
JROBOT

AVRcam

User’s Manual

Version 1.0

JROBOT

JROBOT

Table Of Contents

1 Copyright/Licensing/Disclaimer Info 3
2 Introduction .. 4
3 Building the AVRcam .. 6

3.1 Assembly Instructions... 6
3.2 Before Beginning Assembly…... 7
3.3 Validating the AVRCam Assembly.. 9

4 Installing the AVRcamVIEW PC Software............................ 10
4.1 Windows Installation .. 10
4.2 Linux Installation .. 10

5 Communicating with the AVRcam... 11
5.1 Electrical Interface to the AVRcam.. 11
5.2 Protocol Overview .. 11
5.3 AVRcam Modes.. 13

5.3.1 Idle Mode.. 13
5.3.2 Frame Dump Mode... 13
5.3.3 Color Tracking Mode.. 13

5.4 Testing the AVRcam User-Interface .. 13
5.5 Testing the AVRcam with AVRcamVIEW.. 14

6 Advanced Development with the AVRcam............................ 19
7 Appendix A... 20
8 Appendix B... 21

8.1 Complete AVRcam Command Protocol... 21
9 Appendix C... 25

JROBOT 2

JROBOT

1 Copyright/Licensing/Disclaimer Info

AVRcam Hardware and Embedded Software Copyright © 2004 John Orlando
AVRcamVIEW PC Software Copyright © 2004 Brent Taylor

Both the AVRcam embedded software and the AVRcamVIEW PC software are licensed under
the GNU General Public License. If interested in an alternative licensing scheme, please contact
John Orlando at john@jrobot.net.

The AVRcam system is distributed in the hope that it will be useful. However, no warranties,
either expressed or implied, are made regarding the operation, use or results of this system.

JROBOT 3

JROBOT

2 Introduction
Image processing has always been a task left for systems that have a considerable amount of
computing resources to provide any reasonable functionality. These systems typically require
fast processors, lots of RAM for storing images, and large amounts of power while images are
being processed. The end result is a fairly complicated, expensive system that is out of reach for
many developers who have moderate image processing requirements.

The AVRcam was designed to fill this gap in image processing.

The AVRcam, shown in Photo 1, is a real-time image processing engine that utilizes an
Omnivision OV6620 CMOS image sensor, mated with an Atmel AVR mega8 microcontroller to
perform all of the image processing tasks. It can be thought of as a vision sub-system, with a
well-defined interface that is accessible through a standard serial port. This interface provides
high-level, post-processed image information to a primary system (PC, another embedded
controller, BASIC Stamp, etc.) to utilize. This removes the burden of performing the image-
processing on the main system, and allows the developer to concentrate on how to use the high-
level image data to perform the task at hand.

Photo 1: Front view of the AVRcam v1.1

 The AVRcam provides an assortment of capabilities:

♦Track up to 8 different colorful objects at 30 frames/second
♦Configure the system to recognize up to 8 different user-defined colors
♦Provide real-time tracked object statistics (number of objects, color of objects, bounding
box) through a standard serial port
♦Tracked image resolution of 88 x 144 pixels at 30 frames/second
♦Perform full-resolution color image dumps
♦Dumped image resolution of 176 x 144 pixels
♦Low power consumption (the entire system only draws 57 mA)
♦Small size (the entire system is 2.4” x 1.9”)

JROBOT 4

JROBOT

In addition, a PC application called AVRcamVIEW was developed to support the AVRcam for
purposes of evaluating and testing the system. The AVRcamVIEW provides the following
capabilities:

♦Take full-color snapshots (176 x 144 pixels) with the system and
 display the images (both raw Bayer data and interpolated color data)

♦Easily create a Color Map of colors to track based on a snapshot
 (just click on the colors of interest and add them to the Color
 Map)
♦Adjust the precision of each tracked color (i.e. provide a range
 of acceptable R-G-B values for each color), allowing the user to
 adjust the Color Map to the surrounding environment
♦Display the real-time tracking results of each tracked object
 (with color and bounding box information)
♦Record a tracking session for playback at a later time
♦Test the system out in multiple OS platforms that are supported by Java 1.5 (both
 Windows and Linux are currently supported)

Finally, one of the most important benefits to the AVRcam is that it is completely open-source:
hardware, software, design docs, everything. In this regard, the AVRcam should also be
considered as a development platform for not only the existing capabilities provided by the
system, but new features that are tailored to the individual needs of a developer. A set of core
routines are provided in the source code that facilitate all of the low-level interactions with the
CMOS image sensor. These routines can be utilized in a custom image processing application
running on the AVRcam, within the space/speed capabilities of the system. The existing
AVRcam embedded software (with all the features mentioned above) occupies approximately 4K
of the 8K on-chip flash memory, 700 bytes of the 1K on-chip RAM, and 48 bytes of the 512 bytes
on-chip EEPROM. The system allows for complete in-circuit re-programmability of the image
processing software using the standard 10-pin AVR ISP programmer. All of the software on the
AVRcam was developed using GCC (an open-source, free C compiler that has been ported to the
AVR family of microcontrollers), meaning that the development environment for the AVRcam is
completely free for any and all to use. For more information, see section 6 of this document.

Hopefully the AVRcam will open up many new possibilities to the developer for easily adding a
vision system to your next project. Please check http://www.jrobot.net for discussions on the
AVRcam, as well as technical details and the latest source code.

JROBOT 5

http://www.jrobot.net/

JROBOT

3 Building the AVRcam
The AVRcam consists of several different components that should have been shipped with the
system. The list of components is listed below.

 -AVRcam bare circuit board

-Assortment of electronic components (see Appendix A for a complete list of all
components)
-CD containing the AVRcamVIEW PC software, as well as this User’s Manual and the
complete source code for both the AVRcam and AVRcamVIEW software
-Power supply cable with connector (to power the AVRcam)
-Serial port cable with 9-pin D connector

If the system was purchased already assembled and tested, then the AVRcam circuit board will
be populated, with the assortment of electronic components already soldered and tested to be
functional.

3.1 Assembly Instructions
The AVRcam can be assembled with only a basic knowledge of soldering and electrical
components. The complete parts placement diagram can be found in Figure 1.

Figure 1: AVRcam circuit board layout

JROBOT 6

JROBOT

3.2 Before Beginning Assembly…
As the board is being assembled, it may be helpful to the user to secure each component to the
circuit board before soldering it down. Small strips of tape work very well to hold the components
in place while soldering.

All components are placed on the BACK side of the board, with the exception of the 32-pin dual
row camera header, which is placed on the FRONT side of the board. See Photos 2 and 3 for
reference. Photo 2 also provides a reference for right/left/top-edge/bottom-edge when
assembling the board.

 Top Edge

TTL-level
Serial
Connector

RS232-level
Serial
Connector

Power
Switch

RS232/TTL
selector
jumper(JP2)

7-20 V
DC input

Right
Edge

AVR mega8
ISP Header

SIG1
LED

Test Points:
 GND
 Vcc
 SIG1

Power
LED

Left
Edge

 Bottom Edge

Photo 2: BACK side of an assembled AVRcam

After each component is placed and soldered, it may be necessary to clip off a
of the leads for the components.

JROBOT
AVR
mega8 ISP
jumper
(JP1)
ny excess portion

7

JROBOT

32-pin Camera Connector

Mounting
Holes

C3088 Camera
Module (with
OV6620)

Photo 3: FRONT side of assembled AVRcam, with camera detached

The AVRcam should be assembled in the following order:

1) Insert and solder R1, R2, R3, R4, R5, R6, R7, R8, and R9.
2) Insert and solder C1, C4, C6, and C10. None of these capacitors are polarized, so

their orientation is not critical.
3) Turn the board over, and insert the 32-hole dual row female camera header on the

FRONT side of the board. This should be the only component placed on the front
side of the board, with it being soldered on the BACK side of the board.

The DIP sockets for holding IC1, IC2, and IC3 will be connected next. It is important to
note that the actual ICs will be added to the circuit at the end of the assembly process
after everything on the board has been tested. Again: DO NOT INSERT IC1, IC2, OR
IC3 UNTIL AFTER THE BOARD HAS BEEN TESTED! Otherwise, there is a potential to
destroy the ICs.

4) Insert and solder the two 14-pin DIP sockets to form a 28-pin DIP socket for IC1.

Make sure that the notch on the socket is properly oriented, pointing to the left-edge
of the board.

5) Insert the 8-pin DIP socket into the board for IC2. Solder it down, ensuring that the
notch on the socket is properly oriented (pointing to the bottom-edge of the board).

6) Insert the 16-pin DIP socket into the board for IC3. Solder it down, ensuring that the
notch on the socket is properly oriented (it should be pointing to the left-edge of the
board).

7) Insert and solder IC5 to the board. Make sure that the front of this chip (where it says
“LM2937”) is facing the top-edge of the circuit board.

JROBOT 8

JROBOT

8) Insert and solder the AVR_ISP programming header. Make sure that the center
notch in the header is not facing the edge of the circuit board.

9) Insert and solder C5, C7, C8, C13, and C15. Note that all of these capacitors ARE
polarized, and the positive terminal (+) should line up with the positive sign (+) shown
on the circuit board.

10) Insert and solder T1, the 2N3904 transistor. Make sure that the flat edge of the
transistor is facing the bottom-edge of the circuit board.

11) Insert and solder the two 3-prong male Molex headers on the right edge of the board.
These headers are used to communicate with the serial port (one for TTL-level
signalling, and one for RS232-level signalling). Make sure that the tall back of each
header is closest to the right-edge of the board.

12) Insert and solder the only 2-prong male Molex header that is used to deliver a power
source to the circuit. Make sure that the tall back of the header is closes to the top-
edge of the board.

13) Insert and solder LED1 and LED2, the green and yellow LEDs. The yellow LED sits
closer to the top-edge of the board, and the green LED goes right under it. The
LEDs are polarized, so their orientation on the board is important. The longer leg of
each LED is the anode, and it should be inserted in the hole closest to the bottom
edge of the circuit board.

14) Insert and solder both JP1 and JP2, the two 2-pin jumpers. Take extra care to make
sure they are standing perpendicular to the board when soldered down, since they
can easily wiggle while performing the soldering.

15) Insert and solder the 3-pin male header that provides Vcc, GND, and SIG1 close to
the left-edge of the board. Again, take extra care to make sure this header is
standing perpendicular to the board when soldering it down.

16) Insert and solder the 1-pin male header that provides SIG2 near the right-edge of the
board. Again, take extra care to make sure this header is standing perpendicular to
the board when solder it down.

17) Insert and solder the SPST power switch close to the top edge of the board. There is
no orientation for this component.

Once all of the components have been placed, the bottom of the board should be visually
inspected to ensure that all solder joints look clean and shiny. The board should also be carefully
inspected to ensure that no solder bridges have accidentally been formed, connecting signals
together that weren’t meant to be connected. If there are any questionable connection, or solder
bridges, use a solder-removal tool (solder sucker, solder wick) to clean up the offending
connection.

3.3 Validating the AVRCam Assembly
Once this inspection is complete, use an ohmmeter to measure the resistance between the VCC
and GND header pins near the left-edge of the board to ensure that they are not shorted together.
Use the ohmmeter to carefully trace out each connection in the circuit if a short is found.

Plug in the header-end of the AVRcam power cable to the 2-prong male Molex header near the
top-edge of the board. Connect a suitable power supply (such as a 9-volt battery, or other
voltage source between 7 and 20 Volts (CHECK)) to the supply-end of the AVRcam power cable.

Switch the power switch on, and the green LED should light up. If it doesn’t, disconnect the
power cable immediately, and go back and re-check all connections on the board. If it the green
LED does light up, use a voltmeter to measure the voltage between the VCC and GND headers
near the left-edge of the board. The voltage should be close to 5 Volts. If not, disconnect the
power cable immediately, and go back and re-check all connections on the board.

Once the proper voltage is measured between VCC and GND, disconnect the power from the
circuit by turning the power switch off. Then, insert IC1, IC2, and IC3 into their appropriate

JROBOT 9

JROBOT

sockets on the board, making sure that the notch on the IC matches the notch on the socket (see
Photo 2). It may be necessary to bend the legs on each IC slightly to make it fit into the socket.

Once the ICs are inserted, switch the power switch back on. Using a voltmeter, measure the
voltage between VCC and GND again, making sure that it is still close to 5 V. If not
DISCONNECT the power cable immediately, and go back and check all connections on the
board.

Once the proper voltage is measured between VCC and GND, turn the power switch off. Turn
the board over, and insert the OV6620 camera module into the 32-pin female header on the
FRONT of the board (see Photo). Remove the lens cap on the camera if it is still connected.

Finally, turn the power switch back to the ON position. The green LED should light up, and then
about two seconds later, the yellow LED should blink once and then stay powered up. This
indicates that the board has successfully powered on and is running. If not, turn the power switch
back to the off position. Wait a few seconds, and try turning it on again. If the yellow LED still
doesn’t light up, disconnect the power cable immediately, and re-check all connections on the
board.

4 Installing the AVRcamVIEW PC Software

The enclosed CD contains the both the Windows installer as well as the Linux RPMs for the
AVRcamVIEW PC application. This installer will install the Java Runtime Environment (JRE) to
the directory where the software is installed, so that it will not cause a problem if other Java
installations exist on the PC.

4.1 Windows Installation
Insert the CD into the PC, and double-click on the setup.exe file. This will install the
AVRcamVIEW application and place an shortcut on the Windows desktop. The AVRcamVIEW
application can then be launched by double-clicking on this icon.

4.2 Linux Installation
It is necessary to install and run the AVRcamVIEW software with root privledges, to allow for
reading/writing to the serial port under Linux. So, if not already done, log in as root. Next, insert
the CD into the PC, and mount the CD-ROM drive if not already mounted. Change directories to
the CD, and, from a shell, install the RPMs for the AVRcamVIEW software using the following
command:
> rpm –i AVRcam-01.03-1.i586
This will automatically install the AVRcamVIEW application under /opt/AVRcam. To launch the
AVRcamVIEW application, change directories to /opt/AVRcam, and execute the following
command:
>jre/bin/java –jar AVRcam.jar

JROBOT 10

JROBOT

5 Communicating with the AVRcam

5.1 Electrical Interface to the AVRcam
The AVRcam provides its interface to an external host system through a UART-based serial port.
This serial port can operate at both TTL voltage levels as well as RS232 voltage levels,
depending on the configuration of Jumper2 (JP2) near the right-edge of the board (see Photo 2).
If the AVRcam will be communicating with a PC that uses standard RS232 voltage levels, the JP2
jumper should be inserted on the board. If the AVRcam will be communicating with another
microcontroller, or another system using TTL voltage levels, JP2 should be removed from the
board. The pinouts for the both the RS232 and TTL serial ports is shown in Photo 4.

RS232 Port:

Gnd
Tx (connect to Rx on PC)
Rx (connect to Tx on PC)

TTL Port:

Rx (connect to Tx on external controller)
Tx (connect to Rx on external controller)
Gnd

Photo 4: Pinouts of TTL and RS232 serial ports

The protocol used to communicate with the board is a very simple command/response interface.
Commands are sent to the AVRcam through transmit line (TX) on the serial port, and responses
are returned from the AVRcam through the receive line (RX) on the same serial port. It should be
noted that no flow-control is used on the AVRcam. The only three lines needed to communicate
with the system are the TX, RX, and GND. Currently, the AVRcam only supports a baud rate of
115.2 kbps, with 8 data bits, 1 stop bit, and no parity. The entire AVRcam command protocol is
described in Appendix B.

5.2 Protocol Overview
A typical AVRcam command consists of a simple two-character ASCII operation-code (op-code),
followed by optional ASCII parameters, followed by a carriage-return character. The AVRcam
then responds with either a positive acknowledgement (ACK) indicating the command was

JROBOT 11

JROBOT

successful, or a negative acknowledgement (NCK), indicating that the command was not
successful and should be re-transmitted.

For example, if the user wants to ping the AVRcam to ensure that the board is functioning
properly, the PING command can be sent to the board. The AVRcam should then respond with a
positive acknowledgement indicating that the board is functioning. This example is illustrated
below:

<host system> PG\r
<AVRcam> ACK\r

Here, the host system is able to determine that the AVRcam is alive and operating properly
because it responded with an positive acknowledgement. Note: The PING command has the op-
code “PG”. For a complete list of op-codes, and their meaning, see Appendix B.

Some command/response pairs can also cause the AVRcam to provide a supplemental line of
information in response to the received command. For example, the host system can request the
software version of the AVRcam through the GET VERSION command (“GV”). The response to
this command contains the normal acknowledgement, immediately followed by the version
information on the next line. This example is illustrated below:

<host system> GV\r
<AVRcam> ACK\r
<AVRcam> AVRcam v1.0\r

Finally, in addition to the normal command/response protocol, the AVRcam has different modes
that can be invoked that enable additional information packets to be sent from the AVRcam to the
host system asynchronously. These modes will always be invoked by a standard
command/response pair. For example, to enable the color tracking mode, the user sends and
ENABLE TRACKING command (“ET”) to the AVRcam. The AVRcam responds with a positive
acknowledgement if the command was received successfully. The AVRcam then begins to send
tracking packets back to the host system to be processed. This example is illustrated below:

<host system> ET\r
<AVRcam> ACK\r
<AVRcam> {formatted tracking packet containing hex characters}
<AVRcam> {formatted tracking packet containing hex characters}
<AVRcam> {formatted tracking packet containing hex characters}
…

The above example shows how the ACK from the AVRcam is followed up with multiple tracking
packets for as long as there are objects being tracked (or until the DISABLE TRACKING
command is sent to the AVRcam). This example is also the first time that a non-ASCII-printable
character could potentially be sent to the host system. The tracking packets contain 8-bit
hexadecimal values (between 0x00 and 0xFF) in a well-defined packet format described in
Appendix B. These tracking packets will not be viewable with a normal terminal emulator, since
terminal emulators only display ASCII characters typically.

The complete formatting for each user-interface command/response can be found in Appendix B.
This section also contains the complete formatting for the supplemental information packets that
are sent by the AVRcam according to the mode of the AVRcam.

JROBOT 12

JROBOT

5.3 AVRcam Modes
The AVRcam can be put into three different modes. Each mode allows for different functionality
in the system.

5.3.1 Idle Mode
The first mode is the Idle Mode. This is the default mode of the AVRcam. In this mode, the
system is not sending any additional information packets back to the host system.

5.3.2 Frame Dump Mode
The second mode is the Frame Dump Mode. This mode is entered by sending the DUMP
FRAME (“DF”) command to the AVRcam. This command causes the AVRcam to start sending
frame-dump packets back to the host system, until an entire image frame has been sent. This
mode is only temporary, while the frame-dump packets are being sent. Once all frame-dump
packets for a complete frame have been sent, the AVRcam transitions back to the Idle Mode.

5.3.3 Color Tracking Mode
The third mode is the Color Tracking Mode. This mode is entered by sending the ENABLE
TRACKING (“ET”) command to the AVRcam. This command causes the AVRcam to start
sending tracking packets back to the host system. These tracking packets will continue to be
sent as long as the system is in the Color Tracking Mode. If no trackable objects are found in the
image stream, and thus no tracking packets can be sent back to the host system, the mode still
persists. The only way to exit this mode is to send the DISABLE TRACKING (“DT”) command to
the AVRcam. This causes the system to go back to the Idle Mode.

5.4 Testing the AVRcam User-Interface
The easiest way to get started with the AVRcam user-interface is to use a serial terminal emulator
running on a PC (such as Hyperterminal, or minicom) as the host system. This allows the user to
send simple commands to the board and view the responses sent by the board.

First, power-down the AVRcam if it is currently powered on. Then plug in the DB9 9-pin
connector on the serial cable into the serial port on the back of the PC. Plug the other end of the
serial cable into the AVRcam’s 3-pin RS232 header (see Photo 4). Turn on the power switch to
the system.

Next, start up a terminal emulator on the host PC (such as Hyperterminal, or minicom). The
terminal emulator should be set up to run at a baud rate of 115.2 kbps, 8 data bits, 1 stop bit, and
no flow-control. Make sure that the terminal sends only a carriage-return when the user presses
the Enter key (some terminals default to sending carriage-return/line-feed when the Enter key is
pressed). Also, turning local-echo on will allow the user to see the commands as they are typed
in.

From the terminal emulator, send a PING command to the AVRcam by typing “PG”, followed by
hitting the Enter key. Pressing the Enter key is shown below through the standard convention of
a ‘\r’ character:

<host system> PG\r
<AVRcam> ACK

Once this is successfully received, request the software version of the system through the GET
VERSION command:

<host system> GV\r

JROBOT 13

JROBOT

<AVRcam> ACK\r
<AVRcam> AVRcam v1.0\r

Congratulations! You have now verified that the AVRcam is functioning properly, and your serial
connection is working properly. Testing the AVRcam with a terminal emulator has its limitations,
since any command that causes the AVRcam to generate non-ASCII (i.e., non-printable) data will
not be properly viewable on the PC. The next step is to use the AVRcamVIEW software to
further test the system. But before this can be accomplished, the terminal emulator running on
the PC should be closed so that the serial port on the PC will be available for use by other
programs.

5.5 Testing the AVRcam with AVRcamVIEW
The AVRcamVIEW PC application provides a simple way for the user to easily test out all of the
features of the AVRcam. Before the application can be used, it must be installed on the host PC.
See Section 4 if the AVRcamVIEW software has not been installed yet.

Start the AVRcamVIEW software on the host PC. This will start the application, displaying the
main Command Bar, as well as the Message Viewer and the Display Window. The first step with
the AVRcamVIEW software is to ensure that the proper serial port has been selected on the PC.
From the main menu bar, select CHECK, and ensure that the serial port connected to the
AVRcam is the one selected by the serial configuration window (CHECK name). Once this is
completed, close the window, and return to the main Display Window.

It is now time to send a command from the AVRcamVIEW application to the AVRcam. Left-click
on the “Ping” button in the Command Bar. The user should see the MessageViewer display
update, showing that it sent the PING command, followed by the response sent back by the
AVRcam (either ACK or NCK). If no response is received from the AVRcam, the command will
time out after 5 seconds. It is also possible to manually inject a NCK into the system by pressing
CTRL-N on the keyboard.

JROBOT 14

JROBOT

Next, left-click on the “Capture” button in the Command Bar. This will take a snapshot of the
camera’s current field of view, and display it. A complete image acquisition takes about 4
seconds to complete. Once all the image lines have been sent to the AVRcamVIEW application,
the complete image will be shown. If the image appears fuzzy, the lens on the camera module
can be adjusted to focus the image better.

Once a useful image has been captured, the user can then select a color from the image to track
by moving the mouse pointer over the region of interest in the completed image on the right.
Notice that the red/green/blue values for the pixels underneath the mouse pointer are updated
below the image to indicate what color combination is represented. When the mouse pointer is
placed over the color of interest, right-click the mouse to add the color to the color map.

The color map supports up to 8 different tracked colors, represented by one color per column in
the color map. Each tracked color is made up of a red component, a green component, and a
blue component. Thus for the tracked color, a single check-box has been filled in each column.
This sets the acceptable red/green/blue pixel values that will be considered “tracked” for the
color. This map can be manually expanded to decrease the precision with which the color is
tracked by simply checking a few of the surrounding boxes in each column. This will allow for
some variance in the sampled pixels while still considering the pixels to be tracked.

JROBOT 15

JROBOT

Next, send the color map down to the AVRcam by left-clicking on the “Send” button in the Color
Map window. The Message Viewer display should show an ACK was received after the color
map was sent, and the newly tracked color is displayed at the top of the Color Map window.
Close the Color Map window to return to the main window.

Now that the color map has been set, left-click on the “Enable Tracking” button in the Command
Bar. This will start the camera tracking any color that has been programmed into the Color Map.
Note: The Command Bar has certain operations disabled while the system has tracking enabled.

JROBOT 16

JROBOT

The Tracking window is displayed to show each tracked object’s bounding box (as well as each
objects color, shown with the filled in box in the center of each bounding box). As objects that
match the colors in the color map move through the AVRcam’s field of view, the Tracking window
updates in real-time to show that the object is being tracked.

The user can also view a real-time stream of the communication between the AVRcam and the
PC. This can be viewed by selecting View-> Show Log from the main menu. Ensure that the log-
level is set to Fine. With this set, all communication between the AVRcam and the PC will be
displayed with a timestamp denoting when the message was sent. This information is quite
useful when testing out the system to understand how certain commands are formatted. It should
also be noted that this setup allows the user to view packets that are sent as binary values (such
as tracking and dump packets), as well as those sent in ASCII (such as basic commands). The
entire log file can be saved as either a text file or an XML file to be analyzed or parsed offline at a
later time. Note: See Appendix B for a complete description of the different packet types and their
payloads.

Tracking can be disabled by left-clicking on the Disable Tracking button in the Command Bar.
This will allow the user full access to the Command Bar again.

JROBOT 17

JROBOT

It is important to note here that lighting conditions can have a significant impact on tracking
capabilities. For example, objects that are highly reflective tend to appear as bright white spots in
the presence of significant light, regardless of color. The best way to understand how lighting
affects the AVRcam is to capture different snapshots in different lighting conditions to see how
the images are seen by the camera. It is also possible for the user to set parameters such as
auto-adjust mode, auto-white balance, and flourescent light filtering by left-clicking on the Set
Registers button in the Command Bar.

JROBOT 18

JROBOT

6 Advanced Development with the AVRcam
The AVRcam project is an open-source development effort. Both the embedded software
running on the AVRcam as well as the AVRcamVIEW PC application are both available
in source form, licensed under the GNU General Public License. This allows any
developer to have access to the source to make modifications, or add new functionality to
the system as needed according to the terms of the GPL.

The AVRcam provides the standard 10-pin AVR ISP header, which is compatible with
the STK200 and STK300 programming cables common among AVR enthusiasts. A
suitable programming cable can be purchased at http://www.jrobot.net/ that connects to
the parallel port of any PC. This in-system programming also requires software that is
capable of programming the mega8, such as the open-source AVRDUDE programming
software (http://savannah.nongnu.org/projects/avrdude), or the free PonyProg software (
http://www.lancos.com/prog.html). This provides a standard way to update the flash memory
on the mega8, as well as modify the fuse settings on the mega8 if needed.

The AVRcam software was developed using AVR-GCC, a port of the standard GCC C
compiler to the AVR family of microcontrollers. Version 3.2 of the GCC compiler was
used for development, though later version should also work. The compiler is bundled
into a package known as WinAVR, which is a simple installer that sets up the entire GCC
development environment under Windows. This software can be downloaded at
http://winavr.sourceforge.net/ .

The AVRcamVIEW PC application was written entirely in Java, and utilizes the RXTX
serial package for Java (available at http://www.rxtx.org). This software can be
expanded to add new buttons and associated commands to the GUI, as well as other
image processing features if needed. The Java 1.5 development environment was used
for this effort.

Finally, it is important to check http://www.jrobot.net often for new updates regarding the
system, as well as additional discussion in the forums section at
http://www.jrobot.net/Forums .

JROBOT 19

http://www.jrobot.net/
http://savannah.nongnu.org/projects/avrdude
http://www.lancos.com/prog.html
http://winavr.sourceforge.net/
http://www.rxtx.org/
http://www.jrobot.net/
http://www.jrobot.net/Forums

JROBOT

7 Appendix A

AVRcam Bill of Materials

Part Description Quantity
RS232 Level Shifter 1
AVR mega8 microcontroller 1
AVR tiny12 microcontroller 1
C3088 Camera Module 1
LM2937 5V regulator 1
Molex 2-pin connector (male) 1
Molex 3-pin connector (male) 2
10-pin AVR ISP header 1
SPST power switch 1
1K Ohm resistor 3
10K Ohm resistor 6
1 uF capacitor 4
0.1 uF capacitor 4
10 uF capacitor 1
Green power LED 1
Yellow signal LED 1
2N3904 NPN transistor 1
8-pin IC socket 1
14-pin IC socket 2
16-pin IC socket 1
Dual-row 32 hole female header 1
AVRcam double-sided circuit board 1
DB-9 Female serial header 1
9-volt connector 1
Molex 2-pin connector (female) 1
Molex 3-pin connector (female) 1
Crimp terminals for female conns 5
Single-pin male headers 4

JROBOT 20

JROBOT

8 Appendix B

8.1 Complete AVRcam Command Protocol

The following tables list the various commands that can be used to control the camera and its
capabilities.

Mnemonic Ping
OpCode PG
Payload <none>
Response ACK – if command successfully received

NCK – if command not successfully received
Supplemental
Response
Packet

<none>

Example: The user wants to ping the AVRcam to ensure it is responding.
User: PG\r
AVRcam: ACK\r

Mnemonic Change Camera Registers
OpCode CR
Payload RegAddr1 – indicating the address of the first register to modify

RegVal1 – indicating the new value of the register specified in RegAddr1
<space char>
RegAddr2 – indicating the address of the second register to modify
RegVal2 – indicating the new value of the register specified in RegAddr2
<space char>
…
RegAddr8 – indicating the address of the eighth register to modify
RegVal8 – indicating the new value of the register specified in RegAddr8
(up to 8 registers may be modified with this format)

Response ACK – if command successfully received
NCK – if command not successfully received

Supplemental
Response
Packet

<none> (The camera will begin using the new camera settings)

Example: The user wants to update registers 11d (with a value of 14d) and 13d (with a value of
26d) in the OV6620 camera module.
User: CR 11 14 13 26\r
AVRcam: ACK\r

NOTE: This command can cause the AVRcam to not function properly if certain registers within
the OV6620 are modified. Use caution when modifying the registers!

JROBOT 21

JROBOT

Mnemonic Dump a Frame
OpCode DF
Payload <none>
Response ACK – if command successfully received

NCK – if command not successfully received
 Raw color frame-dump packets:
Byte 0: 0x0B – indicating the start of raw color data line
Byte 1: line number in hex, indicating which line number is being sent
Byte 2-178: 176 hex pixel stacks, where a pixel stack is structured as follows:
 Each pixel stack consists of a one-byte value, where the high nibble
represents one color value (either red or green), and the low nibble represents
one color value (either green or blue). The pixels on the camera are arranged
in Bayer format.

 Even pixel high nibbles: green value Even pixel low nibbles: red value
 Odd pixel high nibbles: green value Odd pixel low nibbles: blue value
Byte 179: 0x0F – indicating an end of line

Supplemental
Response
Packet

Note: The AVRcam will send a total of 77 frame-dump packets to the host
system (where each packet contains information about two consecutive rows of
image data) each time the DF command is received.

Example: The user wants a single frame of image data sent to them (actual RGB values).
User: DF\r
AVRcam: ACK\r
AVRcam: 0x0B 0x01 0x83 0xD3 0x4A …<173 more pixels> 0x0F
 | | | | | | | |--blue value |--end of line
 | | | | | | |--green value
 | | | | | |--red value
 | | | | |--green value (Note: No spaces exist between data)
 | | | |--blue value
 | | |--green value
 | |--Line Number
 |--Indicates start of frame-dump packet

AVRcam: 0x0B 0x02 0x83 0xD4 0x3A …<173 more pixels>0x0F
…
AVRcam: 0x0B 0x48 0x83 0xD4 0x3A …<173 more pixels>0x0F

(Note: The hex values 0x0B through 0x0F are reserved and will not be used in the data stream
other than to indicate the starting and ending marks of a line of pixel data. In addition, the frame-
dump packets can be sent out of order, which is why the line number is included in the packet.
The user should be able to reassemble the lines in their proper order for displaying the complete
image.)

Mnemonic Get AVRcam Software Version Number
OpCode GV
Payload <none>
Response ACK – if command successfully received

NCK – if command not successfully received
Supplemental
Response
Packet

<The camera will send a string indicating the software version number>

Example: The user wants to determine what version of software is running on their AVRcam.
User: GV\r
AVRcam: ACK\r
AVRcam: AVRcam v1.0\r

JROBOT 22

JROBOT

Mnemonic Enable color-blob tracking
OpCode ET
Payload <none>
Response ACK – if command successfully received

NCK – if command not successfully received
Supplemental
Response
Packets

<The camera begins to generate color-tracking packets in hex to indicate what
color-blobs are found in each frame. There are NO spaces between bytes in a
color-tracking packet. The current color map will be used to map the sampled
pixel values into actual colors.>
 Byte 0: 0x0A – Indicating the start of a tracking packet
 Byte 1: Number of tracked objects (0x00 – 0x08 are valid)
 Byte 2: Color of object tracked in bounding box 1
 Byte 3: X upper left corner of bounding box 1
 Byte 4: Y upper left corner of bouding box 1
 Byte 5: X lower right corner of boudning box 1
 Byte 6: Y lower right corner of boudning box 1
 Byte 7: Color object tracked in bound box 2
 ….
 Byte x: 0xFF (indicates the end of line, and will be sent after all tracking info
 for the current frame has been sent)

Example: The user wants to begin tracking the colors set in the color map.
User: ET\r
AVRcam: ACK\r
AVRcam: 0x0A 0x05 0x04 0x12 0x09 0x36 0x38 0x01 0x25…0xFF
 | | | | | | | | | |--End of line
 | | | | | | | | |--X upper left corner…
 | | | | | | | |--color2
 | | | | | | |--Y lower right corner of box1
 | | | | | |--X lower right corner of bounding box1
 | | | | |--Y upper left corner of bounding box1
 | | | |--X upper left corner of bounding box1
 | | |
 | | |
 | | |--color1
 | |--number of tracked blobs
 |--Indicates start of color-tracking packet
AVRcam: 0x0A 0x05 0x06 0x32 0x39 0x76 0x98…0x0F

(Note: The AVRcam is capable of tracking up to eight color blobs (values 1 through 8 as defined
by the current color map) per frame. This number is variable, and may also be zero. All currently
tracked blobs will be returned inside of each color-tracking packet.

Mnemonic Disable color-blob tracking
OpCode DT
Payload <none>
Response ACK – if command successfully received

NCK – if command not successfully received
Supplemental
Response
Packet

<none> (Color blob tracking will end).

Example: The user wants to disable color-blob tracking.
User: DT\r
AVRcam: ACK\r

JROBOT 23

JROBOT

Mnemonic Set the Color Map
OpCode SM
Payload <red0 red1 red2 … red15 green0 green1… green15 blue0 blue1… blue15>\r
Response ACK – if command successfully received

NCK – if command not successfully received
Supplemental
Response
Packet

<none> (The AVRcam will update its color map. Tracking should be
DISABLED before setting the color map, and re-enabled afterwards to begin a
new tracking session.)

Example: The user wishes to update the color map used to turn RGB/YCrCb values into actual
colors.
User: SM 98 183 32 124 234 64 94 167 129…201 229…74\r
 | | | | | | | | | | | |
 | | | | | | | | | | | |--blue15
 | | | | | | | | | | |--blue14
 | | | | | | | | | |--blue13
 | | | | | | | | |--red8
 | | | | | | | |--red7
 | | | | | | |--red6
 | | | | | |--red5
 | | | | |--red4
 | | | |--red3
 | | |--red2
 | |--red1
 |--red0
AVRcam: ACK\r

JROBOT 24

JROBOT

9 Appendix C

AVRcam v1.1 Schematic

JROBOT 25

	Copyright/Licensing/Disclaimer Info
	Introduction
	Building the AVRcam
	Assembly Instructions
	Before Beginning Assembly…
	Validating the AVRCam Assembly

	Installing the AVRcamVIEW PC Software
	Windows Installation
	Linux Installation

	Communicating with the AVRcam
	Electrical Interface to the AVRcam
	Protocol Overview
	AVRcam Modes
	Idle Mode
	Frame Dump Mode
	Color Tracking Mode

	Testing the AVRcam User-Interface
	Testing the AVRcam with AVRcamVIEW

	Advanced Development with the AVRcam
	Appendix A
	Appendix B
	Complete AVRcam Command Protocol

	Appendix C

