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Introduction

The MeldC language was developed at Columbia University to bring to-
gether several important strains of computer theory into a single program-
ming language. In its present incarnation (October 1992), the language is
a “meld” of conventional C and support for object-oriented programming,
parallel (or concurrent) programming, and distributed programming (to
allow access to objects and data stored in remote locations).

We can refer to Meld(C’s “present incarnation” because the implementa-
tion of the language and the language itself are both not yet finalized. This
manual, therefore, can be thought of as a progress report on the current
state of the research and programming that has gone into the creation of
this language.

This manual covers not only MeldC keywords, syntax, and currently-
implemented features, but also a simple (and, one hopes, painless) intro-
duction to some areas of computer science research that spurred creation of
the language. This approach was taken so that readers who are not famil-
iar with the peculiarities of operating systems theory, the object-oriented
programming paradigm, and network communication might gain a quick
overview of those subjects and be able to better appreciate MeldC’s fea-
tures. For the sake of style, these overviews are knitted into the discussions
of keywords and syntax, so more educated readers be forewarned.

For clarity’s sake, we have devised certain conventions in the presenta-
tion of the material herein. New terms that are not keywords of the MeldC
language appear in boldface. Keywords of MeldC found within discussions
and example programs appear in a different typefont. The wide outer
columns on each page can be used for notes. Each of the first three chap-
ters introduces a key aspect of MeldC and concludes with a large example
program. This example program can be typed into a terminal, compiled,
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and run. Explanatory comments are found with the example code, to detail
the use of constructs described previously in the chapter.

The intent of these conventions is to make the material easy to follow
and easy to refer back to during creation of MeldC programs. A series of
appendices in the back of the manual detail areas not covered in the main
chapters, including an annotated sample program, the BNF grammar for
MeldC, and discussion of MeldC in relation to the UNIX operating system?.

The manual was set by the INTpXword-processing program, illustrations
were created via the idraw graphics program, and the final product was
printed as a group of Postscript-formatted files.

Our work on this manual was aided by those computer scientists who
created the language: Professor Gail E. Kaiser; research staff associate
Travis Winfrey; doctoral students Wenwey Hseush, Steven Popovich, and
Felix Wu; and graduate students James Lee and Esther Woo, all of Columbia
University; plus Larry Katzman, a visiting undergraduate student from the
University of Pennsylvania. In addition, Chung Lin, Stephen Mauldin,
James Show and Carolyn Philippe participated as project students.

Contributions to the authors can be made in the form of small, un-
marked bills deposited in a hollow tree stump in New Jersey.

Howard Gershen
Erik Hilsdale

October 6, 1992

1UNIX is a trademark of Bell Laboratories.



Chapter 1

Object-Oriented
Programming

1.1 The World According to Objects

Good programming style dictates that frequently-used sections of code
should become separate functions or subroutines, called by a main func-
tion sending the appropriate parameters out to be processed, like so many
dirty shirts sent out to the local dry cleaners. These subroutines are smaller
versions of functions, and may call yet smaller functions to do their own
dirty work. The subroutines and functions are generally written to process
data in a linear manner, and a particular programmer may have to re-
code the same basic functions, in slightly different ways, in several different
individual programs.

What’s wrong with this picture?

The problem is that writing computer programs in the 20th Century
shouldn’t be dictated by methods from the 15th Century, before the era
of movable type and interchangeable parts. Gutenberg could reuse pieces
of type to create different verses of his Bible, but most programmers must
recode each algorithm wholesale whenever a new piece of code is written.

Through Object-Oriented Programming (OOP) the same code can
be used over and over again in identical or slightly different contexts. To

11



12 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

be more precise, it is the inferface which exhibits reusability, while the
underlying code may or may not be changed at some time in the future.

Programmers who use C have already experienced a very simple type
of reusable code: the routines found in the library of header files. Rather
than have each programmer create a new set of I/O routines, for example,
a library of functions is available for common use. The printf() function in
a given implementation of C may have been based on a different algorithm
than the printf() in one’s own version of C, but both functions still require
the same arguments in the same order.

Object-oriented programming takes this idea a step further. Instead of
having a set of separate functions to be called from within a main program,
OOP allows the creation of little program-units executing on their own,
with their own set of private variables and executable code, distinct from
a main program. These little program-units can send messages to and
receive messages from other little program-units, which are the objects of
object-oriented programming.

Each object is an abstract data type, much like simpler abstract data
types such as integers, characters, and other very low-level elements of a
programming language. Like spies who deal with important information on
a “need-to-know” basis, programmers don’t need to know the underlying
basis of abstract data types. This is the concept of encapsulation, also
known as information-hiding: an object can be used in a program even
though the inner code and variables are a complete mystery.

What is important is the interface the object presents to the world.
Other objects or programs can only access an object’s innards through a
specified set of openings. Imagine a bank where the tellers sit behind frosted
glass. Each teller has only one opening in the glass, through which you can
pass withdrawal slips and from which you can get cash. The bank may
have completely renovated that part of the building behind the glass, or
hired new tellers, or adopted a new method of processing withdrawals, but
you don’t have to know that as long as you can get your money.

There 18 a certain amount of trust involved here. A programmer must
trust that the object will do whatever is necessary to produce a specified
result. Likewise, the creator of the object must trust others to preserve the
interface when they recode the insides of an object for better efficiency. The
end result i1s that debugging is eased because the code within the objects
is isolated and assumed to be error-free.
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Before we pass through that all-important interface and see what lies
inside an object that makes i1t so special, let’s consider a broad overview of
how to organize the fruits of our object-oriented programming labors.

1.2 Classes

Any set of objects that can be classified together into a group consisting
of some common characteristics can be called a “class.” For example, the
animal and plant worlds were organized according to kingdoms, families,
phyla, and so on by Linneas; atoms were organized by Mendeleev into a
chart of the elements; and baseball cards have been organized and reorga-
nized by kids in a number of different ways.

Classifying can be broad (“All the boys on the left; all the girls on the
right!”) or specific (“SWFNMNS, 115 lbs., 5’57, blue eyes, brown hair,
newspaper professional, seeks SWMNMNS, over 5’107, college-educated,
professional, able to bend steel in his bare hands, leap tall buildings in a
single bound, and run to the altar faster than a speeding locomotive.”),
but to make a classification scheme useful it’s important to establish some
sort of hierarchy. Darwin’s system of evolution is one familiar hierarchical
device; a family tree 1s another.

We might set up a classification scheme for bagels. The class known as
bagel could consist of: plain bagels, raisin bagels, salted bagels, pumper-
nickel bagels, sesameseed bagels, poppyseed bagels, etc. We could make a
slight reorganization of this system by including poppyseed and sesameseed
bagels under a single category: seeded_bagel. Now sesameseed bagels are
in the class of seeded_bagel, which is itself in the superclass bagel. This
shows a simple hierarchy at work.

Now let’s make things a little more complicated: where do doughnuts
fit in here?

Oh no, one might say, doughnuts aren’t bagels.

But doughnuts share some of the same characteristics of bagels: they’re
circular breakfast foods made from dough and most of them have a hole
in the center. So, if we look at doughnuts in this way, then they could be
considered a member of the bagel class.

On the other hand, we might turn the view around and agree with the



14 CHAPTER 1. OBJECT-ORIENTED PROGRAMMING

:3 class breakfast food

class bagel
subclass of

breakfast_food

class seeded_bagel
subclass of
bagel
my-plain-bagel
bagel object
my-pumpernickel-bagel
bagel object

my-poppyseed-bagel
seeded_bagel object

my-sesameseed-bagel
seeded_bagel object

Figure 1.1: The bagel Family Tree

comedian who once joked, “A bagel is a doughnut dipped in cement.” And
then we’d say that bagel was a subclass within the doughnut class.

Object-oriented programming deals with some of these same issues: how
can pieces of code be grouped together by their common characteristics,
and then how can these commonalities be used to save a programmer from
reinventing the wheel every time she or he has to write a program that will
manipulate data in a way that’s been done before?

The organization of objects within a particular OOP program is de-
termined by the concept of class. As we saw above in the discussion of
bagels, objects can be grouped according to common characteristics. The
determination of what qualifies as a group of common characteristics is a
subjective decision: the bagel class could have existed on its own, or been
part of the doughnut class.

To distinguish the relative positions of certain elements within any class
hierarchy, we can say that each subclass is a specialization of a given class,
while a object is an instance of a class. A seeded _bagel is a bagel; a
sesameseed bagel is an instance of the class of seeded bagel. These ob-
jects can inherit ways of dealing with data (just as you might have inherited
a good sense of smell or myopia) from their ancestors in the hierarchy. Thus
the seeded bagel has all the characteristics of the regular bagel, but with
the addition of seeds.

This concept is not too difficult to understand if we remember that
objects are basically abstract data types. In conventional C, a number can
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class complex number
float real, imag;
methods:
float get real() { return (real); }
float get imag() return (imag);
void set value(float x, float y) {
real X;
imag V4

float add to(complex number y) {
real += y.get real();
imag += y.get imag();

end class complex number

Figure 1.2: A Class of Complex Numbers

be represented as an integer (int), a float, a double, or a long. These are
all instances of abstract data types (objects) representing numbers. When
a particular int called john is assigned the value of 7, while another int
called martha is assigned 8, both john and martha are still int’s, even
though they contain different values.

1.2.1 Defining A Class

Suppose we were to define a class of complex numbers. Each object of that
class would need to remember its value, provide some access to the value,
and have some procedure for setting the value. One possible implementa-
tion is for each complex number object to keep values for the real part and
the imaginary part of the complex number, and allow those values to be
set, accessed, and added to another complex number. Our design translates
very naturally into MELDC (see Figure 1.2).

Each object of the class complex number keeps its value in the in-
stance variables real and imag. These are the private variables of each
complex number object. The instance variables are declared in conventional
C syntax, and can be assigned a value upon declaration. If we wanted to
initialize all new objects of class complex number to 4 + 3¢ for some reason,
we would say so in the class definition, just like C:
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class ComplexNumber ::=
float real = 4;
float imag = 3;
methods:

Instance variables must be declared before the method keyword of the
class definition, so that they might be available for use by those methods.

The method section contains all the methods for the class in the form of
C-like functions containing conventional C and MELDC statements. Take a
look at the method called add_to. It takes as a parameter another object of
the complex number class, referred to as y. To add two complex numbers
together, we retrieve the values of the real and imag instance variables of
y via y’s own get_real and get_imag() methods!. These C-like functions
treat the instance variables as if they were global variables of a conventional
C program, but they are the only functions that have any access to them.
Methods declared in other objects cannot reference these variables.

This encapsulation of values (as we noted previously) is a key means by
which objects can “compartmentalize” information. Just as conventional
C can limit the scope of certain values by treating them as static variables,
an object created in MELDC (and most other object-oriented programming
languages) can hide the information it holds from other objects seeking to
directly access, or even change, a given value.

1.3 Objects

The MELDC concept of objects is relatively simple to understand. One
important thing to remember is that each class is like a cookie cutter,
shaping every object it creates in its own image. Objects have types, just
as variables do in conventional C. If an object myzucchini was of type
zucchini, for example, it would be declared so in the area where variables
are declared. Figure 1.3 shows the skeleton of a feature in which the object
myzucchini is declared globally.

INote the special syntax. It resembles the way in which we can access a part of a
struct written in conventional C.
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feature vegetables i have known
interface:
implementation:

zucchini myzucchini;

e o o

end feature vegetables i have known

Figure 1.3: Global Variable Declaration

1.3.1 Object Creation and Destruction

There is a difference between conventional C variables and MELDC objects,
however. When a conventional C variable is declared, space for the variable
is automatically created. When a MELDC object is declared, only the name
is locked in place; the object has yet to be created. That object can be
created at any time, but possibly the most common time would be when
it 1s declared. For example, if we wanted to declare and create an object
myzucchini of class zucchini, we would write:

implementation:
zucchini myzucchini = zucchini.Create();

Though the construction zucchini.Create() is peculiar to MELDC, note
that the assignment is otherwise similar to C syntax: we are simply assign-
ing to a variable a value in the same statement as its declaration.

An object 1s destroyed in an analogous manner. The statement

zucchini.Destroy(myzucchini);

will handle it. Notice that both .Create() and .Destroy() come after the
class name.
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1.3.2 The init() and dest() Special Methods

init() and term() are methods that are called on object creation and de-
struction, respectively. If a class definition includes an init () method, then
whenever an object of that class is created the statements of the method
will be executed. Likewise, when an object is destroyed the statements in
it’s dest () method, should one exist, will be executed.

The init () method is especially important to MELDC programs. Since
there is no main() procedure as there would be in conventional C, there
is no predetermined place for execution of the program to start. Instead,
whenever the first object of the program is created (as well as whenever any
other object is created), a method begins executing. Thus, not every class
need have an init() method, but one in every program certainly should;
if there were none, nothing at all would happen on program execution.

1.3.3 The MELDC Function Call

After objects are created, what good are they? How can the MELDC pro-
gram access them? Well, what we have called methods bear a strong
resemblance to conventional C functions, and classes resemble conven-
tional C programs with those classes’ instance variables corresponding to
conventional C global variables. In fact, we manipulate objects in MELDC
with the MELDC function call, much like the one in conventional C 2.
The syntax is a bit different but familiar nonetheless: since there are a
number of objects in the system at any one time, a function call must have
some way of distinguishing between the alike-named methods of different
objects. MELDC does this by calling a method by its name and the name
of its object®. The basic syntax is:

object. method (parameters)

Like C function calls, MELDC function calls return a value (unless the
method called was declared type void), so the function call can be a single
statement ended with a semi-colon, or it can be embedded in some larger
statement in an expression. As we will see in Chapter 3, there is more to

2We can use conventional C function calls within methods as well, but they manipu-
late data within an object rather than interact with other objects.

3Once again, we can harken back to conventional C and note a similarity to the way
a structure’s members are addressed.
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these function calls than meets the eye, for they are closely related to the
idea of message passing.

As a final note, if an object is dynamically created—that is, if it is not
created at the same time it is declared—a little extra syntax is needed for
the MELDC function call. If the return value is needed then the type of the
return value must be explicitly cast. For example, if an object foo had a
method bar() that returned an integer value, the assignment of its return
value to variable gurble would look like

gurble = (int) foo.bar();

1.3.4 Special Objects

There are a number of special objects (actually special object names) of
differing importance to MELDC. Possibly the most important is $self, a
self-reflexive object which, when used within a method, refers to the object
executing the method. One important place we use $self is in the init ()
method to start up the program, if the object 1s to send itself a message
when it is created. If, for example, we had a class dreamer with a method
pinch me which “awakens” him or her, we might want to have that method
called as soon as a dreamer object is created. We could do that with the
following init () method:

void init() { $self.pinchme(); }

Less used than $self, but important nonetheless, is $sender. $sender
refers to the object that called the current method with the MELDC func-
tion call. Without this special object, objects have no way of telling who
calls their methods, a piece of information that is sometimes very useful.

1.4 Features

A MELDC program is built of features. If objects are black boxes, limited
to access through their selectors, then features are the black casing around
a set of black boxes. Inside of a feature are the global objects, variables,
and classes that everything inside the feature can reference.
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feature feature-name

interface:
imports and exports
implementation :
global declarations
class definitions

end feature feature-name

Figure 1.4: The Skeleton of a Feature

The MELDC feature has a skeleton, shown in figure 1.4. It has two
parts, the interface and the implementation. The interface contains
information on how it interacts with other features in the program, while
the implementation is the actual body of the feature, the global variable
declarations and class definitions. In programs with only one feature the
whole program will be in the implementation section and the interface will
be empty.

Though the feature skeleton is fairly clear, there are a few things to
remember about it:

e Each file of a program contains exactly one feature. The name of
the feature and the name of the file that stores 1t are completely
unrelated. They may be the same or different, whatever makes the
programmer’s life easier.

e Class don’t have to be defined before use in the implementation sec-
tion, but they must be defined somewhere in the feature.

e Occasionally, MELDC programs will require #include directives. These
must come before the first line of the feature: “feature feature-
name’ .

e structs, typedefs and unions must be declared in the implementa-
tion section. They may be #included before the feature, but then
they must be inside a .h file.

e The feature-name in “end feature feature-name” is optional, but
should be included in the interest of clear programming.
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1.4.1 Multiple Features and Interfacing

Though each file in a MELDC program consists of only one feature, each
program may be many features long. And just as objects have ways of
interfacing with other objects—mnamely, the MELDC function call—features
must be able to interact with other features when multiple features are
used in a program. The way features interact is through exporting and
importing classes and objects.

A feature can import a class or object that is defined in another feature.
Once it does so, the class or object behaves (and is accessed) as if it were
defined locally. That is, if feature 4 imports a class that 1s defined in feature
B, that class can be used in feature A as if it were defined there. Likewise
for objects.

There is a catch, though. Feature A cannot import anything from fea-
ture B unless feature B has exported it. In other words, a feature can’t
just steal something from another. . .it must be offered it. This is another
data-abstraction aid: imagine a feature that dealt with keeping an object-
oriented database. Though the feature might have all kinds of the classes
and objects necessary for upkeep of the database, it would only offer certain
of these for access to other features. The rest would operate invisibly from
the standpoint of the larger MELDC program.

Each MELDC feature has a special place to list imports and exports,
its interface to other features. This interface section lies at the start
of the feature and begins, not surprisingly, with the keyword interface
(which may be followed by a colon for clarity). Here the programmer lets
MELDC know how the feature is to interface with other features, through
the imports and exports he or she declares.

Importing an object or class 1s straightforward. To import something,
we list it on a line after the keyword imports. We must know the name
of the class or object to import, and the feature to import it from; the
syntax for this is featurename[classname]. If we wanted to import the class
vegetable and the object broccolil that were exported from a feature
called health foods, for example, a line of the interface section would be:

imports health foods[vegetable], health foods[broccolill

but we needn’t really go into that much detail. We can import everything
exported from health _foods, objects and classes, with
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imports health foods

Putting the object- or class-name in square brackets specializes the import,
while using only the feature-name imports everything exported from that
feature.

Exports from a feature are even easier, since the feature doesn’t have
to be specified. To export something, use the line “exports something”
in the interface section—that something can be the name of any class or
globally defined object. We can even export more than one thing on a line
by separating the items with commas: if we wanted to export the objects
broccolil and cauliflower33, and the class vegetable, we could write

exports broccolil, cauliflower33, vegetable

The ordering of the interface section is important in one respect: All
imports must be declared before anything is exported. Apart from that,
anything goes. The class, objects and features listed on each line need not
be ordered, and MELDC doesn’t care whether all exported or imported
items are on the same line, each one on its own line, or something in be-
tween. The only reason for ordering imports is that if a class or object of
a particular name is imported, and another class or object with the same
name is imported, only the first is actually imported; the second is ignored.
For example, consider the interface line:

imports foofeature, barfeature

If both features foofeature and barfeature had the definition of a class
bazclass, only foofeature’s bazclass would be imported.

There 1s one caveat about exporting and importing. When a feature
imports an entire feature, or exports itself with only one export declaration,
it only imports or exports the classes in the feature. Objects cannot be
automatically imported or exported by putting an entire feature in the
interface section, they must be imported or exported on an individual basis.

1.4.2 Declaration and Scope Rules

There are four scope levels at which a variable can be declared. The lowest
scope 1s that of local variables. Local variables are just those that are
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class lemming ::=
static int number of lemmings;
methods:
void init() {
number of lemmings++;
if (number of lemmings > 100)
jump off cliff();
else
mill around aimlessly();

end class lemming

Figure 1.5: A Class of Lemmings

declared in the body of a method, and are analogous to local variables in C
functions. Local variables are only visible and accessible within the method
in which they are defined.

One step higher are instance variables. As an instance of a particular
class, an object has its own internal copies of variables from the original
definition of the class. These instance variables have the same names as
those that exist in their class’s definition, but their scope is limited to the
object. As twins can be born with identical characteristics (their instance
variables) but diverge at birth from this ideal of equivalence and lead dis-
tinct lives, so, too, objects take on unique identities after they are created?.

There are cases, though, where we would like to have a variable that
can be accessed and modified by any object of a given class. Say we had a
class whose objects behaved differently depending on the number of other
objects of its class in existence. Imagine, for instance, that we had a class
called lemming whose objects would do one thing when there were less than
a hundred other lemmings on the system, and another if they were over-
populated. How could the objects of class lemming (or just “lemmings” for
short) detect how many other lemmings there were? One simple way would
be to make a global counter number of lemmings which is incremented ev-
ery time a new object is created. This would solve the problem, since all
lemmings could access the global variable. Everything else in the feature
could access the variable as well, however—not good data encapsulation.

% As we will soon see when we look at inheritance, objects are not necessarily created
through asexual reproduction. They may have more than one parent class.
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MELDC’s method for hiding a variable from the rest of the feature yet shar-
ing it with all objects of some class is the class variable: If, in the class
definition, an instance variable is declared static, a separate variable is
not created for each object; one class variable is created and all objects of
that class can reference it. A correct definition of our lemming class—using
class variables—is shown in Figure 1.5.

At the highest level of scope are global variables. Declared at the start
of the implementation section of the MELDC program, they are visible
everywhere in the feature. They may be accessed and changed from every
method of every object defined in the feature or imported into 1t.



Chapter 2

Inheritance

Our conception of object-oriented programming and how it is implemented
in the MELDC language has so far covered issues of class, object creation,
and message passing between those objects. We now come to an important
variation on the idea of class in MELDC: the concept of inheritance.

In MELDC, classes can be grouped into larger categories called super-
classes, as in the animal world species can be grouped into ever-larger
categories, from genus up to kingdom. When a class is grouped into a more
encompassing class, it is said to inherit from its superclass. To view from
a different angle, subclasses can be said to “reuse” information in existing
superclasses to create something more specialized.

There are as many ways to visualize inheritance as there are natural
examples that deal with inheritance. One way to look at inheritance is the
Venn diagram of Figure 2.1. In it, the class bagel inherits from classes
torus and breakfast _foods, and is shown as being inside the intersection
of its two superclasses. The class seeded_ bagel is shown as inside the class
bagel, which it inherits. Since seeded_bagel is also inside the intersection
of torus and breakfast foods, it is clear that it inherits from its “grand-
superclasses” as well.

Venn diagrams tend to get complicated quickly, though, so in this man-
ual, inheritance schemes will be illustrated by directed, acyclic graphs, like
family trees (see Figure 2.2). It is important that the graph be acyelic, so
as to avoid the case of an object inheriting from a class which inherits from
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class torus
class breakfast food

class seeded bagel

class bagel

Figure 2.1: A Venn diagram of an inheritance scheme.

itself — as 1n real life, you can’t be your own father... unless your name
i1s Oedipus.

Up to this point we’ve learned how to write simple MELDC programs
that let us make instances of classes and send messages between those
instances. Unfortunately, we still lack the ability to create more specific
classes, and that is truly a gaping hole in our use of the language. One of
the most fundamental tools of object-oriented programming is inheritance.
Without it, our picture of the MELDC world 1s rather childlike: it’s as if
the animals, minerals, and vegetables in our world are different from one
another (as they should be) but all the animals are dogs, all the minerals
are “dirt,” and all the vegetables are. .. “yucky green stuff.”

The world we’d like MELDC to reflect is the diverse world of a prominent
zoo or natural history museum, one in which we can group subclasses of
animals under the most general class animal. Perhaps mammals and insects
fall under animal, and perhaps lemmings fall under mammals. In that case
any instance of the class lemming would also be an instance of the classes
mammal and animal. Yet we would also like the ability to start with a
general class and construct more specific instances of it. These two views
of inheritance are really two sides of the same coin, the “top-down” side
and the “bottom-up” side, and both are valid in MELDC.

2.1 Creating Classes using Inheritance
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R

class torus -
class breakfast_ food

class bagel

X ——b y
X inherits from y

class seeded |

Figure 2.2: An inheritance scheme for class seeded_bagel.

In the inheritance scheme of Figure 2.2 the class bagel inherits every aspect
of both torus and breakfast _food, and includes in itself some aspects of
its own. It, in effect, merges the attributes of its parent classes with its
own attributes to make a satisfying whole. It is as if we lived in a world
where a child started off remembering everything his or her parents knew
(which would make school quite a bit easier for the child of two university
professors). Thus, to define a class that inherits from other classes (or to
define a class that inherits from just one other class), we use MELDC’s
merges keyword:

class class-name merges parenly, parents... ::=

where the parents are the superclasses we want class-name to inherit from.
Our bagel, for example, was the product of two parents: the class of
breakfast_foods and that of torus. So to define the class bagel we would
start off with:

class bagel merges breakfast foods, torus ::=

and continue on with bagel’s instance variables and methods.

Just as children can’t be too picky about who their parents are, MELDC
allows parent classes to come from almost anywhere, even other features,
without forcing us to specifically import them. When we inherit from out-
side the current feature, we use similar syntax as when we import classes,
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but the “imported” class is only visible to i1ts inherited children: nobody
else can use it to Create() objects or for anything else. If (as is likely)
the definitions of the classes torus and breakfast food aren’t in the same
feature—say, torus is in the feature solids—we can still create class bagel
(without any import statements in the interface section) starting with:

class bagel merges breakfast foods, solids[torus] ::=

where we assume the class breakfast _foods is in the current feature, and
the class turus is in the feature solids. Even if the torus class or the
solids feature is imported in the interface section, this inheritance syntax
must be followed.

2.2 How Objects with Inheritance Behave

We now understand how to write classes which inherit from other classes,
but what is so special about them. In terms of MELDC, what does it mean
to say that a child class inherits “aspects” of its parent or parents?

We already know that an object consists of its methods and its instance
varibles, both of which are defined in the object’s class definition. Well,
if an object’s class inherits from another class, then the object has the
instance variables and methods of both its base class and of all inherited
classes. Thus, in Figure 2.2, an object of class bagel will have all instance
variables specified in the definition of the class bagel, as well as all instance
variables defined in the classes torus and breakfast _foods. Likewise, it
will have access to the methods defined in all three classes.

So, we use the keyword merge because inheritance merges the struc-
ture of all inherited classes into one great superstructure. This kind of
thing, however, can have reprecussions if there are conflicts in names in the
inheritance hierarchy.

2.3 Conflicts and Override Inheritance

It’s not precicely true that MeldC’s classes are merged by the merge state-
ment of inheritance, but the only way to tell this is when there are name
conflicts.
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Figure 2.3: Basic Override Inheritance.

2.3.1 Inheritance of Methods

Consider the class hierarchy of Figure 2.3, where A is the child of B and B
is the child of C. If all three classes have the method foo(), then A’s foo()
will be executed when an object of class A receives the foo() message. If
only B and C have definitions for foo(), however, B’s foo() will execute.
In short, the method closest to the base class is executed, and nothing else.

Conflicts in this rule are caught at compile time. In Figure 2.4, for exam-
ple, both B and C are equally “close” to A, as A inherits both classes. If B
and C have definitions for method bar ()—and if A has no such definition—
the program will not compile.

2.3.2 Masking and the :: Operator

There is a problem with this notion of inheritance: It appears as if certain
methods can be permanently inaccessible in the inheritance hierarchy. If,
in figure 2.3, classes B and C both have a method foo(), C’s foo() will
never run when foo() is called in an object of class A. No methods were
“starved out” like this under merge inheritance.

There is indeed a way to access these “stranded” methods. If one
method is overridden by another, it can still be accessed and called by
the construction
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{
B ©

Figure 2.4: Multiple Override Inheritance.

class-name: : method-name

For example, consider a version of Figure 2.3 where B and C have foo()
methods. If A_obj is an object of class A, then the MELDC function call

A obj.foo();
will trigger B’s foo() method, but the call
A obj.C::foo();

will trigger the method defined in class C.

There are a number of possible cases which might arise under override
inheritance. All of these refer to the inheritance hierarchy of Figure 2.4:

e If both A and B have methods of the same name, the program will
compile, and objects of class A will have direct access to A’s method.

e If both B and C have methods of the same name, and A doesn’t have
such a method, the program will not compile due to the conflicts
between A’s parent classes.

e If A, B and C have methods of the same name, the program will
compile and objects of class A will use A’s method.
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2.3.3 Inheritance of Instance Variables

Inheritance of instance variables with name conflicts is very similar to
method inheritance. Instance variables of the same name in the inheritance
hierarchy are not precicely merged. Rather, space is reserved for each in-
stance variable of each class in the hierarchy. Normally, all methods of a
class can access that class’s instance variables and any of it’s superclasses’
instance variables, so long as there isn’t a name conflict. If there is such
a conflict, a class can only access one variable of each name without using
the :: operator. So, in Figure 2.3, if classes B and C each had an instance
variable named cost, an object of class A (or B, for that matter) could
only access B’s cost variable. But this statement, using the :: operator,

cost = cost + C::cost;

would add the value of C’s cost variable to B’s. So all instance variables
are accessible, but those overridden by “closer” variables must use some
extra syntax.

2.3.4 Type Conflicts

Type conflicts are not allowed under override inheritance. If any of the
classes in an inheritance hierarchy have instance variables of the same name
and same type, a “private” copy is made for each variable name in each
subclass where they are declared, and each class’s methods have access to
that class’s variable. If any of the classes have instance variables of the
same name and different types, however, the program will not compile, as
MELDC cannot be sure how to store values in conflicted variables. Any
instance variables of the same name with different types inside any inheri-
tance hierarchy will stop compilation and signal an error.

2.3.5 Virtual parent versus Non-virtual parent

Figure 2.4 describes the inheritance scheme correctly up to a point, but a
little extra work needs to be done by the programmer to get an inheritance
scheme to look like that. Examine Figure 2.5. Both pictures in this figure
describe the same inheritance scheme, where classes B and C both inherit
from D, and class A inherits from B and C. The left side of the figure is
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int foo() ; int foo(); int foo();
Int X; int X int X;

S
()
()

Figure 2.5: Virtual parent verses Non-virtual parent

the Virtual Parent scheme for inheritance. This scheme will create a parent
once and only once. So in this figure, classes B and C share class D. There
is also the scheme used in the right side of the figure, Non-virtual Parent.
For this scheme, there is a separate class object for each inheritance. So,
both classes B and C have a copy of class D.

When the Virtual parent scheme is used, less memory will be used since
all duplicate objects will not be created. This is one of the reasons that
this method is used by MeldC, as compared to using the Non-virtual parent
scheme. This scheme is also used for the reason of traversing inheritance
trees and for the reason that it makes the removal of objects easier.

2.3.6 $self versus $vself

Both $self and $vself are used by the programmer to specify the method to
use when the method exists multiple times in an inheritance hierarchy. For
an example of what we mean, see Figure 2.6. In this case, we have three
different methods named foo. One in object B, another in object C and one
more in object D. The question is how to access the one that you want to
use. That is where the $self and $vself come in. The $vself is used to state
that we want to use the foo that is closest to the base of the inheritance
tree. So when object E makes a call $vself.foo(), we will start at the
bottom of the inheritance tree and search upwards until a foo is found. So
using the figure, we will check and see that object A does not have a foo.
The next object to check is object B. This does have a foo, so this foo will
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Figure 2.6: Virtual parent verses Non-virtual parent

be executed when the call is made in object E.

Now, let’s say that object D wants to use the foo that it has. It can do
this by simply making the call $self.foo(). The $self call states that we
want to find a foo, but instead of starting at the bottom of the inheritance
hierarchy, start at this object making the call. Another way of looking at
this is, the $vself said to start at the base object, the lowest in the hierarchy.
The $self says to start at the base, but make the object making the call the
temporary base object. So when object D makes the above call, the foo it
owns will be executed.

As another example of $self, when object A makes the call $self.foo(),
we will check object A for a foo. Since there is none, go to object B. Here
we will find a foo and execute it. Notice that the call $vself.foo() from
object A will equal the $self.foo() call.

2.4 Conflicts and Merge Inheritance

There is another, experimental inheritance semantic on name conflict in
MeldC, one that is more complicated, yet perhaps more powerful. This
“merge” semantic (not to be confused with the MELDC keyword merge)
behaves the same as MELDC’s normal, override, semantic in the absense of
name conflicts, but has intriguing ways of handling those conflicts.
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Figure 2.7: An Inheritance Tree

MELDC handles instance variable conflicts very simply. In figure 2.7,
for example, if we had defined an integer variable arthur both in class A2
and A6, any object of class A8 would have an integer variable arthur. In
fact, we could declare arthur in all the inheritance tree’s classes and we’d
get one variable—as long as the variable is always declared of the same

type.

If one instance variable arthur is declared int and another float, how-
ever, the program won’t compile. For different classes to share an instance
variable name this way, all must know and agree on that variable’s type.
The same applies to making a variable static to turn it into a class vari-
able: either all declarations of a variable in an inheritance tree must be
static, or none can be.

2.4.1 Multiple Methods

The merge semantic doesn’t consider multiple declarations of a method in
an inheritance tree a conflict. That is, declaring a method ford() in both
A6 and A2 doesn’t force a compiler error. MELDC will simply execute allthe
methods named ford() whenever an object receives the proper message. If
all of the classes A0 to A6 had definitions of ford(), and an object of class
A8 received the message ford(), a method from all seven classes would be
executed. If an object of class A5 received the message, however, only A0,
A1, A3, A4, and A5’s ford() methods would be executed. Simple.
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Not quite. The complications to this simple scheme (and yes, there
always do have to be complications) are the order in which the methods
are executed, and the way method parameters are handled.

Remember when we said that the order of the classes in the merges
statement was important? Well, it is, but only if there are methods that
are defined more than once in the resulting inheritance tree. The ordering
of the merges statement defines the order in which a class’s superclasses
are searched for methods: methods are executed in the order of a depth-
first traversal of the superclass tree, starting with the first parent class and
continuing to the last.

Let’s say the method zaphod(x) was defined in each of the classes of
Figure 2.7. If an object of class A6 were sent the message zaphod(42), the
methods would be executed in the order:

A0, A1, A4, A2, A3, A5, A8
not
A0, A1, A4, A2, A5, A3, A8

Note that the depth-first-traversal doesn’t pass from A5 to A1l: Any class’s
methods can be executed only once, so the depth-first-traversal will not
enter classes it has already passed through.

For methods that return values, the value returned to the calling object
is the return value of the last method called. For Figure 2.7, that would be
the method in A6.

There’s another problem with calling more than one method: How can
we be sure their parameters as well as their names agree? MELDC doesn’t
know how to handle two methods in the same inheritance tree with a dif-
ferent number or type of arguments, and so will generate a compiler er-
ror unless the program has some helpful extra information in it. With-
out the programmer doing something extra, the MELDC compiler will not
accept, for example, having zaphod(int x, float y) defined in A0 and
zaphod(char x) defined in A5, and the program will not compile.

When we declare a method, we can not only declare its parameters, but
also the parameters that method will take if defined in an immediate parent.
To clarify this, let us suppose that in A6 we have a method zaphod(int x)
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and in A5 we have zaphod(int x, int y). Also, suppose that we knew
we wanted to execute A5’s zaphod(x,y) always with the parameter x equal
to y, and both of them equal to the parameter of the message: That is, if
an object received the message zaphod(3), we would execute zaphod(3,3)
in A5. We could accomplish this by defining zaphod in class 46 as:

int zaphod(int x), A5(x,x) {
}

If we wanted some parameter change in A2 we would declare it in A5: All
parameter changes would then percolate up if we send a message to an
object of class 486.

In general, defining a method in a class C that inherits a method of the
same name is done by:

return-type method-name (parameters), super;(superi-params), ...

Where all of the super-params are either parameters of the method as
defined in C or instance variables of class C.

2.5 The -merge Compiler Switch

The behavior of merge inheritance is selected with a compiler switch, -merge.
When a MELDC program is compiled, the whole program is compiled with
either merge or override inheritance. Thus they cannot be used together
in the same program. Normally this shouldn’t be a problem, but it is im-
portant to remember which files were compiled with override and which
with merge inheritance when dealing with separate compilation; such files
cannot be linked together.

A final note of caution: The syntax of inheritance (as well as multiple
inheritance) is the same under both merge and override inheritance:

class A merges B ::=

Don’t let the merge keyword mislead you: The inheritance behavior could
be either merge or override, depending only on the compiler switch.
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Concurrency

3.1 Inter-Object Communication

Up to this point we have considered the definitions of objects and classes,
the creation of objects and classes, and the structure of object hierarchies
as systems of classes. Basically, we have been looking at a vertical scheme.
Now it’s time to stop looking up and down, and start looking around at
eye-level.

We already know that classes are able to inherit characteristics from
other classes, and to “pass on” new characteristics to their own descendants.
Those characteristics may be instance variables or methods of dealing with
variables.

Information, then, is being transmitted through families of classes much
as humans can pass on family legends from generation to generation. The
information passed by the classes, though, is of a limited sort because mem-
bers of the same generation (instances of the same class) or their cousins
(the instances of other classes) so far have no means of direct communica-
tion with each other. We have created these objects to act as if they were
mini-programs within a common file, but now they might just as well be
separate programs in separate files with no connection. Something crucial
1s missing from this scheme of things.

We briefly examined something called “message passing” in the previous
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A > B
H

Figure 3.1: Selective Message Reception

section, but only in the simplest way. Like procedure calls, where one
program can “pass the baton” to another, message passing enables objects
to pass information between each other. These messages may be values
needed for equations, instructions to start or stop an action, requests for
more data, or any other transfer of information needed to commence or
complete an action.

The catch, however, is that a given object will only react to incoming
information if it receives what it is allowed to receive. For example, an ob-
ject that only accepts a certain form of character string will be ill-prepared
to accept a message consisting of a floating point number to be converted
to scientific notation. Like DNA, where the amino acid thymine can only
pair off with adenine, and guanine only accepts cytosine, Object A may
“accept” messages of the type passed to it by Object B, but not those
from Object C, because that object does not know the correct form of an
acceptable message.

We can see in Figure 3.1 a simple representation of this sort of selectivity.
Let Object (A) be an object that can only receive arrow-type messages, and
transmit semi-circle-type messages. Object (B), on the other hand, happens
to only transmit square-form messages; messages passed by it to (A) will
be rejected because the interface for (A) only shows the outside world a
receptor for arrow-forms. This 1s an example of the principle of uniform
external interfaces we saw in the previous chapter. No matter how many
times (B) tries to poke (A) with its message, (A) will turn a cold shoulder.
If, however, a third object, one that does transmit messages with the arrow-
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format, like (D), tries to send a message, (A) will respond. Tt is all quite
literally a matter of the impossibility of fitting a square peg in a round (in
this case an arrow-shaped) hole.

Now consider (B). Once it receives a message it can process, it notes
the source of its incoming message, invokes the method(s) associated with
such a message, and transmits the result back to the message’s source. A
square-form reply from (B) will only go to (D), the object that sent the
original message, and to no other. (D) clearly has a receptor for the type
of messages (B) can transmit.

This specialization of response can be seen in the human body. If a lit
match is waved under your bare foot, a message will be sent up through the
nerves to the pain center of your brain, processed, and a response message
(probably in the form of an instruction to jerk the foot away from the
match) will be sent to that particular foot, not to the other foot nor to a
hand. If, however, a feather 1s waved under your foot, a different message
will be transmitted to your brain: this one will go to your pleasure center
and result in a response message instructing that foot to curl its toes. In
each case the FOOT object sends out a different message to the BRAIN
object; the interface of the BRAIN that can respond to a pain message
takes that instruction; the interface in charge of pleasure messages takes
the second instruction. The BRAIN object keeps track of the origin of the
message and sends a directed reply appropriate to the nature of the original
message back to the sender of that message.

We’ve already discussed the MELDC function call (in Section 1.3.3),
where one object sends out a message to another and waits for a reply before
continuing. This technique of targeting messages to a particular object
may be further enhanced by something called asynchronous message
passing. Here an object is permitted to send out a message, continue its
business, and receive a reply at some later time!. It is clear that such a
system provides for more efficient use of objects: all of our objects can be
working at the same time, rather than having half of them waiting for the

other half to finish before they can continue.

1Or never get a reply, if one is not needed.
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3.2 Message Passing in MELDC

Communication between objects in MELDC is implemented through mes-
sage passing. Messages are passed by a statement of the form of C function
calls

method_name (parameters)

and are sent from one object to another. In conventional C, if we wanted
to call the function factorial on the argument 84, the syntax would be
factorial(84). In MELDC, we would instead send factorial(84) as a
message to an object containing the method factorial.

Although there are two different ways of sending messages, objects
behave uniformly upon receiving a message. It is important to realize
that the distinction between synchronous and asynchronous messages only
exists from the standpoint of the sender. The object that receives the
message has no way of determining whether 1t was sent synchronously or
asynchronously.? An object can, however, find out who sent the message
by using the special object $sender.

3.2.1 Synchronous Message Passing

We already know of synchronous message passing through its alias, the
MELDC function call, so named because of its similarities with conventional
(’s function call in both behavior and syntax. When MELDC reads the
statement

foo.bar(42)

it sends the message bar(42) to the object foo and waits until the method
bar finishes and returns a value (or no value if bar is of type void).

If a synchronous message accesses a method with a return value, the
message can be embedded in some larger expression. To find the area of
a rectangle rect1, where the class rectangle is defined in Figure 3.2, we
might use the statement:

2Tn the case of an asynchronous send, return does not actually return to its point of
origin (its sender), so its return “type” can be considered to be “void”.
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class rectangle ::=
int width, height;

methods:
int get width() {
return (width) ;

int get height() {
return (height) ;

end class rectangle

Figure 3.2: Class rectangle

area=rectl.get width()*rectl.get height();

3.2.2 Asynchronous Message Passing

When an object sends an asynchronous message, it does not wait for the
called method to finish, as in the case of synchronous sends. Instead, it
continues on with the next statement after the message send.

To emphasize the differences between this behavior and that of syn-
chronous messages, the syntax for the asynchronous message employs two
MELDC keywords solely for this purpose: send and to. If we wanted to
asynchronously send the message bar(42) to the object foo, for example
we would simply write:

send bar(42) to foo;
instead of the
foo.bar(42);

we would otherwise use for a synchronous send.

Asynchronous message passing is the key to concurrency. Recall that
objects are distinct from one another, and at any given moment several can
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Figure 3.3: On the left, a synchronous thread. On the right, an asyn-
chronous thread that has split in two.

be at different stages of operations performed on their input. A map of
a given input’s traversal of objects and program code is called its thread
of execution. In a larger context, a program in execution is known as a
process.

If there were only synchronous messages, there would be only one thread
of control, jumping from routines to subroutines and back again. With
asynchronous messages, however, a new thread is begun with each new
asynchronous message. The thread of control, in effect, splits in two, with
both the sender and the receiver having a thread to itself.

Threads are actually of two types: heavyweight and lightweight. Pro-
grams in execution are considered to be heavyweight operations in the com-
puter, because the operating system itself must control them within the
main memory of the computer. Each object within a particular program,
however, may pursue its own lightweight thread within the entire program’s
address space.

An analogous situation would be that of two different college lectures
(definitely heavyweight processes), each with a professor and a group of
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students (the lightweight threads), with blackboards and notebooks (their
total surface area being the process’s address spaces). In Professor Igor Tis-
tical’s classroom, the students sit in rapt attention as the lecturer expounds
upon his specialty, and they intently copy into their notebooks exactly what
he writes on the blackboard. In Professor .M. Boring’s classroom, how-
ever, students doodle in the margins of their own notebooks, scribble notes
on those of their neighbors, and even run up to the blackboard to draw
diagrams explaining their questions to him...and some of them even take
lecture notes.

In the first address space, the threads are executing in parallel, each
performing an identical task; in the second address space, the threads are
involved in message passing and writing all over their common address
space. On the one hand, the second space may be a messy whirlwind
of activity as compared to the first, but we should remember that the
doors to each classroom/process are locked, and the walls are soundproofed:
no student/thread from one space may invade another space and write
something there. Under normal conditions, the heavyweight threads are
executing oblivious to each other?.

3.3 Pseudo-Parallelism

While several lectures may be given within a college building simultane-
ously, a computer only appears to be accomplishing several tasks at the
same time. User 1 might be editing a program, while User 2 is reading
e-mail, User 3 is using the debugger, User 4 is cursing at a long list of com-
piler error messages being scrolled up the screen, and so on. Each of them,
sitting in front of a different terminal connected to the same computer,
seems to be able to use the computer’s resources at exactly the same time
as her or his neighbor, but this is not so. The simultaneity is an illusion,
created by the computer running each user’s process into and then blocking
at scales of time so small as to make it appear that everything is happening
at the same time. The context switching that the computer employs to
start and stop processes shows a major bottleneck in the computer: the
central processing unit, or CPU.

At any one time, the CPU can only handle one process, but because it
can switch bits in and out in nanoseconds, a human observer can be fooled

3 A different situation occurs in the case of remote objects, a subject we'll deal with
in Chapter 4.
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i

Figure 3.4: The three possible states, and transitions, for a process.

into thinking that all processes are being worked on at the same time. This
is comparable to a “flip-book” of pictures which, if one flips through the
pages fast enough, gives the illusion of an animated image.

Actually, the illusion of simultaneity within the computer is further com-
plicated by the fact that the myriad of processes within the computer may
be in any one of three different states: ready, running, or blocked. When
a process is ready, it is waiting for a chance to continue running; when it
i1s running, its thread of execution is allowed to continue working on the
program; and, when it is blocked, the process is waiting for a resource (e.g.,
printer, tape drive, network connection, etc.) which is presently unavail-
able. Of course, while one process is blocked, another is usually running
in the CPU. This scheduling of resources must balance the needs of users
(who each want to get their own job done ASAP) with the capacities of the
system (we can’t have everyone sending a file to the printer at the same
time; the resulting papers would be hopelessly garbled).

3.4 Synchronization Issues in Concurrency

Object-oriented systems are inherently parallel: if we have a group of in-
teractive objects within a system, they should all be able to operate at the
same time, in some approximation of simultaneity. Anything less would
waste much of the benefit of the data abstractions known as objects.
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This concurrency is an easy concept both to understand and to model,
tf the concurrent threads never interact. Clearly there could be no problem,
for example, for two threads to run simultaneously if one were searching
a database and the other computing a factorial. Problems arise, though,
when two or more threads try to access—and change—the same data?, or
when one thread needs the result of another to continue.

3.4.1 Race Conditions and Mutual Exclusion

Like two Indy 500 racers trying to push each other out of the way to get to
the pole position on the track, each process (given the chance) will try to
push another out of the way and finish first. Clearly, in their zeal to zoom
through a narrow bit of track and come out the other end in first position,
the racers can pull alongside, lock wheels together, and prevent each other
from moving into proper position; both lose.

To prevent such a thing happening to threads within the computer, we
make note that certain structures of the code, like the pole position on the
racetrack, are so-called critical sections where we must be extra careful
to avoid collisions of threads. Suppose that four threads are approaching a
data structure: two (A and B) want to read from it, two (C and D) want to
write to 1t. The data structure itself 1s a critical section of code because it
must be completely intact when any of the threads tries to enter it. If C or
D enters the data structure, their goals will be to alter the data structure,
so that during their transit of its contents the data structure will not be
intact; if A or B enters the data structure, they will only try to extract
information, but they will not try to alter it, so the data structure will be
intact during their transits.

Now here’s the problem: if A or B is within the data structure while
C or D is in it, too, then the readers can’t be assured that they have an
intact version of the data structure. Indeed, they may have some sort of
hybrid form of the data structure, containing old data plus some new data,
but not all of the changes C or D tried to enter into the data structure.
Likewise, if both C and D are within the data structure at the same time,
one could overwrite part of a change of the other, and the result would also
be a bizarre hybrid version of the correct data structure.

The solution is to protect these critical regions through the principle of

4The same problems crop up when accessing peripherals, but we will concentrate on
shared memory.
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mutual exclusion: block all threads until a single thread can complete
its business within the critical region. For the example above, commonly
known as the readers and writers problem, we allow only one writer
at a time, and lock out all other readers and writers attempting to enter;
when the writer’s done, someone else can come in. Readers, on the other
hand, since they make no changes to the critical section, have no limits on
the number of them that can come in at any one time. If, however, one
writer knocks on the door to be let in, all readers have to leave and be
locked out.

3.4.2 Atomic Blocks

To protect instance variables from being accessed or modified by more than
one thread at a time, MELDC provides the atomic block. Atomic blocks
look much like the normal MELDC blocks, but begin and end with angle
brackets rather than curly braces. Atomic blocks also behave like MELDC
blocks in most respects—including the ability to declare variables at the
beginning of them. The important difference is that only one thread of
control can enter an atomic block at a time. In fact, not only the atomic
block is protected, but the whole object is. If thread A enters an atomic
block, for example, all other threads attempting to access a method in the
object containing the atomic block (through a message sent to one of the
object’s methods) will go to sleep until thread A leaves the atomic block.
In addition, any thread already executing one of the object’s methods will
also go to sleep. This ensures that no unwanted reader or writer can sneak
into the critical section at an inopportune moment and refer to the object’s
instance variables. If more than one thread reaches the start of the block
at the same time, only one is allowed into 1t and the rest are put to sleep
and queued up, the first one entering the atomic block only after the active
thread has left it.

Note that the atomic block only puts all other threads to sleep if they
attempt to access the object. The thread inside the atomic block can call
any of the object’s methods and continue to execute, which allows recursive
calls under the atomic block’s protection.

To use an atomic block, simply put angle brackets around the protected
code, the critical section, as in Figure 3.5.
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class bank account ::=
int balance;

methods:
int deposit(int dep amount) {
< /* atomic block begins */

balance += dep amount;
return (balance);
/* atomic block ends */

)

end class bank account

Figure 3.5: A Bank Account Object using an Atomic Block

3.4.3 delayuntil and respond

delayuntil and respond are MELDC’s means of synchronizing threads of
control. The basic syntax for both of them is the keyword followed by a
string (a string constant or character array or pointer). This string acts as
a label for multiple uses of delayuntil to match their respective responds.
Thus

delayuntil "hark, who goes there?";
matches
respond "hark, who goes there?";

delayuntil and respond statements can also be tailored to specific objects.
If we wanted to have an object wait until it received a response from a
particular object, we would use the pair delayuntil and from:

delayuntil "hark, who goes there" from rosencrantz;

If this statement were found in an object named guildenstern, guildenstern
would sleep until an object named rosencrantz executed the statement:

respond "hark, who goes there?" to guildenstern;
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When a thread executes a delayuntil statement, it suspends its execu-
tion until some other thread executes a matching respond statement. The
thread, in effect, goes to sleep until it is told to reawaken by a personalized
wake-up call.

Many different threads can execute the same delayuntil statement. In
this case, all the threads go to sleep. They are then queued up to wait for
a suitable response. When another thread executes a matching respond
statement, the first delayed thread wakes up. Subsequent responses wake
up the rest of the delayed threads.

It is not an error for a thread to execute a respond statement that
doesn’t match any previous delayuntil. If a thread executes a general
delayuntil (that is, one not directed to any particular object) matching a
previous respond, it is considered automatically responded to. Though this
smells of time travel, it is actually a necessary part of the language. Since
the user has no control over the speed of his or her threads, this behavior
synchronizes them no matter which is faster.

Delayuntil and respond only relate to the concept of the MELDC
thread. They have nothing to do with features; it is allowed (even necessary
at times) for objects belonging to one feature to delayuntil and wait for
a respond from an object in another feature.

3.4.4 A Warning

MELDC is a language specifically designed with concurrent programming
in mind. Therefore, solutions for the problems of race conditions and syn-
chronization have been implemented as parts of the language. Yet bugs
stemming from concurrency are very difficult to find and fix. They reveal
themselves irregularly, usually lurking in the background, ready to spring
out at some especially inopportune moment. Taking some time to master
delayuntil, respond and atomic blocks will prevent much weeping and
gnashing of teeth.
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Distributed Programming

4.1 The General MELDC Model

There are two reasons for concurrency in MELDC:

o It fits well with the object-oriented paradigm.

e It can be more efficient for some computations to run in parallel.

If we are limited to pseudo-parallelism for our concurrency—that is, if our
threads are all running on one processor—we aren’t gaining any efficiency
at all from concurrency. If, however, we had the ability to create threads
of control on other processors or machines, to distribute work over some
network, the possible efficiency gains are quite large. MELDC 1s designed
for the distributed environment, and the way in which one MELDC program
on one machine interacts with another is by getting and putting objects.

MELDC attempts to be transparent in its approach to distributed
programming. Most of the time we don’t have to be concerned about
whether a particular object actually exists on this machine or the other.
Apart from the “creation” of these external objects, they appear just like
any other local object—though this transparency does have its limitations,
as we will see at the end of this chapter. Accessing remote objects is easy;
it 1s the getting and putting of them that is out of the ordinary.
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4.1.1 The Protocol Object

Networks and connections between computers are complex by nature. For
MELDC to communicate in this complex environment it needs a protocol,
an agreed-upon means of communication to define how a MELDC pro-
gram running on one machine can talk to the program running on another.
MELDC, as an object-oriented language, views this protocol as an object
like any other object: complicated, yet having the same basic overall struc-
ture as complex number or rectangle. A protocol object provided by
MELDC must be imported by any feature dealing with remote objects, yet
the file containing the object need not be included on the command line
when the MELDC program is compiled since protocol objects are 1ibrary
objects, which are explained more fully in Chapter 7.

4.2 The Nameserver

Normally, distributed programming is accomplished in MELDC through
the use of a nameserver, a process which acts as an intermediary between
different processes and machines. When an object is put from a feature,
it’s name, place and other information is regestered with the nameserver,
and becomes available for other processes to get from the nameserver. To
use the nameserver the ns_protocol object must be imported from feature
NS_Protocol 0Obj:

interface:
imports NS Protocol Obj[ns protocoll

4.2.1 Getting and Putting

For one MELDC process to access a remote object, there must be some
remote machine offering that object. A MELDC program shares its ob-
jects with other machines and programs through the Put0Obj() MetaClass
method.

Figure 4.1 shows a simple example of how an object is put. From it
we see that the method PutObj () takes three arguments. The first is the
object to put, the second a string indicating the name of the object as
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feature put feature
interface:
imports NS_Protocol Obj[ns protocolll
imports public feature[public class]
implementation:
public _class publicl = public class.Create();
driver_class driver = driver class.Create();

class driver class ::=
methods:
void init () {
public class.PutObj (publicl,
"publicl",
ns_protocol);

end class driver class

end feature put feature

Figure 4.1: An Example of Put0bj ()

it will be known on other machines, and the third is the protocol object,
ns_protocol. PutObj() is a MetaClass method !: in the example the
message Put0bj(...) is sent to class public_class. It is important that
the class the Put0bj () message is sent to, the class-name in

classname.Put0Obj (object, object-name, ns_protocol);

be the same as the class of object, the object to be put.

This process of putting an object is actually one of registering the object
with the nameserver. Objects are registered with the name object-name;
if another object is subsequently registered with the nameserver with the
same name, it supplants the old object.

Getting objects from the nameserver is just as easy, using the Get0bj ()
MetaClass method. In this case, only the name of the object desired and
the nameserver protocol object are arguments to Get0bj ():

1The MetaClass is the class of the class; a slightly mind-bending concept, but one
that is explained in chapter 4
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object = class-name.Getobj (object-name, ns_protocol);

If no object of object-name is regestered with the nameserver, class-name.Get0bj ()
will return a null-object.

4.3 The Low-Level Approach

At times, more direct connections may be needed between processes, con-
nections that shouldn’t pass through the nameserver. MELDC’s most prim-
itive mode of distributed programming involves each process’s putting and
getting objects from other processes. To access this level, import the pro-
tocol object remote_protocol from the feature RemoteObj:

imports RemoteObj[remote protocol]

4.3.1 Putting an Object

The process of putting objects, under the low-level approach to distributed,
1sn’t much different from how we do it using a nameserver. The only differ-
ence involves the protocol object used. Instead of using the ns_protocol
protocol object from feature NS_Protocol 0Obj, we use the protocol object
remote protocol from the feature RemoteObj. So a feature using the low-
level approach must include

interface:
import RemoteObj[remote protocoll

To actually put the objects, a normal Put0bj () call 1s used:

classname.Put0bj (object, object-name, remote _protocol);

4.3.2 Getting an Object

Without a nameserver, MELDC program not only needs to know the name
of the object to get, but also the place. Thus this is a more complicated
task than putting, and more information is needed.
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#include <sys/socket.h>

feature get feature
interface:

imports RemoteObj [remote protocoll]

imports public feature[public class]
implementation:

public_class public2;

driver class driver = driver_class.Create();

class driver class
struct sockaddr *sin;
methods:
void init() {
remote protocol.dest addr (&sin,
"cunixb.cc.columbia.edu",
6001) ;
public2 = public class.GetObj ("publicl",
remote protocol,
sin) ;

end class driver class

end feature get feature

Figure 4.2: An Example of Get0bj ()
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Figure 4.2 shows a sample program employing the GetObj () method.
We will go through it step by step.

We include <sys/socket.h> because we find the definition of struct
sockaddr there, which is necessary for the GetObj(). A variable of the
type struct sockaddr is where we store the origin of the remote object.
In the example we have used the variable sin.

To assign valuable data to sin we use the protocol object remote protocol’s
method dest_addr (). This method accepts as parameters the address of
a variable of type struct sockaddr and two other arguments—a char
pointer representing a hostname, and an integer representing a port number—
and encodes the hostname and port number into the struct sockaddr
variable.

Host addresses should be fairly familiar, but port numbers seem slightly
arcane. Understanding ports is thankfully not necessary to use remote
objects, but it is necessary to choose a port number greater than 6000, as
ports addressed lower than that are generally reserved for the operating
system’s use. Using port 9954 may also be a bad idea, as that port is used
by the MELDC nameserver.

After sin has been set to the correct value, the last step in getting a
remote object is using the GetObj() method itself. Get0bj() takes three
arguments: the name of the object to look for (a char pointer), the protocol
object, and the struct sockaddr variable with the information on where
to look. If successful, it returns the object requested, which must be cast
to the class of the object. The general form of statements using Get0bj ()
is:

object = class.Get0bj (object-name,remote protocol,socket-addr)

You may notice that GetObj() takes three arguments here, while it only
took two when we used the nameserver. socket-addr is an optional param-
eter in the definition of Get0bj () for low-level use.

4.4 Transparency

MELDC remote objects are designed to work transparently, by which we
mean that to a user there’s no apparent difference between the behavior of
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remote and local objects. However there are some situations in which this
1s impossible.

4.4.1 Passing Objects to Methods

When objects are passed as arguments to methods, synchronously or asyn-
chronously, they are passed by reference, not by copy. In effect, they are
passed like pointer values are passed to conventional C functions. This
shouldn’t matter in most cases, but it does make passing objects as pa-
rameters to remote objects difficult. If the remote process doesn’t have the
class definition for the passed object, it will arrive at the remote machine
as so many uninterpretable bytes.

In short, objects may only be passed as parameters to remote methods
if their class definition exists on the remote machine. And classes cannot
be passed as parameters at all.

4.4.2 Network Failure

If the network dies between two machines, one of which has put an ob-
ject and the other has got it, use of the remote object is impossible. If
communication fails there are two noticeable effects:

e Get0bj () returns null. This will occur whenever Get0bj () is unable
to fulfill a request, whether for the reason that the host given it by
the socket-addr variable 1s unreachable, or because no object of the
correct name has been put on that host.

o remote_object.method() returns zero. Any messages sent to a remote-
object with a broken connection will get a zero for a return value, or
a null pointer if the method would normally return a pointer.

It’s easy to test if GetObj() returns a null: a few test statements in our
code can catch errors resulting from network failures if we are trying to
get an external object. If we already have an external object, however,
gracefully handling a network failure 1s more difficult, for zero is often used
as a return value. If the network is trustworthy, handling network failures
at this level is probably more trouble than it is worth.
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4.4.3 Synchronization and Atomic Blocks

Currently delayuntil, respond, and atomic blocks do not work in MELDC’s
distributed environment. This is an area that is under development, and
active research is ongoing on the subject.

4.5 Garbage Collection

It should be noted that MeldC is not uniform in passing pointers for local
and remote applications. Here are some of the cases:

1. An integer pointer cannot be passed to a remote source.
2. A structure cannot be passed to a remote source.

3. A char * is passed as NULL.

There is also a problem with objects. There will be two copies of an
object. One on the remote side and one on the local side. When you free
the memory of an object on your local side, the remote side object copy will
remain. You are not allowed to free the object on the remote side. This
problem will leave objects that no longer needed on the remote side, there
by creating a garbage collection problem.
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Persistent Programming

5.1 The General MELDC Model

Often in large systems it is desirable to imbue objects with the quality of
persistence for purposes of fault tolerance or system-related aspects. This
persistence can have many forms, but the common thread among them is
that the data for the objects with the property of persistence should be safe
from deletion upon the object’s (or system’s) demise.

5.1.1 The Persistent Protocol Object

MELDC provides most primitive mode of persistent programming involves
each process’s putting and getting object from a external storage (i.e.
the disk). To use the persistent object protocol, import the protocol object
persistent_obj _protocol from the feature PersistentObj:

interface:
imports PersistentObj[persistent_obj _protocol]
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5.1.2 Getting and Putting

The process of putting objects to the external storage device and mark
the persistent, isn’t much different from distributed programming. The
only difference involves the protocol object used. Instead of using the
remote_protocol protocol object from feature RemoteObj, we use the pro-
tocol object persistent_obj _protocol from the feature PersistentObj.
So a feature using that uses the persistent object must include

interface:
import PersistentObj[persistent_obj_protocoll

To actually put the objects, a normal Put0bj () call 1s used:
classname.Put0Obj (object, object-name, persistent obj _protocol);

Under the our current persistent_obj_protocol, once the object ac-
quire the persistent behavior, it will stay persistent until the object is de-
stroyed. Issue a PutObj() to a persistent object will flush the current
object’s state to the external storage.

Getting the object from the external storage is just as easy, using the
Get0bj () MetaClass method. In this case, only the name of the objects
and the persistent object protocol are the argument to the GetObj:

object = classname.GetObj(object-name, persistent_obj _protocol);

The Getobj() will return null-object, if the object does not exist in the
external storage.

Figure 5.1 shows a simple example of how an object is putting to a
external storage as well as restoring from a external storage.
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feature Persistent feature
interface:
imports PersistentObj[persistent obj protocol]
imports public featurel[public class]
implementation:
public class publicl = public class.Create();
driver class driver = driver class.Create();

class driver class ::=
methods:
void init() {
public class public2;

public class.PutObj fpublicl, "publicl",
persistent obj protocol)

public2 = public class.GetObj ("publicl",
persistent obj protocol) ;

end class driver class

end feature put feature

Figure 5.1: An Example of Putting and Restoring the Persistent
Object
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Chapter 6

Dynamic Composition of
Object’s Behavior

Sometimes, a programmer needs to change the behavior of a MELDC pro-
gram “on the fly.” The power to dynamically change program behavior, tra-
ditionally only provided by the dangerous practice of self-modifying code,
can be extremely useful in debugging large programs and auditing large
object-bases. It has more advanced uses, as well: All of MeldC’s dis-
tributed programming aspects are based on the concept of dynamically
modifying program behavior to form a link to other MELDC processes.
In MELDC however, this power does not come from self-modifying code.
Rather, MELDC offers the dynamic extension of object behavior through
the use of the reflective architecture. The extended behavior of an object 1s
referred to as its secondary behavior to distinguish from the primary behav-
tor defined in the class of the object. Extending object behavior in MELDC
is characterized by two properties: (1) composability and (2) decompos-
ability. Composability states that primary behavior, which implements
the interface of objects, can be modified by composing with multiple sec-
ondary behaviors without changing the objects’ interface. Decomposability
describes the reverse property of composability. Primary behavior encom-
passes an object’s functionality as defined in the object’s class definition or
provided through an inheritance mechanism. Secondary behavior encom-
passes dynamically added functionality which is in most cases orthogonal
to primary behavior and to other secondary behaviors.
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MELDC provides a mechanism call shadowing to implement secondary
bevaviors. The idea "shadow” implies a dynamic, transient and orthogonal
effects upon primary behavior. A shadow object is an object which inter-
cepts messages addressed to some base object and processes them before
(perhaps) sending them to the base object. The shadow object can also
process the value returned by the base object. Thus, by controlling all
access to the base object, 1t can redefine the behavior of that base object
without actually modifying code.

6.1 Writing a Shadow Object

Shadow objects are created just as other objects are; through their class-
name.Create(). Defining the class for a shadow object is quite normal as
well, but in order to have it act properly as a shadow object, some special
methods must be defined. Using these methods (and thus using shadow ob-
jects) requires that the file "meldc user.h" be #include’d in the program
file before the feature declaration.

The entry-point method A method (of any name) may be used as the
?entry-point method” for the shadow object. This method will be executed
whenever the base object is sent a method; in other words, this method
intercepts any messages going to the base object. This method must have
both a return value and a parameter of type struct _frame *. If we had
named the method intercept, for example, it might be defined as:

struct _frame * intercept(struct _frame *fp)

Advanced uses of shadow objects such as those used for remote objects
arise from the manipulation of the passed frame parameter, but they are
beyond the scope of this manual. Those wishing information about this
subject are welcome to look at the MELDC code for the implementation of
remote objects.

The return value for this method determines whether or not the base
object’s method will execute. If the parameter frame is returned, the base
object will execute as if it received the message originally passed. If this
entry-point method returns a NULL, however, the base object will not
execute.
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The exit-point method Another method may be defined as the exit-
point method for the shadow object. This method will execute after the
base object finishes its execution — and thus will not execute at all if
the shadow object’s entry-point method returns a NULL. The exit-point
method is of return-type void and has two parameters, one struct _object
* and one struct _threadid. For example:

void clean-up (struct _object *obj, struct _threadid t)

Again, the parameters can be used for advanced applications, but such
applications are beyond the scope of this manual.

The init-point and dest-point methods Two other special methods
can be defined; the init-point and dest-point methods. These can also have
any method name. The init-point method executes when the shadow object
is attached to its base object (see Section 6.2), and takes as parameters those
passed by the AttachObject method. The exit-point method executes
when the shadow object is detached from a base object, and gets passed all
parameters of the DetachObject method.

6.2 Attaching and Detaching

Attaching and detaching shadow objects are simple operations. To attach
a shadow object to a base object we use:

base-class. AttachObject(base-object, shadow-object,
entry-point-method, exit-point-method,
init-point-method, dest-point-method);

where base-class is the class of the base object, shadow-object 1s the
shadow object to be attached, and the other parameters (of type char *)
being the names of the corresponding methods in the shadow object. If a
method 1s not defined in the shadow object it may be safely omitted from
the parameter list, or a NULL pointer may be used as a placeholder. Only
the entry-point method must exist in shadow objects.
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To detach an object we use:
base-class.DetachObject(base-object, shadow-object);

If a NULL is passed as the shadow-object parameter, all shadow objects
will be detached from the base object, otherwise only the specified shadow
object will.

6.3 Multiple Shadow Objects

One base object may have more than one shadow object. In fact, there are
two basic ways this might occur: when many shadow objects are attached
directly to a base object, or when a “chain” of shadow objects are attached
to a base object.

In the first case, that of many shadow objects directly attached to their
base object, all shadow objects will always execute their entry-point meth-
ods whenever a method is directed at the base object. If all shadow objects’
entry-point methods return their passed frame pointer rather than a NULL,
the base object will then execute. The base object will not execute if any
entry-point method does return a NULL.

If the setup is a chain of shadow objects, the behavior is slightly dif-
ferent. When a message is directed to the base object, first the outermost
shadow object will intercept 1t. If its entry-point method does not return
a NULL, the next shadow object down the line will intercept the message,
and so on down to the base object. So if any shadow object does return a
NULL, all execution stops there.

6.4 Shadow Object Examples

6.4.1 Object Composition

Shadow objects must be thought of as a regular object that simply extends
the functionality of it’s parent class. The idea of object composition consists
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of taking a shadow object and attaching it to another object, it’s parent
object. The result 1s effectively a cross-product of the two objects, where
each individual object’s identity is preserved. Dynamic composition allows
the programmer to dynamically enhance, add or eliminate, a statically
defined object.

6.4.2 An Example of Object Composition

Let us look at a simple example of dynamic composition. A class Sav-
ings_Account describes two methods, deposit and withdrawal. De-
positing and withdrawal are the primary behaviors of every instance of
Savings_Account. Yet a manager may decide to audit the activities of
a particular savings account. To do so, he does not need to modify the
definition of the class. All he needs to do is attach a shadow object with
the ”audit” behavior to the account object. This shadow object is simply a
modifier to the deposit and withdrawal methods, so that the behaviors
are now audit deposit and audit withdrawal. When the manager is ready,
he can then remove this shadow object at anytime.

6.4.3 A Tracing Example

If you the user wanted to write a tracing program, it could be implemented
rather easily using Shadow Objects. Instead of having to modify your code,
a Shadow Object can be created that will implement a trace for us. Then
the Shadow Object could be attached to the object(s) that you would like
to trace.

When the program is run, the Shadow Object will intercept the message.
The Shadow Object will then run the trace code, such as printing the
information you want to the screen so that you know what object is being
executed. The Shadow Object will then pass the received message to it’s
Parent Object. The Parent Object will execute the message and return
some value.

6.4.4 A Persistent Object Example

If a Shadow Object was attached to a Persistent Object, then the Shadow
Object will do the following. It will first intercept any messages for it’s
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Parent Object. The Shadow Object will then flush the Persistent Object to
a disk to save the object’s state, keeping the object as Persistent. Once the
object has been flushed to disk, the Shadow Object will give the intercepted
message to the Parent Object. The Parent Object will then execute the
message. Once it is done executing, the Parent Object will return some
value to the Shadow Object. The Shadow Object will then forward the
message to the object that sent the message.

6.4.5 A Remote Object Example

When a message is received at a Shadow Object associated with some Re-
mote Object, the Shadow Object will send the message across the network
to the Remote Object. The Remote Object will receive the message through
it’s own Shadow Object and process this message. When it is done, the
message will be returned by the Remote Shadow Object to the original
Shadow Object that intercepted the message. This Shadow Object will
then forward the return value to the object sending the original message.
All of this will make it seem as if the Remote Object is on the local side.
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MeldC Library Objects

The MELDC distribution contains a number of predefined objects which
should be used for various system and I/O-related tasks. These objects,
ananogous to conventional C’s library functions, are treated just as any
other MELDC object is, but for the fact that the files containing them need
not be included on the compiler’s command line—the MELDC compiler
knows where to find the files in the event the objects are imported.

This chapter will introduce the the system object and memory ob-
jects. Protocol objects, library objects used for more sophisticated I/0
and inter-process communication, are covered in Section 4, Distributed Pro-
gramming.

7.1 The System Object

MELDC’s construct for communicating with the operating system is the
system object. Like all library objects (and all objects not defined in the
current feature), we must import it to use its methods:

imports Unix[sys_objl;

The system object is used in the manner of any other MELDC object,
through synchronous or asynchronous messages. The messages and param-
eters the system object accepts depend on the operating system on which
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MELDC is running (The UNIX system calls MELDC supports are listed in
Appendix D). The messages accepted by the system object, though, are
invariably in the same format as the corresponding C system call, with the
same name and accepting the same arguments. Thus, if we wanted to use
the write() system call under UNIX, the statement would be:

sys_obj.write(fd, buf, nbyte);
or
send write(fd, buf, nbyte) to sys_obj;

This brings up the question of why we can’t just use a conventional C
function call in an object method, rather than using these system objects.
There are two reasons:

e Since system calls are actually communications with the operating
system, it is natural to view the operating system as a coherent object
that can have messages sent to and received from it.

e If a MELDC thread uses a conventional C function call, the operating
system will put the MELDC program into a blocked state. If; on the
other hand, a MELDC thread sends a message to the system object,
only that thread will be blocked.

That last point deserves some clarification. In Chapter 3 we discussed
the concept of the thread, and saw that threads can be in one of three
states:

ready The thread is about to be executed, and is waiting to be scheduled.

running The thread has been scheduled, and will continue running until it
is put back in a ready state by the scheduler to allow time for another
thread to run, or until i1t 1s blocked.

blocked The thread is not running, and cannot run until some event hap-
pens. A thread is blocked, for example, when it 1s waiting for some
I/0O to finish. When the thread is unblocked it enters the ready state
and waits to be scheduled.
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Using C system calls not only blocks the MELDC thread that makes the
system call, but all other threads in the current MELDC program as well
by putting the entire program process in a blocked state. In other words,
conventional C system calls put heavyweight threads in blocked states,
while messages sent to system objects block only lightweight threads.

7.1.1 The exit() Method

Some care must be taken in exiting MeldC programs. While the C state-
ment

exit();

will stop the program’s run, it may also produce unintended side effects.
The graceful way to cause a MELDC program to finish is to call the exit ()
method of the system object:

sys_obj.exit();

While this takes care of MELDC’s requirements for a clean exit, it may
still cause strange behaviour if more than one thread is active when the
program exits. It is the programmer’s responsibility to make sure all other
threads have finished executing (if all threads in that program do need to
finish) before any thread reaches the exit method-call.

7.2 The Shell Object

The shell object is used to get information from the shell from where the
MELDC program is run: In particular, it is used to get the values of argc,
argv, and envp, the number of the arguments used when the program
is run, a list of the arguments, and a pointer to the shell’s environment
string. It’s use is straightforward: Any feature that needs access to this
shell information must first import the shell object:

imports Unix[shelll
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shell has three methods, argc(), argv(num), and envp()—argc()
and envp() return the corresponding values, and argv(num) returns the
num-th argument in the argument list. So, in order to get the third argu-
ment, we would use

arg = shell.argv(3);

after importing the shell object.

7.3 Memory Objects

The conventional C functions malloc() and free() should not be used in
a MELDC program. To access free memory, operations of this type must
pass through a memory object.

There 1s no single memory object as there is a system object. Instead,
any class whose methods need to use malloc() and free() should inherit
the memory class. If class foo had a method that was to malloc a block of
memory, the class’s declaration should begin with

class foo merges MemoryAllocation[Memory] ::=

thus merging the class foo with the class Memory of the MemoryAllocation
feature. As is normal for inheritance, it isn’t necessary to import the
Memory class in the interface section; inheriting it will automatically im-
port it. Nor is it necessary to specify a filename for the file containing
featuer MemoryAllocation on the mcc command line: Since it is a library
class, MELDC knows where to find Memory when it is called for.

Once a class is merged with the Memory class, its methods can malloc and
free memory by calling its own malloc() and free() methods inherited
from the Memory class. As explained in Section 1.3.4, the special object
$self is used when objects are to send messages, or call, their own methods.
One of the methods in foo, for example, could malloc 128 bytes of memory
with the statement

ptr = $self.malloc(128);
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The class can use a corresponding free statement (in that method or an-
other) to deallocate the memory:

$self.free(ptr);

There is a caveat to allocation and deallocation with the memory object,
however: An object cannot free memory allocated by a different object.
So if one object mallocs a block of memory, only that object can free it.
Normally this shouldn’t be much of a problem, as the pointers to malloc’d
memory will usually be instance variables, only visible to the object that
created it. If, however, class variables (static instance variables) or global
variables have access to malloc’d memory, there may be problems which
could lead to coredumps or other inexplicable behaviour.
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Chapter 8

Software Tools

8.1 The MELDC Debugger

The MELDC debugger, mcgdb is built upon gdb, the Gnu Project’s C debug-
ger. This allows mcgdb to provide a means to debug MELDC code with a
standard interface, yet also to use gdb’s ability to step through and examine
the C statements which may compose the majority of a MELDC program’s
methods. As with gdb, in order for a MELDC program to be debugged with
mcgdb, it must have been compiled with the -g compiler switch set.

This section is not a primer on general debugging; a basic knowledge of
the use of gdb is assumed. Only MELDC specific commands of mcgdb are
explained, as well as various points necessary for the successful debugging
of a MELDC program.

8.1.1 Scope and the $ Separator

All variables are printable inside of an mcgdb debugging session, and break-
points can be set at any method, but it’ll take more than a few keystrokes
to do so. The full address of any variable or method is the featurename and
object or classname followed by variable or methodname. For example, to
display the variable area of the object rectangle in the feature geometry,
we would use:
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print $geometry$rectanglearea

Or to set a breakpoint in that same object’s 1lengthen method:

break $geometry$rectangle$lengthen

Which brings up the subject of scope, since it is not actually necessary
to use the full “address” for each operation, thus saving valuable keystrokes
(and perhaps averting carpal tunnel syndrome). In the middle of a trace or
after a debug, any variables local to the current method can be accepted
just by using their names. Any local to the current class can be accessed
through classname$variablename. And, of course, anything can still be
addressed through its full address.

8.1.2 mcgdb Commands

print

break

where

c-where

up, down

c-up, c-down

list

This command displays the contents of a variable. Variables local to
the current method may be addressed just by name, those local to the
class by classname$variablename, and any variable may be addressed
by $featurename$classnameS$variablename.

This command sets a breakpoint at which execution will stop. The
breakpoint specified must be a method. The first breakpoint speci-
fied must be specified by its full address (feature, class and method),
though all subsequent breakpoints set can be addressed in any allow-
able manner.

This command displays the MELDC stack; that is, the stack of MELDC
function calls for the current executing thread. For most debugging
purposes this should suffice.

This displays the stack of C function calls, rather than MELDC func-
tion calls. Though the debugging resolution can be finer with this
command, the information given can be confusing.

These commands allow movement up or down in the MELDC runtime
stack.

These allow movement along the C stack.

This displays the MELDC statement which will be executed next.
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meldcq When used without an argument, this displays the first method name
in each of the queues used for concurrency. When a number is given
as an argument, the names of all the methods in that particular queue
are shown.

mecprintfc This displays all feature and class names in the MELDC program.

meceprintfem And this command displays all feature, class and method names.
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Chapter 9

Advanced Topics

9.1 MeldC Optional Parameters

The MeldC language supports the use of optional parameters of methods.
Programmers can declare a MeldC method with optional parameters and
reference the optional parameters using macros. This is a very useful fea-
ture in a programming language which allows programmer more flexibility
by making modules more compatible and maintainable; little changes is
required if suddenly a method needs an extra parameter.

9.1.1 Syntax

9.1.2 Declaring a method with optional parameter

return_type method_name(formal_parameter_declarations, optional)

{

}

The keyword optional appearing after (always) the required formal parameter_declarations
says that this method have optional parameters.

int foo(int x, optional) /* x is required
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{ * & other optional parameters
e */

b

int bar(optional) /* no required parameters

{ * just optional parameters
e */

b

9.1.3 Referencing a particular optional parameter

When the programmer references a a particular optional parameter passed
into the method, it is assumed that the programmer knows the type of the
optional parameter he is expecting, and also the position of the optional
parameter, whether it’s the 1st or 2nd or the nth optional parameter.

A pointer variable of that type has to be declared first, and the macro
ARG_ADDR(i), where i is the position (range from 0-the number of optional
parameters passed in), can be used to reference the address of the desired
optional parameter in the following fashion :

parameter_type *ptr;
ptr = ARG_ADDR(i);

And then by dereferencing the pointer variable, the programmer can
access the value of the optional parameter. For example, assume that the
function foo() has 1 optional parameter and it’s of type int.

int foo(optional)
{
int *opt_ptr;
int x;

opt_ptr = ARG_ADDR(O);
X = *¥opt_ptr;
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9.1.4 Referencing All Optional Parameters Passed in
as a Whole

Sometimes 1t may be desirable to reference all the optional parameters
passed in as a whole and pass into another method as an argument. This
kind of reference can be done by $option anywhere in the method.

This illustrates the flexibility that optional parameters allow. The
method foo() does not have any knowledge about what parameters it gets,
but just directly pass them down to the method bar() which will eventually
decode them. Tt the parameter declaration of method bar() need to change,

the parameter declaration of method foo() will not be affected.

e.g.
obj.method($option);
send method($option) to obj;
obj.method(1, "hello", $option);

int foo(optional)

{
$self.bar(1, "hello", $option);
¥

9.1.5 Mapping Optional Parameters

actual arguments formal parameters
(i, "hello™) (int x, char *s)
(i, "hello™) (int x, optional)
(i, "hello™) (optional)

(i, $option) (int x, char *s)

i -> x, "hello" -> s
i -> x, MSG has 1 arg: "hello"

MSG has 2 args: i, "hello"

i->x,
1st arg in $option -> s
rest of arg in $option discarded
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(i, $option) (int x, optional) i -> x, all of $option -> MSG
(i, $option) (optional) i, all of $option -> MSG
($option) (int x, char *s) 1st arg of $option -> x

2nd arg of $option -> s
rest of $option discarded

($option) (int x, optional) 1st of $option -> x
rest of $option -> MSG

($option) (optional) all of $option -> MSG

9.1.6 Referencing individual optional parameters with
Macros

Description of the Macros

Macros have been created to allow you, the user, access to the optional
parameters. With the macros, you will be able to find out the argument
size, the argument type, the address of the argument and the postfix type of
the argument. The argument macros take an integer, passed as a parameter,
that represents the arguments slot number in the list of arguments. The
slot number of the argument is a well known number, since the order of
the arguments is known. Below we will explain each macro separately and
show you how it 1s carried out by showing you the actual code.

To find the size of some given argument, you can use the ARG_SIZE
macro. Given the slot number, 1, 1t will return the size of the argument in
that slot.

#define ARG_SIZE(i) \
( (MSG !'= NULL) && ((int) MSG->_num_arg) < i ? \
0: \

MSG->_parali].type->size )
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To find the postfix type of an argument in slot number i, you can use

the ARG_POSTFIX_TYPE macro.

#define ARG_POSTFIX_TYPE(i)
( (MSG !'= NULL) && ((int) MSG->_num_arg) < i ?
(char =) NULL :
MSG->_parali].type->postfix_type )

If you need to find out the argument type, (int, char, ...), then you can
use the ARG_POSTFIX_TYPE macro. When you call this macro by giving
the slot number, 1, the macro will return the argument type.

#define ARG_TYPE(i)
( (MSG !'= NULL) && ((int) MSG->_num_arg) < i ?
(char =) NULL :
MSG->_parali].type->c_type_desc )

To find the address of an argument, you can use the ARG_ADDR macro.
Calling this macro by providing the slot number will give you the address of
the argument. This address 1s found by adding the address of the message,
the beginning, to the offset of the argument.

#define ARG_ADDR(i)
( MSG == NULL || MSG->_num_arg <= i 7

(printf ("MeldC Error : Insufficent optional parameters \n"),\

kill(getpid(),SIGQUIT),
(int) NULL) : \
(int *)((int) (MSG->_paral[i].offset) + ((int) MSG)) )

9.2 Delegation

When MeldC receives a message that it does not understand from some
remote location, we check to see if a function meldc_default exists or not.
This function will then process the message and forward the message to the
proper recipient when done. This concept is known as Delegation.

It is assumed that the meldc_default function takes at least one argu-
ment, the name of the method. The other arguments are optional and are
provided by the user. These other arguments can be:

~

-~
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e The caller_.name, which represents the name of the object that sent
this message.

e The resp_message, which is a pointer to the return message.

e The message, which is a pointer to the message that was received that
the meldc_default function must process.

9.3 Active Values

Traditional computer languages process instructions in a linear fashion,
computing a result from some initial data. Many mathematical concepts
favor a more open-ended approach, however. There are many simple equa-
tions in the form of the basic Fahrenheit to Celsius conversion:

C =5/9(F — 32)

The equal sign here implies not only that C' = 5/9(F — 32) but also that
F=9/5C + 32.

MELDC’s construct for handling this type of calculation is the active
value. Active values are variables that, when assigned a value or changed,
cause some side effect (typically assigning a value to another variable) to
occur immediately after the assignment. Using active values we can assure
that no matter whether F or C'is changed in a Fahrenheit-Celsius relation,
both values will be correct.

9.3.1 Active Value Syntax

MELDC active values are local to classes, and as such are declared in the
class definition—in the methods section. The methods section of the class
definition, in fact, consists entirely of a sequence of active value declarations
and class definitions in any order, but the code is clearer if all active values
are declared before any methods are introduced.

To explain the syntax of active values we have defined class weather station
in Figure 9.1. Our weather _stationsstore the temperature in both Fahren-
heit and Celsius, but read the current temperature only in Celsius. To keep
the value of F current, the instance variable C of this class is an active value,
declared by the line:



9.3. ACTIVE VALUES 83

class weather station ::=
float F, C;

methods:
(€) --> { F=(9/5)*C+32; }

float get fahrenheit() { return(F); }
float get celsius() { return(C); }
float set_ temperature(float temp) {

C=temp;
return (F) ;

end class weather station

Figure 9.1: A Weather Station

(¢) ——=> { F=(9/5)*C+32; }

This means that whenever C is assigned a new temperature, the variable F
1s adjusted to reflect the new temperature in Fahrenheit units. Specifically,
whenever C is assigned a value, the statement

F=(9/5)*C+32;

is executed, setting F to the correct temperature.

Only instance variables (and class variables—static instance variables)
can be active values: neither local nor global variables can have this prop-
erty. It is also useful to note that active values are never inherited. An
object will only have active instance variables if the variables are declared
active in that object’s class, not in an ancestor class. If a variable is declared
active in some ancestor class, it is still an available instance variable—it
simply isn’t active.

In general, active values are declared in the form:
(list-of-active-values) -=> { code }

Here, list-of-active-values is a list of instance variables and code is MELDC
code to be executed whenever one of the active values are triggered. The
code cannot have any message-passing statements at all, whether synchronous
or asynchronous.
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The behavior of an active value is simple. Whenever an assignment
to an active value occurs, that active value’s code is executed. To trigger
the active value code, though, the assignment operator must be applied to
the actual variable with the active value. The code will not be triggered
through pointer indirection. So, for example, if a MELDC object had an
active value defined as

(profs_salary)-->{admins salary=profs_salary+10000;};

where profs_salary and admins _salary are initialized to 30000 and 40000,
respectively, then evaluating

profs_salary += 500;

would trigger the active value, and admins_salary would be set to 40500.
However, if there was a variable declared as

int *salary pointer = &profs_salary;
then
*salary _pointer += 500;

while raising the base salary of professors to $30,500, will not trigger the
active value; the administrators will stay at the $40,000 level.

9.3.2 Assignment vs. Change

MELDC distinguishes between assignment of a variable and change of a
variable in its handling of active values; they can be set to trigger when the
variable 1s assigned to, or alternatively when it is actually changed.

Triggering the code when the variable is assigned a value 1s the default
behavior for MELDC. This means if we declared the active value

(profs_salary) --> { admins_salary += 1000; }
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we would clearly have a world where the base pay for administrators always
rises, regardless of how much faculty are paid. But this wouldn’t be the
end of the injustice. If profs_salary were 30000 and MELDC executed the
statement

profs_salary = 30000;

admins_salary would still go up by $1,000. Administration would get a
pay raise for just reminding the faculty of its current salary.

If the active value had been
(profs_salary@) --> { admins_salary += 1000; }

(with an at-sign following profs_salary) the code would only have been
triggered when profs_salary actually changed, not when it was simply
assigned a value. Following any active value with an at-sign forces it to
behave this way.

9.3.3 Active Values and Complex Data-Types

When dealing with variables of simple types the meaning of a variable being
active is fairly clear. When dealing with more complex user-defined types
like arrays and structures, however, questions arise about what part of a
compound variable can be made active. MELDC offers as much flexibility
as possible with active values and complex data.

o Arrays as a whole can be made active. For example, if we had an
instance variable char a[25][3] and declared the active value

(a) -=> { printf("Lox\n"); }

we would get the word Lox printed every time there was an assignment
to any element of the array a.

e Flements of one-dimentional arrays can be made active. If we de-
clare int b[13] we can declare the active values (b@), (b[10]),
(b[0]@,b[1]), et cetera. The active value (b@) will fire whenever any
element of the array is changed, and the active value (b[0]@,b[1])
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will fire whenever the zeroth element of b is changed or the first el-
ement is assigned to. Remember that this individual addressing of
active values works only for single-dimensional arrays—if we use ar-
rays of two or more dimensions we can have only the whole array
active.

e Structures and unions can be made active. In general, any portion of
a struct or union may be made active, from the entire conglomerate
to the smallest sub-parts of it. Thus, if we had a variable b.a.a, we
could make b, b.a, or b.a.a active, with well-defined behavior for
each one. If any element of the structure b is assigned to, the active
value (b) will fire. If b.a were assigned a value both (b) and (b.a)
would fire, and if b.a.a were assigned to all three active values would

fire.

e No kind of pointer can be made active. This includes variables con-
taining '—->" as well as '*’) so neither *a nor a->b can be active
values.

9.3.4 Active Values and Inheritance

Active values and inheritance do not mix well in the current implementation
of MELDC. Thus, inheriting classes which employ active variables is not
such a good idea, and will result in unpredictable and undefined behaviour.

9.4 The MetaClass

What does

seeded bagel mybagel = seeded bagel.Create();
have to do with

int i = mybagel.get seeds();

where seeded bagel is a class and mybagel is an object of class seeded bagel?

There certainly is an astounding similarity in syntax here. And we know
exactly what syntax the second statement means: we are assigning to an
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integer the result of the method get_seeds() of object mybagel which was
defined in class seeded bagel. The first statement, however, we have (until
now) simply accepted as syntactic convention: we tack “.Create()” to the
end of a class-name and we get something that returns an object.

Until now, we have been extremely silent about an important aspect
of MELDC. Well, the secret is out, if the syntax didn’t already give it
away. Create() is actually a method, just as get_seeds() i1s. And,
Just as get_seeds() is defined in mybagel’s class, Create() is defined in
seeded bagel’s class.

seeded bagel’s class? But seeded bagel s a class. True, and the class
of all classes, and thus the class of seeded bagel, is what MELDC calls the
MetaClass. Just as all seeded_bagel objects are instances of the class of
seeded bagels, all class objects (what we have called classes) are instances
of the MetaClass.

What does this mean? Well, for one thing, it explains the strange
“syntactic” methods we have seen, Create(), Destroy(), GetObj() and
Put0bj (), among others. They are all MetaClass methods—methods that
are used by classes and are defined in the MetaClass, much like get_seeds ()
is used by mybagel and defined in the class seeded_bagel. The MetaClass
shows that MELDC is a thoroughly object-oriented language, extending to
almost all facets of its use. There are very few exceptions to the object-
oriented paradigm, which makes the language consistent and easy to use.

It also explains one more syntactic element about the language that may
have been noticable. Create(), Destroy(), GetObj() and PutObj()—
all MetaClass methods—all start with a capital letter. This is a stylistic
convention for MELDC and isn’t a necessary part of the language. But it
does help keep MetaClass methods and regular class methods from being
confused, and is a helpful hint to keep in mind when writing and debugging
MELDC programs.

One final mind-bending note on the MetaClass: If the MetaClass is
the class of classes, the MetaClass is itself a class. Which means that the
MetaClass is the class of the MetaClass—the MetaClass is its own class.
Ignoring the looming infinite regress this kind of construct creates, this
makes programming MELDC much easier than it could have been: there
are only three levels of the class hierarchy to keep track of.
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Figure 9.2: The MetaClass Hierarchy

9.4.1 Destroy()

The Destroy feature is used for the sole purpose of removing either an object
or a class. This would want to be done to clean up an object. This can be
done as follows:

metaClass.Destroy(object-name);

This will destroy an object if object-name refers to an object. If the
object-name refers to a class instead, then the entire class will be destroyed.
It should be pointed out that the destroy function will work recursively.
That is, say we have the hierarchy of Figure 9.3. In this case, if we make
the Destroy call from A, we must then also destroy B and C due to the fact
that B and C are inherited from A.

Notice what this implies. When we make the call metaClass.Destroy();,
we are saying that we want to destroy the MetaClass. This will cause a se-
ries of steps that will destroy all classes that exist, including the MetaClass.
Notice that this call can only be done from the MetaClass.

We must also point at the case of when a Destroy is called on a object



9.5. STRING SELECTORS 89

Figure 9.3: Destroy call in a hierarchy.

that has a shadow object attahced to it. When this happens, the Destroy
routine will issue a Detach call to remove the shadow object from the object
to be destroyed.

9.5 String Selectors

When a MELDC object receives a message, its default behavior is to match
the message with one of its selectors and then to fire off the method corre-
sponding to the matched selector. With this in mind, a simple improvement
might be for the object to match the incoming message with some other
predicate other than that of equality; that is, for the object to fire a method
if a message matches the method’s selector in some programmer-defined way
other than being exactly alike.

For reasons of efficiency, most MELDC messages only fire off a method
if the message-name exactly matches one of the object’s selectors. For
example, the message square(5) sent to the object arithmetic will only
work properly if there is some method in arithmetic with selector square;
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if there is some method defined by, say:

implementation

int square(x) { return x*x; }

MELDC can be more flexible in its message-triggering using a special
kind of selector: a string selector. Instead of defining a method-name
with an identifier, the programmer can use a string-constant, which may
be a regular expression using metacharacters. When a string message is
sent to the object, the object will trigger the first method whose string
selector matches the incoming string message-name (it will fire the first,
since the possibility exists that more than one selector could match the
message). Thus, MELDC objects can be simple pattern-matching entities.

There is a price to pay for this flexibility, however. Methods which have
string selectors cannot have any arguments passed to them.

9.5.1 Syntax for Selectors and Messages

String selectors are defined much like regular selectors are, but a string
constant is used rather than an identifier. For example, if we had a method
foo defined by:

implementation
int foo()

and we instead wanted to define a method which would trigger not when the
object receives the message foo, but when it receives the string messages
"foo", "fo", "fooo", "foooo", and the like. We would then define the
new method with:

int "foox"() { ... }

as "foox" is the regular expression for the set of strings of the form “fo”
followed by zero or more “0” ’s. It is perfectly allowable to use a string se-
lector without metacharacters (i.e., "foo"); though the only string message

matching it will be its exact copy.
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The difference is important, though, between foo, the selector and iden-
tifier, and "foo", the string selector and string constant. The former can
only be triggered by the message foo, while the latter only by the string
message "foo". There 1s a specific syntax for sending a string message to
an object, though not a complicated one: simply replace the method-name
in the call with a string.

If we were to send the normal message foo to the object spam, for ex-
ample, we would use the statements spam.foo() or send foo() to spam,
depending on whether we were sending synchronously or asychronously.
If spam had a string selector "foo" or "foo*'", however, we would use
spam."foo" or send "foo" to spam.

In fact, we aren’t limited to string constants in sending string messages.
If bar were a variable of type char *, the calls spam.bar and send bar
to spam are also legal. The actual string message sent would be whatever
string is referenced by the character pointer bar. Thus, if bar pointed to
the string "fooo", the call spam.bar would trigger the method with string
selector "foo*".

9.5.2 The $selector Keyword

It is often useful to have some record of the actual string message sent to
a string selector. For example, if our "foo*" selector is triggered, it may
be necessary to know whether it was triggered by "foo" or by "fool".
The $selector keyword may be used inside a string-selected method to find
this information. $selector will return a character pointer representing the
string which triggered the method. Remember, though, that the $selector
keyword only has meaning inside a string-selected method.

9.5.3 Limitations

The price of the ability to use regular expressions for selectors is the ar-
gument list: Methods with string selectors can never have arguments, and
must always be declared with an empty argument list. This is not to say
that objects with string-selected methods cannot have arguments for any
of its methods. Objects may freely mix methods with string selectors and
those with regular selectors. The order of their listing isn’t important,
apart from the fact that a string message will only trigger the first method
it matches. Methods with differing types of selectors are treated completely
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separately. Thus, it 1s important to note that string messages will not match
regular selectors, or vice versa. The regular message foo can never cause a
method selected by "foo*'" to fire.

9.6 The MELDC Scheduler

As hinted in Chapter 4, normal MELDC concurrency can be described as
pseudo-parallelism, not true parallelism: although there may be more than
one MELDC thread running “concurrently,” all computation is actually ex-
ecuted on a single processor!, with each MELDC thread given a certain
amount of processor time, or a certain length “time slice,” before the pro-
cessor moves onto another MELDC thread.

There are a number of possible policies which might govern the lengths
of the time slices for each thread — policies to govern when one thread is
put on hold to devote processor time to another. Though MELDC supports
a number of these, one common aspect is that all threads are kept in a
queue. When the MELDC process moves from one thread to another, its
current one is put onto the end of the queue and must wait until all other
threads are attended to before receiving any more processor time.

9.7 Dynamic Linking of Classes

In its support for dynamic programming, MELDC provides facilities for
externally constructed entities, both classes and objects, to be incorporated
on-the-fly into a running MELDC program. These facilities can be cleanly
divided into the dynamic linking of classes and the loading and saving
of persistent objects. Persistent objects are not supported in the current
version of MELDC, but the dynamic linking of classes is well supported —
though only under the Sun 4 architecture.

It is sometimes the case that not all class definitions will be available
when a MELDC program is executed. At others, it is simply not desirable
to reserve space in a MELDC executable for a host of class definitions, many
of which may never be used. In such cases it is often wise to only include
a class definition into the program if and when it is actually needed — to

INote that this scenario describes the basic concurrency constructs built into the
MELDC kernel. MELDC support for remote objects allows true parallelism
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dynamically link that class definition into the already-running program.
Using such dynamically-linked classes imposes some overhead, and care
must be used in creating objects with them, but they can be extremely
useful.

9.7.1 Syntax

Dynamic linking is a fairly straightforward process, but it involves some-
thing we haven’t seen before: A MetaClass method sent to the MetaClass
itself, as well as an “object” of class MetaClass.

First of all, in order to make any use at all of the dynamic linking
abilities of MELDC, the protocol object persistent_class protocol must
be imported from feature PersistentClass:

interface:
PersistentClass[persistent_class protocol]

There must also be some existing variable which will be the placeholder
for the dynamically linked class: the new “name” for the class. This variable
will have the type MetaClass, for just as object variables have classes as
types, so do class variables have MetaClass as a type. For example, if we
were going to dynamically link some class and use the variable foo to hold
the class definition, we must have the declaration:

MetaClass foo;

somewhere where the variable foo is visible for the next step:

For the class to actually be dynamically linked into the MELDC pro-
gram, four pieces of information are necessary: The class name, the name of
the protocol object, persistent_class_protocol, the name of the feature
which contains the class, and a search path where the already compiled fea-
ture can be found. All this information is used for a call to the MetaClass
method Get0Obj, already seen in Chapter 4:

class-variable = (MetaClass)
MetaClass.Get0bj(class-name,
persistent_class_protocol,
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feature-name,
search-path) ;

So if we wanted our foo class variable to contain the class definition for
class rectangle of feature geometry which was compiled in the default
directory, we would use:

foo = (MetaClass)
MetaClass.GetObj("rectangle",
persistent _class_protocol,
"geometry",
(char *)NULL);

9.7.2 Using the Dynamically Linked Class

The most common use for a newly linked class 1s to create an object. This
is also relatively straightforward, but there are a few catches. Firstly, the
object variable for the newly created object must have been declared to be
of type (or class) object. That is, if we want to set the variable bar to be
a newly created object of class rectangle, just after linking that class into
the program as foo, we would declare bar:

object bar;
And to actually create the object, we would use:
bar = (object) foo.Create();

The presence of the (object) typecast is mandatory: One price of dynamic
power is a lack of typechecking, so all return values of these dynamic entities
must be cast.

9.7.3 Preemptive vs. Non-Preemptive Scheduling

For some architectures (Sun 4), the MELDC distribution includes a choice of
schedulers, a preemptive and a non-preemptive one. The choice of sched-
ulers is not under programmer control; the local maintainers of MELDC
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make the decision as to which scheduler to offer when MELDC is compiled
on site. Though 1t is usually unwise to write programs which differ in be-
havior depending on the scheduler, information about how and why threads
are scheduled can be useful in very advanced applications.

The non-preemptive scheduler is the default for MELD CUnder this schedul-
ing policy, a MELDC thread runs until a MELDC function call i1s made,
either synchronously or asynchronously. Whenever a statement such as
object. method or send method to object is reached, the current thread is
placed on the end of the queue and all other threads are given processor
time before the MELDC function call is executed. This is an efficient pol-
icy, as it removes much of the task-switching overhead of a more active
policy, but sometimes it may not be a good enough simulation of paral-
lelism. For example, a thread with a “tight loop” of C statements without
any MELDC function calls might starve all other threads of processor time,
for the thread would receive processor time until the (perhaps quite long)
loop was finished. The preemptive scheduler may be a closer approxima-
tion to true parallelism: With it, threads can be switched in the middle of
a method execution; in the middle of a list of C statements. C functions,
however, will not be preempted, nor will C code inside the MELDC kernel.
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9.8 Preventative Debugging

Even with the help of the MeldC debugger, attempting to make programs
bug-free can be an extremely time-consuming business. We highly recom-
mend that programmers working in MeldC make use of a form of ” defensive
programming.” By this we mean that extra care must be taken to assure
that code is written correctly, according to both conventional C and MeldC
syntax and grammar.

The single greatest source of errors in conventional C code has to be
the confusion of the assignment operator (a lone equals sign, “=") with
the notation for equality (a pair of equals signs, “=="). More hair has
been torn out of the heads of beginning C programmers over this simple
oversight than any other pitfall of the language. Since MeldC has adopted

this syntax, programmers should pay careful attention to its correct usage.

Actually, the single vs. double problem shows up elsewhere in both
conventional C and MeldC. A lone ampersand (&) will signify a bit-wise
AND operation to be performed on a pair of variables, while a pair of
ampersands (&&) signal a logical AND operation performed on a pair of
variables. Likewise, bit-wise and logical OR operations follow the same
pattern but use a vertical line (]) or lines (]]) instead.

More troublesome to beginning MeldC programmers will be certain op-
erators or operations in MeldC that closely resemble completely different
features of conventional C. Due to MeldC’s adoption of C grammar as the
basis for its own, these similarities will undoubtedly cause much confusion.
A few of the more prominent examples are listed in Figure 5.1.

Once all syntactical errors are corrected, if the MeldC file is still produc-
ing error messages, it’s important to check for programming errors. Here
are a few ways to avoid some of the more mystical errors that can occur

within MeldC:

1. Confirm that delayuntil/respond pairs match not only what they’re
passing but also their departure and arrival points. Theoretically, an
object could wait forever if its respond was misdirected or didn’t
match the delayuntil message which was waiting for it. Imagine
an object Krazy Kat that declares delayuntil ¢ ‘Iloveyou’’ from
Ignatz, but Ignatz never actually sends a respond ¢ ‘Iloveyou’’
to Krazy Kat. Or else responds with brick. In either case, Krazy Kat
would wait in vain for a proper response.
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Conventional C MeldC
Explanation Example Example Explanation
Member "b" of structia->b a-->b() Active value

pointed to by "a" :

Assignment of 42 to ! foo.bar = 42| foo.bar(42): Synchronous send
member "bar" of ! : of message "bar"
struct "foo" 5 i with value 42 to

: : object "foo"

Function named icreate() Create() Global object
"create" : i declaration at
: start time

Type integer i int init () ! Entry point for
: most threads

Figure 9.4: Some common sources of confusion.

[\]

. Avoid cyclical delayuntil/respond groupings. This is the opposite of
number 1, for in this case the delayuntil /respond pairs are doing their
jobs too well by causing a deadlock in the system. If A waits for a
response from B that will only come if A responds to B, then the
objects will never get any work done.

3. Awoud cyclical merges. We might call this ”the Oedipus Syndrome”, in
which an object will inadvertently (through careless merges) attempt
to inherit features from itself. In other words, the object tries to
become its own parent. Such bootstrap techniques may work in other
areas of computer science, but object-oriented programming forbids
them.

4. Methods returning an int must specify so.

5. Methods cannot contain empty statements. If you have a method
named, for instance, wait for_Godot (), it must contain meaningful
statements. The MeldC compiler does not permit an “open” curly
brace and a “close” curly brace with absolutely no code between them.

6. Carefully examine the context of a pair of colons to determine whether
something is missing or something is extra. Depending on the loca-
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10.

11.

12.
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tion, a pair of colons may signal the need for an equals sign, or may
suggest that one of the colons should be removed.

Be aware of the limits of encapsulation. Values an object wishes to
access may be “hidden from view” if they are within an object of
another class than that of the object seeking access.

Be aware of the proper syntazx for braces, brackets, and parentheses in
MeldC. Braces are used to denote the scope of C statements. Angle
brackets indicate the location of atomic blocks. Parentheses enclose
expressions.

Make certain to include an init() function in at least one class
within a given feature. Don’t be overly concerned, however, if the
MeldC compiler complains about a particular class lacking an init ()
function. If class A has an init() function, while class B does not,
the compiler will send a warning message about B. The output file is
still runnable, however.

Make certain to initialize an object using Create(). If you don’t
Create() an object, Meld(C’s system function will generate a “core
dump” when you try to call that object. This program failure will
undoubtedly be a source of befuddlement when you try to debug your
MeldC code and find everything else syntactically-correct.

Typedefs, unions, and structs must be defined in the implementation
section or in a header file to be #included in a MeldC program. If this
is not done, the compiler will either ignore the definitions or generate
a “syntax error” message.

Warning about the Create call. When we make the Create call, we
will call the init function asychronousily. So, when we call Create all
of the parameters will also be passed to the init function. Because
of this, you should make sure that any variables you pass to Create
exist until the init fucntion has finished. For this reason, you should
not pass addresses of a local variables to Create.
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Examples

10.1 Inheritance: Clock Radios

A real-life example of the inheritance from two distinct classes can be found
in the case of a common clock radio. If we implement in MeldC a merged
class of clock_radio, the class could take elements of the clock class hier-
archy or the radio class hierarchy, or both. A side effect of this merger of
elements from two different classes can be seen in the case of an incoming
message seeking the appropriate interface to enter an object. If, for some
reason, a particular item in the clock_radio class does not have the correct
interface to respond to a message, then the message is sent up the line to
a superclass which does have a receptive selector (either something in the
clock lineage or in the radio lineage.

This sample program details the code necessary to create objects of the
class clock radio. Important aspects of multiple inheritance, as well as
object creation and testing, are explained.

feature inheritance /* the mandatory feature name */
interface: /* a one-feature program, so */
/* we have an empty interface */

implementation:
Clock_Radio a_clock_radio = /* create a Clock_Radio */
Clock_Radio.Create(); /* object globally */

test test_obj = test.Create();

99
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class radio
class clock

(NRERERERERRRRRERREnE)

class clock_radio

Figure 10.1: The Clock Radio Inheritance Tree

class test ::=

methods:
void init() { /* all testing done inside */
int i, time; /* the init() special method */

printf ("\n\tWake me at eight\n};

a_clock_radio.radio_on();

a_clock_radio.set_station(89.9); /* set to WKCR, of course */
a_clock_radio.set_alarm(8);

a_clock_radio.reset_time();

for (i = 0; i< 12; i++) {
a_clock_radio.tick();
if (a_clock_radio.get_time() ==
a_clock_radio.get_alarm_time()) {
a_clock_radio.sound_alarm(); /*sound_alarm is a method  */
/* both superclasses */

}

printf ("\n\tDON’T wake me at eight\n");
a_clock_radio.alarm_off();
a_clock_radio.reset_time();
for (i = 0; i< 12; i++) {
a_clock_radio.tick();
if (a_clock_radio.get_time() ==
a_clock_radio.get_alarm_time()) {
a_clock_radio.sound_alarm();
¥
¥

printf("\n\t7 o’clock. NO RADIO.\n");
a_clock_radio.radio_off();
a_clock_radio.set_alarm(7);
a_clock_radio.reset_time();
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for (i = 0; i< 12; i++) {
a_clock_radio.tick();
if (a_clock_radio.get_time() ==
a_clock_radio.get_alarm_time()) {
a_clock_radio.sound_alarm();

}
}

end class test

class Clock ::= /* The first of our superclasses */
int time;
int alarm_time;
int alarm_on;
methods:
void init() {
time = 1;
alarm_on = 0;
¥
void set_alarm(int set_time) {
alarm_on = 1;
alarm_time = gset_time;

void alarm_off() {
alarm_on = 0;
printf("Alarm turned off\n'");

void reset_time() {
time = 0;

¥

void tick() { /* each tick is one hour #*/
time += 1;
printf("time is %d o’clock\n",

time) ;
¥
void sound_alarm() {
{

if (alarm_on)
printf("Alarm: %d o’clock WAKE UP!!! \n",
time);
¥
int get_time() {
return time;

int get_alarm_time() {
return alarm_time;
¥

end class Clock

class Radio ::= /* the second of our superclasses */
float station;
int on;
int vol;
methods:
void init() {
on = 0;
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station = 92.7; /* Now let’s tune in K-Rock */

vol = 4;

¥

void radio_on() {
on = 1;

void radio_off() {
on = 0;
¥

void set_station(float new) {
station = new;

void sound_alarm() {

{
if (on)
printf("Alarm: station %f.\n",
station);

¥

void alarm_off() {
on = 0;

¥

end class Radio

class Clock_Radio merges Clock, Radio ::=
methods: /* looks boring by itself... */
void init() { /* all its variables and */
/* methods are in its parents */
printf ("\n\tA new clock radio\n");

end class Clock_Radio

end feature inheritance

10.2 Concurrency: The Producer-Consumer
Problem

Our second large example program discusses MELDC’s treatment of con-
currency issues 18 based on a familiar programming problem from the study
of operating systems. Imagine a pair of programs, where one produces data
of some sort that is consumed by its partner. The consumer has a buffer of
a fixed size into which the producer can send the data and from which the
consumer can read (“consume”). The problem is: how do we prevent the
producer from writing data into a full buffer, and how do we prevent the
consumer from attempting to read from an empty buffer?

The key is to synchronize the two actions in such a way that the pro-
ducer will only write into the buffer when there’s a space waiting for a
deposit, and the consumer will only attempt to read from the buffer when
there’s something in the buffer. In MELDC, as can be seen from the ex-
ample below, this synchronization is accomplished through several of the
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constructs we’ve discussed in Chapter 3: delayuntil and respond; atomic
blocks, and message passing.

extern int printf();
extern int random();
feature Producer_and_Consumer
interface:
implementation:
ProducerConsumer PCobj = ProducerConsumer.Create();
/*
* Producer-Consumer program using synchronous delayuntil

* 1-to-1 synchronization between message-sending and delayuntil

*/

class ProducerConsumer ::=
int buffer[10];
int total_space = 10;

int P = 0;
int C = 0;
methods:
void init() /* create 10 "buffers", really respond */
{ /* statements ready for delayuntils */

$self.spacing(total_space);
send world() to $self;
}

void spacing(int x) /* the actual "buffer" creator */

printf ("space(%d)\n", x);
if(x > 0)
{

respond "SpaceAvailable';
send spacing(x-1) to $self;
}

int decide() /* a glorified coin-flipper */
{
if( (long) random() >= (long) (1024%1024%*1024) )
return(1);
else
return(0);
}

int world()
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int 1;

int ¢ = 0;

int p = 0;

printf("Start ............... \n")

for(i = 0; 1 < 40; i++) /* run the simulation for 40 */
{ /* productions/consumptions */

if( $self.decide() )
{
send consumer(c++) to $self;
else
{
gsend producer (p++) to $self;
¥

int consumer (int i)

printf ("Consumer %d consumes %d\n", i,$self.Consume());

int producer(int i)

{
printf ("Producer %d produces %d\n", i, $self.Produce(i));
¥

int Produce(int x)

{
delayuntil "SpaceAvailable";/* wait until there is no space  */
< /* and begin the critical section */

buffer[P] = x;

printf("...Producer(}d) at buffer[%d] = %d\n",x, P, buffer[P]);
P = (P + 1) } total_space;

respond "EntryAvailable";

return(x);

>

int Consume ()
{
delayuntil "EntryAvailable"; /*wait until nothing to consume */
< /*and enter the critical section */
int i;

i C;

C (C + 1) % total_space;

printf("..... Consume () at buffer[%d] = %d \n'", i, buffer[i]);
respond "SpacelAvailable";

return(buffer[i]);
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>
}

end class ProducerConsumer

end feature Producer_and_Consumer

10.3 Shadow Objects: Another Producer-
Consumer

This is simply our old producer-consumer program with a number of shadow
objects attached which display messages as they are entered and exited.
This makes clear the behavioral differences between “linear” and “circular”
schemes of attachment with the use of an #ifdef preprocessor directive.

#include "meldc_user.h"
#define Linear
feature ShadowObjectTest
interface:

imports Unix[sys_obj]

imports MemoryAllocation[Memory]

implementation:
testing test_obj = testing.Create();

class ShadowObjectl merges MemoryAllocation[Memory] ::=

methods :

struct _frame #* shadow_object_entry_point(struct _frame *fp)
{
/*
* reconstruct the frame and return the frame.
*/

printf ("enter Shadow object entry point 1 \n");
return(fp);
}

void shadow_object_exit_point(object obj, struct _threadid t)
x

* reconstruct the frame and return the frame.
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*/

printf("enter Shadow object exit point 1 ¥%s\n",
((struct _object *)obj)->$.name);

return;

}

end class ShadowObjectl

class ShadowObject2 merges MemoryAllocation[Memory] ::=

methods :
void shadow_object_entry_point(struct _frame *fp)
{
/*
* reconstruct the frame and return the frame.
*/

printf ("enter Shadow object entry point 2 \n");
return(fp);
}

void shadow_object_exit_point(object obj, struct _threadid t)
{
/*
* reconstruct the frame and return the frame.
*/

printf ("enter Shadow object exit point 2 ¥%s\n",
((struct _object *)obj)->$.name);

return;

}
end class ShadowObject2

class testing ::=
ProducerConsumer pcobj;
ShadowObjectl shadow_objl;
ShadowObject2 shadow_obj2;

methods:

void init()
{
shadow_obj1
shadow_obj2

ShadowObjectl.Create();
ShadowObject2.Create();
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pcobj = ProducerConsumer.Create();

#ifdef Linear

/*

* Real_object <- shadow_objl <- shadow_obj2

*

* When a message is sent to the base object, the

* the message is first sent to shadow object 2.

*

*# If any shadow object should fail, the subsequent shadow
* object will not be executed.

*# and the base object will not be executed.

*
~

ProducerConsumer.AttachObject ((object)pcobj,shadow_objl,
"shadow_object_entry_point",

"shadow_object_exit_point",
[RN3)
k4

nn);

ShadowObjectl.AttachObject (shadow_objl,shadow_obj2,
"shadow_object_entry_point",
"shadow_object_exit_point",

N1
s

nn);

#endif
#ifdef CIRCULAR
/*
*# Real_object <- shadow_objl
* <- shadow_obj2
* <- shadow_obj2
* <- shadow_obj3
* <- shadow_obj4
* <- shadow_obj5
*
* When you send a message to the base object, the
* the message will be sent to the shadow object 5 first.
*
* Should any shadow object fail, the subsequent shadow object
*# will be executed but the real object will not be.

*/

ProducerConsumer.AttachObject ((object)pcobj,shadow_objl,
"shadow_object_entry_point",

"shadow_object_exit_point",
[RN3)
b

nn);
ProducerConsumer.AttachObject ((object)pcobj,shadow_obj2,
"shadow_object_entry_point",

"shadow_object_exit_point",
[RN3)
k4

nn);
#endif
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}

end class testing

/*
* Producer-Consumer program using synchronous delayuntil
* 1-to-1 synchronization between message-sending and delayuntil
*/
class ProducerConsumer ::=
int buffer[10];
int total_space = 10;
int P
int €

H

0;

methods:
void init()

/*

* create 10 buffers.

*/
$self.spacing(total_space);
send world() to $self;
¥

/*
* Creating the buffer spaces.
*/

void spacing(int x)

/*
* create n spaces
*/
printf ("space(4d)\n", x);
if(x > 0)
{
respond "SpaceAvailable';
send spacing(x-1) to $self;
}

int decide()

if( (long) random() >= (long) (1024%1024%*1024) )
return(l);

else
return(0);

int world()
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printf("Start ............... \n") ;
for(i = 0; 1 < 40; i++)

{
if( $self.decide() )
{

send consumer(c++) to $self;

}

else

send producer (p++) to $self;

¥
¥
int consumer (int i)

printf ("Consumer %d consumes %d\n", i,$self.Consume());

}
int producer(int i)

printf ("Producer %d produces %d\n", i, $self.Produce(i));
¥

int Produce(int x)

/*

* Wait if there is no space.
*/

delayuntil "SpaceAvailable";

/*

% Critical Section.
*/

<

buffer[P] = x;

printf("..... Producer(%d) at buffer[%d] = %d\n",x, P, buffer[P]);
P = (P + 1) } total_space;

respond "EntryAvailable";

return(x);

>

int Consume ()

/*

* Wait if there is nothing to consume.
*/

delayuntil "EntryAvailable";
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/*
% Critical Section.

*/

<
int i;

i= C;
C = (C+ 1) % total_space;

printf("..... Consume () at buffer[%d] = %d \n'", i, buffer[i]);
respond "SpacelAvailable";

return(buffer[i]);

>
}

end class ProducerConsumer

end feature ShadowObjectTest

10.4 Dynamic Linking: Yet Another Producer-
Consumer

This example program simply loads the class ProducerConsumer from the
feature Producer _and _Consumer and creates an object of that class. Note,
however, that if it is run from the directory where the program in Section
10.2 was compiled, this program will execute the exact same code.

feature Conference

interface:
imports PersistentClass[persistent_class_protocol]

implementation:
LocalUser local_object = LocalUser.Create();

class LocalUser ::=
methods:

void init()

MetaClass pc_class;
object pc_object;

/*
* 1st class name.
* 2nd the the protocol object.
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* 3rd feature name

* 4th Search path for the object code.

* (i.e -E../../examples -E../../../examples) Exactly the
* same function as the compiler -E switch.

*/

pc_class = (MetaClass)
MetaClass.GetObj (""ProducerConsumer" ,persistent_class_protocol,
"Producer_and_Consumer", (char *)NULL) ;

pc_object = (object)pc_class.Create();
}

end class LocalUser

end feature Conference
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Appendix A

The MeldC Program File

A.1 Feature Name

Each MELDC program file contains exactly one feature, which must have a
name. The name of the feature and the name of the file where it is stored
are completely independent: they can be the same or different. The name
of the feature is declared at the beginning of the program file by

feature feature-name

where feature-name is any valid identifier.

A matching
end feature feature-name

line marks the end of the feature, and must always be placed at the end of
the program file. Since there can be no confusion about which feature is
being ended, however, the feature-name label in this statement is optional.
All #include statements must appear at the top of the file, before the
feature is declared.

A MELDC feature is divided into two parts, the interface and the
implementation.

113
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feature feature-name
interface:
exports Class, object. ..

imports feature] class], featuref object] . . .

implementation: .
global -variable-declarations
class-definitions

end feature feature-name

Figure A.1: The MELDC Feature

A.2 Interface

The interface section of a MELDC feature declares how it interacts with
other features. The section begins with the keyword interface (optionally
followed by a colon for clarity). The interface label is necessary to begin
the section even though it may be empty if the feature neither imports nor
exports anything.

A feature can export its classes and global objects for other features
to use, and import classes and global objects which other features have
exported. Consequently, each line of this section consists of either of the
keywords exports or imports, followed by a list of things to export or
import, respectively. All import lines must occur before all export lines.

A.2.1 Exports

The syntax for exporting objects and classes is relatively simple. Each
export line consists of the keyword exports followed by a list of things to
export. If, for example, we wanted to export the classes shape and animal
and the objects circlel and account39, we would use the statement:

exports shape, animal, circlel, account39
There are three things to note about this line:

e The order of the objects and classes listed is unimportant. Here we
listed exported classes before exported objects, but only for clarity.
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e All four exports here are on one line, but we could have used two,
three or four export statements to accomplish the same thing.

e There is no semi-colon ending the statement.

A.2.2 Imports

To import something we must provide both the name of the object or class
we wish to import as well as the MELDC feature from which to import,
but other than that the syntax is the same as exporting. Each item on an
import line is of the form feature[thing], so if the class shape and the global
object circlel were exported in feature geometry, animal was exported in
feature zoo, and account39 was exported in Lincoln_Savings, we might
use the following statements:

import geometryl[shape], geometryl[circlel]
import zoo[animall], Lincoln Savings[account39]

Alternately, we can just import a whole feature, getting everything exported
from that feature in one fell swoop. If Lincoln Savings exported all of its
accounts, we could import them with the statement

import Lincoln_Savings

A.3 Implementation

The bulk of the MELDC program is usually in this second section of the
feature. Tt begins with the keyword implementation (with an optional

colon for clarity).

A.3.1 Global Variable Declarations

Variables that are global to the feature are declared (and possibly initial-
ized) with C syntax at the beginning of the implementation section before
any classes are defined:

type-cast varitable-name [ = assignment 1 ;

Each declaration has
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class Class-name merges list-of-superclasses
instance-variable-declarations

methods:
active-value-definitions
method-definitions

end class class-name

Figure A.2: The MELDC Class

e A type-cast, declaring the variable to be of a certain type. The
type can be one of conventional C’s primitive types, one user-defined
through typedef, or a class name (which would be the type of an

object of that class),
e Any valid identifier as the variable’s name, and optionally

e An initial assignment to the variable.

If we wanted to create the object account28 of the class bank_account
when the MELDC program starts to execute, for example, we would use:

bank_account account28 = bank_account.Create();

Which not only creates the variable account28 of type bank_account, but
also assigns to it the result of bank_account.Create(). Create() is ac-
tually a MetaClass method, and as such must be capitalized (see Section

9.4).

A.3.2 Class Definitions

The rest of the implementation section is devoted to one or more class
definitions. FEach class begins with the line

class class-name ::=

where class-name is any valid identifier. If we want to have the class inherit
from one or more other classes, we define 1t with:

class class-name merges list-of-superclasses ::=
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where list-of-superclasses is a list of class names (or feature-namefclass-
name]’s) separated by whitespace or a feature-name with square brackets.
For example, if we were to define the class bagel as a subclass of torus
and breakfast_food, the first line of the class definition would be:

class bagel merges breakfast food, torus ::=

The order of the list is important and defines some of the behavior of the
inherited class (see Chapter 2).

The end of each class must be explicitly defined by
end class class-name

but, like feature-name, class-name is an optional addition for clarity.

Each class definition consists of declarations of instance variables,
the keyword methods optionally followed by a colon, and definitions of the
class’ active values and methods. Class definitions may not be nested:
Classes can only be defined in the implementation section of the MELDC
feature, nowhere else.

Instance Variables

We declare variables in this section as we did for global variables. The
difference is the scope of the variables created. Where global variables are
visible to any object in the feature, each object’s instance variables are only
visible to that object. If instance variables are declared static they are
class variables and can be accessed by any object of the class where the
variable is defined.

Active Values
The basic syntax to declare an active value is:
(list-of-active-values) -=> { code }

Where list-of-active-values is a comma-delineated list of instance vari-
ables and code is a series of MELDC statements. If an active value is
declared, whenever one of the instance variables in list-of-active-values is
assigned to or changed, the code statements are executed.

Active values are constructs with complex behavior and syntax, and are
described in Section 9.3. There are a few simple things to remember about
them, however:
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e Declaring a global variable to be active is not allowed, nor can active
variables be local to a method; active values can only be instance
variables.

o If an active value is followed by an at-sign (“@”) the code is triggered
only when the value is actually changed. Without the at-sign, the
code is triggered whenever an assignment is made to the active value.

e The arrow above (“==>")is formed by two hyphens and a greater-than
symbol. Using one hyphen will unnecessarily confuse the compiler.

e There 1s no semi-colon after an active value definition.

Methods

The syntax of a method definition is the same as a corresponding C function
definition (although the body of the method can use MELDC constructs as
well as conventional C constructs):

type-cast method-name Cargument-list) {
method-body

1

Where method-body 13 a sequence of C and MELDC statements. Unlike
conventional C, MELDC local variables may be declared anywhere in a
method, not just at the beginning. They must be declared before they are
used, however.

Note that the MELDC is not as forgiving as the C compiler, and will
not assume all un-typed methods are of type int. Any method definition
without a type-cast is an error. If we want a method to be of type int we
must declare it so.
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Backus-Naur Form

B.1 A Short Introduction to BNF Concepts

We’ve spent much of this manual talking about hierarchies of information.
Mostly, these hierarchies have been classes within MELDC. Now it’s time
to consider the language of MELDC as a hierarchy in its own right.

Computer scientists often describe new computer languages in terms of
that language’s BNF, or Backus-Naur Form. In a BNF| all possible legal
combinations of language primitives (keywords) are described in a concise
set of choices.

To describe a variety of terms based on combinations of simple primi-
tives, we must be able to define alternate syntaxes and multiple instances
of a particular keyword or term. In a BNF, these needs are fulfilled by
employing the OR-symbol | (just like the logical OR found in conventional
C) to indicate alternatives, the Kleene star (an asterisk after a keyword or
term) to indicate zero or more instances of that word, the subscript ,p¢ to
indicate zero or one instance of that word, and, the plus-sign + to indicate
at least one instance of that word.

A simple example of a BNF is one to describe colors. Here, as in the
BNF for MELDC we’ll see shortly, we start from the top and work our way
down to the basic keywords:

color ::= primary + color

primary

119
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primary ::= red
|
blue

yellow

bl

In the first line we named the item to be described (“color”) and then
used a “::=" to indicate that it will be assigned the attributes of what fol-
lows immediately afterward: a list of the ways to combine simpler elements
to create the item. Notice that each way 1s separated by an or-symbol,
to show that each is an alternative to consider. Within each alternative,
we can include a “4+” to indicate combinations. In this case, both “color”
and “primary” are considered to be nonterminals since they can be further
broken down into simpler parts: red, blue, or yellow. The latter three are
called terminals, since we can make them no simpler.

By this BNF, blue is a color. Green is also a color, because it can be
expressed as “blue + yellow.” The third term of the definition (the “+” is
considered the second term) is “color”, which can itself be a primary color.
On the other hand, “color” could be a combination of a primary color and
an existing color. In this way we could describe “aqua”, as a combination
of blue and green. Thus, aqua can also be described as “blue + green”,
which 1s really “blue 4+ blue + yellow”. Obviously, we can join terminals
and nonterminals in endless combinations, and create virtually any color
from this simple definition.

Notice, also, that we can describe the color black by this BNF, too.
Since black is the absence of color, we just use the null string, which is
indicated by the lone semi-colon after the second or-symbol. Normally, a
definition will conclude with a semi-colon, as in the case of the definition of
“primary”. Here, in “color”, the semi-colon without anything preceding it
is given as an optional attribute (note the or-symbol just before the semi-
colon in the “color” definition), which is meant to show that “color” can

be defined as null.

B.2 The MeELDC BNF

In the BNF that follows, constructs for methods, class definitions, and other
components of objects are shown, as well as extensions of the C language
for special use by MELDC.

Readers who are not familiar with standard C syntax (either Kernighan

and Ritchie C or ANSI C) are referred to Appendix Al13 of ”The C Pro-
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gramming Language” (Second Edition) by Kernighan and Ritchie, where a
complete BNF for conventional C can be found. Since MELDC has adopted
many of the elements of conventional C, only those grammatical elements
that differ between the two languages are listed here. For example, the
following non-terminals, although used in MELDC, are not defined here;
their definitions can be found in K&R:

compound-statement
declaration-list
declarator

ETPTESSION
identifier-list
wmit-declarator-list
pointer

statement-list
storage-class-specifier

likewise,

declaration-specifiers is modified (see the definition below )
type-specifier is extended (see the definition below )

The complete MELDC BNF follows:

program ::=
feature feature-name
interface externals*
implementation
body
end feature feature-nameopt
externals ::=
exports port-list
| imports port-list
port-list ;1=
port
| pori-list , port
port ::=

class-name
| object-name
| feature-name [ class-name ]
| feature-name [ object-name ]
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body ::=
melde-decl*
meldc-decl ::=
data-declaration-list*
| class-decl*

data-declaration-list ::=
data-declaration+

data-declaration ::=
declaration-specifiers anit-declarator-list,p; ;

class-decl ::=
class class-name ::=
class-body
end class class-nameopt
| class class-name merges super-class-list ::=
class-body
end class class-nameopt

super-class-list ::=
super-class
| super-class-list , super-class

super-class ::=
class-name
|  featurename [ class-name ]

class-body ::=
inst-variables methods method-part-list

mnst-vartables ::=
data-declaration-list*

method-part-list ::=
method-part*
method-part ::=
method-decl
| active-value-rules

active-value-rules ::=
( active-value-list ) ==> compound-statement

active-value-list ::=
active-value
| active-value-list , active-value

active-value ::=
wdentifier
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| identifier @

method-decl ::=

type-specifier func-dclir para-declarations merge-parameter-list*
method-body

func-deltr ;=
func-deltr-1
| pointer func-delir

func-deltr-1 ::=
func-deltr-2
| func-decl ()
| func-decl [ ]

funec-deltr-2 ::=
( func-dcltr )
| identifier ( func-formals-list,p )
| string ( )

func-formals-list ::=
func-formal-declaration
| func-formals-list | func-formal-declaration

func-formal-declaration ::=
type-specifier declarator
| identifier

para-declarations ::=
para-decl+

para-decl ::=
type-specifier declarator

merge-parameter-list ;:=
merge-parameter
|  merge-parameter-list merge-parameter

merge-parameter ::=
, class-name ( identifier-list,,; )

method-body ::=
decl-stat-list

decl-stat-list ::=
decl-stat+
decl-stat ::=
decl-stat-list declaration-list
| decl-stat-list stmi-list
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stmi-list ::=
statement-list ;
| send-stmi ;
| delayuntil-stmt ;
|  respond-stmt ;
send-stmt ::=
obj-expression . message
| send message to obj-cxpression
message ;1=

wdentifier ( argument-expression-list,y,; )
|  string ( )

delayuntil-stmt =
delayuntil message
| delayuntil message from obj-cxpression

respond-stmt ::=
respond message
| respond message to obj-expression

obj-expression 1=
expression

declaration-specifiers ::=
storage-class-specifier declaration-specifiers,p
| type-specifier declaration-specifiersop:

Primary-erpression 1=
wdentifier
constant
string
(expression)
$sender
$selector
$self
$thread

type-specifier ;1=
void
char
short
int

long
float
double
signed
unsigned
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| enum-specifier

| struct-or-union-specifier
| typedef-name

| class-name

|

object
feature-name ::= identifier
class-name ::= identifier

object-name ::= identifier
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Appendix C

MeldC Keywords

MELDC has fifty-two reserved keywords that cannot be used for variables
or changed by the user. In addition to these keywords, identifiers created
by the user may not include the dollar-sign symbol (“$”), the at-sign (“@”),

or begin with two adjacent underlines (“__").

Keywords marked below with a dagger (“1”) are C keywords as well as

MELDC keywords.

$selector
$self
$sender
$thread
auto 7
begin
break
case |
char 7
class
const |
continue f

default §

delayuntil
do }
double 1
else 7
end
enum
exports
extern
feature
float {
for

from
goto |

if §
implementation
imports
int |
interface
long 1
merges
methods
object
register |
respond
return
send

127

short }
signed
sizeof {
static 7
struct |
switch T
to
typedef §
union
unsigned
void 1
volatile {

while 1



128 APPENDIX C. MELDC KEYWORDS



Appendix D

The UNIX System
Object

Features using UNIX system calls should do so through importing the ob-
ject sys_obj from the feature UNIX:

imports Unix[sys_obj]

The uses of the system object are described in Section 7.1.
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APPENDIX D. THE UNIX SYSTEM OBJECT

The following calls are available through the UNIX system object:

accept
access
bind
close
connect
exit

dup
dup?2
listen
Iseek
Istat
open

read
readlink
recv
recvirom
select
send

sendto
setsockopt
sleep
socket
stat

write
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