_fields) $index++);
 {
 $s_field = $a_fields[$index];
 if (form_error($s_field))
 {
 $view_params['form'][$s_field]['field']['class'] .= '
 error';
 }
 }
 $this->load->view('contactview', $view_params);
 }
 else // Validation succeeded
 {
 $success_params = array('message'=> 'Success');
 $this->load->view('contactsuccess', $success_params);
 }
 }
 }
/* End of file welcome.php */
/* Location: ./application/controllers/welcome.php */

The view file
The view file displays the contact form for receiving data from the user.

The following is the corresponding rendered form view:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Form Example</title>
</head>
<body>
<?php if (validation_errors()) : ?>
 <?php echo validation_errors() ; ?>
 <?php endif; ?>
<?php echo form_open('contact', $form['attributes']) ; ?>
<table>
<tr>
 <td><?php echo form_label($form['contact_name']['label']['text'],
$form['contact_name']['label']['for']);?>
 </td>
 <td><?php echo form_input($form['contact_name']['field']); ?></td>
</tr>
<tr>

Getting Started

[20]

 <td><?php echo form_label($form['contact_email']['label']['text'],
$form['contact_email']['label']['for']);?>
 </td>
 <td><?php echo form_input($form['contact_email']['field']);?>
 </td>
</tr>
<tr>
 <td><?php echo
 form_label($form['contact_message']['label']['text'],
 $form['contact_message']['label']['for']); ?>
 </td>
 <td><?php echo form_textarea($form['contact_message']['field']);?>
 </td>
</tr>
<tr>
 <td colspan="3"><?php echo form_submit('mysubmit', 'Send'); ?></td>
</tr>
</table>
<?php echo form_close() ; ?>
</body>
</html>
The following is the corresponding rendered success view:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Contact sent</title>
</head>
<body>
<div id="container">
 <div id="body">
 <p><?php echo $message ?></p>
 </div>
</div>
</body>
</html>

Summary
In this chapter we have reviewed the CI directory tree, especially the application
folder, which is the heart and soul of any CI project. In the next chapter, we will
review the configurations, such as database and naming conventions that are
essential for the CI project.

Configurations and Naming
Conventions

This chapter initially introduces the CI naming conventions. These conventions
include the rules, style guide, and CodeIgniter naming spirit. The second part of
this chapter will review CI project configurations for built-in resources as well as
user-defined or third-party add-on libraries. Note that we will actually build our
own project code in the subdirectory application described in Chapter 1, Getting
Started, with optionally relative resource directories for our project's self-made
resources, such as CSS / Media / jQuery libraries' resources or third-party
add-ons, extending the base CI downloaded from the Ellis Labs site or GitHub.

We should remember that developing a CI project is done by replacing/expanding
the default provided controllers, views, models, and other resources in a well-defined
OOP fashion. We should extend controllers, models, and add additional views as well
as use defined helpers or libraries. We can add these from third-party libraries
or helpers, or develop new ones for our special project business logic and needs.

The initial step after installing the CI is making the proper configurations for
our project requirements, such as database, session, auto-loaded helpers, and
the libraries we want.

The CI has a set of configuration files defined in the project directory located at
application/config. These configurations are loaded initially whenever we
execute any of our project's CI controllers via a URI call using a browser or issuing
an HTTP request via code. The major configuration files are: config.php, database.
php, autoload.php, and routes.php.

We should review each of the major configuration files with its configuration value,
which includes recommended value, and possible values.

Configurations and Naming Conventions

[22]

CI directory tree
The following is the classic directory tree structure of CodeIgniter:

Note that when we add new plugins and other resources such as bootstrap, new
directories of resources may be added with a name of your choice so that you can
refer to them from the specific resource you are developing using the CI BASEPATH
defined parameter as the directory path to the CI_PROJECT_ROOT directory.

If we add a new directory under the project root, let's say bootstrap, the path for
including resources such as CSS, JavaScript, or images (for example, hello.png)
will be $path = BASEPATH."bootstrap/hello.png".

config.php
The CI main configuration files have the following major configurations:

$config['base_url'] = '';

The default is an empty string so that CI can calculate the base URL of our project
root directory. We shall refer to the base URL in many places in our code, mostly
to execute controllers. To get the base URL, we should call:

$base_url = base_url();
// defined in the URL
// helper mentioned before.

Chapter 2

[23]

The base_url() function in the URL helper function returns the URI string to the
CI project base. For example, if the CI project is developed on a domain named
example.com under a public_html directory named mydev, and we have a
controller named find, a method named stock, and a directory named myprod,
we can call the find or stock method in both the myprod and mydev projects using
base_url():

$url = base_url()."index.php/ find/stock";

In the mydev project, we will get:

$url = "http://example.com/mydev/index.php/find/stock"

In the myprod project, we will get:

$url = "http://example.com/myprod/index.php/find/stock"

Hence, in order to call a controller class named my_class, we use:

$URL = base_url()."index.php/my_class/mymethod";

This will define $url as http://example.com/mydev/index.php/my_class.

To set the index page as a part of the URI path to CI controllers/methods, we use:

$config['index_page'] = 'index.php';

The index.php file is the CI root PHP service that handles all the URI requests. It is
used as part of a path URI to a resource, such as http://mysite.com/fci/index.
php/tables_management/show. However, we can hide the index.php file by setting
CI to hide the index.php file in the URI path for calling the CI resources such as
http://mysite.com/fci/tables_management/show. To do so, we need to perform
the following configuration steps:

1. In the project root directory where the CI index.php file resides, an
HTACCESS type file named .htaccess is added with the following
configuration lines, which reroutes a none index.php URI referring
to the CI project controllers path without index.php:
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)$ index.php/$1 [L]

<Files "index.php">
AcceptPathInfo On
</Files>

http://example.com/mydev/
http://example.com/myprod/
http://example.com/mydev/
http://mysite.com/fci/index.php/tables_management/show
http://mysite.com/fci/index.php/tables_management/show
http://mysite.com/fci/tables_management/show
http://mysite.com/fci/tables_management/show

Configurations and Naming Conventions

[24]

For more on this, refer to http://en.wikipedia.org/wiki/Htaccess.

2. We should make the change to the /config/config.php file so that
index_page will be empty in the URI path string instead of the default
index.php. $config['index_page'] = '';

The .htaccess file does the trick here by adding the index.php file to the URI after
receiving the URI request from the browser and before executing it. The result is that
the user who is browsing will not see it, but it will call the desired resource properly,
in a similar way to how we used index.php:

The language setting is done as follows:

$config['language'] = 'english';

It is recommended that you leave this as default. Note that even if we use other
languages, such as Arabic or Hebrew, it will be fine. We just make sure that our
PHP files are saved as UTF-8 without BOM (byte order mark is a unicode character
that marks the file-encoding method supporting multilanguage schemes; for more
information, refer to http://en.wikipedia.org/wiki/Byte_order_mark to inform
the browser that receives the rendered HTML page to process it as a UTF-8 file.

The exact meaning of this tag is out of the scope of this book and can be learned from
HTML standard.

$config['charset'] = 'UTF-8';

Additionally, it is highly recommended for multi-language support to add the
following line in our view file's HTML header:

<meta http-equiv="Content-Type"
content="text/html; charset=utf-8" />

These settings inform the browser to process the rendered HTML page whose
characters are encoded as UTF-8, which is the most common multilanguage
standard for non-English languages such as Hebrew, Arabic, and Chinese.

Do not touch these settings; it is very useful to support multiple languages.

$config['enable_hooks'] = FALSE;

The preceding configuration, if set to TRUE, will enable us to define hooks into CI
events, where the hooks are defined in the application/hooks directory. Do not
touch these settings unless you have a specific plan for CI event hooks. Note that
the concept of adding hooks to the CI core activity is out of this book's scope.

$config['subclass_prefix'] = 'MY_';

http://en.wikipedia.org/wiki/Htaccess
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Byte_order_mark

Chapter 2

[25]

The preceding configuration will enable us to define naming roles to our library class
name's prefix, in order to distinguish with other default libraries.

$config['permitted_uri_chars'] = 'a-z 0-9~%.:_\-';

The preceding code defines the allowed chars within a URI calling CI resources,
mainly controllers. It is recommended to not touch this setting.

$config['allow_get_array'] = TRUE;

This will enable us to call the controller class methods with parameters, such as in
the example provided earlier.

<?php echo base_url(); ?>index.php/my_handler/calc/5/7

The preceding code will provide the same results as the class method within the
my_handler class itself in the following format:

$Val= $this->calc(5,7);

The following configuration defines if a GET URL query string will be used:

$config['enable_query_strings'] = FALSE;

This configuration, if set to TRUE, will enable us to call controller class methods
with parameters in the GET URL query form:

<?php echo base_url();?>index.php/my_handler/calc.php?a=5&b=7

It is highly recommended to leave this as FALSE, as CI provides a solution to pass
parameters within URI, as shown in the calc example at the beginning of this chapter.

The log threshold for the severity level is such that any event that is of the same or
higher severity level will be logged to CI. The supported threshold levels and their
meanings are as follows:

• 0: Disables logging (error logging turned off)
• 1: Error messages (including PHP errors)
• 2: Debug messages
• 3: Informational messages
• 4: All messages

$config['log_threshold'] = 4;
// 4 is the highest level for all CI events from notice level
// events and worse

Configurations and Naming Conventions

[26]

The preceding configuration will generate error logs according to the
log_threshold () level at /application/logs if the error log was enabled.

Note that enabling the errors log will cause performance reduction in our web
application. Use it only if you must for debugging needs. Otherwise set it to 0.

$config['log_path'] = '';

The default log file path in the CI project is application/logs. Do not touch this
configuration unless you have a clear reason.

The date time format:

$config['log_date_format'] = 'Y-m-d H:i:s';

The default date time format setting is 2012-06-18 14:54:11. It is recommended
to not touch this configuration.

The cache file path:

$config['cache_path'] = '';

The default is application/cache. It is recommended not to touch this
configuration. The session key:

$config['encryption_key'] = '';

This encryption_key must be set with a key in order to use the session class
services. For example:

$config['encryption_key'] =
'cMGy4DSwGUvxYSar4279626HgOn2342efrwerr2TE2RF4G3reg4tF3etf';

An example of the session library usage within a controller and setting a session
variable is as follows:

$uid = 119; // where uid is the id of the loggeing user
$this->session->set_userdata ('this_user_id', $uid);

Getting the session variable in another controller is as follows:

$uid = $this->session->userdata('this_user_id');

The session data storage mechanism is as follows:

$config['sess_use_database'] = FALSE;

If the recommended configuration is set to TRUE, we would use many session
parameters of a large size stored in the associated default database.

Chapter 2

[27]

Session expiration timeout in seconds:

$config['sess_expiration'] = 7200;
// The number of seconds the session will be kept

Additional session configuration parameters can be found in the CI user manual.
Cross-site scripting (XSS) filtering activation/deactivation:

$config['global_xss_filtering'] = FALSE;

This will enable XSS filtering on URI requests sent to the application. Note that
all URI requests are processed initially by the root index.php to analyze the URI
request and issue the proper CI calls. If set to TRUE it will protect URI requests from
XSS type malicious attackers. It is recommended to set it to TRUE even if we reduce
a bit of our application performance.

$config['csrf_protection'] = FALSE;

If set to TRUE the CI will prevent Cross-Site Request Forgery (CSRF/XSRF) attacks.
The risk is when the fraud form is submitted. If we are accepting user data, it is
strongly recommended that CSRF protection should be enabled. Note that when
using AJAX, additional code may be required to enable CSRF protection with AJAX.

database.php
The database configuration enables to define one or more database connections that
can be used by the application. The database configuration is a two-dimensional
array in the following form:

$db['db_entry']['db_connection_param']

By setting the parameters for database default entry, we shall define the
following parameters:

$db['default']['hostname'] = 'localhost';
// note: in some cases '127.0.0.1' must be used instead
// localhost if the database server is in another server use
// URI such as: 'domain.db.NNNNNNN.hostedresource.com' or
// similar – advise our system admin/service provider
// Optional configuration of DB server connection port

$db['default']['port'] = '4009';
// In case our DB server operates on another port
// otherwise we may drop the port config line!

$db['default']['username'] = 'mydefaultdb';

http://www.cgisecurity.com/csrf-faq.html

Configurations and Naming Conventions

[28]

$db['default']['password'] = 'mypass1';
$db['default']['database'] = 'mydatabase1';
$db['default']['dbdriver'] = "mysql";
$db['default']['dbprefix'] = "";
$db['default']['pconnect'] = TRUE;
$db['default']['db_debug'] = TRUE;
$db['default']['cache_on'] = TRUE;
$db['default']['cachedir'] = "";
$db['default']['char_set'] = "utf8";
$db['default']['dbcollat'] = "utf8_general_ci";

By setting the parameters for another database entry named dbentry2, we shall
define the following parameters:

$db['dbentry2']['hostname'] = 'localhost';
$db['dbentry2']['username'] = 'mySecondDB';
$db['dbentry2']['password'] = 'mypass2';
$db['dbentry2']['database'] = 'mySecondDB';
$db['dbentry2']['dbdriver'] = "mysql";
$db['dbentry2']['dbprefix'] = "";
$db['dbentry2']['pconnect'] = TRUE;
$db['dbentry2']['db_debug'] = TRUE;
$db['dbentry2']['cache_on'] = TRUE;
$db['dbentry2']['cachedir'] = "";
$db['dbentry2']['char_set'] = "utf8";
$db['dbentry2']['dbcollat'] = "utf8_general_ci";

There is no need to connect and load the default database as it is done automatically
when loading the database class—however, the call is:

$this->load->database();

Or, for referring to a specific database entry name, it is:

$this->load->database('default');

In order to connect and load the dbentry2 database settings stated earlier, use the
following code:

$this->dbentry2= $this->load->database(dbentry2', TRUE);

To use the default database with the database class library, db, use:

$q1 = $this->db->query ("select * from mytable");

To use the dbentry2 database, use:

$q2 = $this->dbentry2->db->query ("select * from DB2table");

Chapter 2

[29]

routes.php
Define the default controller that will be executed when referred via the URI to the
base_url of the project—let's say http://mydomain.com/myapp so that myapp is a
subdirectory of public_html in the sever and we have home_page_controller.

$route['default_controller'] = "home_page_controller";

When the user issues http://mydomain.com/myapp, due to the route configuration
for the home controller, the URI that CI will issue will be as if the user is referring to
http://mydomain.com/myapp/home_page_controller.

$route['404_override'] = '';

In the preceding example, the default application/errors/error_404.php page
will be executed, in case the user refers to a non-existing project controller, such as
http://mydomain.com/myapp/sadfasdfsdfsdi.

We may decide, for example, to pop-up a message for the non-existing page
and route to the default URI to minimize user inconvenience.

Defining and using your own
configurations
CI enables us to define our own configurations and easily access them via the
config class. For example, with application/config/my_config.php, let's say
we define a parameter in that config file as follows:

$param1 = "value1";

We can easily access our configuration file parameters to load all the parameters
into the array:

$array = $this->config->load('my_config', TRUE);

The second parameter, TRUE, assures us that our configuration parameters will be
defined in an array prefixed with the configuration file name.

Consider: $param1 = $array['my_config']['param1'];
or: $param1 = $this->config->item('param1', 'my_config');.
$param1 will have the value value1 that we have set in the configuration file
that we built.

http://mydomain.com/myapp
http://mydomain.com/myapp
http://mydomain.com/myapp
http://mydomain.com/myapp/home_page_controller
http://mydomain.com/myapp/home_page_controller
http://mydomain.com/myapp/sadfasdfsdfsdi
http://mydomain.com/myapp/sadfasdfsdfsdi

Configurations and Naming Conventions

[30]

Understanding and using CI naming
conventions
The CI naming conventions are essential to understand and use, in order to properly
develop with CI. They enable you to write minimal code using a strict and concise
set of rules.

The full CI naming conventions and style guide can be found at
http://codeigniter.com/user_guide/general/styleguide.html.

The naming conventions refer to the naming of parameters, functions/methods,
class-related PHP file name storing code, project resource paths, and so on. Here
are the specific issues we will review:

• Extending CI resources such as the CI controller or model in our project
resources (class extends class fashion—for example, extending CI_
controller or CI_model; see the examples discussed in the Controller
definition naming rules section)

• Defining views and rendering them by a controller with or without
providing parameters that the view code may use for its operation

• Using existing general reusable resources (can be loaded from any controller
or model and reused by rendered views as well) of CI helpers and libraries,
and defining new CI helpers and libraries

• How-tos, dos, and don'ts for locating files and naming are categorized based
on the defined controllers, models, libraries, and helpers

• Relations between the defined class resource name, containing file name,
loading a defined class a helper or a model, instantiating and calling a calls
method via the URI and calling a class method with parameters

The main resource type naming rules
CI defines "one class one file standard" so that every class of a CI controller extension
and CI model extension of a library class resides in one file. This also applies to
helpers that are a set of functions. Each resource category (controller, library,
model, and view) will be located in a specific directory or its subdirectory.
The most commonly used resource categories are as follows:

• Controllers: These get the client side (for example, browser)
to operate

• Views: These are rendered by the controller and returned to the browser
via HTTP

Chapter 2

[31]

• Libraries: These are called by project resources such as controllers, views,
models, and helpers

• Models: These are called by project resources such as controllers, views,
libraries, and helpers

• Helpers: These are called by project resources such as controllers, views,
libraries, and models

Controller definition naming rules
Let's define the initial project controller to handle some basic services. Note that the
controller class name is My_handler, and must reside in a file named my_handler.
php (all lower case) at /application/controllers in our CI project directory.
Here's the code sample with which to review the naming conventions:

class My_handler extends CI_Controller {
function __construct(){
// Must Call Patent to get all its services inherited
parent::__construct();
}
 function index () {
// executed when referring to My_handlercontroller via URLecho "Hello
World"; }

function calc ($a = 2, $b=2) {
// executed when referring to My_handler/calc via URL echo " $a * $b
= ".$a*$b;
}

functionAJAX_calc () {
// If the request is not an AJAX we shall abort!
//This is done by the

Configurations and Naming Conventions

[32]

if (!$this->input->is_AJAX_request())
exit ('none AJAX calls rejected!');
// see http://codeigniter.com/user_guide/libraries/input.html

$a = $this->input->post('a');// get the posted a parameter
$b = $this->input->post('b');// get the posted b parameter

$result = (int) $a * (int) $b;
$data = array('result'=> $result);
// to add more array parameters: ,'p2' => $p2, 'p3'=>$p3,..
echojson_encode($data);// return the JSON encoded array
return;
}

} // closing the class definition

We call this controller via an HTTP request URL, as an HTTP or HTTPS request.
For example: http://mydomain.com/index.php/my_handler.

Let us review several usage scenarios with this controller class definition. Note that
you can enable CodeIgniter to operate without the index.php file in the path; for
more information, refer to the index.php file issue discussed later in this chapter.
In this section we will review different use cases for the CI controller as well as the
naming rules associated with the controller. The following are the cases that are
mainly used for calling a controller:

• Directly from a browser
• From a view HTML page script using a CI PHP anchor helper embedded

in the page
• From a view HTML page using a JavaScript/jQuery AJAX call embedded

in the page
• From a crontab PHP script using cURL to call a controller

The controller has its own naming rules and usage guidelines that we will review
now. The controller is most commonly called from the view using an anchor tag.
However, it may also be called using AJAX or even a crontab PHP script using a
PHP function file or cURL-based request.

http://codeigniter.com/user_guide/libraries/input.html
http://mydomain.com/index.php/my_handler

Chapter 2

[33]

Example 1 – calling the controller index method
Controllers are mostly called via a user interaction session on a rendered view
processed by a client browser. The controller method is called to issue another
process, such as and AJAX request or processing the request and rendering it back to
the client browser additional view or web page. To define the controller call within
a view definition (application/views), we define an anchor to be executed by the
browser per user request. Note that in these examples we use another URL helper
named anchor().

anchor($uri, $text, $html_attributes);

Note that in order to use the CI anchor helper function, we will initially load the
helper URL via config/autoload.php.

$autoload['helper'] = array('url');

Another way to do this is to load the anchor helper in the controller rendering the
view, where we want to use an anchor:

$this->load->helper('url');

• $URI: The URI path to call a controller or any URI we want to execute
• $text: The anchor label shown to the user to click on
• $html_attributes: Any HTML attributes that can be defined for an HTML

anchor element

An example of the resulting HTML that will be executed by the client-side browser
is as follows:

Press Me

<!-- where $uri = 'myapps.com/myciapp/showme';
$text = 'Press Me';
$html_attributes = "class='mybutton'";-->

Back to our example—the view code part that enables the user to call the defined
controller will look like the following (the PHP portions are with other HTML tags
in a view file):

<?PHP
echo anchor(ase_url().' index.php/my_handler ','Press Me A');
?>

Configurations and Naming Conventions

[34]

Since we only referred to the class name, its constructor and index
method, if defined, will be executed. In case we did not define an
index method for this my_handler controller, the preceding calls
will only instantiate the class using its constructor definition, and if
the index method was defined it will be called as well. In our case, the
index method was defined so it will be called as well.

Example 2 – calling the controller and calc method
without arguments
In this example, we enable the end user to call a specific class method but without
parameters, so that the default method parameters must be used via the browser.

Note that in order to use any CI helper function we need to make sure that it is either
autoloaded or specifically loaded in the controller (for the controller method's usage
or rendered views), library, or model.

<?PHP
echo anchor(base_url().' index.php/my_handler/calc ' ,'Press Me B');
?>

Note that in order to refer to a specific My_handler class method named calc, we
concatenated /calc after the class name. Issuing this view from a browser we will
get a result as follows: 2 * 2 = 4. Why?.

This is simply because we define default values in the receiving controller method.
So that if no parameters are sent as in this example the default ones will be used,
which are both set to 2 and hence the class calc method will output 4.

Example 3 – calling the controller and calc method
with arguments
In this example we enable the end user to call a specific class method with its
parameters via the browser.

<?PHP
echo anchor(base_url().' index.php/my_handler/calc/5/7', 'Press Me
C',);
?>

Issuing this from a browser, we will get: 5 * 7 = 35. Why?.

Chapter 2

[35]

Since we provided 5 as the first parameter and 7 as the second, using the CI URI
naming convention of spectated / to pass parameter values to a called controller
class method. Since we use the parameters as integers for multiplication, PHP casts
them as integers, so we have 5 * 7 which is 35.

Note that in order to call a specific controller method with parameters, we add
the / separator after the method name followed by the parameters, and each
parameter is also separated by /.

To understand this better see the following use cases and their meanings, CI uses
the URI as follows:

When issuing the URI:

<?PHP base_url() ?>/controller_name/method_name/param1/param2/../
paramN

The controller named controller_name will be instanced by CI with the controller
constructor, and then the method method_name will be called with the first
parameter param1, second parameter param2, and so on.

On the PHP controller side, the controller_name method prototype will look
like the following example:

Publicfunction method_name($user, $name, $email, $phone) {

So that $user = param1, $name = param2, and so on.

This is one possible way to get the parameters through a URL or get an array.
In CodeIgniter we don't have to get an array, so we can use the URI class to get the
parameters. For reference, see http://ellislab.com/codeigniter/user-guide/
libraries/uri.html.

If we provide:

<?PHP base_url() ?>/controller_name

The CI will execute only the controller constructor and the index() method,
if the controller has such a method.

If we provide:

<?PHP base_url() ?>/controller_name/method_name

Configurations and Naming Conventions

[36]

The preceding code will be executed without calling the index() method, following
the call of the specific method, method_name. Remember that we shall not use / in
our parameters for such a call and may wish to provide them using URL encode or
other reversible encoding methods. We can also call our controller method using
POST/GET so that we can retrieve the parameter value posted in the class method
in the following way:

$param1_val = $this->input->post('param1');

For example, within the class code we issue an AJAX call to a function as shown
in the next example.

Example 4 – calling AJAX to an AJAX-oriented
method with arguments
In this example we enable the end user to issue an AJAX call to a specific class
method with its parameters enabled via HTTP POST.

<script src="https://AJAX.googleapis.com/AJAX/libs/jquery/1.8.1/
jquery.min.js">
</script>
<script type="text/javascript">

function AJAX_call () {

a_val = $('[name="a"]').val();
b_val = $('[name="b"]').val();
AJAX_url =
'<?PHP echo base_url()."index.php/my_handler/AJAX_calc";?>';
$.AJAX({
type: "POST",
url : AJAX_url,
data: {a : a_val, b : b_val },
dataType: "json",
success: function(data)
{$('#result').html (data.result); }
}); // AJAX Call end
}</script>

<form onsubmit="AJAX_call();">
 <label>Enter A</label><input type="text" name="a" />
 <label>Enter B</label><input type="text" name="b" />
 Result:<div id='result'>The Result Will Be Shown Here</div>
 <input type="submit" value="Calculate" />
</form>

https://ajax.googleapis.com/ajax/libs/jquery/1.8.1/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/1.8.1/jquery.min.js

Chapter 2

[37]

Enter two numeric values for A and B and click on the Calculate button. We will get
the integer casted as A and multiply it by the integer casted as B in the div section
with id='result'.

Loading libraries, models, and helpers
To reuse other libraries, models, and helper capabilities in our controller, we may
also want to load libraries and helpers to our controller or model class to reuse them
for our needs. In case we decide that certain helpers, libraries, or models are useful,
we will have them loaded automatically. We can do so in the autoload configuration
file named autoload.php located at application/config/autoload.php in
our project.

The following is an autoload configuration example:

$autoload['libraries'] = array('template','database','session');

$autoload['helper'] =
array('url', 'utilities');

// Note: url helper provide base_url() service

Remember that if we want to load our helpers or libraries within a certain controller
or model, we can enable it as per the following example:

classMy_handler extends CI_Controller {
function __construct(){
// see previous explanation on this parent call
parent::__construct();

// Loadingspecific helperto enable calling
// its functions in all this
// controller class methods as well as in all
// rendered views.
// Note how the full name and path is abbreviated:

$this->load->helper('ssl_helper');

//Loading and instantiatinga library s
// application/librarues/smart_handler.php to
// enable calling all its class methods as from
// this controller as well from all the rendered
// by this controller.
$this->load->library('smart_handler');
}
function enforce_ssl () {

Configurations and Naming Conventions

[38]

force_ssl();
// A function in the ssl_helper for more see
// helpers chapter
}
function smarty () {
//call a method smart_service in the loaded //smart_handler library
//for more see Libraries chapter
$this->smart_handler->smart_service($param1, $param2);
}
}//End Controller My_handler

We shall call the method that uses the helper as follows:

<?php echo base_url(); ?>index.php/my_handler/enforce_ssl

For smarty method calls in the loaded library, we use the following code:

<?php echo base_url(); ?>index.php/my_handler/smarty

Passing parameters within a controller into a view, application/controllers/
my_controller.php as follows:

$array = array ('a' =>100,'b' =>200);
$view_params = array
('param1' => 'hello world',
'param2' =>$array
);
$this->load_view('my_view', $view_params);

In the view file at application/views: my_view.php, the view can use the provided
parameters in the following method:

<?PHP
echo $param1;// will echo hello world

Note that within the controller it is defined as the param1 key array element, where
the array is sent to the view.

// To get the param2 values we shall perform :

foreach ($params2 as param){
echo param;
// will echo 100 and 200 as $params2['a'] and
// $params2['b'] values
}
?>

Chapter 2

[39]

Miscellaneous naming conventions
CI guidelines have some general naming conventions, such as the following:

• Your classes, functions, and parameters should have short names, and if
constructed from several words they should use the underscore separator
as follows:
// several lowercase words naming with under score
get_file_properties();

• When defining a string value, in case the string does not have a parameter
to evaluate, we shall use a single comma as follows:
$my_string = 'the string';

• In case we want our string to have a parameter such as $name, we write
our string using double quotes:
$name = 'big string parameter';
$my_string = "This is a $name ";

• The Boolean and contacts all should be in upper case:
$this_vale = FALSE;
// While in javascript we shall use true / false
// to distinguish

For more general CI PHP style guide refer to http://codeigniter.com/user_
guide/general/styleguide.html.

Summary
In this chapter we have reviewed and practiced CI naming conventions, rules, and
usage with a set of examples for parameters, classes, controllers, models, helpers,
libraries, and views.

Following the naming conventions we have reviewed CI configurations. We reviewed
the major configuration files, such as config.php, database.php, autoload.php, and
routes.php in depth. We also reviewed how we can use the configuration parameters
while configuring several databases to be used in our project. In addition to it we also
saw how we can add more project-specific configurations.

http://codeigniter.com/user_guide/general/styleguide.html
http://codeigniter.com/user_guide/general/styleguide.html

Controller Usage and Scope
This chapter covers the CI controller scope and the various controller usage
categories with several code examples of web applications. The controllers are the
front-line decision makers of how to process or route a request and how to respond
to actions, such as a rendered view sending back to the browser as an HTML page,
an AJAX response to let the current requesting page update certain selector areas
by the response, or even just to update the database seamlessly. The controllers
use the available models, helpers, libraries, and views to respond to the caller,
be it a web browser URL or a cron process issuing the cURL types POST/GET
requests automatically.

The CI built-in controller behaves like an abstract class in the project scope so any of
our project controllers must be extensions of a built-in CI controller. Our developed
controller will inherit the CI built-in controller capabilities and built-in resources,
such as auto-loaded helpers, libraries, and models, and let us code any specific
services as controller methods to address our project requirements, and rendering
the needs of the view.

As mentioned before, the controller is part of the MVC development framework
that operates with models, and applies business logic, which most commonly
renders a view back to the client web browser to proceed with user interaction.

The web user refers, via a browser, to a URL. In CI, the view is implemented as a call
to a CI controller method. The CI controller method processes the browser request and
sends back a rendered view that becomes a visualized web page to the browsing user.

Controller Usage and Scope

[42]

The web page received from the CI controller is referred to as the rendered controller
view; it may include anchors and buttons for the user to continue the interaction
with the controller. When the user clicks on an anchor in the browser, a call to a
controller is made (the anchor makes an HTTP request to activate a controller call).
In case the user issue a event such as Button clicking, operate scroll bars, and so on
so that this user event will trigger an action using jQuery to activate, for example a
jQuery callback function. The jQuery callback function may issue a call to another
rendering controller, such as :

$(location).attr('href',controller_url_to_call);

Another option is to activate an asynchronous AJAX calls to an AJAX controller.
Such a controller function handles the AJAX request that we will discuss later on.
When AJAX calls returned from the server , their returned data may be used by
client-side JavaScript to, update certain page regions/ (HTML selector/s) of the
web page, for example, when typing a search string and issuing a search button,
the AJAX response will provide the search results to be visualized in the same
web page or will move to another page.

More on controllers in general can be found at http://en.wikipedia.org/wiki/
Model-view-controller.

The following are the chapter topics and subtopics we will cover:

• Scope of the CI controller
• Usage categories:

 ° Rendering views
 ° Controllers serving browser AJAX requests
 ° Controllers serving Linux scheduled cron execution requests

• CI controller expansion and usage()(Refer to Chapter 2, Configurations
and Naming Conventions, for more)

 ° Loading resources of models, helpers, and libraries
 ° Using loaded resources
 ° Calling CI controller methods

• Example 1: the default home page controller
• Example 2: sending e-mails with attachments
• Example 3: admin and regular user log in

We will begin by briefly reviewing the scope and use cases of the application controller
in the CI framework and how we can use them for our project requirement needs.

Chapter 3

[43]

Scope of the CI controller
The CI controller is the hub and brain of the CI MVC that handles the HTTP requests,
such as those from the browser, and operates with other CI resources to respond.
The CI controller scope is described in the following figure and operates with other
CI resources to respond to the requests:

The general flow with the CI controller is shown in the preceding figure. The user's
browser sends the HTTP request to the URL of the CI project. Initially, the requested
URL is processed via the routes based on the routes configuration /conf/routes.php.
For more information, refer to Chapter 2, Configurations and Naming Conventions. The
specific CI controller is instantiated and the specific method is called. The CI method
may be assisted by any of the project resources, such as models, libraries, and helpers
for operations (business logic, and database queries). The CI controller generally uses
a view that defines a web page to be responded to via an HTTP response.

Controller Usage and Scope

[44]

The user-defined CI controller
Each CI project must have one or more user-defined controllers in order to operate.
The user-defined controllers are the starting point of any CI user interaction. Calling
the controller and its methods can be done in several ways. The controller can be
called via project root URI submission to a browser (the project default controller
will be called), by issuing the user anchor from a rendered view, by a client-side
AJAX request for actions (updating page selectors), or even by a crontab (Linux
known scheduler service) scheduled action executed repeatedly as a URI of a certain
controller method.

We can see that the controller scope is a general manager of all the other project
resources, such as models, views, helpers, and libraries, governing all to address
execution requests from the user or a scheduled request.

Any application controller will be located under application/controller/ in the
project directory.

The controller can load other CI project code resources of libraries, models, and
helpers so that they can be accessed directly by the rendered views. This means
that, if a controller loaded a library, the rendered view PHP file can call the library
function in the exact same way as the controller does. The following is the code
resources that the controller can load:

• application/helpers: The helper/s are built-in CI third-party,
or user-defined.

• application/models: The models are most commonly user-defined for the
specific database/s and tables of the specific project, extending the built-in CI
model. Wrapping with CRUD service for specific defined database/s table/s,
but also can be third-party (for example, data mapper extensions that can be
used generically with any database).

• application/libraries: The library can be built-in, third-party,
or user-defined. The library is an Object Oriented PHP class-based service
that can provide some reusable services related to a specific project, or across
many projects. For example, as Flickr, Facebook, or LinkedIn wrapper API
libraries. A good practice is to define in addition to the third-party libraries
we may decide to use, our project oriented libraries to enhance our project
simplicity, and maintainability.

Chapter 3

[45]

Extending the CI controller
As we said, our application controller extends the built-in CI controller that is
something like an abstract class in the development scope, so that in order to use
the controller for our needs, we must build our controller extending the base class.
We can extend the CI controller in several ways.

• Loading resources of helpers, models, and libraries:
 ° Those can be from the CI built-in repository, third-party developed,

or self-developed. For more information on how to self-develop
models, refer to Chapter 6, Models, on how to self-develop libraries,
refer to Chapter 4, Libraries, and on how to self-develop helpers, refer
to Chapter 5, Helpers.

 ° The controller can load any of the external resources in the following
fashion in any of its methods, commonly at the contractor and in
case the resource is required in all the controllers via the autoload.
php configuration file () (refer to Chapter 3, Configurations and Naming
Conventions for more information). However, for the best resource
optimization to minimize the footprint and overhead even better, the
resources will be loaded only on those controller methods that need
their services to operate.

The following are a few examples of how to load the mentioned resources:
$this->load->model('some_model');
$this->load->library('some_library', $keyed_array);
$this->load->helper('some_helper');

• Adding public and private methods:
 ° This approach is the common guideline of PHP OOP that you are

expected to be familiar with (although elaboration on this can be
found at http://php.net). The following is a simple example of
how a public method calls a private method to get some data:

public function get_something () {
 $some_data= $this->_get_it ();
 }
private function _get_it () {
 return= 'hello';
 }

Controller Usage and Scope

[46]

• Using loaded resources:
The loaded resources can be used after loading as follows:

 ° Using loaded model methods:
$status= $this->some_model->save_data($table, $row);
$rows= $this->some_model->get_table($table_name);

 ° Using loaded library methods:
$another_data = $this->some_library->method($some_data);

 ° Using loaded helpers:
$your_ip =get_your_ip(); // myhtml_helper function
// NOTE: a helper defines regular functions!

• Calling a controller:
 ° The controller is automatically instantiated by the CI core, and its

methods are called via HTTP URIs. For more information, refer to
Chapter 2, Configurations and Naming Conventions.

 ° Ways to call a controller:
Calling only the contractor and later calling the index method,
if defined as follows: $URI = "base_url().'/mycontroller';
mycontroller';

Calling the method of the mycontroller class without parameters:
$URI = "base_url.'/mycontroller/mymethod';

Calling the method of the mycontroller class with two parameters,
a and b: $URI = "base_url.'/mycontroller/mymethod/a/b';

CI controller use cases
There are several different use cases for a CI user-defined controller. Commonly, the
CI controller will handle initiating/rendering HTML pages, enable us to let the user
navigate and view the different web application pages we defined. However, the
controller may also provide other services, such as AJAX server-side controller, serving
asynchronously the client-side browser requests, and commonly return back the JSON
formatted data instead of a rendered view. The exact scope and usage of AJAX is
not part of the CI framework, but it is very useful standard de-facto technology.
To learn more about AJAX, please refer to AJAX (Asynchronous JavaScript and XML)
on Wikipedia http://en.wikipedia.org.

Chapter 3

[47]

The main usage categories for our controller in a CI framework are as follows:

• Rendering views: These type of controllers mostly performs some
preparations for data and render the requested view, along with the
prepared data, to be displayed to the user for the next user session state
with web application.

• A special case is the home page view rendering. So that the user refers
to the Project root directory via URI such as:
http://mydomain.com/my_ci_project.

• Where the CI routes will define maincontroller as the home page or default
controller as follows under the project root:application/config/routes.
php. So that the default controller will be defined as follows:
$route ['default_controller'] = "maincontroller";

• Then the call to
http://mydomain.com/my_ci_project will be routed by the CI routes

to

http://mydomain.com/my_ci_project/maincontroller

For user navigation request to another page, we shall have in the rendered
view, HTML anchors for navigating into another pages something like the
following view code:

<?PHP echo anchor
 (site_url().'/pages_controller/page_b',
 'Navigate me to page B'); ?>

• Controller serving the browser AJAX requests. These controllers respond to
the AJAX client requests. and most commonly return the JSON data to the
calling jQuery script as follows:
<script type="text/javascript">
function autocomplete(clue_val) {
 varurl = '<?php echo site_url();
 ?>/AJAX_controller/autocomplete_name';
 $AJAX ({type: "POST", url: url, data: {clue: clue_val},
 dataType: "json", success: function(data) {
 // show the data of matching names
 }
 return;
 });

Controller Usage and Scope

[48]

• Controller serving Linux scheduled cron requests: A very powerful CI usage
we found is serving Linux cron schedule requests defined in the Linux cron
(for more information about Linux cron scheduling, please refer to
http://en.wikipedia.org/wiki/Cron).

We can find, within the DirectAdmin apache admin tool, a UI editor
to define the scheduled crontab repeatable actions we want the server
to perform.
For each request, we will define the PHP processor path; for example, /user/
local/bin/php, as well as the PHP script to be executed; for example, /
home/mysite.com/public_html/crontabs/ci_crontab.php.
ci_crontab.php can execute the CI controller method.
http://myCIproject/mycontroller/mymethod will, for example, scan the
database and update a table named sums_table, which contains the number
of rows in all the tables added together after every execution. Let us see an
example of how to make that CI controller call from the PHP script.
In order to call a CI controller via an HTTP request, ci_crontab.php will use
the cURL service that will call the CI controller, similar to the way we issue
it from a browser (cURL (Client URLs), http://php.net/manual/en/ref.
curl.php).
Let's build /home/mysite.com/public_html/crontabs/ci_crontab.php.
Linux crontab will call every defined action repeatedly.
The code of ci_crontab.php will be something like the following code:
<?PHP
function file_get_contents_curl($url) {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_URL, $url);
 $data = curl_exec($ch);
 curl_close($ch);
 return $data;
 }
$http_to_execut='http://myCIproject/mycontroller/mymethod';
$result = file_get_contents_curl ($http_to_execute);

The $result will be the rendered output from the controller, mostly simple
echoed messages such as Processed 127 entries. Sure, we can log the
result every time and append it to a log file of the action logs performed.
We just saw how we can use the CI controller to serve Linux cron services,
which has a very powerful capability in many business cases.

Chapter 3

[49]

Example 1 – default homepage controller
Initially, we will start with a simple controller example that opens a home page with
the navigation option back and forth to another page B, and similarly to the home
page. We will do so while rendering some controller calculated data at the view.

This example doesn't use the database. This example will be built from the following
CI framework component configuration, controller, and view files.

Let us define the default controller filename as controller/home_page.php and the
home page view as views/home_page_view.php.

Let us assume the URI to the project root is http://mydomain.com/myproject.

The controller file
The controller file /home_page.php will prepare some data to be shown in the view
and will let the user navigate to page B and similarly back to the home page.

The helpers used are provided with the sample source code provided with this book.

The following is the code:

<?php
class Home_page extends CI_Controller
{
 function __construct() {
 parent::__construct();
 $this->load->helper ('validators_helper');
 $this->load->helper ('dates_time_helper');
 }
 public function index() {
 $data = array ();
 $data ['email'] = $email = "the@email.com";
 // validators_helpercalls
 $data ['email_valid'] = isValidEmail($email);
 $data ['url'] = $url = "http://cnn.com";
 $data ['url_valid'] = isValidURL($url);
 $data ['url_exist'] = isURLExists($url);
 $this->load->view('home_page_view', $data);
 }
 publicfunction page_b () {
 $data = array ();
 $myqsl_date = "1970-01-01";
 // dates_time_helper calls

Controller Usage and Scope

[50]

 $data ['since'] = ui_date ($myqsl_date);
 $data ['past'] = getAgeAccurate
 ($myqsl_date, $percision = 2);
 $this->load->view ('page_b_view', $data);
 }
 }
// End controller

The view file
The controller file will prepare the current date and time to be shown in the home
page views/home_page_view.php view.

<!DOCTYPE html>
<meta content="text/html; charset=utf-8"/>
<?PHP
/* data from controller
$email, $email_valid, $url, $url_valid , $url_exist
*/
$validation_text = ($email_valid) ? "Is Valid ": "Is Not Valid!";
$validation_url = ($url_valid) ? "Is Valid ": "Is Not Valid!";
$exist_url = ($url_exist) ? "Exist ": "Not exist!"; ?>
<body style="text-align: left; color: blue;">
<H1>Main Page</H1>
<HR></HR>
<div style = "float: left">
The Email: <? = $email; ?><? = $validation_text; ?>
</div>
<div style = "clear: both;"></div>
<HR></HR>
<div>
The url: <? = $url; ?><? = $validation_url; ?> and
 <? = $exist_url; ?>
<? = anchor ($url, '[visit the url]', array ("target" => "_blank",
 "title" => "opens a new Tab")); ?>
</div>
<div style = "clear: both;"></div>
<HR></HR>
<?php echo anchor ('home_page/page_b', 'Navigate me to page B') ?>
</body>
</html>

Chapter 3

[51]

The controller has a page_b() method to render the following view file. It will
prepare the parameters $since and $past for this page to be used inline in the
rendered view page_b_view, as follows:

The view file is views/page_b_view.php.

<!DOCTYPE html>
<meta content="text/html; charset=utf-8" />
<?PHP
/* data from controller $since, $past */ ?>
<body style = "text-align: left; color: blue;">
<H1>Page B</H1>
<HR></HR>
<div style = "float: left">
<!We render the provided controller parameters $since & $past>
Since: <? = $since; ?> past<? = $past; ?> years</div>
<div style = "clear: both;"></div>
<HR></HR>
<?php echo anchor ('home_page', 'Back to Home Page') ?>
</body>
</html>

The configuration file
Initially, we shall define at application/config/routes.php the default controller
to be called.

For example, $route['default_controller'] = "home_page";.

So that in case, you will issue URI of the project root in the browser, lets say:

http://mydomain.com/myproject

http://mydomain.com/myproject/home_page will be called.

Optionally we can configure CI to eliminate the need to use index.php as part of
the URI path to call our CI project controller/s (Refer for information, to Chapter 2,
Configurations and Naming Conventions).

Controller Usage and Scope

[52]

Example 2 – sending e-mails with
attachments
In this example, we will see how the controller can load a mail service library and
use it to send mail attachments.

The CI mail library is not an auto-loaded library, and hence, will be loaded by the
controller we are building for sending e-mail.

The CI mail library makes it easy to send subject messages of non-English languages
supporting UTF-8 both for the subject and the mail body. Adding attachments to an
e-mail becomes a piece of cake using the CI mail library. We only need to have the files
on a known directory path in our server and refer to them to attach them to the mail.

We can attach one or more files to create the mail body. HTML/TEXT is defined via
a simple configuration setting to the CI mail library.

This example will be constructed from the mail controller only; you may add a
rendered view later on to add to the example report on the mailing list, sending
a report of a list of e-mail destinations instead of just one or two destinations.

Let us specify the default controller filename as controller/mail.

Let us assume the URI to the project root is http://mydomain.com/myproject.
Hence, the URI to execute the controller for sending the mail will be http://
mydomain.com/myproject/mail.

We shall remember that in CodeIgniter, if you refer only to the controller URI path,
the CI will operate the function controller class index()function, if any. In case the
controller class does have index()function. And actually in any case, the controller
constructor will be called to create the class instance.

The controller file
The controller file, controller/email.php, will initially load the CI mail library,
then it will configure the mail service properties, such as from/to e-mail address,
subject, HTML body, and the attachment files. Finally, the controller will issue the
e-mail send service of the library, getting back the operation completion status to
report to the web user. In case of a failure, the controller will render a report for the
reason of the failure with debugging information provided by the CI mail library.

The helpers used are provided with the sample
source code provided with this book.

Chapter 3

[53]

Since this controller example has several functions, we shall review their usage
initially, before we review the code as follows:

• __construct(): This contractor loads the CI e-mail library to be used
by other functions

• index(): This builds the e-mail message and sends it to its destination
• doc_root_path(): This provides the directory path to find the e-mail

attachments to send

Regarding the need to load resources such as libraries, helpers, and models, the
best practice is the amount of usage in our controller. Let's say, for example, that we
have 40 controllers and 39 of them need the same library. We shall add that library
into the auto-load list, /config/autoload.php. If we did add a resource, such as a
library, model, or helper into the project auto-load, we can eliminate loading it in the
class that needs the resource services as follows:

class Email extends CI_Controller
// The controller/email.php file will contain this class
{
 function __construct()
 {
 // call the parent constructor to inherit all its services
 parent::__construct();
 // Loads the CI e-mail library, so that it will be instantiated
 // and its methods will be accessed, as $this->mail->METHOD_NAME.
 $this->load->library('email');
 }
 // Define the controller methodindex (the default method), so that
referring to the URI mydomain.com/myproject/email will execute the
index method call
 function index() {
 // Configure the library to work with UTF-8 strings
 // multi-language support, as well as enable HTML content body.
 $config['charset'] = 'utf-8';
 $config['mailtype'] = 'html';

 // Loads the configuration settings by initialize method
 $this->email->initialize($config);
 // Since the mail body is HTML, define CR/LF to be
 // replaced with HTML

 $this->email->set_newline("
");
 // Define the 'From' Email address
 $this->email->from('eliorr@phpmyqsl.com', 'Eli Orr');

Controller Usage and Scope

[54]

 // Define the 'To' Email/s
 $this->email->to (array('"Name 1" <name1@name.com>',
 '"Name 2" <name2@name.com>'));
 // Set the e-mail subject
 $this->email->subject
 ("This is the Subject – can be ANY UTF-8 chars");
 // Define the e-mail body in HTML format, as we set the message
 to be HTML typed
 $this->email->message
 ('<H1>Hello there!<H1/>
 <p>
 This Email is sent from CI via its cool e-mail library)

 See Attached Files

 Attachedfiles:

 1 - File One.
 2 - Second File
 </p>
);

 // Load the attachments
 $path = $this->doc_root_path ();
 // Doc root For example, /home/yourdomain.com/public_html
 // Let say attachment under public_html as /attachments
 $attachment_path1 = $path."/attachments/file1.jpg";
 $attachment_path2 = $path."/attachments/file2.php";

 // Set the two attachment file paths
 $this->email->attach($attachment_path1);
 $this->email->attach($attachment_path2);

 // We have the e-mail object ready! Let us send it!
 // execute send and check the result status
 if ($this->email->send())
 {
 // The e-mail was sent successfully.
 echo 'Your email was sent!';
 }
 else {
 // We had some problems, let's show what was wrong
 echo $this->email->print_debugger();
 }
 }
 functiondoc_root_path () {

Chapter 3

[55]

 // An auxiliary method for calculating attachment
 // file path in our server
 return $doc_root = $_SERVER["DOCUMENT_ROOT"];
 }
 }

Example 3 – admin and regular user
log in
In this example we will see how the controller can coordinate using models and
views a login session for a regular user, as well as an admin super user, so that each
will have a distinct menu. In order to use the provided database file and successfully
log in, use the following steps:

• For regular user login:
 ° User: reg_user
 ° Password: 111111111 (9 x 1 s)

• For admin user login:
 ° User: admin_user
 ° Password: 111111111 (9 x 1 s)

This example will be constructed from the following controller, models, and views:

• application/controller/auth.php: This controller is used to control
authentication checkup and redirect each user category to its view or notify
of a login failure. Regular users and admin users will have different view
menu, message, and logout options.

• application/models/users_model.php: This is the model to validate the
submitted user name and password (stored in the database via MD5) against
the predefined database table of users.

• application/views/login_view.php: This is the view shown to users that
are not logged in, in order to log in.

• application/views/logged_in_view.php: This is the view shown to users
that were successfully logged in and performed their roles as reg_user/
admin users.

• MySQL database- USERS_DB.sql: This is a database table that we will
upload to our database.

Controller Usage and Scope

[56]

Let us assume the URI to the project root is http://mydomain.com/myproject.

Hence the URI to execute the auth controller for login will be http://mydomain.
com/myproject/auth.

The controller file
The controller file, controller/auth.php, will initially load the CI form helper;
this helper will be used to construct and operate the login form. For more on helper
usage and scope, refer to Chapter 5, Helpers.

users_model, written especially to serve the controller for authenticating users
credentials against the user table, will be loaded. The controller auth/index will
be called from both the initial stage as well as after a login_view submission.

The session is a well known issue in PHP and is out of the scope of this book.
However, CI enables the storing of operated sessions with served clients via the
database in a table named ci_sessions.

This way the sessions are much more organized for the project to manipulate with
search session and load session parameter. In order to use a database stored session,
we shall edit /config/config.php.

$config['sess_use_database'] = TRUE;
/* Enforce storing sessions data in the database */

Also, we will add a session library as we want to use it for this example along
with other commonly used /config/autoload.php libraries.

$autoload['libraries'] = array
 ('database', 'session', 'xmlrpc');

In case of a submission, the input post for the password will not be null and the
controller will proceed with the credentials checkup using the users_model model.
If successful, the user record fields will be kept in the session and the controller
methods auth/admin_main_menu or auth/user_main_menu will be called as per
the model returned user role. If the logged in user issues the logout anchor, auth/
logout will be called to destroy the session and redirect the user to the login form.

The following is the code:

class Auth extends CI_Controller {
 function __construct() {
 parent::__construct
 $this->load->helper ('form');
 $this->load->model ('users_model');

Chapter 3

[57]

 }
 // called with auth is called with no specific method and
 // simply calls the login method
 function index() {
 $this->login();
 }
 functionlogin()
 {
 // The message to user in case of login failure
 $msg = "";
 if ($this->input->post('password'))
 {
 // The caller is from the form submission
 // we will check credentials validity using the local method
 // check_login.
 $stat = $this->check_login();
 // Extract failure message to user if any
 $msg = $stat ['msg'];
 if($stat['result'] == 'ok')
 {
 // Successful login!
 // See what We have
 // admin_user or regular user?
 if ($this->session->userdata ('role') == 'admin_user')
 // Issue the controller for admin user main menu
 redirect('auth/admin_main_menu');
 else
 // Issue regular user main menu controller
 redirect('auth/user_main_menu');
 return;
 }
 }
 else {
 // rendered with no submission
 // let's destroy any previous session and challenge again
 // the user
 $this->session->sess_destroy();
 }
 // We can get here due to login failure or referring to auth
 // controller without any active submission.
 // Keep the msg return from the model into view view_setup
 ['msg'] = $msg;
 // render the login view to challenge the user
 $this->load->view('login_view.php', $view_setup);
 }

Controller Usage and Scope

[58]

 functioncheck_login() {
 // Extract the credentials from the submitted login_viewform
 $user_name = $this->input->post('user_name');
 $password = $this->input->post('password');
 // init an array to return
 $ret = array ();
 // Check if login is ok and get the $row using the loaded
 // users_model model.
 $user_record = $this->users_model->check_login
 ($user_name, $password);
 if ($user_record) {
 // User passed credentials checkup successfully
 // We have the user record. Let's use it to extract info
 // for the logged session buildup
 $this->session->set_userdata ('user_id', $user_record->id);
 $this->session->set_userdata ('user_name',
 $user_record->user_name);
 $this->session->set_userdata ('role', $user_record->role);
 $ret ['result'] = 'ok'; $ret ['msg'] = 'Logged-in!';
 }
 else {
 // login failed!
 $ret ['result'] = 'notok';
 // inform the login form to alert user for the failure
 $ret ['msg'] = 'Invalid User/Pass - Try Again!';
 }
 return $ret;
 }
// logout method called auth/logout
function logout() {
 // destroy the current session
 $this->session->sess_destroy();
 redirect('auth');
 }
functionadmin_main_menu() {
 // Shall render an admin main menu page
 $view_setup ['uid'] = $this->session->userdata ('user_id');
 $view_setup ['user_name'] = $this->session->userdata
 ('user_name');
 $view_setup ['role'] = $this->session->userdata ('role');
 $view_setup ['menu'] = "Add User/Modify User/Delete User";
 $this->load->view ('logged_in_view.php', $view_setup);
 }

functionuser_main_menu() {
 // Shall render a regular user
 $view_setup ['uid'] = $this->session->userdata ('user_id');

Chapter 3

[59]

 $view_setup ['user_name']= $this->session->userdata
 ('user_name');
 $view_setup ['role']= $this->session->userdata ('role');
 $view_setup ['menu']= "View Content/Modify Your Account/Logout";
 $this->load->view ('logged_in_view.php', $view_setup);
 }
}

The model file
The model file application/models/users_model.php will serve the controller
for authenticating user credentials against the user table. If successful, the model
will return the user database row to the caller.

auth/admin_main_menu or auth/user_main_menu will be called as per the model
returned user role. If the logged in user issues the logout anchor, auth/logout will
be called to destroy the session and redirect the user to the login form.

The following is the code:

class Users_model extends CI_Model {
 function __construct()
 {
 parent::__construct();
 }
 functioncheck_login ($user, $pass)
 {
 // Important notice.
 // Since the model extends the base CI model, it already got the
 // instance. However, we can use the $ci = &get_instance(); instead
 // $this-> anywhere in helpers, libraries, and so on.
 // convert the typed password in the login form to md5, same as
 // we do, when opening a user account.
 $md5_pass = md5($pass);
 // build up the query
 $sql = "SELECT * FROM users WHERE user_name = '$user'
 AND password = '$md5_pass' ";
 $q = $this->db->query($sql);
 if ($q->num_rows()) {
 foreach ($q->result() as $row)
 return $row;
 }
 // In case no num_rows: return NULL;
 }
}

Controller Usage and Scope

[60]

The database file to upload for this example
We shall upload this database file, provided as part of the book resources, into our
database connected to CI.

The user table includes two users, namely reg_user and admin_user. Their
passwords are stored as the md5 of the text passwords, where 111111111 and
222222222 are the passwords of the reg_user and admin_user users.

The following is the code:

-- phpMyAdmin SQL Dump
-- http://www.phpmyadmin.net
SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";
SET time_zone = "+00:00";
--
-- Table structure for table `users`
--
CREATE TABLE IF NOT EXISTS `users` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `user_name` varchar(128) NOT NULL,
 `password` varchar(128) NOT NULL,
 `role` varchar(128) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET = utf8 AUTO_INCREMENT = 3;
--
-- Dumping data for table users
--
INSERT INTO `users` (`id`, `user_name`, `password`, `role`)
VALUES (1, 'reg_user', 'bbb8aae57c104cda40c93843ad5e6db8',
 'regular_user'), (2, 'admin_user',
 '0d777e9e30b918e9034ab610712c90cf', 'admin_user');

The login_view view file
The login_view view is rendered by the application/auth/index index method
in order to show non-logged in web visitors to a login page, to enable to challenge
them with a login stage.

Following a user entering the user name and password and submitting the
login_view view form the application/auth/login will be called and will
check the credentials using the users model. In case of a successful login, and
based on the logged in user category fetch from the users model, one of the
auth methods will be called as follows:

Chapter 3

[61]

• auth/admin_main_menu: In case the user has the admin role to render the
successful login view for the admin user

• auth/user_main_menu: In case the user has the admin role to render the
successful login view for the regular user

The view is located at application/views/login_view.php. This view uses
many of the CI form helper functions loaded by the auth controller. When a user
issues a submission, the input is initially checked at the client side before issuing
a submission call to application/auth.

The following is the code:

<!DOCTYPE html">
<meta http-equiv = "Content-type" content = "text/html;
 charset=utf-8"/>
<html>
<head>
<script src = http://code.jquery.com/jquery-latest.js
 type = 'text/javascript'></script>
</head>
<body>
<H1>Login Here</H1>
<!—Building the login form using the form helper-->
<?php
// Define the form attributes
// We will use the 'form' helper 'auth' will
// be called on submission only, if check_if_valid()
// will return true!
$submit_attributes = array
 ('onsubmit' =>"return check_if_valid();", 'id' => 'auth');
echoform_open('auth', $submit_attributes);
echo "<table><tr><td>";
// The attributes of the <input tag>
echoform_label("User Name");
echo "</td><td>";
echoform_input(array('name' => 'user_name', 'value' => ''));
echo "</td><td>";

// The error message holders – hidden by default echo
<label id='user_name_err' style = 'color:red; display:none'>
 name is too short </label>";
echo "</td></tr><tr><td>';
echoform_label("Password");
echo "</td><td>";
echoform_password("password","");
echo "</td><td>";
// The error message holders – hidden by default echo
<label id='password_err' style = 'color: red; display: none'>
 password is too short </label>";

Controller Usage and Scope

[62]

echo "</td></tr>";
echo "</table>";
// The submit button echo
form_input(array('type' => 'submit', 'value' =>'Login'));
echoform_close(); ?>
<HR></HR>
<!-- Server Credentials failure message -->
<p style = "color: red"><?php echo $msg; ?></p>
</body>
<!-- Local JavaScript service -->
<script type='text/javascript'>
functioncheck_if_valid() {
 var submit = true;
 varuser_name = $('[name="user_name"]').val();
 var password = $('[name="password"]').val();
 if (user_name.length< 2) {
 $('#user_name_err').show();
 submit = false;
 }
 else $('#user_name_err').hide();
 if (password.length< 6) {
 $('#password_err').show();
 submit = false;
 }
 else $('#password_err').hide();
 return submit;
 }
</script>
</html>

The login_in_view view file
The login_in_view view is rendered following a successful login by either
application/auth/admin_main_menu controller method or application/auth/
user_main_menu method base on the user category with the info of the logged
in user.

Both the controllers uses the users_model model to validate the login attempt
and fetch the logged in user. The view shows the logged in user some information
about its account, such as the user name and role as well as the menu available for
its user category.

The view is located at application/views/login_in_view.php. This view is using
parameters provided by the $user_nam, $uid, $role, and $menu controller to be
shown to the logged in user. From this view, the user may issue a logout anchor
that calls auth/logout to destroy the session and redirect the logged in user to the
login view.

Chapter 3

[63]

Many of the CI form helper functions are loaded by the auth controller. When
user issues are submitted, the input is initially checked at the client side before
issuing a submission call to application/auth.

The following is the code:

<!DOCTYPE html">
<meta http-equiv = "Content-type" content = "text/html;
 charset<!DOCTYPE html">
<meta http-equiv = "Content-type" content = "text/html;
 charset=utf-8"/>
<html>
<body>
<H1>Welcome <? = $user_name; ?>!</H1>
<H1>You are logged in!</H1>
<HR></HR>
<H3>Your User ID is: <? = $uid; ?></H3>
<H3>Your System Role is:<? = $role; ?></H3>
<H3>Your Menu options: <? = $menu; ?></H3>
<?php echo anchor ('auth/logout', 'Logout') ?>
</body>
</html>

Summary
In this chapter, we have reviewed the CI controller scope and the different controller
usage categories targeting view rendering and serve AJAX client requests or apache
crontab scheduled processing requests. We have reviewed the various resources
that the controller can be assisted with, such as the helpers, libraries, and models.
Eventually, we have made several usage examples as follows:

• Example 1: default home page controller
• Example 2: sending e-mails with attachments
• Example 3: admin and regular user log in

Libraries
This chapter covers the CI libraries topic, and the different types of libraries and their
different usage categories, with several code examples of web applications. The CI
development platform provides us with the built-in libraries, enables us with an easy
procedure to integrate third-party libraries, and also allows us to develop our new
libraries and share them with the community, if we wish to.

The CI libraries are powering efficiency, code reusability, separation, and simplicity.
The benefits achieved are as follows:

• Efficiency: In means of minimal loaded resources. This feature achieved
by the fact that the CI library, may be loaded only by the specific CI project
controller(s), or even only in specific method(s), where the library's services
are required. Hence, the overhead (memory) of the library resources during
execution time is minimized in each controller operation state.

• Reusability: Reusability means writing once a function code and reusing
it across the project resources. The libraries can be loaded by any project
controller, model, or helper (in a helper, we shall use the &get_instance()
method discussed several times before) to reuse their code anywhere in
the CI project. More than that, the controller-rendered views can call those
loaded library methods. Hence, great code reusability is achieved.

• Separation: Separation prevents, accidental overlapping with same name
to the parameters or functions elsewhere in the project. The Library class
methods and parameters have their own name space so that they can't be
overridden by a mistake outside the library in case the developer is using
the same parameters in the served module such as controllers/views.

• Simplicity: This make the code text as minimal as possible and easy to
understand and maintain. The libraries' methods called from the served
resources, such as controllers, models, and helpers, make the code look
much simpler, and make it easy to maintain and navigate. Hence, this
simplifies extending the code and maintaining it.

Libraries

[66]

The libraries give us development power and efficiency with rich-focused functionality
on certain project aspects, and also enable us to have simple and concise fashion code
in the served controllers by calling the library method, instead of having the service
code locally in the controller. The libraries should be initially instantiated by the code
using them, such as the controller, model, or helper, or if used by almost all controllers,
models can be loaded using the autoload mechanism. Chapter 2, Configurations and
Naming Conventions, discusses how to autoload the libraries.

Once instantiated by the autoload or controller constructor, the libraries can be
used by the controller methods or by rendered views. In addition, any model, helper,
or another library may use our project installed libraries using &get_instance(),
as described in the previous chapters.

The libraries power the code of the CI model-view-controller instantiated
components (for more information, visit the website http://en.wikipedia.org/
wiki/Model-view-controller), regarding the functionality expansion
and reusability across the project controllers, models, helpers, and views.

This chapter will primarily focus on the following topics:

• The CI libraries' scope and usage:
 ° Usage categories
 ° Using a library
 ° Adding a library to the project
 ° Instantiating a library
 ° Using library method(s)

• Available CI libraries
• Examples:

 ° Example 1: using the built-in libraries
 ° Example 2: using third-party libraries such as the Google Maps CI

library wrapper
 ° Example 3: building our own library such as the Flickr API wrapper
 ° Example 4: building our own library such as the LinkedIn

API wrapper

We will begin by briefly reviewing what a library in a CI framework is, and how
we can use it for our needs across the project code resources.

Chapter 4

[67]

The CI libraries' scope and usage
The CI library does not have access to the controller resources by default unless
the CI $ci = &get_instance() is called and $ci is used instead of $this to access
the CI resources, for example, instead of $this->db->query ($sql), we shall
use $ci->db->query ($sql), and so on. We can extend the CI library using the
third-party libraries from where CI echo system (the CI community of developers
worldwide share knowledge, sources, and solutions for code and open issues),
or develop our own libraries from scratch or extending other libraries.

Any application library will be located under application/libraries/ in the
project's directory. In addition, optional resources such as the library configuration
file that is required for library configurations can be placed under the project root
or elsewhere. A good practice is to place them under the project root for enhanced
security provided by CI. For example, <PROJECT_ROOT>application/config/<LIB_
NAME>_config.php, or even additional resources such as the images/CSS/HTML/
additional class libraries may be required under another application/<LIB_
ADDITIONAL_RESOURCES>, such as application/assets.

The library integration and the usage within the CI project are as follows:

• Adding the library code resources to application/libraries/my_lib.php,
optionally adding related resources, if any, such as a library configuration
file, and/or other library assets to their locations as mentioned before.

• Instantiating the library class via config autoload, or instantiating it via
the controller.

 ° Automatically load a library my_lib for the entire CI project:
$autoload['libraries'] = array('database','my_lib');

 ° Specifically in certain controller(s), constructor(s), or method(s):
$this->load->library('my_lib');

• Using the library methods:
$result=$this->my_lib->called_method ($param1, $param2);

• We can see the library scope as the ultimate OOP reusability enabler for
the entire project code resources' models, views, helpers, and libraries,
which govern all to address the execution requests from the user, or a
scheduled request.

Libraries

[68]

As mentioned, the CI libraries enables us with great Separation and Simplicity.
For example, the following code:

// Library class
class my_handler {
 private $my_lib_param;
 // Can't be accessed outside the class directly
 // but we can provide the read only service as follows:

 public function get_my_lib_param () {
 return $this->my_lib_param;}
 // The following is a library function that can't
 // be called from outside the class!

 private function my_private_function () { }
 }

Available CI libraries
CI and the CI echo system of developers provide many libraries covering a rich
set of topics. We will review the CI libraries as well as known resources for the
third-party CI libraries.

We are also encouraged to build our own libraries that can be used by others,
and share them with the community, such as:

• The Git community at https://github.com
• CI Sparks at http://getsparks.org
• CI Forums at http://codeigniter.com/forums
• Packagist at https://packagist.org

To call a built-in library, we shall call for example, the built-in library named
CI_Xxxx as follows: $this->load->library (xxxx);. So that CI_ prefix is not
used and instead of the capitalized library name Xxxx, we use the lowercase library
name xxxx. For calling a library function yyyy within the library CI_Xxxx, we shall
write $this->xxxx->yyyy();.

The following is a list of built-in and commonly useful CI libraries
(As of version 2.1.4):

Chapter 4

[69]

CI_Benchmark CI_Encrypt CI_Migration CI_Unit_test

CI_Cache CI_Exceptions CI_Model CI_Upload

CI_Cache_apc CI_Form_validation CI_Output CI_URI

CI_Cache_dummy CI_FTP CI_Pagination CI_User_
agent

CI_Cache_file CI_Hooks CI_Parser CI_Utf8

CI_Cache_memcached CI_Image_lib CI_Profiler CI_Xmlrpc

CI_Calendar CI_Input CI_Router CI_Xmlrpcs

CI_Cart CI_Javascript CI_Security CI_Zip

CI_Config CI_Jquery CI_Session

CI_Controller CI_Lang CI_SHA1

CI_Driver CI_Loader CI_Table

CI_Driver_Library CI_Log CI_Trackback

In this chapter, we will provide a usage example for Google Maps' third-party
library wrapper, available at https://github.com/ianckc/CodeIgniter-Google-
Maps-Library.

Many more third-party libraries can be found following the CI forums at
http://codeigniter.com/forums.

Example 1 – using the built-in libraries
In this initial example, we will see how to use the CI built-in library. Here we will
use the CI library CI_Table as well as the CI_db library, which, for a given database
table/view and some optional CSS settings, will enable us to render the table nicely
with all the HTML table tags and CSS settings in just a single line of code. In this
example, we will use the same user's table that we used for the controller example
in Chapter 3, Usage and Scope of Controllers.

This example will be constructed from the following controller and view:

• application/controllers/builtins.php: This controller loads the
built-in CI library table as well as the db library, which is autoloaded
(for more information, refer to Chapter 2, Configurations and Naming
Conventions) to get the user's table content, and set up the table to
render using the table library.
$this->load->library('table');

Libraries

[70]

The controllers prepare vectors of map settings and the list of places
and possible controllers to zoom into each of the places, and render
a view named google_map_view.

• application/views/users_view.php: This view will use the table library
service to render a nicely formatted table as loaded from db, and configured
by the controller.

Let us assume that the URL to the project root is http://mydomain.
com/myproject, http://mydomain.com/myproject/builtins.
(The source code is provided with this book via URLs.)

The controller file
The following is a step-by-step example of the controller code for each operation:

<?php
/** Use CI built In libraries
class Builtins extends CI_Controller{
 function __construct(){
 parent::__construct();
 // Load the table library that generates the HTML tags for
 // showing the table structure within a view
 $this->load->library('table');
 }
 public function index(){
 // Load the users list from DB into the view
 $data['users'] = $this->db->get('users');
 // Create custom header for the table
 $header = array
 ('id', 'User Name', 'Hashed Password', 'Position');
 // Set the headings
 $this->table->set_heading($header);
 // Set table formatting
 $table_format = array ('table_open' => '<table border="1"
 cellpadding="2" cellspacing="1" class="mytable">');
 $this->table->set_template($table_format);
 // Load the view and send the results
 $this->load->view('users_view', $data);
 }
 }

Chapter 4

[71]

The view file
To complete the operation, we will finish working on the view file.

<!DOCTYPE html">
<meta http-equiv="Content-type" content="text/html;
 charset=utf-8"/>
<html>
<head>
<title>
 Showing Users Table Using CI Build-In table Library
</title>
</head>
<body>
 <div id='results'>
 <!—All The Formatted Table is rendered by the table library
 instance using the controller defined settings and the table
 of users we have fetched from the DB >
 <?php echo $this->table->generate($users); ?>
 </div>
</body>
</html>

Example 2 – using third-party libraries
such as the Google Maps CI library
wrapper
In this example, we will see how to install and use the Google Maps CI library
with some cool services. First, we need to download the library files from
http://biostall.com/codeigniter-google-maps-v3-api-library.

In the downloaded TAR file, we shall find the following libraries:

• Googlemaps.php: This is the Google Maps API library for CI. We shall place
it at application/libraries/.

• Jsmin.php: This is an auxiliary code for the library to generate the JavaScript
generated code for enabling the smart Google Maps UI interaction. We shall
also place it at application/libraries/.

• Google Maps V3 API: This is a PDF file for in-depth, possible library settings
and usage.

Libraries

[72]

In this example, we will provide an initial page showing several marked places
together on the Google Map window that we will create in our application. In that
visualized view, we will enable the user to zoom into predefined selected places we
have marked on the map using the CI anchor URL helper.

This example will be constructed from the following library, controller, and view:

• application/libraries/: This is the CI wrapper library for Google
Maps that we downloaded. Refer to the CI library contributor website
at http://biostall.com.

• application/controllers/gmaps.php: This controller loads the
googlemaps library and builds up several views for several places shown
together on the Google Map, and zooms in to each of the places.
$this->load->library('googlemaps');

The controllers prepare vectors of map settings and the list of places and
possible controllers to zoom into each of the places, and render a view named
google_map_view.

• application/views/google_map_view.php: This is the rendered view that
initially shows all the places on the Google Map, and lets the user zoom in
using a menu option to a listed zoom-in location, or go back to the view of
all the places together on a zoom-out map.

Let us assume the URI to the project root is http://mydomain.com/myproject.
http://mydomain.com/myproject/gmaps.

The source code is provided with this book via URLs.

The controller file
The controller file controllers/gmaps.php will initially load the CI Google Maps
library, then set up the maps' settings and the places to be marked and shown in
different views (the same view file is rendered with different $data settings each
time). The controller will have the __construct() and index() methods,
in addition to set the zoom in on the defined places.

<?php
/** Use The Google Maps CI Library Wrapper for several
 marked places altogether and zoom-in*/
class Gmaps extends CI_Controller {
 function __construct()

Chapter 4

[73]

 { parent::__construct();
 $this->load->library('googlemaps');
 // Set the map window sizes:
 $config['map_width'] = "1000px";
 // map window width
 $config['map_height'] = "1000px";
 // map window height
 $this->googlemaps->initialize($config);
 }
 function index() {
 /* Initialize and setup Google Maps for our App starting
 with 3 marked places
 London, UK, Bombai, India, Rehovot, Israel
 */
 // Initialize our map for this use case of show 3
 // places altogether.
 // let the zoom be automatically decided by Google for showing
 // the several places on one view.
 $config['zoom'] = "auto";
 $this->googlemaps->initialize($config);
 //Define the places we want to see marked on Google Map!
 $this->add_visual_flag ('London, UK');
 $this->add_visual_flag ('Bombai, India');
 $this->add_visual_flag ('Rehovot, Israel');
 $data = $this->load_map_setting ();
 // Load our view, passing the map data that has just been
 //created.
 $this->load->view('google_map_view', $data);
 }
 //The class Gmaps continued with several more functions as
 //follows:
 function london() {
 // Initialize our map
 //Here you can also pass in additional parameters for
 // customizing the map (see the following code:)
 // Define the address we want to be on the map center
 $config['center'] = 'London, UK'; to be on the map center
 // Set Zoom Level - Zoom 0: World – 18 Street Level
 $config['zoom'] = "16";
 $this->googlemaps->initialize($config);
 // Add visual flag
 $this->add_visual_flag ($config['center']);
 $data = $this->load_map_setting ();
 // Load our view passing the map data that has just been
 //created

Libraries

[74]

 $this->load->view('google_map_view', $data);
 }
 functionBombay() {
 //Initialize our map.
 //Here you can also pass in additional parameters for
 //customizing the map (see the following code)
 //Define the address we want to see as the map center
 $config['center'] = 'Bombay, India';
 $config['zoom'] = "16"; // City Level Zoom
 $this->googlemaps->initialize($config);
 // Add visual flag
 $this->add_visual_flag ($config['center']);
 $data = $this->load_map_setting ();
 // Load our view passing the map data that has just been created
 $this->load->view('google_map_view', $data);
}

The class Gmaps continues with several more functions as follows:

function rehovot()
{
 // Initialize our map.
 //Here you can also pass in additional parameters for
 //customizing the map (see the following code)
 $config['center'] = 'Rehovot, Israel';
 $config['zoom'] = "16";
 // City Level Zoom
 $this->googlemaps->initialize($config);
 // Add visual flag
 $this->add_visual_flag ($config['center']);
 $data = $this->load_map_setting ();
 // Load our view, passing the map data that has just been
 //created.
 $this->load->view('google_map_view', $data);
}
function load_map_setting () {
 $data = array();
 $locations = array();
 $controllers = array();
 // Set controllers list for zoom in
 $locations[] = 'London, UK';
 $locations[] = 'Bombai, India';
 $locations[] = 'Rehovot, Israel';
 // Set controllers list for zoom in
 $controllers[] = "london";

Chapter 4

[75]

 $controllers[] = "bombai";
 $controllers[] = "rehovot";
 $data['map'] = $this->googlemaps->create_map();
 $data['locations'] = $locations;
 $data['controllers'] = $controllers;
 $data['map'] = $this->googlemaps->create_map();
 return $data;
}

The class Gmaps continues with several more functions as follows:

function add_visual_flag ($place) {
 $marker = array();
 // Setup Marker for the place and the title as the place name
 $marker['position'] = $place;
 $marker['title'] = $place;
 $this->googlemaps->add_marker($marker);
 }
}

The view file
The view file will render the provided Google Maps JavaScript and HTML portions
as well as render the list of places. It also provides zoom-in and zoom-out navigation
options to the places supported by the controller.

<!DOCTYPE html">
<meta http-equiv="Content-type"
content="text/html; charset=utf-8" />
<html>
<head>
 <script src = http://code.jquery.com/jquery-latest.js ></script>
 <!--Render all the map JS provided by rendering controller-->
 <?php echo $map['js']; ?>
</head>
<body>
<H3>CodeIgniter Powered CI Google Maps Library : <H3>
<HR/>
<!—Let the User Always Get Back to the default Zoom out -->
<?php echo anchor("index.php/gmaps",
'See All Locations'); ?>

<?PHP
$i=0;
foreach ($locations as $location) {

Libraries

[76]

 // Show to the user all the possible Zoom Ins defined places by
 //the controller, so that user may zoom in by issuing the
 // anchor.
 $controller = $controllers["$i"];
 $i++; ?>

 <?php echo anchor
 ("index.php/gmaps/$controller", "Zoom-In to ".$location) ?>

 <?PHP } ?>
 }

<HR></HR>
<?php echo $map['html']; ?>
</body>
</html>

Example 3 – building a library such
as the Flickr API wrapper
The flickr.com website by Yahoo! provides API access to the Flickr repository
of public photos uploaded to the community. The API is extremely rich, and its
documentation is available at http://www.flickr.com/services/api/, and is
called App Garden.

The API is enabled for various programming languages and access methods.
We will build a solution of a wrapper that can be expanded to get any Flickr
API service, using the PHP REST access method.

This example will be constructed from the following library, controller, and view:

• application/libraries/flickr_wrapper.php: The is the CI wrapper
library that enables smooth Flickr API access via CI. This basic services
library can be expanded to support the entire Flickr App Garden.

• application/controllers/flickr_recent.php: This is the controller
that uses the flickr_wrapper library that we wrote and pulls the
recent public photos uploaded with the EXIF photo info and the
photographer-related information.

• application/views/flickr_recent_view.php: This is the view that
shows the collected information of recent photos and photographers.

Chapter 4

[77]

Let us assume the URI to the project root is http://mydomain.com/myproject.
Hence, the URI to execute the auto controller for logging in will be http://
mydomain.com/myproject/flickr_recent.

The flickr_wrapper.php library file
The application/libraries/flickr_wrapper.php library file contains the library
flickr_wrapper class library that we are building and using to access the Flickr
App Garden API. It is mandatory to load this library with a valid Flickr api_key that
you can get by following the Flickr App Garden documentation. The library will use
the PHP REST API access, so that we can later expand any of the Flickr API services
to be supported with our library. Each of the library methods returns
a multidimensional keyed array of the resultant data.

The following is the code:

/**
* CodeIgniter Flickr API wrapper Library Class
*
* Enable Simple Flickr API usage
*
* @package CodeIgniter
* @category Libraries
* @author Eli Orr
* Usage:
* Via CI controller:
* $this->load->library('flickr_wrapper',
* array('api_key' => '<YOUR_FLICKR_API_KEY>',
* 'DEFAULT_RES' => '3000',
// filter 3000 pix
* 'GPS_ENABLED' => FALSE));
* $this->flickr_wrapper->set_params ($keyed_array);
* $recent_photos =
* $this->flickr_wrapper->flickrPhotosGetRecent ();
* $filter_photos =
* $this->flickr_handler->
* filter_photos ($photos_to_filter);
* $user_info =
* $this->flickr_wrapper->flickrUserInfo ($uid);
* // $uid e.g. 72095130@N00
//.PRIVATE
//We will use the following private functions:
private function _file_get_contents_curl($url);
private function _flickrRestAPI ($params);
private function _is_filtered_photo ($photo_rec);
*/

Libraries

[78]

The following is the Flickr_wrapper class that we are building:

class Flickr_wrapper {
 // parameters as part of the library instance
 private $DEFAULT_RES = 2000;
 // Width in Pixels
 private $GPS_ENABLED = TRUE;
 // total shown photos
 private $RECENT_PHOTOS = 500;
 // how many photos in each poll ?
 // CI instance
 private $CI;
 // Flickr api_key to use
 private $api_key = "" ;
 function __construct($params = array())
 {
 // Make sure we got the api_key – otherwise exit!
 if (!isset ($params['api_key']))
 exit ('FATAL - must be constructed with api_key!');
 $this->set_params ($params);
 // Just for debugging needs, we may drop those later
 error_reporting(E_ALL);
 ini_set('display_errors', '1');
 }
 // change settings on the fly
 function set_params ($key_array) {
 // sets array of instance parameters
 foreach ($key_array as $key => $val){
 switch ($key) {
 case 'DEFAULT_RES': $this->DEFAULT_RES = $val; break;
 case 'GPS_ENABLED': $this->GPS_ENABLED = $val; break;
 case 'RECENT_PHOTOS': $this->RECENT_PHOTOS = $val; break;
 case 'api_key' : $this->api_key = $val; break;
 // We can add many more here.
 default: exit ("FATAL! - set_params invalid param: $key");
 }
 }
}

The class code continues while shifting our focus on accessing the recent
public photos.

// Pulls recent public photos as multi-dimensional array
function flickrPhotosGetRecent () {
 #

Chapter 4

[79]

 # build the Params for API
 #
 $params = array(
 'api_key' => $this->api_key,
 'method' => 'flickr.photos.getRecent',
 'extras' => 'o_dims,owner_name,date_taken,media,
 path_alias,url_sq,geo',
 'per_page' => $this->RECENT_PHOTOS,
 'format' => 'php_serial'
);
 $rsp_obj = $this->_flickrRestAPI ($params);
 #
 # check if ok or successful result :
 #
 if ($rsp_obj['stat'] == 'ok') {
 # Get the array of all the photo records in this cycle
 return $recent_photos = $rsp_obj['photos']['photo'];
 }
 else
 # Query failed we shall return NULL to the caller
 return NULL;
}
// Get the Photo EXIF that has a lot of info related to the
// photo for a given photo id

The class code continues, where we will see how to access additional information
related to the image.

function GetPhotoExif ($photo_id) {
 #
 # build the API URL to call
 #
 $params = array(
 'api_key' => $this->api_key,
 'method' => 'flickr.photos.getExif',
 'photo_id' => $photo_id,
 'format' => 'php_serial',
);
 $rsp_obj = $this->_flickrRestAPI ($params);
 #
 # display the photo title (or an error if it failed)
 #
 if ($rsp_obj['stat'] == 'ok') {
 /*
 Array ([photo] => Array ([id] => 8002716747

Libraries

[80]

 [secret] => 559f87aea0
 [server] => 8030
 [farm] => 9
 [camera] => Casio EX-H20G
 [exif] => ... A LOT OF EXTRA INFO
 */

 $photo_camera = $rsp_obj['photo']['camera'];
 // We can add more interesting items for our app here
 $params = array
 ('camera' => $photo_camera,
 'full_exif' => $rsp_obj
 // All EXIF info for the photo_id
);
 return $params;
 }
 else // Request Failed We shall return error:
 return NULL;
}

Let's see how we can apply photo filtering with the following code:

// apply photos filtering on a provided photos array
// based on the current settings
function filter_photos ($photos) {
 $filtered_photos = array();
 foreach ($photos as $photo) {
 if ($this->_is_filtered_photo ($photo))
 $filtered_photos[] = $photo;
 }
 return $filtered_photos;
}
function flickrUserInfo ($uid) {
 // UID e.g. : 72095130@N00
 // find info for this User
 #
 # build the API URL to call
 #
 $params = array(
 'api_key' => $this->api_key,
 'method' => 'flickr.people.getInfo',
 'user_id' => $uid,
 'extras' => 'contact,friend,family',
 'format' => 'php_serial',
);

Chapter 4

[81]

 $rsp_obj = $this-> _flickrRestAPI ($params);
 #
 # Check if response is OK
 #
 if ($rsp_obj['stat'] == 'ok'){
 // Yes! We have a good result .. let's load it to the
 // keyed array structure
 $real_name =
 @urlencode($rsp_obj['person']['realname']['_content']);
 $location = @urlencode
 (strtolower ($rsp_obj['person']['location']['_content']));
 $photos = @$rsp_obj['person']['photos']['count']['_content'];
 // more can be added

The class code continues as follows:

 $params = array (
 'name' => $real_name,
 'uid' => $uid,
 'photos' => $photos,
 'location' => $location,
 'full_info' => $rsp_obj
);
 return $params;
 }
 else // Response failed return NULL
 return NULL;
}
// PRIVATE SECTION OF ALL PRIVATE LIBRARY METHODS
// THAT CANNOT BE CALLED DIRECTLY FROM THE LIBRARY USER
// This is the heart of our wrapper library that makes it easy to get
// The Flickr API access via simple keyed array based calls and
response
private function _flickrRestAPI ($params) {
 $encoded_params = array();
 foreach ($params as $k => $v){
 $encoded_params[] = urlencode($k).'='.urlencode($v);
 }
 #
 # call the API and decode the response
 #
 $url = "http://api.flickr.com/services/rest/?".implode
 ('&', $encoded_params);
 // This will create get query URI …?param1=val1¶m2=val2
 // and so on

Libraries

[82]

 $rsp = $this->_file_get_contents_curl($url);
 return $rsp_obj = unserialize($rsp);
}

The class code continues as follows:

// This function assure we can get a url content into a buffer
// it requires that a PHP curl library is installed!
private function _file_get_contents_curl($url) {
 if (! function_exists('curl_init'))
 exit ('PHP curl library is not enabled please fix!');
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_URL, $url);
 $data = curl_exec($ch);
 curl_close($ch);
 return $data;
}
private function _is_filtered_photo ($photo_rec) {
 /*
 [o_width] => 4416
 [latitude] => 0
 //More can be added
 */
 // Photo width shall be larger than $this->DEFAULT_RES ?
 if ((int) (@$photo_rec['o_width']) <
 (int) $this->DEFAULT_RES) return FALSE;
 // GPS info required & Found ?
 if (($this->GPS_ENABLED && ! @$photo_rec['latitude']))
 return FALSE;
 // if we are here the filtered photo passed successfully
 return TRUE;
 }
}

The flickr_recent.php controller file
The application/controllers/flickr_recent.php controller file will load
the flickr_wrapper API, call its services for newly uploaded public photos and
photographers, and render a view to show the results.

In order to execute the controller, you should point your browser to the following
URI: http://mydomain.com/myproject/flickr_recent.

Chapter 4

[83]

The following is the controller code:

<?php
/**
 * Flickr Recent Controller
 *
 * Provide recent uploaded public photos in flickr community
 * Enable to apply several settings and filtering
 * Enable to get photographer user profile for each photo
 *
 * @author Eli Orr
*/
class Flickr_recent extends CI_Controller{
 function __construct()
 {
 parent::__construct();
 /*
 Standard Libraries, database, & helper url are included in the
 configs/autoload.php
 */
 // This lines are only for debugging needs we may drop them
 // if things are going good
 error_reporting(E_ALL);
 ini_set('display_errors', '1');
 /* ------Loading User Defined Library------------ */
 $this->load->library
 ('flickr_wrapper',
 array('api_key' => '<YOUR_FLICKR_API>',
 'DEFAULT_RES' => '3000',
 // filter 3000 pix
 'GPS_ENABLED' => FALSE
)
);
}

The class code continues as follows:

function index () {
 $settings = array(
 'DEFAULT_RES' => '4000', // Only 4000 pix and better
 'GPS_ENABLED' => FALSE, // GPS Info is not mandatory
 'RECENT_PHOTOS' => 50, // Latest 100 photo uploads
);
 $this->flickr_wrapper->set_params ($settings);
 $photos_to_filter =

Libraries

[84]

 $this->flickr_wrapper->flickrPhotosGetRecent ();
 $filter_photos =
 $this->flickr_wrapper->filter_photos ($photos_to_filter);
 $data = Array();
 $data['photos'] = $filter_photos;
 $data['settings'] = $settings;
 $this->load->view('flickr_recent_view.php',$data);
 }
}

The flickr_recent_view.php view file
The flickr_recent_view.php view file is rendered by our controller
named Flickr_recent defined previously. This controller uses our developed
flickr_wrapper library in order to get the recent Flickr uploaded photos
with their associated information.

The view file is located at application/views/flickr_recent_view.php.
This view uses the CI parser for the PHP inserted parameters using the
<?=$param ?> notation.

The following is the code:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<div>
<H1>Flickr Recent Uploads</H1>
<p>
<!-- Show the applied filter settings first -->
<table border="1" style='background-color:#b0c4de;' >
<tr>
 <td>Photos in Poll</td><td><?=$settings['RECENT_PHOTOS'];?></td>
</tr>
<tr>
 <td>Min. Width Filter</td><td><?=$settings['DEFAULT_RES'];
 ?>Px</td>
</tr>
<tr>
 <td>GPS Filter</td><td><?=$settings['GPS_ENABLED']
 ? "With GPS" : "With/Without GPS"; ?></td>
</tr>
</p>
<!-- For each photo show the User name, how many photos they took

Chapter 4

[85]

till now, the original size in MP (Mega Pixels)
of the photos and the Time stamp when the photo was taken by the
camera (mostly loaded days or even weeks/months later)
<table border="1" style='background-color:#009900;' >
<tr>
 <th>User Uploaded</th><th>User photos Count</th>
 <th>Photo ID</th><th>Original Size MP</th><th>Was Taken</th>
</tr>

The class code continues as follows:

<?PHP foreach($photos as $photo)
{
 // get the owner id
 $uid = $photo['owner'];
 // Get User Info
 $user_info = $this->flickr_wrapper->flickrUserInfo ($uid);
 $photos = number_format ($user_info["photos"]);
 $mp_res = (int) ((($photo['o_width'] * $photo['o_height'])
 / 1000000) + 1);
 ?>
 <tr>
 <td> <?=$photo['ownername'] ?></td>
 <td> <?=$photos ?></td>
 <td> <?=$photo['id'] ?></td>
 <td> <?=$mp_res ?></td>
 <td> <?=$photo['datetaken'] ?></td>
 </tr>
 <?PHP } ?>
 </table>
</div>
</body>
</html>

Example 4 – the LinkedIn API wrapper
In this example, we will build the CI Library wrapper to integrate with the LinkedIn
API in order to query the LinkedIn information from it.

There are several challenges in doing so, one of which is to get the token to access
the LinkedIn resources and access the data objects such as the following:

• The LinkedIn user's details
• The LinkedIn user's connections

Libraries

[86]

• The LinkedIn company's details
• The LinkedIn company's updates

Requirements
• The PHP extension oauth library must be installed from http://il1.php.

net/manual/en/book.oauth.php.
• We shall register the application at LinkedIn Developers Network Homepage

to receive the API key from http://developer.linkedin.com. This unique
API key is required to identify our application in order to grant access from
LinkedIn for responding to our API calls to their API. Once we've registered
our LinkedIn app, we will be provided with an API key and a secret key.
For the safety of our application, we do not share our secret key. For more
information, please refer to http://developer.linkedin.com/.

Authentication flowchart
The following steps are required to authenticate our LinkedIn application to grant
access. We will refer to this project as LinkedIn app.

1. The LinkedIn API client sends a request to LinkedIn. The client sends the
request to the LinkedIn request token URL at https://api.linkedin.com/
uas/oauth/requestToken via the oauth object with a callback URL as a
parameter to the LinkedIn API. The callback URL parameter is the URL to
return to from the LinkedIn Authorization URL, where the LinkedIn user
shall confirm the LinkedIn app's required permission. The LinkedIn server
responds and returns the oauth token (public key) and the ouath token
secret key.
Client > Server request token URL
parameter: callback URL < Server returns oauth token, ouath token
secret

2. The client sends the request to the LinkedIn server auth URL using the
oauth_token token received from https://api.linkedin.com/uas/
oauth/authorize ?oauth_token = oauth_token, where oauth_token
is the oauth token returned from the server at phase 1.
Client > Server auth URL
$_GET parameter: oauth token

Chapter 4

[87]

3. The LinkedIn server returns the oauth token, the oauth token secret,
and the oauth_verifier to the client.
Client < Server
oauth token, oauth token secret, oauth_verifier

4. The client sends the request to the LinkedIn Server access token path
at https://api.linkedin.com/uas/oauth/accessToken.
Client > Server access token path
parameter: oauth_verifier (from phase 2) < Server returns
 oauth token, ouath token secret

This example will be constructed from the following controller, library, and view:

• application/controllers/linkedinfo.php: The controller that uses the
LinkedIn library for authentication and displaying the output returned by
the library

• application/libraries/linkedin_handeler.php: The linkedin_handler
library, which enables access to the LinkedIn resources, such as the LinkedIn
user's details and connections, and the companies' details

• application/views/linkedin-me.php: The view, which displays the
LinkedIn user's details

• application/views/linked-connections.php: The view, which displays
the LinkedIn user's connections

• application/views/linked-company.php: The view, which displays the
company's details

• application/views/linked-company-updates.php: The view, which
displays a company's updates

Let us assume the URI to the project root is http://mydomain.com/myproject.

Hence, the URI to execute the auth controller for login will be http://mydomain.
com/myproject/linkedinfo.

Libraries

[88]

The linkedin_handler.php library file
The library file application/libraries/linkedin_handler.php contains the class
library linkedin_handler.

The library contains the function for authenticating the app and accessing the
LinkedIn resources.

The following is the code:

<?php

if (!defined('BASEPATH')) exit('No direct script access allowed');

// The php oauth extension is required
// For more information refer to
// http://il1.php.net/manual/en/book.oauth.php
if(!extension_loaded('oauth')) {
 throw new Exception('Simple-LinkedIn: library not compatible with
 installed PECL oauth extension. Please disable this extension to
 use the Simple-LinkedIn library.');
 }
/*
 * CodeIgniter LinkedIn API
 *
 * @package CodeIgniter
 *
 * @author Yehuda Zadik
 *
 *
 * Enable Simple LinkedIn API usage
 */
class Linkedin_handler {
 const LINKEDIN_API_URL = 'https://api.linkedin.com';

 private $api_key;
 private $secret_key;
 private $on_failure_url;

 // Oauth class
 public $oauth_consumer;

 // The url to return to from LinkedIn
 // authorize url in our case is
 // http://mydomain.com/return_from_provider

Chapter 4

[89]

 private $callback_url;

 // The request token URL
 private $request_token_url;

 // LinkedIn authorize URL for getting the LinkedIn user
 // confirmation for required permissions
 private $authorize_path;

 // LinkedIn URL for getting the tokens to access
 // the LinkedIn URL resources
 private $access_token_path;

 // accessory variable for accessing the LinkedIn resources
 private $api_url;

 // CI instance
 private $CI;

 /*
 * Set the class variables
 */
 private function set_varaiables() {
 $this->request_token_url = self::LINKEDIN_API_URL .
 '/uas/oauth/requestToken';
 $this->authorize_path = self::LINKEDIN_API_URL .
 '/uas/oauth/authorize';
 $this->access_token_path = self::LINKEDIN_API_URL .
 '/uas/oauth/accessToken';

 $this->api_url = array('people' =>
 'http://api.linkedin.com/v1/people/~' , 'connections' =>
 'http://api.linkedin.com/v1/people/~/connections',
 'companies' => 'http://api.linkedin.com/v1/companies/');

 $this->CI = &get_instance();
 }
 /*
 * Library constructor
 *
 * Initializes the library variables
 * and initializes oauth consumer object
 *
 * @param $config array of the Linked configuration variables
 */

Libraries

[90]

 public function __construct($config) {
 // Setting the handler's variables;
 foreach ($config as $k => $v) {
 $this->$k = $v;
 }

 // Setting all the class variables
 $this->set_varaiables();

 // Initializing the oauth consumer object
 $this->oauth_consumer = new oauth($this->api_key,
 $this->secret_key);

 // Enabling Oauth debug
 $this->oauth_consumer->enableDebug();

 // Checking if returned from the LinkedIn UI permission
 // conformation window
 if ($this->CI->input->get('oauth_verifier') ||
 $this->CI->input->get('oauth_problem')) {
 $this->on_success();
 } elseif (!$this->CI->session->userdata('oauth_token')
 && !$this->CI->session->userdata('oauth_token_secret')) {
 // if session variables are not set: oauth_token,
 // oauth_token_secret
 // call auth to start the process of getting the tokens from
 // LinkedIn via the oauth consumer object
 $this->auth();
 } elseif ($this->CI->session->userdata('oauth_token')
 && $this->CI->session->userdata('oauth_token_secret')) {
 // if session variables are set: oauth_token,
 // oauth_token_secret initialize the oauth consumer with
 // $oauth_token, $oauth_token_secret
 $oauth_token = $this->CI->session->userdata('oauth_token');
 $oauth_token_secret = $this->CI->session->userdata
 ('oauth_token_secret');

 // initialize oauth consumer with $oauth_token,
 // $oauth_token_secret
 $this->setToken($oauth_token, $oauth_token_secret);
 }
 }
 /*
 * Start the process of getting oauth token & oauth token
 * secret so that the user
 * redirects to a LinkedIn UI permission conformation window

Chapter 4

[91]

 */
 public function auth() {
 // Start communication with the LinkedIn server
 $request_token_response = $this->getRequestToken();

 $this->CI->session->set_userdata('oauth_token_secret',
 $request_token_response['oauth_token_secret']);

 // Get the token for the LinkedIn authorization url
 $oauth_token = $request_token_response['oauth_token'];

 $log_message = 'yuda auth getRequestToken oauth_token: : ' .
 $oauth_token;
 $log_message = "oauth_token_secret: " .
 $request_token_response['oauth_token_secret'] . "\n";
 log_message('debug', $log_message) ;

 // Redirect to the LinkedIn authorization url for getting
 // permissions for the app
 header("Location: " . $this->generateAuthorizeUrl($oauth_token));
 }
 /*
 * This is the method called after returning
 * from the LinkedIn authorization URL
 * The returned values from the LinkedIn authorization URL are:
 * oauth_token, oauth_token_secret, oauth_verifier
 * Those values are used to retrieve oauth_token,
 * oauth_token_secret for accessing the LinkedIn resources
 *
 */
 public function on_success() {
 if ($this->CI->input->get('oauth_problem')) {
 redirect($this->on_failure_url);
 }

 // Set the oauth consumer tokens
 $this->setToken($this->CI->input->get('oauth_token'),
 $this->CI->session->userdata('oauth_token_secret'));

 // Sending request to the LinkedIn access_token_path to
 // receive the array, which it's keys are tokens: oauth_token,
 // oauth_token_secret for accessing the LinkedIn resources
 $access_token_reponse = $this->getAccessToken
 ($this->CI->input->get('oauth_verifier'));

Libraries

[92]

 // Setting the session variables with the tokens: oauth_token,
 // oauth_token_secret for accessing the LinkedIn resources
 $this->CI->session->set_userdata('oauth_token',
 $access_token_reponse['oauth_token']);
 $this->CI->session->set_userdata
 ('oauth_token_secret',$access_token_reponse
 ['oauth_token_secret']);

 // Redirecting to the main page
 redirect('');
 }

 /*
 * This method sends the request token to LinkedIn
 *
 * @return array keys: oauth_token, oauth_token_secret
 */
 public function getRequestToken() {
 // The LinkedIn request token url
 $request_token_url = $this->request_token_url;

 // The LinkedIn app permissions
 $request_token_url =
 "?scope = r_basicprofile+r_emailaddress+r_network";

 // Getting the response from the LinkedIn request token URL.
 // The method returns the response, which is an array
 // with the following keys: oauth_token, oauth_token_secret
 return $this->oauth_consumer->getRequestToken
 ($request_token_url, $this->callback_url);
 }
 /*
 * This method returns the LinkedIn authorize URL
 *
 * @param $oauth_token string oauth token for the LinkedIn
 * authorzation URL
 *
 * @return string URL of the LinkedIn authorization URL
 */
 public function generateAuthorizeUrl($oauth_token) {
 return $this->authorize_path . "?oauth_token = " .
 $oauth_token;
 }
 /*
 * This method sets the token and secret keys of

Chapter 4

[93]

 * the oauth object of the oauth protocol
 *
 * @param $oauth_token string oauth token
 * @param $oauth_token_secret oauth_token_secret
 *
 */
 public function setToken($oauth_token, $oauth_token_secret) {
 $this->oauth_consumer->setToken($oauth_token,
 $oauth_token_secret);
 }
 /*
 * This method requests the LinkedIn tokens for
 * accessing the LinkedIn resources
 * It returns an array with the following keys: oauth_token,
 * oauth_token_secret
 *
 * @param $oauth_verifier string
 *
 * @return array Array with the following keys:
 * oauth_token, oauth_token_secret,
 * which are used to access the LinkedIn resources URL
 */
 public function getAccessToken($oauth_verifier) {
 try {
 // Returns an array with the following keys:
 // oauth_token, oauth_token_secret
 // These keys are used to access the LinkedIn
 // resources URL
 return $this->oauth_consumer->getAccessToken
 ($this->access_token_path, '', $oauth_verifier);
 } catch(OAuthException $E) {
 echo "<pre>";var_dump($this->oauth_consumer);
 echo "</pre>

";
 echo "Response: ". $E->lastResponse;
 exit();
 }
 }
 /*
 * This function returns a LinkedIn user's details
 * It returns a JSON string containing these values
 *
 * @return $json string String containing user's details
 */
 public function me() {
 $params = array();

Libraries

[94]

 $headers = array();
 $method = OAUTH_HTTP_METHOD_GET;
 $api_url = $this->api_url['people'] . '?format = json';

 try {
 // Request for a LinkedIn user's details
 $this->oauth_consumer->fetch
 ($api_url, $params, $method, $headers);

 // Receiving the last response with json
 // containing the user's details
 $s_json = $this->oauth_consumer->getLastResponse();
 return $s_json;
 } catch(OAuthException $E) {
 echo "<pre>";var_dump($this->oauth_consumer);
 echo "</pre>

";
 echo "Response: ". $E->lastResponse;
 exit();
 }
 }
 /*
 * This function returns a LinkedIn user's connections
 * It returns a JSON string containing these values
 *
 * @return $json string String containing user's connections
 */
 public function connections() {
 $params = array();
 $headers = array();
 $method = OAUTH_HTTP_METHOD_GET;
 $api_url = $this->api_url['connections'] .
 '?count = 10&format = json';

 try {
 // Request for a LinkedIn user's connections
 $this->oauth_consumer->fetch
 ($api_url, $params, $method, $headers);

 // Receiving the last response with json containing the user's
 // connections
 $s_json = $this->oauth_consumer->getLastResponse();
 return $s_json;
 } catch(OAuthException $E) {
 echo "<pre>";var_dump($this->oauth_consumer);
 echo "</pre>

";

Chapter 4

[95]

 echo "Response: ". $E->lastResponse;
 exit();
 }
 }
 /*
 * This function returns a LinkedIn company' details
 * It returns a JSON string containing these values
 *
 * @param Integer $company_id - company id
 *
 * @return $json string String containing a company' details
 */
 public function company($company_id) {
 $params = array();
 $headers = array();
 $method = OAUTH_HTTP_METHOD_GET;
 $api_url = $this->api_url['companies'] . $company_id;

 // The following company's details are required:
 // company_id, number of employees, foundation year,
 // number of the company's followers
 $api_url = ':(id, name, website-url, twitter-id,
 employee-count-range, specialties, founded-year,
 num-followers)?format = json';

 try {
 // Request for a LinkedIn company's details
 $this->oauth_consumer->fetch
 ($api_url, $params, $method, $headers);

 // Receiving the last response with json containing the
 // company's details
 $s_json = $this->oauth_consumer->getLastResponse();
 return $s_json;
 } catch(OAuthException $E) {
 echo "<pre>";var_dump($this->oauth_consumer);
 echo "</pre>

";
 echo "Response: ". $E->lastResponse;
 exit();
 }
 }
 /*
 * This function returns a LinkedIn company' three updates
 * It returns a JSON string containing these values
 *

Libraries

[96]

 * @param Integer $company_id - company id
 *
 * @return $json string String containing company's three updates
 */
 public function company_updates($company_id) {
 $params = array();
 $headers = array();
 $method = OAUTH_HTTP_METHOD_GET;
 $api_url = $this->api_url['companies'] .
 $company_id . '/updates?start = 0 & count = 3 & format = json';

 try {
 // Request for a LinkedIn company's three updates
 $this->oauth_consumer->fetch
 ($api_url, $params, $method, $headers);

 // Receiving the last response with json
 // containing company's three updates
 $s_json = $this->oauth_consumer->getLastResponse();
 return $s_json;
 } catch(OAuthException $E) {
 echo "<pre>"; var_dump($this->oauth_consumer);
 echo "</pre>

";
 echo "Response: ". $E->lastResponse;
 exit();
 }
 }
 }
// Class closing tags
/* End of file linkedin.php */
/* Location: ./application/libraries/linkedin_handler.php */

The linkedinfo.php controller file
The controller file application/controllers/linkedinfo.php will load
the LinkedIn API, call its services, and render a view to show the results.

The following is the controller code:

<?php
if (!defined('BASEPATH')) exit('No direct script access allowed');

/**
 * *
 * The controller is loading our developed library

Chapter 4

[97]

 * LinkedIn (wrapper)
 * Next, the following process will occur in the loaded library.
 * 1 – get oauth token & oauth token secret so that the user
 * will be redirected to a LinkedIn UI permission conformation
 * window to approve our requested permission.
 * 2 – If user confirms the permissions we requested,
 * the method onSuccess is called with the
 * oauth token & oauth token secret as $_GET parameters.
 * The tokens will be stored as session parameters.
 * Else we cannot proceed querying LinkedIn and the onFailure.
 *
 * Now we can access the LinkedIn resources using the retrieved
.*.tokens.
 * Here are the methods that query LinkedIn resources:
 * me() – Get the Info of the User who confirmed the permissions
 * connections() - Get the preceding user connection records JSON
 * formatted
 * company() – We just gave an example how to retrieve any company
 * by company id we got from the results or query company
 * id by company id or search criteria
 * company_updates() – Let us get the latest updates of this
 * company
 */
class Linkedinfo extends CI_Controller {
 // array of LinkedIn configuration variables
 private $linkedin_config;

 // callback url from the LinkedIn authorization URL
 private $callback_url;
 /*
 * Controller constructor
 *
 * Checks if session variables are set: oauth_token,
 * oauth_token_secret
 * If they are set, then it initializes the oauth consumer
 * else it will call the method auth() to start the
 * process of setting the token
 * It also loads the LinkedIn library
 */
 public function __construct() {

 parent::__construct();

 $linked_config = array(
 // Application keys registered in the
 // LinkedIn developer app

Libraries

[98]

 ‹api_key› => ‹esq76cosbm9x›,
 ‹secret_key› => ‹TyUQ2FzRRzWz9bHk›,
 // The url to return from the
 // LinkedIn confirmation URL
 ‹callback_url› => base_url() . ‹linkedinfo/on_success›,
 // The URL when the failure occurs
 ‹on_failure_url› => ‹linkedinfo/on_failure›);

 // Load the LinkedIn library
 $this->load->library(‹linkedin_handler›,
 $linked_config);
 }
 /*
 * Load the main menu of the application
 */
 public function index() {
 $this->load->view(‹linkedin-menu›);
 }
 /*
 * This is the method called after returning
 * from the LinkedIn authorization URL
 * The returned values from the LinkedIn authorization URL are:
 * oauth_token, oauth_token_secret, oauth_verifier
 * Those values are used to retrieve oauth_token,
 * oauth_token_secret for accessing the LinkedIn resources
 *
 *
 */
 public function onSucess() {
 // Set the oauth consumer tokens
 $this->linkedin->setToken($this->input->get(‹oauth_token›),
 $this->session->userdata(‹oauth_token_secret›));

 // Sending the request to the LinkedIn access_token_path to
 // receive the array, which it's keys
 // are tokens: oauth_token, oauth_token_secret for
 // accessing the LinkedIn resources
 $access_token_reponse = $this->linkedin->getAccessToken
 ($this->input->get('oauth_verifier'));

 // Setting the session variables with the tokens: oauth_token,
 // oauth_token_secret for accessing the LinkedIn resources
 $this->session->set_userdata(‹oauth_token›,
 $access_token_reponse[‹oauth_token›]);
 $this->session->set_userdata(‹oauth_token_secret›,
 $access_token_reponse[‹oauth_token_secret›]);

Chapter 4

[99]

 // Redirecting to the main page
 redirect(‹›);
 }
 /*
 *
 */
 /*
 * This function calls the library method me to get
 * the LinkedIn user›s details
 */
 public function me() {
 // Get the LinkedIn user›s details
 $s_json = $this->linkedin->me();
 $o_my_details = json_decode($s_json);
 $prodile_url =
 $o_my_details->siteStandardProfileRequest->url;

 $view_params[‹my_details›] = $o_my_details;
 $view_params[‹profile_url›] = $prodile_url;

 // Load the view for displaying the LinkedIn user›s details
 $this->load->view(‹linkedin-me›, $view_params);
 }
 /*
 * This function calls the library method me to get
 * the LinkedIn user›s connections
 */
 public function connections() {
 // Get the LinkedIn user›s connections
 $s_json = $this->linkedin->connections();
 $o_json = json_decode($s_json);

 // Processing data received from the LinkedIn library
 $a_connections = array();
 for ($index = 0; $index < $o_json->_count; $index++) {
 if ($o_json->values[$index]->id == ‹private›) {
 continue;
 }

 if (isset($o_json->values[$index]->pictureUrl)) {
 $picture_url = $o_json->values[$index]->pictureUrl;
 } else {
 $picture_url = ‹› ;

Libraries

[100]

 }

 $a_connections[] = array(‹picture_url› => $picture_url,
 ‹name› => $o_json->values[$index]->firstName .
 « «. $o_json->values[$index]->lastName,
 ‹headline› => $o_json->values[$index]->headline,
 ‹industry› => $o_json->values[$index]->industry,
 ‹url› => $o_json->values
 [$index]->siteStandardProfileRequest->url);
 }

 $view_params[‹connections_count›] = $o_json->_total;
 $view_params[‹connections›] = $a_connections;

 // Load the view for displaying the LinkedIn user›s
 // connections
 $this->load->view(‹linked-connections›, $view_params);
 }
 /*
 * This function the calls library method me to get
 * the LinkedIn company›s details
 *
 * @param $company_id integer - Linkedin company id
 */
 public function companies($company_id) {
 // Get the LinkedIn company›s details
 $s_json = $this->linkedin->company($company_id);
 $o_company_details = json_decode($s_json);

 $a_company_details = array (‹id› => $company_id,
 ‹name› => $o_company_details->name, ‹specialties› =>
 $o_company_details->specialties->values, ‹websiteUrl› =>
 $o_company_details->websiteUrl, ‹employeeCountRange› =>
 $o_company_details->employeeCountRange->name,
 ‹foundedYear› => $o_company_details->foundedYear,
 ‹numFollowers› =>
 $o_company_details->numFollowers);

 // Load the view for displaying the LinkedIn company›s
 // details
 $view_params = $a_company_details;
 $this->load->view(‹linked-company›, $view_params);
 }
 /*
 * This function calls the library method me to get
 * the LinkedIn company›s updates

Chapter 4

[101]

 *
 * @param $company_id integer - Linkedin company id
 */
 public function company_updates($company_id) {
 // Get the LinkedIn company›s updates
 $s_json = $this->linkedin->company_updates($company_id);
 $o_company_updates = json_decode($s_json);

 // Processing the data received from the LinkedIn library
 $a_updates = array();
 $a_json_updates = $o_company_updates->values;
 for ($index = 0; $index < count($a_json_updates);
 $index++) {
 $o_update = $a_json_updates[$index];

 if (isset($o_update->updateContent->companyJobUpdate)) {
 $a_updates[] = array(‹type› => ‹Job Update›,
 ‹position› => $o_update->updateContent->
 companyJobUpdate->job->position->title,
 ‹url› => $o_update->updateContent->
 companyJobUpdate->job->siteJobRequest->url);
 }
 }

 // Load the view for displaying the LinkedIn
 // company›s updates
 $view_params[‹updates›] = $a_updates;
 $this->load->view(‹linked-company-updates›, $view_params);
 }
 } // class closing tags
/* End of the file linkedinfo.php */
/* Location: ./application/controllers/linkedinfo.php */

The linkedin-me.php view file
This view file displays the LinkedIn user's details.

The following is the view code:

<!DOCTYPE html>
<html lang = "en">
<head>
 <meta charset = "utf-8">
 <title>My Details</title>
</head>

Libraries

[102]

<body>
<table>
<tr>
 <td>Full Name:</td>
 <td><?php echo $my_details->firstName . « « .
 $my_details->lastName ; ?></td>
</tr>
<tr>
 <td>Title</td>
 <td><?php echo $my_details->headline ; ?></td>
</tr>
<tr>
 <td>My LinkedIn profile</td>
 <td><a href = «<?php echo $profile_url ?>»
 target = «_blank»>Link </td>
</tr>
</table>

<div>
 <p><a href = «<?php echo site_url(‹›) ; ?>»>Back to Menu
 </p>
</div>
</body>
</html>

The view file linked-connections.php

This view file displays the LinkedIn user's connections.

The following is the view code:

<!DOCTYPE html>
<html lang = "en">
<head>
 <meta charset = "utf-8">
 <title>My Connections</title>
</head>
<body>
<h1>My Total connections: <?php echo $connections_count ; ?></h1>
<div>
 <p><a href = «<?php echo site_url(‹›) ; ?>»>Back to Menu
 </p></div>
<table>
<tr>
 <td>Picture</td>
 <td>Name</td>

Chapter 4

[103]

 <td>Headline</td>
 <td>Industry</td>
</tr>
 <?php foreach ($connections as $connection): ?>
<tr>
 <td><img src = «<?php echo $connection[‹picture_url›]; ?>»>
 </td>
 <td><a href = «<?php echo $connection[‹url›];?>»
 target = «_blank»><?php echo $connection[‹name›] ?></td>
 <td><?php echo $connection[‹headline›]; ?></td>
 <td><?php echo $connection[‹industry›]; ?></td>
</tr>
<?php endforeach; ?>
</table>
</body>
</html>

The view file linked-company.php

This view file displays the LinkedIn company's details.

The following is the view code:

<!DOCTYPE html>
<html lang = "en">
<head>
 <meta charset = "utf-8">
 <title>Company</title>
</head>
<body>

<div>
 <p><a href = «<?php echo site_url(‹›); ?>»>Back to Menu</p>
</div>

<table>
<tr>
 <td>Name</td>
 <td><?php echo $name; ?></td>
</tr>
<tr>
 <td>Founded</td>
 <td><?php echo $foundedYear; ?></td>
</tr>
<tr>
 <td>employeeCountRange</td>

Libraries

[104]

 <td><?php echo $employeeCountRange; ?></td>
</tr>
<tr>
 <td>Specialties<td>
 <td>

 <?php foreach ($specialties as $specialty): ?>
 <?php echo $specialty; ?>
 <?php endforeach; ?>

 </td>
</tr>
<tr>
 <td>Website</td>
 <td><a href = «<?php echo $websiteUrl; ?>»>Website</td>
</tr>
<tr>
 <td>numFollowers</td>
 <td><?php echo $numFollowers; ?></td>
</tr>
</table>
<div style = «margin-top: 10px;»>
 <a href = «<?php echo site_url
 (‹linkedinfo/company_updates/7919›); ?>»>Updates
</div>
</body>
</html>

The view file linked-company-updates.php

This view file displays the three updates of the LinkedIn company.

The following is the view code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset = "utf-8">
 <title>Company</title>
</head>
<body>
<div>
 <p><a href = "<?php echo site_url('') ; ?>">Back to Menu
 </p>
</div>
<table>

Chapter 4

[105]

 <?php foreach ($updates as $update): ?>
 <tr>
 <td>

 <?php foreach ($update as $key => $val): ?>
 <?php echo $key; ?>: <?php echo $val; ?>
 <?php endforeach; ?>

 </td>
 </tr>
 <?php endforeach; ?>
</table>
</body>
</html>

Summary
In this chapter, we have reviewed the CI libraries' scope, the different types
of built-in CI echo system third-party libraries, and how to build our own libraries.
We also reviewed the steps to load and use the library resources in our project.
Eventually, we created several usage examples.

Helpers
This chapter covers the CI helpers topic, the different types of helpers, and their
different usage categories, with several code examples of web applications. CI
provides us with built-in helpers, enables us to integrate third-party helpers, and
enables us to develop new helpers and share them with the community if we wish
to. The CI helpers are powering CI efficiency and code reusability by enabling all
other CI controllers using the same code instead of defining a helper function locally.

A helper file is a collection of independent procedural functions in a particular
category. Each helper function performs one specific task, with no dependence on
other functions. The chapter will elaborate on the CI helper's concept, definition,
and usage with several examples.

The folder system/helpers contains the CI system's built-in helpers. The folder
application/helpers contains all the additional helper files of CI helpers. They
can be third-party helpers or created by the developer.

This chapter will primarily focus on:

• CI helpers' scope and usage
 ° Usage categories
 ° Using a helper
 ° Adding a helper to the project
 ° Loading a helper
 ° Using helper methods

• The available CI helpers

Helpers

[108]

• Examples
 ° Example 1: using a built-in helper
 ° Example 2: using third-party helpers—SSL helper
 ° Example 3: building our own helper—the my_download helper

We will begin by briefly reviewing what a helper is in a CI framework, and how
we can use it for our needs across the project code resources.

CI helpers' scope and usage
The CI helper does not have access to the controller resources by default unless CI
and get_instance() are called and used to access CI resources.

We can extend the CI helper using third-party helpers from the CI system' or we can
develop our own helper.

Any application helper should be located under application/helpers/ in the
project directory.

The helper file must be in the following format:

 application/helpers/<HELPER_NAME>_helper.php

For example, the SSL helper file should appear as application/helpers/ssl_
helper.php.

The helper integration and usage within the CI project is as follows:

• Add the helper code resources to application/helpers/myhelper_
helper.php

• Load the helper automatically or via the controller
 ° Automatically load a helper myhelper for all CI projects as follows:

$autoload['helper'] = array('url','myhelper');

 ° For loading in certain specific controllers, constructors, or methods,
use the following:

$this->load->helper('myhelper');

• Use the following helper methods:
$result = $this->myhelper->called_method($param1, aram2);

Chapter 5

[109]

Available CI helpers
CI and the CI developers community network provide many helpers, covering
a rich set of topics. We will review CI helpers as well as popular resources for
third-party CI helpers.

We are also encouraged to build our own helpers, which can be used by others,
and share them with the following communities:

• The Git community: https://github.com
• CI forums http://codeigniter.com/forums/

CI system helpers
The list of CI built-in helpers is as follows (they can be found in the CI Directory
Tree by going to system/helpers/):

• Array Helper
• CAPTCHA Helper
• Cookie Helper
• Date Helper
• Directory Helper
• Download Helper
• Email Helper
• File Helper
• Form Helper
• HTML Helper
• Inflector Helper
• Language Helper
• Number Helper
• Path Helper
• Security Helper
• Smiley Helper
• String Helper
• Text Helper
• Typography Helper
• URL Helper
• XML Helper

Helpers

[110]

CI third-party helpers
• ssl_helper.php

• html_manipulator_helper.php

Example 1 – using built-in helpers
In this example, we will see how to use CI build-in helpers. For this example, we
will use the URL helper for generating links. The URL helper file contains functions
that assist in working with URLs. We will use the URL helper function site_url(),
which returns the site URL as specified in the config file.

This example will be constructed from either of the following controllers:

• application/controllers/ helperexample1.php

This controller loads the built-in CI helper URL.

$this->load->helper('url');

The controller renders a view named helper-example1-view

• application/views/ helper-example1-view.php

This view will use the URL helper to generate links in the view file

Let us assume the URLs to the project root are as follows: http://mydomain.
com/myproject. http://mydomain.com/myproject/helperexample1

The source code is provided with this book via URLs.

The controller file
Now we will see how the controller loads the built-in CI URL helper so the view
file will be able to use the URL helper function site_url, which generates the links.

 class Helperexample1 extends CI_Controller {
 /**
 * Index Page for this controller.
 *
 * Maps to the following URL
 * http://example.com/index.php/welcome
 * - or -
 * http://example.com/index.php/welcome/index

Chapter 5

[111]

 * - or -
 * Since this controller is set as the default controller in
 * config/routes.php, it's displayed at http://example.com/
 *
 * So any other public methods not prefixed with an underscore
 * will
 * map to /index.php/welcome/<method_name>
 * @see http://codeigniter.com/user_guide/general/urls.html
 */
 public function index()
 {
 // Loading the url helper
 $this->load->helper('url');
 $this->load->view('helper-example1-view');
 }
 }
/* End of file helperexample1.php */
/* Location: ./application/controllers/helperexample1 */

The view file
The view file calls the URL helper function site_url. Since the controller loaded
the URL helper, it's recognized by the view.

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Menu</title>
 </head>
 <body>
 <table>
 <tr>
 <td><a href="<?php echo site_url('welcome'); ?>">Welcome</td>
 </tr>
 <tr>
 <td><a href="<?php echo site_url('example2/more/1/2/3');
 ?>">Example2</td>
 </tr>
 </table>
 </body>
 </html>

Helpers

[112]

Example 2 – SSL helper
In this example, we will use the CI third-party SSL helper to enforce an https or
HTTP URI request and response between CI and the browser. This example will
be constructed from the following helpers:

• application/helpers/ssl_helper.php: The CI helper for SSL that
implements SSL on the links.

• application/controllers/helpersslexample.php: This controller
loads the helper and implements SSL on the links. The helper is loaded
in the constructor.
$this->load->helper('ssl');

• application/views/helper-ssl-view.php: This is the rendered view
that SSL is implemented on.

Let us assume the URI to the project root is http://mydomain.com/myproject.
http://mydomain.com/myproject/helpersslexample.

The source code is provided with this book via URLs.

The helper file
This CI helper file implements the services described in the preceding section.
This helper uses the built-in CI URL library and URL helper using the redirect
CI URL helper function.

 <?php if (! defined('BASEPATH')) exit('No direct script access
 allowed');
 if (!function_exists('force_ssl')) {
 function force_ssl()
 { // get the CI instance to access the CI resources
 $CI =& get_instance();
 // Change the base_url to have https prefix
 $CI->config->config['base_url'] =
 str_replace('http://', 'https://',
 $CI->config->config['base_url']);
 if ($_SERVER['SERVER_PORT'] != 443)
 { // redirect CI to use https URI
 // so that ($CI->uri->uri_string() return
 // the current URI with https prefix

 redirect($CI->uri->uri_string());
 }

Chapter 5

[113]

 }
 }
 if (!function_exists('remove_ssl')) {
 function remove_ssl()
 {
 $CI =& get_instance();

 // Change the base_url to have http prefix
 $CI->config->config['base_url'] =
 str_replace('https://', 'http://',
 $CI->config->config['base_url']);
 if ($_SERVER['SERVER_PORT'] != 80)
 {
 // redirect CI to use http URI
 // so that ($CI->uri->uri_string() return
 // the current URI with http prefix

 redirect($CI->uri->uri_string());
 }
 }
 }

The controller file
Now we will see how the controller loads the SSL helper and calls its function
force_ssl to enforce the HTTPS URI request and response with the browser.

 class Helpersslexample extends CI_Controller {
 public function __construct() {
 parent::__construct();
 // Loading the ssl helper
 $this->load->helper('ssl');
 // Enforce URI request of https
 force_ssl();
 }
 /**
 * Index Page for this controller.
 *
 */
 public function index()
 {
 $this->load->helper('url');
 $this->load->view('helper-ssl-view');
 }
 }
/* End of file helpersslexample.php */
/* Location: ./application/controllers/helpersslexample */

Helpers

[114]

The view file
The view file code is as follows:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Menu</title>
 </head>
 <body>
 <table>
 <tr>
 <td>
 <a href="<?php echo site_url('welcome'); ?>">
 Welcome - You are using https

 </td>
 </tr>
 <tr>
 <td><a href="<?php echo site_url('example2/more/1/2/3');
 ?>">Example2</td>
 </tr>
 </table>
 </body>
 </html>

Example 3 – building your own helper
This example uses a helper to download a very large file, of 200 MB, which can't be
downloaded in one file reading.

This example will be constructed from the following helpers:

• application/helpers/my_download_helper.php: This is the CI helper
that is used to download a very large file

• application/controllers/classg2.php: This is the controller that uses
the my_download helper

• application/views/classg2view.php: This is the view that has a link
for the file download

Let us assume that the URI to the project root is http://mydomain.com/myproject.
Hence the URI to execute the auth controller for login will be http://mydomain.
com/myproject/classg2.

Chapter 5

[115]

The source code is provided with this book via URLs.

The helper file
This helper is used to download very large files, which can't be downloaded in one
file reading. Its function, download_large_files, reads 1 MB in each loop until it
downloads the whole file.

 <?php if (! defined('BASEPATH')) exit('No direct script access
allowed');
 /**
 * CodeIgniter Download Helpers
 *
 * @package CodeIgniter
 * @subpackage Helpers
 * @category Helpers
 * @author Yehuda Zadik
 */
 // --

 /**
 * Download large files
 *
 * Generates headers that force a download to happen
 *
 * @access public
 * @param string $fullPath
 * @return void
 */
 function download_large_files($fullPath)
 {
 // File Exists?
 if(file_exists($fullPath))
 {
 // Parse Info / Get Extension
 $fsize = filesize($fullPath);

 $path_parts = pathinfo($fullPath);
 $ext = strtolower($path_parts["extension"]);
 // Determine Content Type
 switch ($ext)
 {
 case "pdf":
 $ctype = "application/pdf";
 break;

Helpers

[116]

 case "exe":
 $ctype = "application/octet-stream";
 break;
 case "zip":
 $ctype = "application/zip";
 break;
 case "doc":
 $ctype = "application/msword";
 break;

 case "xls":
 $ctyp = "application/vnd.ms-excel";
 break;
 case "ppt":
 $ctype = "application/vnd.ms-powerpoint";
 break;

 case "wmv":
 $ctype = "video/x-ms-wmv";
 break;
 case "gif":
 $ctype = "image/gif";
 break;
 case "png":
 $ctype = "image/png";
 break;

 case "jpeg":
 case "jpg":
 $ctype = "image/jpg";
 break;

 default:
 $ctype = "application/force-download";
 }
 $file_handle = fopen($fullPath, "rb");
 header('Content-Description: File Transfer');
 header("Content-Type: " . $ctype); header('Content-
Length: ' . $fsize);

 header('Content-Disposition: attachment; filename=' .
 basename($fullPath));
 while(!feof($file_handle))
 {
 $buffer = fread($file_handle, 1*(1024*1024));
 echo $buffer;

Chapter 5

[117]

 ob_flush();
 flush(); //These two flush commands seem to
have helped with performance
 }
 fclose($file_handle);
 } else
 {
 die('File Not Found');
 }
 }

 /* End of file my_download_helper.php */
 /* Location: ./application/helpers/my_download_helper.php */

The controller file
The controller loads the helper my_download and calls its function, download_
large_files, in order to enable the user to download large files that originally
could not be downloaded, using the my_download helper.

 <?php

 class Classg2 extends CI_Controller {
 public function index()
 {
 $this->load->helper('url');
 $this->load->view('classg2view');
 }
 function download()
 {
 // Loading the helpers url, my_download
 $this->load->helper(array('url', 'my_download')); //
FCPATH is a constant that Codeigniter sets which // contains the
absolute path to index.php
 $fullPath = FCPATH . 'files/movie-classg2.wmv';
 // Using the helper my_download function to download // a
very large file
 download_large_files($fullPath);
 }
 }
 /* End of file classg2.php */
 /* Location: ./application/controllers/classg2.php */

Helpers

[118]

The view file
The view file displays the data that contains a link for downloading the very large file.

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Download large file</title>
 </head>
 <body>
 <div id="container">
 <a href="<?php echo base_url("classg2/download")
?>">Download large file
 </div>
 </body>
 </html>

Summary
In this chapter we have reviewed the CI helpers, scope, the different types of built-in
CI system helpers, third-party helpers, and how to build our own helpers. We also
reviewed the steps to load and use helpers in our project. Finally, we saw several
relevant usage examples, as follows:

• Example 1: using build-in helpers
• Example 2: using third-party helpers— SSL helper
• Example 3: building our own helper—my_download helper

Models
This chapter covers the CI models, their role, and their usage with several code
examples of web applications. The model is responsible for handling the database
it stores and retrieves database objects used by the application from a database and
contains the logic implemented by the application.

Much of the data that is part of the persistent state of the application (whether that
persistent state is stored in files or databases) should reside in the model objects after
the data is loaded into the application. Because the model objects represent knowledge
and expertise related to a specific topic, they can be reused in the application.

The model represents the application data services and can serve the application
logic (commonly referred to as business logic), as well. Usually, the model is
responsible for the following operations:

• Adding, modifying, deleting, and searching the application database
objects: Generally, this includes the database operations, but implementing
the same operations and invoking external web services or APIs is not
unusual at all.

• Encapsulating the application logic: For example, the model can make data
validations before storing a data object and can alert the calling application
module about the problem.

The most common misuse of the CI database class is using it directly from the
controller, view, or helper. A good practice is to develop the model classes to
handle all the application database services.

Hence, all the other application modules can benefit, and reuse those models.

The CI models are special classes designed to handle databases or external information
resources, such as Facebook (we will see an example of this in this chapter).

The CI models are the PHP classes that are designed to work with information
in the database.

Models

[120]

This chapter will primarily focus on the following topics:

• The CI model scope:
 ° The model resource path
 ° Loading a model
 ° Using model methods
 ° Connecting to a database
 ° Business logic

• Object Relational Mapping (ORM)
• Example 1: a CRUD example
• Example 2: a business logic example
• Example 3: retrieving data from Facebook

We will begin by briefly reviewing the CI model scope and will proceed with several
usage examples, covering different use cases that are combined in a real project.

Scope of the CI model
The CI model provides services for all the application modules to access the
application database(s) or external information resources in an OOP fashion.
Typically, the model classes will contain functions that help us retrieve, insert,
and update information in the database.

This section will focus on the CI model syntax and usage guidelines, as a preface
to the following usage code examples.

The model resource path
The model files are located in the folder application/models/, in the pattern
application/models/<MODEL_NAME>.php.

Loading a model
Loading a model can be done automatically or via the controller. More specifically,
it can be done in a certain controller's constructor or any controller's method.

• If the model is used in a few of the controller's methods, it's recommended
that you load the model in those methods. The scope of the model in that
case is only in those methods project and will refer to application/models/
mymodel.php.

Chapter 6

[121]

• If the model is used in most of the controller's methods, it's recommended
that you load the model in the controller's constructor. In that case the
scope of the model is in all the controller's methods project and will refer
to application/models/mymodel.php.
$this->load->model('mymodel');

It automatically loads a model mymodel for all the CI projects.

• If the model is used in most of CI's project controllers, it is recommended
that you autoload it in application/config/autoload.php. In that case
the scope of the model is in all the CI project and will refer to application/
models/mymodel.php.
$autoload['model'] = array('users', 'mymodel');

Using model methods
Once the CI model is loaded, we will access the model functions using an object with
the model name as our class. The model's method is called for performing database
operations, such as retrieving, inserting, and updating data from the database.

// Loading the model mymodel in the controller's method
$this->load->model('mymodel');
// Calling the model's method my_function
$this->mymodel->my_function();

For example, let's load the model users and access its function get_users.

// Loading the model class
$this->load->model('usermodel');
// Calling the model to retrieve the users from the database
$view_params['users'] = $this->usermodel->get_users();

Connecting to a database
For more information, refer to Chapter 2, Configurations and Naming Conventions.

In this example, we will connect manually to a database. The following settings
are done in application/config/database.php:

$config['hostname'] = '127.0.0.1';
$config['username'] = 'db_username';
$config['password'] = 'db_password';
$config['database'] = 'db_database';
$config['port'] = 'db_port';
$config['dbdriver'] = 'mysql';

Models

[122]

$config['dbprefix'] = '';
$config['pconnect'] = TRUE;
$config['db_debug'] = TRUE;
$config['cache_on'] = FALSE;
$config['cachedir'] = '';
$config['char_set'] = 'utf8';
$config['dbcollat'] = 'utf8_general_ci';
$config['swap_pre'] = '';
$config['autoinit'] = TRUE;
$config['stricton'] = FALSE;
// Loading the database with the configuration manually
this->load->database($config);

Business logic
Business logic is a set of validation rules and decision criteria defined for a certain
information object topic or database object.

The model can apply business logic to the database and information objects
that it handles.

In the case of a social network, the model layer would take care of tasks, such as
saving user data, saving friend associations, storing and retrieving user photos,
finding new friends for suggestions, and so on.

Object Relational Mapping (ORM)
While CI provides the model class for the developer to expand for object-oriented
database CRUD (Create, Read, Update, and Delete) validation, and business logic
for the defined project database, there's another option that enables automatic model
services. In this section, we will discuss Object Relational Mapping (ORM). ORM is
a new concept of converting the database scheme definition into an object-oriented
database class API. It provides database CRUD services on a given database, so that
the minimal code is required, instead of the full model development. More than that,
the customized validation on the CRUD operation is enabled as well. Using an ORM
plugin may reduce the need to self-develop our own CI models so that only special
business logic activities are left to be implemented.

Today, ORM plugins provide predefined validation services, as well as user-defined
services to enforce validations on CRUD requests from the application controllers,
libraries, or helpers requesting the database CRUD services.

Chapter 6

[123]

There are pros and cons of using ORM. On one hand, it simplifies a lot of the
database model development for the database. On there other hand, it dictates
various rules on the database scheme definition, such as defining user tables for an
ORM object user, or defining the auto-increment primary key field name, such as ID,
and so on.

There are several ORM plugins for CI; the most well-known and well-documented
ones, with a large network of community developers, are the following:

• Doctrine ORM (docs.doctrine-project.org): This ORM plugin with
the well-documented CI integration guidelines is available at http://
docs.doctrine-project.org/en/2.0.x/cookbook/integrating-with-
codeigniter.html.

• DataMapper CodeIgniter ORM library (datamapper.wanwizard.eu):
It provides the CI library, such as user guide web navigator.

• Both ORM libraries provide more than just the table-based CRUD services,
but can be configured to handle the cross-table relationships of the foreign
key fields. They can support one-to-many, many-to-one, and many-to-many
relationships, or even more complex relationships between multiple
database tables.

The ORM plugins also provide validation and manipulation services on the handled
database fields, such as performing trimming on a string field before it is saved to
the database.

Validation services include built-in validations such as valid e-mail fields, or a
field that must have the same value as another field, such as fields with an account
creation password retype requirement. The full scope and usage of ORM is beyond
the scope of this CI book. However, it is highly recommended that you learn more
about ORM and try using the referred ORM plugins and consider using them in your
CI projects.

Of course, we do provide a simple usage example of adding a record to the database,
and retrieving the database records using ORM in the following section:

Models

[124]

ORM simple operations example
For example, let's say we have a user database table with the ID as the primary key
auto-increment. User name, e-mail, and password are the other fields, and if we
want to add a new user record to the database, we could do so with the help of the
following code:

<?PHP
// We shall define the database table named users
// with ID as auto-increment, username, password, and e-mail as
// the other fields.
// ORM will create an user objet based on the users
// table scheme. We can set the variable to this object, and use
// the operational services provided by ORM for actions, such
// as save, delete, update, and add.
$u = new User();
$u->username = 'A new User';
$u->password = 'shhnew1';
$u->email = 'user@mail.com';
// To add a new user record
if ($u->save()) {
 // if saved we have a new echo 'New User Id Opened having'
 $u->id. 'User Id
';
 }
else {// Show why we failed to save echo
 $u->error->string;
 }
// Getting the first three users from the database
$u = new User();
$u->limit(3)->get();
// Showing the fetched users
foreach ($u as $user_rec)
{
 echo 'User Id: '. $user_rec->id . '
';
 echo 'User Name: '. $user_rec->username . '
';
 echo 'User Email: '. $user_rec->email. '
';
 }
// Get the user with Uid = 10 if any
$u = new user();
$seek_uid = 10;

$u->where('id', $seek_uid)->get();
// Check if found
if (exist ($u)){
 echo 'User Id:'.$u->id.' Name is'.$u->username. '
';
 }
else echo 'No user found for user ID'. $seek_uid. '
';

Chapter 6

[125]

This is only a very simple usage example, while ORM today provides a rich set
of CRUD and validation services. Please refer to the provided links to the featured
ORM plugins for more information.

Example 1 – a CRUD example
In this example, we will see how to use a CI model. For this example, we will use a
model that performs these operations on the database: SELECT, INSERT, and UPDATE.

The example displays, all the products that are retrieved by the model productmodel
at the main page in the database.

Let us assume the URI to the project root is http://mydomain.com/myproject
and http://mydomain.com/myproject/product.

The source code is provided with this book via URLs.

The main page has links for adding and editing a product. These links generate
a form for editing and adding a product.

Let us assume the URI to the project root is http://mydomain.com/myproject
and http://mydomain.com/myproject/product/add.

Suppose we want to edit and update the product with product_id 1, the link will
be http://mydomain.com/myproject/product/edit/1. This example will be
constructed from the following controller, model, and views:

• application/controllers/product.php: This controller loads the
model product.
$this->load->model('productmodel');

This controller renders the following views:

 ° productsview: This view displays all the products with links
to editing and adding a product

 ° productform: This view contains the form for adding and editing
a product

• application/models/productmodel.php: This model contains functions
that perform these operations on the database: SELECT, INSERT, and UPDATE.

Models

[126]

• application/views/productsview.php: The view that displays
the products.

• application/views/productform.php: The view that contains the form.

The controller file
The controller PHP file is located at application/controllers/product.php.
The controller handles the product's operations, such as adding, editing, updating,
and displaying the product's table.

The controller creates a form for adding and editing a product.

For more information refer to Chapter 7, Views.

The following are the code and inline explanations:

<?php
if (!defined('BASEPATH')) exit('No direct script access allowed');
class Product extends CI_Controller {
// Accessory method for generating forms called by the methods add
// and edit.
private function load_form($form_action, $a_values = array())
{
 // Loading the form helper
 $this->load->helper('form');
 // Loading the form_validation library
 $this->load->library('form_validation');
 $view_params['form']['attributes'] = array
 ('id' => 'productform');
 $view_params['form']['action'] = $form_action;
 $product_id = isset($a_values['product_id']) ?
 $a_values['product_id']: 0;
 $view_params['form']['hidden_fields'] = array
 ('product_id' => $product_id);
 // product name details
 $view_params['form']['product_name']['label'] = array
 ('text' => 'Product name:', 'for' => 'product_name');
 $view_params['form']['product_name']['field'] = array
 ('name' => 'product_name', 'id' => 'product_name', 'value' =>
 isset($a_values['product_name']) ?
 $a_values['product_name']: '', 'maxlength' => '100',
 size' => '30', 'class' => 'input');
 // product sku details
 $view_params['form']['product_sku']['label'] = array
 ('text' => 'Product SKU:', 'for' => 'product_sku');

Chapter 6

[127]

 $view_params['form']['product_sku']['field'] = array
 ('name' => 'product_sku', 'id' => 'product_sku', 'value' =>
 isset($a_values['product_sku']) ? $a_values['product_sku']:
 '', 'maxlength' => '100', 'size' => '30',
 'class' => 'input');
 // product quantity details
 $view_params['form']['product_quantity']['label'] = array
 ('text' => 'Product Quantity:', 'for' => 'product_quantity');
 $view_params['form']['product_quantity']['field'] = array
 ('name' => 'product_quantity', 'id' => 'product_quantity',
 'value' => isset($a_values['product_quantity']) ?
 $a_values['product_quantity']: '', 'maxlength' => '100',
 'size' => '30', 'class' => 'input');
 // Form attributes validation rules
 $config_form_rules = array(
 array('field' => 'product_name', 'label' => 'Product Name',
 'rules' => 'trim|required'), array('field' => 'product_sku',
 'label' => 'Product SKU', 'rules' => 'trim|required'),
 array('field' => 'product_quantity',
 'label' => 'Product Quantity',
 'rules' => 'trim|required|integer'));
 $this->form_validation->set_rules($config_form_rules);
 return $view_params;
 }
// This controller method retrieves the products list calling the
// model productmodel's method get_products() renders the results
// in the view productsview.
public function index()
{
 // Loading the url helper
 $this->load->helper('url');

 // Manually loading the database
 $this->load->database();

 // Loading the model class
 $this->load->model('productmodel');

 // Calling the model productmodel's method get_products()to
 // retrieve the products from the database.
 $view_params['products'] = $this->productmodel->get_products();
 // Rendering the products list in the view productsview.
 $this->load->view('productsview', $view_params);
 }
// This method handles the operation of adding a product to the
// database.

Models

[128]

public function add()
{
 // Loading the url helper
 $this->load->helper('url');

 // Manually loading the database
 $this->load->database();

 // Loading the model class
 $this->load->model('productmodel');

 $a_post_values = $this->input->post();
 $view_params = $this->load_form('product/add', $a_post_values);

 // Validating the form
 if ($this->form_validation->run() == FALSE) {
 // Validation failed
 $this->load->view('productform', $view_params);
 } else {
 $data = $a_post_values;
 array_pop($data);
 $this->productmodel->addProduct($data);

 redirect('product');
 }
 }
// This method handles the operation of editing a product
public function edit($product_id)
{
 // Loading the url helper
 $this->load->helper('url');
 // Manually loading the database
 $this->load->database();

 // Loading the model class
 $this->load->model('productmodel');

 $a_post_values = $this->input->post();
 // Checking if a form was submitted
 if ($a_post_values) {
 $a_form_values = $a_post_values;
 } else {
 // Get the values of the database
 $a_db_values = $this->productmodel->get_product($product_id);

Chapter 6

[129]

 $a_form_values = array
 ('product_id' => $a_db_values[0]->product_id,
 'product_name' => $a_db_values[0]->product_name,
 product_sku' => $a_db_values[0]->product_sku,
 'product_quantity' => $a_db_values[0]->product_quantity);
 }

 $view_params = $this->load_form('product/edit/' . $product_id,
 $a_form_values);
 // Validating the form
 if ($this->form_validation->run() == FALSE) {
 // Validation failed
 $this->load->view('productform', $view_params);
 } else {
 $a_fields = array('product_name', 'product_sku',
 'product_quantity');
 for ($index = 0; $index < count($a_fields); $index++)
 {
 $s_field = $a_fields[$index];
 $data[$s_field] = $this->input->post($s_field)
 }
 $this->productmodel->updateProduct($product_id, $data);
 redirect('product');
 }
 }
}
/* End of file product.php */
/* Location: /application/controllers/product.php */

The model file
The model PHP file is located at application/models/productmodel.php.

In this example, the methods of the CI object db are called for generating and
executing the SQL queries.

Please refer to the CI database library at http://ellislab.com/codeigniter/
user-guide/database/index.html.

The following are the code and inline explanations:

<?php
class Productmodel extends CI_Model {
 // The model's constructor method
 public function __construct()
 {

Models

[130]

 // Call the Model's parent constructor
 parent::__construct();
 }
 // This method retrieves the products list and returns an array of
 // objects each containing product details.
 public function get_products()
 {
 // Calling the CI's db object's method for generating SQL
 // queries.
 $query = $this->db->get('products');
 // returns an array of products objects
 return $query->result();
 }
 // This method retrieves a specific product's details identified by
 // $product_id as a parameter
 public function get_product($product_id)
 {
 // Calling the CI's db object's methods for generating SQL
 // queries.
 $this->db->select('*');
 $this->db->from('products');
 $this->db->where('product_id', $product_id);

 // Calling the CI's db object method for executing the query
 $query = $this->db->get();
 // Returning array of one object element containing product
 // details.
 return $query->result();
 }

 // This method adds a product to the products table Parameters
 // $data - The data to insert into the table
 public function addProduct($data)
 {
 // Calling the CI's db object method for inserting a product data
 // into the products table.
 $this->db->insert('products', $data);
 }
 // This method updates a product row in the products table
 // parameters $product_id - The product id, $data - The updated
 // data
 public function updateProduct($product_id, $data)
 {
 // Calling the CI's db object's methods for generating SQL queries
 $this->db->where('product_id', $product_id);

Chapter 6

[131]

 // Calling the CI's db object method for updating the product data
 // in the products table
 $this->db->update('products', $data);
 }
}

The view file
The view PHP file is located at application/views/productsview.php.

This view file displays a table with the products list. The following are the code
and inline explanations:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Products List</title>
</head>
<body>
<table>
<tr>
 <td>ID</td>
 <td>Name</td>
 <td>SKU</td>
 <td>Quantity</td>
 <td>Actions</td>
</tr>

<?php foreach ($products as $product): ?>
<tr>
 <td><?php echo $product->product_id; ?></td>
 <td><?php echo $product->product_name; ?></td>
 <td><?php echo $product->product_sku ; ?></td>
 <td><?php echo $product->product_quantity ; ?></td>
 <td><a href="<?php echo site_url("product/edit/" .
 $product->product_id); ?>">Edit Product</td>
</tr>
<?php endforeach; ?>
</table>

<p>
 <a href="<?php echo site_url('product/add'); ?>">Add Product
</p>
</body>
</html>

Models

[132]

Example 2 – a business logic example
In this example, we will demonstrate business logic. Ordering a product will trigger
the model to update the product's quantity and check whether it's smaller than a
certain amount.

This example will be constructed from the following controllers, model, and view:

• application/controllers/order.php: This controller loads the model
productmodel

• $this->load->model(' productmodel'): This controller renders the view
orderview, which displays all the products, and where each product has
links to ordering a product

• application/models/productmodel.php: This model contains functions,
which retrieve products, updates its quantity, and checks its quantity

• application/views/ orderview.php: The view displays all the products
in a table, where each row has a link for ordering the product

Let us assume the URI to the project root is http://mydomain.com/myproject
and http://mydomain.com/myproject/order.

The source code is provided with this book via URLs.

The controller file
The controller PHP file is located at application/controllers/order.php.

This controller is responsible for displaying the products and updates each product.
If the product's quantity reaches a limit, it generates an error message.

The code and inline explanations are as follows:

<?php
if (!defined('BASEPATH')) exit('No direct script access allowed');
class Order extends CI_Controller
{
 // This method retrieves the products list and returns an array
 // of objects each containing product details
 public function index()
 {
 // Loading the url helper

Chapter 6

[133]

 $this->load->helper('url');

 // Manually loading the database
 $this->load->database();

 // Loading the model class
 $this->load->model('productmodel');

 $view_params['products'] =
 $this->productmodel->get_products();

 $this->load->view('orderview', $view_params);
 }
 // This method checks the product's quantity.
 // It updates the product row in the database or generates an
 // error message
 public function product($product_id)
 {
 // Loading the url helper
 $this->load->helper('url');

 // Manually loading the database
 $this->load->database();

 // Loading the model class
 $this->load->model('productmodel');

 if (!$this->productmodel->update_quantity($product_id)) {
 mail($user_mail, 'product' . $product_id .
 "reached it's limit", 'Order product' . $product_id);
 }
 redirect('product');
 }
}

The model file
The model PHP file is located at application/models/productmodel.php.

In this example, the methods of the CI object db are called for generating
and executing the SQL queries.

Please refer to the CI database's library available at http://ellislab.com/
codeigniter/user-guide/database/index.html.

Models

[134]

The code and inline explanations are as follows:

<?php
class Productmodel extends CI_Model
{
 // The model's constructor method
 public function __construct()
 {
 // Call the model constructor
 parent::__construct();
 }
 // This method retrieves the products list and returns an array of
 // objects each containing product details.
 public function get_products()
 {
 // Calling the CI's db object's method for generating the
 // SQL queries.
 $query = $this->db->get('products');
 // returns an array of products objects
 return $query->result();
 }
 // This method retrieves a specific product's details
 // identified by $product_id as a parameter.
 public function get_product($product_id)
 {
 // Calling the CI's db object's methods for generating the
 // SQL queries.
 $this->db->select('*');
 $this->db->from('products');
 $this->db->where('product_id', $product_id);
 // Calling the CI's db object method for executing the query
 $query = $this->db->get();
 // Returning array of one object element containing the product
 // details.
 return $query->result();
 }
// This method adds a product to the products table parameters.
// $data - The data to insert into the table
public function addProduct($data)
{
 // Calling the CI's db object method for inserting a product data
 // into the products table.
 $this->db->insert('products', $data);
 }
// This method updates a product row in the products table
// parameters.
// $product_id - The product id

Chapter 6

[135]

// $data - The updated data
public function updateProduct($product_id, $data)
{
 // Calling the CI's db object's methods for generating the
 // SQL queries.
 $this->db->where('product_id', $product_id);
 // Calling the CI's db object method for updating the product data
 // in the products table.
 $this->db->update('products', $data);
 }

// This method checks whether the quantity exceeds it's limit.
private function check_quantity($product_id) {
 // Calling the CI's db object's methods for generating the
 // SQL queries.
 $this->db->select('product_quantity');
 $this->db->from('products');
 $this->db->where('product_id', $product_id);
 // Calling the CI's db object method for executing the query.
 $query = $this->db->get();
 // Calling the result's method row, which returns the SQL query
 // result row.
 $row = $query->row();
 if ($row->product_quantity < 7) {
 return false;
 } else {
 return true;
 }
 }

// This method updates a product quantity and return true or false,
// if quantity reaches it's limit.
public function update_quantity($product_id)
{
 $sql = "UPDATE products SET product_quantity = product_quantity - 1
 WHERE product_id=" $product_id;

 $this->db->query($sql);

 // Checking if the quantity reached it's limit.
 if ($this->check_quantity($product_id)) {
 return true;
 } else {
 return false;
 }
 }
}

Models

[136]

The view file
The PHP view file is located at application/views/orderview.php. This view file
displays a table with the products list.

The following are the code and inline explanations:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Products List</title>
</head>
<body>
<table>
<tr>
 <th>ID</th>
 <th>Name</th>
 <th>SKU</th>
 <th>Quantity</th>
 <th>Actions</th>
</tr>
<?php foreach ($products as $product): ?>
<tr>
 <td><?php echo $product->product_id; ?></td>
 <td><?php echo $product->product_name; ?></td>
 <td><?php echo $product->product_sku ; ?></td>
 <td><?php echo $product->product_quantity ; ?></td>
 <td><a href="<?php echo site_url("order/product/" .
 $product->product_id); ?>">Order Product</td>
</tr>
<?php endforeach; ?>
</table>
</body>
</html>

Example 3 – retrieving data from
Facebook
In this example, we will use the CI built-in model to retrieve data from Facebook.

The example displays a Facebook user name and picture and displays the user's
Facebook friends.

Chapter 6

[137]

This example uses Facebook PHP SDK as a CI library. It can be downloaded
from https://github.com/facebook/php-sdk. For more information, refer
to Chapter 4, Libraries.

This example will be constructed from the following controllers, model, and view:

• application/controllers/fbpage.php: This controller loads the model
fbmodel

• $this->load->model('fbmodel'): This controller renders the view fbview,
which displays the user's Facebook picture and name, and table, which
contains the user's friends' names and links to their profiles

• application/models/fbmodel.php: This model contains functions that
retrieve data from Facebook

• application/views/fbview.php: This view displays Facebook data

Let us assume the URI to the project root is http://mydomain.com/myproject
and http://mydomain.com/myproject/fbpage.

The source code is provided with this book via URLs.

The controller file
The controller PHP file is located at application/controllers/fbpage.php.

The controller is responsible for getting the access token from Facebook and
redirecting the Facebook user to the Facebook login page to confirm the Facebook
app's permission.

The controller is also responsible for getting the Facebook user's details and friends
via the model and rendering the view page accordingly.

For more information about Facebook API usage and development, please refer to
the Facebook developer page available at http://developers.facebook.com/.

The following are the code and inline explanations:

<?php
class Fbpage extends CI_Controller {
 public function __construct() {
 parent::__construct();
 // Extremely important!!!

Models

[138]

 // Due to the fact that the CI handles classes for
 // $_GET, $_POST, and $_COOKIE parse_str is called to
 // copy the variables sent by Facebook to the $_REQUEST var,
 // so that the Facebook SDK can do its checks.
 // This is done in order to avoid infinite redirect loop.
 parse_str($_SERVER['QUERY_STRING'], $_REQUEST);
 }
 // This method retrieves Facebook data of a Facebook user and
 // displays personal details and some of his friends.
 // It checks if a Facebook token is valid, if it's valid,
 // then it displays his details, otherwise it produces
 // the token.
 public function index() {
 $a_config = array('appId' => $fb_API, 'secret'=> $fb_secret,
 'cookie' => true);
 $this->load->library('facebook', $a_config);
 // Checking if the user is logged in and confirms
 // the app's permissions.
 if ($user = $this->facebook->getUser()) {
 // Get the Facebook token
 $access_token = $this->facebook->getAccessToken();
 // Loading the fbmodel
 $this->load->model('fbmodel');
 // Updating the token
 $this->fbmodel->set_token($access_token);
 // Get a Facebook user's profile details
 $user_profile = $this->fbmodel->get_user_profile();
 // Getting the Facebook user ID
 $uid = $user_profile['id'];

 // Retrieving a Facebook user's details
 $me = $this->fbmodel->get_me_by_fql($uid);
 // Get a Facebook user's friends
 $friends = $this->fbmodel->get_friends();
 $view_params = array('me' => $me, 'friends' => $friends);
 // Loading the view
 $this->load->view("fbview", $view_params);
 } else {
 // The Facebook parameters for the Facebook login URL,
 // where scope consists the Facebook app's permissions.
 $a_params = array ('fbconnect' => 0,
 'scope' => offline_access, publish_stream',
 'cookie' => true);
 // The Facebook login URL page
 $login_url= $this->facebook->getLoginUrl($a_params);

Chapter 6

[139]

 // Redirecting the Facebook user to the login URL.
 // After the Facebook user confirms the permissions
 // required by the app; he is redirected back to the
 // index page.
 header('Location:'. $login_url);
 }
 }
 }

The model file
The model PHP file is located at application/models/fbmodel.php.

The model is responsible for interacting with the Facebook SDK and retrieving
the Facebook user's details and friend lists. The model uses the Facebook
FQL mechanism.

For more information about Facebook API usage and development, please refer
to the Facebook developer page available at http://developers.facebook.com/.

The code and inline explanations are as follows:

<?php
class fbmodel extends CI_Model {
 // The Facebook app's token
 private $token;
 public function __construct() {
 // Call the model constructor
 parent::__construct();
 }

 // This method sets the model class's private token value
 public function set_token($token) {
 $this->token = $token;
 }

 // This method returns an array, which contains the Facebook user
 // profile.
 public function get_user_profile() {
 // Getting the CI main class to get access to the Facebook
 // library.
 $ci =& get_instance();

 // Getting the Facebook user's profile
 $user_profile = $ci->facebook->api('/me');

Models

[140]

 return $user_profile;
 }

 // This method returns an array, which contains a Facebook user's
 // details.
 public function get_me_by_fql($uid) {
 // Getting the CI main class to get access to the Facebook
 // library.
 $ci =& get_instance();
 // The SQL query to send to Facebook $fql = SELECT uid, name,
 // pic_big FROM user WHERE uid=" $uid;
 $param = array('method' => 'fql.query', 'query' => $fql,
 'callback' => '');

 // Getting the Facebook user's details
 $fqlResult = $ci->facebook->api($param);
 // Returning an array, which contains the required details
 return $fqlResult;
 }

 // This method returns an array of a Facebook user's friend.
 public function get_friends() {
 // Getting the CI main class to get access to the Facebook
 // library
 $ci =& get_instance();
 // Getting the Facebook user's friends
 $friends = $ci->facebook->api('/me/friends');

 // Returning an array, which contains a Facebook user's friend
 return $friends;
 }
 }

The view file
The view PHP file is located at application/views/fbview.php.

This view file displays a Facebook user's details and a table with their friend details.

The code and inline explanations are as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">

Chapter 6

[141]

 <title>My facebook details</title>
</head>
<body>

<div id="my_details">
 <div id="picture"><img src="<?=$me[0]['pic_big'] ?>"></div>
 <div id="my_name"><?=$me[0]['name'] ?></div>
</div>
<table>
<tr>
 <th>Name</th>
 <th>Link to friend</th>
</tr>
<?php foreach ($friends['data'] as $friend): ?>
<tr>
 <td><?=$friend['name']?></td>
 <td><a href='http://www.facebook.com/<?=$friend["id"]?>'>To
 friend</td>
</tr>
<?php endforeach; ?>
</table>
</body>
</html>

Summary
In this chapter, we have reviewed the CI model scope, business logic, and ORM.
We have made the following examples in this chapter:

• Example 1: a CRUD example
• Example 2: a business logic example
• Example 3: retrieving data from Facebook

Views
This chapter covers the process flow to render views, the process flow within
the view file, different type of views, and their role and usage with several code
examples of web applications.

The views are programmatic portions that provide content to the browser to be
executed on the client side (that is, the user PC) to make the user-interface session
on the local computer.

The PHP view file rendered output returns from the server as an HTTP response
content to the requesting browser application (that is, requesting via submitting
a URI in the browser navigation area).

Initially, the browser sends a URI request that the user types in, to a default or
specific controller method, such as http://mysite.com/myapp/helloworld.

The called controller method processes the request, performs its decision making,
and may use the other CI resources, such as helpers, libraries, models, and
eventually renders a view back as an HTTP response to the browser HTTP request
that initiates the controller operation. The HTML file returned to the browser
includes HTML, CSS, and JavaScript. The browser executes the received rendered
view from the server, and uses it to perform the user-interface session (visual
elements, and UI elements, such as buttons, scrollbars, and navigation elements);
we see and operate via the browser to navigate to other page views or get specific
information or media by issuing a page anchor, button, clicking on the icon, and
so on. The described action causes another HTTP request(s), either synchronous
(mostly anchor) or asynchronous AJAX request(s) handled by JavaScript embedded
in the web page.

Views

[144]

The CI view is a PHP file that may contain part or all of the following: PHP statements,
HTML tags, CSS, JavaScript program, Flash, images, and media sources. In CI, a view
file may contain the PHP code that uses the controller-provided parameters, or even
call the CI helpers, libraries, or model directly to generate the output that is part of the
generated HTML file response. The generated PHP output can be strings or numeric
values incorporated in the HTML tags, or even a whole HTML page.

This chapter will primarily focus on the following topics:

• The CI view scope:
 ° The CI view resources path
 ° The rendering flow
 ° Client-side flexibility
 ° Accessing libraries/helpers within a view
 ° Forms
 ° Using AJAX
 ° View parser configuration issues
 ° Integrating jQuery or other client-side libraries

• View rendering plugins (view template plugin example)
• Example 1: HTML5 location powered by Google Maps
• Example 2: user feedback powered by AJAX and the jQuery UI

We will begin by briefly reviewing the CI view scope, and will proceed with several
usage examples covering different use cases that can be combined in a real project.

Scope of the CI view
The CI view is enabled with great flexibility to integrate the client-side third-party
resources, as well as accessing the CI resources of the CI libraries, helpers, and models.

This section will focus on the CI view syntax and usage guidelines, as a preface to the
coming usage code examples.

We can extend the CI library using the third-party libraries from the CI echo system
or develop our own libraries.

Chapter 7

[145]

The CI view resources path
In a CI project, the view files are located under the application/views/ directory
or any subdirectory to this path. For example, we can build under application/
views/ subdirectories, for let's say, two different view categories to improve the
clarity of the file structure in our project. The following screenshot shows the views
location in a CI project directory tree:

Views

[146]

For example, to render a template file located at Application/views/templates/
named home.php, we shall write the following code:

$this->load->view('templates/home');
//The following load view call, render a view using all its optional
parameters
$this->load->view('view_file', // PHP view file to render
$view_params, // parameters array for view
FALSE // FALSE - default. to output
// TRUE – back as string
);

In this example, view_file is referring to the CI resource PHP view file
application/views/view_file.php.

$view_params is the array of parameters (scalar/array in each entry) for the view
file, as we have demonstrated at several places earlier, so that each array key, let's
say, name, becomes the $name PHP variable in the view to use.

In case we wish to get the processed view into a buffer, for, special processing, caching,
or any other processing purpose, for example you may call the following example:

$view_buffer=$this->load->view
('sectionA/view_file', $params, TRUE);

Note that the third parameter's value is set to TRUE (the default value is set to FALSE,
and echoes the view to the standard output; in the case of the controller rendering,
this means it will be returned as an HTTP response to the browser, issuing the
request from the controller).

The preceding example refers to the following view file: application/views/
sectionA/view_file.php.

The rendering flow
The view is rendered by the controller. The controller provides the parameters to
the rendered PHP view file to use them.

The controller uses the following built-in CI load library: $this->load->view('my_
view',$data);

Chapter 7

[147]

Otherwise, the controller uses the third-party rendering service library. In this
chapter we will use such a library. The CI controller rendering is done by the CI
load view library, and that optionally accepts the $data of parameters and objects
that the rendered PHP view file can use. See the following code for example:

$data['myval'] = 'Hello';
$this->load->view('my_view',$data);

The rendered PHP view file application/views/my_view.php uses the $data
parameters provided via the load library as follows:

<H1><?PHP echo $myval; ?></H1>

Note that the controller defines the data as follows:

$data['myval'] = 'Hello';

While the usage at the PHP view file rendered will be as follows:

<H1><?PHP echo $myval; ?></H1>

Later, the PHP view file will be executed, so that the HTML generated code will
be as follows:

<H1>Hello</H1>

The entire PHP view file that is rendered, including the PHP executions, will
generate the view HTML file that will be returned to the browser via HTTP
to be executed locally.

View flexibility
CI provides the flexibility for the PHP view file code to use any client-side
JavaScript/CSS/HTML, or other JavaScript libraries in the view files, without
any requirement to declare them at the server-side controller, as it occurs in
some other platforms.

Furthermore, the CI view can access any other CI resources, such as the CI libraries,
the CI models, or the CI helpers, as if it were the rendering controller of the view;
for example, accessing a session parameter directly.

$param = $this->session->userdata('param1');

Views

[148]

Also, the CI view can call a CI library method directly in the same fashion as the
rendering controller does (assuming the rendering controller loads this library).

$calc = $this->my_lib->my_lib_calc($param);
<H1><?PHP echo $calc; ?></H1>

Accessing the libraries/helpers
As mentioned earlier, the CI PHP view file can access any of the CI resources, such
as calling the CI helpers, libraries, or models in the same way the controller does.

The following is a more elaborated and complete example of a PHP CI view file,
accessing CI resources, such as libraries/models/helpers:

<HTML>
<?PHP
// URI is a built-in CI library
// if the rendering controller for this view was
// http://mysite/myproject/mycontroller/test3
// the segment(1) = mycontroller – the controller name
// the segment(2) = test3 - the controller method
$the_controller = $this->uri->segment(1);
$the_method = $this->uri->segment(2);
?>
<H1>This View Rendered by Controller
<?=$the_controller; ?> </H1>
<H1>Using its method named <?=$the_method; ?></H1>

Forms
The CI PHP view file can contain any number of HTML data entry forms to accept
the input data from the browsing user. We can use the CI form helper service to
simplify the data entry buildup powered validation services.

The CI form helper provides a useful and comprehensive set of PHP functions for
many data entry and input fashions. Among them we can find the data entry of the
text field, the area text field, the radio button, checkbox, combo box, and menu option.

The following is a list of the most common CI form helper functions:

• form_open()

• form_input()

• form_dropdown()

Chapter 7

[149]

• form_password()

• form_upload()

• form_textarea()

• form_multiselect()

• form_checkbox()

• form_radio()

• form_close()

The CI form helper generates an HTML portion that is rendered as part of the HTML
file that is returned to the browser.

For example, let's take a look at a drop-down selection example of a color pickup.

<HTML>
<?PHP
$attr = ' class="nice_field" ';
$options = array();
$options[0] = 'Blue';
$options[1] = 'Green';
$options[2] = 'Yellow';
$default = 1;
echo form_dropdown("color", $options, $default, $attr);
?>

The form_dropdown helper will generate the following code:

<select class="nice_field" name="color">
<option value="0»>Blue</option>
<option selected=»selected» value=»1»>Green</option>
<option value=»2»>Yellow</option>
</select>

For more information, refer to the CI form help user manual.

AJAX
Asynchronous JavaScript and XML services (AJAX) (http://en.wikipedia.org/
wiki/Ajax) of JavaScript/jQuery integration within a view is critical today in
almost any web application. It provides an advanced user experience by operating
asynchronously in parallel to the user operations, and updates only certain HTML
selector portions and not the entire page as anon AJAX updates operate.

Views

[150]

AJAX has many use case examples to enhance the user experience. The following are
few common usage examples:

• Autocomplete while the user typing into a field all the matches found shown
in a pop-up list for the user to choose. Without AJAX autocomplete the UI
service is almost impossible.

• When submitting a form data entry using AJAX enables to issue the server
submission to store or process the date and show the result only in a specific
selector (notification massage), instead of refreshing the whole page as form
with the action, submission requires. (Format: Bullet)

• When browsing many information pages (called pagination) and clicking on
a certain page number to view. AJAX enables rendering the selected page to
view within a selection DIV in the whole HTML page without refreshing the
whole page. (Format: Bullet End)

Currently, AJAX is becoming an essential view component, mostly enabled via the
popular jQuery library, which makes it easy to use. AJAX is an extremely valuable
UI asset for building smart and interactive views. For example, the following is
an example of the AJAX service that, for a given SSN (Social Security Number),
provides the person's name and phone number in the defined selectors, if found,
or alerts, if else. Whenever the user is clicking on the Get Info button, an AJAX call
is triggered, and an asynchronous AJAX call to an AJAX controller is sent with the
SSN to get the person's record. When the response is returned, if the SSN was found,
the phone and name of the person will be updated. Otherwise, a notification will be
provided that the SSN person's record was not found.

The following is the code implementing the process described previously, where the
AJAX call is the heart of the operation:

<script type="text/javascript">
function get_person_info
 (SSN_val, name_sel, phone_sel, err_sel) {
 /*
 //SSN_val –the value of the SSN user typed in to search
 //name_sel–the name input that the Ajax will update if SSN found
..//phone_sel-the phone selector to be update if SSN found as well
 //err_sel-the error message area, to explain error such as SSN
 //not found or some other error occurred.
 */
 varajax_url = '<?php echo base_url();?>ajax/get_person_info';
 $.ajax({
 type: "POST", //Very important POST is the best
 url: ajax_url,
 // the URI of the AJAX server side controller method that will

Chapter 7

[151]

processes this request
 data: {SSN: SSN_val},
 // SSN is the parameter name
 // SSN_val is the value
 dataType: "json",
 //the retuned data expected to be JSON
 success: function(data) {
 // the data is the array conversion of the JSON data
 // retuned to ease our usage in the JavaScript!
 if(data.result=='found') {
 // Let's show the name and phone of the person with the
 //given SSN
 $(name_sel).val(data.name);
 $(phone_sel).val(data.phone);
 } else{
 // SSN Not found in the database!
 // Let's notify SSN has no person match
 $(err_sel).css ('color', 'red');
 $(err_sel).text('No person found with SSN' + SSN_val);
 }
 },
 error : //Ajax error occurred such as Ajax server not found
 //and so on
 function (msg) { alert ('Error:' + msg)
 $(err_sel).css ('color', 'red');
 $(err_sel).text ('Error:' + msg);
 }
});
// Wait for the document to be ready and bind the user click
// on the #get id selector to call the AJAX search service
// with the user typed SSN
$(function(){
 $('#get').click(function(){
 get_person_info ($('#SSN').val(),
 '#name',
 '#Phone',
 '#err_sel'
);
 });
});
</script>

Views

[152]

The following is the portion of the HTML form itself:

<form>
<label>Enter SSN</label>
<input type='text' name="SSN" id="SSN">
<button id='get'>Get Info</button>

<label>Name</label><B id='name'>

<label>phone</label><B id='phone'>
</form>
<B id='err_sel'>

Parser configuration issues
The view is parsed by the CI parser before it is rendered back to the requesting
browser. The default syntax to echo a PHP parameter / calculated expression value
within the HTML tags is <?PHP echo trim($param); ?>.

However, CI provides automatic PHP short tag parsing support configuration
at application/config/config.php and at the configuration parameter
$config['rewrite_short_tags'] = TRUE;.

If rewrite_short_tags is set to TRUE, we can use the short tag of
<?=trim($param)?>.

An important note on this is that in terms of debugging, the non-short/regular PHP
echo format is preferred, as the short form errors might be more difficult to trace in
this fashion. However, since this fashion is used in many code projects we've seen,
we are mentioning it as well.

Integrating jQuery or other client-side
libraries
CI provides the freedom to integrate any client-side libraries, so that CI does
not have to be specially configured to, or we do not need to perform any special
CI declarations.

The client-side integration is performed in the same fashion, as if no platform is
being used; they are completely transparent. However, CI provides client-side
jQuery code generation services via PHP, such as building the JavaScript library
to create jQuery code, as part of the controller coding.

$this->load->library('javascript');

Chapter 7

[153]

However, for the latest jQuery and many other JavaScript-based solutions today,
there's no need to use this fashion of rendered JavaScript portions, but we can use
the JavaScript A-Z in the view itself instead. A great resource for the (wow level)
JavaScript libraries can be found in the largest resource for the JavaScript libraries
we've found so far at http://www.jsdb.io.

Many more cool links for client-side platforms can be found at https://delicious.
com/eliorr1961.

Note that the directory path for the sources in the CI views is calculated, as if the
view file is in the project root.

For example, let's say the JavaScript library is located at <Project_root>/
javascript/myjs.js.

And the view is located either at the <Project_root>/application/views/view1.
php or <Project_root>/application/views/topicB/view2.php view path
under views.

After we provide the root path via the base tag using the built-in CI URL helper
<base href="<?php echo base_url() ?>"/>, both will load myjs.js as follows:

<script type='text/javascript'src="javascript/myjs.js" ></script>

They load as if they were located at the project root. This is due to the fact that CI
processes the requests and rendering views as part of the root directory index.php.
Hence, all the directory paths for SRC or INCLUDE from view PHP portions are
considered, as if they occurred from the project root directory. This is due to the fact
that all URIs to the project are executed by index.php. So for all the project code, the
directory path is as though your code was in the same directory of index.php or at
the CI project root directory.

Plugins for rendering view
As mentioned at the beginning of this chapter, we can use third-party libraries to
enable us to create more advanced rendering services in a template layout fashion.

For example, the CodeIgniter template class by Colin Williams available at
http://www.williamsconcepts.com/ci/libraries/template/index.html.

This plugin enables us to define the rendered page as a Lego fashioned layout
with predefined page regions, so that we can have a different PHP CI view to
render each of them.

Views

[154]

This way we can have great reusability and a unified look, and fill in the entire
application page, which in many cases is a good UX (User Experience) practice. In
this case, the user, let's say, will know that on the top they will have a certain main
navigation area, on the right certain status info and operational shortcuts, and so on.

We can define one or more layouts, so that each page layout template will have its
region's organization. Each region is commonly defined within a DIV.

Having several template layouts, we can initially choose the proper layout we want
to use, and then we will load its region content using the CI views defined for each
region. For example, let's say we want to have a certain layout named default.

The default template's main layout will be named, template, for example, using
the view file main_template.php, so that main_template.php will include the
following regions:

• header

• upper_navigation

• content

• footer

We shall perform the following configurations at application/config/template.
php.

This is not the CI built-in plugin, but an additional plugin with the
library and configuration file, and other assets we have installed to
our CI project.

//The default template shall be defined as follow:
//Note, more templates can be defined in the same fashion
$template['default']['template'] = 'main_template';
$template['default']['regions'] = array
 ('header', 'upper_navigation', 'content', 'footer');

The main_template refers to application/views/main_template.php.

The content of main_template.php will include rendering of all the defined
template regions as follows:

<html>
<body>
<div><?=$header;?></div>
<div ><?= $upper_navigation;?></div>
<div><!--main content area -->
<?= $content; ?>
</div>

Chapter 7

[155]

<!-- #footer -->
<?=$footer;?>
</body>
</html>

In order to use the preceding template plugin, we will do the following:

First, load the template library in the CI controller constructor/s where we want to
use the template. Remember that the template library is located at <Project_root>/
application/libraries/Template.php.

We shall load the template library as follows:

$this->load->library('template');

<Project_root>/application/libraries/Template.php

$this->load->library('template');

Then, we will load the specific template file we have configured (we can define many
to choose from), let's say, in the controller constructor, we will also assume that all
the controller methods use the same template.

//set the selected template from the template config we want
//to use
$this->template->set_template('default');

Now, for rendering the template regions into a rendered view using the
predefined view . We will do as follows:

For each template region at, let's say, <Project_root>/application/views/,
we shall load it to the corresponding region as follows:

$this->template->write_view ('header', 'header_view', $data);.
$this->template->write_view
('upper_navigation', 'upper_navigation_view', $data);
$this->template->write_view ('content', 'content_view', $data);
$this->template->write_view ('footer', 'footer_view', $data);

Now the template regions are rendered with their region view files. We can render
the whole template with all its regions as follows:

// Now, we have all the regions rendered into the
// template instance buffer, we can render them all to
// the desired template base page.
$this->template->render();

Views

[156]

The point to remember is that templates have great pros, but also some cons.
The template dictates a very strict way of rendering a template base page that
does not always have the desired flexibility, so that we may find ourselves writing
several templates and switch between them, according to the UI situation.

Example 1 – HTML5 location powered
by Google Maps
In this example, we will expand the Google Maps integration example from Chapter
4, Libraries, so that there will be a new option of showing the user where they are
located on the Google Map. For doing so, we will use the HTML5 navigator.
geolocation service to request the browsing user to share its location with the
application. If the user agrees, and is using an advanced browser, such as the latest
Firefox, Chrome builds that support to this service. Once we get the values, we will
collect the geolocation, and call a controller method to prepare the Google Map of
that area to render a Google Map view with the option navigator. We will use the
HTML5 navigator.geolocation service as follows:

navigator.geolocation.getCurrentPosition(getLocation,
locationFail);

Here, getLocation is called, if the location was successfully fetched, and
locationFail, if it was failed.

We will start with the controller first.

The controller file
The controller PHP file is located at application/controllers/gmaps.php.
The following is the controller code based on Chapter 4, Libraries, for the extended
Google Maps API integration example, where the new parts of code are highlighted:

class Gmaps extends CI_Controller
{
// Extends the CI controller to be our Gmaps controller powered by
// the Google API wrapper library.
 // Setting the initialization parameters of Google Maps
 // Library Mapper for the window size where the
 // user interaction with Google Maps created window will occur
 private $user_lon = 0;
 private $user_lat = 0;
 function __construct()
 {parent::__construct();

Chapter 7

[157]

 $this->load->library('googlemaps');
 // Set the map window sizes:
 $config['map_width'] = "1000px"; // map window width
 $config['map_height'] = "1000px"; // map window height
 $this->googlemaps->initialize($config);
 }
 function index()
 {
 /*Initialize and setup Google Maps for our App starting with
 3 marked places: London, UK, Bombai, India, Rehovot, Israel
 */
 // Initialize our map for this use case of show 3 places
 // altogether.
 // let the zoom be automatically decided by Google for
 // showing the several places in one view
 $config['zoom'] = "auto";
 $this->googlemaps->initialize($config);
 //Define the places we want to see marked on Google Map!
 $this->add_visual_flag ('London, UK');
 $this->add_visual_flag ('Bombai, India');
 $this->add_visual_flag ('Rehovot, Israel');

 // **NEW CODE **
 // optional user location if user allow it and was fetched
 // successfully
 if ($this->is_user_location_defined ()) {
 $this->add_visual_flag ($this->get_user_location ());
 }

 $data = $this->load_map_setting ();
 // Load our view, passing the map data that has just been
 //created.
 $this->load->view('google_map_view', $data);
}
// ** NEW CODE **
function user_location ($lat=0, $lon=0)
{
 // This is a new code we add for showing the
 //Geolocation fetched from the view base HTML5 Geolocation
 //service.
 //Initialize our map with it if it is set.
 if (! $lat&& ! $lon) $this->index();

 // They are ok - let's keep them
 $this->user_lat = $lat;

Views

[158]

 $this->user_lon = $lon;
 $config['center'] = $this->get_user_location ();
 // Define the address we want to be on the map center
 $config['zoom'] = "5";
 // since its approximate location is country level
 $this->googlemaps->initialize($config);
 //Add visual flag
 $this->add_visual_flag ($config['center']);
 $data = $this->load_map_setting ();
 // Load our view, passing the map data that has just been
 //created.
 $this->load->view('google_map_view', $data);
 }
// ** NEW CODE
functionis_user_location_defined () {
 return ($this->user_lat != 0) || ($this->user_lon!= 0);
 }
// ** NEW CODE
functionget_user_location () {
 return $this->user_lat.", ".$this->user_lon;
 }

functionlondon()
{
 // as before
 }

functionbombai()
{
 // as before
 }
functionrehovot()
{
 // as before
 }
functionload_map_setting () {
 // as before
 }
functionadd_visual_flag ($place) {
 // as before
 }
}
//End class Gmaps

Chapter 7

[159]

The view file
The view PHP file is located at application/views/google_map_view.php.
The following is the view file code based on Chapter 4, Libraries, for the extended
Google Maps API usage example view, where the new parts of code are highlighted.

Here, we add an HTML5 service in JavaScript to collect the user's geolocation,
and call the controller method user_location ($lat=0, $lon=0).

<!DOCTYPE html">
<meta http-equiv="Content-type" content="text/html;
 charset=utf-8" />
<html>
<head>
<script src="http://code.jquery.com/jquery-latest.js"
 type ='text/javascript'></script>
<script>
// New Code to get the user Geolocation and ask the controller to
// render a Google Map for it.
var latitude = 0;
var longitude = 0;
functionshow_on_map () {
 var DIRECTORY_SEPARATOR = '/';

 // Prepare the URL path of calling the Gmaps controller method
 // user_location with latitude and longitude coordinates as
 // parameters using the CI naming convention of
 // ControllerName/methodName/Param1/Param2
 Var url_to_show =
 '<?php echo base_url(); ?>index.php/gmaps/user_location/' +
 longitude + DIRECTORY_SEPARATOR + latitude;
 // Use jQuery to issue the HTTP controller call and rendering
 // request
 $(location).attr('href', url_to_show);
 }
$(document).ready(function() {
 // if user clicks on the for getting its Geolocation
 $('#getmylocation').click(checkLocation);
 functioncheckLocation() {
 // Check if the browser supports the HTML5 Geolocation
 // Note that navigator.geolocation will pop a request from
 // the user to allow getting its location (Privacy)
 if (navigator.geolocation) {
 // It does so let the user be notified
 $('#notifications').html
 ('fetching your location, wait...');

Views

[160]

 $('#notifications').css ('color', 'blue');

 // Try to fetch the latitude/longitude of the browsing user
 //and provides the callbacks
 // Success: getLocation
 // Failure: locationFail
 navigator.geolocation.getCurrentPosition
 (getLocation, locationFail);
 }

else {
 $('#notifications').html
 ('Sorry, your browser settings does not enable fetching your
 Geolocation');
 } // ends checkLocation()
 //this is what happens if getCurrentPosition is successful
 functiongetLocation(position) {
 latitude = position.coords.latitude;
 longitude = position.coords.longitude;
 // Notify user for its location:
 $('#notifications').html
 ('Your approx. position :
 (' + latitude + ',' + longitude + ')');
 $('#notifications').css ('color', 'green');
 // Two seconds after the notification to user we have the
 // location issue call to the controller to show it on
 // the Google Map
 setTimeout (show_on_map, 2000);
 }
 //this is what happens if getCurrentPosition is unsuccessful
 //(getCurrentPositionerrorCallback)
 functionlocationFail() {
 $('#notifications').html
 ('Sorry, your browser could not fetch your location ...');
 $('#notifications').css ('color', 'red');
 }
 });
 </script>
 <!—As Before.. -->
 <!—Notification selector -->
 <HR></HR>
 <DIV style='background:lightgreen;width:300px;'>
 ...
 </DIV>
 <HR></HR>

Chapter 7

[161]

 <!-- Let the User Always Get Back to the default Zoom out with
 all places marked>
 <?php echo anchor
 ("index.php/gmaps", 'See All Locations') ?>
 <!—If user clicks this one the Geo Location service will start -->
 <li id = 'getmylocation' style = 'cursor: pointer;
 color: blue; decoration: underline'> Show Me My Location
 <!—As Before.. -->

Example 2 – user feedback powered
by AJAX and the jQuery UI
In this example, we will show how we can use the jQuery UI with AJAX to call
a CI AJAX controller method to collect the user feedback, and submit it without
refreshing/rendering a page.

We will reuse and expand the login example from Chapter 3, Usage and Scope of
Controllers, so if a user is logged in, we will log the feedback with the user ID
kept in the session, while if not, we will log it as anonymous user feedback.

Remember the following things:

• Username: reg_user,
• Password: 111111111 (9 by 1s) for regular user login

The reused and extended resources are as follows:

• auth.php: No change here
• ajax_handler.php: This is the new AJAX handler controller
• users_model.php: This is the extended user model
• logged_in_view.php: This is the extended view for regular user login

We expand the code to include the new Ajax_handler to keep the jQuery UI dialog
submission of the browsing user feedback, as well as get the user logged message
via the AJAX asynchronous interface. Note that we check in Ajax_handler to see
whether the request is AJAX or not. And if it's not, we issue the following URL
in the browser:

http://photographersnav.com/ci_utils/index.php/ajax_handler.

We will get a notification in the browser that this is a bad request.

Views

[162]

The users_model resource is expanded to provide a few more services, which are
as follows:

• get_logged_in_user(): This function is used to return the logged in
user record if logged in or NULL otherwise. get_user_rec ($uid) to
get a specific user record based on his/her ID.

• keep_user_feedback ($feedback): This function is used to keep the user
feedback in the database with its user ID, if logged in.

• get_user_feedbacks ($uid): This function get all the user feedback
messages save till now in the database as an array of the database objects.
Each feedback database row returned have the feedback message and its
timestamp formatted as HTML and returned via the JSON format back to the
AJAX caller to be shown to the end user via the jQuery selector based HTML
rendering (for example, $(selector).html (The_html_item_returned_
from_server)).

The logged_in_view resource is expanded to provide the user with the new services
as follows:

• Add a new feedback button, which when clicked pops-up a jQuery UI dialog
for this purpose

• Show the feedback log button, which when clicked shows a scrollable list of
the user feedback

Now let us review the source code itself.

The ajax_handler.php controller file
The controller PHP file is located at application/controllers/ajax_handler.
php. The code and inline explanations are as follows:

<?php if (!defined('BASEPATH'))
 exit('No direct script access allowed');
class Ajax_handler extends CI_Controller {
 function __construct()
 {parent::__construct();
 /* Standard libraries, database & helper URL loaded via the
 auto load
 */
 if (!$this->input->is_ajax_request())
 {exit("Bad Request ignored! - Your info has been logged for
 further investigation of attacking the site!");
 }
 /* ------ Our Users Model ---------- */

Chapter 7

[163]

 $this->load->model ('users_model');
}

functionsave_user_feedback () {
 // Get the feedback content
 $feedback = $this->input->post('feedback');
 // Get if the user is logged in keep the user id
 $this->users_model->keep_user_feedback($feedback);
 }
functionget_user_feedback_log () {
 $user = $this->users_model->get_logged_in_user ();
 if ($user) $uid = $user->id;
 $user_feedback_rows =
 $this->users_model->get_user_feedbacks($uid);
 $html = '';
 foreach ($user_feedback_rows as $row)
 $html.= $row->timestamp.' - '.$row->feedback.'
';
 $result = array ('result' => $html);
 echojson_encode ($result);
 return;
 }
} // End Ajax_handler

The users_model.php model file
The model PHP file is located at application/models/users_model.php.
The code and inline explanations are as follows:

<?php if (!defined('BASEPATH'))
exit('No direct script access allowed');
class Users_model extends CI_Model {
 function __construct()
 {parent::__construct();
 }
 functioncheck_login ($user, $pass)
 {
 /* No change here
 */
 }
 functionget_logged_in_user ()
 {
 // Will check if there's a login user session and if so will
 // fetch its record

Views

[164]

 $ci = &get_instance();

 //get the login in user ID, if any
 $uid = $this->session->userdata('user_id');
 if (! $uid) return NULL;
 $sql = "SELECT *
 FROMusers
 WHERE id = '$uid' ";

 $q = $ci->db->query($sql);
 if ($q->num_rows())
 {foreach ($q->result() as $row)
 return $row;
 }
 return NULL;
 }
 Function get_user_rec ($uid){
 // Will check if there's a login user session and if so will
 // fetch its record
 $ci = &get_instance();
 // get the login in user ID, if any
 if (! $uid) return NULL;
 $sql = "SELECT *FROM users WHERE id = '$uid' ";
 $q = $ci->db->query($sql);
 if($q->num_rows())
 {foreach ($q->result() as $row) return $row;
 }
 return NULL;
 }
 Function keep_user_feedback ($feedback) {
 $ci = &get_instance();
 $uid_rec = $this->get_logged_in_user ();
 $uid = $uid_rec ? $uid_rec->id: 0;
 /* id email uid feedback timestamp
 */
 $table = 'user_feedback';
 $data = array ('feedback' =>urldecode ($feedback),
 'uid'=> $uid);
 $ci->db->insert($table, $data);
 }
 Function get_user_feedbacks ($uid) {
 $ci = &get_instance();
 if (! $uid) return NULL;
 $feedbacks = array();

Chapter 7

[165]

 $table = 'user_feedback';
 $sql = "SELECT * FROM $tableWHERE uid = '$uid'
 ORDER BY timestamp DESC";
 $q = $ci->db->query($sql);
 if ($q->num_rows()) {
 foreach ($q->result() as $row)
 $feedbacks[] = $row;
 }
 return $feedbacks;
 }
 } // End Users_model

The logged_in_view.php view file
The PHP view file is located at application/views/logged_in_view.php.
This file was extended with several more services, as described in the previous
examples. The code and inline explanations are as follows:

<!DOCTYPE html">
<meta http-equiv="Content-type" content="text/html;
 charset=utf-8" />
<html>
<head>
<script src="http://code.jquery.com/jquery-latest.js"
 type='text/javascript'></script>
<scriptsrc="http://code.jquery.com/jquery-1.8.2.js"></script>
<script src="http://code.jquery.com/ui/1.9.0/jquery-ui.js">
</script>
<link rel="stylesheet" type="text/css"
 href="<?=base_url(); ?>/css/my_style.css" media="screen" />
<script type='text/javascript'>
// The AJAX handler controller method URLs
varsave_user_feedback_submitter =
 '<?=site_url()?>'+'index.php/ajax_handler/save_user_feedback';
varget_user_feedbacks = '<?=site_url()?>'
 +'index.php/ajax_handler/get_user_feedback_log';
functionajax_save_user_feedback (feedback) {
 $.ajax({
 type : "POST",
 url : save_user_feedback_submitter,
 data : {feedback: feedback},
 dataType: "json",
 success: function(data) {
 // When AJAX return back alert
 // ('Your feedback Updated - Thanks!');

Views

[166]

 }
 });
 }

functionajax_get_user_feedback_log() {
 $.ajax({
 type: "POST",
 url: get_user_feedbacks,
 dataType: "json",
 success: function(data) {
 $('#feedback_log_view').show();
 $('#feedback_log_view').html(data.result);
 }
 });
 }
$(document).ready(function() {
 // Set up the jQuery UI feedback dialog
 $("#ideas-form").dialog({
 autoOpen: false,
 height: 270,
 width: 700,
 modal: true,
 resizable: false,
 effect: 'drop',
 direction: "up",
 show: "slide",
 buttons: {
 "Send Us Your Feedback": function() {
 varuser_feedback = $('#user_feedback').val();
 ajax_save_user_feedback(user_feedback);
 // clean feedback entry for next one
 $('#user_feedback').val('');
 // Show user all its feedback so far
 ajax_get_user_feedback_log();
 $(this).dialog("close");
 },
 "Cancel": function() {
 $(this).dialog("close");
 }
 }
 });

 // When user clicks on for a popup feedback window
 $('#user_ideas').button().click(function() {

Chapter 7

[167]

 $("#ideas-form").dialog("open");
 });

 $('#feedback_log').button().click(function() {
 ajax_get_user_feedback_log();
 });
 });// Document ready section
</script >
</head>
<body>
<H1>Welcome <?=$user_name; ?>! </H1>
<H1>You are logged in! </H1>
<HR></HR>
 <H3>Your User ID is: <?=$uid; ?></H3>
 <H3>Your System Role is: <?=$role; ?></H3>
 <H3>Your Menu options: <?=$menu; ?></H3>
<DIV>
 <button id='user_ideas' style="
 cursor: pointer; position: relative; top:0px"
 title='Share your feedback/ideas'>
 Add A New Feedback </button>

 <button id="feedback_log" style=
 "cursor: pointer; position: relative; top:0px"
 title="Your feedback log"> See Your Feedback Log </button>
</DIV>
 <div id='feedback_log_view' style=
 "display: none; width: 800 px; border-style: solid;
 border-color: black; overflow-x: auto; height: 200 px;
 overflow-y: auto;">
</DIV>
<H2><?php echo anchor
 ('index.php/auth/logout', 'Logout')?></H2>

 <div id= "ideas-form", title= "Your Feedback To Improve">
<form>
<fieldset>
<span id= "user_name" class= "text ui-widget-content
 ui-corner-all"> Thanks <? = $user_name; ?>,
 Please share your feedback with us
<textarea name= "idea_desc", id = "user_feedback", rows = "10"
 cols = "83", placeholder = 'Your ideas'></textarea>
</fieldset>
</form>
</div>
</body>
</html>

Views

[168]

Summary
In this chapter, we have reviewed the CI views, scope as well as their general MVC
scope, and the different types of views and usage. In addition, we showed how to
integrate our CodeIgniter code with the third-party template plugin (the CI library,
configuration, and additional code assets) for providing the view template services
to the application controllers.

We have also learned the examples of integrating the jQuery UI and AJAX in the CI
view with the CI controllers/models.

Appendix
In this appendix, we will provide a set of proactive updates and web resources
regarding the CodeIgniter community and its featured CI-based sites.

CI formal resources are as follows:

• CI developer Ellis Labs: http://ellislab.com/codeigniter
• CI forms for different topics: http://ellislab.com/forums
• CI developer online chat: http://ellislab.com/codeigniter/irc
• CI user guide: http://ellislab.com/codeigniter/user-guide
• CI developments of the community GitHub: https://github.com/

EllisLab/CodeIgniter

• CI downloads center: http://ellislab.com/codeigniter/user-guide/
installation/downloads.html

Featured CI plugins are as follows:

• CI sparks—plugin library: http://getsparks.org/packages/browse/
latest

• CI-based CMS PyroCMS: https://www.pyrocms.com
• CI grid plugin: http://www.grocerycrud.com
• CI GoCart—e-commerce plugin: http://gocartdv.com
• CI PayPal Library: https://www.x.com/devzone/articles/paypal-

library-for-php-codeigniter-framework

• CodeIgniter Google Maps V3 API Library: http://biostall.com/
codeigniter-google-maps-v3-api-library

• Facebook PHP SDK and CodeIgniter: http://www.dannyherran.
com/2011/02/facebook-php-sdk-and-codeigniter-for-basic-user-
authentication

Appendix

[170]

• Agile toolkit for CodeIgniter developers: http://agiletoolkit.org/blog/
agile-toolkit-for-codeigniter-developer

• CI FormIgniter—easy form generator for CodeIgniter: http://
formigniter.org

• CI Wiki—libraries/plugins for CodeIgniter: https://github.com/
EllisLab/CodeIgniter/wiki/_pages

• Ajax library wrapper for CodeIgniter: https://github.com/EllisLab/
CodeIgniter/wiki/AJAX-for-CodeIgniter

Sites and articles supporting CodeIgniter are as follows:

• CI built-in libraries navigator http://apigen.juzna.cz/doc/EllisLab/
CodeIgniter/index.html

• PHP assist—CodeIgniter project hosting http://phpassist.com
• Simply CodeIgniter http://www.simplycodeigniter.com
• NetTuts+ CodeIgniter http://net.tutsplus.com/?s=codeigniter
• The CodeIgniter tutorials site http://video.derekallard.com
• Using CodeIgniter for PHP application development http://www.

macronimous.com/resources/using_codeigniter_for_PHP_
application_development.asp

• CodeIgniter-powered sites—proactively updated list http://
poweredsites.org

• CodeIgniter site projects http://seeroo.com/tag/codeigniter

Featured websites powered by CodeIgniter are as follows:

• Sprint Center http://www.sprintcenter.com/
• AT&T Center http://www.attcenter.com
• World Gold Council http://www.gold.org
• Motortopia http://www.motortopia.com
• Club 3D http://www.club-3d.com
• Cyber Ears http://www.cyberears.com

For more information, refer to the Build on CodeIgniter section at http://ellislab.
com/codeigniter.

Index
Symbols
.htaccess file 9

A
admin user login 55
AJAX 150
Ajax_handler 161
App Garden 76
application/config folder 9
application/controller/auth.php controller

55
application/controllers folder 9
application/helpers folder 10
application/libraries folder 10
application/models folder 9
application/models/users_model.php 55
application/views folder 9
application/views/logged_in_view.php 55
application/views/login_view.php 55
Asynchronous JavaScript and XML. See

AJAX
attachments

e-mail, sending with 52
authentication flowchart 86

B
benefits, CI libraries

simplicity 65
built-in helpers

using 110
built-in helpers example

controller file 110
view file 111

built-in libraries
using 69

built-in libraries example
about 69
controller file 70
view file 71

business logic 122
business logic example

about 132
controller file 132
model file 133, 139
view file 136, 140

C
called controller method 143
CGI (Common Gateway Interface) 8
CI

configurations, defining 29
configurations, using 29
miscellaneous naming conventions 39

CI controller
extending 45, 46
scope 43
use cases 46, 48

CI formal resources 169
CI form helper

about 148
functions 148

CI forums
URL 109

CI helpers
about 107, 109
accessing 148
CI system helpers 109
CI third party helpers 109

[172]

scope 108
usage 108

CI libraries
accessing 148
benefits 65, 66
resources 68
reviewing 68
scope 67
usage 67

CI load library 146
CI load view library 147
CI model

about 119
database connection 121
loading 120, 121
operations 119

CI model scope
about 120
business logic 122
model, loading 120, 121
model methods, using 121
model resource path 120

CI naming conventions
about 30
Main Resource Types Naming Rules 30

CI parser 152
CI PHP style guide

URL 39
CI plugins

Agile toolkit for CodeIgniter developers
170

Ajax library wrapper for CodeIgniter 170
CI-based CMS PyroCMS 169
CI FormIgniter 170
CI GoCart 169
CI grid plugin 169
CI PayPal Library 169
CI sparks 169
CI Wiki 170
CodeIgniter Google Maps V3 API Library

169
Facebook PHP SDK and CodeIgniter 169

CI resource PHP view file 146
CI Sparks

URL 68
CI system helpers 109

CI third party helpers 109
CI view scope

about 144
AJAX 149
client-side libraries, integrating 152
flexibility 147
flow, rendering 146
forms 148
libraries/helpers, accessing 148
parser configuration issues 152
resources path 145, 146

classic directory tree structure, CodeIgniter
about 22
config.php 22-27
database.php 27, 28
routes.php 29

client-side integration
performing 152, 153

Club 3D
URL 170

CodeIgniter
articles 170
classic directory tree structure 22
installing 8
sites 170

CodeIgniter template
integrating, with third-party plugins 153,

154
CodeIgniter template class

URL 153
complex parameters

passing, to view 12
complex parameters example

controller file 13
view file 14

config.php file 22-27
controller definition naming rules 31, 32
controller file linkedinfo.php 96
controller index method

calling 33
Cross-Site Request Forgery (CSRF/XSRF) 27
CRUD (Create, Read, Update, and Delete)

122
CRUD example

about 125
controller file 126
model file 129

[173]

view file 131
cURL (Client URLs) 48
Cyber Ears

URL 170

D
data

retrieving, from Facebook 136
database.php file 27, 28
database query example

about 14
controller file 15
model file 16
view file 16

DataMapper CodeIgniter ORM library 123
default homepage controller example

about 49
controller file 49
view files 50, 51

DirectAdmin 48
Doctrine ORM 123

E
e-mail

sending, with attachments 52

F
Facebook

data, retrieving from 136
Facebook data retrieval example

about 136
controller file 137
model file 139
view file 140

flexibility, CI view scope 147
Flickr API wrapper

building 76
Flickr API wrapper example

about 76
controller file flickr_recent.php 82, 83
library file flickr_wrapper.php 77-82
view file flickr_recent_view.php 85

flickr.com 76
flickr_recent.php file 82
flickr_wrapper.php file 77

folders
overview 9

functions, CI form helper
form_checkbox() 149
form_close() 149
form_dropdown() 149
form_input() 149
form_multiselect() 149
form_open() 149
form_password() 149
form_radio() 149
form_textarea() 149
form_upload() 149

G
get_instance() 108
Git community

URL 68
Google Maps CI library

about 71
installing 71

Google Maps integration example
controller PHP file 156
expanding 156
view PHP file 159

Googlemaps.php 71
Google Maps V3 API 71

H
hello world example

about 10
controller file 11
view file 12

helper building example
about 114
controller file 117
helper file 115
view file 118

helper file 107

I
index() function 52
index.php file 9
installation, CodeIgniter 8

[174]

interactive contact forms example
about 17
controller file 18
view file 19

J
jQuery integration

performing 153
jQuery UI

using, with AJAX 161
Jsmin.php 71

L
library file linkedin_handler.php 88
license.txt file 9
LinkedIn API wrapper

about 85
authentication flowchart 86
controller file linkedinfo.php 96
library file linkedin_handler.php 88
requirements 86
view file linked-company.php 103
view file linked-company-updates.php 104
view file linked-connections.php 102
view file linkedin-me.php 101

logged_in_view resource 162
login example

about 55, 56
controller file 56
controller file ajax_handler.php 162
database file, uploading 60
login_in_view view 63
model file 59
model file users_model.php 163
view file logged_in_view.php 165

login_in_view view 63

M
mail attachments example

about 52
controller file 52

Main Resource Types Naming Rules
about 30

Ajax call to an AJAX-oriented method, with
arguments 36, 37

controller and calc method, calling with
arguments 34-36

controller and calc method, calling without
arguments 34

controller definition naming rules 31, 32
controller index method, calling 33
helpers, loading 37, 38
libraries, loading 37, 38
models, loading 37, 38

Motortopia
URL 170

MySQL database- USERS_DB.sql table 55

O
ORM (Object Relational Mapping)

about 122
simple operations example 124, 125

ORM plugins, for CI
DataMapper CodeIgniter ORM library 123
Doctrine ORM 123

P
Packagist

URL 68
parser configuration issues 152

R
regular user login 55
resources path, CI view scope 145, 146
routes.php file 29

S
site_url() function 110
Sprint Center

URL 170
SSL helper example

about 112
controller file 113
helper file 112
view file 114

SSN (Social Security Number) 150
system folder 10

[175]

T
third-party libraries example

about 71
controller file 72, 75
view file 75

U
user-defined CI controller 44
users_model resource services

get_logged_in_user() 162
keep_user_feedback() 162

UX (User Experience) 154

V
view

about 144
complex parameters, passing to 12

view file linked-company-updates.php 101
view_params 146
view template plugin

rendering 153

W
World Gold Council

URL 170

Thank you for buying
Programming with CodeIgniter MVC

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CodeIgniter 1.7 Professional
Development
ISBN: 978-1-84951-090-5 Paperback: 300 pages

Become a CodeIgniter expert with professional tools,
techniques and extended libraries

1. Learn expert CodeIgniter techniques and move
beyond the realms of the User Guide

2. Create mini-applications that teach you a
technique and allow you to easily build extras
on top of them

3. Create CodeIgniter Libraries to minimize code
bloat and allow for easy transitions across
multiple projects

CodeIgniter 1.7
ISBN: 978-1-84719-948-5 Paperback: 300 pages

Improve your PHP coding productivity with the free
compact open source MVC CodeIgniter framework!

1. Clear, structured tutorial on working with
CodeIgniter for rapid PHP application
development

2. Careful explanation of the basic concepts of
CodeIgniter and its MVC architecture

3. Use CodeIgniter with databases, HTML forms,
files, images, sessions, and email

Please check www.PacktPub.com for information on our titles

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through the basic
Ext JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-84969-318-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1. Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2. Learn the main new features of HTML5 and
use CSS3's stunning new capabilities including
animations, transitions and transformations

3. Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Installing CodeIgniter
	Folders overview
	Mandatory components

	Example 1 – hello world
	The controller file
	The view file

	Example 2 – passing the complex parameters to a view
	The controller file
	The view file

	Example 3 – database query by a model rendering results to a view
	The controller file
	The model file
	The view file

	Example 4 – interactive contact forms
	The controller file
	The view file

	Summary

	Chapter 2: Configurations and Naming Conventions
	CI directory tree
	config.php
	database.php
	routes.php

	Defining and using your own configurations
	Understanding and using CI naming conventions
	The main resource type naming rules
	Controller definition naming rules
	Example 1 – Calling the controller index method
	Example 2 – Calling the controller and calc method without arguments
	Example 3 – Calling the controller and calc method with arguments
	Example 4 – AJAX call to an AJAX-oriented method with arguments:
	Loading libraries, models, and helpers

	Miscellaneous naming conventions
	Summary

	Chapter 3: Controller Usage and Scope
	The CI controller scope
	User-defined CI controller
	Extending the CI controller

	The CI controller use cases
	Example 1 – default homepage controller
	The controller file
	The view files
	The configuration file

	Example 2 – sending e-mails with attachments
	The controller file

	Example 3 – admin and regular user
log in
	The controller file
	The model file
	The database file to upload for this example
	The login_view file
	The login_in_view view file

	Summary

	Chapter 4: Libraries
	The CI libraries' scope and usage
	Available CI libraries

	Example 1 – using the built-in libraries
	The controller file
	The view file

	Example 2 – using the third-party libraries such as the Google Maps
CI library wrapper
	The controller file
	The view file

	Example 3 – building a library such as the Flickr API wrapper
	The flickr_wrapper.php library file
	The flickr_recent.php controller file
	The flickr_recent_view.php view file

	Example 4 – the LinkedIn API wrapper
	Requirements
	Authentication flowchart
	The library file linkedin_handler.php
	The controller file linkedinfo.php
	The view file linkedin-me.php

	Summary

	Chapter 5: Helpers
	CI helpers' scope and usage
	Available CI helpers
	CI system helpers
	CI third party helpers

	Example 1 – using built-in helpers
	The controller file
	The view file

	Example 2 – ssl helper
	The helper file
	The controller file
	The view file

	Example 3 – building your own helper
	The helper file
	The controller file
	The view file

	Summary

	Chapter 6: Models
	The CI model scope
	The model resource path
	Loading a model
	Using model methods
	Connecting to a database
	Business logic

	Object Relational Mapping (ORM)
	ORM simple operations example

	Example 1 – a CRUD example
	The controller file
	The model file
	The view file

	Example 2 – a business logic example
	The controller file
	The model file
	The view file

	Example 3 – retrieving data from Facebook
	The controller file
	The model file
	The view file

	Summary

	Chapter 7: Views
	The CI view scope
	The CI view resources path
	The rendering flow
	View flexibility

	Accessing the libraries/helpers
	Forms
	AJAX
	Parser configuration issues
	Integrating jQuery or other client-side libraries
	View rendering plugins

	Example 1 – HTML5 location powered
by Google Maps
	The controller file
	The view file

	Example 2 – user feedback powered by AJAX and the jQuery UI
	Th ajax_handler.php controller file
	The users_model.php model file
	The logged_in_view.php view file

	Summary

	Appendix
	Index

