

 USER MANUAL

1^ USER MANUAL

^2 Accessory 55E
 Profibus Option

^3 Universal Field Bus Adapter Network (UNET)

^4 3A0-603485-PUxx

^5 October 23, 16 2003

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: support@deltatau.com
Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive materials.
If Delta Tau Data Systems, Inc. products are directly exposed to hazardous or conductive
materials and/or environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

Accessory 55E – Profibus Specific

Table of Contents i

Table of Contents
INTRODUCTION ...1
PROFIBUS SLAVE SETUP FOR UMAC TURBO ...3

UNET Hardware and Address Configuration ...4
UMAC Software Parameter Setup ..4

Variable and Memory Usage..4
Specifying a PLC Number...5
Specifying the Characteristics of the Module ...6
Specifying the Number of Data Words and their Location ...6
Specifying the Base Address for the UNET Card ...6

Installing the UNET Parameters and UMAC Software...7
Putting the UNET Card On and Offline ..7

Reset Command ..7
Online Command..7
Offline Command..8
Advanced Testing of your Slave Configuration ..8

Interfacing the UNET Slave to the Master on the Profibus Network ..8
PROFIBUS MASTER SETUP FOR UMAC TURBO ...11

Overview of the Different Configuration Methods..11
Necessary Components ...11

Delta Tau Hardware...11
Download Hardware ..11
Software ..12
Optional Hardware Components..12

Using the Delta Tau Configuration Host to Set Up the Network Parameters..12
Configuring the Network Master Properties ..12
Using the Delta Tau UNET Configuration Host to Configure the Network Slaves Properties16
Creating and Exporting a Tag File for Setting Up the Master Scan List ...24

Unet Hardware and Address Configuration ..28
UCS Software Parameter Setup...29

Variable and Memory Usage..29
Installing the UNET Parameters and UMAC Software...31
Putting the UNET Card On and Offline ..31

Online Command..32
Offline Command..32
Advanced Testing of your Master Configuration..32
Interfacing the UNET Slave to the Master on the Profibus Network..32

APPENDIX A- PROFIBUS SLAVE FOR UMAC ...33
UmacProfibusSlave.h ..33

ProfibusSlaveServiceHeader.h ...33
ProfibusSlaveServiceEvent.plc ...35

APPENDIX B – PROFIBUS MASTER FOR UMAC ..46
UmacProfibusMaster.h..46

ProfibusMasterServiceHeader.h...46
ProfibusMasterServiceEvent.plc...48

Accessory 55E – Profibus Specific

ii Table of Contents

Accessory 55E – Profibus Specific

Introduction 1

INTRODUCTION
This manual was written to provide setup procedures for Delta Tau’s Accessory 55E for Profibus. There
are two chapters: Profibus Slave for UMAC Turbo and Profibus Master for UMAC Turbo. Although
Profibus has specific baud rates you can set, the data updates to the network from UMAC are done in a
compiled PLC on the controller. Typically, this translates into data updates every 8-15ms. This update
time is dependent on the size of PLCs in the system.

The code written for the Accessory 55E requires turbo firmware 1.938 or higher and a version of
PewinPro with Service Pack 3 or higher.

Accessory 55E – Profibus Specific

2 Introduction

Accessory 55E – Profibus Specific

Profibus Slave Setup for UMAC Turbo 3

PROFIBUS SLAVE SETUP FOR UMAC TURBO
Following is a step-by-step setup procedure to configure Delta Tau’s Accessory 55E to a UMAC Turbo
system over the 3U bus. Delta Tau’s Profibus slave module is very flexible; it has the auto baud rate
detect feature, and can transfer large amounts of data for a single module. The module is capable of
transferring data up to the Profibus maximum of 12Mbits/sec. The 55E setup for a Profibus slave can
transfer 244 input bytes, 244 outputs, or a combined total not to exceed 400 total bytes. The Slave also
has a maximum of 32 data modules that it can transfer. These specifications will be important when it
comes time to configure your master and establish data transfer across the Profibus network.

To proceed in this chapter make sure you have all of the following files:

• UmacProfibusSlave.h A header file that will include all of the Setup parameters for
configuring the 55E to the Profibus Network. You will download
this file to the controller to configure the system for the Accessory
55E data transfers.

• ProfibusSlaveServiceHeader.h A file that contains definitions to support
ProfibusSlaveServiceEvent.plc. Do not modify this file for any
reason.

• ProfibusSlaveMvars.h A file that contains suggested m-variables for the inputs and outputs
in the system. The inputs to the Network start at M6000 and the
outputs to the Network start at M7000. This file can be modified to
change the m-variable numbers that are used, but the definitions
may not be changed.

• ProfibusSlaveServiceEvent.plc A file that contains the UMAC PLC code that services the Profibus
Network. Do not modify this file.

• Ssti0870.gsd A generic GSD file for the 55E/UCS Profibus Slave. It aids in the
configuration of the slave to the master’s scan list and minimizes
configuration error at an early stage.

All of the above files are located on the Delta Tau Web Site in the Downloads section under UNET
Software. If not, contact Delta Tau Technical Support.

Now that we have the files we need to finish the Profibus Slave Setup, let us outline the general procedure
for configuring the slave:

• UNET Hardware and Address Configuration

• UMAC software parameter setup

• Installing the UNET parameters and UMAC software

• Putting the UNET card on and offline

• Interfacing the UNET slave to the master on the Profibus Network

Accessory 55E – Profibus Specific

4 Profibus Slave Setup for UMAC Turbo

UNET Hardware and Address Configuration
Configure the hardware settings of the 55E card through the switch on the top of the card labeled SW1.
Make sure the address chosen does not conflict with any other I/O card address in the system. This
address is important to the customization of the UmacProfibusSlave.h header file. See Address chart
below:

Table 1. Accessory 55E SW1 Address Settings
 CS10

SW1-1 ON
SW1-2 ON

CS12
SW1-1 OFF
SW1-2 ON

CS14
SW1-1 ON
SW1-2 OFF

CS16
SW1-1 OFF
SW1-2 OFF

Definition

$078C00 $078D00 $078E00 $078F00 UCS_DATAREG_LO
$078C01 $078D01 $078E01 $078F01 UCS_DATAREG_HI
$078C02 $078D02 $078E02 $078F02 UCS_DATAREG_ADDR
$078C03 $078D03 $078E03 $078F03 UCS_DATAREG_STAT

SW
1-

3
 O

N

SW
1-

4
 O

N

$079C00 $079D00 $079E00 $079F00 UCS_DATAREG_LO
$079C01 $079D01 $079E01 $079F01 UCS_DATAREG_HI
$079C02 $079D02 $079E02 $079F02 UCS_DATAREG_ADDR
$079C03 $079D03 $079E03 $079F03 UCS_DATAREG_STAT

 S
W

1-
3

 O
FF

SW
1-

4
 O

N

$07AC00 $07AD00 $07AE00 $07AF00 UCS_DATAREG_LO
$07AC01 $07AD01 $07AE01 $07AF01 UCS_DATAREG_HI
$07AC02 $07AD02 $07AE02 $07AF02 UCS_DATAREG_ADDR
$07AC03 $07AD03 $07AE03 $07AF03 UCS_DATAREG_STAT

SW
1-

3
 O

N

SW
1-

4
 O

FF

$07BC00 $07BD00 $07BE00 $07BF00 UCS_DATAREG_LO
$07BC01 $07BD01 $07BE01 $07BF01 UCS_DATAREG_HI
$07BC02 $07BD02 $07BE02 $07BF02 UCS_DATAREG_ADDR
$07BC03 $07BD03 $07BE03 $07BF03 UCS_DATAREG_STAT

SW
1-

3
 O

FF

SW
1-

4
 O

FF

Note: SW1-5 and SW1-6 must be set to ON

UMAC Software Parameter Setup
Variable and Memory Usage
Next, edit UmacProfibusSlave.h to customize the UNET slave for your particular application. The main
items to be set up include: node number, number of input bytes from the master, number of output bytes
to the master, and the UNET card hardware address configured above. The UNET PLC utilizes the
following variables, memory addresses, and PLCs for the servicing of the Profibus Network
communications and data transfer:

Accessory 55E – Profibus Specific

Profibus Slave Setup for UMAC Turbo 5

• Q-variables for CS1

Q7000..7999

Always used for data storage (used in PLCC for data transfers)

• M-variables

M4000..5999

M8000..8031

M8050

Used by default for Network Data Access (see ProfibusSlaveMvars.h) You can edit
the file ProfibusSlaveMvars.h to eliminate unnecessary m-variable definitions and
change the numbering scheme as well.

Always used for logic in ProfibusSlaveServiceEvent.plc

Always used for Network Commands

• L-variables
L7998..7999

L8000..8002

L8025..8027

L8050

Always used for pointers to Network Data memory locations

Always used for PLCC pointers to UCS memory

Always used for PLCC logic

Always used for PLCC Network Commands

• Scratch Memory
Locations

$10F0-$10FF

These registers are open user memory set to zero at power up. These registers are
always used.

Make sure that your UMAC application is not also using these same variables or memory locations.
Serious problems may occur due to the overlapping of memory usage if you do not assure proper variable
assignments.

Note

The UNET PLC code utilizes the scratch memory locations at $10F0-$10FF. If
additional scratch memory is needed, define a User Buffer to utilize a portion of
user memory.

The entire header file titled UmacProfibusSlave.h is located at Appendix A for reference. The following
discusses the portions of the file that must be configured specifically for your application.

Specifying a PLC Number
The UNET Service PLC is a PMAC PLC. You must define it by number. We do not recommend that it
be defined as PLC 1. The first block of the template defines which number you are using for this service
PLC. The default is PLC13, and probably it will not need to be changed. If you have more than one
UNET interface card in your system, each card will require a separate PLC and therefore a different
PLC_NUMBER. Upon downloading, a separate PLCC program will be utilized during the data transfer
operation. The PLCC # will be the same number that is entered into the header file below.
//CHOOSE A PLC AND PLCC NUMBER THAT YOU CAN USE IN YOUR SYSTEM
#DEFINE PLC_NUMBER 13

Accessory 55E – Profibus Specific

6 Profibus Slave Setup for UMAC Turbo

Specifying the Characteristics of the Module
You must tell the Service PLC the slaves’ node number.
#DEFINE UCS_NODE_NUMBER 5 ;MACID(PROFIBUS) OR STATION NUMBER(PFB)

This section defines the node as a slave with a network ID of 5. The actual number you select must not
conflict with another node on the network. See the documentation for your network to determine the
largest available number, and the numbers already assigned. We never recommend using a network ID of
0 or 1, or the last available ID available on the network. These are often reserved for special purposes.

Specifying the Number of Data Words and their Location
This section defines how many 8-bit data bytes the slave will produce and consume. Inputs are data bytes
received by the UNET module from a master, outputs are data bytes to be sent to the master.
//INPUTS TO NETWORK FROM UCS
#DEFINE SLAVE_INP_SIZE 16 ; Number of slave inputs in bytes

//OUTPUTS FROM NETWORK TO UCS
#DEFINE SLAVE_OUT_SIZE 16 ; Number of slave outputs

The definitions in the default template define 16 input and 16 output 8-bit bytes that are mapped as pairs
to P-Variables. As defined in ProfibusSlaveMvars.h, the input data will start at M6000 and the output
data will start at M7000. M6000 will contain the first two bytes of data received from the master, M6001,
the next two, etc. Similarly, M7000 contains the first two bytes to be sent to the master, M7001 the next
two, and so forth. Note that the architecture of the service PLC reserves extra M-variables for other UCS
Networks, M6256-M6999 and M7256-M7999. You can use these for other reasons, but avoid doing so
unless there is an absolute need. The less things that are changed the simpler configuring and
troubleshooting becomes.

The configuration of these parameters is extremely important to your master device. You must be certain
that:

• You understand how your master maps slave data to its internal memory space. It can be very
confusing when the master and slave use different data sizes and names.

• You understand the limitations on numbers of slave inputs and outputs imposed by your master. This
is especially true if your master is servicing multiple slaves. For example, your master may allow a
maximum of 32 input bytes and 32 output bytes for all slaves. This may impact your final selection
of a data provided by your UMAC. It is imperative that you carefully test and document the transfers
before proceeding with development of detailed applications..

Specifying the Base Address for the UNET Card
When installing a UNET card you selected a base address using SW1 on the card. The address of the
card must be specified in the UNET Service PLC template. This may require changing the four
definitions shown here. These four definitions specify four contiguous addresses whose base address is
$78D00. Table 1 provides the base addresses for other SW1 settings. The base addresses here are
defined in the low 16 bits of the definitions located in ProfibusSlaveServiceHeader.h.

//UMAC ADDRESSES BASED ON SW1 SETTINGS ON THE ACCESSORY 55E
#DEFINE UCS_DATALO_ADDR $78D00
#DEFINE UCS_DATAHI_ADDR $78D01
#DEFINE UCS_ADDRESS_ADDR $78D02
#DEFINE UCS_CONTROL_STATUS_ADDR $78D03

Accessory 55E – Profibus Specific

Profibus Slave Setup for UMAC Turbo 7

Installing the UNET Parameters and UMAC Software
After modifying the above parameters, there should be nothing else that needs to be changed in the
UMAC program files. The next step is to download UmacProfibusSlave.h to the Delta Tau UMAC
controller and enable it by setting i5=2 and issuing the online command “enable PLC 13”. Since the PLC
number is a variable in the UmacProfibusSlave.h you may have to change which PLC you enable on
UMAC if you changed the setting from the default.

Notice that the last lines in the template are:
#include "ProfibusSlaveMvars.h"
#include "ProfibusSlaveServiceHeader.h"
#include "ProfibusSlaveServiceEvent.plc"

Do not download ProfibusSlaveServiceEvent.plc directly; download the template UmacProfibusSlave.h.
If you have Pewin32 version 2.36 or earlier, make sure that you have enabled the MACRO/PLCC option
in the editor prior to downloading. If you experience problems during the download, check to make sure
that you have enabled the MACRO/PLCC option and that you have not changed a macro name by
mistake.

Putting the UNET Card On and Offline
Reset Command
Reset the UNET slave by setting m8050=1. This will force the PLC to reset the UNET interface card.
During the reset the UCS Module Status Indicator LED will turn red and then green. If the status
indicator is flashing green, this is acceptable. You can repeat the command as desired to verify the reset
operation.

If the status indicator LED changes do not occur as described above, there are several possible problems:

• Your Service PLC was not downloaded or is not enabled. Check to verify these conditions.

• The base address specified for the UNET memory map (i.e., $78Dxx) does not match the setting of
the card, or is in conflict with an existing device. Verify the setting of SW 1 and that the address is
properly reflected in the template.

• If you changed the base addresses for the M variables in ProfibusSlaveServiceHeader.h (which you
shouldn’t have), your command variable is not properly set in M8050. Check and verify this
condition.

• Make certain that changes in base M variable indices, CS timer, and scratch pad memory locations
are consistent and do not interfere with other PLCs or motion programs you have written.

Online Command
After the green Status LED returns to a flashing green state, put the card online by setting m8050=2.

This should cause the UCS Network Status Indicator LED to become flashing or steady state green.
M8050 will then be set to 4 to notify the user that Network is now transferring data. If the LED is off,
flashing or steady state red, or has an amber color, verify that:

• Your network is properly configured, has power applied (DeviceNet), and is terminated. The best
situation is one in which you have thoroughly configured and network using another SST network
interface board, or have verified network operation using the tools supplied by your controller vendor
(Allen Bradley, Siemens, et al.).

• The node number specified in the template ($0005 in the default template) is not in conflict with any
other node on the network. If it is, make the appropriate change and download the PLC again.

Accessory 55E – Profibus Specific

8 Profibus Slave Setup for UMAC Turbo

• You have correctly specified a number of inputs and outputs that is consistent with the limitations of
the network.

• You have selected the proper baud rate for the Network and it matches that of your master. There are
no masters on the network attempting to connect to your UNET slave. You can verify this by
disconnecting all other devices from the network.

Offline Command
During your verification of the module, you can take the card off-line by setting

M8050 = 3

You can repeatedly reset the card (M8050 = 1), go on line (M8050 = 2), and off-line (M8050 = 3) during
testing and verification of your card, Service PLC, and network.

Advanced Testing of your Slave Configuration
Prior to the development of any PMAC motion or PLC programs to use the P-variable data, you should
conduct further testing of your network and slave configuration. This will involve using the network
tools you purchased from SST or those supplied with your master controller. To accomplish these tests
you must:

1. Reset the UNET card by typing M8050 = 1
2. Place the UNET card on line by typing M8050 = 2
3. Verify that data transfers are set properly by checking that M8050 is equal to 4

The last step causes your UNET Service PLC to actually read and write the UCS module’s memory map.
In doing so, the data received from the network is copied into your Input variables (M6000 and up) and
the data contained in your output variables (M7000 and up) is copied into UCS memory. If you do not
enable transfers, an on-line UCS module may be functioning perfectly but you’d never know it because
the data would not be accessible to the UMAC.

Interfacing the UNET Slave to the Master on the Profibus Network
Now that the slave is ready and online, it is time to configure the master on the Profibus Network. Master
configuration software is highly vendor-specific and it is up to you to know and understand this procedure
for setting up slaves on the network. Usually, the baud rate is configured within the master setup. The
55E-slave module will detect automatically the baud rate you choose. Many master systems will need to
load the GSD file for the UNET Profibus slave. When you do this, you will tell the master what the slave
node number is and what types of I/O modules it is going to pass. The modules need to be configured in
such a manner that they correspond with how the slave sends the data. The UCS card firmware will pass
data across the Profibus Network in 4 byte consistent modules when the data size (input bytes + output
bytes) is less than 128 bytes (32 modules * 4 byte consistency). This is defined in UmacProfiSlave.h.
The word consistent is a definition in the Profibus world that translates into data that holds its integrity no
matter when it is polled. This is because it is all transferred at once in 32 bit transfers. This protects
against the case in which you query a chunk of data that is in the middle of a read and you get jumbled
data back. On the master side of things you must define all of the master input modules first and then the
master output modules or it will not communicate.

Since the Profibus slave is capable of transferring data sizes up to 400 bytes, the UCS firmware adjusts
the size of data per module when the defined amount is greater than 128 bytes. This is based on the
definition setup in the header file UmacProfiSlave.h. If the data size is greater than 128 bytes (input
bytes + output bytes) then the UCS processor will send the data in a form that is not consistent and 16
bytes wide. The data is not considered consistent because it can only assure consistency within 4 bytes.
This consistency still holds for every 4 bytes even though the module structure has changed. It is
important to note that the data is sent in 16-byte non-consistent modules. If the data size for either inputs

Accessory 55E – Profibus Specific

Profibus Slave Setup for UMAC Turbo 9

or outputs is not a factor of 16, then the last module passed of the inputs and/or the outputs will be
however many bytes are left over after passing as many 16-byte not-consistent modules as possible. On
the master side of things you must define all of the master input modules first and then the master output
modules, or the slave will not communicate.

Accessory 55E – Profibus Specific

10 Profibus Slave Setup for UMAC Turbo

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 11

PROFIBUS MASTER SETUP FOR UMAC TURBO
Following is a setup procedure to configure Delta Tau’s Accessory 55E as a Profibus Master to a UMAC
Turbo system over the 3U bus. Delta Tau’s Profibus master module is very flexible; it can be configured
to any Profibus baud rate up to 12Mbits/sec, and can transfer large amounts of data for a single module.
The 55E setup for a Profibus master can transfer 244 input bytes, 244 outputs, for a combined total of 488
bytes per slave. The Profibus Master can also handle a total of 125 slaves on the network. These
specifications are important for configuring your master and establishing data transfer across the Profibus
network.

Overview of the Different Configuration Methods
There are two different methods for configuring the network setup. The difference between them lies
mainly in the configuration of the slave node properties. The methods are –

• Using the SST Scanner Module 5136-PFB-PCM-ST and the Delta Tau UNET Configuration Host.
You may configure the system by connecting to the network and allowing the scanner card to pull
information from the slaves on the network. This method involves the purchase of a scanner card
from SST, which costs about $1800. It is a nice luxury to be able to scan the network and test the
slave hardware individually, and worth the cost if you are planning on doing a lot of work with
Profibus in the future. It is not necessary to purchase one to configure your system.

• Using EDS files supplied from a given manufacturer. This method does not require the purchase of
any additional hardware, and provides less data entry than the manual method mentioned below.

Necessary Components
Delta Tau Hardware
• Accessory 55E with Profibus Master option -3U accessory card that will serve as the master on the

Profibus Network.

Download Hardware
You must have one of the following:

• SST Download adapter UCS-DA-1
(INTL)

Download adapter necessary for downloading personality
files to the master UCS modules.

• Accessory 55E On-board Serial Port On-board hardware to supply a communication port to
the SST UCS card from the PC configuration software
(Lucien-does not exist yet but is coming).

Accessory 55E – Profibus Specific

12 Profibus Master Setup for UMAC

Software
• Delta Tau UNET Configuration Host Application software necessary to generate specific

personality files which contain the scan list for the master
UCS module. This application also generates a file that
includes address tags for each set of inputs and outputs on
the Profibus Network.

• UmacProfibusMaster.h A header file that includes all of the setup parameters for
configuring the 55E to the Profibus Network.

• ProfibusMasterServiceHeader.h A file that contains definitions to support
ProfibusMasterServiceEvent.plc. Do not modify this
filefor any reason.

• ProfibusMasterMvars.h A file that contains suggested m-variables for the inputs
and outputs in the system. The inputs to the Network
start at M6000 and the outputs to the Network start at
M7000. This file can be modified to change the m-
variable numbers that are used, but the definitions may
not be changed.

• ProfibusMasterServiceEvent.plc A file that contains the UMAC PLC code that services
the Profibus Network. This file should not be modified
for any reason.

Optional Hardware Components
• SST Scanner Module 5136-PFB-PCM-

ST

SST scanner module that aids in troubleshooting and
allows a scanning feature to be enabled within the Delta
Tau UNET Configuration Host application.

If for some reason you do not have the Delta Tau UNET CD, all of the above files and software
applications are located on the Delta Tau Web Site in the Downloads section under UNET Software. For
information on purchasing hardware components contact Delta Tau. You may contact SST directly only
for the SST Scanner Module 5136-PFB-PCM-ST and SST Download adapter UCS-DA-1 (INTL).

If you have purchased SST Scanner Module 5136-PFB-PCM-ST from SST then you received a CD with
all of the software and drivers to support the various software tools needed in this section. After you
install the SST software, insert the Delta Tau UNET CD and install the software needed to configure the
system. All of the files needed for the setup are located in the Program Files/Delta Tau/UNET directory.

If you do not have the SST Scanner Module 5136-PFB-PCM-ST then load the UNET CD; all of the
necessary files will be loaded into the Program Files/Delta Tau/UNET directory.

Using the Delta Tau Configuration Host to Set Up the Network
Parameters
Configuring the Network Master Properties
Within the UNET directory, open the application titled “Delta Tau UNET Configuration Host”. Select
New from the file menu. See the figure below:

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 13

Opening New File from Configuration Host

When you select New, a dialog box will open asking you whether you wish to create a master
configuration for DeviceNet (DN1) or Profibus (PFB1). Choose PFB1 for Profibus, as shown below.

Selecting Profibus for the Configuration

After opening a new Profibus master configuration, your screen will appear similar to the one shown
below.

Select a Station Number for the Master on the Network

The above screen is the master properties display, in which the main item to complete is the Station
number. The Station number drop down menu selects the address for the master on the Profibus fieldbus.
It is important to keep track of what node is addressed to what Station number. Make sure to choose a
station number that will not interfere with another node on the Network. The Parameters and Slaves
Mapping tabs usually do not need to be changed. After selecting a station number click OK and the
application will appear as in the figure below.

Accessory 55E – Profibus Specific

14 Profibus Master Setup for UMAC

Main Form

The application is divided into 3 separate forms. The form in the upper right is titled Network
Configuration1 (title will change once the application is saved) as is used to show all of the components
within the network configuration. You can access the properties of each item within the configuration by
pressing the right mouse button.

The form in the upper left is a list of the EDS files that are opened for the particular configuration. These
are used more often when configuring a system manually, without the use of the SST Scanner Card. This
is where you load the EDS file for a particular slave module that you are going to add to the
configuration. When using the browse tool, the EDS files are uploaded from the particular slave online.

The form at the bottom of the application is a special form that is used with optional network browse
feature. The SST scanner card (5136-PFB-PCM-ST) is required to utilize these features.

Delta Tau’s UNET Configuration Host supplies a configuration tool that allows your master’s properties
to be tailored for a specific network configuration. The first in this process is to set up the master and
network properties. The master you are configuring from the UNET Configuration Tool is not the same
as the UCS master that you will be using in your final configuration. We are going to use this tool to
simulate the network properties and then, based on those properties, download a personality file to the
UCS master module with the proper network settings. To set up the network properties, right-click on the
icon labeled PROFIBUS_DP and select the Properties option. See the figure below:

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 15

Choosing the Network Properties Option

The following network properties window will appear.

Configuring the Network Properties

There are three tabs located on the form shown above: General, Timing, and Parameters. Typically, the
only tab that needs to be modified is the General tab. Under the General tab, the Name and Description
text boxes may be changed for application customization if desired. The Baud Rate text box must be set
appropriately for your network. It is important to choose a baud rate that all of your slave nodes can
support on the network. The Highest Station typically does not need to be changed from default, which
is the maximum per Profibus Specification.

Once you have selected the master and network properties, click OK and return to the "Main Form"
screen. If you succeeded in setting up the master properties, proceed to the next section and configure the
slave properties.

Accessory 55E – Profibus Specific

16 Profibus Master Setup for UMAC

Using the Delta Tau UNET Configuration Host to Configure the Network
Slaves Properties

Manually Setting up the Slave Properties for the Network Configuration by Using an
EDS File Supplied By the Manufacturer of the Slave Node.
When manually setting up the nodes on the network, you can add a new node through the software, or
load a specific node EDS file into the library. To add a new EDS file to the library, click on the icon
above the EDS tree on the left side of the application as shown below:

Adding an EDS file to the Library

Once you have browsed your machine and added the EDS file to the library you should see the file
located in the library. Next, drag the icon of the node’s EDS file and place it under the master in the
Network to the right. When you drop the EDS file under the master icon, the slave properties window
appears automatically. There are 7 tabs within the slave properties window: General, Modules, Address,
Tags, Standard Parameters, Extra Parameters and Diagnostics.

The key entry in the General tab is the Station number. Choose an open address on the Profibus network.
Make sure not to use the same Station number as the master. The Name and Description text boxes are
for you to add comments and descriptions for reference. They are not critical to the network
configuration.

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 17

Setting the Properties of the Slave Node

The Modules tab is where you configure the size and number of modules for each slave on the network.
The size and number of modules for a slave is specific to the particular node that you have chosen. When
the Add button is pressed, the possible choices for sizes will be listed based on the particular nodes’ EDS
file. Select the appropriate size and number of modules for this node and move onto the next tab.

Identity Tab of the Slave Properties

The next tab located in the slave properties window is the Address tab. Usually, this tab does not need to
be changed. The Tags tab does need to be configured for every network configuration. By setting up the
tags we informed the application what data will be on the Network and then Configuration host can set up
the proper addressing in the output tag file and the personality file (scan list) of the master.

Accessory 55E – Profibus Specific

18 Profibus Master Setup for UMAC

The Tags Tab for the Slave Node’s Properties

Select Add from the Tags tab and the available tags will appear based on the modules that have been set
up. Since the modules were configured to make the node’s data available to you on the network, there
should be little configuring in the Tags tab. You should just add all of the available tags. Select Add and
add all of the tags to the network configuration.

When you are finished with setting up the tags click OK to return to the main form. The next step is to
export the newly set up tags. This step exports an address file for the inputs and outputs on the Network.
At this point all of the properties of the master and the slaves should have been configured.

Using the SST Scanner Module 5136-PFB-PCM-ST to Browse the Network and
Configure the Slave Nodes
In order to browse the network and poll the individual slaves for their information, you must first make
sure that the proper software components have been installed on your laptop. The SST Scanner Module
5136-PFB-PCM-ST will ship with a CD with many network troubleshooting utilities. When installing
these components the drivers necessary for browsing the network through the Delta Tau Configuration
Host will also be loaded to your computer. After the components have been installed, launch the Delta
Tau Configuration Host. This executable will be located in the Profibus Master Folder of the UNET
directory. You should have already set up the master properties (above) and you are now ready to
configure the browser properties. Click on the icon shown below:

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 19

Configuring the Network Parameters of the Browse Feature

A window will appear on your screen similar to that shown below. There will be three fields contained
within the window: Local Card, Station, and Baud Rate. The system will sense that the scanner card is
in the system and display the 5136-PFB-PCMCIA-0 within the Local Card drop down box. Configure
the Baud Rate for the browse, making sure that all of the slave nodes can handle the selection. Choose
the same Station Number as you chose earlier for your master. Select OK when you are finished.

Online Browser Properties

When you are finished entering these parameters, click on the network browse icon shown below.

Accessory 55E – Profibus Specific

20 Profibus Master Setup for UMAC

Launch the Browse Feature

After launching the browse feature you will see a screen similar to the following.

Searching for Devices on the Network

Select Yes at the prompt. Once the browser has finished you will have a list of the slave devices on the
network. For this example there is one slave node at Station Number 4. The device will be listed in the
form at the bottom of the application. Drag the slave node and drop it on top of the master icon in the
Network Configuration Window. Your screen should then look as follows:

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 21

Results of the Network Browse

You are now ready to configure the slave node properties. Right click on the slave node icon within the
Network Configuration Window in the upper right portion of the application. Select properties.

Slave Node Properties

As you can see from the figure below, there are seven tabs within the slave properties window: General,
Modules, Address, Tags, Standard Parameters, Extra Parameters and Diagnostics. Many of the fields
will be completed already, as a convenience of the browse feature. When browsing, the software
essentially uploads an EDS file stored on a particular slave module.

The key entry in the General tab is the Station number. Choose an open address on the Profibus network.
Make sure not to use the same Station number as the master. The Name and Description text boxes are
for adding comments and descriptions for reference. They are not critical to the network configuration.

Accessory 55E – Profibus Specific

22 Profibus Master Setup for UMAC

Modules Setting Tab

The Modules tab is where you configure the size and number of modules for each slave on the network.
The size and number of modules for a slave is specific to the particular node that you have chosen. When
the Add button is pressed, the possible choices for sizes will be listed based on the particular nodes’ EDS
file. Select the appropriate size and number of modules for this node and move onto the next tab.

The Tags tab needs to be configured for every network configuration. By setting up the tags we informed
the application what data will be on the Network, and then Configuration host can set up the proper
addressing in the output tag file and the personality file (scan list) of the master.

The Tags Tab for the Slave Node’s Properties

Select Add from the Tags tab and the available tags will appear based on the modules that have been set
up. Since the modules were configured to make the node’s data available to you on the network, there
should be little configuring in the Tags tab. You should just add all of the available tags. Select Add and
add all of the tags to the network configuration.

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 23

Adding Tags to the Network Configuration

Completing the Tags Setup

 When you have finished setting up the tags, click OK to return to the main form. The next step is to
export the newly set up tags. This step exports an address file for the inputs and outputs on the Network.
At this point all of the properties of the master and the slaves should have been configured and your
screen will look similar to the one below.

Accessory 55E – Profibus Specific

24 Profibus Master Setup for UMAC

Naming the Output Tag

Creating and Exporting a Tag File for Setting Up the Master Scan List
To export the tags, click on File Menu and select Export Tags.

Selecting Export Tags

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 25

The following window appears. Browse to the folder location where you would like to save the exported
Tag File.

Export Tags Window

Once you have specified the location to save the file, select OK and the Tag address will be created. We
will use the file later, when setting up the UNET PLC inside the controller. When you finish setting up
and downloading the tags, then you are done configuring the personality of the master.

It is a good idea to save the Network Configuration through the File menu. Select Save or Save As from
the file menu and store your network configuration on the hard drive. You can then reopen it later from
the same application.

The ASCII "exported symbolic tag file" provides a one-line entry for each slave tag handled by the
master. The format for each item is:

Name = Reserved, 1, Address, Byte Offset, Type

For the sample personality created in this chapter the contents of the file are:
[ID]
Configuration = 0000037a01000001
[SYMBOLS]
_unknown_Status = 17,1,0x8C00,0x0,5
_unknown_Error = 17,1,0x8C01,0x0,5
Input1 = 17,1,0xC00,0x0,5
Output1 = 17,1,0x4C00,0x0,2

The addresses specified here are the actual UCS memory map addresses of the data. There is one issue
you must be aware of. The Profibus tags file specifies the addresses in 32 words and then byte offsets
within the words. The Profibus addresses are in bytes. When you use these addresses for the master UCS
Service PLC, you will need to divide these by 4 and keep track of the byte offset yourself. This will be
discussed in a later portion of this manual when it is time to input these addresses into the
UmacProfibusMaster.h file.

Downloading the Personality File to the Master UCS Module.
There are essentially two different ways to download a personality file to the master UCS module.

• First method: Use a download adapter module connected to your computer's serial port. The SST
Download adapter UCS-DA-1 (INTL) is the module you will plug the UCS module into when
downloading the personality file through the Delta Tau UNET Configuration Host Software. You
will have to remove the UCS module from the Accessory 55E or other Delta Tau UNET product.
Once you have the UCS module in the download adapter it should look like the following picture.

Accessory 55E – Profibus Specific

26 Profibus Master Setup for UMAC

UCS Module plugged into the Download Adapter Properly

• Second Method: If you have the onboard Serial Port to the 55E or Qmac module, then you can
connect directly to that serial port from your computer’s serial communications port.

After the proper connections have been made to the hardware and the previous steps above have been
executed, you are now ready to download the personality. Right click on the Master icon from within
the Network configuration window.

Downloading the Personality Data to the Master Module

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 27

When you select download, a window appears informing you that the software is in the downloading
process. Once the download has been completed you will see the following screen appear. Click OK
and you have finished configuring your master hardware.

Successful download to the UCS Module

If you had a problem downloading to your master module, recheck the connections and test your
communications port on your computer. If you continue to experience problems, contact Delta Tau
Technical Support.

After a successful download you are ready to configure the UMAC software for your specific
network needs. Proceed to "Unet Hardware and Address Configuration," below.

Accessory 55E – Profibus Specific

28 Profibus Master Setup for UMAC

Unet Hardware and Address Configuration
Configure the hardware settings of the 55E card through the switch on the top of the card labeled SW1.
Make sure the address chosen does not conflict with any other I/O card address in the system. This
address is important to the customization of the UmacProfibusMaster.h header file. See Address chart
below:

Accessory 55E SW1 Address Settings
 CS10

SW1-1 ON
SW1-2 ON

CS12
SW1-1 OFF
SW1-2 ON

CS14
SW1-1 ON
SW1-2 OFF

CS16
SW1-1 OFF
SW1-2 OFF

Definition

$078C00 $078D00 $078E00 $078F00 UCS_DATAREG_LO
$078C01 $078D01 $078E01 $078F01 UCS_DATAREG_HI
$078C02 $078D02 $078E02 $078F02 UCS_DATAREG_ADD

R
$078C03 $078D03 $078E03 $078F03 UCS_DATAREG_STA

T

SW
1-

3
 O

N

SW
1-

4
 O

N

$079C00 $079D00 $079E00 $079F00 UCS_DATAREG_LO
$079C01 $079D01 $079E01 $079F01 UCS_DATAREG_HI
$079C02 $079D02 $079E02 $079F02 UCS_DATAREG_ADD

R
$079C03 $079D03 $079E03 $079F03 UCS_DATAREG_STA

T

 S
W

1-
3

 O
FF

SW

1-
4

 O
N

$07AC00 $07AD00 $07AE00 $07AF00 UCS_DATAREG_LO
$07AC01 $07AD01 $07AE01 $07AF01 UCS_DATAREG_HI
$07AC02 $07AD02 $07AE02 $07AF02 UCS_DATAREG_ADD

R
$07AC03 $07AD03 $07AE03 $07AF03 UCS_DATAREG_STA

T

SW
1-

3
 O

N

SW
1-

4
 O

FF

$07BC00 $07BD00 $07BE00 $07BF00 UCS_DATAREG_LO
$07BC01 $07BD01 $07BE01 $07BF01 UCS_DATAREG_HI
$07BC02 $07BD02 $07BE02 $07BF02 UCS_DATAREG_ADD

R
$07BC03 $07BD03 $07BE03 $07BF03 UCS_DATAREG_STA

T

SW
1-

3
 O

FF

SW
1-

4
 O

FF

Note: SW1-5 and SW1-6 must be set to ON.

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 29

UCS Software Parameter Setup
The following discussion explains how to configure the setup parameters for the Network as well as the
controller resources that are used. You will need to edit UmacProfibusMaster.h to customize the UNET
master for your particular application. None of the other files that service the Network transfers need to
be modified. The main items to be set up include: node number, number of input bytes from the master,
number of output bytes to the master, and the UNET card hardware address configured above.

The entire header file titled UmacProfibusMaster.h is located in Appendix B for reference. The
following highlights the portions of the file that must be configured specifically for your application.

Variable and Memory Usage
The UNET PLC utilizes the following variables, memory addresses, and PLCs for the servicing of the
Profibus Network communications and data transfer:

• Q-variables for CS1

Q7000..7999

Always used for data storage (used in PLCC for data transfers)

• M-variables

M4000..5999

M8000..8031

M8050

Used by default for Network Data Access (see ProfibusMasterMvars.h)

You can edit the file ProfibusMasterMvars.h to eliminate unnecessary
Variables and change variable assignments as well.

Always used for logic in ProfibusMasterServiceEvent.plc

Always used for Network Commands

• L-variables

L7998..7999

 L8000..8002

L8025..8027

L8050

Always used for pointers to Network Data memory locations

Always used for PLCC pointers to UCS memory

Always used for PLCC logic

Always used for PLCC Network Commands

• Scratch Memory
Locations

$10F0-$10FF

These registers are open user memory set to zero at power up. These registers
are always used.

Make sure that your UMAC application is not using these same variables or memory locations. Serious
problems may occur due to the overlapping of memory usage if you do not assure proper variable
assignments.

The entire header file titled UmacProfibusMaster.h is at Appendix B for reference. The following
highlights the portions of the file that will need to be configured specifically for your application.

Specifying a PLC Number
The UNET Service PLC is a PMAC PLC. You must define it by number. We do not recommend that it
be defined as PLC 1. The first block of the template simply defines which number you are using for this
service PLC. The default is PLC13 and most likely will not need to be changed. If you have more than
one UNET interface card in your system, each card will require a separate PLC and therefore a different
PLC_NUMBER. Upon downloading a separate PLCC program will be utilized during the data transfer
operation. The PLCC # will be the same number that is entered into the header file below.

Accessory 55E – Profibus Specific

30 Profibus Master Setup for UMAC

//CHOOSE A PLC AND PLCC NUMBER THAT YOU CAN USE IN YOUR SYSTEM

#DEFINE PLC_NUMBER 13

Specifying the Characteristics of the Module
You must tell the Service PLC whether the module is a master or slave, and its node number. And, you
can provide a control word that enables more advanced operational features. The second block of the
template provides these definitions.
#DEFINE UCS_NODE_NUMBER 5 ;STATION NUMBER(PFB)

This section defines the node as a slave with a network ID of 5. The actual number you select must not
conflict with another node on the network. See the documentation for your network to determine the
largest available number, and the numbers already assigned. We never recommend using a network ID of
0 or 1, or the last available ID available on the network. These are often reserved for special purposes.

Specifying the Number of Data Words and their Location
This section defines how many 8-bit data bytes the slave will produce and consume. Inputs are data bytes
received by the UNET module from a master, outputs are data bytes to be sent to the master.
//INPUTS TO NETWORK FROM UCS
#DEFINE MASTER_INP_SIZE 16
#DEFINE MASTER_INPUT_STARTADDRESS $4C00

//OUTPUTS FROM NETWORK TO UCS
#DEFINE MASTER_OUT_SIZE 16
#DEFINE MASTER_OUTPUT_STARTADDRESS $C00

The definitions in the default template define 16 input and 16 output 8-bit bytes that are mapped as pairs
to P-Variables. As defined in ProfibusMasterMvars.h, the input data will start at M6000 and the output
data will start at M7000. M6000 will contain the first two bytes of data received from the master, M6001,
the next two, and so forth. Similarly, M7000 contains the first two bytes to be sent to the master, M7001
the next two, and so forth. Note that the architecture of the service PLC reserves extra M-variables for
other UCS Networks, M6256-M6999 and M7256-M7999. Use these if you wish for other reasons, but
avoid doing so unless there is an absolute need. The less things are changed, the simpler configuring and
troubleshooting becomes.

The addresses are located from the tags file that was exported above.We are concerned only with the
addresses for the inputs and outputs. The Unet Service PLC was written to transfer the data and must be
modified to include other tags from various slaves. If this other information is vital to your system,
please contact Delta Tau Technical Support with help in configuring this feature.

The configuration of these parameters is extremely important to your master device. You must be certain
that:

• You understand how your master maps slave data to its internal memory space. It can be very
confusing when the master and slave use different data sizes and names.

• You understand the limitations on numbers of slave inputs and outputs imposed by your master. This
is especially true if your master is servicing multiple slaves. For example, your master may allow a
maximum of 32 input bytes and 32 output bytes for all slaves. This may impact your final selection
of a data provided by your UMAC. It is imperative that you carefully test and document the transfers
before proceeding with development of detailed applications.

Accessory 55E – Profibus Specific

Profibus Master Setup for UMAC 31

Specifying the Base Address for the UNET Card
When installing a UNET card you selected a base address using SW1 on the card. The address of the
card must be specified in the UNET Service PLC template. This may require changing the four
definitions shown here. These four definitions specify four contiguous addresses whose base address is
$78D00. The "Accessory 55E Sw1 Address Settings" table (above) provides the base addresses for other
SW1 settings. The base addresses here are defined in the low 16 bits of the definitions located in
ProfibusMasterServiceHeader.h.

//UMAC ADDRESSES BASED ON SW1 SETTINGS ON THE ACCESSORY 55E
#DEFINE UCS_DATALO_ADDR $78D00
#DEFINE UCS_DATAHI_ADDR $78D01
#DEFINE UCS_ADDRESS_ADDR $78D02
#DEFINE UCS_CONTROL_STATUS_ADDR $78D03

Installing the UNET Parameters and UMAC Software
After modifying the above parameters, there should be nothing else that needs to be changed in the
UMAC program files. The next step is to download UmacProfibusMaster.h to the Delta Tau UMAC
controller and enable it by setting i5=2 and issuing the online command “enable plc 13”. Since the PLC
number is a variable in the UmacProfibusMaster.h you may have to change which PLC you enable on
UMAC if you changed the setting from the default.

Notice that the last line in the template is:
#include "ProfibusMasterMvars.h"
#include "ProfibusMasterServiceHeader.h"
#include "ProfibusMasterServiceEvent.plc"

Do not download ProfibusMasterServiceEvent.plc directly; download the template. If you have Pewin32
version 2.36 or earlier, make sure that you have enabled the MACRO/PLCC option in the editor prior to
downloading. If you experience problems during the download, check to make sure that you have
enabled the MACRO/PLCC option and that you have not changed a macro name by mistake.

Putting the UNET Card On and Offline
Reset Command
Reset the UNET slave by setting m8050=1. This will force the PLC to reset the UNET interface card.
During the reset the UCS Module Status Indicator LED will turn red, then green, then off. If the status
indicator is flashing green, this is acceptable. You can repeat the command as desired to verify the reset
operation.

If the Status Indicator LED changes do not occur as described above, there are several possible problems:

• Your Service PLC was not downloaded or is not enabled. Check to verify these conditions.

• The base address specified for the UNET memory map (i.e., $78Dxx) does not match the setting of
the card, or is in conflict with an existing device. Verify the setting of SW 1 and that the address is
properly reflected in the template.

• If you changed the base addresses for the M variables in ProfibusMasterServiceHeader.h (which
you shouldn’t have), your command variable is not properly set in M8050. Check and verify this
condition.

• Make certain that changes in base M variable indices, CS timer, and scratch pad memory locations
are consistent and do not interfere with other PLCs or motion programs you have written.

Accessory 55E – Profibus Specific

32 Profibus Master Setup for UMAC

Online Command
After the green Status LED returns to a flashing green state, put the card online by setting m8050=2.

This should cause the UCS Network Status Indicator LED to become flashing or steady state green.
M8050 will then be set to 4 to notify the user that Network is now transferring data. If the LED is off,
flashing or steady state red, or has an amber color, verify that:

• Your network is properly configured, has power applied, and is terminated. The best situation is one
in which you have thoroughly configured and network using another SST network interface board, or
have verified network operation using the tools supplied by your controller vendor (Allen Bradley,
Siemens, et al.).

• The node number specified in the template ($0005 in the default template) is not in conflict with any
other node on the network. If it is, make the appropriate change and download the PLC again.

• You have correctly specified a number of inputs and outputs that is consistent with the limitations of
the network.

• You have selected the proper baud rate for the Network and it matches that of your master.

• There are no masters on the network attempting to connect to your UNET slave. You can verify this
by disconnecting all other devices from the network.

Offline Command
During your verification of the module, you can take the card off-line by setting

M8050 = 3

You can repeatedly reset the card (M8050 = 1), go on line (M8050 = 2), and off-line (M8050 = 3) during
testing and verification of your card, Service PLC, and network.

Advanced Testing of your Master Configuration
Prior to the development of any PMAC motion or PLC programs to use the P-variable data, you should
conduct further testing of your network and slave configuration. This will involve using the network
tools you purchased from SST or those supplied with your master controller. To accomplish these tests
you must:

1. Reset the UNET card by typing M8050 = 1
2. Place the UNET card on line by typing M8050 = 2
3. Verify data transfers by checking M8050 is equal to 4

The last step causes your UNET Service PLC to actually read and write the UCS module’s memory map.
In doing so, the data received from the network is copied into your Input variables (M6000 and up) and
the data contained in your output variables (M7000 and up) is copied into UCS memory. If you do not
enable transfers an on-line UCS module may be functioning perfectly but you’d never know it because
the data would not be accessible to the PMAC.

Interfacing the UNET Slave to the Master on the Profibus Network
Now that the master is ready and online it is time to test it on the Profibus Network. Make sure
that the Profibus Network is powered and that there is a terminating resistor on the last node in
the Network. After this try putting the card online and test the mapping of the P-variables to the
data on each of the slaves

Accessory 55E – Profibus Specific

Appendix A. Profibus Slave for UMAC 33

APPENDIX A- PROFIBUS SLAVE FOR UMAC
UmacProfibusSlave.h
CLOSE
DELETE GATHER

//CHOOSE A PLC AND PLCC NUMBER THAT YOU CAN USE IN YOUR SYSTEM
#DEFINE PLC_NUMBER 13

//
#DEFINE UCS_NODE_NUMBER 0 ;STATION NUMBER(PFB)

//INPUTS TO NETWORK FROM UCS
#DEFINE SLAVE_INP_SIZE 200 ; Number of slave inputs in bytes

//OUTPUTS FROM NETWORK TO UCS
#DEFINE SLAVE_OUT_SIZE 200 ; Number of slave outputs

//UMAC ADDRESSES BASED ON SW1 SETTINGS ON THE ACCESSORY 55E
#DEFINE UCS_DATALO_ADDR $78D00
#DEFINE UCS_DATAHI_ADDR $78D01
#DEFINE UCS_ADDRESS_ADDR $78D02
#DEFINE UCS_CONTROL_STATUS_ADDR $78D03

#include "ProfibusSlaveMvars.h"
#include "ProfibusSlaveServiceHeader.h"
#include "ProfibusSlaveServiceEvent.plc"

ProfibusSlaveServiceHeader.h
#DEFINE SLAVE 1 ;SET TO 1 SINCE THIS IS A SLAVE
#DEFINE DEVICENET 0 ;SET TO ONE IF THIS IS DEVICENET
#DEFINE UCS_BAUDRATE 125 //NOT USED BUT NEED FOR UMAC SERVICE EVENT

; The command variable

#DEFINE IDLE $0000
#define RESET $0001 //PERFORMS A SOFT RESET
#define UCS_OPEN $0002 //SENDS OPEN TRIGGER AND STARTS TRANSFERS
#define UCS_CLOSE $0003 //SENDS CLOSE TRIGGER
#DEFINE TRANSFER $0004 //READ ONLY FOR USER
#define LATCH_ERR $0005 //NETWORK ERROR CARD NEEDS A SOFT RESET

#define UCS_CMD_IDBLOCK $0100 //VARIOUS DEBUGGING CAPABILITIES-TAKE OUT OF USER PLC
#define UCS_CMD_CSBLOCK $0101
#define UCS_CMD_ERRORLOG $0102
#define UCS_CMD_SENDTRIGGER $1000 //USED FOR TRIGGER HANDLER STARTER

//FIRST BYTE OF UCS_STATUS_CONTROL IS STATUS FROM UCS AND 2ND BYTE IS CONTROL TO UCS
#DEFINE UCS_BUSY UCS_STATUS&1 ;BIT 0 OF STATUS IS BUSY FLAG
#DEFINE UCS_BUSY_L UCS_STATUS_L&1 ;BIT 0 OF STATUS IS BUSY FLAG

#DEFINE UCS_IRQ UCS_STATUS&2 ;BIT 1 OF STATUS IS IRQ FROM UCS
#DEFINE UCS_CMD UCS_COMMAND&$F
#DEFINE UCS_CMD_L UCS_COMMAND_L&$F

//THESE MEMORY LOCATIONS ARE SET AND ARE CONSISIENT WITH PROFIMASTER DEFAULTS IN CFGHOST
#define SLAVE_INP_IRAM $300 ; IRAM location of slave inputs-SELF DEFINED
#define SLAVE_OUT_IRAM $1300 ; IRAM location of slave outputs-SELF DEFINED
#DEFINE IRQ_CLEAR $2
#DEFINE SEND_INT $2
#DEFINE OPEN_EVENT $1
#DEFINE TRUE 1
#DEFINE ON 1
#DEFINE FALSE 0
#DEFINE OFF 0
#DEFINE RUN_MODE 3

Accessory 55E – Profibus Specific

 Appendix A. Profibus Slave for UMAC 34

;READ IN MODULE STATUS WORD
#DEFINE MS_CONVERT 8388608/I10
#DEFINE MODULE_STATUS_ADDR $0
#DEFINE UCS_STATUS_ADDR $21
#DEFINE EVENT_IN_ADDR $26
#DEFINE EVENT_OUT_ADDR $27
#DEFINE TRIGGER_IN_ADDR $28
#DEFINE TRIGGER_OUT_ADDR $29
#DEFINE UCS_READ $8000

;***
//
#DEFINE TIMER I5511 //USES TIMER FROM CS5

#DEFINE UCS_DATALO M8000
#DEFINE UCS_DATAHI M8001
#DEFINE UCS_ADDRESS M8002
#DEFINE UCS_DATALO_L L8000
#DEFINE UCS_DATAHI_L L8001
#DEFINE UCS_ADDRESS_L L8002
#DEFINE UCS_CONTROL_STATUS M8003
#DEFINE UCS_CONTROL M8004
#DEFINE UCS_STATUS M8005
#DEFINE UCS_STATUS_L L8005
#DEFINE MODULE_STATUS_LO M8010
#DEFINE MODULE_STATUS_HI M8011
#DEFINE UCS_STATUS_LO M8012
#DEFINE UCS_STATUS_HI M8013
#DEFINE TRIGGERIN_POINTER_LO M8014
#DEFINE TRIGGERIN_POINTER_HI M8015
#DEFINE TRIGGERIN_POINTER M8016
#DEFINE EVENTIN_POINTER_LO M8017
#DEFINE EVENTIN_POINTER_HI M8018
#DEFINE EVENTOUT_POINTER_LO M8019
#DEFINE EVENTOUT_POINTER_HI M8020
#DEFINE EVENT_LO M8021
#DEFINE EVENT_HI M8022
#DEFINE BAUD M8023
#DEFINE NODE_NUMBER M8024
#DEFINE COUNTER M8025
#DEFINE COUNTER_L L8025
#DEFINE INPUT_LATCH L8026
#DEFINE OUTPUT_LATCH L8027

#DEFINE I_O_UPDATE_TIME M8028
#DEFINE SERVO_COUNTER M8029
#DEFINE TEMP_UPDATE1 M8030
#DEFINE TEMP_UPDATE2 M8031
#DEFINE UCS_COMMAND M8050
#DEFINE UCS_COMMAND_L L8050

; -- PMAC Specific Memory Addresses

; -- PMAC Specific Memory Addresses M-VAR DEFS
UCS_DATALO->X:UCS_DATALO_ADDR,24 //M8000
UCS_DATAHI->X:UCS_DATAHI_ADDR,24 //M8001
UCS_ADDRESS->X:UCS_ADDRESS_ADDR,24 //M8002
UCS_DATALO_L->X:UCS_DATALO_ADDR,24 //L8000
UCS_DATAHI_L->X:UCS_DATAHI_ADDR,24 //L8001
UCS_ADDRESS_L->X:UCS_ADDRESS_ADDR,24 //L8002
UCS_CONTROL_STATUS->X:UCS_CONTROL_STATUS_ADDR,24 //M8003
UCS_CONTROL->X:UCS_CONTROL_STATUS_ADDR,8,8 //M8004
UCS_STATUS->X:UCS_CONTROL_STATUS_ADDR,0,8 //M8005
UCS_STATUS_L->X:UCS_CONTROL_STATUS_ADDR,0,8 //L8005

UCS_COMMAND->Y:$10F0,0,24
UCS_COMMAND_L->Y:$10F0,0,24

MODULE_STATUS_LO->Y:$10F1,0,24 //M8010
MODULE_STATUS_HI->X:$10F1,0,24 //M8011

Accessory 55E – Profibus Specific

Appendix A. Profibus Slave for UMAC 35

UCS_STATUS_LO->Y:$10F2,0,24 //M8012
UCS_STATUS_HI->X:$10F2,0,24 //M8013
TRIGGERIN_POINTER_LO->Y:$10F3,0,24 //M8014
TRIGGERIN_POINTER_HI->X:$10F3,0,24 //M8015
TRIGGERIN_POINTER->Y:$10F4,0,24 //M8016
EVENTIN_POINTER_LO->Y:$10F5,0,24 //M8017
EVENTIN_POINTER_HI->X:$10F5,0,24 //M8018
EVENTOUT_POINTER_LO->Y:$10F6,0,24 //M8019
EVENTOUT_POINTER_HI->X:$10F6,0,24 //M8020
EVENT_LO->Y:$10F7,0,24 //M8021
EVENT_HI->X:$10F7,0,24 //M8022
BAUD->Y:$10F8,0,24 //M8023
NODE_NUMBER->X:$10F8,0,24 //M8024
COUNTER_L->Y:$10F9,0,24 //ML025
INPUT_LATCH->X:$10F9,0,24 //L8026
OUTPUT_LATCH->X:$10FA,0,24 //L8027
I_O_UPDATE_TIME->Y:$10FA,0,24,S //M8028
SERVO_COUNTER->X:$0,0,24 //M8029
TEMP_UPDATE1->X:$10FB,0,24 //M8030
TEMP_UPDATE2->Y:$10FB,0,24 //M8031

L7998->Y:$7B58[1024] ;MUST BE A FACTOR OF 2
L7999->X:$7B58[1024] ;MUST BE A FACTOR OF 2

ProfibusSlaveServiceEvent.plc
//SERVICE PLC FOR THE DATA TRANSFERS AND ERROR HANDLING
//SEE FLOW CHART ON UNET CD FOR LOGIC TRAIN

//IN=NETWORK IN FROM SLAVE
//OUT=NETWORK OUT TO SLAVE

OPEN PLC PLC_NUMBER CLEAR

;Check IRQ Status (INT FROM UCS)
If (UCS_IRQ != FALSE) //CLEAR IRQ
UCS_STATUS=IRQ_CLEAR //TELL UCS I SAW IRQ AND CLEAR IT

;**
;STORE MODULE STATUS AND CHECK IT FOR RUN MODE
While (UCS_BUSY = TRUE)
 ENDWHILE //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)
 UCS_ADDRESS = UCS_READ + MODULE_STATUS_ADDR ;IRAM address for MODULE_STATUS
 While (UCS_BUSY = TRUE)
 ENDWHILE //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)
 MODULE_STATUS_LO = UCS_DATALO
 //STORES MODULE STATUS AND CONTROL
 MODULE_STATUS_HI= UCS_DATAHI
 //***
 ;IF UCS IS NOT IS RUN MODE
 If (MODULE_STATUS_LO&$FF != RUN_MODE) ;MODULE STATUS MODE IS LOW BYTE OF IRAM 0
 While (UCS_BUSY = TRUE)
 ENDWHILE
 //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)
 UCS_ADDRESS = UCS_READ + UCS_STATUS_ADDR ; IRAM address
 While (UCS_BUSY = TRUE)
 ENDWHILE
 //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)
 UCS_STATUS_LO = UCS_DATALO //STORES UCS_STATUS BITS
 UCS_STATUS_HI = UCS_DATAHI

 UCS_COMMAND = LATCH_ERR
 Else
 //UCS_COMMAND= IDLE
 EndIf
 ;**
 //PROCESS FOR EVENT HANDLER
 ///READ IN EVENT OUT POINTER//////////////////
 While (UCS_BUSY = TRUE)
 EndWhile

Accessory 55E – Profibus Specific

 Appendix A. Profibus Slave for UMAC 36

 UCS_ADDRESS = UCS_READ + EVENT_OUT_ADDR ; Read EVENT_OUT
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENTOUT_POINTER_LO = UCS_DATALO
 EVENTOUT_POINTER_HI = UCS_DATAHI

 ///READ IN EVENT IN POINTER//////////////////
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + EVENT_IN_ADDR ; Read EVENT_IN
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENTIN_POINTER_LO = UCS_DATALO
 EVENTIN_POINTER_HI = UCS_DATAHI

 //Compare EVENT_IN to EVENT_OUT//////////////

 If (EVENTIN_POINTER_LO > EVENTOUT_POINTER_LO)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + EVENTOUT_POINTER_LO
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENT_LO = UCS_DATALO
 EVENT_HI = UCS_DATAHI
 While (UCS_COMMAND = UCS_OPEN And EVENT_LO&$FF != OPEN_EVENT)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + EVENTOUT_POINTER_LO
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENT_LO = UCS_DATALO
 EVENT_HI = UCS_DATAHI
 EndWhile

 EVENTOUT_POINTER_LO = EVENTOUT_POINTER_LO + 1
 If (EVENTOUT_POINTER_LO = $200)
 EVENTOUT_POINTER_LO=$100
 EndIf

 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = EVENT_OUT_ADDR
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = EVENTOUT_POINTER_LO
 UCS_DATAHI = 0
 While (UCS_BUSY = TRUE)
 EndWhile

 If ((EVENT_LO&$FF) != OPEN_EVENT)
 UCS_COMMAND=LATCH_ERR
 Else
 ENABLE PLCC13
 UCS_COMMAND = TRANSFER
 DISABLE PLC13
 EndIf
 EndIf
 //

 ;**

 ELSE //IRQ NOT PRESENT
 ;**
 ;COMMAND RESET
 If (UCS_CMD = RESET)
 UCS_CONTROL=RESET // toggle lsb of control byte for reset
 TIMER=10*8388608/I10 //NEED TO WAIT MIN OF 50usec
according to client.pdf
 While (TIMER > 0)
 EndWhile //THIS VALUE IS A CONSERVATIVE 2 SERVO CYCLES

Accessory 55E – Profibus Specific

Appendix A. Profibus Slave for UMAC 37

 UCS_STATUS=$0E //INTO STATUS CLEAR ALL FAULTS--WHY SEPARATE???
 UCS_CONTROL=0 //SET CONTROL TO ZERO
 While (UCS_IRQ = FALSE)
 EndWhile
 UCS_STATUS=IRQ_CLEAR
 UCS_COMMAND=IDLE
 TRIGGERIN_POINTER=0
 EndIf
 ;**
; Send a CLOSE Trigger

If (UCS_CMD = UCS_CLOSE)
 //READ TRIGGER IN POINTER
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ; Fetch TRIGGER_IN pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 While (TRIGGERIN_POINTER_LO < TRIGGERIN_POINTER)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ; Fetch TRIGGER_IN pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 EndWhile
 //STUFF IN A CLOSE TRIGGER
 While (UCS_BUSY = TRUE)
 EndWhile
 //
 UCS_ADDRESS = TRIGGERIN_POINTER_LO ; Setup address to write to current TRIGGER_IN
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = $0104 ; Trigger command = CLOSE + OPERATOR
SHUTDOWN SEE CLIENT FOR DETAILS
 UCS_DATAHI = $0000
 TRIGGERIN_POINTER=TRIGGERIN_POINTER_LO+1
 If (TRIGGERIN_POINTER = $300)
 TRIGGERIN_POINTER=$200
 EndIf
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = TRIGGER_IN_ADDR
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = TRIGGERIN_POINTER
 UCS_DATAHI = $0
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_CONTROL = SEND_INT ;SEND INTERUPT TO PROCESS TRIGGER DATA
 While (UCS_IRQ = FALSE)
 EndWhile
 UCS_COMMAND = IDLE ; Enable post TRIGGER Handler
 //SET AN INT TO TELL UCS TO PROCESS TRIGGER
 EndIf
;**
; Send an OPEN Trigger

If (UCS_CMD = UCS_OPEN)
 If (SLAVE = TRUE)
 ;FIRST WRITE TO INPUT DEFINITION-IF IT IS A MASTER PERSONALITY WILL OVERWRITE IT
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = $0022 ;ADDRESS FOR INPUT DEF
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = SLAVE_INP_SIZE
 UCS_DATAHI = SLAVE_INP_IRAM

Accessory 55E – Profibus Specific

 Appendix A. Profibus Slave for UMAC 38

 ;NEXT WRITE TO OUTPUT SIZE AND LOCATION-MASTER'S PERSONALITY WILL OVERWRITE IT
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = $0023 ;ADDRESS FOR OUTPUT
DEF
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = SLAVE_OUT_SIZE
 UCS_DATAHI = SLAVE_OUT_IRAM
 EndIf

 ; Sending open trigger and handle event queue
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ;READ + ADDRESS FOR TRIGGER
IN POINTER
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 While (TRIGGERIN_POINTER_LO < TRIGGERIN_POINTER)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ; Fetch TRIGGER_IN pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 EndWhile
 //increment trigger in pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 //write the trigger
 UCS_ADDRESS = TRIGGERIN_POINTER_LO ; Setup address to write to current TRIGGER_IN
 While (UCS_BUSY = TRUE)
 EndWhile
 If (SLAVE = TRUE)
 UCS_DATALO = $0701 ;7->DISABLES C.O.S; ENABLES PLUG AND PLAY; AND SWITCH DATA
SUPPLIED(BAUD RATE ADN NODE NUMBER)
 Else
 UCS_DATALO = $0401
 EndIf
 If (DEVICENET = TRUE And SLAVE = TRUE)
 If (UCS_BAUDRATE = 125)
 BAUD=$00
 EndIf
 If (UCS_BAUDRATE = 250)
 BAUD=$40
 EndIf
 If (UCS_BAUDRATE = 500)
 BAUD=$80
 EndIf
 Else
 BAUD=$00
 EndIf

 UCS_DATAHI = BAUD + (UCS_NODE_NUMBER & $3F)
 TRIGGERIN_POINTER=TRIGGERIN_POINTER_LO+1
 If (TRIGGERIN_POINTER = $300)
 TRIGGERIN_POINTER=$200
 EndIf

 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = TRIGGER_IN_ADDR
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = TRIGGERIN_POINTER
 UCS_DATAHI = 0
 While (UCS_BUSY = TRUE)
 EndWhile

Accessory 55E – Profibus Specific

Appendix A. Profibus Slave for UMAC 39

 //send INT TO UCS
 UCS_CONTROL = SEND_INT ;SEND INTERUPT TO PROCESS TRIGGER DATA
 TIMER=2500*8388608/I10
 While (TIMER > 0)
 EndWhile
 While (UCS_IRQ = FALSE)
 EndWhile
 //
 EndIf ;END OF OPEN TRIGGER
 ;***
 If (UCS_STATUS&$8 = $8)
 UCS_COMMAND=RESET
 EndIf
EndIf
close

;***
//PLCC code for transfers
OPEN PLCC PLC_NUMBER CLEAR
If (UCS_CMD_L = TRANSFER And UCS_STATUS_L&8 != 8)// And(UCS_IRQ = FALSE)
 ;***
 ; -- Output the data to NETWORK from PMAC
 COUNTER_L = 0
 While (UCS_BUSY_L = TRUE)
 EndWhile
 UCS_ADDRESS_L = SLAVE_INP_IRAM
 While (COUNTER_L < SLAVE_INP_SIZE+1)
 //WE DON'T WANT TO SKIP OUT OF HERE SO WE USE MULTIPLE IF STATEMENTS TO MAX BANDWIDTH
 INPUT_LATCH=FALSE
 //TRIAL 1 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 2 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 3 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 4 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 5 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //6

Accessory 55E – Profibus Specific

 Appendix A. Profibus Slave for UMAC 40

 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 7 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 8 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //9
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 10 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 11 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 12 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 13 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 14 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf

Accessory 55E – Profibus Specific

Appendix A. Profibus Slave for UMAC 41

 //TRIAL 15 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 16 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 17 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 18 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //19
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 20 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 21 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //22
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 23 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1

Accessory 55E – Profibus Specific

 Appendix A. Profibus Slave for UMAC 42

 EndIf
 //TRIAL 24 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 25 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_INP_SIZE+1)
 UCS_ADDRESS_L = SLAVE_INP_IRAM+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf

 EndWhile
 //**
 //Read data from UCS into PMAC

 COUNTER_L = 0
 While (UCS_BUSY_L = TRUE)
 EndWhile
 UCS_ADDRESS_L = UCS_READ + SLAVE_OUT_IRAM
 While (COUNTER_L < SLAVE_OUT_SIZE+1)
 OUTPUT_LATCH=FALSE
 //WE DON'T WANT TO SKIP OUT OF HERE SO WE USE MULTIPLE IF STATEMENTS TO MAX BANDWIDTH
 //TRIAL 1 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 2 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 3 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 4 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 5 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 6 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf

Accessory 55E – Profibus Specific

Appendix A. Profibus Slave for UMAC 43

 //7
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 8 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 9 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 10 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 11 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 12 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 13 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 14 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 15 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 16 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 17 FOR BUSY FLAG

Accessory 55E – Profibus Specific

 Appendix A. Profibus Slave for UMAC 44

 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 18 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //19
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 20 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 21 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 22 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 23 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 24 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 25 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf

 EndWhile
 TEMP_UPDATE2=TEMP_UPDATE1
 TEMP_UPDATE1=SERVO_COUNTER
 I_O_UPDATE_TIME=ABS(TEMP_UPDATE2-TEMP_UPDATE1)*(I10/8388608)
 ;***
Else
 ENABLE PLC13
 DISABLE PLCC13

Accessory 55E – Profibus Specific

Appendix A. Profibus Slave for UMAC 45

EndIf

CLOSE
;***

ena plc PLC_NUMBER

Accessory 55E – Profibus Specific

46 Appendix B. Profibus Master for UMAC

APPENDIX B – PROFIBUS MASTER FOR UMAC
UmacProfibusMaster.h
CLOSE
DELETE GATHER

; -- Define UNet Service PLC

#DEFINE PLC_NUMBER 13

; -- Definitions for Slave/Master IO Blocks

#DEFINE UCS_NODE_NUMBER 5 ;STATION NUMBER(PFB)

//INPUTS TO NETWORK FROM UCS
#DEFINE MASTER_INP_SIZE 16 ; Number of master inputs in bytes
#DEFINE MASTER_INPUT_STARTADDRESS $4C00

//OUTPUTS FROM NETWORK TO UCS
#DEFINE MASTER_OUT_SIZE 16 ; NUMBER OF MASTER OUTPUTS
#DEFINE MASTER_OUTPUT_STARTADDRESS $C00

//UMAC ADDRESSES DIFFERENT FOR MACRO
#DEFINE UCS_DATALO_ADDR $78D00
#DEFINE UCS_DATAHI_ADDR $78D01
#DEFINE UCS_ADDRESS_ADDR $78D02
#DEFINE UCS_CONTROL_STATUS_ADDR $78D03

#include "ProfibusMasterMvars.h"
#include "ProfibusMasterServiceHeader.h"
#include "ProfibusMasterServiceEvent.plc"

ProfibusMasterServiceHeader.h
#DEFINE SLAVE 0 ;SET TO 1 IF IT IS A SLAVE
#DEFINE DEVICENET 0
#DEFINE UCS_BAUDRATE 125
#DEFINE SLAVE_INP_SIZE 200 ; Number of slave inputs in bytes
#DEFINE SLAVE_OUT_SIZE 200 ; Number of slave outputs

; The command variable

#DEFINE IDLE $0000
#define RESET $0001 //PERFORMS A SOFT RESET
#define UCS_OPEN $0002 //SENDS OPEN TRIGGER AND STARTS TRANSFERS
#define UCS_CLOSE $0003 //SENDS CLOSE TRIGGER
#DEFINE TRANSFER $0004 //READ ONLY FOR USER
#define LATCH_ERR $0005
#define UCS_CMD_IDBLOCK $0100
#define UCS_CMD_CSBLOCK $0101
#define UCS_CMD_ERRORLOG $0102
#define UCS_CMD_SENDTRIGGER $1000 //USED FOR TRIGGER HANDLER STARTER

//FIRST BYTE OF UCS_STATUS_CONTROL IS STATUS FROM UCS AND 2ND BYTE IS CONTROL TO UCS
#DEFINE UCS_BUSY UCS_STATUS&1 ;BIT 0 OF STATUS IS BUSY FLAG
#DEFINE UCS_BUSY_L UCS_STATUS_L&1 ;BIT 0 OF STATUS IS BUSY FLAG

#DEFINE UCS_IRQ UCS_STATUS&2 ;BIT 1 OF STATUS IS IRQ FROM UCS
#DEFINE UCS_CMD UCS_COMMAND&$F
#DEFINE UCS_CMD_L UCS_COMMAND_L&$F

//THESE MEMORY LOCATIONS ARE SET AND ARE CONSISIENT WITH PROFIMASTER DEFAULTS IN CFGHOST
#define SLAVE_INP_IRAM $300 ; IRAM location of slave inputs-SELF DEFINED
#define SLAVE_OUT_IRAM $1300 ; IRAM location of slave outputs-SELF
DEFINED
#DEFINE IRQ_CLEAR $2
#DEFINE SEND_INT $2

Accessory 55E – Profibus Specific

Appendix B. Profibus Master for UMAC 47

#DEFINE OPEN_EVENT $1
#DEFINE TRUE 1
#DEFINE ON 1
#DEFINE FALSE 0
#DEFINE OFF 0
#DEFINE RUN_MODE 3
 ;READ IN MODULE STATUS WORD
#DEFINE MS_CONVERT 8388608/I10
#DEFINE MODULE_STATUS_ADDR $0
#DEFINE UCS_STATUS_ADDR $21
#DEFINE EVENT_IN_ADDR $26
#DEFINE EVENT_OUT_ADDR $27
#DEFINE TRIGGER_IN_ADDR $28
#DEFINE TRIGGER_OUT_ADDR $29
#DEFINE UCS_READ $8000

;***
//
#DEFINE TIMER I5511 //USES TIMER FROM CS5

#DEFINE UCS_DATALO M8000
#DEFINE UCS_DATAHI M8001
#DEFINE UCS_ADDRESS M8002
#DEFINE UCS_DATALO_L L8000
#DEFINE UCS_DATAHI_L L8001
#DEFINE UCS_ADDRESS_L L8002
#DEFINE UCS_CONTROL_STATUS M8003
#DEFINE UCS_CONTROL M8004
#DEFINE UCS_STATUS M8005
#DEFINE UCS_STATUS_L L8005

#DEFINE MODULE_STATUS_LO M8010
#DEFINE MODULE_STATUS_HI M8011
#DEFINE UCS_STATUS_LO M8012
#DEFINE UCS_STATUS_HI M8013
#DEFINE TRIGGERIN_POINTER_LO M8014
#DEFINE TRIGGERIN_POINTER_HI M8015
#DEFINE TRIGGERIN_POINTER M8016
#DEFINE EVENTIN_POINTER_LO M8017
#DEFINE EVENTIN_POINTER_HI M8018
#DEFINE EVENTOUT_POINTER_LO M8019
#DEFINE EVENTOUT_POINTER_HI M8020
#DEFINE EVENT_LO M8021
#DEFINE EVENT_HI M8022
#DEFINE BAUD M8023
#DEFINE NODE_NUMBER M8024
#DEFINE COUNTER M8025
#DEFINE COUNTER_L L8025
#DEFINE INPUT_LATCH L8026
#DEFINE OUTPUT_LATCH L8027

#DEFINE I_O_UPDATE_TIME M8028
#DEFINE SERVO_COUNTER M8029
#DEFINE TEMP_UPDATE1 M8030
#DEFINE TEMP_UPDATE2 M8031

#DEFINE UCS_COMMAND M8050
#DEFINE UCS_COMMAND_L L8050

; -- PMAC Specific Memory Addresses

; -- PMAC Specific Memory Addresses M-VAR DEFS
UCS_DATALO->X:UCS_DATALO_ADDR,24 //M8000
UCS_DATAHI->X:UCS_DATAHI_ADDR,24 //M8001
UCS_ADDRESS->X:UCS_ADDRESS_ADDR,24 //M8002
UCS_DATALO_L->X:UCS_DATALO_ADDR,24 //L8000
UCS_DATAHI_L->X:UCS_DATAHI_ADDR,24 //L8001
UCS_ADDRESS_L->X:UCS_ADDRESS_ADDR,24 //L8002
UCS_CONTROL_STATUS->X:UCS_CONTROL_STATUS_ADDR,24 //M8003
UCS_CONTROL->X:UCS_CONTROL_STATUS_ADDR,8,8 //M8004
UCS_STATUS->X:UCS_CONTROL_STATUS_ADDR,0,8 //M8005

Accessory 55E – Profibus Specific

48 Appendix B. Profibus Master for UMAC

UCS_STATUS_L->X:UCS_CONTROL_STATUS_ADDR,0,8 //L8005

UCS_COMMAND->Y:$10F0,0,24 //M8050
UCS_COMMAND_L->Y:$10F0,0,24 //L8050
MODULE_STATUS_LO->Y:$10F1,0,24 //M8010
MODULE_STATUS_HI->X:$10F1,0,24 //M8011
UCS_STATUS_LO->Y:$10F2,0,24 //M8012
UCS_STATUS_HI->X:$10F2,0,24 //M8013
TRIGGERIN_POINTER_LO->Y:$10F3,0,24 //M8014
TRIGGERIN_POINTER_HI->X:$10F3,0,24 //M8015
TRIGGERIN_POINTER->Y:$10F4,0,24 //M8016
EVENTIN_POINTER_LO->Y:$10F5,0,24 //M8017
EVENTIN_POINTER_HI->X:$10F5,0,24 //M8018
EVENTOUT_POINTER_LO->Y:$10F6,0,24 //M8019
EVENTOUT_POINTER_HI->X:$10F6,0,24 //M8020
EVENT_LO->Y:$10F7,0,24 //M8021
EVENT_HI->X:$10F7,0,24 //M8022
BAUD->Y:$10F8,0,24 //M8023
NODE_NUMBER->X:$10F8,0,24 //M8024
//COUNTER->Y:$10F9,0,24 //M8025
COUNTER_L->Y:$10F9,0,24 //ML025

INPUT_LATCH->X:$10F9,0,24 //L8026
OUTPUT_LATCH->X:$10FA,0,24 //L8027
I_O_UPDATE_TIME->Y:$10FA,0,24,S //M8028
SERVO_COUNTER->X:$0,0,24 //M8029
TEMP_UPDATE1->X:$10FB,0,24 //M8030
TEMP_UPDATE2->Y:$10FB,0,24 //M8031

L7998->Y:$7B58[1024] ;MUST BE A FACTOR OF 2
L7999->X:$7B58[1024] ;MUST BE A FACTOR OF 2

ProfibusMasterServiceEvent.plc
//SERVICE PLC FOR THE DATA TRANSFERS AND ERROR HANDLING
//SEE FLOW CHART ON UNET CD FOR LOGIC TRAIN

//IN=NETWORK IN FROM SLAVE
//OUT=NETWORK OUT TO SLAVE

OPEN PLC PLC_NUMBER CLEAR

;Check IRQ Status (INT FROM UCS)
If (UCS_IRQ != FALSE) //CLEAR IRQ
UCS_STATUS=IRQ_CLEAR //TELL UCS I SAW IRQ AND CLEAR IT

;**
;STORE MODULE STATUS AND CHECK IT FOR RUN MODE
While (UCS_BUSY = TRUE)
 ENDWHILE //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)
 UCS_ADDRESS = UCS_READ + MODULE_STATUS_ADDR ;IRAM address for MODULE_STATUS
 While (UCS_BUSY = TRUE)
 ENDWHILE //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)

 MODULE_STATUS_LO = UCS_DATALO //STORES MODULE STATUS AND CONTROL
 MODULE_STATUS_HI= UCS_DATAHI
 //***
 ;IF UCS IS NOT IS RUN MODE

 If (MODULE_STATUS_LO&$FF != RUN_MODE) ;MODULE STATUS MODE IS LOW BYTE OF IRAM 0
 While (UCS_BUSY = TRUE)
 ENDWHILE
 //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)
 UCS_ADDRESS = UCS_READ + UCS_STATUS_ADDR ; IRAM address
 While (UCS_BUSY = TRUE)
 ENDWHILE
 //WAIT UNTIL UCS IS NOT BUSY (1-8uSEC TYPICAL)
 UCS_STATUS_LO = UCS_DATALO
 //STORES UCS_STATUS BITS
 UCS_STATUS_HI = UCS_DATAHI

Accessory 55E – Profibus Specific

Appendix B. Profibus Master for UMAC 49

 UCS_COMMAND = LATCH_ERR
 Else
 //UCS_COMMAND= IDLE
 EndIf
 ;**
 //PROCESS FOR EVENT HANDLER
 ///READ IN EVENT OUT POINTER//////////////////

 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + EVENT_OUT_ADDR ; Read EVENT_OUT
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENTOUT_POINTER_LO = UCS_DATALO
 EVENTOUT_POINTER_HI = UCS_DATAHI

 ///READ IN EVENT IN POINTER//////////////////
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + EVENT_IN_ADDR ; Read EVENT_IN
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENTIN_POINTER_LO = UCS_DATALO
 EVENTIN_POINTER_HI = UCS_DATAHI

 //Compare EVENT_IN to EVENT_OUT//////////////

 If (EVENTIN_POINTER_LO > EVENTOUT_POINTER_LO)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + EVENTOUT_POINTER_LO
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENT_LO = UCS_DATALO
 EVENT_HI = UCS_DATAHI
 While (UCS_COMMAND = UCS_OPEN And EVENT_LO&$FF != OPEN_EVENT)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + EVENTOUT_POINTER_LO
 While (UCS_BUSY = TRUE)
 EndWhile
 EVENT_LO = UCS_DATALO
 EVENT_HI = UCS_DATAHI
 EndWhile

 EVENTOUT_POINTER_LO = EVENTOUT_POINTER_LO + 1
 If (EVENTOUT_POINTER_LO = $200)
 EVENTOUT_POINTER_LO=$100
 EndIf

 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = EVENT_OUT_ADDR
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = EVENTOUT_POINTER_LO
 UCS_DATAHI = 0
 While (UCS_BUSY = TRUE)
 EndWhile
 If ((EVENT_LO&$FF) != OPEN_EVENT)
 UCS_COMMAND=LATCH_ERR
 Else
 ENABLE PLCC13
 UCS_COMMAND = TRANSFER
 DISABLE PLC13
 EndIf
 EndIf
 //

 ;**

Accessory 55E – Profibus Specific

50 Appendix B. Profibus Master for UMAC

 ELSE //IRQ NOT PRESENT
 ;**
 ;COMMAND RESET
 If (UCS_CMD = RESET)
 UCS_CONTROL=RESET // toggle lsb of control byte for reset
 TIMER=10*8388608/I10 //NEED TO WAIT MIN OF 50usec
according to client.pdf
 While (TIMER > 0)
 EndWhile //THIS VALUE IS A CONSERVATIVE 2 SERVO CYCLES
 UCS_STATUS=$0E //INTO STATUS CLEAR ALL FAULTS--WHY SEPARATE???
 UCS_CONTROL=0 //SET CONTROL TO ZERO
 While (UCS_IRQ = FALSE)
 EndWhile
 UCS_STATUS=IRQ_CLEAR
 UCS_COMMAND=IDLE
 TRIGGERIN_POINTER=0
 EndIf
 ;**
; Send a CLOSE Trigger

If (UCS_CMD = UCS_CLOSE)

 //READ TRIGGER IN POINTER
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ; Fetch TRIGGER_IN pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 While (TRIGGERIN_POINTER_LO < TRIGGERIN_POINTER)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ; Fetch TRIGGER_IN pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 P8003=2
 EndWhile
//STUFF IN A CLOSE TRIGGER
While (UCS_BUSY = TRUE)
EndWhile
//
UCS_ADDRESS = TRIGGERIN_POINTER_LO ; Setup address to write to current TRIGGER_IN
While (UCS_BUSY = TRUE)
EndWhile

UCS_DATALO = $0104 ; Trigger command = CLOSE + OPERATOR SHUTDOWN SEE
CLIENT FOR DETAILS
UCS_DATAHI = $0000

TRIGGERIN_POINTER=TRIGGERIN_POINTER_LO+1
If (TRIGGERIN_POINTER = $300)
 TRIGGERIN_POINTER=$200
EndIf
While (UCS_BUSY = TRUE)
EndWhile
UCS_ADDRESS = TRIGGER_IN_ADDR
While (UCS_BUSY = TRUE)
EndWhile
UCS_DATALO = TRIGGERIN_POINTER
UCS_DATAHI = $0
While (UCS_BUSY = TRUE)
EndWhile
UCS_CONTROL = SEND_INT ;SEND INTERUPT TO PROCESS TRIGGER DATA
While (UCS_IRQ = FALSE)
EndWhile
UCS_COMMAND = IDLE ; Enable post TRIGGER Handler
EndIf

Accessory 55E – Profibus Specific

Appendix B. Profibus Master for UMAC 51

;**
; Send an OPEN Trigger

If (UCS_CMD = UCS_OPEN)
 If (SLAVE = TRUE)
 ;FIRST WRITE TO INPUT DEFINITION-IF IT IS A MASTER PERSONALITY WILL OVERWRITE IT
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = $0022 ;ADDRESS FOR INPUT DEF
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = SLAVE_INP_SIZE
 UCS_DATAHI = SLAVE_INP_IRAM
 ;NEXT WRITE TO OUTPUT SIZE AND LOCATION-MASTER'S PERSONALITY WILL OVERWRITE IT
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = $0023 ;ADDRESS FOR OUTPUT
DEF
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = SLAVE_OUT_SIZE
 UCS_DATAHI = SLAVE_OUT_IRAM
 EndIf
 ; Sending open trigger and handle event queue
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ;READ + ADDRESS FOR TRIGGER
IN POINTER
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 While (TRIGGERIN_POINTER_LO < TRIGGERIN_POINTER)
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = UCS_READ + TRIGGER_IN_ADDR ; Fetch TRIGGER_IN pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 TRIGGERIN_POINTER_LO = UCS_DATALO
 TRIGGERIN_POINTER_HI = UCS_DATAHI
 EndWhile
 //increment trigger in pointer
 While (UCS_BUSY = TRUE)
 EndWhile
 //write the trigger
 UCS_ADDRESS = TRIGGERIN_POINTER_LO ; Setup address to write to current TRIGGER_IN
 While (UCS_BUSY = TRUE)
 EndWhile
 If (SLAVE = TRUE)
 UCS_DATALO = $0701 ;7->DISABLES C.O.S; ENABLES PLUG AND PLAY; AND SWITCH DATA
SUPPLIED(BAUD RATE ADN NODE NUMBER)
 Else
 UCS_DATALO = $0401
 EndIf
 ;1->OPEN TRIGGER
 If (DEVICENET = TRUE And SLAVE = TRUE)
 If (UCS_BAUDRATE = 125)
 BAUD=$00
 EndIf
 If (UCS_BAUDRATE = 250)
 BAUD=$40
 EndIf
 If (UCS_BAUDRATE = 500)
 BAUD=$80
 EndIf
 Else
 BAUD=$00
 EndIf

 UCS_DATAHI = BAUD + (UCS_NODE_NUMBER & $3F)
 TRIGGERIN_POINTER=TRIGGERIN_POINTER_LO+1

Accessory 55E – Profibus Specific

52 Appendix B. Profibus Master for UMAC

 If (TRIGGERIN_POINTER = $300)
 TRIGGERIN_POINTER=$200
 EndIf

 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_ADDRESS = TRIGGER_IN_ADDR
 While (UCS_BUSY = TRUE)
 EndWhile
 UCS_DATALO = TRIGGERIN_POINTER
 UCS_DATAHI = 0
 While (UCS_BUSY = TRUE)
 EndWhile
 //send INT TO UCS
 UCS_CONTROL = SEND_INT ;SEND INTERUPT TO PROCESS TRIGGER DATA
 TIMER=2500*8388608/I10
 While (TIMER > 0)
 EndWhile
 While (UCS_IRQ = FALSE)
 EndWhile
 EndIf ;END OF OPEN TRIGGER

 ;***
 //IF CARD IS WATCHDOGGED THEN SEND A RESET AUTOMATICALLY
 If (UCS_STATUS&$8 = $8)
 UCS_COMMAND=RESET
 EndIf
EndIf
close

;***

//PLCC code for transfers
OPEN PLCC PLC_NUMBER CLEAR
If (UCS_CMD_L = TRANSFER And UCS_STATUS_L&$8 != $8)// And(UCS_IRQ = FALSE)
 ;***
 ; -- Output the data to NETWORK from PMAC
 ;***
 ; -- Master Mode
 COUNTER_L = 0
 While (UCS_BUSY_L = TRUE)
 EndWhile
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4 ;$1300
 While (COUNTER_L < MASTER_INP_SIZE+1)
 //WE DON'T WANT TO SKIP OUT OF HERE SO WE USE MULTIPLE IF STATEMENTS TO MAX BANDWIDTH
 //TRIAL 1 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 2 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 3 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2

Accessory 55E – Profibus Specific

Appendix B. Profibus Master for UMAC 53

 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 4 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 5 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 6 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 7 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 8 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 9 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 10 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 11 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 12 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF

Accessory 55E – Profibus Specific

54 Appendix B. Profibus Master for UMAC

 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 13 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 14 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 15 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 16 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 17 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 18 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 19 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 20 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 21 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF

Accessory 55E – Profibus Specific

Appendix B. Profibus Master for UMAC 55

 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 22 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 23 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 24 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf
 //TRIAL 25 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < MASTER_INP_SIZE+1)
 UCS_ADDRESS_L = MASTER_INPUT_STARTADDRESS/4+COUNTER_L/2
 UCS_DATALO_L = L7998[COUNTER_L]& $FFFF
 UCS_DATAHI_L = L7998[COUNTER_L+1]& $FFFF
 COUNTER_L = COUNTER_L + 2
 INPUT_LATCH=INPUT_LATCH+1
 EndIf

 EndWhile
 ;***
 ; -- Master Mode
 COUNTER_L = 0
 While (UCS_BUSY_L = TRUE)
 EndWhile
 UCS_ADDRESS_L = UCS_READ + MASTER_OUTPUT_STARTADDRESS/4 ;$300
 While (COUNTER_L < MASTER_OUT_SIZE+1)
 //WE DON'T WANT TO SKIP OUT OF HERE SO WE USE MULTIPLE IF STATEMENTS TO MAX BANDWIDTH
 //TRIAL 1 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 2 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 3 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 4 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF

Accessory 55E – Profibus Specific

56 Appendix B. Profibus Master for UMAC

 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 5 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 6 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 7 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 8 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 9 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 10 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 11 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 12 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 13 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 14 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2

Accessory 55E – Profibus Specific

Appendix B. Profibus Master for UMAC 57

 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 15 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 16 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 17 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 18 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 19 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 20 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 21 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 22 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 23 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf
 //TRIAL 24 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1

Accessory 55E – Profibus Specific

58 Appendix B. Profibus Master for UMAC

 EndIf
 //TRIAL 25 FOR BUSY FLAG
 If (UCS_BUSY_L = FALSE And COUNTER_L < SLAVE_OUT_SIZE+1) //And OUTPUT_LATCH = FALSE)
 L7999[COUNTER_L] = UCS_DATALO_L & $FFFF
 L7999[COUNTER_L+1] = UCS_DATAHI_L & $FFFF
 COUNTER_L = COUNTER_L + 2
 OUTPUT_LATCH=OUTPUT_LATCH+1
 EndIf

 EndWhile
 TEMP_UPDATE2=TEMP_UPDATE1
 TEMP_UPDATE1=SERVO_COUNTER
 I_O_UPDATE_TIME=ABS(TEMP_UPDATE2-TEMP_UPDATE1)*(I10/8388608)
 ;***
Else
 ENABLE PLC13
 DISABLE PLCC13
EndIf

CLOSE
;***

ena plc PLC_NUMBER

	INTRODUCTION
	PROFIBUS SLAVE SETUP FOR UMAC TURBO
	UNET Hardware and Address Configuration
	UMAC Software Parameter Setup
	Variable and Memory Usage
	Specifying a PLC Number
	Specifying the Characteristics of the Module
	Specifying the Number of Data Words and their Location
	Specifying the Base Address for the UNET Card

	Installing the UNET Parameters and UMAC Software
	Putting the UNET Card On and Offline
	Reset Command
	Online Command
	Offline Command
	Advanced Testing of your Slave Configuration

	Interfacing the UNET Slave to the Master on the Profibus Network

	PROFIBUS MASTER SETUP FOR UMAC TURBO
	
	Overview of the Different Configuration Methods

	Necessary Components
	Delta Tau Hardware
	Download Hardware
	Software
	Optional Hardware Components

	Using the Delta Tau Configuration Host to Set Up the Network Parameters
	Configuring the Network Master Properties
	Using the Delta Tau UNET Configuration Host to Configure the Network Slaves Properties
	Creating and Exporting a Tag File for Setting Up the Master Scan List

	Unet Hardware and Address Configuration
	UCS Software Parameter Setup
	Variable and Memory Usage

	Installing the UNET Parameters and UMAC Software
	Putting the UNET Card On and Offline
	Online Command
	Offline Command
	Advanced Testing of your Master Configuration
	Interfacing the UNET Slave to the Master on the Profibus Network

	APPENDIX A- PROFIBUS SLAVE FOR UMAC
	UmacProfibusSlave.h
	ProfibusSlaveServiceHeader.h
	ProfibusSlaveServiceEvent.plc

	APPENDIX B – PROFIBUS MASTER FOR UMAC
	UmacProfibusMaster.h
	ProfibusMasterServiceHeader.h
	ProfibusMasterServiceEvent.plc

