
Carafe User's ManualRelease Alpha.5Alvin JeeDavid DahleCyrus BazeghiF. Joel FergusonUCSC-CRL-96-05January 24, 1996Board of Studies in Computer EngineeringUniversity of California, Santa CruzSanta Cruz, CA 95064Copyright c
Regents of the University of CaliforniaabstractThis document describes the command line user interface and the X windowuser interface for Carafe, the second generation Inductive Fault Analysis (IFA)program. This document also describes the Hemlock version of Carafe used forextracting faults in the interconnect regions of standard cell designs. The syntax ofall the commands and their parameters are described in this document along witha description of the formats of the various �les used and created by Carafe.

CONTENTS 1Contents1. An Introduction to Carafe 41.1 Major Changes from the Previous Version : : : : : : : : : : : : : : : : : : : 51.2 Acknowledgments : 52. Installing Carafe 72.1 Tested Platforms : 72.2 Installation Steps : 72.3 Carafe Environment Variables : 83. Tutorial 94. Explanation of Faults 144.1 Compound Faults : 144.1.1 Overview : 144.1.2 Space/Time Considerations : 154.2 Bridges : 154.2.1 Critical Area Calculation : 164.2.2 Limitations : 184.3 Breaks : 184.3.1 Critical Area Calculation : 204.3.2 Limitations : 224.3.3 Output Files : 254.4 Transistor Gate Bridge/Break Faults : 254.4.1 Critical Area Calculation : 254.4.2 Limitations : 254.5 Gate Oxide Short Faults : 264.5.1 Critical Area Calculation : 264.5.2 Limitations : 275. Circuit Extraction 285.1 Electrical Nodes : 285.2 Transistors : 286. Customizing Carafe 316.1 How Carafe works : 316.2 Technology File : 316.3 Fabrication File : 356.4 Library Description File Format : 38

2 CONTENTS7. Running Carafe 417.1 Invoking Carafe : 417.2 Carafe Option Flags : 417.3 Outputs : 428. Carafe Command Line Interface 448.1 ca : 448.2 extract : 458.3
at : 468.4 help : 468.5 info : 468.6 list : 478.7 quit : 478.8 read : 488.9 set : 488.10 shell : 518.11 source : 518.12 time : 528.13 write : 529. Carafe X Window Interface 549.1 File Menu : 549.2 Commands : 569.3 View : 579.4 Interface Controls : 6010.Hemlock 6110.1 Installing : 6110.2 Running Hemlock : 6110.3 Inputs : 6110.4 Outputs : 62A. Revision History 63A.1 Alpha-Alpha.1 : 63A.2 Alpha.1-Alpha.2 : 63A.3 Alpha.2-Alpha.3 : 63A.4 Alpha.3-Alpha.3.1 : 64A.5 Alpha.3.1-Alpha.3.2 : 64A.6 Alpha.3.2-Alpha.4 : 65A.7 Alpha.4-Alpha.5 : 65B. .bridger File Format 67C. .ccshort File Format 68

CONTENTS 3D. FABIT 69E. .gateBreaks File Format 71F. .gateBridge File Format 72G. .graph File Format 73H. .loc File Format 78I. .mag File Format 79J. .pro File Format 82K. .sim File Format 84L. .src File Format 88M..tdl File Format 89References 91

4 1. An Introduction to Carafe1. An Introduction to CarafeInductive Fault Analysis (IFA) is a procedure that determines the failures that canoccur in a circuit due to the presence of a spot defect[SMF85]. Carafe bloats and shrinksconducting lines and �nds the intersection of conductors in di�erent planes to determinehow a layout is a�ected by spot defects. Since the list of faults is generated based on thelayout of the circuit, only the realistically possible faults are reported. The �rst software toimplement the defect simulation phase of IFA determined that over 99% of the spot defectscaused either a bridge or a break fault to occur. Since virtually all spot defects are manifestas bridge or break faults, we can avoid the costly defect simulation and directly extract therealistically possible bridge and break faults from the circuit layout. Carafe is the secondgeneration IFA software designed to explicitly extract the bridge, break, gate oxide short(GOS), and transistor gate bridge/break faults that may be caused by spot defects usingthe layout of the circuit and given defect parameters.The faults that are found by Carafe are modeled, for switch-level simulation purposes,as extra transistors inserted into the extracted netlist of the circuit. The resulting netlistcan then be simulated to determine the e�ect of each fault. For more accurate circuitsimulation, the fault transistors can be replaced with resistors and a circuit simulator, suchas SPICE, can be used. Furthermore, the list of faults found by Carafe is ordered in a listby the likelihood of occurrence of the faults relative to each other. Fault simulation can beused with the fault likelihoods to estimate the defect coverage of any given test set.Since the primary goal of testing integrated circuits (ICs) is to ensure that as fewdefective ICs are shipped as possible, a test method that insures a very high percentageof defect coverage is needed [WB81] [MAJC92]. However, many of the defects that occurduring the fabrication of CMOS ICs do not exhibit traditional fault behavior. To obtainhigher levels of defect coverage test sets can be generated to target the faults caused bydefects during fabrication. The purpose of Carafe is to indicate which faults are likely tooccur so that they may be targeted by tests.Unlike what is assumed by traditional stuck-at fault models, CMOS IC defects may notbe stuck at a certain logic value [GCV80] [SMF85]. The stuck-at fault model does not takeinto account the actual circuit fault and thus often does not model the resulting behaviorof many circuit faults. A better way to generate tests is to �rst locate the circuit faultsthat can occur in the circuit, determine the behavior of those circuit faults, and then derivetests that target these behaviors. Inductive Fault Analysis is a procedure that provides thelist of circuit faults that can occur in a given physical implementation of the circuit [Fer87].Carafe has been implemented using about 45,000 lines of C code. Carafe has beendesigned to be technology independent and can thus be used for a variety of CMOS fabri-cation technologies. Provisions are made to accommodate any discrete defect distributionfunctions by layer and defect size [JF93].This manual is organized in a way to be both a tutorial for �rst time users and asa reference source for more advanced users. Here is a list of the chapters with a shortdescription of what they contain.Introduction This chapter. A basic hello, welcome to Carafe.Installing Carafe A step by step installation procedure for Carafe. Contains informationon tested platforms, compilers, and environment variables.

1.1. Major Changes from the Previous Version 5Tutorial A short but complete tutorial on how to setup and use Carafe. Covers such thingsas loading a �le, extracting faults, viewing faults, and manipulating the image.Explanation of Faults Gives an overview of compound fault extraction and an expla-nation of bridge, break, gate oxide short (GOS), and transistor gate bridge/breakfaults.Circuit Extraction Describes the important details of Carafe's circuit extractor and in-dicates potential pitfalls.Customizing Carafe Gives a description of how Carafe works and what it does. Infor-mation on how to create fabrication statistics �les, technology �les, and library �lesis given along with complete descriptions of each �le type.Running Carafe Gives information on how to run both the command line version andthe X Window version of Carafe, including option
ags and their descriptions.Carafe Command Line Interface Gives a description of all the Carafe commands forthe command line interface.Carafe X Window Interface Shows the various screens and menus of the X Windowversion of Carafe and how to use them.Hemlock Gives a description of the Hemlock version of Carafe, which employs who levelsof hierarchy for circuits composed of standard cells.Appendix Descriptions of various �le types used by Carafe.1.1 Major Changes from the Previous VersionCompound Faults Carafe can now extract compound bridge and break faults that arecapable of simultaneously bridging or breaking an arbitrarily large number of circuitelements, depending on the defect size.New Fault Types Carafe can now extract transistor gate bridge/break faults from circuitlayouts.Fault Visualization Carafe now displays faults using the critical area of the fault insteadof the more abstract length-widths. These critical areas can be viewed by defect sizeand layer.1.2 AcknowledgmentsCarafe is a product of the e�orts of many people guided by Professor F. Joel Fergusonat the University of California, Santa Cruz. The precursor of Carafe is the FXT inductivefault analysis program written by F. Joel Ferguson. The overall design and a large portionof the implementation of Carafe was done by Alvin Jee. The tile based data structures ofthe Magic layout tool were customized for Carafe by George Riusaki. Alan Smith createdthe early versions of the X Windows/Motif graphical user interface. Cyrus Bazeghi addedthe gate oxide short fault extractor to Carafe. Mark Fitzpatrick performed initial work onthe break fault extractor and Je� Rogenski developed the present break fault extractor.David Dahle added compound fault extraction, transistor gate bridge/break faults, andfault visualization by critical area.This work has been sponsored by the �ne folks at Semiconductor Research Corporation,National Science Foundation, Hewlett-Packard, and Intel.

6 1. An Introduction to CarafeMany others have contributed to the Carafe project by o�ering suggestions for improvingalgorithms and the user interface design and by testing and debugging Carafe. Manythanks go to Brian Chess, Tony Freitas, Haluk Konuk, Professor Tracy Larrabee, RichardMcGowen, Je� Rearick, Andy Rosenbaum, Carl Roth, Joe Russack, Darren Senn, DavidStaepalaere, Martin Taylor, Jon Colburn, Chris Manlove, Paul Imthurn, Alan Watermanand a whole bunch of other people too numerous to list.

72. Installing CarafeCarafe has been written in ANSI C and should compile and run on most UNIX platforms.Carafe has been successfully compiled with both GCC and CC on a variety of platforms.2.1 Tested PlatformsThe command line based version of Carafe has been tested on the following machines:� Linux� Sun-4� SPARCstation 1+� SPARCstation 2� SPARCstation 20� MIPS SGI IRIX 5.3� NeXTSTEP for Motorola and Intel Processors� IBM RS6000 POWERserver 350 running AIX 3.2.5� DEC Alpha 3000/600 running OSF/1 V3.0� DEC Alphastation 250 4/266 running OSF/1 V3.2The Motif-based graphical user interface should work with Motif version 1.1 or later, andhas been tested on the following machines:� Sun-4� SPARCstation 20� MIPS SGI IRIX 5.3� Linux (MetroLink Motif 2.0)� IBM RS6000 POWERserver 350 running AIX 3.2.5� DEC Alpha 3000/600 running OSF/1 V3.0� DEC Alphastation 250 4/266 running OSF/1 V3.22.2 Installation StepsOnce the EncryptedCarafe �le and the key are obtained, follow the installation stepsgiven below:1. Move the EncryptedCarafe �le to the directory in which the Carafe directory is tobe placed.2. Unencrypt the �le with the UNIX crypt command using the acquired key. The syntaxis: crypt key < EncryptedCarafe > carafe.tar.gz3. Uncompress the �le carafe.tar.gz using the GNU tar command. The syntax is: tar-xzvf carafe.tar.gz.4. Enter the carafe directory. Check the README �le for any last minute information.Carafe uses an automatically generated script to con�gure Carafe for the targetmachine. This script performs tests to determine the settings of various
ags andthen generates Make�les based on those
ags. Read the INSTALL �le for detailedinstructions on compiling and installing Carafe.

8 2. Installing Carafe2.3 Carafe Environment VariablesThe Carafe program must have both a technology �le and a fabrication defects statistics�le in order to run. The default �les used for the technology and fabrication defect statisticsare carafe.tech and carafe.fab in the current directory unless modi�ed through theoption
ags given in the Carafe Option Flags section. It is sometimes not desirable tohave copies of the two �les in every directory in which Carafe is to be used. Rather thanusing the option
ags to specify the locations of these �les every time, Carafe checks theenvironment variables for the location of these �les. The following are the environmentvariables that Carafe checks:CARAFE TECH This variable indicates the directory and �le name to usefor the technology �le if the default �le carafe.tech is not in the currentdirectory and no �le was speci�ed with the '-t' option.CARAFE FAB This variable indicates the directory and �le name to use forthe fabrication defect statistics �le if the default �le carafe.fab is not inthe current directory and no �le was speci�ed with the '-f' option.CARAFE LIB The Hemlock version of Carafe requires a description of all thestandard cells to be used. This environment variable speci�es which �le touse as the standard cell description �le.CARAFE DSTYLE This speci�es the drawing style �le that Carafe uses todetermine how the di�erent layers of material are drawn. This �le has thesame format as the dstyle �le from the Berkeley Magic program. The dstyle�le can also be speci�ed using the command line option. Carafe comeswith a sample dstyle �le called carafe.dstyle located in the carafe/libdirectory.CARAFE COLORMAP This environment variable speci�es the �le thatcontains color map information. This information is used with the dstyleinformation to determine how layout geometries are displayed in the graph-ical user interface. Carafe comes with a sample colormap �le carafe.cmaplocated in the carafe/lib directory.CARAFE CELLPATH This environment variable speci�es the paths forsubcells. If the subcells are not in the current directory Carafe will searchfor them in these listed directories. The format for the value string is:/usr/lib:/joe/�les/subcells:/project/bin/cellsCheck the operating system manuals for setting the environment variables. On mostsystems, the command:% setenv VARIABLE NAME valuewill set the environment variable named VARIABLE NAME to value. Since these variablesneed to be set every time the user logs on, the setenv lines should be placed in a startup�le.Carafe should now be set up and ready to run!

93. TutorialThis chapter contains a step by step walk through of a typical Carafe X Window session.Starting with setting up environment variables, through loading a sample �le provided withCarafe and selecting extract options, to viewing the results, this chapter seeks to give a �rsttime user a quick overview of how to use Carafe. This tutorial is based on a session run ona Sun-4 running SunOS 4.1.3.Setting up the environmentFor Carafe to run correctly certain �les are required. Keeping these con�guration �les inthe current working directory at all times can become cumbersome. To allow a user to putthe con�guration �les all in one place and execute Carafe elsewhere, environment variablesare used.These are the environment variables used by Carafe:� CARAFE TECH� CARAFE FAB� CARAFE DSTYLE� CARAFE COLORMAPFor a description of these environment variables please read the Carafe EnvironmentVariables section in the Installing Carafe chapter.To set up these environment variables type the following:setenv CARAFE TECH path/carafe/lib/carafe.techsetenv CARAFE FAB path/carafe/lib/carafe.fabsetenv CARAFE DSTYLE path/carafe/lib/carafe.dstylesetenv CARAFE COLORMAP path/carafe/lib/carafe.cmapwhere path is the path to the Carafe directory. Note: These variables need to be set eachtime a user logs on.Running CarafeNow that Carafe is con�gured correctly go to the carafe/sample directory and type:carafeCarafe should now display a message similar to this:Using technology: scmosUsing scmos fabrication statistics.Welcome to Carafe - Version Alpha.5Last updated on Thu Nov 9 12:28:08 PST 1995Copyright (C) 1990-1995 Regents of the University of California

10 3. TutorialThe Carafe graphical interface window should also appear. If Carafe does not load anda "command not found" or equivalent message is displayed then check to see that Carafeis in your path statement and has been installed correctly.Loading a �leUse the mouse to select the File menu item. From the drop down menu select Open....The Open File window should now pop up. Select the �le 1bit.strm from the Files boxand then press in the OK button.Carafe should now display the �le 1bit.strm graphically on the screen. The �le1bit.strm is a cell for a 1 bit full adder.Use the left mouse button to box an area to zoom in on. The right mouse button is usedfor centering the display about a selected point. The bottom three buttons can be used tozoom out all the way, zoom in, and zoom out respectively. Play around with zooming inand out using the mouse and the zoom buttons.Extracting FaultsNow that a �le has been successfully loaded, fault extraction can be done. SelectCommands from the menu bar. From the drop-down menu select Extract.... A pop-up window of extract options should now appear. Note the various options for extraction.The Extract window is comprised of �ve sections: Extract Options, Bridges, Breaks,Faults, and Output Files. For a detailed description of each of these please, refer to theCarafe X Window Interface chapter.For this example, leave the selections in their default setting and press the Extractbutton. Carafe will change the mouse pointer to a watch while it works. Once the mousepointer returns to the cross hair the extraction is �nished. Refer to the window from whichCarafe was started. This window gives you a log of all that Carafe has done. The windowshould display something similar to this:arapaho:[/tst/carafe/sample/1bit] % ../../src/carafeUsing technology: scmosUsing scmos fabrication statistics.Welcome to Carafe - Version Alpha.5 PR1.2Last updated on Thu Dec 21 01:05:32 PST 1995Copyright (C) 1990-1995 Regents of the University of CaliforniaReading Calma format file: /tst/carafe/sample/1bit/1bit.strmLibrary was written in GDS II version 3Reading library 1bitReading structure 1bitFlattening auto flat cells.Making composites.Connecting contacts.Cell 1bit completeExtracting transistor regions.

11Extracting node regions.Assigning node labels.Extracting gate oxide shorts.Finding intra-layer bridge fault primitives between metal2 and metal2.Reducing fault primitives for radius 650.Extracting compound bridge faults for radius 650....Reducing fault primitives for radius 450.Extracting compound bridge faults for radius 450...Reducing fault primitives for radius 250.Extracting compound bridge faults for radius 250.Finding intra-layer bridge fault primitives between metal1 and metal1.Reducing fault primitives for radius 650.......................Extracting compound bridge faults for radius 650.................Reducing fault primitives for radius 450.....................Extracting compound bridge faults for radius 450.................Reducing fault primitives for radius 250...........Extracting compound bridge faults for radius 250..........................Finding intra-layer bridge fault primitives between polysilicon and polysilicon.Reducing fault primitives for radius 650.Extracting compound bridge faults for radius 650....................Reducing fault primitives for radius 450.Extracting compound bridge faults for radius 450.................Reducing fault primitives for radius 250.Extracting compound bridge faults for radius 250..........................Finding inter-layer bridge fault primitives between active and metal1.Reducing fault primitives for radius 650.Extracting compound bridge faults for radius 650.Reducing fault primitives for radius 450.Extracting compound bridge faults for radius 450.Reducing fault primitives for radius 250.Extracting compound bridge faults for radius 250.Finding inter-layer bridge fault primitives between metal1 and metal2.Reducing fault primitives for radius 650.Extracting compound bridge faults for radius 650.......Reducing fault primitives for radius 450.Extracting compound bridge faults for radius 450.......Reducing fault primitives for radius 250.Extracting compound bridge faults for radius 250.......Finding inter-layer bridge fault primitives between ptransistor and metal1.Reducing fault primitives for radius 650.Extracting compound bridge faults for radius 650.Reducing fault primitives for radius 450.Extracting compound bridge faults for radius 450.Reducing fault primitives for radius 250.Extracting compound bridge faults for radius 250.Finding inter-layer bridge fault primitives between ntransistor and metal1.Reducing fault primitives for radius 650.Extracting compound bridge faults for radius 650.

12 3. TutorialReducing fault primitives for radius 450.Extracting compound bridge faults for radius 450.Reducing fault primitives for radius 250.Extracting compound bridge faults for radius 250.Finding inter-layer bridge fault primitives between polysilicon and metal1.Reducing fault primitives for radius 650.Extracting compound bridge faults for radius 650..................Reducing fault primitives for radius 450.Extracting compound bridge faults for radius 450..................Reducing fault primitives for radius 250.Extracting compound bridge faults for radius 250..................Extracting intra-node compound break faults....................Finding transistor gate bridge/breaks.Extracting compound transistor bridge/break faults for layer ntransistor.Reducing fault primitives for radius 650.Extracting compound transistor bridge/break faults for radius 650.Reducing fault primitives for radius 450.Extracting compound transistor bridge/break faults for radius 450.Reducing fault primitives for radius 250.Extracting compound transistor bridge/break faults for radius 250.Extracting compound transistor bridge/break faults for layer ptransistor.Reducing fault primitives for radius 650.Extracting compound transistor bridge/break faults for radius 650.Reducing fault primitives for radius 450.Extracting compound transistor bridge/break faults for radius 450.Reducing fault primitives for radius 250.Extracting compound transistor bridge/break faults for radius 250.Writing critical area information.Writing the transistor netlist with bridges.Writing the transistor netlist with no faults.Writing graph file.Viewing InformationFrom the Commands menu various kinds of information can be accessed. The timerequired to execute the last command can be obtained from the Time command in thedrop down menu. Information about the �le loaded is available from the Info command.Such things as aliases, labels, and tiles can be printed out in the execution window.To view information about the faults extracted select the View menu item. Variousitems are available for viewing such as layers, labels, and faults. You can also switchbetween di�erent loaded �les by selecting Circuits... from the top of the View menuitem.Select the Faults command from the drop down menu. A View Fault window shouldnow appear. This window displays all the faults extracted and allows the user to displaythem graphically on the screen. Selecting a listed fault by clicking on it will display thefault critical area on the graphical display of the circuit for the current defect radius. The

13Display Layers pop-up menu lists all the layers in the current fault, and can be used todisplay the critical area in only a single layer. The Display Radius pop-up menu allowsselection of the defect radius to display depending upon what defect sizes where extracted.The Zoom button enables you to zoom in on a selected fault for closer inspection. Notethat the Zoom button changes to an UnZoom after zooming to allow easy back stepping.When done viewing the various faults extracted, select Done from the View Faultwindow. Select Exit from the File drop down menu to exit this session of Carafe. Carafewill ask if you really want to exit. Press Yes to complete the exit process.Take a directory listing and note the creation of the various �les listed in the ExtractWindow when extracting in Carafe. The 1bit.pro �le contains similar information thatwas obtained by selecting theView | Faults menu selection. Please refer to the respectiveAppendix for a complete description of all the output �les produced.This concludes this brief tour of Carafe. This was intended to just touch on the use of theX Window version of Carafe. For a more detailed description of the Carafe commands andoptions please refer to the Carafe Command Line Interface and Carafe X WindowInterface chapters. Enjoy your Carafe experience!

14 4. Explanation of Faults4. Explanation of FaultsThe purpose of this chapter is to give an overview of Carafe's method of fault extractionand to describe in some detail how Carafe extracts each type of fault from circuit layouts.This chapter also describes how Carafe computes the critical area and the weighted prob-ability for each type of fault extracted. In addition, this chapter explains the importantlimitations of the various fault extractors and how these limitations may a�ect your results.4.1 Compound Faults4.1.1 OverviewCarafe has recently added the capability of extracting compound faults [SS95]. Acompound fault is the result of a spot defect simultaneously a�ecting an arbitrary numberof objects in a circuit. Carafe extracts compound faults by �rst �nding fault primitives.A fault primitive tracks the region a single defect must fall in to cause two objects in acircuit to be disrupted. This region is called the critical area for that fault primitive. Afault primitive can be one of the following types:� Connection of two objects in the same layer that is not in the circuit's design.� Connection of two objects in di�erent layers that is not in the circuit's design.� Disconnections of two objects in the same layer.� Disconnections of two objects in di�erent layers.To extract compound faults, Carafe collects all fault primitives of the same type. Thecritical areas for these fault primitives are then intersected to �nd any overlapping. Whenan overlapping occurs, the region of overlapping is the critical area for a fault that a�ectsall the objects listed in the fault primitives forming that region. This process is repeated foreach type of fault primitive. Faults that cause the same change in the circuit's descriptionare considered to be the same fault, even though each failure may occur on di�erent layersof material or in di�erent areas of the circuit.
5

2
7

6

CA 24

3

1

CA 3

CA 1

Figure 4.1: Overlapping Critical AreasFigure 4.1 shows the overlapping of three fault primitive critical areas. Assume that CA1 causes a fault a�ecting objects A and B, CA 2 causes a fault a�ecting objects B and C,and CA 3 causes a fault a�ecting objects D and E. Speci�cally how these faults would bereported depends on the type of fault being extracted. However, Carafe places no arbitrarylimitations on the number of objects which may be involved in a single fault. The followingfaults would be reported for the seven regions formed by the overlapping.

4.2. Bridges 15� A defect falling in region 1 a�ects objects A and B.� A defect falling in region 2 a�ects objects B and C.� A defect falling in region 3 a�ects objects D and E.� A defect falling in region 4 a�ects objects A, B, D, and E.� A defect falling in region 5 a�ects objects A, B, C, D, and E.� A defect falling in region 6 a�ects objects A, B, and C.� A defect falling in region 7 a�ects objects B, C, D, and E.Physical defect sizes are speci�ed as the radius of a circular defect. However, forcomputational simplicity, these circular defects are approximated as squares where thedefect radius is one-half the length of a side.4.1.2 Space/Time ConsiderationsCompound fault extraction as described above can be reduced to the rectangular in-tersection problem. However, the problem is complicated by the need to report the faultsby the objects listed in the overlapping fault primitives, and then to identify if the faulta�ects the same objects as a previously found fault. If one is found, then these faults mustbe merged. This must be repeated for each region formed by overlapping fault primitives.This can be very costly in terms of both space and time requirements of the program, es-pecially for moderately sized circuits and large defect sizes where there will be many smalloverlapping regions involving many objects.To help address these problems, two options have been added to Carafe. The �rst option,reduce fault primitives, instructs Carafe to perform preprocessing on the fault primitivesbefore they are sent to the compound fault extractor. The fault primitives are sorted by thetwo objects in the circuit that they a�ect. For each pair of objects, all the fault primitiveswhich a�ect those two objects are sent through the compound fault extractor to remove anyoverlapping. This has the e�ect of substantially reducing the input to the compound faultextractor by removing redundant information for large defect sizes. However, for smallerdefects, this procedure will probably result in a decrease in performance, and thus shouldonly be used on relatively large defect sizes. Note that when compound faults are disabled,this operation is performed on the fault primitives to remove some of the over-counting.The second option, track critical areas, instructs Carafe to compute only the faultprobabilities and not to remember the critical areas. This has the e�ect of reducing memoryusage which may be necessary when extracting large circuits, but in no way a�ects therelative probabilities of the faults. One side e�ect is that you will not be able to view thefaults in the graphical user interface.4.2 BridgesOne of the most prevalent failure modes of spot defects is the shorting of electricalnodes in the circuit. These failures are called bridges. Carafe classi�es bridge faults into twocategories: inter-layer and intra-layer. Inter-layer bridges occur when the layer of insulatingmaterial between areas of conducting material is compromised and allows the conductingareas to touch each other. Intra-layer bridge faults occur when extra conducting material ispresent between two regions of a given type of material causing them to become electricallyconnected together. Carafe makes no assumption about what layers can be bridged, and

16 4. Explanation of Faultswill only extract faults in or between layers listed in the bridge section of the technology�le.Carafe identi�es bridge faults by the names of the nodes involved in the fault. Thus,failures that bridge the same set of nodes together are considered the same fault even thougheach failure may occur on di�erent layers of material or in di�erent areas of the circuit.The bridge fault in Figure 4.2 is an example of an intra-layer bridge fault caused bya spot defect falling between Node 1, Node 2, and Node 3. This bridge fault would bereported as(Node1 to Node2 to Node3)indicating a 3-way bridge fault.
Defect

Node 2

Node 3

Node 1Figure 4.2: A 3-way intra-layer bridge faultConsider the inter-layer bridge fault shown in Figure 4.3 (a). Since inter-layer bridgesare modeled as missing insulator, Node 1 and Node 2 would short together, Node 3 andNode 4 would short together, but no other bridging would result from this particular defect.Thus, this bridge fault would be reported as:(Node1 to Node2) (Node3 to Node4)indicating the two separate bridges in the same fault. If Node 1 and Node 4 were actuallythe same node as in Figure 4.3 (b), this fault would be reported as:(Node1 to Node2 to Node3)which is the same fault as in Figure 4.2.4.2.1 Critical Area CalculationCarafe begins bridge fault extraction between two layers of material by �nding all 2-waybridge faults, or bridge fault primitives. Carafe �nds intra-layer bridge fault primitives bytaking the material of a node and searching around it on all sides within a distance of themaximum defect diameter. Any material in a di�erent electrical node within this distance inthe same layer has a potential bridge. Carafe creates fault primitives that characterize thecritical area for the bridges. These characterizations are independent of the defect radiusand are called Length-Widths. This defect independent characterization allows the same setof fault primitives to be used for the extraction of several di�erent defect radii less than themaximum. Figure 4.4 shows the three types of length-widths for intra-layer bridges which

4.2. Bridges 17
Metal 1

Metal 2

(a)

Defect
Node 3

Node 2

Defect

Node 1

Node 4

Node 3

Node 2

Node 1

(b)Figure 4.3: (a) A 2 by 2 inter-layer bridge fault. (b) A 3-way inter-layer bridgefault.
Conductive material Length-Width Area

(a) (b) (c)Figure 4.4: The three di�erent length-widths for intra-layer bridge fault primi-tives, depending on the orientation of the conductive material: (a) diagonal, (b)horizontal, (c) vertical.depend on the orientation of the conductive material being bridged. Figure 4.5 shows thecritical areas for these length-widths.For inter-layer bridges, Carafe looks for regions where the two layers overlap. Thelength-width for an inter-layer bridge is simply the areas of overlap between the two layersof material, and the critical area is the area of the length-width extended on all four sidesby the radius of the defect.Once all bridge fault primitives between two layers have been found, Carafe computesthe critical area for each fault primitive given some defect radius less than or equal to themaximum defect radius. Carafe then takes these defects and intersects them to �nd thefaults, as described in section 4.1.1. After all compound faults for that defect radius havebeen extracted, Carafe can recompute the fault primitive critical areas for another defectradii and repeat the process. If a fault primitive does not cause a bridge at a defect smallerthan the maximum defect size, it is ignored for that smaller defect size.

18 4. Explanation of Faults
L

W

r

(b)

r

L

W

(c)

Defect

Length-Width

Critical Area

Length-Width
Defect Critical Area

W

(a)

Length-Width

L

Critical Area

Defect

Figure 4.5: Critical areas for length-widths: (a) diagonal, (b) horizontal, (c)vertical. Note that these critical areas were computed with fringe on.The total critical area of a fault is the sum of all critical areas a�ecting the same objectsin each layer for each defect radius. The probability of that fault is then computed by scalingthe critical areas for each layer using the defect distributions given in the fabrication �le. Ifa bridge fault is given a probability of zero in the fabrication �le, but is listed in the bridgesection of the technology �le, bridges between those layers for that defect size are skipped.Figure 4.6 shows the fault primitive critical areas for the circuit shown in Figure 4.2given some defect radius. Figure 4.7 shows the four regions formed by these overlappingfault primitives. The following bridging faults would be reported by Carafe:� A defect falling in region 1 would bridge Node 2 to Node 3.� A defect falling in region 2 would bridge Node 1 to Node 3.� A defect falling in region 3 would bridge Node 1 to Node 2.� A defect falling in region 4 would bridge Node 1 to Node 2 to Node 3.4.2.2 Limitations� Inter-layer bridge faults occur only when there is a non-zero area of overlap betweenthe two conducting regions.� Intra-layer bridge faults are reported for ndi�usion and pdi�usion even when the areaof the failure is under the gate of a transistor.� Bridge faults between two di�erent layers on the same plane will be considered intra-layer bridges. So, if you want inter-layer bridges between two layers, make surethe layers are on di�erent planes. See the section on the Technology File in theCustomizing Carafe chapter for more on planes.4.3 BreaksCarafe also has the capability of extracting break faults, which result when a spot defectoccurs consisting of missing conducting material or extra insulating material; research hasshown breaks to be a common defect occurring in current CMOS fabrication processes[Rog94] [RF94]. Breaks can cause a node to split into two or more smaller nodes. This can

4.3. Breaks 19
Conductive material

Node 2

Node 3

Node 1

Fault primitive critical area

Node 1

Node 1

Node 2 Node 2

Node 3 Node 3

(c)(b)(a)Figure 4.6: Fault primitive critical area between: (a) Node 2 and Node 3, (b) Node1 and Node 3, and (c) Node 1 and Node 2.
3

2

1 4Figure 4.7: Intersection of three fault primitive critical areas.result in nodes that cannot be charged to power or ground, and nodes that are only chargedunder certain inputs.The intra-layer breaks reported by Carafe indicate the e�ects of a spot of missingconducting material or extra insulating material, with a size determined by the defect radii,occurring on the chip. The result is broken connections, which leave formerly connectedterminals disconnected. Inter-layer breaks reported by Carafe represent failed contacts(vias) but do not include spot defects that occur on a contact (nor do intra-layer breaks).In other words, only the connection between layers is broken, while each layer connected bythe contact is una�ected.

20 4. Explanation of Faults
Out In

GND

In

Vdd

GND

Vdd

Out

Figure 4.8: The layout of a typical standard-cell inverter.4.3.1 Critical Area CalculationCarafe extracts break fault primitives one electrical node at a time by constructing agraph for each electrical node using a plane sweep algorithm. The vertices in this graphrepresent devices in the circuit, such as transistor terminals, transistor gate connections,and I/O ports. Each vertex is given a unique name of the form node #, where node is thename of the electrical node, and # a number which makes the name of each vertex unique.The edges in this graph represent places where the electrical node can break; each edge hasa list of it length-widths which represent material that, if broken, cause the nodes to becomedisconnected. Carafe creates fault primitives for each length-width on the edge lists, wherethe names of the two objects a�ected by the fault will be the names of the two vertices inthe graph connected by the edge. Carafe repeats this process for each electrical node in thecircuit until all break fault primitives have been extracted. Carafe will then sort the breakprimitives by layer and perform compound fault extraction one layer at a time.Figure 4.8 shows a simple inverter. Figure 4.9 (a) shows the graph constructed for theIn node and Figure 4.9 (b) shows the length-widths associated with each edge in the graph.There are three kinds of length-widths: vertical, horizontal, and inter-layer. Length-widths1, 2, 6, 7, 8 and 9 are vertical length-widths, 4 is a horizontal length-width, and 3 and 5are inter-layer length-widths. The critical areas for the vertical, horizontal, and inter-layerlength-widths are the same as the horizontal, vertical, and diagonal length-widths shown inFigure 4.5, respectively.Carafe reports break faults by listing the pairs of nodes that are disconnected by thebreaks. For example, if length-width 1 from Figure 4.9 (b) were to cause a break, Carafewould report the following break:(In_0 and In_1)Note that in Figure 4.9 (b) length-width 3 is a metal 2 contact break so it does notinteract with any other fault primitives during compound fault extraction. Carafe does not

4.3. Breaks 21
Edge 6

Edge 7

Edge 3

9

Edge 4

Edge 8

Edge 9

Edge 1

Edge 2

In_0

In_3

In_6

In_5

In_8

In_4
In_1

In_2
In_7

In_9

Edge 5

(a) (b)

1

3

2

4 5

7

6

8

Figure 4.9: Conversion of the In node to a graph: (a) the graph of the node, (b)the length-widths attached to the graph edges.extract break primitives at junctions like that in Figure 4.9 (b) where vertex In 1 is located.Instead, Carafe depends on the critical areas from breaks around the junction to overlap inorder to detect the break. Figure 4.10 shows the two critical areas for length-widths 1 and2 from Figure 4.9 (a) for some defect size. Figure 4.10 (b) shows the resulting overlappingcritical areas. Region 1 represents the critical area for the break:(In_0 and In_1)region 2 represents the critical area for the breaks:(In_0 and In_1) (In_1 and In_2)and region 3 represents the critical area for the break:(In_1 and In_2)This procedure will produce inter-node compound break faults, and generally the most\accurate" break faults. However, Carafe is capable of simplifying the process to saveboth time and space by extracting only intra-node break faults. The change in the aboveprocedure is that after all fault primitives for a node are extract, they are be sorted bylayer and compound fault extraction is performed using only those primitives. Once faultextraction is complete, Carafe discards these fault primitives. This process is repeatedfor each electrical node in the circuit. After every electrical node in the circuit had beenextracted, all break faults have been found.This procedural modi�cation treats defects that break more than one node as thoughonly a single node was a�ected. This saves time and space since all break fault primitivesdo not have to be available at the same time, and the number of possible faults is reduced asthere are fewer combinations of objects to break. The reduced input to the compound faultextractor and the reduced fault size greatly improves performance. However, the critical

22 4. Explanation of Faults
Critical Area

(b)

Critical Area

Length-Width 1

Length-Width 2

3

2

1

(a)Figure 4.10: (a) Critical areas for two length-widths 1 and 2, (b) Regions formedby overlapping critical areas.area for defects causing inter-node breaks are counted multiple times, once for each nodethey break.4.3.2 LimitationsThe break extractor uses a two-pass plane-sweep algorithm which sacri�ces some accu-racy for the sake of speed. As a result, there are several circuit con�gurations for which theextractor cannot construct a graph. This is a result of the fact that the break extractoractually constructs two graphs for each node in the circuit, one for each sweep. Thesegraphs are them merged in the �nal graph that is used to create break fault primitives.� If there are multiple conducting paths in the fault-free circuit, this results in a cyclein the sweep graphs. When the graphs are merged, the cycles are lost due to thedetails of the merging algorithm. Thus, Carafe will not �nd breaks in cycles, even ifthe defect is large enough to break multiple edges in the cycle.� Figure 4.11 (a) shows a circuit con�guration which the break extractor cannot properlyhandle, and Figures 4.11 (b) and (c) show the length-widths extracted during the twosweeps. Figures 4.12 (a) and (b) show the two possible graphs the break extractor cangenerate1. Notice that the graph in Figure 4.12 (a) contains the edge for length-width2 but no edge for length-width 5, and the graph in Figure 4.12 (b) contains an edgefor length-width 5 but no edge for length-width 2. The breaks caused by length-width2 and 5 cannot both be represented in the same graph by the break extractor, and arecalled conflicting breaks. Carafe resolves con
icting breaks by throwing out theone with the smaller critical area. If they both have the same critical area, as was thecase Figure 4.11 (a), Carafe will randomly delete one. As a result, Carafe may notthrow out the same break from one extraction of a circuit to the next. When Carafe�nds a con
ict during break extraction, it will issue a warning:1The electrical node name A and the vertex names were chosen arbitrarily.

4.3. Breaks 23
(a)

B

A

C

D

B

C

D

1

A

B

C

D

A

6

5

4

2

Sweep line

3

Sweep line

(c)(b)Figure 4.11: (a) A circuit which results in con
icting breaks, (b) length-widthsfound during the vertical sweep, and (c) length-widths found during the horizontalsweep.
A_2

A_1

A_5 LW 5

LW 3

LW2

A_4

A_0

LW 4

LW 1

A_3
LW 6

(b)(a)

A_2 A_5

A_4

A_0 A_3
LW 4

LW 3

LW 6

A_1

LW 1

Figure 4.12: (a) The merged graph containing length-width 2, and (b) the mergedgraph containing length-width 5.Warning: conflicting groupings in merge.Note that since length-widths that do not cause breaks at the selected defect radiiare deleted before the two sweep graphs are merged, this problem only occurs forrelatively large defect sizes. See [Rog94] for more details about con
icts.There are a few cases where Carafe will introduce a small error in the critical area ofa break. This is because the plane-sweep algorithm it uses actually models a defect morelike a very thin line (the sweep line) breaking an LW across its width than a circular spotdefect.

24 4. Explanation of Faults� Notice in Figure 4.11 (b) and (c) that the regions where the sweep line is perpendicularto the I/O ports have no length-widths associated with them. This is because a thinsweep line perpendicular to the I/O port does not cause a break as the current can
ow around the break through the material connected to the port. A similar situationoccurs when polysilicon connects to the gate region of a transistor and around contacts.When the di�usion region of a transistor abuts the gate region, no breaks will beextracted in either sweep in that region because the e�ects of a defect in that regioncan be di�cult to determine, especially for complicated transistors.
D

A

B

C

Figure 4.13: I/O port con�guration that Carafe will not properly handle.� Figure 4.13 shows a situation where no breaks will be found. Although a relativelysmall square defect could break A or C from the rest of the circuit, a thin line breakwould not as the current could
ow through the material connected to port B. Seldomare ports arranged such that they are adjacent as in Figure 4.13, so this situation isvery rare.Broken well contacts are not reported as no change in logical function results.There are several additional limitations which appear when running in Hemlock modebecause the break extractor does not make subcell connections the same way the circuitextractor does.� In order for the break extractor to make connections to subcells, there must be I/Oports at the locations in the top level cell where material connects to a subcell port.First, the stub of material connected to the subcell would be thrown out by the breakextractor, since Hemlock would not know that the material went anywhere. Secondly,if the I/O port is not properly placed along the subcell port, then the break extractorwill silently ignore the port and not make the connection to the subcell.A missing or misplaced label can cause big problems during simulation of break faultsif an input or output connection to a gate was not properly made. The followingwarning messages appear when an I/O port is left o� the connection to a subcellfeed-through:PROBLEM: horizg has >1 con comp!PROBLEM: vertg has >1 con comp!indicating that a node which should have resulted in a single graph had severalconnected components because the feed-through connection was not made.

4.4. Transistor Gate Bridge/Break Faults 25� When making subcell connections, the break extractor assumes subcells do not over-lap. Thus, if a port connection is intended to be made to a cell that has another celloverlapping, the break extractor may or may not identify the correct cell.4.3.3 Output FilesThe simulation �le generated by Carafe (the .sim �le) has an additional extension to the�lename. In this �le, data for bridges and breaks are kept separate, and are distinguishedwith .bridge and .break extensions, for example \my circuit.bridge.sim" would be outputfor bridge extraction on the circuit my circuit. The primary reason for this is the noderenaming required to describe breaks; since all the pieces of a node must be renamed toguarantee uniqueness, the node names in the layout are not present without modi�cation(see the previous subsections). By separating the faults into separate �les, we maintaincompatibility with any programs that previously used the output �les for analyzing bridges.Note that Carafe will only generate a .break.sim �le if compound breaks are disabledas Carafe will not resolve identical break transistors from di�erent faults. Appendix Gdescribes the .graph �le which details compound break faults for simulation.4.4 Transistor Gate Bridge/Break FaultsCarafe now supports transistor gate bridge/break faults, which are the result of missingpolysilicon in the gate region of a transistor. As a consequence of the self-aligning processesin wide use today, this defect results in both a break in the gate region of the transistorand a bridge between the di�usion regions of the transistor.Carafe extracts breaks in transistor gates during break extraction, and then performsextra processing on the gate breaks in order to �nd the corresponding bridges. Thus thesebreaks have edges in the electrical node subgraph with the rest of the circuit breaks. Foreach bridge/break fault, Carafe reports two sets of node lists, one for the bridges and onefor the breaks.4.4.1 Critical Area CalculationThe critical area calculations for transistor gate bridge/breaks are identical to thecalculations for break faults. The critical areas are scaled using the breaks section ofthe fabrication �le to compute the relative probabilities.4.4.2 Limitations� Since transistor gate breaks are extracted the same way as normal breaks, the samelimitations apply to transistor gate bridge/breaks as to breaks.� Carafe assumes that a defect that causes a gate break primitive will bridge exactlytwo di�usion terminals.� Bridge/breaks in di�erent types of transistors (pMOS and nMOS) do not interact.� Transistor gate bridge/breaks are reported even if nothing is separated by the break.Consider the circuit shown in Fig 4.8. Transistor bridge/breaks would be reportedfor both transitors even though the polysilicon on one side of the transistor is just astub.

26 4. Explanation of Faults� The overlapping of critical area from transistor gate breaks and adjacent polysiliconbreaks are not considered by the break extractor.4.5 Gate Oxide Short Faults
Source Drain

n-well

Drain Source

n-poly gaten-poly gate

p-substrate

n + diff n+ diff p+ diffp+ diff

Gate OxideFigure 4.14: Gate Oxide ShortAnother fault type that Carafe is capable of extracting is Gate Oxide Short (GOS) faults.Figure 4.14 shows a cross section of a circuit showing the possible GOS faults that Carafewill �nd. These faults are modeled like Bridges by adding extra transistors in the netlistfor testing and simulations. Carafe reports these faults as shorts between the di�usion andpolysilicon regions of the transistor. The weight of the GOS for each transistor type is listedin the gos section of the fabrication �le.GOS fault extraction can be enabled by pressing the button label "Gate Oxide" in theBridges section of the Extract window. GOS faults are output the same way that bridgefaults are, i.e. they appear in the .pro �le.4.5.1 Critical Area CalculationCarafe calculates the relative likeliness of a GOS fault by taking the area of a transistor'sactive region and dividing it up by the number of di�usion regions, i.e. source and drain.Figure 4.15 shows how the critical area for a GOS fault is calculated. Both faults 1 and 2are calculated by taking the area of the transistor (AB) and dividing it by the number ofdi�usion regions (2). To weigh the relative occurrence of GOS faults, use the polysilicon tondi�usion or polysilicon to pdi�usion defect densities in the fabrication �le.
Polysilicon Diffusion

GOS faults

A

1 B
2Figure 4.15: Calculation of Critical Area for GOS faults

4.5. Gate Oxide Short Faults 27
PolysiliconDiffusion

A B

Figure 4.16: Limitations for the calculation of critical area for GOS faults4.5.2 LimitationsCurrently the calculation of the critical area for GOS faults in Carafe does not take intoaccount the geometry of the transistor. For example, in Figure 4.16 Carafe would �nd twoGOS faults, A and B, and give both faults equal critical area. This is not correct since faultA should have a higher critical area because the di�usion and the polysilicon share a longerperimeter.

28 5. Circuit Extraction5. Circuit ExtractionThis chapter describes the important details of Carafe's circuit extractor.5.1 Electrical NodesCarafe ensures that each node will have a unique name to di�erentiate it from othernodes. Carafe determines the names of electrical nodes by arbitrarily choosing one of thelabels attached to material composing that node. If a node has no labels attached, then itis given a name of the form carafe n, where n is a number which makes the name unique.If the node's name is already used, it will simply have \ 0" added after it; the number willbe increased for other instances of the same name so that each is unique. This ensuresthat nodes that are not physically connected in the layout do not become connected in thenetlist that is output by Carafe (transistor level for normal mode, gate level for Hemlockmode).The labels given to nodes and I/O ports must be placed correctly for Carafe to identifythem and treat them correctly. Each I/O port must be labeled on the edge of the materialthat would be connected to other parts of the circuit. If a label is placed on a corner, theresults are unpredictable, since Carafe doesn't know which edge is being labeled. If Carafeis unable to attach a label to any routable material, then it will give a warning similar tothe following:ExtLabelNodes: could not attach label a_s2 to a tile at (42,53) (ignoring).In hierarchical circuits, all of the labels will have the names of the circuit instancesprepended to it in the form of circuit1/circuit2/label. As a result, node labels that arenot at the highest level of hierarchy will be changed and this must be re
ected in the testpatterns that may exist for the circuit. One way to get around this problem is to place thelabels used in the test pattern at the highest level of hierarchy.5.2 TransistorsCarafe is now capable of handling transistors which more than two di�usion terminals.Carafe will create a netlist based on what it considers to be the two-way transistors, ortransistors with two di�usion terminals. Carafe de�nes a two-way transistor as a regionof transistor gate in which a vertical or horizontal line can be drawn though the gate andtouch one di�usion terminal on each side of the gate. Figure 5.1 (a) shows a transistorwith three di�usion terminals. Figure 5.1 (b) and (c) show the two-way transistors Carafecreates for this transistor. Gate regions 1 and 2 form transistors with Di�1 and Di�3 asterminals, regions 4 and 5 form transistors with Di�2 and Di�3 as terminals, and regions 3and 6 form transistors with Di�1 and Di�2 as terminals.Carafe computes and reports information about transistors based on the two-way tran-sistors and merges those with the same di�usion terminals. The width of a transistor is theamount of di�usion perpendicular to the channel of the two-way transistor gate. Carafecomputes the minimum channel width and the average channel width as the minimum andaverage distance between two di�usion terminals, respectively. The area of a transistor isthe sum of the areas of the two-way transistors, and the position of the transistor is thecenter of the bounding box the two-way transistors.

5.2. Transistors 29
1 2

3

4

(a)

Diff 3

Diff 2

Diff 1

Gate

(b)

5

6

(c)Figure 5.1: (a) shows a transistor with three di�usion terminals, (b) shows two-waytransistors with horizontal di�usion terminals, and (c) shows two-way transistorswith vertical di�usion terminals. Notice how some regions of transistor gate arecounted twice.This simple method of extracting transistors leads to some inaccuracies in the transistorarea as shown in Figure 5.2 and Figure 5.3. Also, Carafe will allow the gate of a transistorto be connected to a di�usion terminal but will only allow a node to be attached to onedi�usion terminal. Thus, Carafe will not distinguish between separate di�usion regions withthe same node and will only list the node in the transistor terminal list once.
2

1

Diff 2

Diff 1

Gate

(b)(a)Figure 5.2: (a) shows a transistor with two di�usion terminals, and (b) shows thetwo-way transistors with horizontal and vertical di�usion terminals. The corner isthe transistor gate is ignored.

30 5. Circuit Extraction
1

2

3

Gate

(a) (b) (c)

4

Diff 1 Diff 2Figure 5.3: (a) shows a transistor with two di�usion terminals, (b) shows 2-way transistors extracted with vertical di�usion terminals, and (c) shows 2-waytransistors extracted with horizontal di�usion terminals. Region 1 represents thetransistor gate counted twice.

316. Customizing CarafeThe purpose of this chapter is to give a new user of Carafe a brief explanation ofwhat Carafe does and how it does it. Carafe was designed to work with a variety ofCMOS manufacturing processes and is fully customizable in its fault extraction. To controlCarafe's extraction, parameters such as defect radius size and likelihood weighting need tobe speci�ed. These parameters and the �les that contain them will be explained in thischapter.6.1 How Carafe worksFor Carafe to work properly, several input �les are required. The �rst is the technology�le (the .tech �le), this �le describes the circuit's fabrication technology. The technology�le contains descriptions about the number of layers of material, contacts and vias, and soon. The next �le that Carafe requires is the fabrication statistics �le (the .fab �le). This�le contains the list of defect radii that will be used to extract the realistic faults from thelayouts and the scaling factors that are used to approximate defect distributions by bothdefect size and by fabrication layer. Of course, Carafe needs the layouts of the circuit. Thelayouts can be in either the Calma GDSII format or the Berkeley Magic format.The graphical user interface of Carafe requires two �les to work properly. One �lecontains a description of all the styles that layers of material can be drawn in and the other�le contains the color map for the drawing styles (the dstyle and colormap �les). These�les are the same ones that are used in the Berkeley Magic layout tool. Please refer toMagic documentation for more details.The Hemlock version of Carafe requires a �le that describes the cells that are used (the.lib �le). The �le must contain the coordinates of all the inputs and outputs of each cell.6.2 Technology FileThis �le de�nes the fabrication technology being used. The number and names of theconducting layers are de�ned as well as the contacts or vias that connect them. Also, inter-actions between layers, such as polysilicon and di�usion forming a transistor, are speci�edin this �le. Each di�erent fabrication process may require its own Carafe technology �le.PurposeThe technology �le (.tech) describes the technology that will be used to fabricatethe circuits to be analyzed by Carafe. Each fabrication technology has its own Carafetechnology �le since layer names and types may change from process to process. Examplesof information in the technology �le include which layers can be used as routing wires,which combinations form transistors, which layers are connected by vias, which layers maybe shorted together in the presence of fabrication defects, a mapping of GDS layer numbersto layer names, and the colors that layers will be displayed in.

32 6. Customizing CarafeTechnology File SectionsThe technology �le is composed of several sections each of which begin with a keyworddescribing the name of the section followed by any number of data lines for the section and�nally the keyword end. All section names and the keyword end must be in lower case inorder for Carafe to recognize them.Each line of the technology �le can be a maximum of 80 characters in length. Charactersin excess of 80 are ignored and case is important. Comments can be inserted in thetechnology �le as long as they do not appear within sections. Comment lines begin withthe # character and any text following it is ignored by Carafe. At least one space must bebetween the # character and the body of the comment line.The following is a description of each section type recognized by Carafe. These aresimilar to the sections used in the Berkeley Magic technology �les. Carafe checks that eachtech �le has at least a tech, planes, and types section de�ned. No ordering of the sectionsis required except for what is speci�ed in the section descriptions below.tech The tech section is used to describe the name of the technology being de�nedin this �le, which may be di�erent from the actual name of this technology �le.The name of the technology being used by Carafe is reported on the consolewhen Carafe is �rst run.If Magic �les are being loaded into Carafe, the technology name in the Magic�le must match the name of the technology Carafe is using. Otherwise, Carafewill not load the circuit.planesCarafe stores a circuit's layout information in a set of planes. Each of theseplanes is used to hold polygons of one or more types of material or layers. Ingeneral, layers that interact with each other to create new \types" of layers (e.g.polysilicon and ndi�usion interact to create a transistor \type") must reside onthe same plane. All other layers are stored on their own plane (e.g. metal1).This section de�nes the names of the planes to be used to represent circuitlayouts. Each line in this section contains a single entry used for the name ofa plane; plane names can contain no white space characters. In the currentversion of Carafe, a maximum of 7 planes can be speci�ed. An additional planeis used to represent subcircuits and need not be speci�ed in the technology �le.typesThe types section de�nes the names of the layers that will reside on each plane.Each line of this section contains a pair of names. The �rst name in the pair isthe name of the plane to use. Each plane name must be de�ned in the planessection and thus this section must follow the planes section. The second namein the pair is the name of the layer to be placed on the plane. The second namecan be a comma separated list of names all of which will be treated as the samelayer. Contacts are not included in the section but are de�ned in the contactsection.

6.2. Technology File 33contactAll contacts and vias between layers are speci�ed in the contact section. Eachline in this section de�nes the connectivity of one type of contact. The line beginswith the name of the contact layer followed by two lists of comma separated layernames. Each list contains the layer types on a given \side" of the contact. Makesure that each list does not contain any white space as the white space is usedto delimit the end of one list and the beginning of the other. The layer namesmust have been speci�ed previously in the types section.connectSince it is possible to have more that one layer on a plane, it is necessaryto indicate which layers on the plane are considered electrically connected ifthey are physically adjacent on the layout. The connect section is the placewhere this information is provided. Each line in this section contains two commaseparated lists of layers. Each layer in one list is considered electrically connectedto each layer in the other list if they are physically touching in the layout. Makesure that no white space is in each comma separated list as a white space is usedto determine the end of one list and the beginning of the other.composeThis section de�nes how composite layers are generated. Since Carafe representstransistors as a separate layer, regions where polysilicon and di�usion overlapmust be converted to the transistor layers. This is done in the compose section.Each line in this section de�nes a layer that is made up of possibly several otherlayers that overlap each other. The new layer exists only where all of the speci�edlayers overlap each other. Each line consists of three �elds. The �rst containsthe name of the plane that the particular composition will take place on. Theplane name must have been de�ned previously in the planes section. The next�eld is the name of the composite layer being de�ned. This layer name must beone that is de�ned in the types section. The last �eld is a comma separatedlist of the layers that combine to make the new layer type. Each layer must beon the plane speci�ed and must have been de�ned in the types section.Note: If one composite type is a subset of another, the smaller compositetype must be speci�ed before the larger. For example, suppose we have twocomposite types to de�ne, ndi�usion and ntransistor. The ndi�usion layer iscomposed of active area and n-implant, and the ntransistor layer is composed ofactive area, ndi�usion and polysilicon. We can see that the set of layers to createthe ndi�usion is a subset of the layers for ntransistor. Problems may result ifall areas of overlapping active area and n-implant are converted to ndi�usionbefore composing the more speci�c ntransistor. Since Carafe processes the listof composites from the last to the �rst, the ntransistor record must appearbelow the ndi�usion record. Another way to do this would be to add a recordbefore the ndi�usion record that would specify the ntransistor being composedof ndi�usion and polysilicon.

34 6. Customizing CarafecalmaIn the Calma GDS �le format, the di�erent layers are given numbers ratherthan names. This section provides a mapping of the GDS numbers to thecorresponding layer names. Each line in this section lists the name of a layer,which must have been de�ned in the types section, followed by the GDS layernumber to which it corresponds.extractIn order to perform the circuit extraction process, Carafe needs to know whichlayers represent the transistors in the circuit. Each line in the extract sectionde�nes the information required to identify a single type of transistor. A linebegins with the word fet and is followed by the string that will be placed in the.sim �le to identify the type of the transistor. The layer that represents thetransistor is given next and it must be a layer that has been de�ned in the typessection above. Next is the name of the electrical node to which the substrate ofthe transistor is connected. The last item in the line is the name of the layer thatis used as the di�usion terminals (source and drain) for the transistor. Again,this layer must be de�ned in the types section.routeCarafe must be told which layers carry signals and which do not. The routesection provides this information. Each plane de�ned in the planes sectionshould have a line in this section listing the layers that carry signals on thatplane. A line begins with the name of a plane followed by a comma separatedlist of layers that carry signals on that plane.bridgeCarafe does not make any assumption on which layers may be involved in abridge fault. Therefore, the pairs of layers that can be bridged together must belisted in this section. Each line in this section de�nes one kind of bridge that canoccur. A line contains the names of the two layers that can be bridged togetherand, of course, they must be de�ned in the types section. For intra-layer bridgefaults, the same layer name is given for both layers.fault This section is used to de�ne the transistor types that Carafe will use to representthe extracted faults. There are three lines in this section. One de�nes thetransistor to be used for bridge faults, one for break faults and one for gateoxide faults. The lines begin with either the word break, bridge, or gos toindicate which fault type is being de�ned. Following this word is the name of thetransistor to be used to represent the fault transistor in the .sim �le. Next aretwo integers de�ning the size of that fault transistor. The �rst integer de�nesthe length of the transistor channel and the second de�nes the width of thechannel in centimicrons. Finally, the logic value (0 or 1) is listed that activates

6.3. Fabrication File 35the fault and causes the fault to occur in the circuit. Originally, it was intendedthat these transistors be used in switch-level fault simulation. Currently, mostusers parse the .sim output �les to create Spice �les for circuit simulation.colorThis section is used to de�ne the colors of each layer for display purposes. Thisis only required for the X Windows version of the program and is not neededfor the non-graphical version. This section contains a single line for each layercolor desired. A line begins with a layer name followed by a comma separatedlist of style numbers for that layer. The style numbers are given in the dstyle�le described in the Command Line Options and Environment Variablesections. The layer must be de�ned in the types section or the contact section.auto
atThis section lists the cells that are to be
attened out automatically once acircuit containing one of these cells is read in. Each line contains the name ofone cell that is to be auto-
attened.Technology File Creation HintsThis section contains some useful hints for creating a technology �le.� The layers that are combined to make transistors (usually polysilicon andthe di�usions) must all be on the same plane. This includes layers such aswells.� Try to create a separate plane for each type of signal carrying layer (exceptwhen the layer must be combined with other layers to make transistors).� The fault transistors should be much larger in width than the size of thetransistors in the normal circuit. This tends to make the fault simulationmore meaningful when drive strengths need to be resolved.ExampleRefer to the included �le mcnc.tech in carafe/lib for an example of a technology �leformat.6.3 Fabrication FileTo help the user create fabrication �les, we have supplied a user interactive programcalled Fabit. Appendix D explains how to use this program.The likelihood of occurrence of each fault can be dependent on the layer on which thedefect falls and on the size of the defect. Because of this, the likelihood of occurrencecomputed for each fault can be scaled based on the tables in the defect statistics �le.

36 6. Customizing CarafePurposeThe fabrication defect statistics �le (.fab) is used to provide Carafe a list of the scalingfactors to use in the computations of the relative probability of occurrence for each fault.Fabrication File SectionsThis �le is made up of di�erent sections similar to the technology �le. Each sectionbegins with the name of the section on one line followed by any number of lines de�ningthe data of the section. The section is then completed with a line containing the word end.Comments may be placed in the �le as long as they fall between sections and do notappear within a section. A comment line is a line that begins with the # character andcontinues to the end of the line. Any text that follows the # character is ignored by Carafe.A description of all the sections is given below. Note that the section description wordsmust all be in lower case.fab The very �rst section of the �le must be the fab section. This section is madeup of three lines. The �rst line contains the word fab. The second line containsthe name used to label the set of statistics given in the .fab �le. This namecan be di�erent then the actual �le name. This name is reported when Carafeis �rst started up. The last line of this section contains the word end.typesThe next section de�nes the di�erent layers that the statistics are de�ned for.The �rst line contains the word types. Each line after the �rst contains a singlename of a layer that has been de�ned in the technology �le's types section. Inthis �le, however, only the layers that conduct signals in the circuit are typicallyspeci�ed. This section is completed with a line containing the word end. Thismeans that no layer may be called end.The fab section must include at least every layer that is de�ned in the routessection of the technology �le.gos The gos section lists the weights to be used in calculating the weighted criticalareas for the gate oxide shorts. Each type of transistor (e.g. ntransistor,ptransistor) is assigned a certain weight. The default weighting for all typesof transistors is 0.0. To change this, place a line in this section containing thename of a transistor type followed by the weight to assign to this type.Note that the transistor type being assigned here must also be listed in thetypes section of the fab �le also.The next three sections must always appear as a group.

6.3. Fabrication File 37radiusThe �rst section of the group speci�es the radius of the defect used for the setof numbers to follow. The radius section is made up of three lines. The �rst lineis the word radius. The second contains an integer de�ning the defect radiusin centimicrons. The last line contains the single word end.breakThe next section lists the scaling factors for break faults in the various layers ofmaterial. This section begins with a line containing the word break. Followingthis must be the same number of lines as in the types section of numbers thatare to be used to scale the probabilities on the di�erent layers. The numberslisted are in the same order as the layers are de�ned in the types section above.These numbers are usually less than one, but are not limited to it. The last linecontains the word end.bridgeThe last section of the group is a n�n matrix used to scale the probabilities ofbridge faults between all layers. This section begins with a line containing theword bridge. Next follows the n�n matrix where n corresponds to the numberof types listed in the types section. The format is as follows:type1 type2 : : :type1type2: : :The last line contains the word end. The matrix de�ned here is redundant, buta check is made to insure that the data in the array is symmetric about themain diagonal.The grouping of the last three sections can be repeated as many times as needed, once foreach defect radius desired. When Carafe reads this �le, it automatically sets the minimumand maximum defect sizes to the smallest and largest radii listed in this �le, respectively.These minimum and maximum defect sizes are used by the fault extractor to determinewhich faults to include in the list of probable faults. Only those defects between the theseminimum and maximum radii are considered.Examplefab scmosendtypesntransistormetal1metal2

38 6. Customizing Carafeendgos ntransistor 0.5endradius400endbreak0.030.100.34endbridge0.01 0.30 0.00.30 0.23 0.050.0 0.05 0.23endradius500endbreak0.010.050.13endbridge0.01 0.25 0.00.25 0.15 0.010.0 0.01 0.15end6.4 Library Description File FormatA gate library description �le (.lib) consists of records that describe the input andoutput order and coordinates of all the gates in the cell library. This �le is required forthe Hemlock version of Carafe only. Each record is a single line of text of no more than80 characters in length. Every record begins with a keyword followed by a string of datafor that record. The keywords must be in all upper case letters. An example of this �le isprovided at the end of this section.LIBRARYThe record that indicates the name of the library being de�ned is the LIBRARY record.The format of the record is:LIBRARY lib namewhere LIBRARY is the keyword for the record and lib name is the name of the library. Thelib name must be a single word, i.e. it may contain only letters and digits.

6.4. Library Description File Format 39BLOCKThe description for each gate begins with the BLOCK record. This record de�nes thename of the gate to be de�ned in the records to follow. The format of the BLOCK recordis: BLOCK gate namewhere the word BLOCK is the keyword describing the record type and gate name is the nameof the gate to be de�ned.INPUTTo de�ne the inputs to the gate, the INPUT record is used. Each INPUT record de�nesa single input to the gate and lists the coordinates of the input. Thus a two-input gaterequires two separate INPUT records|one for each input. The following is the format ofthe INPUT record:INPUT input name location1 location2 ... locationNThe word INPUT is the keyword describing the the record type and the name of the inputis given by input name.Each input location is given by a 3-tuple of data containing the fabrication layer that theinput resides on, the x coordinate, and the y coordinate. The coordinate of the input shouldbe on the edge of the cell where the interconnect wires will be connected. The coordinatesare in units of integers of centimicrons. Each element in the 3-tuple is separated by whitespace characters. The fabrication layer must be one that is de�ned in the correspondingCarafe technology �le. The order that the INPUT records are speci�ed here is the order inwhich the inputs will be placed in the .TDL �le generated by the Hemlock version of Carafe.OUTPUTOutputs of a gate are de�ned in OUTPUT records. The OUTPUT records have the exactsame format as INPUT records except the keyword is OUTPUT rather than INPUT.FEEDIn some standard cell gates, feed through lines are placed within a gate, but are notused in determining the logical function of the gate. These lines are speci�ed by using theFEED record. The format of the FEED record is the same as the INPUT record except thatthe keyword INPUT is replaced by the keyword FEED.POWER and GROUNDPower and ground for each gate is de�ned by the POWER and GROUND records, respectively.The format for these two records is, again, the same as the format for the INPUT record. Thekeyword INPUT is merely replaced by the keyword POWER or the keyword GROUND, whicheveris appropriate.

40 6. Customizing CarafeENDThe �nal record for each gate is the END record. This record marks the end of thede�nition of the gate and its format is:END gate namewhere the word END is the keyword de�ning the type of the record and the gate name is thename of the gate just de�ned. The gate name should be the same as the gate name statedin the BLOCK record de�ned previously.Comment lines can be inserted anywhere in the library �le. Comment lines begin withthe "#" symbol. See the example below for a single cell in the MCNC.LIB �le.Example# Library file for the mcnc standard cell libraryLIBRARY mcncBLOCK a2sINPUT a metal2 100 5700 metal2 100 -100INPUT b metal2 900 -100 metal2 900 5700OUTPUT q metal2 2500 -100 metal2 2500 5700FEED u1 metal2 1700 -100 metal2 1700 5700POWER Vdd metal1 3100 5100 metal1 -100 5100GROUND GND metal1 3100 -100 metal1 -100 -100END a2s

417. Running CarafeDepending on which version of Carafe was compiled for your machine, you will eitherhave a command-line interface or an X Window interface. Both versions of Carafe areinvoked the same way, using command-line
ags to set parameters. The sections belowapply for both interfaces of Carafe.In order to extract the list of realistic faults, the layout of the circuit must be analyzed.The layout can be provided to Carafe in either the Calma GDS format or the BerkeleyMagic �le format. Only rectilinear circuits can be analyzed by Carafe; circuits with non-rectilinear geometries are approximated by a series of rectangles if read using the Calma �leformat. Carafe will accept hierarchical designs, but they will be
attened to a single levelof hierarchy before the fault extraction takes place. A description of the Magic �le formatthat Carafe can read is given in Appendix I.The graphical version of Carafe requires two additional �les, a .dstyle �le and a .cmap�le. These two �les describe how the layers of material are to be drawn on the screen. Seethe Environment Variables section of the Installing Carafe chapter for information onsetting the variables CARAFE DSTYLE and CARAFE COLORMAP.7.1 Invoking CarafeTo run Carafe, type carafe at the operating system prompt (% for some systems) andpress <return> as shown below.% carafeOptions can be used to tailor the Carafe session; these options are speci�ed by typingthe particular option
ag followed by the parameter for that option. The option
ag andthe parameter must be separated from each other by at least one space. See the CarafeOption Flags section below for information on option
ags. An example of this is givenbelow.% carafe -t scmos.techThe above command will execute Carafe using the �le scmos.tech in the current directoryfor the technology �le rather than the default technology �le.The names of the technology �le and the defect statistics �le are reported at thebeginning of the session. Check to make sure that they are correct before reading in circuitlayouts.If the X Window version of Carafe was compiled, the command-line version can still beused by giving a false display name. To do this, type something like the following:% carafe -display lkjwhere lkj is a nonexistent display.7.2 Carafe Option FlagsThe following is a list of all valid option
ags for Carafe:

42 7. Running Carafe-a number This controls the \fringe area" calculation for critical areas. A non-zero number turns the addition of the fringe area on. A zero number willturn the addition of fringe areas o�. The default number is 1 for on.-c �le name This option indicates that the �le given is to be used to readcommands from. The full pathname must be speci�ed. If the last commandin the �le is not quit, commands will be read from the keyboard afterexecuting the last command in the �le.-C path This option allows the user to specify the cell search path.-d level This option sets the debugging level to level. This option is used forgenerating debugging output and should normally not be used.-D �le name This option sends all debugging messages to the named �le. The�le is truncated when it is opened.-e �le name This option appends all error messages to the named �le.-f �le name This option speci�es the fabrication defect statistics �le to be usedto rank the fault probabilities. The default �le is carafe.fab. The fullpathname must be speci�ed.-g �le name This option speci�es the �le that describes the graphics drawingstyles used for drawing the layout geometries. Look in the EnvironmentVariables section for more details on .dstyle �les.-h This option simply prints out the valid option
ags for the program andreturns to the operating system without invoking Carafe.-l Used only in the Hemlock version, this
ag speci�es the �le to be used forthe standard cell library de�nitions.-m �le name This option speci�es the �le that contains the colormap data fordrawing the layout geometries. For further information on the .cmap �les,look in the Environment Variables section.-o �le name This option indicates that all messages normally sent to the screenare to be appended to the speci�ed �le.-p char This option causes the pre�x character char to be removed from alllabels.-s number When reading in GDS format �les, non-Manhattan geometries areapproximated using a series of smaller rectangles. The default step size is 1centimicron and may generate a very large number of rectangles. This willdegrade the performance of Carafe's fault extractor. This option allows thestep size to be set to any size in centimicrons to minimize the number ofapproximating rectangles.-t �le name This option speci�es that the given �le should be used as thetechnology �le instead of the default carafe.tech. The full pathnamemust be speci�ed.7.3 OutputsThe transistor level netlist of the original circuit and any faults that were found, repre-sented as transistors, are output in the form of a .sim �le. This �le can be used directlywith most of the CAD tools from various universities. The format of the .sim �le generated

7.3. Outputs 43is given in Appendix K. Also refer to the Output Files section of the Breaks descriptiongiven in the Explanation of Faults chapter.The list of faults and their relative probabilities of occurrence are listed in the .pro �le.Each of the probabilities of occurrence reported is broken down by the di�erent layers ofmaterial causing the fault. More detail of the format of this �le can be found in Appendix J.Carafe generates a �le that can be used directly with the COSMOS switch-level simu-lator. The .src �le contains a list of COSMOS fault simulator commands to be used tosimulate the faults found by Carafe.Both Carafe and Hemlock also output a .loc �le. This �le gives information about thelocation of the wires in each fault. Please refer to Appendix H for more information on this�le.

44 8. Carafe Command Line Interface8. Carafe Command Line InterfaceThis chapter describes the Carafe commands and their syntax. In Carafe, all commandsand parameters are case sensitive. All Carafe commands must be entered in lower caseletters or they will not be interpreted correctly by the Carafe interpreter. Parameters suchas �le names are also case sensitive. For example, the two �le names, inv.mag and Inv.magare treated as two di�erent �les by Carafe.Carafe is an interactive tool that can be controlled by command line entries. Commandsare given to Carafe by typing in the desired command at the Carafe prompt:carafe>A typical Carafe session entails the reading in of the design for a circuit, performing thecircuit/fault extraction and then simulating the resulting circuit.The general format of a Carafe command is:command option parameterwhere command is any of the commands described in this chapter. The option and parameterspecify the exact sub-command and parameters to use for the command. Each of the threeparts of the command can be separated by any number of tabs or spaces. Only one commandis allowed per line and each line is limited to 80 characters in length. Any characters inexcess of 80 are ignored.The default circuit name is used in the commands which require only a circuit name asa parameter and none was given. The current default circuit name is shown in the Carafeprompt following the colon (:). If a circuit name is speci�ed for any command, the defaultcircuit name is changed to the speci�ed name.8.1 caThe ca command is used to display the critical areas for faults. The commandwill list all the rectangular regions composing the critical areas for the speci�edfault. The regions will be sorted by defect radius and layer.OptionsThe ca command requires the type of fault as an option. There arefour types, one for each type of fault extracted by Carafe:bridge speci�es a bridge faultbreak speci�es a break faultgos speci�es a gate oxide shortbb speci�es a transistor gate bridge/break faulthelp prints out a brief description of the ca command op-tions and parametersParametersTwo parameters can be given; the �rst is required and the second isoptional. The �rst parameter is the number of the fault to print andthe second is the name of the cell to look in for the fault.

8.2. extract 45Examplecarafe> ca bridge 42The above command lists the critical areas for bridge fault number42. carafe> ca bb 2 inverterThe above command lists the critical areas for transistor gate bridge/breakfault number 2 in the inverter cell.8.2 extractThis command initiates the extraction process on the named circuit or thedefault if no circuit name was given. If the circuit is hierarchical, it is
attened toone level before the extraction unless told otherwise through the no
at option.A �le containing the transistor netlist of the circuit and any faults found will becreated in the current directory with the name of the cell as the �le name witha .sim extension. The likelihood of occurrence of the faults are reported in the�le with the .pro extension. Refer to the appendices for more information.All unlabeled nodes are given a label of the form carafe # where the # is somenumber. These labels will appear on the layout (if graphics are available) afterthe circuit has been extracted. If the circuit is saved via the write command,the labels created will be saved with the circuit.OptionsThe extract command requires the name of the circuit to performthe circuit and fault extraction on. The name must be one listed bythe command list. If no circuit name is speci�ed, the default name isused.ParametersThe circuit extractor will automatically
atten a hierarchical circuit toone level, if necessary creating a new circuit. If
attening the circuit isnot desirable, specifying the no
at parameter after the circuit namewill prevent the
attening process from occurring before the extractionstarts. Note that in order to use this feature, the name of the circuitmust be speci�ed explicitly. Using the default circuit will not work.Examplecarafe> extract invThis example instructs Carafe to begin the circuit extraction on thecircuit named inv.carafe> extract adder no
at

46 8. Carafe Command Line InterfaceThis example instructs Carafe to execute the circuit extraction processon the circuit named adder without
attening it �rst. Only theconducting layers speci�ed in the adder level of the circuit will beprocessed.8.3
atThis command will take the speci�ed circuit and reduce it to a single level ofhierarchy. A new circuit will be created for the
attened version of the originalhierarchical circuit. The name of the new circuit will be the name of the originalcircuit with the string \ f" appended to it.If there is already a circuit with the new name, the
attening process will notproceed. The newly created circuit will be lost if it is not saved using the writemag command. The original circuit will still be intact, however.ParametersThe
at command requires the name of the circuit to
atten as theparameter. The name given must be one that is de�ned as shown bythe list command. If no circuit name is given, the default name isused.Examplecarafe>
at adderThis command will create a new circuit called adder f that containsthe same circuit information as the original adder circuit, but all ofit will be at one level of hierarchy.8.4 helpThis command will show all of the valid Carafe commands and a brief descriptionof what each command does. Optional parameters for the commands listed byhelp are enclosed in the angle brackets < and >. Required parameters areenclosed in the square brackets [and].The help command does not have any options or parameters.Examplecarafe> helpThe above command will print out the help information.8.5 infoThe info command is mainly used for debugging purposes, but can be used tocollect statistical information about the program as it runs.

8.6. list 47Optionsalias Prints out a list of node names and the list of other names thatwere on the same node but were not used as the �nal name ofthe node. This command only works after the circuit has beenextracted.help Prints out a brief summary of the info commands.labels Prints out the list of labels de�ned for the given circuit.labeldevices Prints out the list of label devices found during breakextraction. This command is not available in Hemlock mode.tiles Print out a list of the bounding box of the circuit in centimicronsand a count of the tiles used to represent the circuit by type oftile.ParametersFor most of the info commands, only a single circuit name need bespeci�ed (or the default circuit name).Examplecarafe> info labels invThis will print out the list of labels de�ned in the inv circuit.8.6 listThis command will show all the names of currently de�ned circuits as Carafeknows them by. These names must be used where circuit names are requiredfor other Carafe commands. Note that these may be di�erent from the namesof the �les for the circuit.The list command does not have any options or parameters.Examplecarafe> listA list of currently de�ned circuits will be shown.8.7 quitTo end the current Carafe session, execute the quit command. Note that anynew circuits created (as a result of hierarchy
attening) and not written willbe lost. No messages are printed out to warn the user of potential circuit loss.Circuits that were not created by Carafe are not a�ected by this and need notbe written in order to save them.The quit command does not have any options or parameters.

48 8. Carafe Command Line InterfaceExamplecarafe> quitThe above command will terminate the current Carafe session.8.8 readThis command is used to read in the de�nition of a circuit. After a circuit is readin, the name of the circuit appears in the list produced by the list command.The extract command can now be performed on the circuit.OptionsThe options for the read command indicate the �le format of thecircuit de�nition to be read. The following are the currently supported�le formats:gds Calma or GDS-II �le formatmag Magic �le formathelp prints out a brief description of the read optionsParametersThe parameters for the read command is a single �le name. The�le name must be a complete pathname to the �le containing thede�nition of the circuit.The �le extensions need not be speci�ed as they are assumed byCarafe. For the mag �le format, the �le extension is assumed tobe .mag and the �le extension .strm is assumed for the Calma �leformat. If the �le extension is di�erent from the assumed ones, theycan be speci�ed by appending it to the �le name.Examplescarafe> read mag invThe above command instructs Carafe to read in the �le inv.mag usingthe Magic �le format.carafe> read gds inv.stmThis command instructs Carafe to read in the �le inv.stm usingthe the Calma �le format. Note that this example does not use theassumed �le extension of the GDS format.8.9 setThis command is used to set the variables used in Carafe. The list of variablesthat can be changed by the set command are in the Options section.

8.9. set 49OptionsThe following is a list of all of the variables that can be set during thecurrent Carafe session and the types of values that the variables canbe set to.show Shows the state of all the parameters listed below.break onjo� Turns break fault extraction on or o�. Setting breakon will allow the detection of breaks to occur. Setting break o�will disable all break variables.breakI onjo� Turns inter-layer break detection on or o�. This vari-able is also set by the set break command. Default is on.breakN onjo� Turns inter-node break extraction on or o�. If com-pound faults have been disabled, then this variable has no e�ect.This variable is also set by the set break command. Default ison.breakP onjo� Turns planar break detection on or o�. This variableis also set by the set break command. Default is on.bridge onjo� Turns bridge fault extraction on or o�. Setting bridgeon will set both overlap and side to side bridge fault extractionto on. Setting bridge o� will set both overlap and side to sidebridge fault extraction to o�. The set bridge command is usedonly as a short cut to turn both types of bridge fault extractionon or o�. The state of the bridgeI and the bridgeP variablesdetermine which bridge faults will be extracted.bridger onjo� Controls whether the bridge types �le is output inHemlock mode. Default is on.bridgeI onjo� Turns overlap bridge fault extraction on or o�. Thisvariable is also set by the set bridge command.bridgeP onjo� Turns side to side bridge fault extraction on or o�.This variable is also set by the set bridge command.ccshort onjo� Controls whether the cell adjacency �le is written.This works in Hemlock mode only. Default is o�.compound onjo� Turns compound fault extraction on or o�. De-fault is on.circuit name Sets the default circuit name. The circuit name mustalready exist as given by the list command.cosmos onjo� This controls whether the .src �le is output for usewith the COSMOS switch level simulator. This variable is o� bydefault in Carafe and is disabled in Hemlock.maxdefect integer Set the maximum defect radius used for the ex-traction process in centimicrons. integer must be a defect radiusfrom the .fab �le. The default is the largest radius in the .fab �le.mindefect integer Set the minimum defect radius used for the ex-traction process in centimicrons. integer must be a defect radiusfrom the .fab �le. The default is the smallest radius in the .fab�le.

50 8. Carafe Command Line InterfacegateBridge onjo� Controls whether the gate level bridge fault list isgenerated. This works in Hemlock mode only. Default is on.gateBreak onjo� Controls whether the gate level break fault list isgenerated. This works in Hemlock mode only. The default is on.gos onjo� Turns Gate Oxide Short (GOS) extraction on or o�. GOSextraction is disabled in Hemlock mode.graph onjo� This controls whether the graph �le is generated. Thedefault is on.help Prints out a brief description of the set command options.lambda integer Sets the conversion factor used to create and read theMagic �le for a circuit (see the write command). The default is100 centimicrons per lambda unit. Changes to the lambda settingwill only a�ect subsequent �le reads. Circuits already loaded inare not a�ected by this value.loc onjo� Controls whether the fault locations �le is generated. De-fault is o�.pre�x character Causes the pre�x, character, to be removed from alllabels.pro onjo� This controls whether the fault likelihood �le is generated.Default is on.prob value Limits the faults reported to those with a likelihoodgreater than or equal to the value given. The default is 0.0.sim onjo� This controls whether the transistor level netlist is output.This is disabled in Hemlock mode. The default is on.reduceFP onjo� Turns fault primitive reduction on or o�. Thisvariable has no e�ect when compound faults have been disabled.Default is on.step integer Sets the stepsize to be used in converting non-Manhattangeometries into Manhattan geometries when reading GDS �les.The default value is 1 centimicron.tdl onjo� Controls whether the gate level netlist is generated in Hem-lock mode. Default is on.trackCA onjo� Turns fault critical area tracking on or o�. Defaultis on.transBB onjo� Turns transistor bridge/break faults on or o�. Ifintra-layer break faults have been disabled, then this variable hasno e�ect; transistor faults will not be extracted. This variableis also set by the set break command. This variable is on bydefault in Carafe and is disabled in Hemlock mode.Examplescarafe> set showThis will print out the state of all the changeable parameters.carafe> set maxdefect 2000

8.10. shell 51Sets the size of the maximum defect radius to 2000 centimicrons,assuming defect statistics have been provided for this defect in thefabrication �le.8.10 shellThis command allows operating system commands to be executed from withinthe Carafe session. This can be used to list all the �les in a directory, print a�le, or any other operating system command.OptionsThe option for the shell command is the actual command that is tobe executed by the operating system along with any parameters itmay need. If no option is given, Carafe will suspend its execution andrun a copy of the operating system shell. To return to Carafe from ashell, type exit at the operating system prompt.Examplescarafe> shellExecute a sub shell. Return to Carafe by typing exit.carafe> shell lpr a �leThis will execute the lpr program (printing on UNIX systems) andgive it a file as a parameter.8.11 sourceThis command instructs Carafe to read subsequent commands from the speci�ed�le. If the last command in the �le is not quit, Carafe will resume readingcommands from the console or the previous source �le. The source commandmay be nested, so that one source'd �le may execute the source command onanother �le. When the second �le is exhausted of commands, Carafe will resumereading and executing commands from the �rst �le just after the �rst sourcecommand. There are two �ne points here to look out for: make sure that �les donot source each other in a circular fashion and that any quit commands foundwhile source'ing a �le will terminate the current Carafe session immediately.OptionsThe source command does not have any options.ParametersThe source command requires a single �le name as a parameter. Thecomplete path must be provided.

52 8. Carafe Command Line InterfaceExamplecarafe> source inv.commandCarafe will begin reading commands from the �le inv.command as aresult of the above command. If the last command in the �le is notthe quit command, Carafe will resume reading commands from theconsole.8.12 timeThe time command reports the amount of UNIX system time and user timein seconds that the last command required to execute. The time required toexecute the time command cannot be reported.The time command has no options or parameters.Examplecarafe> read mag invcarafe> timeExecuting the time command above will report the amountof time taken to read in the inv.mag �le.Executing the time command immediately again will reportthe same time.8.13 writeThis command is used to write out the layout description of a circuit to a �le.When using the mag option, the parameter lambda (see the set command) isused to scale the dimensions of polygons placed in the output �le. The lambdavalue indicates the number of centimicrons per lambda unit written in the .mag�le. The value of lambda is placed in the .mag �le as a comment for futurereference.OptionsThe options for the write command indicates the format of the �leto write. Valid formats are given below.mag Use the Magic �le format.help Prints out a brief description of the write command.ParametersThe parameters for the write command is the name of the circuit towrite as de�ned by the list command. Only circuits shown by the listcommand can be written out. If no circuit name is given, the defaultcircuit will be written out.

8.13. write 53The name of the �le to write to can also be speci�ed by entering thename of the �le following the name of the circuit to write. Thus, towrite to a �le name other than the default, the name of the circuitmust be given.The extension of the �le created will be .mag for the Magic �le format,unless an extension is given by specifying the �le to write to.Examplecarafe> write mag invThis will create a �le called \inv.mag" and place the de�nition of thecircuit inv into it using the Magic �le format.carafe> write mag inv new inv.magThe circuit called inv will be written out to the �le \new inv.mag" inthe Magic format.

54 9. Carafe X Window Interface9. Carafe X Window InterfaceThe Motif-based graphical user interface o�ers a pleasant and easy to use environmentfor Carafe. Commands and options are set using pop-up menus instead of typing in thecommand at the Carafe prompt. The Command Line Interface chapter contains moredetailed information of what the commands do; this chapter just explains what commandsare available. With the use of buttons and option windows, settings for Carafe are displayedand changed in an easy-to-use and understand manner. The sections below describe theoptions under the main menu bar titles File, Commands, and View. Figure 9.1 showsthe main Carafe screen; this is what the user �rst sees upon loading Carafe.
Figure 9.1: Main Carafe screen9.1 File Menu

Figure 9.2: File MenuThe File menu o�ers �le related options to the user. See Figure 9.2 for the layout of thevarious menu items for File. These menu selections have the following properties/e�ects:Open... This option pops up a window o�ering settings for �le �lters, changingdirectories, and opening �les. Figure 9.3 shows the open �le window.Save... This option pops up a window for saving the current �le. The directoryand �le name are changeable so moving and renaming �les is possible.The Save window looks very similar to the Open window.

9.1. File Menu 55
Figure 9.3: Open File Window

Figure 9.4: Preferences WindowsPreferences... This option displays a window with the various settings used by Carafe.The settings are Debug Level, Fringe, Lambda, Pre�x Character, Min-imum Probability, Step Size, and Cell Path. These settings are ex-plained in the Carafe Command Line Interface chapter in the Setsection and also in the Running Carafe chapter. Figure 9.4 shows

56 9. Carafe X Window Interfacethe Preferences window.Exit This menu item will exit Carafe.9.2 Commands
Figure 9.5: Commands MenuThe Commandsmenu o�ers items for extracting the loaded circuit, getting informationon the circuit, and getting the time used for the last command. See Figure 9.5 for thehierarchy of the Commands menu. The options available are listed below.

Figure 9.6: Extract Options WindowExtract... This menu item pops up a window displaying the minimum and maxi-mum defect radius and buttons for the extract options. These optionsare equivalent to their command-line versions. Figure 9.6 shows theExtract window.

9.3. View 57Info This menu item allows the user to display circuit information suchas: Aliases, Labels, Label Devices, and Tiles. These options willdisplay their information in the command window from which Carafewas started. For more information of these commands refer to theCommand Line Interface chapter.Time This menu item gets the time used by the last command and displaysit in the command line window.9.3 View
Figure 9.7: View MenuThe View menu o�ers the user options for viewing various circuits, faults, layers, andlabels. Controls are given so the user may quickly and easily select or remove items to bedisplayed. See Figure 9.7 for the options available for this menu. These options are listedbelow.

Figure 9.8: Circuits WindowCircuits... This option lists the currently loaded circuits and allows the user toselect which one to display. Figure 9.8 shows the window for theCircuits menu item.

58 9. Carafe X Window Interface

Figure 9.9: Faults Window
Figure 9.10: CA PanelFaults After the faults have been extracted from a circuit this command canbe used to display the faults extracted. A window pops up listingthe faults along with their likelihood. The user may select faults andzoom in to their location in the layout for closer inspection. The usermay also view the critical areas by defect radius and layer. Figure 9.9shows the window for the Faults menu item. Pressing on the CAPanel button when a fault is selected will bring up another windowshown in Figure 9.10. This window shows the individual rectanglesthat form the critical area for a fault. (I use it often.)

9.3. View 59

Figure 9.11: Layers WindowLayers... This option pops up a window displaying the layers of the currentcircuit. The user can select which layers are to be displayed by pushingthe button associated with each layer. The color for each layer is alsodisplayed next to the selection button for reference. This window doesnot disappear when changes are applied, but remains visible for turninglayers on and o� quickly. The window for the Layers menu item isshown in Figure 9.11.
Figure 9.12: Labels WindowLabels This option is used to turn on or o� the display of the labels forthe circuit. The user simply enters the name of the label or regularexpression (i.e. C shell) in the box provided and selects either Addor Remove to add or remove the label or expression. The user thenselects Done and the e�ect is re
ected in the display. Figure 9.12shows the window for the Labels menu item.

60 9. Carafe X Window Interface9.4 Interface Controls
Full View Zoom In Zoom OutFigure 9.13: Zooming ButtonsThere are two methods for zooming available in Carafe. One method uses buttons, theother uses the mouse to select the area to zoom in on. Figure 9.13 shows the three buttonsthat appear in the lower left hand corner of the Carafe graphics window. These buttons areused to zoom in and out on the circuit. The other way to zoom is to hold the left mousebutton down and \window" a portion of the circuit to zoom in on; then release the mousebutton.

6110. HemlockHemlock is a special version of Carafe that is used to analyze standard cell based designs.Hemlock does not
atten the circuit since it is only interested in �nding faults at the toplevel. The bene�ts of not
attening are that extractions are faster, larger circuits can beanalyzed, and a gate level description of the fault list can be generated.Hemlock looks and acts exactly like Carafe. The only visual di�erences being the lackof a
atten option in the Extract window and the inclusion of more �le output optionslike .ccshort, .bridger, .gateBreaks, .gateBridge, and .tdl. The major underlyingdi�erence between Carafe and the Hemlock version is that Hemlock is aware of the structureof the logic cells. Thus, Hemlock knows that nodes can run through logic gates and comeout the other side of the gate. This information comes from the .lib �le.The Hemlock version of Carafe extracts faults only from a circuit's top level of hierarchy.Thus, to analyze the interconnection wires for faults, the layout needs to be organized suchthat the top level of hierarchy only contains the interconnect wires and that all of the cellsare at the next lower level of hierarchy. This allows the Hemlock version of Carafe to see thata wire runs through a cell and out to another wiring channel; Carafe, which uses a
attenednetlist, cannot do this. Hemlock does not output a .sim �le as it assumes there are notransistors in the top level cell. Faults are identi�ed in the .gateBreaks and .gateBridge�les.Hemlock and Carafe together can be used to extract almost all the realistic faults in alarge circuit more quickly than Carafe alone by using Carafe to �nd all the faults in each celland Hemlock to �nd those in the routing channel. This saves computation time, memory,and disk resources by extracting the faults from each cell once instead of for every instanceof the cell. Also the gate-level description generated by Hemlock facilitates fault simulationand test pattern generation of the extracted faults. For an example of how this is done, see[FL91].10.1 InstallingInstalling Hemlock consists of make a softlink to the Carafe executable name hemlock.The command-line to do this would look like this:ln -s /path_name/carafe hemlock10.2 Running HemlockHemlock is invoked by entering hemlock at the command prompt. Carafe looks at howit was executed to determine what version to run, i.e. Carafe or Hemlock.Running Hemlock would look like this:% hemlock10.3 InputsAs mentioned in the How To Use Carafe chapter, Hemlock requires another input�le besides the ones used by Carafe. Hemlock requires a .lib �le which gives information

62 10. Hemlockon cell libraries. This �le may be loaded with the option
ag, -l, when executing Hemlockor it can be set in the environment as explained in the Environment Variables sectionof the Installation chapter.10.4 OutputsHemlock outputs some additional �les besides the ones that Carafe outputs. Thenew �les have extensions of .bridger, .ccshort, .gateBreaks, .gateBridge, and .tdl.Please refer to Appendix B, Appendix C, Appendix E, Appendix F, and Appendix Mfor information on these �le formats. These �les are used by test pattern generators likeNemesis for Automatic Test Pattern Generation (ATPG) [Lar90] [TL92].

63Appendix A. Revision HistoryThis chapter lists all of the major changes of Carafe from one version to the next.A.1 Alpha-Alpha.128Nov1990 Comments in the technology �le were not handled right. Comments can nowbe inserted between tech sections.29Nov1990 Labels on contacts were not handled correctly. The label is now moved to oneof the layers of the contact.01Dec1990 Cell instances start with \ 0" rather than \ 1" to be consistent with theBerkeley Magic CAD tool.03Dec1990 Time command modi�ed for UNIX systems to report user and system timerather than wall-clock time.04Dec1990 Hemlock version to output TDL incorporated into Carafe. Hemlock is anexperimental version of Carafe and is not supported!05Dec1990 Fixed the problem of erroneous material being added under a contact whenreading from a GDS �le.A.2 Alpha.1-Alpha.212Dec1990 Changed to a faster cross-planar bridge algorithm.12Dec1990 Fixed errors in critical area calculation for cross-planar bridges.22Jan1991 Close window option added to the * commands.04Feb1991 Added code to check for transistors with less than two di�usion terminals.18Feb1991 Check for moving a label out of the circuit's bounding box.18Feb1991 Forgot to mark the �rst tile found in the transistor region algorithm.27Feb1991 The set bridge and break commands check for the keywords on and o� explic-itly.28Feb1991 Support for MSDOS dropped.05Mar1991 Critical areas are not computed using defect data larger than the maximumdefect size.A.3 Alpha.2-Alpha.314Mar1991 Motif user interface added.24Mar1991 Star commands changed to info commands.24Mar1991 Main Make�le changed to be more intuitive.22Apr1991 Reading the fabrication �le reports unde�ned layers right away rather thanwhen writing the .pro �le.30Apr1991 GDS parser beefed up to catch errors while reading.21Jun1991 The \-s" option was added to allow changing the step size used in convertingnon-Manhattan geometries to Manhattan in GDS �les.

64 Appendix A. Revision History28Jun1991 Bridge fault nodes are reported in alphabetical order.09Jul1991 Bug in determining the largest defect size in the fab stat �le corrected.12Jul1991 Labels on contacts are now ignored.15Jul1991 Added switches to allow selective extraction of overlap and side by side bridges.01Aug1991 Adding a contact now correctly updates the cell's bounding box.05Dec1991 Cell instance numbers in Magic �les are now preserved.15Apr1992 GDS parser now stops on �rst error rather than trying to continue.06May1992 Fixed Motif GUI bug when trying to extract without
attening the circuit.11May1992 Fixed derivation of kitty-corner LW's.11May1992 Zero width or height LW's are removed now.29Jun1992 NO TIME C preprocessor
ag added for systems without either function.A.4 Alpha.3-Alpha.3.129Jun1992 Cell instances can be given a name using the property 112 record.29Jun1992 Saved memory by not copying layer names to label objects.06Jul1992 Save panel added to the GUI.13Jul1992 Log and error �les are now appended rather than created.13Jul1992 Using time in command line used to quit.14Jul1992 Mag �le read bug �xed. Initializations weren't being done.14Jul1992 Fixed NO TIME compile bug. #de�ne in the wrong place.22Jul1992 Label pre�x char removal added.22Jul1992 All function prototypes can be used or not via NO PROTO.23Jul1992 GDS Parser reads in PATH elements now.28Jul1992 Hemlock updated for this version.28Jul1992 Auto
at cells added.28Jul1992 Labels on space used to choke the Magic �le reader.29Jul1992 GDS parser skips cells that have already been de�ned rather than stopping.31Jul1992 Settings panel added to GUI.07Aug1992 Step size comment added to mag �les.13Aug1992 Stdin
ushed when a INT interrupt occurs.17Aug1992 Extract progress messages added.18Aug1992 Bug in GDS array reading �xed.04Sep1992 Only the faults with non-zero likelihoods are output in the .sim �le and the.pro �le now.25Sep1992 The numbers in the bridge matrix of the fab �le are checked for consistency.23Oct1992 Fault modules split into bridge and break version.A.5 Alpha.3.1-Alpha.3.221Jul1993 Tech and fab �le are recorded in sim and pro �les.

A.6. Alpha.3.2-Alpha.4 65A.6 Alpha.3.2-Alpha.416Nov1992 Added the minimum fault probability level control.10Mar1993 Sub cell search path added.21Apr1993 Automatic �le format detection added.16Jun1993 Hemlock code is now compiled with Carafe.08Feb1994 Gate oxide shorts added to Carafe.14Feb1994 The GDS parser can read �les that use cells before they are de�ned.01Mar1994 Break faults added to Carafe.05Apr1994 Labels are moved to routable layers, if possible.03May1994 Added LW panel to the GUI in debug mode.A.7 Alpha.4-Alpha.512Oct1994 Fixed a bug in the GDS parser which read reals incorrectly.20Oct1994 Fixed a bug where no sim �le would be generated if no fault type was selectedto extract.08Dec1994 Added more con�g �le information in the output �les.09Dec1994 Moved the X defaults into the executable. This eliminates the need for theCarafe �le in the lib directory.05Jul1995 Added label devices to map break netlist names to I/O port names.18Jul1995 Compound intra-layer bridge faults implemented.26Jul1995 Faults now track and display critical areas instead of length-widths.01Aug1995 Added option to compute only fault probabilities and not critical areas.02Aug1995 Fixed regular expression calls in Label functions to compile correctly onHPUX machines.03Aug1995 Compound faults can be extracted over a selected range of defect radii.11Aug1995 The fault view dialog has been redesigned. Faults can be viewed by defectradius and layer.16Aug1995 Compound inter-layer bridge faults implemented.18Aug1995 Compound break faults implemented.23Aug1995 Magic �le reader moves labels on contacts to one of the layers connected bythe contact.28Aug1995 Enhanced response to XExpose events to reduce redundant drawing.31Aug1995 Break extractor handles transistors with more than two terminals correctly.04Sep1995 Transistor gate bridge/break faults implemented.13Sep1995 Carafe allows nodes to be connected to the gate and di�usion of the sametransistor.14Sep1995 The circuit is not redrawn if the zoom box is too small.19Sep1995 Added .graph output �le.25Sep1995 Carafe performs a more detailed analysis of transistor regions during circuitextraction.28Sep1995 Carafe does not extract faults in layers with zero probability.

66 Appendix A. Revision History05Oct1995 Hemlock will determine the inputs and outputs to the top level cell and putthem in the .tdl �le.11Oct1995 Uses autoconf script to check system settings and generate Make�les.08Nov1995 Fixed bug in magic �le reader that caused arrays not to work.12Dec1995 Fixed bug in GDS reader that sometimes caused reals to be read incorrectlyon architectures with a word size greater than 32 bits.20Dec1995 Carafe will allocate a private colormap if the default is full.30Dec1995 Fixed bug that caused labels to sometimes appear in the wrong place whenzooming.02Jan1996 Fixed bug in the break extractor that caused overlapping I/O ports to some-times cause problems.04Jan1996 Added application resource to specify layout label font.08Jan1996 Workaround for Motif bug in some versions of XmStringGetLtoR.

67Appendix B. .bridger File FormatPurposeThis �le lists the cell list types for bridge faults found by the Hemlock version of Carafein the .gateBridge �le. This �le is output for ATPG programs for testing inter-cell bridgefaults.DescriptionThe �le begins with lines of comments beginning with a # symbol and a space. Thegeneral format of the .bridger �le is as follows:# cellname.bridger generated by Carafe of Hemlock Version Alpha.5# Tech file: techfilename techfiledate# Fab file : fabfilename fabfiledate...type_N cell1 ... cellN...where type N is the Nth cell list type and cellN is the cell driving some node. Each type istaken from the cell list of a bridge fault in the .gateBridge �le. If a cell list appears morethan once in the .gateBridge �le, then it appears only once in the .bridger �le.ExampleHere is the .bridger �le for the example shown in Appendix F.# test.bridger generated by Carafe of Hemlock Version Alpha.5# Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994# Fab file : /tst/scmos2.0.fab Fri Oct 14 15:55:00 1994type_0 i1s aoi21stype_1 input ai2stype_2 input i1s inputtype_3 ai2s ai2s ai2stype_4 ai2s ai2stype_5 cia cic input cib

68 Appendix C. .ccshort File FormatAppendix C. .ccshort File FormatPurposeThe .ccshort �le is produced by Hemlock for use by the CCShort fault simulationprogram. The �le gives information on the pairs of adjacent cells which exist in the layout;the cell name, orientation, and instance name are given for each cell in the pair.DescriptionThe �le begins with lines of comments beginning with a # symbol and a space. Theformat of the .ccshort �le is as follows:# cellname.ccshort generated by Carafe of Hemlock Version Alpha.5# Tech file: techfilename techfiledate# Fab file : fabfilename fabfiledate...cell1_orient1_cell2_orient2 cell1_instance cell2_instance...where cell1 and cell2 are the cell names, orient1 and orient2 are each either 's' forsideways or 'n' for normal or no transform. The last two entries are the instance names forthe cell1 and cell2, respectively. cell1 is always the one on the left, cell2 is on theright, ordering is important.Example# test.ccshort created by Carafe of Hemlock Version Alpha.5# Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994# Fab file : /tst/mcnc.fab Fri Oct 14 15:54:02 1994fts_n_ai2s_n fts_0 ai2s_0ai2s_n_ai2s_n ai2s_0 ai2s_1

69Appendix D. FABITPurposeFabit is an application that creates a Carafe fabrication �le (.fab) when supplied withfabrication process information. While it is possible to create a .fab �le from scratch, it isdi�cult to take into account all the variables that can a�ect the fabrication �le. Fabit waswritten to make it easier and faster to create a reliable .fab �le.UsageFabit is invoked from the UNIX prompt by simply typing fabit. Once you have runFabit, it will ask you a series of questions. In order to create a correct .fab �le, it isnecessary to have the following available:1. A Carafe technology �le that Fabit uses to determine routeable process layers, contactnames, transistor types, and which layers can be bridged together.2. Name of the fabrication process, e.g. scmos.3. Whether Fabit should ignore defects that are to small to cause a fault on a given layer.4. Whether Fabit should ignore defects that are large enough to potentially cause com-pound faults.5. Minimum feature width on each layer of material in centimicrons.6. Minimum feature spacing on each layer of material in centimicrons.7. Gate Oxide Short (GOS) scaling factors.8. Relative probabilities of bridge or break fault occurring.9. The defect distributions by size for each layer and fault type.10. Number of defect radii to use in the distribution.11. The size of each defect radius in centimicrons.Fabit requires a Carafe technology �le to operate. It uses the tech, types, contact,and route sections of the speci�ed technology �le to determine the process layers to list inthe .fab �le. It uses the bridge section to determine which pairs of layers may be bridgedtogether and the extract section to determine transistor layers.The name of the fabrication process can be used as a description so that the user knowswhich .fab �le is being used when running Carafe. It is suggested that .fab �les withdi�erent speci�cations should have di�erent names.Fabit can do two di�erent kinds of defect size checking. It can ignore defects that areto small to cause a fault, and/or defects that could potentially cause compound faults. Adefect is considered to small to cause a bridge if r < si2 where r is the defect radius ands is the minimum spacing for layer i. A defect is considered to small to cause a break ifr < wi2 where r is the defect radius and w is the minimum width of layer i. A defect isconsidered capable of causing compound bridge faults if r > 2�wi+si2 where r is the defectradius, w is the minimum width for layer i, and s is the minimum spacing for layer i. Adefect is considered capable of causing a compound break fault is r > 2�si+wi2 where eachvariable is the same as before. If either minimum or maximum defect size checking areneeded, then Fabit must be told the minimum width and spacing rules for each layer. Ifneither are needed, then Fabit will not prompt for the rules.

70 Appendix D. FABITNext, Fabit will prompt for the GOS scaling factors. Fabit uses the layers speci�ed inthe extract section of the technology �le to determine transistor types. The scaling factorsmust be between 0 and 1 (inclusive).Next, Fabit will prompt for the relative probabilities and defect distributions for eachpair of bridgeable layers listed in the bridge section of the technology �le. If �fty percent ofthe bridges that occur are bridges from metal1 to metal1, then enter .5 when asked Enterprobability (metal1 to metal1). Fabit will then prompt for a defect distribution forthat bridge type. Once all relative probabilities have been entered, Fabit will normalize theprobabilities to 1.0. If there is more than one radius, Fabit will distribute the normalizedvalue across all the radii using the equation: p = 1rdist .Next, Fabit will prompt for the relative probabilities and defect distributions for breakfaults. Each routeable layer and contact type is considered breakable by Fabit, and eachhas its own probability and defect distribution. Once all probabilities have been entered,Fabit will normalize the probabilities to 1.0. Again, if there is more than one radius, Fabitwill distribute the normalized value across all the radii using the equation: p = 1rdist .If an improper value is entered at one of the prompts, Fabit will generate an errormessage. This usually means that the last value entered was not an acceptable value, fabitwill tell you why the value was not acceptable and prompt for the information again. Onceall the questions have been answered, Fabit will respond with \Fab �le written to disk."Data �les created by Fabit can be piped back into Fabit to create a new .fab �le. Data�les may contain comment lines beginning with a \#" character to make modifying themeasier. Note that the normalized probabilities will appear in the data �le, and may di�erfrom those entered.

71Appendix E. .gateBreaks File FormatPurposeThe .gateBreaks �le can be output when breaks are extracted in Hemlock mode. This�le describes the e�ects of the breaks at the gate level of the circuit.DescriptionThe �le begins with lines of comments beginning with a # symbol and a space. Theformat of the .gateBreaks �le is as follows:# cellname.gateBreaks generated by Carafe of Hemlock Version Alpha.5# faults extracted with defect radii of: radius, ... centimicrons.# Tech file: techfilename techfiledate# Fab file : fabfilename fabfiledate...break name (terminal list) � � � (terminal list)... ...(terminal list) � � � (terminal list)...where break name is the name of the break, such as \brk 1", which will also identify thebreak in the .pro �le. Each entry contains one line for each node involved in the break.Each line contains n + 1 terminal lists for the n breaks in that node. Each terminal listis a comma separated list of terminals, where a terminal is either an I/O port or a cellinput or output. I/O ports are identi�ed by name, cell inputs and outputs are speci�ed asinstance name/port name, where instance name is the name of the instantiation of thecell, and port name is the name of that cell's port to which the node in question is attached.Example# test.gateBreaks created by Carafe of Hemlock Version Alpha.5# faults extracted with defect radii of: 325, 265, 175 centimicrons.# Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994# Fab file : /tst/scmos1.2.fab Fri Oct 14 15:54:35 1994brk_0 (aoi21s_0/a1) (ai2s_3/q, ai2s_1/b)brk_1 (ai2s_3/b) (I6gat)brk_2 (I22gat) (ai2s_2/q)(I1gat) (ai2s_0/a)brk_3 (ai2s_0/b) (ai2s_3/a, I3gat)() (aoi21s_0/a1) (ai2s_3/q) (ai2s_1/b)brk_4 (I23gat) (i1s_1/q)(I22gat) (ai2s_2/q)(I1gat) (ai2s_0/a)brk_5 (ai2s_2/b) (i1s_0/a) (ai2s_1/q)(aoi21s_0/a1, ai2s_3/q) (ai2s_1/b)

72 Appendix F. .gateBridge File FormatAppendix F. .gateBridge File FormatPurposeThis �le lists the faults found by the Hemlock version of Carafe. The .gateBridge�le contains only the possible interconnect bridge faults, since Hemlock does not
attenthe cells of the circuit. This �le is output for ATPG programs for testing inter-cell bridgefaults.DescriptionThe �le begins with lines of comments beginning with a # symbol and a space. Eachline of the �le contains the cell names separated by an underscore ` ', nodenames separatedby space and the weighted critical area. For inter{layer bridge faults that may have severalshorts in the same fault, semicolons separate the node lists for each short. The generalformat is as follows:# cellname.gateBridge generated by Carafe of Hemlock Version Alpha.5# faults extracted with defect radii of: radius1, ... centimicrons.# Tech file: techfilename techfiledate# Fab file: fabfilename fabfiledate...cell1_..._cellN node1 ... nodeN critical_area...where cellN is the cell driving nodeN and the critical area is the critical area of the faultas found in the .pro �le. cellN can also be input, which means the node is driven by aprimary input.Example# test.gateBridge generated by Carafe of Hemlock Version Alpha.5# faults extracted with defect radii of: 325, 265, 175 centimicrons.# Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994# Fab file: /tst/scmos2.0.fab Fri Oct 14 15:55:00 1994i1s_aoi21s I13 I7 1440000.000input_ai2s I1gat I22gat 3000000.000input_i1s_input I1gat I23gat I2gat 1640000.000ai2s_ai2s_ai2s I12 I22gat I8 770000.000ai2s_ai2s I10 I12 3260000.000ai2s_ai2s I12 I22gat 1360000.000cia_cic_input_cib IA53 carafe_2 ; IB42 carafe_5 360000.000

73Appendix G. .graph File FormatPurposeThe graph �le gives a hierarchical description of a faulted circuit. However, the mainpurpose of this �le is to provide an e�cient mechanism for reporting compound break faults.A graph representation of a circuit is given with edges provided for possible breaks. A listof breaks is then given, specifying which edges are broken by each break. The e�ect ofa break on the circuit can be determined by removing the a�ected edges from the circuitgraph. All other types of faults are listed in this �le as well, but more detailed listings canbe found in other �les.DescriptionComment lines can appear anywhere in the �le. These lines will always have a # symbolat the beginning of the line.The information in this �le is divided into sections. Each section has the followingformat:section_nameentry......endwhere section name is either netlist, brknodes, bridgebreaks, bridges, breaks, or gos.The following is a description of each of these sections.netlistThis section describes all the two-way transistors in the circuit. Each transistor appearson a line with the following format:trans_# type gate diff1 diff2 x y min_length avg_length width areawhere trans # is the name of the transistor, such as trans 42, type is the transistor type,gate, diff1 and diff2 are the names of the nodes connected to the gate, di�usion terminal1, and di�usion terminal 2 of the transistor, respectively, x and y are an approximatelocation of the transistor, min length is the minimum channel length, avg length is theaverage channel length weighed by the width of the channel, width is the width of thechannel, and area is the total area of the transistor. See the Transistors section in theCircuit Extraction chapter for exactly how these values are computed.brknodesThis section is present only when breaks have been extracted. It de�nes a subgraph foreach electrical node in the circuit. There are two types of entries in the section. The �rstde�nes a subgraph for each electrical node in the circuit and the second describes how thissubgraph connects to the rest of the circuit. The �rst entry type has the following format:node node_name edge1 ; edge2 ; ... ; edgeN

74 Appendix G. .graph File Formatwhere node name is the name of the electrical node whose subgraph is being de�ned, andedgeN is an edge in the subgraph. The edges are described by the two vertices in thesubgraph that are connected by that edge. Each edge is separated by a semicolon.There is a special case when a subgraph does not have any edges. In this case, the nodeentry will have the following format:node node_name vertex_namewhere node name is the name of the electrical node, and vertex name is the name of thesingle vertex in the subgraph.The second entry in the section describes how vertices in the preceeding subgraphconnect to objects in the original circuit. There are three di�erent types of connections:transistor terminals, I/O ports, and subcell ports. The following is the format for atransistor connection:connect trans vertex_name trans_# diff|gate [1|2]where vertex name is the name of a vertex in the preceeding subgraph, trans # is the nameof a transistor de�ned in the netlist section, diff|gate indicates a connection to the gateor di�usion terminal of a transistor (respectively), and [1|2] indicates which di�usion thevertex is connected to if a di�usion connection is being de�ned. Transistor connections willnot be present in Hemlock mode.The following is the format for an I/O port connection:connect io vertex_name io_portwhere vertex name is the name of the subgraph vertex, and io port is the name of theI/O port to be connected to.The following is the format for a subcell port connection:connect subcell vertex_name instance_name/port_namewhere vertex name is the name of the subgraph vertex and instance name/port name isa cell input or output; instance name is the name of the instantiation of the cell, andport name is the name of that cell's port to which the vertex in question is attached. Theseconnections will only be reported in Hemlock mode.There are several ways of thinking about these connect entries. They can be consideredunbreakable edges to objects in the original circuit subgraph. They may also be consideredproperties of the subgraph vertex itself, where each vertex can have more than one property,and each property can appear on more than one vertex.bridgesThis section lists the bridge faults extracted by Carafe. Each fault has an entry withthe following format:brg_# node_listswhere brg # is the name of the bridge fault and node lists are lists of nodes that arebridged by the fault. Consider the fault which bridges the following nodes:(Node1 Node2 Node3 Node4) (Node5 Node6)where the two sets of parenthesis indicate two independent shorts in the same bridge fault.The .graph �le would contain the following entry for this faultbrg_42 Node1 Node2 Node3 Node4 ; Node5 Node6

75breaksThis section lists the break faults extracted by Carafe. Each fault has an entry with thefollowing format:brk_# edge1 ; ... ; edgeNwhere brk # is the name of the break and edgeM an edge which is broken by this fault. Theedges are speci�ed as in the brknodes section, by the two subgraph vertices separated bythe break. Each edge is separated by a semicolon.bridgebreaksThis section lists the transistor gate bridge/break faults extracted by Carafe. Each faulthas two entries with the following format:bb_# brk edge1 ; ... ; edgeNbb_# brg trans_# ... trans_#where bb # is the name of the fault, edgeN is an edge de�ned in the brknodes section thatisbbroken by the fault, and trans # is a transistor listed in the netlist section whosedi�usion terminals are shorted by the fault.gosThis section lists the gate oxide shorts extracted by Carafe. Each fault has an entrywith the following format:gos_# node1 node2 trans_# ... trans_#where gos # is the name of the gate oxide fault, node1 and node2 are the two electricalnodes shorted, and trans # are the transistors a�ected by the fault.ExampleThe following is a complete example of a .graph �le generated by Carafe.# i1s.graph generated by Carafe Version Alpha.5# units: 1 tech: scmos# faults extracted with defect radii of: 450, 250 centimicrons.# Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994# Fab file : /tst/test.fab Fri Oct 27 13:08:16 1995netlisttrans_0 n a q GND 700 1150 200 200 700 140000trans_1 p a q Vdd 700 4150 200 200 1300 260000endbrknodesnode GND GND_3 GND_0 ; GND_3 GND_1 ; GND_3 GND_2connect trans GND_0 trans_0 diff 2connect io GND_1 GNDconnect io GND_2 GNDnode q q_4 q_0 ; q_5 q_1 ; q_5 q_2 ; q_4 q_3 ; q_5 q_4

76 Appendix G. .graph File Formatconnect trans q_1 trans_1 diff 1connect trans q_2 trans_0 diff 1connect io q_0 qconnect io q_3 qnode Vdd Vdd_3 Vdd_0 ; Vdd_3 Vdd_1 ; Vdd_3 Vdd_2connect trans Vdd_0 trans_1 diff 2connect io Vdd_1 Vddconnect io Vdd_2 Vddnode a a_5 a_0 ; a_4 a_1 ; a_4 a_2 ; a_6 a_3 ; a_7 a_4 ; a_7 a_5 ; a_7 a_6connect io a_1 aconnect io a_2 aconnect trans a_3 trans_0 gateconnect trans a_0 trans_1 gateendbridgebreaksbb_0 brk a_3 a_6bb_0 brg trans_0bb_1 brk a_0 a_5bb_1 brg trans_1endbridgesbrg_0 GND a qbrg_1 GND qbrg_2 a qbrg_3 Vdd abrg_4 Vdd qbrg_5 Vdd a qbrg_6 GND aendbreaksbrk_0 a_2 a_4brk_1 q_4 q_5brk_2 Vdd_0 Vdd_3 ; Vdd_2 Vdd_3brk_3 GND_2 GND_3brk_4 a_5 a_7brk_5 q_2 q_5brk_6 GND_0 GND_3brk_7 GND_1 GND_3brk_8 q_1 q_5 ; q_2 q_5brk_9 Vdd_2 Vdd_3brk_10 a_1 a_4 ; a_2 a_4brk_11 Vdd_1 Vdd_3brk_12 q_0 q_4 ; q_3 q_4brk_13 GND_0 GND_3 ; q_2 q_5brk_14 a_5 a_7 ; a_6 a_7

77brk_15 Vdd_0 Vdd_3brk_16 q_3 q_4brk_17 q_1 q_5brk_18 GND_0 GND_3 ; GND_1 GND_3brk_19 a_1 a_4brk_20 q_0 q_4brk_21 a_4 a_7brk_22 a_6 a_7endgosgos_0 a q trans_1gos_1 Vdd a trans_1gos_2 a q trans_0gos_3 GND a trans_0end# end of file

78 Appendix H. .loc File FormatAppendix H. .loc File FormatPurposeThe .loc �le gives a bounding box, and thus the approximate location, for each nodein each bridge fault.DescriptionThe �le begins with lines of comments beginning with a # symbol and a space. Theformat of the .loc �le is as follows:# cellname.loc generated by Carafe Version Alpha.5# Tech file: techfilename techfiledate# Fab file: fabfilename fabfiledate...brg_N node1 ... nodeN bbox1 ... bboxN...where brg N is the name of the bridge, nodeN is the node name, and bboxN is the boundingbox for nodeN. This box consists of four space separated integers which represent minx,miny, maxx, and maxy (in centimicrons).Example# test.loc generated by Carafe Version Alpha.5# Tech file: /tst/mcnc.tech Fri Jul 9 14:01:37 1994# Fab file: /tst/mcnc.fab Wed Jul 12 10:16:26 1995brg_0 fts_1/u1 fts_1/GND 8200 1100 8500 6900 0 1100 8800 2700brg_1 I13 carafe_4 6500 1100 7500 15400 5100 4100 7100 6700brg_42 I1gat I22gat I23gat 100 100 600 200 0 100 200 600 100 0 800 400

79Appendix I. .mag File FormatPurposeThis �le format is one of the formats in which Carafe can read and write circuitdescriptions. This is the same format as the Berkeley Magic �le format used by the layouteditor, Magic. Please refer to the Magic manual for more detailed information of the Magic�le format.Magic File RecordsA Magic �le is made up of a series of records each contained on a single line. Thefollowing is a description of each of those records that Carafe utilizes.comment linesComment lines can be placed inside a .mag �le by placing the # character in the �rstcolumn of the line. When Carafe is used to create a .mag �le, a comment line is placed inthe .mag �le which indicates the number of centimicrons each unit in the �le represents.magicThis line is used to identify that the �le is a Magic format �le. It contains the singleword magic.techThis line de�nes the name of the technology used to generate the .mag �le. This lineconsists of the word tech followed by the name of the technology used in the �le. If thetechnology does not match the current technology being used, Carafe will not read the �le.timestampThe timestamp line contains the word timestamp followed by a number that showsthe time that the �le was created. The time is represented as a single number showing thenumber of seconds since 00:00 GMT January 1, 1970.<< layer >>The layer lines indicate which layer of material will be speci�ed in the �le next. Itconsists of the name of the material enclosed in two chevrons as shown in the name ofthis section. All polygons speci�ed after this line are taken to be polygons of the speci�edmaterial until another one of these lines is encountered in the .mag �le. The names of thelayers of material must match those given in the technology �le under the types section.A space must appear after the second < and before the �rst >.

80 Appendix I. .mag File FormatThere are two special layer statements. These are ones where the layer speci�ed iseither labels or end. In the �rst case, the line indicates that the lines to follow de�ne notpolygons, but labels that exist in the circuit. The end line indicates the end of the Magic�le and Carafe will ignore the rest of the .mag �le.rectThese lines de�ne rectangular regions of material. These lines consist of the word rectfollowed by the coordinates of the lower left corner of the rectangle and then the coordinateof the upper right corner of the rectangle. The coordinates must be integer values separatedby white space.rlabelThe rlabel lines de�ne labels in the circuit. These lines contain the word rlabel followedby the layer of material that the label may be attached to or space.Following the layer are the coordinates of the lower left and upper right corners ofthe label. This implies that the label may be a rectangle, but most labels use the samecoordinate for both corners and thus become points. Since Carafe can only represent labelsas points, it will use the center of rectangular labels as the location of the label.After the coordinates is an integer indicating the position or orientation of the label.This number is ignored by Carafe.Finally the actual text for the label is given as any string of characters not including thenewline. Carafe adds the restriction of no intervening white space characters in the text.circuit instantiationSubcircuits can be de�ned in a circuit by using the following �ve lines:use �le name use-idarray xlo xhi xsep ylo yhi yseptimestamp timetransform a b c d e fbox xbot ybot xtop ytopThe use line de�nes the �le name of the circuit to be used and the instance use-id.The array line is optional and is used for the case where the cell is actually an array ofthe cell speci�ed in the use line. xlo and xhi are the indices of the array in the x direction(inclusive). ylo and yhi are the indices of the array in the y direction (inclusive). Eachelement in the array is separated from the next element in the x direction by xsep and inthe y direction by ysep. These integers are in lambda units and are converted to centimicronsusing the current lambda setting in Carafe. The array is separated into individual elementswhen read into Carafe and thus there are no arrays of elements in Carafe.The timestamp line is optional and is ignored by Carafe.The transform line de�nes the transform to be applied to the sub circuit to convertthe sub circuit coordinates to the higher level circuit. The six integers specify the parts ofthe transformation matrix as shown below.

81a d 0b e 0c f 1The last line is the box line which provides the bounding box of the sub circuit being readin.Example# lambda 100magictech scmos<< metal2 >>rect 10 -3 100 5use inv.mag inv 1array 0 3 50 0 4 75timestamp 34214553transform 1 0 0 0 1 0box -100 50 34 88<< labels >>rlabel metal2 5 7 5 7 0 carry<< end >>

82 Appendix J. .pro File FormatAppendix J. .pro File FormatPurposeThis �le contains the list of faults, ordered by relative likelihood of occurrence fromlargest to smallest.The fault with the highest total critical area is given the rank of 1. All other faults arethen assigned an increasing rank number based on their total critical area.The sum of the relative probabilities is 1.The total critical area for the fault is given followed by a break down of the probabilityby the layers causing the fault. In each of the broken down categories, the percentage thatthe category contributes to the fault's overall likelihood is given as is the likelihood for thecategory.DescriptionEach fault has at least three lines in the .pro �le. The �rst line begins with the wordfault: and the name of the gate node of the fault, such as bb 99. Next comes lists of nodeswhich are a�ected by the fault, the �rst on the same line with the gate node. Each listappears on a separate line that begins with the type of fault that a�ects the nodes, such asbrg: or brk:. See the Explanation of Faults chapter for more on the meaning of theselists. Transistor gate bridge/breaks will have two di�erent types of lists, one for the bridgesand one the breaks. Next comes a line with the rank, relative probability of the fault, andthe total critical area of the fault.After that, there are one or more lines breaking down the total likelihood of occurrencefor the fault by the layers of material causing the fault. These lines begin with the wordlayer: followed by the name of the layers that contain the fault and the percentages,shown as decimal values. The given layer's contribution to the critical area is followed bythe actual computed critical area on the given layer(s).Comment lines can appear anywhere in the �le. These lines will always have a# symbolat the beginning of the line.ExampleHere is part of a .pro �le created by Carafe.# test.pro generated by Carafe Version Alpha.5# faults extracted with defect radii of: 325, 265, 175 centimicrons.# Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994# Fab file : /tst/scmos1.2.fab Fri Oct 14 15:54:35 1994fault: bb_3 brk: (i1_15 and i1_16)brg: (t3_1 to t4_1)rank: 1 prob: 0.056205 total: 6060000.000layer: ptransistor 1.000 6060000.000fault: brg_10 brg: (t3 to t4)rank: 2 prob: 0.056205 total: 6060000.000

83layer: pdiffusion to pdiffusion 1.000 6060000.000fault: brk_5 brk: (t4_0 and t4_1)rank: 3 prob: 0.046745 total: 5040000.000layer: pdiffusion 0.452 2280000.000layer: pdcontact 0.135 680000.000layer: metal1 0.413 2080000.000fault: brg_8 brg: (IA to IB to i1)rank: 4 prob: 0.013477 total: 1820000.000layer: polysilicon to metal1 0.813 1480000.000layer: polysilicon to polysilicon 0.187 340000.000fault: bb_11 brk: (i1_13 and i1_16)brk: (i1_6 and i1_8)brg: (carafe_1_0 to carafe_2_0)brg: (t1_1 to t4_1)rank: 5 prob: 0.011315 total: 1220000.000layer: ptransistor 1.000 1220000.000fault: brk_7 brk: (GND_2 and GND_5)brk: (GND_3 and GND_5)brk: (carafe_1_0 and carafe_1_1)brk: (carafe_2_0 and carafe_2_1)rank: 6 prob: 0.010383 total: 1100000.000layer: ndiffusion 1.000 1100000.000fault: brk_22 brg: (VO_2 and VO_7)brg: (VO_5 and VO_7)brg: (VO_6 and VO_7)rank: 7 prob: 0.007850 total: 1060000.000layer: metal1 1.000 1060000.000fault: gos_10 brg: (GND to carafe_5)rank: 8 prob: 0.001166 total: 70000.000layer: ntransistor 1.000 70000.000fault: brg_40 brg: (I12 to i1s_1/Vdd)brg: (I1gat to I23gat)rank: 9 prob: 0.000096 total: 60000.000layer: metal1 to metal2 1.000 60000.000fault: brg_93 brg: (I1gat to I23gat)brg: (I3gat to I8 to i1s_1/Vdd)rank: 10 prob: 0.000014 total: 10000.000layer: metal1 to metal2 1.000 10000.000

84 Appendix K. .sim File FormatAppendix K. .sim File FormatPurposeThis �le speci�es the netlist of a circuit which can be used for simulation. Carafe reallyoutputs only a subset of the full sim �le speci�cation as only a few of the constructs arenecessary. There are three versions of this �le, .sim, .bridge.sim, and .break.sim. The.sim �le contains the netlist of the circuit without faults, the .bridge.sim �les containsthe netlist with bridge and gate oxide faults, and the .break.sim contains the netlist with2-way break and 2-way transistor gate bridge/break faults. Carafe does not support the.break.sim �le for compound faults. The Explanation of Faults chapter discusses thesefault types in more detail.DescriptionThis �le begins with �ve comment lines which indicate the version of Carafe whichgenerated the �le, the technology of the circuit, the number of centimicrons that correspondto each unit of the �le, the defect sizes used, and the technology and fabrication �les usedduring fault extraction.Each line of the �le represents a single transistor in the circuit. The �rst character of theline indicates the type of the transistor as speci�ed by the technology �le and the layout ofthe circuit. The next three words in the line indicate the gate, source, and drain nodes thatthe transistor is connected to. Following the names of the nodes is the length and widthof the transistor and an x-y coordinate of some point inside the gate of the transistor. Forfault transistors, the x-y coordinate indicates the approximate location of the fault.The .bridge.sim �le includes the two types of bridging fault extracted by Carafe,bridges and gate oxide shorts. Gate oxide shorts are distinguished by the gate node namegos # where the # symbol is the number of the gate oxide short (not the rank). Bridgesare distinguished by the gate node name brg # where the # symbol is the number of thebridge fault (not the rank). Since each transistor will have only one source and one drain,compound bridges must be represented with multiple transistors. These transistors aregiven the same gate name and are listed together. Consider the fault which bridges thefollowing nodes:(Node1 Node2 Node3 Node4) (Node5 Node6)where the two sets of parenthesis indicate two independent shorts in the same bridge fault.The .bridge.sim �le would contain the following transistors for this bridge fault:n brg_42 Node1 Node2 200 4000 800 600 g="Sim:In"n brg_42 Node2 Node3 200 4000 800 600 g="Sim:In"n brg_42 Node3 Node4 200 4000 800 600 g="Sim:In"n brg_42 Node5 Node6 200 4000 800 600 g="Sim:In"The .break.sim �le includes the two types of breaking faults extracted by Carafe,breaks and transistor gate bridge/break faults. Break faults are distinguished by the gatenode name brk # where the # symbol is the number of the break fault (not the rank).Transistor gate bridge/break faults are distinguished by the gate node name bb # wherethe # symbol is the number of the bridge/break fault (not the rank). Each bridge/breakfault will have two entries in the .break.sim �le, one for the bridge and one for the break.

85They are distinguished by the type of the transistor. The break transistor type will be thatof a regular break transistor in the .break.sim �le, and the bridge transistor type will bethat of a regular bridge transistor in the .bridge.sim �le.Carafe also indicates where I/O ports connect to the break graph vertices in the.break.sim �le. The format is as follows:= break_vertex io_portwhere break vertex is the name of a break netlist vertex and io port is the name of anI/O port.

86 Appendix K. .sim File FormatExample for i1s.sim (an inverter)| units: 1 tech: scmos| i1s.sim generated by Carafe Version Alpha.5| Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994| Fab file : /tst/mine.fab Thu Sep 14 13:33:30 1995p a q Vdd 200 1300 700 4150n a q GND 200 700 700 1150Example for i1s.bridge.sim| units: 1 tech: scmos| i1s.bridge.sim generated by Carafe Version Alpha.5| faults extracted with defect radii of: 650, 450, 250 centimicrons.| Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994| Fab file : /tst/mine.fab Thu Sep 14 13:33:30 1995p a q Vdd 200 1300 700 4150n a q GND 200 700 700 1150n brg_0 GND q 200 4000 1050 700 g="Sim:In"n brg_1 a q 200 4000 800 2800 g="Sim:In"n brg_2 GND a 200 4000 250 600 g="Sim:In"n brg_3 Vdd a 200 4000 700 4850 g="Sim:In"n brg_3 a q 200 4000 700 4850 g="Sim:In"n brg_4 Vdd q 200 4000 1050 4600 g="Sim:In"n brg_5 GND a 200 4000 800 600 g="Sim:In"n brg_5 a q 200 4000 800 600 g="Sim:In"n brg_6 Vdd a 200 4000 250 4850 g="Sim:In"n gos_0 Vdd a 200 4000 700 4150 g="Sim:In"n gos_1 a q 200 4000 700 4150 g="Sim:In"n gos_2 GND a 200 4000 700 1150 g="Sim:In"n gos_3 a q 200 4000 700 1150 g="Sim:In"Example for i1s.break.sim| units: 1 tech: scmos| i1s.break.sim generated by Carafe Version Alpha.5| faults extracted with defect radii of: 650, 450, 250 centimicrons.| Tech file: /tst/mcnc.tech Thu Oct 13 17:32:31 1994| Fab file : /tst/mine.fab Thu Sep 14 13:33:30 1995p a_0 q_2 Vdd_0 200 1300 700 4150n a_3 q_0 GND_0 200 700 700 1150p bb_0 a_3 a_6 200 4000 700 1150 g="Sim:In"n bb_0 GND_0 q_0 200 4000 700 1150 g="Sim:In"p bb_1 a_0 a_5 200 4000 700 4150 g="Sim:In"

87n bb_1 Vdd_0 q_2 200 4000 700 4150 g="Sim:In"p brk_0 GND_0 GND_3 200 4000 550 700 g="Sim:In"p brk_1 GND_2 GND_3 200 4000 1350 200 g="Sim:In"p brk_2 GND_1 GND_3 200 4000 0 200 g="Sim:In"p brk_3 q_0 q_5 200 4000 900 1900 g="Sim:In"p brk_4 q_3 q_4 200 4000 1050 1200 g="Sim:In"p brk_5 q_4 q_5 200 4000 1100 2700 g="Sim:In"p brk_6 q_2 q_5 200 4000 900 3450 g="Sim:In"p brk_7 q_1 q_4 200 4000 1050 4300 g="Sim:In"p brk_8 Vdd_0 Vdd_3 200 4000 550 4750 g="Sim:In"p brk_9 Vdd_1 Vdd_3 200 4000 0 5400 g="Sim:In"p brk_10 Vdd_2 Vdd_3 200 4000 1350 5400 g="Sim:In"p brk_11 a_2 a_4 200 4000 250 1200 g="Sim:In"p brk_12 a_1 a_4 200 4000 250 4300 g="Sim:In"p brk_13 a_6 a_7 200 4000 700 1600 g="Sim:In"p brk_14 a_4 a_7 200 4000 400 2300 g="Sim:In"p brk_15 a_5 a_7 200 4000 700 2800 g="Sim:In"= a_2 a= a_1 a= Vdd_2 Vdd= Vdd_1 Vdd= q_3 q= q_1 q= GND_2 GND= GND_1 GND

88 Appendix L. .src File FormatAppendix L. .src File FormatPurposeThis �le contains the COSMOS fault simulation commands to simulate the netlist thatCarafe generates. This �le is obsolete and will be removed from future versions of Carafe.DescriptionFor each fault, there are two COSMOS commands given in the .src �le. The �rstcommand inserts the fault site into the list of faults to simulate. The second command setsthe gate of the fault transistor to the unfaulty state as given by the technology �le.This �le can be executed once in COSMOS by entering the command:> source inv.srcThis would instruct COSMOS to read in the list of commands in the �le inv.src. Thisshould be done as one of the �rst few instructions during the COSMOS simulation. Faultsimulation on the circuit can now be done by setting the inputs to the circuit according tothe test pattern and then executing the COSMOS cycle command.Examplefault brg_2@1set brg_2:0The two lines above are the COSMOS commands that would be used to fault simulatethe node brg 2. In this case, brg 2 will be simulated for a stuck-at-1 fault. The �rst lineinstructs COSMOS to enter the fault into the lists of faults to simulate and the second linesets the node to the non-faulty state.

89Appendix M. .tdl File FormatPurposeThis �le is the gate level netlist description of the unfaulted circuit that Hemlock outputs.The .tdl �le output by the Hemlock version of Carafe is derived from the Tegas DescriptionLanguage �le format.DescriptionThis �le begins with a line giving the module name, which is normally the name of thecircuit �le. The next two sections are for the inputs and outputs of the cell. The followingline contains information about which version of Hemlock created the �le. The next line isthe USE line and is for future usage. After the DEFINE line is the list of the cells in theform output instance = input instance. Refer to Figure M.1 for more information.
a1

I7gat I7
q

I13

I10

a2

b
NAME: aoi21s_0

TYPE: aoi21sFigure M.1: First line of the de�ne section.ExampleMODULE : c17;INPUTS :I1gat,I2gat,I3gat,I6gat,I7gat;OUTPUTS :I22gat,I23gat;DESCRIPTION : TDL file created by Carafe of Hemlock Version Alpha.5USE :DEFINE :aoi21s_0(q=I7) = aoi21s(a1=I10,a2=I7gat,b=I13);ai2s_3(q=I10) = ai2s(a=I3gat,b=I6gat);ai2s_2(q=I22gat) = ai2s(a=I8,b=I12);i1s_1(q=I23gat) = i1s(a=I7);

90 Appendix M. .tdl File Formati1s_0(q=I13) = i1s(a=I12);ai2s_1(q=I12) = ai2s(a=I2gat,b=I10);ai2s_0(q=I8) = ai2s(a=I1gat,b=I3gat);END : MODULE;

References 91References[Fer87] F. Joel Ferguson. Inductive Fault Analysis of VLSICircuits. PhD thesis, CarnegieMellon University, Department of Electrical and Computer Engineering, October1987.[Lar90] TracyLarrabee. E�cientGeneration ofTestPatternsUsingBooleanSatis�ability.PhD thesis, Stanford University, Department of Computer Science, STAN-CS-90-1302, February 1990.[GCV80] J. Galiay, Y. Crouzet, and M. Vergniault. Physical versus logical fault models inMOS LSI circuits: Impact on their testability. IEEETransactions on Computers,C-29(6):527{531, June 1980.[JF93] Alvin Jee and F. Joel Ferguson. Carafe: An inductive fault analysis tool forCMOS VLSI circuits. In Proceedings of the IEEE VLSI Test Symposium, pages92{98, 1993.[MAJC92] P.C.Maxwell, R.C. Aitken, V. Johansen, and I. Chiang. The e�ectiveness of iddq,functional and scan tests: How many fault coverages do we need? In Proceedingsof International Test Conference, pages 168{177. IEEE, 1992.[Rog94] Je�rey S. Rogenski. Extraction of breaks in rectilinear layouts by plane sweeps.Technical Report UCSC-CRL-94-21, University of California at Santa Cruz,Baskin Center for Computer Engineering, May 1994.[SMF85] J.P. Shen, W.Maly, andF.J. Ferguson. Inductive fault analysis ofMOS integratedcircuits. IEEE Design and Test of Computers, 2(6):13{26, December 1985.[WB81] T.W. Williams and N.C. Brown. Defect level as a function of fault coverage.IEEE Transactions on Computers, C-30(12):987{988, December 1981.[SS95] Gerald Spiegel and Albrecht P. Stroele. A Uni�ed Approach to the Extraction ofRealistic Multiple Bridging and Break Faults. University of Karlsruhe, Instituteof Computer Design and Fault Tolerance, 1995.[FL91] F. Joel Ferguson and Tracy Larrabee. Test Pattern Generation for RealisticBridge Faults in CMOS ICs. In Proceedings of the International Test Conference,pages 492{499, 1991.[TL92] Tracy Larrabee. Test pattern generation using boolean satis�ability. IEEETransactions on Computer-Aided Design, pages 4{15, January 1992.[RF94] Je�rey Rogenski and F. Joel Ferguson. Characterization of Opens in LogicCircuits. In Proceedings of IEEE ASIC Conference, 1994

